1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/crc8.h>
35 #include <linux/delay.h>
36 #include <linux/kernel.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include "qed_hsi.h"
40 #include "qed_hw.h"
41 #include "qed_init_ops.h"
42 #include "qed_reg_addr.h"
43 
44 #define CDU_VALIDATION_DEFAULT_CFG	61
45 
46 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
47 	{400, 336, 352, 304, 304, 384, 416, 352},	/* region 3 offsets */
48 	{528, 496, 416, 448, 448, 512, 544, 480},	/* region 4 offsets */
49 	{608, 544, 496, 512, 576, 592, 624, 560}	/* region 5 offsets */
50 };
51 
52 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
53 	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
54 };
55 
56 /* General constants */
57 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
58 							QM_PQ_ELEMENT_SIZE, \
59 							0x1000) : 0)
60 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
61 								0x100) - 1 : 0)
62 #define QM_INVALID_PQ_ID		0xffff
63 
64 /* Feature enable */
65 #define QM_BYPASS_EN	1
66 #define QM_BYTE_CRD_EN	1
67 
68 /* Other PQ constants */
69 #define QM_OTHER_PQS_PER_PF	4
70 
71 /* WFQ constants */
72 
73 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
74 #define QM_WFQ_UPPER_BOUND	62500000
75 
76 /* Bit  of VOQ in WFQ VP PQ map */
77 #define QM_WFQ_VP_PQ_VOQ_SHIFT	0
78 
79 /* Bit  of PF in WFQ VP PQ map */
80 #define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
81 
82 /* 0x9000 = 4*9*1024 */
83 #define QM_WFQ_INC_VAL(weight)	((weight) * 0x9000)
84 
85 /* Max WFQ increment value is 0.7 * upper bound */
86 #define QM_WFQ_MAX_INC_VAL	((QM_WFQ_UPPER_BOUND * 7) / 10)
87 
88 /* RL constants */
89 
90 /* Period in us */
91 #define QM_RL_PERIOD	5
92 
93 /* Period in 25MHz cycles */
94 #define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
95 
96 /* RL increment value - rate is specified in mbps */
97 #define QM_RL_INC_VAL(rate) ({ \
98 	typeof(rate) __rate = (rate); \
99 	max_t(u32, \
100 	      (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
101 		    (8 * 100)), \
102 	      1); })
103 
104 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
105 #define QM_PF_RL_UPPER_BOUND	62500000
106 
107 /* Max PF RL increment value is 0.7 * upper bound */
108 #define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
109 
110 /* Vport RL Upper bound, link speed is in Mpbs */
111 #define QM_VP_RL_UPPER_BOUND(speed)	((u32)max_t(u32, \
112 						    QM_RL_INC_VAL(speed), \
113 						    9700 + 1000))
114 
115 /* Max Vport RL increment value is the Vport RL upper bound */
116 #define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
117 
118 /* Vport RL credit threshold in case of QM bypass */
119 #define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
120 
121 /* AFullOprtnstcCrdMask constants */
122 #define QM_OPPOR_LINE_VOQ_DEF	1
123 #define QM_OPPOR_FW_STOP_DEF	0
124 #define QM_OPPOR_PQ_EMPTY_DEF	1
125 
126 /* Command Queue constants */
127 
128 /* Pure LB CmdQ lines (+spare) */
129 #define PBF_CMDQ_PURE_LB_LINES	150
130 
131 #define PBF_CMDQ_LINES_E5_RSVD_RATIO	8
132 
133 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
134 	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
135 	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
136 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
137 
138 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
139 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
140 	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
141 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
142 
143 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
144 	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
145 
146 /* BTB: blocks constants (block size = 256B) */
147 
148 /* 256B blocks in 9700B packet */
149 #define BTB_JUMBO_PKT_BLOCKS	38
150 
151 /* Headroom per-port */
152 #define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
153 #define BTB_PURE_LB_FACTOR	10
154 
155 /* Factored (hence really 0.7) */
156 #define BTB_PURE_LB_RATIO	7
157 
158 /* QM stop command constants */
159 #define QM_STOP_PQ_MASK_WIDTH		32
160 #define QM_STOP_CMD_ADDR		2
161 #define QM_STOP_CMD_STRUCT_SIZE		2
162 #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
163 #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
164 #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
165 #define QM_STOP_CMD_GROUP_ID_OFFSET	1
166 #define QM_STOP_CMD_GROUP_ID_SHIFT	16
167 #define QM_STOP_CMD_GROUP_ID_MASK	15
168 #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
169 #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
170 #define QM_STOP_CMD_PQ_TYPE_MASK	1
171 #define QM_STOP_CMD_MAX_POLL_COUNT	100
172 #define QM_STOP_CMD_POLL_PERIOD_US	500
173 
174 /* QM command macros */
175 #define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
176 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
177 	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
178 		  cmd ## _ ## field, \
179 		  value)
180 
181 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, \
182 			  ext_voq, wrr) \
183 	do { \
184 		typeof(map) __map; \
185 		memset(&__map, 0, sizeof(__map)); \
186 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \
187 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \
