1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/crc8.h> 35 #include <linux/delay.h> 36 #include <linux/kernel.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include "qed_hsi.h" 40 #include "qed_hw.h" 41 #include "qed_init_ops.h" 42 #include "qed_reg_addr.h" 43 44 #define CDU_VALIDATION_DEFAULT_CFG 61 45 46 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = { 47 {400, 336, 352, 304, 304, 384, 416, 352}, /* region 3 offsets */ 48 {528, 496, 416, 448, 448, 512, 544, 480}, /* region 4 offsets */ 49 {608, 544, 496, 512, 576, 592, 624, 560} /* region 5 offsets */ 50 }; 51 52 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = { 53 {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */ 54 }; 55 56 /* General constants */ 57 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \ 58 QM_PQ_ELEMENT_SIZE, \ 59 0x1000) : 0) 60 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \ 61 0x100) - 1 : 0) 62 #define QM_INVALID_PQ_ID 0xffff 63 64 /* Feature enable */ 65 #define QM_BYPASS_EN 1 66 #define QM_BYTE_CRD_EN 1 67 68 /* Other PQ constants */ 69 #define QM_OTHER_PQS_PER_PF 4 70 71 /* WFQ constants */ 72 73 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */ 74 #define QM_WFQ_UPPER_BOUND 62500000 75 76 /* Bit of VOQ in WFQ VP PQ map */ 77 #define QM_WFQ_VP_PQ_VOQ_SHIFT 0 78 79 /* Bit of PF in WFQ VP PQ map */ 80 #define QM_WFQ_VP_PQ_PF_E4_SHIFT 5 81 82 /* 0x9000 = 4*9*1024 */ 83 #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000) 84 85 /* Max WFQ increment value is 0.7 * upper bound */ 86 #define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10) 87 88 /* RL constants */ 89 90 /* Period in us */ 91 #define QM_RL_PERIOD 5 92 93 /* Period in 25MHz cycles */ 94 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD) 95 96 /* RL increment value - rate is specified in mbps */ 97 #define QM_RL_INC_VAL(rate) ({ \ 98 typeof(rate) __rate = (rate); \ 99 max_t(u32, \ 100 (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \ 101 (8 * 100)), \ 102 1); }) 103 104 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */ 105 #define QM_PF_RL_UPPER_BOUND 62500000 106 107 /* Max PF RL increment value is 0.7 * upper bound */ 108 #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10) 109 110 /* Vport RL Upper bound, link speed is in Mpbs */ 111 #define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \ 112 QM_RL_INC_VAL(speed), \ 113 9700 + 1000)) 114 115 /* Max Vport RL increment value is the Vport RL upper bound */ 116 #define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed) 117 118 /* Vport RL credit threshold in case of QM bypass */ 119 #define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1) 120 121 /* AFullOprtnstcCrdMask constants */ 122 #define QM_OPPOR_LINE_VOQ_DEF 1 123 #define QM_OPPOR_FW_STOP_DEF 0 124 #define QM_OPPOR_PQ_EMPTY_DEF 1 125 126 /* Command Queue constants */ 127 128 /* Pure LB CmdQ lines (+spare) */ 129 #define PBF_CMDQ_PURE_LB_LINES 150 130 131 #define PBF_CMDQ_LINES_E5_RSVD_RATIO 8 132 133 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \ 134 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \ 135 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \ 136 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET)) 137 138 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \ 139 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \ 140 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \ 141 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET)) 142 143 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \ 144 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT) 145 146 /* BTB: blocks constants (block size = 256B) */ 147 148 /* 256B blocks in 9700B packet */ 149 #define BTB_JUMBO_PKT_BLOCKS 38 150 151 /* Headroom per-port */ 152 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS 153 #define BTB_PURE_LB_FACTOR 10 154 155 /* Factored (hence really 0.7) */ 156 #define BTB_PURE_LB_RATIO 7 157 158 /* QM stop command constants */ 159 #define QM_STOP_PQ_MASK_WIDTH 32 160 #define QM_STOP_CMD_ADDR 2 161 #define QM_STOP_CMD_STRUCT_SIZE 2 162 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0 163 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0 164 #define QM_STOP_CMD_PAUSE_MASK_MASK -1 165 #define QM_STOP_CMD_GROUP_ID_OFFSET 1 166 #define QM_STOP_CMD_GROUP_ID_SHIFT 16 167 #define QM_STOP_CMD_GROUP_ID_MASK 15 168 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1 169 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24 170 #define QM_STOP_CMD_PQ_TYPE_MASK 1 171 #define QM_STOP_CMD_MAX_POLL_COUNT 100 172 #define QM_STOP_CMD_POLL_PERIOD_US 500 173 174 /* QM command macros */ 175 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE 176 #define QM_CMD_SET_FIELD(var, cmd, field, value) \ 177 SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \ 178 cmd ## _ ## field, \ 179 value) 180 181 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, \ 182 ext_voq, wrr) \ 183 do { \ 184 typeof(map) __map; \ 185 memset(&__map, 0, sizeof(__map)); \ 186 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \ 187 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \ 188 rl_valid); \ 189 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \ 190 vp_pq_id); \ 191 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \ 192 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \ 193 SET_FIELD(__map.reg, \ 194 QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \ 195 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \ 196 *((u32 *)&__map)); \ 197 (map) = __map; \ 198 } while (0) 199 200 #define WRITE_PQ_INFO_TO_RAM 1 201 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \ 202 (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \ 203 ((rl_valid) << 22) | ((rl) << 24)) 204 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \ 205 (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4) 206 207 /******************** INTERNAL IMPLEMENTATION *********************/ 208 209 /* Returns the external VOQ number */ 210 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn, 211 u8 port_id, u8 tc, u8 max_phys_tcs_per_port) 212 { 213 if (tc == PURE_LB_TC) 214 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id; 