1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/crc8.h>
35 #include <linux/delay.h>
36 #include <linux/kernel.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include "qed_hsi.h"
40 #include "qed_hw.h"
41 #include "qed_init_ops.h"
42 #include "qed_reg_addr.h"
43 
44 #define CDU_VALIDATION_DEFAULT_CFG	61
45 
46 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
47 	{400, 336, 352, 304, 304, 384, 416, 352},	/* region 3 offsets */
48 	{528, 496, 416, 448, 448, 512, 544, 480},	/* region 4 offsets */
49 	{608, 544, 496, 512, 576, 592, 624, 560}	/* region 5 offsets */
50 };
51 
52 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
53 	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
54 };
55 
56 /* General constants */
57 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
58 							QM_PQ_ELEMENT_SIZE, \
59 							0x1000) : 0)
60 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
61 								0x100) - 1 : 0)
62 #define QM_INVALID_PQ_ID		0xffff
63 
64 /* Feature enable */
65 #define QM_BYPASS_EN	1
66 #define QM_BYTE_CRD_EN	1
67 
68 /* Other PQ constants */
69 #define QM_OTHER_PQS_PER_PF	4
70 
71 /* WFQ constants */
72 
73 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
74 #define QM_WFQ_UPPER_BOUND	62500000
75 
76 /* Bit  of VOQ in WFQ VP PQ map */
77 #define QM_WFQ_VP_PQ_VOQ_SHIFT	0
78 
79 /* Bit  of PF in WFQ VP PQ map */
80 #define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
81 
82 /* 0x9000 = 4*9*1024 */
83 #define QM_WFQ_INC_VAL(weight)	((weight) * 0x9000)
84 
85 /* Max WFQ increment value is 0.7 * upper bound */
86 #define QM_WFQ_MAX_INC_VAL	((QM_WFQ_UPPER_BOUND * 7) / 10)
87 
88 /* RL constants */
89 
90 /* Period in us */
91 #define QM_RL_PERIOD	5
92 
93 /* Period in 25MHz cycles */
94 #define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
95 
96 /* RL increment value - rate is specified in mbps */
97 #define QM_RL_INC_VAL(rate) ({ \
98 	typeof(rate) __rate = (rate); \
99 	max_t(u32, \
100 	      (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
101 		    (8 * 100)), \
102 	      1); })
103 
104 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
105 #define QM_PF_RL_UPPER_BOUND	62500000
106 
107 /* Max PF RL increment value is 0.7 * upper bound */
108 #define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
109 
110 /* Vport RL Upper bound, link speed is in Mpbs */
111 #define QM_VP_RL_UPPER_BOUND(speed)	((u32)max_t(u32, \
112 						    QM_RL_INC_VAL(speed), \
113 						    9700 + 1000))
114 
115 /* Max Vport RL increment value is the Vport RL upper bound */
116 #define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
117 
118 /* Vport RL credit threshold in case of QM bypass */
119 #define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
120 
121 /* AFullOprtnstcCrdMask constants */
122 #define QM_OPPOR_LINE_VOQ_DEF	1
123 #define QM_OPPOR_FW_STOP_DEF	0
124 #define QM_OPPOR_PQ_EMPTY_DEF	1
125 
126 /* Command Queue constants */
127 
128 /* Pure LB CmdQ lines (+spare) */
129 #define PBF_CMDQ_PURE_LB_LINES	150
130 
131 #define PBF_CMDQ_LINES_E5_RSVD_RATIO	8
132 
133 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
134 	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
135 	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
136 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
137 
138 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
139 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
140 	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
141 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
142 
143 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
144 	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
145 
146 /* BTB: blocks constants (block size = 256B) */
147 
148 /* 256B blocks in 9700B packet */
149 #define BTB_JUMBO_PKT_BLOCKS	38
150 
151 /* Headroom per-port */
152 #define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
153 #define BTB_PURE_LB_FACTOR	10
154 
155 /* Factored (hence really 0.7) */
156 #define BTB_PURE_LB_RATIO	7
157 
158 /* QM stop command constants */
159 #define QM_STOP_PQ_MASK_WIDTH		32
160 #define QM_STOP_CMD_ADDR		2
161 #define QM_STOP_CMD_STRUCT_SIZE		2
162 #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
163 #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
164 #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
165 #define QM_STOP_CMD_GROUP_ID_OFFSET	1
166 #define QM_STOP_CMD_GROUP_ID_SHIFT	16
167 #define QM_STOP_CMD_GROUP_ID_MASK	15
168 #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
169 #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
170 #define QM_STOP_CMD_PQ_TYPE_MASK	1
171 #define QM_STOP_CMD_MAX_POLL_COUNT	100
172 #define QM_STOP_CMD_POLL_PERIOD_US	500
173 
174 /* QM command macros */
175 #define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
176 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
177 	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
178 		  cmd ## _ ## field, \
179 		  value)
180 
181 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, \
182 			  ext_voq, wrr) \
183 	do { \
184 		typeof(map) __map; \
185 		memset(&__map, 0, sizeof(__map)); \
186 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \
187 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \
188 			  rl_valid); \
189 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \
190 			  vp_pq_id); \
191 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \
192 		SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \
193 		SET_FIELD(__map.reg, \
194 			  QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \
195 		STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
196 			     *((u32 *)&__map)); \
197 		(map) = __map; \
198 	} while (0)
199 
200 #define WRITE_PQ_INFO_TO_RAM	1
201 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
202 	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
203 	((rl_valid) << 22) | ((rl) << 24))
204 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
205 	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4)
206 
207 /******************** INTERNAL IMPLEMENTATION *********************/
208 
209 /* Returns the external VOQ number */
210 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
211 			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
212 {
213 	if (tc == PURE_LB_TC)
214 		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
215 	else
216 		return port_id * max_phys_tcs_per_port + tc;
217 }
218 
219 /* Prepare PF RL enable/disable runtime init values */
220 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
221 {
222 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
223 	if (pf_rl_en) {
224 		u8 num_ext_voqs = MAX_NUM_VOQS_E4;
225 		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
226 
227 		/* Enable RLs for all VOQs */
228 		STORE_RT_REG(p_hwfn,
229 			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
230 			     (u32)voq_bit_mask);
231 		if (num_ext_voqs >= 32)
232 			STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET,
233 				     (u32)(voq_bit_mask >> 32));
234 
235 		/* Write RL period */
236 		STORE_RT_REG(p_hwfn,
237 			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
238 		STORE_RT_REG(p_hwfn,
239 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
240 			     QM_RL_PERIOD_CLK_25M);
241 
242 		/* Set credit threshold for QM bypass flow */
243 		if (QM_BYPASS_EN)
244 			STORE_RT_REG(p_hwfn,
245 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
246 				     QM_PF_RL_UPPER_BOUND);
247 	}
248 }
249 
250 /* Prepare PF WFQ enable/disable runtime init values */
251 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
252 {
253 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
254 
255 	/* Set credit threshold for QM bypass flow */
256 	if (pf_wfq_en && QM_BYPASS_EN)
257 		STORE_RT_REG(p_hwfn,
258 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
259 			     QM_WFQ_UPPER_BOUND);
260 }
261 
262 /* Prepare VPORT RL enable/disable runtime init values */
263 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
264 {
265 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
266 		     vport_rl_en ? 1 : 0);
267 	if (vport_rl_en) {
268 		/* Write RL period (use timer 0 only) */
269 		STORE_RT_REG(p_hwfn,
270 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
271 			     QM_RL_PERIOD_CLK_25M);
272 		STORE_RT_REG(p_hwfn,
273 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
274 			     QM_RL_PERIOD_CLK_25M);
275 
276 		/* Set credit threshold for QM bypass flow */
277 		if (QM_BYPASS_EN)
278 			STORE_RT_REG(p_hwfn,
279 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
280 				     QM_VP_RL_BYPASS_THRESH_SPEED);
281 	}
282 }
283 
284 /* Prepare VPORT WFQ enable/disable runtime init values */
285 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
286 {
287 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
288 		     vport_wfq_en ? 1 : 0);
289 
290 	/* Set credit threshold for QM bypass flow */
291 	if (vport_wfq_en && QM_BYPASS_EN)
292 		STORE_RT_REG(p_hwfn,
293 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
294 			     QM_WFQ_UPPER_BOUND);
295 }
296 
297 /* Prepare runtime init values to allocate PBF command queue lines for
298  * the specified VOQ.
299  */
300 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
301 				       u8 ext_voq, u16 cmdq_lines)
302 {
303 	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
304 
305 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
306 			 (u32)cmdq_lines);
307 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
308 		     qm_line_crd);
309 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
310 		     qm_line_crd);
311 }
312 
313 /* Prepare runtime init values to allocate PBF command queue lines. */
314 static void qed_cmdq_lines_rt_init(
315 	struct qed_hwfn *p_hwfn,
316 	u8 max_ports_per_engine,
317 	u8 max_phys_tcs_per_port,
318 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
319 {
320 	u8 tc, ext_voq, port_id, num_tcs_in_port;
321 	u8 num_ext_voqs = MAX_NUM_VOQS_E4;
322 
323 	/* Clear PBF lines of all VOQs */
324 	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
325 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
326 
327 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
328 		u16 phys_lines, phys_lines_per_tc;
329 
330 		if (!port_params[port_id].active)
331 			continue;
332 
333 		/* Find number of command queue lines to divide between the
334 		 * active physical TCs. In E5, 1/8 of the lines are reserved.
335 		 * the lines for pure LB TC are subtracted.