188 			  rl_valid); \
189 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \
190 			  vp_pq_id); \
191 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \
192 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \
193 		SET_FIELD(__map.reg, \
194 			  QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \
195 		STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
196 			     *((u32 *)&__map)); \
197 		(map) = __map; \
198 	} while (0)
199 
200 #define WRITE_PQ_INFO_TO_RAM	1
201 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
202 	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
203 	((rl_valid) << 22) | ((rl) << 24))
204 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
205 	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4)
206 
207 /******************** INTERNAL IMPLEMENTATION *********************/
208 
209 /* Returns the external VOQ number */
210 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
211 			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
212 {
213 	if (tc == PURE_LB_TC)
214 		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
215 	else
216 		return port_id * max_phys_tcs_per_port + tc;
217 }
218 
219 /* Prepare PF RL enable/disable runtime init values */
220 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
221 {
222 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
223 	if (pf_rl_en) {
224 		u8 num_ext_voqs = MAX_NUM_VOQS_E4;
225 		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
226 
227 		/* Enable RLs for all VOQs */
228 		STORE_RT_REG(p_hwfn,
229 			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
230 			     (u32)voq_bit_mask);
231 		if (num_ext_voqs >= 32)
232 			STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET,
233 				     (u32)(voq_bit_mask >> 32));
234 
235 		/* Write RL period */
236 		STORE_RT_REG(p_hwfn,
237 			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
238 		STORE_RT_REG(p_hwfn,
239 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
240 			     QM_RL_PERIOD_CLK_25M);
241 
242 		/* Set credit threshold for QM bypass flow */
243 		if (QM_BYPASS_EN)
244 			STORE_RT_REG(p_hwfn,
245 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
246 				     QM_PF_RL_UPPER_BOUND);
247 	}
248 }
249 
250 /* Prepare PF WFQ enable/disable runtime init values */
251 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
252 {
253 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
254 
255 	/* Set credit threshold for QM bypass flow */
256 	if (pf_wfq_en && QM_BYPASS_EN)
257 		STORE_RT_REG(p_hwfn,
258 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
259 			     QM_WFQ_UPPER_BOUND);
260 }
261 
262 /* Prepare VPORT RL enable/disable runtime init values */
263 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
264 {
265 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
266 		     vport_rl_en ? 1 : 0);
267 	if (vport_rl_en) {
268 		/* Write RL period (use timer 0 only) */
269 		STORE_RT_REG(p_hwfn,
270 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
271 			     QM_RL_PERIOD_CLK_25M);
272 		STORE_RT_REG(p_hwfn,
273 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
274 			     QM_RL_PERIOD_CLK_25M);
275 
276 		/* Set credit threshold for QM bypass flow */
277 		if (QM_BYPASS_EN)
278 			STORE_RT_REG(p_hwfn,
279 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
280 				     QM_VP_RL_BYPASS_THRESH_SPEED);
281 	}
282 }
283 
284 /* Prepare VPORT WFQ enable/disable runtime init values */
285 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
286 {
287 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
288 		     vport_wfq_en ? 1 : 0);
289 
290 	/* Set credit threshold for QM bypass flow */
291 	if (vport_wfq_en && QM_BYPASS_EN)
292 		STORE_RT_REG(p_hwfn,
293 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
294 			     QM_WFQ_UPPER_BOUND);
295 }
296 
297 /* Prepare runtime init values to allocate PBF command queue lines for
298  * the specified VOQ.
299  */
300 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
301 				       u8 ext_voq, u16 cmdq_lines)
302 {
303 	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
304 
305 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
306 			 (u32)cmdq_lines);
307 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
308 		     qm_line_crd);
309 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
310 		     qm_line_crd);
311 }
312 
313 /* Prepare runtime init values to allocate PBF command queue lines. */
314 static void qed_cmdq_lines_rt_init(
315 	struct qed_hwfn *p_hwfn,
316 	u8 max_ports_per_engine,
317 	u8 max_phys_tcs_per_port,
318 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
319 {
320 	u8 tc, ext_voq, port_id, num_tcs_in_port;
321 	u8 num_ext_voqs = MAX_NUM_VOQS_E4;
322 
323 	/* Clear PBF lines of all VOQs */
324 	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
325 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
326 
327 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
328 		u16 phys_lines, phys_lines_per_tc;
329 
330 		if (!port_params[port_id].active)
331 			continue;
332 
333 		/* Find number of command queue lines to divide between the
334 		 * active physical TCs. In E5, 1/8 of the lines are reserved.
335 		 * the lines for pure LB TC are subtracted.
