1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/io.h> 35 #include <linux/delay.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/string.h> 40 #include "qed.h" 41 #include "qed_hsi.h" 42 #include "qed_hw.h" 43 #include "qed_init_ops.h" 44 #include "qed_reg_addr.h" 45 #include "qed_sriov.h" 46 47 #define QED_INIT_MAX_POLL_COUNT 100 48 #define QED_INIT_POLL_PERIOD_US 500 49 50 static u32 pxp_global_win[] = { 51 0, 52 0, 53 0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */ 54 0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */ 55 0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */ 56 0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */ 57 0x1d80, /* win 6: addr=0x1d80000, size=4096 bytes */ 58 0x1d81, /* win 7: addr=0x1d81000, size=4096 bytes */ 59 0x1d82, /* win 8: addr=0x1d82000, size=4096 bytes */ 60 0x1e00, /* win 9: addr=0x1e00000, size=4096 bytes */ 61 0x1e80, /* win 10: addr=0x1e80000, size=4096 bytes */ 62 0x1f00, /* win 11: addr=0x1f00000, size=4096 bytes */ 63 0, 64 0, 65 0, 66 0, 67 0, 68 0, 69 0, 70 }; 71 72 void qed_init_iro_array(struct qed_dev *cdev) 73 { 74 cdev->iro_arr = iro_arr; 75 } 76 77 /* Runtime configuration helpers */ 78 void qed_init_clear_rt_data(struct qed_hwfn *p_hwfn) 79 { 80 int i; 81 82 for (i = 0; i < RUNTIME_ARRAY_SIZE; i++) 83 p_hwfn->rt_data.b_valid[i] = false; 84 } 85 86 void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 val) 87 { 88 p_hwfn->rt_data.init_val[rt_offset] = val; 89 p_hwfn->rt_data.b_valid[rt_offset] = true; 90 } 91 92 void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn, 93 u32 rt_offset, u32 *p_val, size_t size) 94 { 95 size_t i; 96 97 for (i = 0; i < size / sizeof(u32); i++) { 98 p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i]; 99 p_hwfn->rt_data.b_valid[rt_offset + i] = true; 100 } 101 } 102 103 static int qed_init_rt(struct qed_hwfn *p_hwfn, 104 struct qed_ptt *p_ptt, 105 u32 addr, u16 rt_offset, u16 size, bool b_must_dmae) 106 { 107 u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset]; 108 bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset]; 109 u16 i, segment; 110 int rc = 0; 111 112 /* Since not all RT entries are initialized, go over the RT and 113 * for each segment of initialized values use DMA. 114 */ 115 for (i = 0; i < size; i++) { 116 if (!p_valid[i]) 117 continue; 118 119 /* In case there isn't any wide-bus configuration here, 120 * simply write the data instead of using dmae. 121 */ 122 if (!b_must_dmae) { 123 qed_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]); 124 continue; 125 } 126 127 /* Start of a new segment */ 128 for (segment = 1; i + segment < size; segment++) 129 if (!p_valid[i + segment]) 130 break; 131 132 rc = qed_dmae_host2grc(p_hwfn, p_ptt, 133 (uintptr_t)(p_init_val + i), 134 addr + (i << 2), segment, 0); 135 if (rc) 136 return rc; 137 138 /* Jump over the entire segment, including invalid entry */ 139 i += segment; 140 } 141 142 return rc; 143 } 144 145 int qed_init_alloc(struct qed_hwfn *p_hwfn) 146 { 147 struct qed_rt_data *rt_data = &p_hwfn->rt_data; 148 149 if (IS_VF(p_hwfn->cdev)) 150 return 0; 151 152 rt_data->b_valid = kzalloc(sizeof(bool) * RUNTIME_ARRAY_SIZE, 153 GFP_KERNEL); 154 if (!rt_data->b_valid) 155 return -ENOMEM; 156 157 rt_data->init_val = kzalloc(sizeof(u32) * RUNTIME_ARRAY_SIZE, 158 GFP_KERNEL); 159 if (!rt_data->init_val) { 160 kfree(rt_data->b_valid); 161 return -ENOMEM; 162 } 163 164 return 0; 165 } 166 167 void qed_init_free(struct qed_hwfn *p_hwfn) 168 { 169 kfree(p_hwfn->rt_data.init_val); 170 kfree(p_hwfn->rt_data.b_valid); 171 } 172 173 static int qed_init_array_dmae(struct qed_hwfn *p_hwfn, 174 struct qed_ptt *p_ptt, 175 u32 addr, 176 u32 dmae_data_offset, 177 u32 size, 178 const u32 *buf, 179 bool