336 		 */
337 		phys_lines = port_params[port_id].num_pbf_cmd_lines;
338 		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
339 
340 		/* Find #lines per active physical TC */
341 		num_tcs_in_port = 0;
342 		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
343 			if (((port_params[port_id].active_phys_tcs >>
344 			      tc) & 0x1) == 1)
345 				num_tcs_in_port++;
346 		phys_lines_per_tc = phys_lines / num_tcs_in_port;
347 
348 		/* Init registers per active TC */
349 		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
350 			ext_voq = qed_get_ext_voq(p_hwfn,
351 						  port_id,
352 						  tc, max_phys_tcs_per_port);
353 			if (((port_params[port_id].active_phys_tcs >>
354 			      tc) & 0x1) == 1)
355 				qed_cmdq_lines_voq_rt_init(p_hwfn,
356 							   ext_voq,
357 							   phys_lines_per_tc);
358 		}
359 
360 		/* Init registers for pure LB TC */
361 		ext_voq = qed_get_ext_voq(p_hwfn,
362 					  port_id,
363 					  PURE_LB_TC, max_phys_tcs_per_port);
364 		qed_cmdq_lines_voq_rt_init(p_hwfn,
365 					   ext_voq, PBF_CMDQ_PURE_LB_LINES);
366 	}
367 }
368 
369 static void qed_btb_blocks_rt_init(
370 	struct qed_hwfn *p_hwfn,
371 	u8 max_ports_per_engine,
372 	u8 max_phys_tcs_per_port,
373 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
374 {
375 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
376 	u8 tc, ext_voq, port_id, num_tcs_in_port;
377 
378 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
379 		if (!port_params[port_id].active)
380 			continue;
381 
382 		/* Subtract headroom blocks */
383 		usable_blocks = port_params[port_id].num_btb_blocks -
384 				BTB_HEADROOM_BLOCKS;
385 
386 		/* Find blocks per physical TC. Use factor to avoid floating
387 		 * arithmethic.
388 		 */
389 		num_tcs_in_port = 0;
390 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
391 			if (((port_params[port_id].active_phys_tcs >>
392 			      tc) & 0x1) == 1)
393 				num_tcs_in_port++;
394 
395 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
396 				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
397 				  BTB_PURE_LB_RATIO);
398 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
399 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
400 		phys_blocks = (usable_blocks - pure_lb_blocks) /
401 			      num_tcs_in_port;
402 
403 		/* Init physical TCs */
404 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
405 			if (((port_params[port_id].active_phys_tcs >>
406 			      tc) & 0x1) == 1) {
407 				ext_voq =
408 					qed_get_ext_voq(p_hwfn,
409 							port_id,
410 							tc,
411 							max_phys_tcs_per_port);
412 				STORE_RT_REG(p_hwfn,
413 					     PBF_BTB_GUARANTEED_RT_OFFSET
414 					     (ext_voq), phys_blocks);
415 			}
416 		}
417 
418 		/* Init pure LB TC */
419 		ext_voq = qed_get_ext_voq(p_hwfn,
420 					  port_id,
421 					  PURE_LB_TC, max_phys_tcs_per_port);
422 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
423 			     pure_lb_blocks);
424 	}
425 }
426 
427 /* Prepare Tx PQ mapping runtime init values for the specified PF */
428 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
429 				  struct qed_ptt *p_ptt,
430 				  struct qed_qm_pf_rt_init_params *p_params,
431 				  u32 base_mem_addr_4kb)
432 {
433 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
434 	struct init_qm_vport_params *vport_params = p_params->vport_params;
435 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
436 	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
437 	struct init_qm_pq_params *pq_params = p_params->pq_params;
438 	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
439 
440 	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
441 
442 	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
443 	last_pq_group = (p_params->start_pq + num_pqs - 1) /
444 			QM_PF_QUEUE_GROUP_SIZE;
445 
446 	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
447 	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
448 	mem_addr_4kb = base_mem_addr_4kb;
449 
450 	/* Set mapping from PQ group to PF */
451 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
452 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
453 			     (u32)(p_params->pf_id));
454 
455 	/* Set PQ sizes */
456 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
457 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
458 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
459 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
460 
461 	/* Go over all Tx PQs */
462 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
463 		u8 ext_voq, vport_id_in_pf, tc_id = pq_params[i].tc_id;
464 		u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
465 		struct qm_rf_pq_map_e4 tx_pq_map;
466 		bool is_vf_pq, rl_valid;
467 		u16 *p_first_tx_pq_id;
468 
469 		ext_voq = qed_get_ext_voq(p_hwfn,
470 					  pq_params[i].port_id,
471 					  tc_id,
472 					  p_params->max_phys_tcs_per_port);
473 		is_vf_pq = (i >= p_params->num_pf_pqs);
474 		rl_valid = pq_params[i].rl_valid > 0;
475 
476 		/* Update first Tx PQ of VPORT/TC */
477 		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
478 		p_first_tx_pq_id =
479 		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
480 		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
481 			u32 map_val =
482 				(ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
483 				(p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
484 
485 			/* Create new VP PQ */
486 			*p_first_tx_pq_id = pq_id;
487 
488 			/* Map VP PQ to VOQ and PF */
489 			STORE_RT_REG(p_hwfn,
490 				     QM_REG_WFQVPMAP_RT_OFFSET +
491 				     *p_first_tx_pq_id,
492 				     map_val);
493 		}
494 
495 		/* Check RL ID */
496 		if (rl_valid && pq_params[i].vport_id >= max_qm_global_rls) {
497 			DP_NOTICE(p_hwfn,
498 				  "Invalid VPORT ID for rate limiter configuration\n");
499 			rl_valid = false;
500 		}
501 
502 		/* Prepare PQ map entry */
503 		QM_INIT_TX_PQ_MAP(p_hwfn,
504 				  tx_pq_map,
505 				  E4,
506 				  pq_id,
507 				  rl_valid ? 1 : 0,
508 				  *p_first_tx_pq_id,
509 				  rl_valid ? pq_params[i].vport_id : 0,
510 				  ext_voq, pq_params[i].wrr_group);
511 
512 		/* Set PQ base address */
513 		STORE_RT_REG(p_hwfn,
514 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
515 			     mem_addr_4kb);
516 
517 		/* Clear PQ pointer table entry (64 bit) */
518 		if (p_params->is_pf_loading)
519 			for (j = 0; j < 2; j++)
520 				STORE_RT_REG(p_hwfn,
521 					     QM_REG_PTRTBLTX_RT_OFFSET +
522 					     (pq_id * 2) + j, 0);
523 
524 		/* Write PQ info to RAM */
525 		if (WRITE_PQ_INFO_TO_RAM != 0) {
526 			u32 pq_info = 0;
527 
528 			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
529 						  p_params->pf_id,
530 						  tc_id,
531 						  pq_params[i].port_id,
532 						  rl_valid ? 1 : 0,
533 						  rl_valid ?