336 		 */
337 		phys_lines = port_params[port_id].num_pbf_cmd_lines;
338 		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
339 
340 		/* Find #lines per active physical TC */
341 		num_tcs_in_port = 0;
342 		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
343 			if (((port_params[port_id].active_phys_tcs >>
344 			      tc) & 0x1) == 1)
345 				num_tcs_in_port++;
346 		phys_lines_per_tc = phys_lines / num_tcs_in_port;
347 
348 		/* Init registers per active TC */
349 		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
350 			ext_voq = qed_get_ext_voq(p_hwfn,
351 						  port_id,
352 						  tc, max_phys_tcs_per_port);
353 			if (((port_params[port_id].active_phys_tcs >>
354 			      tc) & 0x1) == 1)
355 				qed_cmdq_lines_voq_rt_init(p_hwfn,
356 							   ext_voq,
357 							   phys_lines_per_tc);
358 		}
359 
360 		/* Init registers for pure LB TC */
361 		ext_voq = qed_get_ext_voq(p_hwfn,
362 					  port_id,
363 					  PURE_LB_TC, max_phys_tcs_per_port);
364 		qed_cmdq_lines_voq_rt_init(p_hwfn,
365 					   ext_voq, PBF_CMDQ_PURE_LB_LINES);
366 	}
367 }
368 
369 static void qed_btb_blocks_rt_init(
370 	struct qed_hwfn *p_hwfn,
371 	u8 max_ports_per_engine,
372 	u8 max_phys_tcs_per_port,
373 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
374 {
375 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
376 	u8 tc, ext_voq, port_id, num_tcs_in_port;
377 
378 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
379 		if (!port_params[port_id].active)
380 			continue;
381 
382 		/* Subtract headroom blocks */
383 		usable_blocks = port_params[port_id].num_btb_blocks -
384 				BTB_HEADROOM_BLOCKS;
385 
386 		/* Find blocks per physical TC. Use factor to avoid floating
387 		 * arithmethic.
388 		 */
389 		num_tcs_in_port = 0;
390 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
391 			if (((port_params[port_id].active_phys_tcs >>
392 			      tc) & 0x1) == 1)
393 				num_tcs_in_port++;
394 
395 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
396 				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
397 				  BTB_PURE_LB_RATIO);
398 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
399 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
400 		phys_blocks = (usable_blocks - pure_lb_blocks) /
401 			      num_tcs_in_port;
402 
403 		/* Init physical TCs */
404 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
405 			if (((port_params[port_id].active_phys_tcs >>
406 			      tc) & 0x1) == 1) {
407 				ext_voq =
408 					qed_get_ext_voq(p_hwfn,
409 							port_id,
410 							tc,
411 							max_phys_tcs_per_port);
412 				STORE_RT_REG(p_hwfn,
413 					     PBF_BTB_GUARANTEED_RT_OFFSET
414 					     (ext_voq), phys_blocks);
415 			}
416 		}
417 
418 		/* Init pure LB TC */
419 		ext_voq = qed_get_ext_voq(p_hwfn,
420 					  port_id,
421 					  PURE_LB_TC, max_phys_tcs_per_port);
422 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
423 			     pure_lb_blocks);
424 	}
425 }
426 
427 /* Prepare Tx PQ mapping runtime init values for the specified PF */
428 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
429 				  struct qed_ptt *p_ptt,
430 				  struct qed_qm_pf_rt_init_params *p_params,
431 				  u32 base_mem_addr_4kb)
432 {
433 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
434 	struct init_qm_vport_params *vport_params = p_params->vport_params;
435 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
436 	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
437 	struct init_qm_pq_params *pq_params = p_params->pq_params;
438 	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
439 
440 	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
441 
442 	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
443 	last_pq_group = (p_params->start_pq + num_pqs - 1) /
444 			QM_PF_QUEUE_GROUP_SIZE;
445 
446 	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
447 	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
448 	mem_addr_4kb = base_mem_addr_4kb;
449 
450 	/* Set mapping from PQ group to PF */
451 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
452 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
453 			     (u32)(p_params->pf_id));
454 
455 	/* Set PQ sizes */
456 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
457 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
458 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
459 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
460 
461 	/* Go over all Tx PQs */
462 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
463 		u8 ext_voq, vport_id_in_pf, tc_id = pq_params[i].tc_id;
464 		u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
465 		struct qm_rf_pq_map_e4 tx_pq_map;
466 		bool is_vf_pq, rl_valid;
467 		u16 *p_first_tx_pq_id;
468 
469 		ext_voq = qed_get_ext_voq(p_hwfn,
470 					  p_params->port_id,
471 					  tc_id,
472 					  p_params->max_phys_tcs_per_port);
473 		is_vf_pq = (i >= p_params->num_pf_pqs);
474 		rl_valid = pq_params[i].rl_valid &&
475 			   pq_params[i].vport_id < max_qm_global_rls;
476 
477 		/* Update first Tx PQ of VPORT/TC */
478 		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
479 		p_first_tx_pq_id =
480 		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
481 		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
482 			u32 map_val =
483 				(ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
484 				(p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
485 
486 			/* Create new VP PQ */
487 			*p_first_tx_pq_id = pq_id;
488 
489 			/* Map VP PQ to VOQ and PF */
490 			STORE_RT_REG(p_hwfn,
491 				     QM_REG_WFQVPMAP_RT_OFFSET +
492 				     *p_first_tx_pq_id,
493 				     map_val);
494 		}
495 
496 		/* Check RL ID */
497 		if (pq_params[i].rl_valid && pq_params[i].vport_id >=
498 		    max_qm_global_rls)
499 			DP_NOTICE(p_hwfn,
500 				  "Invalid VPORT ID for rate limiter configuration\n");
501 
502 		/* Prepare PQ map entry */
503 		QM_INIT_TX_PQ_MAP(p_hwfn,
504 				  tx_pq_map,
505 				  E4,
506 				  pq_id,
507 				  rl_valid ? 1 : 0,
508 				  *p_first_tx_pq_id,
509 				  rl_valid ? pq_params[i].vport_id : 0,
510 				  ext_voq, pq_params[i].wrr_group);
511 
512 		/* Set PQ base address */
513 		STORE_RT_REG(p_hwfn,
514 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
515 			     mem_addr_4kb);
516 
517 		/* Clear PQ pointer table entry (64 bit) */
518 		if (p_params->is_pf_loading)
519 			for (j = 0; j < 2; j++)
520 				STORE_RT_REG(p_hwfn,
521 					     QM_REG_PTRTBLTX_RT_OFFSET +
522 					     (pq_id * 2) + j, 0);
523 
524 		/* Write PQ info to RAM */
525 		if (WRITE_PQ_INFO_TO_RAM != 0) {
526 			u32 pq_info = 0;
527 
528 			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
529 						  p_params->pf_id,
530 						  tc_id,
531 						  p_params->port_id,
532 						  rl_valid ? 1 : 0,
533 						  rl_valid ?