215 else 216 return port_id * max_phys_tcs_per_port + tc; 217 } 218 219 /* Prepare PF RL enable/disable runtime init values */ 220 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en) 221 { 222 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0); 223 if (pf_rl_en) { 224 u8 num_ext_voqs = MAX_NUM_VOQS_E4; 225 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1; 226 227 /* Enable RLs for all VOQs */ 228 STORE_RT_REG(p_hwfn, 229 QM_REG_RLPFVOQENABLE_RT_OFFSET, 230 (u32)voq_bit_mask); 231 if (num_ext_voqs >= 32) 232 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, 233 (u32)(voq_bit_mask >> 32)); 234 235 /* Write RL period */ 236 STORE_RT_REG(p_hwfn, 237 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M); 238 STORE_RT_REG(p_hwfn, 239 QM_REG_RLPFPERIODTIMER_RT_OFFSET, 240 QM_RL_PERIOD_CLK_25M); 241 242 /* Set credit threshold for QM bypass flow */ 243 if (QM_BYPASS_EN) 244 STORE_RT_REG(p_hwfn, 245 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, 246 QM_PF_RL_UPPER_BOUND); 247 } 248 } 249 250 /* Prepare PF WFQ enable/disable runtime init values */ 251 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en) 252 { 253 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0); 254 255 /* Set credit threshold for QM bypass flow */ 256 if (pf_wfq_en && QM_BYPASS_EN) 257 STORE_RT_REG(p_hwfn, 258 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, 259 QM_WFQ_UPPER_BOUND); 260 } 261 262 /* Prepare VPORT RL enable/disable runtime init values */ 263 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en) 264 { 265 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, 266 vport_rl_en ? 1 : 0); 267 if (vport_rl_en) { 268 /* Write RL period (use timer 0 only) */ 269 STORE_RT_REG(p_hwfn, 270 QM_REG_RLGLBLPERIOD_0_RT_OFFSET, 271 QM_RL_PERIOD_CLK_25M); 272 STORE_RT_REG(p_hwfn, 273 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, 274 QM_RL_PERIOD_CLK_25M); 275 276 /* Set credit threshold for QM bypass flow */ 277 if (QM_BYPASS_EN) 278 STORE_RT_REG(p_hwfn, 279 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, 280 QM_VP_RL_BYPASS_THRESH_SPEED); 281 } 282 } 283 284 /* Prepare VPORT WFQ enable/disable runtime init values */ 285 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en) 286 { 287 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, 288 vport_wfq_en ? 1 : 0); 289 290 /* Set credit threshold for QM bypass flow */ 291 if (vport_wfq_en && QM_BYPASS_EN) 292 STORE_RT_REG(p_hwfn, 293 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, 294 QM_WFQ_UPPER_BOUND); 295 } 296 297 /* Prepare runtime init values to allocate PBF command queue lines for 298 * the specified VOQ. 299 */ 300 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn, 301 u8 ext_voq, u16 cmdq_lines) 302 { 303 u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines); 304 305 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 306 (u32)cmdq_lines); 307 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, 308 qm_line_crd); 309 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, 310 qm_line_crd); 311 } 312 313 /* Prepare runtime init values to allocate PBF command queue lines. */ 314 static void qed_cmdq_lines_rt_init( 315 struct qed_hwfn *p_hwfn, 316 u8 max_ports_per_engine, 317 u8 max_phys_tcs_per_port, 318 struct init_qm_port_params port_params[MAX_NUM_PORTS]) 319 { 320 u8 tc, ext_voq, port_id, num_tcs_in_port; 321 u8 num_ext_voqs = MAX_NUM_VOQS_E4; 322 323 /* Clear PBF lines of all VOQs */ 324 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++) 325 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0); 326 327 for (port_id = 0; port_id < max_ports_per_engine; port_id++) { 328 u16 phys_lines, phys_lines_per_tc; 329 330 if (!port_params[port_id].active) 331 continue; 332 333 /* Find number of command queue lines to divide between the 334 * active physical TCs. In E5, 1/8 of the lines are reserved. 335 * the lines for pure LB TC are subtracted. 336 */ 337 phys_lines = port_params[port_id].num_pbf_cmd_lines; 338 phys_lines -= PBF_CMDQ_PURE_LB_LINES; 339 340 /* Find #lines per active physical TC */ 341 num_tcs_in_port = 0; 342 for (tc = 0; tc < max_phys_tcs_per_port; tc++) 343 if (((port_params[port_id].active_phys_tcs >> 344 tc) & 0x1) == 1) 345 num_tcs_in_port++; 346 phys_lines_per_tc = phys_lines / num_tcs_in_port; 347 348 /* Init registers per active TC */ 349 for (tc = 0; tc < max_phys_tcs_per_port; tc++) { 350 ext_voq = qed_get_ext_voq(p_hwfn, 351 port_id, 352 tc, max_phys_tcs_per_port); 353 if (((port_params[port_id].active_phys_tcs >> 354 tc) & 0x1) == 1) 355 qed_cmdq_lines_voq_rt_init(p_hwfn, 356 ext_voq, 357 phys_lines_per_tc); 358 } 359 360 /* Init registers for pure LB TC */ 361 ext_voq = qed_get_ext_voq(p_hwfn, 362 port_id, 363 PURE_LB_TC, max_phys_tcs_per_port); 364 qed_cmdq_lines_voq_rt_init(p_hwfn, 365 ext_voq, PBF_CMDQ_PURE_LB_LINES); 366 } 367 } 368 369 static void qed_btb_blocks_rt_init( 370 struct qed_hwfn *p_hwfn, 371 u8 max_ports_per_engine, 372 u8 max_phys_tcs_per_port, 373 struct init_qm_port_params port_params[MAX_NUM_PORTS]) 374 { 375 u32 usable_blocks, pure_lb_blocks, phys_blocks; 376 u8 tc, ext_voq, port_id, num_tcs_in_port; 377 378 for (port_id = 0; port_id < max_ports_per_engine; port_id++) { 379 if (!port_params[port_id].active) 380 continue; 381 382 /* Subtract headroom blocks */ 383 usable_blocks = port_params[port_id].num_btb_blocks - 384 BTB_HEADROOM_BLOCKS; 385 386 /* Find blocks per physical TC. Use factor to avoid floating 387 * arithmethic. 