534 						  pq_params[i].vport_id : 0);
535 			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
536 			       pq_info);
537 		}
538 
539 		/* If VF PQ, add indication to PQ VF mask */
540 		if (is_vf_pq) {
541 			tx_pq_vf_mask[pq_id /
542 				      QM_PF_QUEUE_GROUP_SIZE] |=
543 			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
544 			mem_addr_4kb += vport_pq_mem_4kb;
545 		} else {
546 			mem_addr_4kb += pq_mem_4kb;
547 		}
548 	}
549 
550 	/* Store Tx PQ VF mask to size select register */
551 	for (i = 0; i < num_tx_pq_vf_masks; i++)
552 		if (tx_pq_vf_mask[i])
553 			STORE_RT_REG(p_hwfn,
554 				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
555 				     tx_pq_vf_mask[i]);
556 }
557 
558 /* Prepare Other PQ mapping runtime init values for the specified PF */
559 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
560 				     u8 pf_id,
561 				     bool is_pf_loading,
562 				     u32 num_pf_cids,
563 				     u32 num_tids, u32 base_mem_addr_4kb)
564 {
565 	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
566 	u16 i, j, pq_id, pq_group;
567 
568 	/* A single other PQ group is used in each PF, where PQ group i is used
569 	 * in PF i.
570 	 */
571 	pq_group = pf_id;
572 	pq_size = num_pf_cids + num_tids;
573 	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
574 	mem_addr_4kb = base_mem_addr_4kb;
575 
576 	/* Map PQ group to PF */
577 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
578 		     (u32)(pf_id));
579 
580 	/* Set PQ sizes */
581 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
582 		     QM_PQ_SIZE_256B(pq_size));
583 
584 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
585 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
586 		/* Set PQ base address */
587 		STORE_RT_REG(p_hwfn,
588 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
589 			     mem_addr_4kb);
590 
591 		/* Clear PQ pointer table entry */
592 		if (is_pf_loading)
593 			for (j = 0; j < 2; j++)
594 				STORE_RT_REG(p_hwfn,
595 					     QM_REG_PTRTBLOTHER_RT_OFFSET +
596 					     (pq_id * 2) + j, 0);
597 
598 		mem_addr_4kb += pq_mem_4kb;
599 	}
600 }
601 
602 /* Prepare PF WFQ runtime init values for the specified PF.
603  * Return -1 on error.
604  */
605 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
606 
607 			      struct qed_qm_pf_rt_init_params *p_params)
608 {
609 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
610 	struct init_qm_pq_params *pq_params = p_params->pq_params;
611 	u32 inc_val, crd_reg_offset;
612 	u8 ext_voq;
613 	u16 i;
614 
615 	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
616 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
617 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
618 		return -1;
619 	}
620 
621 	for (i = 0; i < num_tx_pqs; i++) {
622 		ext_voq = qed_get_ext_voq(p_hwfn,
623 					  pq_params[i].port_id,
624 					  pq_params[i].tc_id,
625 					  p_params->max_phys_tcs_per_port);
626 		crd_reg_offset =
627 			(p_params->pf_id < MAX_NUM_PFS_BB ?
628 			 QM_REG_WFQPFCRD_RT_OFFSET :
629 			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
630 			ext_voq * MAX_NUM_PFS_BB +
631 			(p_params->pf_id % MAX_NUM_PFS_BB);
632 		OVERWRITE_RT_REG(p_hwfn,
633 				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
634 	}
635 
636 	STORE_RT_REG(p_hwfn,
637 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
638 		     QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
639 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
640 		     inc_val);
641 
642 	return 0;
643 }
644 
645 /* Prepare PF RL runtime init values for the specified PF.
646  * Return -1 on error.
647  */
648 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
649 {
650 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
651 
652 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
653 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
654 		return -1;
655 	}
656 
657 	STORE_RT_REG(p_hwfn,
658 		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
659 		     (u32)QM_RL_CRD_REG_SIGN_BIT);
660 	STORE_RT_REG(p_hwfn,
661 		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
662 		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
663 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
664 
665 	return 0;
666 }
667 
668 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
669  * Return -1 on error.