534 						  pq_params[i].vport_id : 0);
535 			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
536 			       pq_info);
537 		}
538 
539 		/* If VF PQ, add indication to PQ VF mask */
540 		if (is_vf_pq) {
541 			tx_pq_vf_mask[pq_id /
542 				      QM_PF_QUEUE_GROUP_SIZE] |=
543 			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
544 			mem_addr_4kb += vport_pq_mem_4kb;
545 		} else {
546 			mem_addr_4kb += pq_mem_4kb;
547 		}
548 	}
549 
550 	/* Store Tx PQ VF mask to size select register */
551 	for (i = 0; i < num_tx_pq_vf_masks; i++)
552 		if (tx_pq_vf_mask[i])
553 			STORE_RT_REG(p_hwfn,
554 				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
555 				     tx_pq_vf_mask[i]);
556 }
557 
558 /* Prepare Other PQ mapping runtime init values for the specified PF */
559 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
560 				     u8 pf_id,
561 				     bool is_pf_loading,
562 				     u32 num_pf_cids,
563 				     u32 num_tids, u32 base_mem_addr_4kb)
564 {
565 	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
566 	u16 i, j, pq_id, pq_group;
567 
568 	/* A single other PQ group is used in each PF, where PQ group i is used
569 	 * in PF i.
570 	 */
571 	pq_group = pf_id;
572 	pq_size = num_pf_cids + num_tids;
573 	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
574 	mem_addr_4kb = base_mem_addr_4kb;
575 
576 	/* Map PQ group to PF */
577 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
578 		     (u32)(pf_id));
579 
580 	/* Set PQ sizes */
581 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
582 		     QM_PQ_SIZE_256B(pq_size));
583 
584 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
585 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
586 		/* Set PQ base address */
587 		STORE_RT_REG(p_hwfn,
588 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
589 			     mem_addr_4kb);
590 
591 		/* Clear PQ pointer table entry */
592 		if (is_pf_loading)
593 			for (j = 0; j < 2; j++)
594 				STORE_RT_REG(p_hwfn,
595 					     QM_REG_PTRTBLOTHER_RT_OFFSET +
596 					     (pq_id * 2) + j, 0);
597 
598 		mem_addr_4kb += pq_mem_4kb;
599 	}
600 }
601 
602 /* Prepare PF WFQ runtime init values for the specified PF.
603  * Return -1 on error.
604  */
605 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
606 			      struct qed_qm_pf_rt_init_params *p_params)
607 {
608 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
609 	struct init_qm_pq_params *pq_params = p_params->pq_params;
610 	u32 inc_val, crd_reg_offset;
611 	u8 ext_voq;
612 	u16 i;
613 
614 	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
615 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
616 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
617 		return -1;
618 	}
619 
620 	for (i = 0; i < num_tx_pqs; i++) {
621 		ext_voq = qed_get_ext_voq(p_hwfn,
622 					  p_params->port_id,
623 					  pq_params[i].tc_id,
624 					  p_params->max_phys_tcs_per_port);
625 		crd_reg_offset =
626 			(p_params->pf_id < MAX_NUM_PFS_BB ?
627 			 QM_REG_WFQPFCRD_RT_OFFSET :
628 			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
629 			ext_voq * MAX_NUM_PFS_BB +
630 			(p_params->pf_id % MAX_NUM_PFS_BB);
631 		OVERWRITE_RT_REG(p_hwfn,
632 				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
633 	}
634 
635 	STORE_RT_REG(p_hwfn,
636 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
637 		     QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
638 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
639 		     inc_val);
640 
641 	return 0;
642 }
643 
644 /* Prepare PF RL runtime init values for the specified PF.
645  * Return -1 on error.
646  */
647 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
648 {
649 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
650 
651 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
652 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
653 		return -1;
654 	}
655 
656 	STORE_RT_REG(p_hwfn,
657 		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
658 		     (u32)QM_RL_CRD_REG_SIGN_BIT);
659 	STORE_RT_REG(p_hwfn,
660 		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
661 		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
662 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
663 
664 	return 0;
665 }
666 
667 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
668  * Return -1 on error.