388 */ 389 num_tcs_in_port = 0; 390 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) 391 if (((port_params[port_id].active_phys_tcs >> 392 tc) & 0x1) == 1) 393 num_tcs_in_port++; 394 395 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / 396 (num_tcs_in_port * BTB_PURE_LB_FACTOR + 397 BTB_PURE_LB_RATIO); 398 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS, 399 pure_lb_blocks / BTB_PURE_LB_FACTOR); 400 phys_blocks = (usable_blocks - pure_lb_blocks) / 401 num_tcs_in_port; 402 403 /* Init physical TCs */ 404 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) { 405 if (((port_params[port_id].active_phys_tcs >> 406 tc) & 0x1) == 1) { 407 ext_voq = 408 qed_get_ext_voq(p_hwfn, 409 port_id, 410 tc, 411 max_phys_tcs_per_port); 412 STORE_RT_REG(p_hwfn, 413 PBF_BTB_GUARANTEED_RT_OFFSET 414 (ext_voq), phys_blocks); 415 } 416 } 417 418 /* Init pure LB TC */ 419 ext_voq = qed_get_ext_voq(p_hwfn, 420 port_id, 421 PURE_LB_TC, max_phys_tcs_per_port); 422 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), 423 pure_lb_blocks); 424 } 425 } 426 427 /* Prepare Tx PQ mapping runtime init values for the specified PF */ 428 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn, 429 struct qed_ptt *p_ptt, 430 struct qed_qm_pf_rt_init_params *p_params, 431 u32 base_mem_addr_4kb) 432 { 433 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 }; 434 struct init_qm_vport_params *vport_params = p_params->vport_params; 435 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE; 436 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group; 437 struct init_qm_pq_params *pq_params = p_params->pq_params; 438 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb; 439 440 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; 441 442 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE; 443 last_pq_group = (p_params->start_pq + num_pqs - 1) / 444 QM_PF_QUEUE_GROUP_SIZE; 445 446 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids); 447 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids); 448 mem_addr_4kb = base_mem_addr_4kb; 449 450 /* Set mapping from PQ group to PF */ 451 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++) 452 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, 453 (u32)(p_params->pf_id)); 454 455 /* Set PQ sizes */ 456 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, 457 QM_PQ_SIZE_256B(p_params->num_pf_cids)); 458 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, 459 QM_PQ_SIZE_256B(p_params->num_vf_cids)); 460 461 /* Go over all Tx PQs */ 462 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) { 463 u8 ext_voq, vport_id_in_pf, tc_id = pq_params[i].tc_id; 464 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS; 465 struct qm_rf_pq_map_e4 tx_pq_map; 466 bool is_vf_pq, rl_valid; 467 u16 *p_first_tx_pq_id; 468 469 ext_voq = qed_get_ext_voq(p_hwfn, 470 pq_params[i].port_id, 471 tc_id, 472 p_params->max_phys_tcs_per_port); 473 is_vf_pq = (i >= p_params->num_pf_pqs); 474 rl_valid = pq_params[i].rl_valid > 0; 475 476 /* Update first Tx PQ of VPORT/TC */ 477 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport; 478 p_first_tx_pq_id = 479 &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id]; 480 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) { 481 u32 map_val = 482 (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | 483 (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT); 484 485 /* Create new VP PQ */ 486 *p_first_tx_pq_id = pq_id; 487 488 /* Map VP PQ to VOQ and PF */ 489 STORE_RT_REG(p_hwfn, 490 QM_REG_WFQVPMAP_RT_OFFSET + 491 *p_first_tx_pq_id, 492 map_val); 493 } 494 495 /* Check RL ID */ 496 if (rl_valid && pq_params[i].vport_id >= max_qm_global_rls) { 497 DP_NOTICE(p_hwfn, 498 "Invalid VPORT ID for rate limiter configuration\n"); 499 rl_valid = false; 500 } 501 502 /* Prepare PQ map entry */ 503 QM_INIT_TX_PQ_MAP(p_hwfn, 504 tx_pq_map, 505 E4, 506 pq_id, 507 rl_valid ? 1 : 0, 508 *p_first_tx_pq_id, 509 rl_valid ? pq_params[i].vport_id : 0, 510 ext_voq, pq_params[i].wrr_group); 511 512 /* Set PQ base address */ 513 STORE_RT_REG(p_hwfn, 514 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, 515 mem_addr_4kb); 516 517 /* Clear PQ pointer table entry (64 bit) */ 518 if (p_params->is_pf_loading) 519 for (j = 0; j < 2; j++) 520 STORE_RT_REG(p_hwfn, 521 QM_REG_PTRTBLTX_RT_OFFSET + 522 (pq_id * 2) + j, 0); 523 524 /* Write PQ info to RAM */ 525 if (WRITE_PQ_INFO_TO_RAM != 0) { 526 u32 pq_info = 0; 527 528 pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id, 529 p_params->pf_id, 530 tc_id, 531 pq_params[i].port_id, 532 rl_valid ? 1 : 0, 533 rl_valid ? 534 pq_params[i].vport_id : 0); 535 qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), 536 pq_info); 537 } 538 539 /* If VF PQ, add indication to PQ VF mask */ 540 if (is_vf_pq) { 541 tx_pq_vf_mask[pq_id / 542 QM_PF_QUEUE_GROUP_SIZE] |= 543 BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE)); 544 mem_addr_4kb += vport_pq_mem_4kb; 545 } else { 546 mem_addr_4kb += pq_mem_4kb; 547 } 548 } 549 550 /* Store Tx PQ VF mask to size select register */ 551 for (i = 0; i < num_tx_pq_vf_masks; i++) 552 if (tx_pq_vf_mask[i]) 553 STORE_RT_REG(p_hwfn, 554 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, 555 tx_pq_vf_mask[i]); 556 } 557 558 /* Prepare Other PQ mapping runtime init values for the specified PF */ 559 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn, 560 u8 pf_id, 561 bool is_pf_loading, 562 u32 num_pf_cids, 563 u32 num_tids, u32 base_mem_addr_4kb) 564 { 565 u32 pq_size, pq_mem_4kb, mem_addr_4kb; 566 u16 i, j, pq_id, pq_group; 567 568 /* A single other PQ group is used in each PF, where PQ group i is used 569 * in PF i. 570 */ 571 pq_group = pf_id; 572 pq_size = num_pf_cids + num_tids; 573 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size); 574 mem_addr_4kb = base_mem_addr_4kb; 575 576 /* Map PQ group to PF */ 577 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, 578 (u32)(pf_id)); 579 580 /* Set PQ sizes */ 581 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, 582 QM_PQ_SIZE_256B(pq_size)); 583 584 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; 585 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) { 586 /* Set PQ base address */ 587 STORE_RT_REG(p_hwfn, 588 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, 589 mem_addr_4kb); 590 591 /* Clear PQ pointer table entry */ 592 if (is_pf_loading) 593 for (j = 0; j < 2; j++) 594 STORE_RT_REG(p_hwfn, 595 QM_REG_PTRTBLOTHER_RT_OFFSET + 596 (pq_id * 2) + j, 0); 597 598 mem_addr_4kb += pq_mem_4kb; 599 } 600 } 601 602 /* Prepare PF WFQ runtime init values for the specified PF. 603 * Return -1 on error. 