670  */
671 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
672 			      u8 num_vports,
673 			      struct init_qm_vport_params *vport_params)
674 {
675 	u16 vport_pq_id;
676 	u32 inc_val;
677 	u8 tc, i;
678 
679 	/* Go over all PF VPORTs */
680 	for (i = 0; i < num_vports; i++) {
681 		if (!vport_params[i].vport_wfq)
682 			continue;
683 
684 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
685 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
686 			DP_NOTICE(p_hwfn,
687 				  "Invalid VPORT WFQ weight configuration\n");
688 			return -1;
689 		}
690 
691 		/* Each VPORT can have several VPORT PQ IDs for various TCs */
692 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
693 			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
694 			if (vport_pq_id != QM_INVALID_PQ_ID) {
695 				STORE_RT_REG(p_hwfn,
696 					     QM_REG_WFQVPCRD_RT_OFFSET +
697 					     vport_pq_id,
698 					     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
699 				STORE_RT_REG(p_hwfn,
700 					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
701 					     vport_pq_id, inc_val);
702 			}
703 		}
704 	}
705 
706 	return 0;
707 }
708 
709 /* Prepare VPORT RL runtime init values for the specified VPORTs.
710  * Return -1 on error.
711  */
712 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
713 				u8 start_vport,
714 				u8 num_vports,
715 				u32 link_speed,
716 				struct init_qm_vport_params *vport_params)
717 {
718 	u8 i, vport_id;
719 	u32 inc_val;
720 
721 	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
722 		DP_NOTICE(p_hwfn,
723 			  "Invalid VPORT ID for rate limiter configuration\n");
724 		return -1;
725 	}
726 
727 	/* Go over all PF VPORTs */
728 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
729 		inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ?
730 			  vport_params[i].vport_rl :
731 			  link_speed);
732 		if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
733 			DP_NOTICE(p_hwfn,
734 				  "Invalid VPORT rate-limit configuration\n");
735 			return -1;
736 		}
737 
738 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
739 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
740 		STORE_RT_REG(p_hwfn,
741 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
742 			     QM_VP_RL_UPPER_BOUND(link_speed) |
743 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
744 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
745 			     inc_val);
746 	}
747 
748 	return 0;
749 }
750 
751 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
752 				     struct qed_ptt *p_ptt)
753 {
754 	u32 reg_val, i;
755 
756 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
757 	     i++) {
758 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
759 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
760 	}
761 
762 	/* Check if timeout while waiting for SDM command ready */
763 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
764 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
765 			   "Timeout when waiting for QM SDM command ready signal\n");
766 		return false;
767 	}
768 
769 	return true;
770 }
771 
772 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
773 			    struct qed_ptt *p_ptt,
774 			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
775 {
776 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
777 		return false;
778 
779 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
780 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
781 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
782 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
783 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
784 
785 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
786 }
787 
788 /******************** INTERFACE IMPLEMENTATION *********************/
789 
790 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
791 		       u32 num_vf_cids,
792 		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
793 {
794 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
795 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
796 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
797 }
798 
799 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
800 			  struct qed_qm_common_rt_init_params *p_params)
801 {
802 	/* Init AFullOprtnstcCrdMask */
803 	u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
804 		    QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
805 		   (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
806 		   (p_params->pf_wfq_en <<
807 		    QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
808 		   (p_params->vport_wfq_en <<
809 		    QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
810 		   (p_params->pf_rl_en <<
811 		    QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
812 		   (p_params->vport_rl_en <<
813 		    QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
814 		   (QM_OPPOR_FW_STOP_DEF <<
815 		    QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
816 		   (QM_OPPOR_PQ_EMPTY_DEF <<
817 		    QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
818 
819 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
820 
821 	/* Enable/disable PF RL */
822 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
823 
824 	/* Enable/disable PF WFQ */
825 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
826 
827 	/* Enable/disable VPORT RL */
828 	qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
829 
830 	/* Enable/disable VPORT WFQ */
831 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
832 
833 	/* Init PBF CMDQ line credit */
834 	qed_cmdq_lines_rt_init(p_hwfn,
835 			       p_params->max_ports_per_engine,
836 			       p_params->max_phys_tcs_per_port,
837 			       p_params->port_params);
838 
839 	/* Init BTB blocks in PBF */
840 	qed_btb_blocks_rt_init(p_hwfn,
841 			       p_params->max_ports_per_engine,
842 			       p_params->max_phys_tcs_per_port,
843 			       p_params->port_params);
844 
845 	return 0;
846 }
847 
848 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
849 		      struct qed_ptt *p_ptt,
850 		      struct qed_qm_pf_rt_init_params *p_params)
851 {
852 	struct init_qm_vport_params *vport_params = p_params->vport_params;
853 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
854 					       p_params->num_tids) *
855 				 QM_OTHER_PQS_PER_PF;
856 	u8 tc, i;
857 
858 	/* Clear first Tx PQ ID array for each VPORT */
859 	for (i = 0; i < p_params->num_vports; i++)
860 		for (tc = 0; tc < NUM_OF_TCS; tc++)
861 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
862 
863 	/* Map Other PQs (if any) */
864 	qed_other_pq_map_rt_init(p_hwfn,
865 				 p_params->pf_id,
866 				 p_params->is_pf_loading, p_params->num_pf_cids,
867 				 p_params->num_tids, 0);
868 
869 	/* Map Tx PQs */
870 	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
871 
872 	/* Init PF WFQ */
873 	if (p_params->pf_wfq)
874 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
875 			return -1;
876 
877 	/* Init PF RL */
878 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
879 		return -1;
880 
881 	/* Set VPORT WFQ */
882 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
883 		return -1;
884 
885 	/* Set VPORT RL */