669  */
670 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
671 			      u8 num_vports,
672 			      struct init_qm_vport_params *vport_params)
673 {
674 	u16 vport_pq_id;
675 	u32 inc_val;
676 	u8 tc, i;
677 
678 	/* Go over all PF VPORTs */
679 	for (i = 0; i < num_vports; i++) {
680 		if (!vport_params[i].vport_wfq)
681 			continue;
682 
683 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
684 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
685 			DP_NOTICE(p_hwfn,
686 				  "Invalid VPORT WFQ weight configuration\n");
687 			return -1;
688 		}
689 
690 		/* Each VPORT can have several VPORT PQ IDs for various TCs */
691 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
692 			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
693 			if (vport_pq_id != QM_INVALID_PQ_ID) {
694 				STORE_RT_REG(p_hwfn,
695 					     QM_REG_WFQVPCRD_RT_OFFSET +
696 					     vport_pq_id,
697 					     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
698 				STORE_RT_REG(p_hwfn,
699 					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
700 					     vport_pq_id, inc_val);
701 			}
702 		}
703 	}
704 
705 	return 0;
706 }
707 
708 /* Prepare VPORT RL runtime init values for the specified VPORTs.
709  * Return -1 on error.
710  */
711 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
712 				u8 start_vport,
713 				u8 num_vports,
714 				u32 link_speed,
715 				struct init_qm_vport_params *vport_params)
716 {
717 	u8 i, vport_id;
718 	u32 inc_val;
719 
720 	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
721 		DP_NOTICE(p_hwfn,
722 			  "Invalid VPORT ID for rate limiter configuration\n");
723 		return -1;
724 	}
725 
726 	/* Go over all PF VPORTs */
727 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
728 		inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ?
729 			  vport_params[i].vport_rl :
730 			  link_speed);
731 		if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
732 			DP_NOTICE(p_hwfn,
733 				  "Invalid VPORT rate-limit configuration\n");
734 			return -1;
735 		}
736 
737 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
738 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
739 		STORE_RT_REG(p_hwfn,
740 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
741 			     QM_VP_RL_UPPER_BOUND(link_speed) |
742 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
743 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
744 			     inc_val);
745 	}
746 
747 	return 0;
748 }
749 
750 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
751 				     struct qed_ptt *p_ptt)
752 {
753 	u32 reg_val, i;
754 
755 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
756 	     i++) {
757 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
758 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
759 	}
760 
761 	/* Check if timeout while waiting for SDM command ready */
762 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
763 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
764 			   "Timeout when waiting for QM SDM command ready signal\n");
765 		return false;
766 	}
767 
768 	return true;
769 }
770 
771 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
772 			    struct qed_ptt *p_ptt,
773 			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
774 {
775 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
776 		return false;
777 
778 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
779 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
780 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
781 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
782 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
783 
784 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
785 }
786 
787 /******************** INTERFACE IMPLEMENTATION *********************/
788 
789 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
790 		       u32 num_vf_cids,
791 		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
792 {
793 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
794 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
795 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
796 }
797 
798 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
799 			  struct qed_qm_common_rt_init_params *p_params)
800 {
801 	/* Init AFullOprtnstcCrdMask */
802 	u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
803 		    QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
804 		   (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
805 		   (p_params->pf_wfq_en <<
806 		    QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
807 		   (p_params->vport_wfq_en <<
808 		    QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
809 		   (p_params->pf_rl_en <<
810 		    QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
811 		   (p_params->vport_rl_en <<
812 		    QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
813 		   (QM_OPPOR_FW_STOP_DEF <<
814 		    QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
815 		   (QM_OPPOR_PQ_EMPTY_DEF <<
816 		    QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
817 
818 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
819 
820 	/* Enable/disable PF RL */
821 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
822 
823 	/* Enable/disable PF WFQ */
824 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
825 
826 	/* Enable/disable VPORT RL */
827 	qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
828 
829 	/* Enable/disable VPORT WFQ */
830 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
831 
832 	/* Init PBF CMDQ line credit */
833 	qed_cmdq_lines_rt_init(p_hwfn,
834 			       p_params->max_ports_per_engine,
835 			       p_params->max_phys_tcs_per_port,
836 			       p_params->port_params);
837 
838 	/* Init BTB blocks in PBF */
839 	qed_btb_blocks_rt_init(p_hwfn,
840 			       p_params->max_ports_per_engine,
841 			       p_params->max_phys_tcs_per_port,
842 			       p_params->port_params);
843 
844 	return 0;
845 }
846 
847 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
848 		      struct qed_ptt *p_ptt,
849 		      struct qed_qm_pf_rt_init_params *p_params)
850 {
851 	struct init_qm_vport_params *vport_params = p_params->vport_params;
852 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
853 					       p_params->num_tids) *
854 				 QM_OTHER_PQS_PER_PF;
855 	u8 tc, i;
856 
857 	/* Clear first Tx PQ ID array for each VPORT */
858 	for (i = 0; i < p_params->num_vports; i++)
859 		for (tc = 0; tc < NUM_OF_TCS; tc++)
860 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
861 
862 	/* Map Other PQs (if any) */
863 	qed_other_pq_map_rt_init(p_hwfn,
864 				 p_params->pf_id,