604 */ 605 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn, 606 607 struct qed_qm_pf_rt_init_params *p_params) 608 { 609 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; 610 struct init_qm_pq_params *pq_params = p_params->pq_params; 611 u32 inc_val, crd_reg_offset; 612 u8 ext_voq; 613 u16 i; 614 615 inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq); 616 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { 617 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); 618 return -1; 619 } 620 621 for (i = 0; i < num_tx_pqs; i++) { 622 ext_voq = qed_get_ext_voq(p_hwfn, 623 pq_params[i].port_id, 624 pq_params[i].tc_id, 625 p_params->max_phys_tcs_per_port); 626 crd_reg_offset = 627 (p_params->pf_id < MAX_NUM_PFS_BB ? 628 QM_REG_WFQPFCRD_RT_OFFSET : 629 QM_REG_WFQPFCRD_MSB_RT_OFFSET) + 630 ext_voq * MAX_NUM_PFS_BB + 631 (p_params->pf_id % MAX_NUM_PFS_BB); 632 OVERWRITE_RT_REG(p_hwfn, 633 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT); 634 } 635 636 STORE_RT_REG(p_hwfn, 637 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id, 638 QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT); 639 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id, 640 inc_val); 641 642 return 0; 643 } 644 645 /* Prepare PF RL runtime init values for the specified PF. 646 * Return -1 on error. 647 */ 648 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl) 649 { 650 u32 inc_val = QM_RL_INC_VAL(pf_rl); 651 652 if (inc_val > QM_PF_RL_MAX_INC_VAL) { 653 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); 654 return -1; 655 } 656 657 STORE_RT_REG(p_hwfn, 658 QM_REG_RLPFCRD_RT_OFFSET + pf_id, 659 (u32)QM_RL_CRD_REG_SIGN_BIT); 660 STORE_RT_REG(p_hwfn, 661 QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, 662 QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT); 663 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val); 664 665 return 0; 666 } 667 668 /* Prepare VPORT WFQ runtime init values for the specified VPORTs. 669 * Return -1 on error. 670 */ 671 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn, 672 u8 num_vports, 673 struct init_qm_vport_params *vport_params) 674 { 675 u16 vport_pq_id; 676 u32 inc_val; 677 u8 tc, i; 678 679 /* Go over all PF VPORTs */ 680 for (i = 0; i < num_vports; i++) { 681 if (!vport_params[i].vport_wfq) 682 continue; 683 684 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq); 685 if (inc_val > QM_WFQ_MAX_INC_VAL) { 686 DP_NOTICE(p_hwfn, 687 "Invalid VPORT WFQ weight configuration\n"); 688 return -1; 689 } 690 691 /* Each VPORT can have several VPORT PQ IDs for various TCs */ 692 for (tc = 0; tc < NUM_OF_TCS; tc++) { 693 vport_pq_id = vport_params[i].first_tx_pq_id[tc]; 694 if (vport_pq_id != QM_INVALID_PQ_ID) { 695 STORE_RT_REG(p_hwfn, 696 QM_REG_WFQVPCRD_RT_OFFSET + 697 vport_pq_id, 698 (u32)QM_WFQ_CRD_REG_SIGN_BIT); 699 STORE_RT_REG(p_hwfn, 700 QM_REG_WFQVPWEIGHT_RT_OFFSET + 701 vport_pq_id, inc_val); 702 } 703 } 704 } 705 706 return 0; 707 } 708 709 /* Prepare VPORT RL runtime init values for the specified VPORTs. 710 * Return -1 on error. 711 */ 712 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn, 713 u8 start_vport, 714 u8 num_vports, 715 u32 link_speed, 716 struct init_qm_vport_params *vport_params) 717 { 718 u8 i, vport_id; 719 u32 inc_val; 720 721 if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) { 722 DP_NOTICE(p_hwfn, 723 "Invalid VPORT ID for rate limiter configuration\n"); 724 return -1; 725 } 726 727 /* Go over all PF VPORTs */ 728 for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) { 729 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? 730 vport_params[i].vport_rl : 731 link_speed); 732 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) { 733 DP_NOTICE(p_hwfn, 734 "Invalid VPORT rate-limit configuration\n"); 735 return -1; 736 } 737 738 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, 739 (u32)QM_RL_CRD_REG_SIGN_BIT); 740 STORE_RT_REG(p_hwfn, 741 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, 742 QM_VP_RL_UPPER_BOUND(link_speed) | 743 (u32)QM_RL_CRD_REG_SIGN_BIT); 744 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, 745 inc_val); 746 } 747 748 return 0; 749 } 750 751 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn, 752 struct qed_ptt *p_ptt) 753 { 754 u32 reg_val, i; 755 756 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; 757 i++) { 758 udelay(QM_STOP_CMD_POLL_PERIOD_US); 759 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY); 760 } 761 762 /* Check if timeout while waiting for SDM command ready */ 763 if (i == QM_STOP_CMD_MAX_POLL_COUNT) { 764 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 765 "Timeout when waiting for QM SDM command ready signal\n"); 766 return false; 767 } 768 769 return true; 770 } 771 772 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn, 773 struct qed_ptt *p_ptt, 774 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb) 775 { 776 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt)) 777 return false; 778 779 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr); 780 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb); 781 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb); 782 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1); 783 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0); 784 785 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt); 786 } 787 788 /******************** INTERFACE IMPLEMENTATION *********************/ 789 790 u32 qed_qm_pf_mem_size(u32 num_pf_cids, 791 u32 num_vf_cids, 792 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs) 793 { 794 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs + 795 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs + 796 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF; 797 } 798 799 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn, 800 struct qed_qm_common_rt_init_params *p_params) 801 { 802 /* Init AFullOprtnstcCrdMask */ 803 u32 mask = (QM_OPPOR_LINE_VOQ_DEF << 804 QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) | 805 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) | 806 (p_params->pf_wfq_en << 807 QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) | 808 (p_params->vport_wfq_en << 809 QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) | 810 (p_params->pf_rl_en << 811 QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) | 812 (p_params->vport_rl_en << 813 QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) | 814 (QM_OPPOR_FW_STOP_DEF << 815 QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) | 816 (QM_OPPOR_PQ_EMPTY_DEF << 817 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT); 818 819 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask); 820 821 /* Enable/disable PF RL */ 822 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en); 823 824 /* Enable/disable PF WFQ */ 825 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en); 826 827 /* Enable/disable VPORT RL */ 828 qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en); 829 830 /* Enable/disable VPORT WFQ */ 831 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en); 832 833 /* Init PBF CMDQ line credit */ 834 qed_cmdq_lines_rt_init(p_hwfn, 835 p_params->max_ports_per_engine, 836 p_params->max_phys_tcs_per_port, 837 p_params->port_params); 838 839 /* Init BTB blocks in PBF */ 840 qed_btb_blocks_rt_init(p_hwfn, 841 p_params->max_ports_per_engine, 842 p_params->max_phys_tcs_per_port, 843 p_params->port_params); 844 845 return 0; 846 } 847 848 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn, 849 struct qed_ptt *p_ptt, 850 struct qed_qm_pf_rt_init_params *p_params) 851 { 852 struct init_qm_vport_params *vport_params = p_params->vport_params; 853 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids + 854 p_params->num_tids) * 855 QM_OTHER_PQS_PER_PF; 856 u8 tc, i; 857 858 /* Clear first Tx PQ ID array for each VPORT */ 859 for (i = 0; i < p_params->num_vports; i++) 860 for (tc = 0; tc < NUM_OF_TCS; tc++) 861 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID; 862 863 /* Map Other PQs (if any) */ 864 qed_other_pq_map_rt_init(p_hwfn, 865 p_params->pf_id, 866 p_params->is_pf_loading, p_params->num_pf_cids, 867 p_params->num_tids, 0); 868 869 /* Map Tx PQs */ 870 qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb); 871 872 /* Init PF WFQ */ 873 if (p_params->pf_wfq) 874 if (qed_pf_wfq_rt_init(p_hwfn, p_params)) 875 return -1; 876 877 /* Init PF RL */ 878 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl)) 879 return -1; 880 881 /* Set VPORT WFQ */ 882 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params)) 883 return -1; 884 885 /* Set VPORT RL */ 886 if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport, 887 p_params->num_vports, p_params->link_speed, 888 vport_params)) 889 return -1; 890 891 return 0; 892 } 893 894 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn, 895 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq) 896 { 897 u32 inc_val = QM_WFQ_INC_VAL(pf_wfq); 898 899 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { 900 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); 901 return -1; 902 } 903 904 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val); 905 906 return 0; 907 } 908 909 int qed_init_pf_rl(struct qed_hwfn *p_hwfn, 910 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl) 911 { 912 u32 inc_val = QM_RL_INC_VAL(pf_rl); 913 914 if (inc_val > QM_PF_RL_MAX_INC_VAL) { 915 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); 916 return -1; 917 } 918 919 qed_wr(p_hwfn, 920 p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); 921 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val); 922 923 return 0; 924 } 925 926 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn, 927 struct qed_ptt *p_ptt, 928 u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq) 929 { 930 u16 vport_pq_id; 931 u32 inc_val; 932 u8 tc; 933 934 inc_val = QM_WFQ_INC_VAL(vport_wfq); 935 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { 936 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n"); 937 return -1; 938 } 939 940 for (tc = 0; tc < NUM_OF_TCS; tc++) { 941 vport_pq_id = first_tx_pq_id[tc]; 942 if (vport_pq_id != QM_INVALID_PQ_ID) 943 qed_wr(p_hwfn, 944 p_ptt, 945 QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val); 946 } 947 948 return 0; 949 } 950 951 int qed_init_vport_rl(struct qed_hwfn *p_hwfn, 952 struct qed_ptt *p_ptt, 953 u8 vport_id, u32 vport_rl, u32 link_speed) 954 { 955 u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS; 956 957 if (vport_id >= max_qm_global_rls) { 958 DP_NOTICE(p_hwfn, 959 "Invalid VPORT ID for rate limiter configuration\n"); 960 return -1; 961 } 962 963 inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed); 964 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) { 965 DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n"); 966 return -1; 967 } 968 969 qed_wr(p_hwfn, 970 p_ptt, 971 QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); 972 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val); 973 974 return 0; 975 } 976 977 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn, 978 struct qed_ptt *p_ptt, 979 bool is_release_cmd, 980 bool is_tx_pq, u16 start_pq, u16 num_pqs) 981 { 982 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 }; 983 u32 pq_mask = 0, last_pq, pq_id; 984 985 last_pq = start_pq + num_pqs - 1; 986 987 /* Set command's PQ type */ 988 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1); 989 990 /* Go over requested PQs */ 991 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) { 992 /* Set PQ bit in mask (stop command only) */ 993 if (!is_release_cmd) 994 pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH)); 995 996 /* If last PQ or end of PQ mask, write command */ 997 if ((pq_id == last_pq) || 998 (pq_id % QM_STOP_PQ_MASK_WIDTH == 999 (QM_STOP_PQ_MASK_WIDTH - 1))) { 1000 QM_CMD_SET_FIELD(cmd_arr, 1001 QM_STOP_CMD, PAUSE_MASK, pq_mask); 1002 QM_CMD_SET_FIELD(cmd_arr, 1003 QM_STOP_CMD, 1004 GROUP_ID, 1005 pq_id / QM_STOP_PQ_MASK_WIDTH); 1006 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, 1007 cmd_arr[0], cmd_arr[1])) 1008 return false; 1009 pq_mask = 0; 1010 } 1011 } 1012 1013 return true; 1014 } 1015 1016 1017 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \ 1018 do { \ 1019 typeof(var) *__p_var = &(var); \ 1020 typeof(offset) __offset = offset; \ 1021 *__p_var = (*__p_var & ~BIT(__offset)) | \ 1022 ((enable) ? BIT(__offset) : 0); \ 1023 } while (0) 1024 #define PRS_ETH_TUNN_OUTPUT_FORMAT -188897008 1025 #define PRS_ETH_OUTPUT_FORMAT -46832 1026 1027 