b_must_dmae, 180 bool b_can_dmae) 181 { 182 int rc = 0; 183 184 /* Perform DMAE only for lengthy enough sections or for wide-bus */ 185 if (!b_can_dmae || (!b_must_dmae && (size < 16))) { 186 const u32 *data = buf + dmae_data_offset; 187 u32 i; 188 189 for (i = 0; i < size; i++) 190 qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]); 191 } else { 192 rc = qed_dmae_host2grc(p_hwfn, p_ptt, 193 (uintptr_t)(buf + dmae_data_offset), 194 addr, size, 0); 195 } 196 197 return rc; 198 } 199 200 static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn, 201 struct qed_ptt *p_ptt, 202 u32 addr, u32 fill, u32 fill_count) 203 { 204 static u32 zero_buffer[DMAE_MAX_RW_SIZE]; 205 206 memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE); 207 208 /* invoke the DMAE virtual/physical buffer API with 209 * 1. DMAE init channel 210 * 2. addr, 211 * 3. p_hwfb->temp_data, 212 * 4. fill_count 213 */ 214 215 return qed_dmae_host2grc(p_hwfn, p_ptt, 216 (uintptr_t)(&zero_buffer[0]), 217 addr, fill_count, QED_DMAE_FLAG_RW_REPL_SRC); 218 } 219 220 static void qed_init_fill(struct qed_hwfn *p_hwfn, 221 struct qed_ptt *p_ptt, 222 u32 addr, u32 fill, u32 fill_count) 223 { 224 u32 i; 225 226 for (i = 0; i < fill_count; i++, addr += sizeof(u32)) 227 qed_wr(p_hwfn, p_ptt, addr, fill); 228 } 229 230 static int qed_init_cmd_array(struct qed_hwfn *p_hwfn, 231 struct qed_ptt *p_ptt, 232 struct init_write_op *cmd, 233 bool b_must_dmae, bool b_can_dmae) 234 { 235 u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset); 236 u32 data = le32_to_cpu(cmd->data); 237 u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; 238 239 u32 offset, output_len, input_len, max_size; 240 struct qed_dev *cdev = p_hwfn->cdev; 241 union init_array_hdr *hdr; 242 const u32 *array_data; 243 int rc = 0; 244 u32 size; 245 246 array_data = cdev->fw_data->arr_data; 247 248 hdr = (union init_array_hdr *)(array_data + dmae_array_offset); 249 data = le32_to_cpu(hdr->raw.data); 250 switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) { 251 case INIT_ARR_ZIPPED: 252 offset = dmae_array_offset + 1; 253 input_len = GET_FIELD(data, 254 INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE); 255 max_size = MAX_ZIPPED_SIZE * 4; 256 memset(p_hwfn->unzip_buf, 0, max_size); 257 258 output_len = qed_unzip_data(p_hwfn, input_len, 259 (u8 *)&array_data[offset], 260 max_size, (u8 *)p_hwfn->unzip_buf); 261 if (output_len) { 262 rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0, 263 output_len, 264 p_hwfn->unzip_buf, 265 b_must_dmae, b_can_dmae); 266 } else { 267 DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n"); 268 rc = -EINVAL; 269 } 270 break; 271 case INIT_ARR_PATTERN: 272 { 273 u32 repeats = GET_FIELD(data, 274 INIT_ARRAY_PATTERN_HDR_REPETITIONS); 275 u32 i; 276 277 size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE); 278 279 for (i = 0; i < repeats; i++, addr += size << 2) { 280 rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 281 dmae_array_offset + 1, 282 size, array_data, 283 b_must_dmae, b_can_dmae); 284 if (rc) 285 break; 286 } 287 break; 288 } 289 case INIT_ARR_STANDARD: 290 size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE); 291 rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 292 dmae_array_offset + 1, 293 size, array_data, 294 b_must_dmae, b_can_dmae); 295 break; 296 } 297 298 return rc; 299 } 300 301 /* init_ops write command */ 302 static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn, 303 struct qed_ptt *p_ptt, 304 struct init_write_op *p_cmd, bool b_can_dmae) 305 { 306 u32 data = le32_to_cpu(p_cmd->data); 307 bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS); 308 u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; 309 union init_write_args *arg = &p_cmd->args; 310 int