865 				 p_params->is_pf_loading, p_params->num_pf_cids,
866 				 p_params->num_tids, 0);
867 
868 	/* Map Tx PQs */
869 	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
870 
871 	/* Init PF WFQ */
872 	if (p_params->pf_wfq)
873 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
874 			return -1;
875 
876 	/* Init PF RL */
877 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
878 		return -1;
879 
880 	/* Set VPORT WFQ */
881 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
882 		return -1;
883 
884 	/* Set VPORT RL */
885 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
886 				 p_params->num_vports, p_params->link_speed,
887 				 vport_params))
888 		return -1;
889 
890 	return 0;
891 }
892 
893 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
894 		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
895 {
896 	u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
897 
898 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
899 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
900 		return -1;
901 	}
902 
903 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
904 
905 	return 0;
906 }
907 
908 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
909 		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
910 {
911 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
912 
913 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
914 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
915 		return -1;
916 	}
917 
918 	qed_wr(p_hwfn,
919 	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
920 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
921 
922 	return 0;
923 }
924 
925 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
926 		       struct qed_ptt *p_ptt,
927 		       u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
928 {
929 	u16 vport_pq_id;
930 	u32 inc_val;
931 	u8 tc;
932 
933 	inc_val = QM_WFQ_INC_VAL(vport_wfq);
934 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
935 		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n");
936 		return -1;
937 	}
938 
939 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
940 		vport_pq_id = first_tx_pq_id[tc];
941 		if (vport_pq_id != QM_INVALID_PQ_ID)
942 			qed_wr(p_hwfn,
943 			       p_ptt,
944 			       QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
945 	}
946 
947 	return 0;
948 }
949 
950 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
951 		      struct qed_ptt *p_ptt,
952 		      u8 vport_id, u32 vport_rl, u32 link_speed)
953 {
954 	u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
955 
956 	if (vport_id >= max_qm_global_rls) {
957 		DP_NOTICE(p_hwfn,
958 			  "Invalid VPORT ID for rate limiter configuration\n");
959 		return -1;
960 	}
961 
962 	inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
963 	if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
964 		DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n");
965 		return -1;
966 	}
967 
968 	qed_wr(p_hwfn,
969 	       p_ptt,
970 	       QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
971 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
972 
973 	return 0;
974 }
975 
976 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
977 			  struct qed_ptt *p_ptt,
978 			  bool is_release_cmd,
979 			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
980 {
981 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
982 	u32 pq_mask = 0, last_pq, pq_id;
983 
984 	last_pq = start_pq + num_pqs - 1;
985 
986 	/* Set command's PQ type */
987 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
988 
989 	/* Go over requested PQs */
990 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
991 		/* Set PQ bit in mask (stop command only) */
992 		if (!is_release_cmd)
993 			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
994 
995 		/* If last PQ or end of PQ mask, write command */
996 		if ((pq_id == last_pq) ||
997 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
998 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
999 			QM_CMD_SET_FIELD(cmd_arr,
1000 					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1001 			QM_CMD_SET_FIELD(cmd_arr,
1002 					 QM_STOP_CMD,
1003 					 GROUP_ID,
1004 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
1005 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1006 					     cmd_arr[0], cmd_arr[1]))
1007 				return false;
1008 			pq_mask = 0;
1009 		}
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 
1016 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1017 	do { \
1018 		typeof(var) *__p_var = &(var); \
1019 		typeof(offset) __offset = offset; \
1020 		*__p_var = (*__p_var & ~BIT(__offset)) | \
1021 			   ((enable) ? BIT(__offset) : 0); \
1022 	} while (0)
1023 #define PRS_ETH_TUNN_FIC_FORMAT	-188897008
1024 
1025 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1026 			     struct qed_ptt *p_ptt, u16 dest_port)
1027 {
1028 	/* Update PRS register */
1029 	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1030 
1031 	/* Update NIG register */
1032 	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1033 
1034 	/* Update PBF register */
1035 	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1036 }
1037 
1038 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1039 			  struct qed_ptt *p_ptt, bool vxlan_enable)
1040 {
1041 	u32 reg_val;
1042 	u8 shift;
1043 
1044 	/* Update PRS register */
1045 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1046 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1047 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1048 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1049 	if (reg_val)
1050 		qed_wr(p_hwfn,
1051 		       p_ptt,
1052 		       PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1053 		       (u32)PRS_ETH_TUNN_FIC_FORMAT);
1054 
1055 	/* Update NIG register */
1056 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1057 	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1058 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1059 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1060 
1061 	/* Update DORQ register */
1062 	qed_wr(p_hwfn,
1063 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1064 }
1065 
1066 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1067 			struct qed_ptt *p_ptt,
1068 			bool eth_gre_enable, bool ip_gre_enable)
1069 {
1070 	u32 reg_val;
1071 	u8 shift;
1072 
1073 	/* Update PRS register */
1074 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1075 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1076 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1077 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1078 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1079 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1080 	if (reg_val)