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn, 1028 struct qed_ptt *p_ptt, u16 dest_port) 1029 { 1030 /* Update PRS register */ 1031 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port); 1032 1033 /* Update NIG register */ 1034 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port); 1035 1036 /* Update PBF register */ 1037 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port); 1038 } 1039 1040 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn, 1041 struct qed_ptt *p_ptt, bool vxlan_enable) 1042 { 1043 u32 reg_val; 1044 u8 shift; 1045 1046 /* Update PRS register */ 1047 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1048 shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT; 1049 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); 1050 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1051 if (reg_val) { 1052 reg_val = 1053 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); 1054 1055 /* Update output only if tunnel blocks not included. */ 1056 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1057 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, 1058 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1059 } 1060 1061 /* Update NIG register */ 1062 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); 1063 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT; 1064 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); 1065 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); 1066 1067 /* Update DORQ register */ 1068 qed_wr(p_hwfn, 1069 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0); 1070 } 1071 1072 void qed_set_gre_enable(struct qed_hwfn *p_hwfn, 1073 struct qed_ptt *p_ptt, 1074 bool eth_gre_enable, bool ip_gre_enable) 1075 { 1076 u32 reg_val; 1077 u8 shift; 1078 1079 /* Update PRS register */ 1080 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1081 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT; 1082 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); 1083 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT; 1084 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); 1085 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1086 if (reg_val) { 1087 reg_val = 1088 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); 1089 1090 /* Update output only if tunnel blocks not included. */ 1091 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1092 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, 1093 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1094 } 1095 1096 /* Update NIG register */ 1097 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); 1098 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT; 1099 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); 1100 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT; 1101 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); 1102 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); 1103 1104 /* Update DORQ registers */ 1105 qed_wr(p_hwfn, 1106 p_ptt, 1107 DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0); 1108 qed_wr(p_hwfn, 1109 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0); 1110 } 1111 1112 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn, 1113 struct qed_ptt *p_ptt, u16 dest_port) 1114 { 1115 /* Update PRS register */ 1116 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port); 1117 1118 /* Update NIG register */ 1119 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port); 1120 1121 /* Update PBF register */ 1122 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port); 1123 } 1124 1125 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn, 1126 struct qed_ptt *p_ptt, 1127 bool eth_geneve_enable, bool ip_geneve_enable) 1128 { 1129 u32 reg_val; 1130 u8 shift; 1131 1132 /* Update PRS register */ 1133 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1134 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT; 1135 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable); 1136 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT; 1137 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable); 1138 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1139 if (reg_val) { 1140 reg_val = 1141 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); 1142 1143 /* Update output only if tunnel blocks not included. */ 1144 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1145 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, 1146 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1147 } 1148 1149 /* Update NIG register */ 1150 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, 1151 eth_geneve_enable ? 1 : 0); 1152 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0); 1153 1154 /* EDPM with geneve tunnel not supported in BB */ 1155 if (QED_IS_BB_B0(p_hwfn->cdev)) 1156 return; 1157 1158 /* Update DORQ registers */ 1159 qed_wr(p_hwfn, 1160 p_ptt, 1161 DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, 1162 eth_geneve_enable ? 1 : 0); 1163 qed_wr(p_hwfn, 1164 p_ptt, 1165 DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, 1166 ip_geneve_enable ? 1 : 0); 1167 } 1168 1169 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 4 1170 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -927094512 1171 1172 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn, 1173 struct qed_ptt *p_ptt, bool enable) 1174 { 1175 u32 reg_val, cfg_mask; 1176 1177 /* read PRS config register */ 1178 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO); 1179 1180 /* set VXLAN_NO_L2_ENABLE mask */ 1181 cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET); 1182 1183 if (enable) { 1184 /* set VXLAN_NO_L2_ENABLE flag */ 1185 reg_val |= cfg_mask; 1186 1187 /* update PRS FIC register */ 1188 qed_wr(p_hwfn, 1189 p_ptt, 1190 PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, 1191 (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT); 1192 } else { 1193 /* clear VXLAN_NO_L2_ENABLE flag */ 1194 reg_val &= ~cfg_mask; 1195 } 1196 1197 /* write PRS config register */ 1198 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val); 1199 } 1200 1201 #define T_ETH_PACKET_ACTION_GFT_EVENTID 23 1202 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272 1203 