rc = 0; 311 312 /* Sanitize */ 313 if (b_must_dmae && !b_can_dmae) { 314 DP_NOTICE(p_hwfn, 315 "Need to write to %08x for Wide-bus but DMAE isn't allowed\n", 316 addr); 317 return -EINVAL; 318 } 319 320 switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) { 321 case INIT_SRC_INLINE: 322 data = le32_to_cpu(p_cmd->args.inline_val); 323 qed_wr(p_hwfn, p_ptt, addr, data); 324 break; 325 case INIT_SRC_ZEROS: 326 data = le32_to_cpu(p_cmd->args.zeros_count); 327 if (b_must_dmae || (b_can_dmae && (data >= 64))) 328 rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, 0, data); 329 else 330 qed_init_fill(p_hwfn, p_ptt, addr, 0, data); 331 break; 332 case INIT_SRC_ARRAY: 333 rc = qed_init_cmd_array(p_hwfn, p_ptt, p_cmd, 334 b_must_dmae, b_can_dmae); 335 break; 336 case INIT_SRC_RUNTIME: 337 qed_init_rt(p_hwfn, p_ptt, addr, 338 le16_to_cpu(arg->runtime.offset), 339 le16_to_cpu(arg->runtime.size), 340 b_must_dmae); 341 break; 342 } 343 344 return rc; 345 } 346 347 static inline bool comp_eq(u32 val, u32 expected_val) 348 { 349 return val == expected_val; 350 } 351 352 static inline bool comp_and(u32 val, u32 expected_val) 353 { 354 return (val & expected_val) == expected_val; 355 } 356 357 static inline bool comp_or(u32 val, u32 expected_val) 358 { 359 return (val | expected_val) > 0; 360 } 361 362 /* init_ops read/poll commands */ 363 static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn, 364 struct qed_ptt *p_ptt, struct init_read_op *cmd) 365 { 366 bool (*comp_check)(u32 val, u32 expected_val); 367 u32 delay = QED_INIT_POLL_PERIOD_US, val; 368 u32 data, addr, poll; 369 int i; 370 371 data = le32_to_cpu(cmd->op_data); 372 addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2; 373 poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE); 374 375 376 val = qed_rd(p_hwfn, p_ptt, addr); 377 378 if (poll == INIT_POLL_NONE) 379 return; 380 381 switch (poll) { 382 case INIT_POLL_EQ: 383 comp_check = comp_eq; 384 break; 385 case INIT_POLL_OR: 386 comp_check = comp_or; 387 break; 388 case INIT_POLL_AND: 389 comp_check = comp_and; 390 break; 391 default: 392 DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n", 393 cmd->op_data); 394 return; 395 } 396 397 data = le32_to_cpu(cmd->expected_val); 398 for (i = 0; 399 i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data); 400 i++) { 401 udelay(delay); 402 val = qed_rd(p_hwfn, p_ptt, addr); 403 } 404 405 if (i == QED_INIT_MAX_POLL_COUNT) { 406 DP_ERR(p_hwfn, 407 "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparsion %08x)]\n", 408 addr, le32_to_cpu(cmd->expected_val), 409 val, le32_to_cpu(cmd->op_data)); 410 } 411 } 412 413 /* init_ops callbacks entry point */ 414 static void qed_init_cmd_cb(struct qed_hwfn *p_hwfn, 415 struct qed_ptt *p_ptt, 416 struct init_callback_op *p_cmd) 417 { 418 DP_NOTICE(p_hwfn, "Currently init values have no need of callbacks\n"); 419 } 420 421 static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn, 422 u16 *p_offset, int modes) 423 { 424 struct qed_dev *cdev = p_hwfn->cdev; 425 const u8 *modes_tree_buf; 426 u8 arg1, arg2, tree_val; 427 428 modes_tree_buf = cdev->fw_data->modes_tree_buf; 429 tree_val = modes_tree_buf[(*p_offset)++]; 430 switch (tree_val) { 431 case INIT_MODE_OP_NOT: 432 return qed_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1; 433 case INIT_MODE_OP_OR: 434 arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); 435 arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); 436 return arg1 | arg2; 437 case INIT_MODE_OP_AND: 438 arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); 439 arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); 440 return arg1 & arg2; 441 default: 442 tree_val -= MAX_INIT_MODE_OPS; 443 return (modes & BIT(tree_val)) ? 