1081 		qed_wr(p_hwfn,
1082 		       p_ptt,
1083 		       PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1084 		       (u32)PRS_ETH_TUNN_FIC_FORMAT);
1085 
1086 	/* Update NIG register */
1087 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1088 	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1089 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1090 	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1091 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1092 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1093 
1094 	/* Update DORQ registers */
1095 	qed_wr(p_hwfn,
1096 	       p_ptt,
1097 	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1098 	qed_wr(p_hwfn,
1099 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1100 }
1101 
1102 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1103 			      struct qed_ptt *p_ptt, u16 dest_port)
1104 {
1105 	/* Update PRS register */
1106 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1107 
1108 	/* Update NIG register */
1109 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1110 
1111 	/* Update PBF register */
1112 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1113 }
1114 
1115 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1116 			   struct qed_ptt *p_ptt,
1117 			   bool eth_geneve_enable, bool ip_geneve_enable)
1118 {
1119 	u32 reg_val;
1120 	u8 shift;
1121 
1122 	/* Update PRS register */
1123 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1124 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1125 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1126 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1127 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1128 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1129 	if (reg_val)
1130 		qed_wr(p_hwfn,
1131 		       p_ptt,
1132 		       PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1133 		       (u32)PRS_ETH_TUNN_FIC_FORMAT);
1134 
1135 	/* Update NIG register */
1136 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1137 	       eth_geneve_enable ? 1 : 0);
1138 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1139 
1140 	/* EDPM with geneve tunnel not supported in BB */
1141 	if (QED_IS_BB_B0(p_hwfn->cdev))
1142 		return;
1143 
1144 	/* Update DORQ registers */
1145 	qed_wr(p_hwfn,
1146 	       p_ptt,
1147 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1148 	       eth_geneve_enable ? 1 : 0);
1149 	qed_wr(p_hwfn,
1150 	       p_ptt,
1151 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1152 	       ip_geneve_enable ? 1 : 0);
1153 }
1154 
1155 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1156 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1157 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1158 #define PARSER_ETH_CONN_CM_HDR 0
1159 #define CAM_LINE_SIZE sizeof(u32)
1160 #define RAM_LINE_SIZE sizeof(u64)
1161 #define REG_SIZE sizeof(u32)
1162 
1163 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1164 {
1165 	/* Disable gft search for PF */
1166 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1167 
1168 	/* Clean ram & cam for next gft session */
1169 
1170 	/* Zero camline */
1171 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1172 
1173 	/* Zero ramline */
1174 	qed_wr(p_hwfn,
1175 	       p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 0);
1176 	qed_wr(p_hwfn,
1177 	       p_ptt,
1178 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1179 	       0);
1180 }
1181 
1182 void qed_set_gft_event_id_cm_hdr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1183 {
1184 	u32 rfs_cm_hdr_event_id;
1185 
1186 	/* Set RFS event ID to be awakened i Tstorm By Prs */
1187 	rfs_cm_hdr_event_id = qed_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1188 	rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID <<
1189 			       PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1190 	rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR <<
1191 			       PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1192 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1193 }
1194 
1195 void qed_gft_config(struct qed_hwfn *p_hwfn,
1196 		    struct qed_ptt *p_ptt,
1197 		    u16 pf_id,
1198 		    bool tcp,
1199 		    bool udp,
1200 		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1201 {
1202 	u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
1203 
1204 	if (!ipv6 && !ipv4)
1205 		DP_NOTICE(p_hwfn,
1206 			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1207 	if (!tcp && !udp)
1208 		DP_NOTICE(p_hwfn,
1209 			  "gft_config: must accept at least on of - udp or tcp\n");
1210 	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1211 		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1212 
1213 	/* Set RFS event ID to be awakened i Tstorm By Prs */
1214 	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1215 		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1216 	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1217 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1218 
1219 	/* Do not load context only cid in PRS on match. */
1220 	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1221 
1222 	/* Do not use tenant ID exist bit for gft search */
1223 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1224 
1225 	/* Set Cam */
1226 	cam_line = 0;
1227 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1228 
1229 	/* Filters are per PF!! */
1230 	SET_FIELD(cam_line,
1231 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1232 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1233 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1234 
1235 	if (!(tcp && udp)) {
1236 		SET_FIELD(cam_line,
1237 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1238 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1239 		if (tcp)
1240 			SET_FIELD(cam_line,
1241 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1242 				  GFT_PROFILE_TCP_PROTOCOL);
1243 		else
1244 			SET_FIELD(cam_line,
1245 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1246 				  GFT_PROFILE_UDP_PROTOCOL);
1247 	}
1248 
1249 	if (!(ipv4 && ipv6)) {
1250 		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1251 		if (ipv4)
1252 			SET_FIELD(cam_line,
1253 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1254 				  GFT_PROFILE_IPV4);
1255 		else
1256 			SET_FIELD(cam_line,
1257 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1258 				  GFT_PROFILE_IPV6);
1259 	}
1260 
1261 	/* Write characteristics to cam */
1262 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1263 	       cam_line);
1264 	cam_line =