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25 1204 #define PARSER_ETH_CONN_CM_HDR 0 1205 #define CAM_LINE_SIZE sizeof(u32) 1206 #define RAM_LINE_SIZE sizeof(u64) 1207 #define REG_SIZE sizeof(u32) 1208 1209 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id) 1210 { 1211 /* Disable gft search for PF */ 1212 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0); 1213 1214 /* Clean ram & cam for next gft session */ 1215 1216 /* Zero camline */ 1217 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0); 1218 1219 /* Zero ramline */ 1220 qed_wr(p_hwfn, 1221 p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 0); 1222 qed_wr(p_hwfn, 1223 p_ptt, 1224 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE, 1225 0); 1226 } 1227 1228 void qed_set_gft_event_id_cm_hdr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1229 { 1230 u32 rfs_cm_hdr_event_id; 1231 1232 /* Set RFS event ID to be awakened i Tstorm By Prs */ 1233 rfs_cm_hdr_event_id = qed_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT); 1234 rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << 1235 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT; 1236 rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << 1237 PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT; 1238 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id); 1239 } 1240 1241 void qed_gft_config(struct qed_hwfn *p_hwfn, 1242 struct qed_ptt *p_ptt, 1243 u16 pf_id, 1244 bool tcp, 1245 bool udp, 1246 bool ipv4, bool ipv6, enum gft_profile_type profile_type) 1247 { 1248 u32 reg_val, cam_line, ram_line_lo, ram_line_hi, search_non_ip_as_gft; 1249 1250 if (!ipv6 && !ipv4) 1251 DP_NOTICE(p_hwfn, 1252 "gft_config: must accept at least on of - ipv4 or ipv6'\n"); 1253 if (!tcp && !udp) 1254 DP_NOTICE(p_hwfn, 1255 "gft_config: must accept at least on of - udp or tcp\n"); 1256 if (profile_type >= MAX_GFT_PROFILE_TYPE) 1257 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n"); 1258 1259 /* Set RFS event ID to be awakened i Tstorm By Prs */ 1260 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << 1261 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT; 1262 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT; 1263 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val); 1264 1265 /* Do not load context only cid in PRS on match. */ 1266 qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); 1267 1268 /* Do not use tenant ID exist bit for gft search */ 1269 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0); 1270 1271 /* Set Cam */ 1272 cam_line = 0; 1273 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1); 1274 1275 /* Filters are per PF!! */ 1276 SET_FIELD(cam_line, 1277 GFT_CAM_LINE_MAPPED_PF_ID_MASK, 1278 GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK); 1279 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id); 1280 1281 if (!(tcp && udp)) { 1282 SET_FIELD(cam_line, 1283 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, 1284 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK); 1285 if (tcp) 1286 SET_FIELD(cam_line, 1287 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, 1288 GFT_PROFILE_TCP_PROTOCOL); 1289 else 1290 SET_FIELD(cam_line, 1291 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, 1292 GFT_PROFILE_UDP_PROTOCOL); 1293 } 1294 1295 if (!(ipv4 && ipv6)) { 1296 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1); 1297 if (ipv4) 1298 SET_FIELD(cam_line, 1299 GFT_CAM_LINE_MAPPED_IP_VERSION, 1300 GFT_PROFILE_IPV4); 1301 else 1302 SET_FIELD(cam_line, 1303 GFT_CAM_LINE_MAPPED_IP_VERSION, 1304 GFT_PROFILE_IPV6); 1305 } 1306 1307 /* Write characteristics to cam */ 1308 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 1309 cam_line); 1310 cam_line = 1311 qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id); 1312 1313 /* Write line to RAM - compare to filter 4 tuple */ 1314 ram_line_lo = 0; 1315 ram_line_hi = 0; 1316 1317 /* Search no IP as GFT */ 1318 search_non_ip_as_gft = 0; 1319 1320 /* Tunnel type */ 1321 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1); 1322 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1); 1323 1324 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) { 1325 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1); 1326 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1); 1327 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); 1328 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1); 1329 SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1); 1330 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1); 1331 } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) { 1332 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); 1333 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1); 1334 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1); 1335 } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) { 1336 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1); 1337 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1); 1338 } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) { 1339 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1); 1340 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1); 1341 } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) { 1342 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1); 1343 1344 /* Allow tunneled traffic without inner IP */ 1345 search_non_ip_as_gft = 1; 1346 } 1347 1348 qed_wr(p_hwfn, 1349 p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft); 1350 qed_wr(p_hwfn, 1351 p_ptt, 1352 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 1353 ram_line_lo); 1354 qed_wr(p_hwfn, 1355 p_ptt, 1356 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE, 1357 ram_line_hi); 1358 1359 /* Set default profile so that no filter match will happen */ 1360 qed_wr(p_hwfn, 1361 p_ptt, 1362 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * 1363 PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff); 1364 qed_wr(p_hwfn, 1365 p_ptt, 1366 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * 1367 PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff); 1368 1369 /* Enable gft search */ 1370 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1); 