886 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
887 				 p_params->num_vports, p_params->link_speed,
888 				 vport_params))
889 		return -1;
890 
891 	return 0;
892 }
893 
894 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
895 		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
896 {
897 	u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
898 
899 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
900 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
901 		return -1;
902 	}
903 
904 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
905 
906 	return 0;
907 }
908 
909 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
910 		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
911 {
912 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
913 
914 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
915 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
916 		return -1;
917 	}
918 
919 	qed_wr(p_hwfn,
920 	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
921 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
922 
923 	return 0;
924 }
925 
926 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
927 		       struct qed_ptt *p_ptt,
928 		       u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
929 {
930 	u16 vport_pq_id;
931 	u32 inc_val;
932 	u8 tc;
933 
934 	inc_val = QM_WFQ_INC_VAL(vport_wfq);
935 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
936 		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n");
937 		return -1;
938 	}
939 
940 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
941 		vport_pq_id = first_tx_pq_id[tc];
942 		if (vport_pq_id != QM_INVALID_PQ_ID)
943 			qed_wr(p_hwfn,
944 			       p_ptt,
945 			       QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
946 	}
947 
948 	return 0;
949 }
950 
951 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
952 		      struct qed_ptt *p_ptt,
953 		      u8 vport_id, u32 vport_rl, u32 link_speed)
954 {
955 	u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
956 
957 	if (vport_id >= max_qm_global_rls) {
958 		DP_NOTICE(p_hwfn,
959 			  "Invalid VPORT ID for rate limiter configuration\n");
960 		return -1;
961 	}
962 
963 	inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
964 	if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
965 		DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n");
966 		return -1;
967 	}
968 
969 	qed_wr(p_hwfn,
970 	       p_ptt,
971 	       QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
972 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
973 
974 	return 0;
975 }
976 
977 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
978 			  struct qed_ptt *p_ptt,
979 			  bool is_release_cmd,
980 			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
981 {
982 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
983 	u32 pq_mask = 0, last_pq, pq_id;
984 
985 	last_pq = start_pq + num_pqs - 1;
986 
987 	/* Set command's PQ type */
988 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
989 
990 	/* Go over requested PQs */
991 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
992 		/* Set PQ bit in mask (stop command only) */
993 		if (!is_release_cmd)
994 			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
995 
996 		/* If last PQ or end of PQ mask, write command */
997 		if ((pq_id == last_pq) ||
998 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
999 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1000 			QM_CMD_SET_FIELD(cmd_arr,
1001 					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1002 			QM_CMD_SET_FIELD(cmd_arr,
1003 					 QM_STOP_CMD,
1004 					 GROUP_ID,
1005 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
1006 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1007 					     cmd_arr[0], cmd_arr[1]))
1008 				return false;
1009 			pq_mask = 0;
1010 		}
1011 	}
1012 
1013 	return true;
1014 }
1015 
1016 
1017 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1018 	do { \
1019 		typeof(var) *__p_var = &(var); \
1020 		typeof(offset) __offset = offset; \
1021 		*__p_var = (*__p_var & ~BIT(__offset)) | \
1022 			   ((enable) ? BIT(__offset) : 0); \
1023 	} while (0)
1024 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1025 #define PRS_ETH_OUTPUT_FORMAT             -46832
1026 
1027 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1028 			     struct qed_ptt *p_ptt, u16 dest_port)
1029 {
1030 	/* Update PRS register */
1031 	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1032 
1033 	/* Update NIG register */
1034 	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1035 
1036 	/* Update PBF register */
1037 	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1038 }
1039 
1040 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1041 			  struct qed_ptt *p_ptt, bool vxlan_enable)
1042 {
1043 	u32 reg_val;
1044 	u8 shift;
1045 
1046 	/* Update PRS register */
1047 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1048 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1049 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1050 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1051 	if (reg_val) {
1052 		reg_val =
1053 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1054 
1055 		/* Update output  only if tunnel blocks not included. */
1056 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1057 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1058 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1059 	}
1060 
1061 	/* Update NIG register */
1062 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1063 	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1064 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1065 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1066 
1067 	/* Update DORQ register */
1068 	qed_wr(p_hwfn,
1069 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1070 }
1071 
1072 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1073 			struct qed_ptt *p_ptt,
1074 			bool eth_gre_enable, bool ip_gre_enable)
1075 {
1076 	u32 reg_val;
1077 	u8 shift;
1078 
1079 	/* Update PRS register */
1080 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1081 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1082 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1083 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1084 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1085 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1086 	if (reg_val) {
1087 		reg_val =
1088 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1089 
1090 		/* Update output  only if tunnel blocks not included. */
1091 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1092 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1093 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1094 	}
1095 
1096 	/* Update NIG register */
1097 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1098 	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1099 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1100 	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1101 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1102 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1103 
1104 	/* Update DORQ registers */