1265 	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1266 
1267 	/* Write line to RAM - compare to filter 4 tuple */
1268 	ram_line_lo = 0;
1269 	ram_line_hi = 0;
1270 
1271 	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1272 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1273 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1274 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1275 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1276 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1277 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1278 	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1279 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1280 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1281 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1282 	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_PORT) {
1283 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1284 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1285 	}
1286 
1287 	qed_wr(p_hwfn,
1288 	       p_ptt,
1289 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1290 	       ram_line_lo);
1291 	qed_wr(p_hwfn,
1292 	       p_ptt,
1293 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1294 	       ram_line_hi);
1295 
1296 	/* Set default profile so that no filter match will happen */
1297 	qed_wr(p_hwfn,
1298 	       p_ptt,
1299 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1300 	       PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1301 	qed_wr(p_hwfn,
1302 	       p_ptt,
1303 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1304 	       PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1305 
1306 	/* Enable gft search */
1307 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1308 }
1309 
1310 DECLARE_CRC8_TABLE(cdu_crc8_table);
1311 
1312 /* Calculate and return CDU validation byte per connection type/region/cid */
1313 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1314 {
1315 	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1316 	u8 crc, validation_byte = 0;
1317 	static u8 crc8_table_valid; /* automatically initialized to 0 */
1318 	u32 validation_string = 0;
1319 	u32 data_to_crc;
1320 
1321 	if (!crc8_table_valid) {
1322 		crc8_populate_msb(cdu_crc8_table, 0x07);
1323 		crc8_table_valid = 1;
1324 	}
1325 
1326 	/* The CRC is calculated on the String-to-compress:
1327 	 * [31:8]  = {CID[31:20],CID[11:0]}
1328 	 * [7:4]   = Region
1329 	 * [3:0]   = Type
1330 	 */
1331 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1332 		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1333 
1334 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1335 		validation_string |= ((region & 0xF) << 4);
1336 
1337 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1338 		validation_string |= (conn_type & 0xF);
1339 
1340 	/* Convert to big-endian and calculate CRC8 */
1341 	data_to_crc = be32_to_cpu(validation_string);
1342 
1343 	crc = crc8(cdu_crc8_table,
1344 		   (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1345 
1346 	/* The validation byte [7:0] is composed:
1347 	 * for type A validation
1348 	 * [7]          = active configuration bit
1349 	 * [6:0]        = crc[6:0]
1350 	 *
1351 	 * for type B validation
1352 	 * [7]          = active configuration bit
1353 	 * [6:3]        = connection_type[3:0]
1354 	 * [2:0]        = crc[2:0]
1355 	 */
1356 	validation_byte |=
1357 	    ((validation_cfg >>
1358 	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1359 
1360 	if ((validation_cfg >>
1361 	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1362 		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1363 	else
1364 		validation_byte |= crc & 0x7F;
1365 
1366 	return validation_byte;
1367 }
1368 
1369 /* Calcualte and set validation bytes for session context */
1370 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1371 				     u16 ctx_size, u8 ctx_type, u32 cid)
1372 {
1373 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1374 
1375 	p_ctx = (u8 * const)p_ctx_mem;
1376 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1377 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1378 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1379 
1380 	memset(p_ctx, 0, ctx_size);
1381 
1382 	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1383 	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1384 	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1385 }
1386 
1387 /* Calcualte and set validation bytes for task context */
1388 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1389 				  u16 ctx_size, u8 ctx_type, u32 tid)
1390 {
1391 	u8 *p_ctx, *region1_val_ptr;
1392 
1393 	p_ctx = (u8 * const)p_ctx_mem;
1394 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1395 
1396 	memset(p_ctx, 0, ctx_size);
1397 
1398 	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1399 }
1400 
1401 /* Memset session context to 0 while preserving validation bytes */
1402 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1403 {
1404 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1405 	u8 x_val, t_val, u_val;
1406 
1407 	p_ctx = (u8 * const)p_ctx_mem;
1408 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1409 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1410 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1411 
1412 	x_val = *x_val_ptr;
1413 	t_val = *t_val_ptr;
1414 	u_val = *u_val_ptr;
1415 
1416 	memset(p_ctx, 0, ctx_size);
1417 
1418 	*x_val_ptr = x_val;
1419 	*t_val_ptr = t_val;
1420 	*u_val_ptr = u_val;
1421 }
1422 
1423 /* Memset task context to 0 while preserving validation bytes */
1424 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1425 {
1426 	u8 *p_ctx, *region1_val_ptr;
1427 	u8 region1_val;
1428 
1429 	p_ctx = (u8 * const)p_ctx_mem;
1430 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1431 
1432 	region1_val = *region1_val_ptr;
1433 
1434 	memset(p_ctx, 0, ctx_size);
1435 
1436 	*region1_val_ptr = region1_val;
1437 }
1438 
1439 /* Enable and configure context validation */
1440 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1441 				   struct qed_ptt *p_ptt)
1442 {
1443 	u32 ctx_validation;
1444 
1445 	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1446 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1447 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1448 
1449 	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1450 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1451 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1452 
1453 	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1454 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1455 	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1456 }
1457