1371 } 1372 1373 DECLARE_CRC8_TABLE(cdu_crc8_table); 1374 1375 /* Calculate and return CDU validation byte per connection type/region/cid */ 1376 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid) 1377 { 1378 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG; 1379 u8 crc, validation_byte = 0; 1380 static u8 crc8_table_valid; /* automatically initialized to 0 */ 1381 u32 validation_string = 0; 1382 u32 data_to_crc; 1383 1384 if (!crc8_table_valid) { 1385 crc8_populate_msb(cdu_crc8_table, 0x07); 1386 crc8_table_valid = 1; 1387 } 1388 1389 /* The CRC is calculated on the String-to-compress: 1390 * [31:8] = {CID[31:20],CID[11:0]} 1391 * [7:4] = Region 1392 * [3:0] = Type 1393 */ 1394 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1) 1395 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8); 1396 1397 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1) 1398 validation_string |= ((region & 0xF) << 4); 1399 1400 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1) 1401 validation_string |= (conn_type & 0xF); 1402 1403 /* Convert to big-endian and calculate CRC8 */ 1404 data_to_crc = be32_to_cpu(validation_string); 1405 1406 crc = crc8(cdu_crc8_table, 1407 (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE); 1408 1409 /* The validation byte [7:0] is composed: 1410 * for type A validation 1411 * [7] = active configuration bit 1412 * [6:0] = crc[6:0] 1413 * 1414 * for type B validation 1415 * [7] = active configuration bit 1416 * [6:3] = connection_type[3:0] 1417 * [2:0] = crc[2:0] 1418 */ 1419 validation_byte |= 1420 ((validation_cfg >> 1421 CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7; 1422 1423 if ((validation_cfg >> 1424 CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1) 1425 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7); 1426 else 1427 validation_byte |= crc & 0x7F; 1428 1429 return validation_byte; 1430 } 1431 1432 /* Calcualte and set validation bytes for session context */ 1433 void qed_calc_session_ctx_validation(void *p_ctx_mem, 1434 u16 ctx_size, u8 ctx_type, u32 cid) 1435 { 1436 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; 1437 1438 p_ctx = (u8 * const)p_ctx_mem; 1439 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; 1440 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; 1441 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; 1442 1443 memset(p_ctx, 0, ctx_size); 1444 1445 *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid); 1446 *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid); 1447 *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid); 1448 } 1449 1450 /* Calcualte and set validation bytes for task context */ 1451 void qed_calc_task_ctx_validation(void *p_ctx_mem, 1452 u16 ctx_size, u8 ctx_type, u32 tid) 1453 { 1454 u8 *p_ctx, *region1_val_ptr; 1455 1456 p_ctx = (u8 * const)p_ctx_mem; 1457 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; 1458 1459 memset(p_ctx, 0, ctx_size); 1460 1461 *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid); 1462 } 1463 1464 /* Memset session context to 0 while preserving validation bytes */ 1465 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) 1466 { 1467 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; 1468 u8 x_val, t_val, u_val; 1469 1470 p_ctx = (u8 * const)p_ctx_mem; 1471 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; 1472 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; 1473 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; 1474 1475 x_val = *x_val_ptr; 1476 t_val = *t_val_ptr; 1477 u_val = *u_val_ptr; 1478 1479 memset(p_ctx, 0, ctx_size); 1480 1481 *x_val_ptr = x_val; 1482 *t_val_ptr = t_val; 1483 *u_val_ptr = u_val; 1484 } 1485 1486 /* Memset task context to 0 while preserving validation bytes */ 1487 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) 1488 { 1489 u8 *p_ctx, *region1_val_ptr; 1490 u8 region1_val; 1491 1492 p_ctx = (u8 * const)p_ctx_mem; 1493 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; 1494 1495 region1_val = *region1_val_ptr; 1496 1497 memset(p_ctx, 0, ctx_size); 1498 1499 *region1_val_ptr = region1_val; 1500 } 1501 1502 /* Enable and configure context validation */ 1503 void qed_enable_context_validation(struct qed_hwfn *p_hwfn, 1504 struct qed_ptt *p_ptt) 1505 { 1506 u32 ctx_validation; 1507 1508 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */ 1509 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24; 1510 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation); 1511 1512 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */ 1513 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; 1514 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation); 1515 1516 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */ 1517 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; 1518 qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation); 1519 } 1520 1521 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) 1522 { 1523 switch (storm_id) { 1524 case 0: 1525 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1526 TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1527 case 1: 1528 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1529 MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1530 case 2: 1531 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1532 USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1533 case 3: 1534 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1535 XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1536 case 4: 1537 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1538 YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1539 case 5: 1540 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1541 PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1542 1543 default: 1544 return 0; 1545 } 1546 } 1547 1548 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn, 1549 struct qed_ptt *p_ptt, 1550 u8 assert_level[NUM_STORMS]) 1551 { 1552 u8 storm_id; 1553 1554 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { 1555 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id); 1556 1557 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]); 1558 } 1559 } 1560