1105 	qed_wr(p_hwfn,
1106 	       p_ptt,
1107 	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1108 	qed_wr(p_hwfn,
1109 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1110 }
1111 
1112 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1113 			      struct qed_ptt *p_ptt, u16 dest_port)
1114 {
1115 	/* Update PRS register */
1116 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1117 
1118 	/* Update NIG register */
1119 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1120 
1121 	/* Update PBF register */
1122 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1123 }
1124 
1125 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1126 			   struct qed_ptt *p_ptt,
1127 			   bool eth_geneve_enable, bool ip_geneve_enable)
1128 {
1129 	u32 reg_val;
1130 	u8 shift;
1131 
1132 	/* Update PRS register */
1133 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1134 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1135 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1136 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1137 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1138 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1139 	if (reg_val) {
1140 		reg_val =
1141 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1142 
1143 		/* Update output  only if tunnel blocks not included. */
1144 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1145 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1146 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1147 	}
1148 
1149 	/* Update NIG register */
1150 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1151 	       eth_geneve_enable ? 1 : 0);
1152 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1153 
1154 	/* EDPM with geneve tunnel not supported in BB */
1155 	if (QED_IS_BB_B0(p_hwfn->cdev))
1156 		return;
1157 
1158 	/* Update DORQ registers */
1159 	qed_wr(p_hwfn,
1160 	       p_ptt,
1161 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1162 	       eth_geneve_enable ? 1 : 0);
1163 	qed_wr(p_hwfn,
1164 	       p_ptt,
1165 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1166 	       ip_geneve_enable ? 1 : 0);
1167 }
1168 
1169 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1170 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1171 
1172 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1173 				struct qed_ptt *p_ptt, bool enable)
1174 {
1175 	u32 reg_val, cfg_mask;
1176 
1177 	/* read PRS config register */
1178 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1179 
1180 	/* set VXLAN_NO_L2_ENABLE mask */
1181 	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1182 
1183 	if (enable) {
1184 		/* set VXLAN_NO_L2_ENABLE flag */
1185 		reg_val |= cfg_mask;
1186 
1187 		/* update PRS FIC  register */
1188 		qed_wr(p_hwfn,
1189 		       p_ptt,
1190 		       PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1191 		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1192 	} else {
1193 		/* clear VXLAN_NO_L2_ENABLE flag */
1194 		reg_val &= ~cfg_mask;
1195 	}
1196 
1197 	/* write PRS config register */
1198 	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1199 }
1200 
1201 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1202 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1203 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1204 #define PARSER_ETH_CONN_CM_HDR 0
1205 #define CAM_LINE_SIZE sizeof(u32)
1206 #define RAM_LINE_SIZE sizeof(u64)
1207 #define REG_SIZE sizeof(u32)
1208 
1209 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1210 {
1211 	/* Disable gft search for PF */
1212 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1213 
1214 	/* Clean ram & cam for next gft session */
1215 
1216 	/* Zero camline */
1217 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1218 
1219 	/* Zero ramline */
1220 	qed_wr(p_hwfn,
1221 	       p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 0);
1222 	qed_wr(p_hwfn,
1223 	       p_ptt,
1224 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1225 	       0);
1226 }
1227 
1228 void qed_gft_config(struct qed_hwfn *p_hwfn,
1229 		    struct qed_ptt *p_ptt,
1230 		    u16 pf_id,
1231 		    bool tcp,
1232 		    bool udp,
1233 		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1234 {
1235 	u32 reg_val, cam_line, ram_line_lo, ram_line_hi, search_non_ip_as_gft;
1236 
1237 	if (!ipv6 && !ipv4)
1238 		DP_NOTICE(p_hwfn,
1239 			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1240 	if (!tcp && !udp)
1241 		DP_NOTICE(p_hwfn,
1242 			  "gft_config: must accept at least on of - udp or tcp\n");
1243 	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1244 		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1245 
1246 	/* Set RFS event ID to be awakened i Tstorm By Prs */
1247 	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1248 		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1249 	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1250 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1251 
1252 	/* Do not load context only cid in PRS on match. */
1253 	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1254 
1255 	/* Do not use tenant ID exist bit for gft search */
1256 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1257 
1258 	/* Set Cam */
1259 	cam_line = 0;
1260 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1261 
1262 	/* Filters are per PF!! */
1263 	SET_FIELD(cam_line,
1264 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1265 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1266 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1267 
1268 	if (!(tcp && udp)) {
1269 		SET_FIELD(cam_line,
1270 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1271 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1272 		if (tcp)
1273 			SET_FIELD(cam_line,
1274 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1275 				  GFT_PROFILE_TCP_PROTOCOL);
1276 		else
1277 			SET_FIELD(cam_line,
1278 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1279 				  GFT_PROFILE_UDP_PROTOCOL);
1280 	}
1281 
1282 	if (!(ipv4 && ipv6)) {
1283 		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1284 		if (ipv4)
1285 			SET_FIELD(cam_line,
1286 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1287 				  GFT_PROFILE_IPV4);
1288 		else
1289 			SET_FIELD(cam_line,
1290 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1291 				  GFT_PROFILE_IPV6);
1292 	}
1293 
1294 	/* Write characteristics to cam */
1295 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1296 	       cam_line);
1297 	cam_line =
1298 	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1299 
1300 	/* Write line to RAM - compare to filter 4 tuple */
1301 	ram_line_lo = 0;
1302 	ram_line_hi = 0;
1303 
1304 	/* Search no IP as GFT */
1305 	search_non_ip_as_gft = 0;
1306 
1307 	/* Tunnel type */
1308 	SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1309 	SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1310 