1 : 0; 444 } 445 } 446 447 static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn, 448 struct init_if_mode_op *p_cmd, int modes) 449 { 450 u16 offset = le16_to_cpu(p_cmd->modes_buf_offset); 451 452 if (qed_init_cmd_mode_match(p_hwfn, &offset, modes)) 453 return 0; 454 else 455 return GET_FIELD(le32_to_cpu(p_cmd->op_data), 456 INIT_IF_MODE_OP_CMD_OFFSET); 457 } 458 459 static u32 qed_init_cmd_phase(struct qed_hwfn *p_hwfn, 460 struct init_if_phase_op *p_cmd, 461 u32 phase, u32 phase_id) 462 { 463 u32 data = le32_to_cpu(p_cmd->phase_data); 464 u32 op_data = le32_to_cpu(p_cmd->op_data); 465 466 if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase && 467 (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID || 468 GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id))) 469 return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET); 470 else 471 return 0; 472 } 473 474 int qed_init_run(struct qed_hwfn *p_hwfn, 475 struct qed_ptt *p_ptt, int phase, int phase_id, int modes) 476 { 477 struct qed_dev *cdev = p_hwfn->cdev; 478 u32 cmd_num, num_init_ops; 479 union init_op *init_ops; 480 bool b_dmae = false; 481 int rc = 0; 482 483 num_init_ops = cdev->fw_data->init_ops_size; 484 init_ops = cdev->fw_data->init_ops; 485 486 p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC); 487 if (!p_hwfn->unzip_buf) 488 return -ENOMEM; 489 490 for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) { 491 union init_op *cmd = &init_ops[cmd_num]; 492 u32 data = le32_to_cpu(cmd->raw.op_data); 493 494 switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) { 495 case INIT_OP_WRITE: 496 rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write, 497 b_dmae); 498 break; 499 case INIT_OP_READ: 500 qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read); 501 break; 502 case INIT_OP_IF_MODE: 503 cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode, 504 modes); 505 break; 506 case INIT_OP_IF_PHASE: 507 cmd_num += qed_init_cmd_phase(p_hwfn, &cmd->if_phase, 508 phase, phase_id); 509 b_dmae = GET_FIELD(data, INIT_IF_PHASE_OP_DMAE_ENABLE); 510 break; 511 case INIT_OP_DELAY: 512 /* qed_init_run is always invoked from 513 * sleep-able context 514 */ 515 udelay(le32_to_cpu(cmd->delay.delay)); 516 break; 517 518 case INIT_OP_CALLBACK: 519 qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback); 520 break; 521 } 522 523 if (rc) 524 break; 525 } 526 527 kfree(p_hwfn->unzip_buf); 528 return rc; 529 } 530 531 void qed_gtt_init(struct qed_hwfn *p_hwfn) 532 { 533 u32 gtt_base; 534 u32 i; 535 536 /* Set the global windows */ 537 gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START; 538 539 for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++) 540 if (pxp_global_win[i]) 541 REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE, 542 pxp_global_win[i]); 543 } 544 545 int qed_init_fw_data(struct qed_dev *cdev, const u8 *data) 546 { 547 struct qed_fw_data *fw = cdev->fw_data; 548 struct bin_buffer_hdr *buf_hdr; 549 u32 offset, len; 550 551 if (!data) { 552 DP_NOTICE(cdev, "Invalid fw data\n"); 553 return -EINVAL; 554 } 555 556 /* First Dword contains metadata and should be skipped */ 557 buf_hdr = (struct bin_buffer_hdr *)data; 558 559 offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset; 560 fw->fw_ver_info = (struct fw_ver_info *)(data + offset); 561 562 offset = buf_hdr[BIN_BUF_INIT_CMD].offset; 563 fw->init_ops = (union init_op *)(data + offset); 564 565 offset = buf_hdr[BIN_BUF_INIT_VAL].offset; 566 fw->arr_data = (u32 *)(data + offset); 567 568 offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset; 569 fw->modes_tree_buf = (u8 *)(data + offset); 570 len = buf_hdr[BIN_BUF_INIT_CMD].length; 571 fw->init_ops_size = len / sizeof(struct init_raw_op); 572 573 return 0; 574 } 575