1311 	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1312 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1313 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1314 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1315 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1316 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1317 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1318 	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1319 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1320 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1321 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1322 	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1323 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1324 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1325 	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1326 		SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1327 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1328 	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1329 		SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1330 
1331 		/* Allow tunneled traffic without inner IP */
1332 		search_non_ip_as_gft = 1;
1333 	}
1334 
1335 	qed_wr(p_hwfn,
1336 	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1337 	qed_wr(p_hwfn,
1338 	       p_ptt,
1339 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1340 	       ram_line_lo);
1341 	qed_wr(p_hwfn,
1342 	       p_ptt,
1343 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1344 	       ram_line_hi);
1345 
1346 	/* Set default profile so that no filter match will happen */
1347 	qed_wr(p_hwfn,
1348 	       p_ptt,
1349 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1350 	       PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1351 	qed_wr(p_hwfn,
1352 	       p_ptt,
1353 	       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1354 	       PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1355 
1356 	/* Enable gft search */
1357 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1358 }
1359 
1360 DECLARE_CRC8_TABLE(cdu_crc8_table);
1361 
1362 /* Calculate and return CDU validation byte per connection type/region/cid */
1363 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1364 {
1365 	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1366 	u8 crc, validation_byte = 0;
1367 	static u8 crc8_table_valid; /* automatically initialized to 0 */
1368 	u32 validation_string = 0;
1369 	u32 data_to_crc;
1370 
1371 	if (!crc8_table_valid) {
1372 		crc8_populate_msb(cdu_crc8_table, 0x07);
1373 		crc8_table_valid = 1;
1374 	}
1375 
1376 	/* The CRC is calculated on the String-to-compress:
1377 	 * [31:8]  = {CID[31:20],CID[11:0]}
1378 	 * [7:4]   = Region
1379 	 * [3:0]   = Type
1380 	 */
1381 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1382 		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1383 
1384 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1385 		validation_string |= ((region & 0xF) << 4);
1386 
1387 	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1388 		validation_string |= (conn_type & 0xF);
1389 
1390 	/* Convert to big-endian and calculate CRC8 */
1391 	data_to_crc = be32_to_cpu(validation_string);
1392 
1393 	crc = crc8(cdu_crc8_table,
1394 		   (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1395 
1396 	/* The validation byte [7:0] is composed:
1397 	 * for type A validation
1398 	 * [7]          = active configuration bit
1399 	 * [6:0]        = crc[6:0]
1400 	 *
1401 	 * for type B validation
1402 	 * [7]          = active configuration bit
1403 	 * [6:3]        = connection_type[3:0]
1404 	 * [2:0]        = crc[2:0]
1405 	 */
1406 	validation_byte |=
1407 	    ((validation_cfg >>
1408 	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1409 
1410 	if ((validation_cfg >>
1411 	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1412 		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1413 	else
1414 		validation_byte |= crc & 0x7F;
1415 
1416 	return validation_byte;
1417 }
1418 
1419 /* Calcualte and set validation bytes for session context */
1420 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1421 				     u16 ctx_size, u8 ctx_type, u32 cid)
1422 {
1423 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1424 
1425 	p_ctx = (u8 * const)p_ctx_mem;
1426 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1427 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1428 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1429 
1430 	memset(p_ctx, 0, ctx_size);
1431 
1432 	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1433 	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1434 	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1435 }
1436 
1437 /* Calcualte and set validation bytes for task context */
1438 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1439 				  u16 ctx_size, u8 ctx_type, u32 tid)
1440 {
1441 	u8 *p_ctx, *region1_val_ptr;
1442 
1443 	p_ctx = (u8 * const)p_ctx_mem;
1444 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1445 
1446 	memset(p_ctx, 0, ctx_size);
1447 
1448 	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1449 }
1450 
1451 /* Memset session context to 0 while preserving validation bytes */
1452 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1453 {
1454 	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1455 	u8 x_val, t_val, u_val;
1456 
1457 	p_ctx = (u8 * const)p_ctx_mem;
1458 	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1459 	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1460 	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1461 
1462 	x_val = *x_val_ptr;
1463 	t_val = *t_val_ptr;
1464 	u_val = *u_val_ptr;
1465 
1466 	memset(p_ctx, 0, ctx_size);
1467 
1468 	*x_val_ptr = x_val;
1469 	*t_val_ptr = t_val;
1470 	*u_val_ptr = u_val;
1471 }
1472 
1473 /* Memset task context to 0 while preserving validation bytes */
1474 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1475 {
1476 	u8 *p_ctx, *region1_val_ptr;
1477 	u8 region1_val;
1478 
1479 	p_ctx = (u8 * const)p_ctx_mem;
1480 	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1481 
1482 	region1_val = *region1_val_ptr;
1483 
1484 	memset(p_ctx, 0, ctx_size);
1485 
1486 	*region1_val_ptr = region1_val;
1487 }
1488 
1489 /* Enable and configure context validation */
1490 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1491 				   struct qed_ptt *p_ptt)
1492 {
1493 	u32 ctx_validation;
1494 
1495 	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1496 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1497 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1498 
1499 	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1500 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1501 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1502 
1503 	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1504 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1505 	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1506 }
1507 
1508 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1509 {
1510 	switch (storm_id) {
1511 	case 0:
1512 		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1513 		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1514 	case 1:
1515 		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1516 		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1517 	case 2:
1518 		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1519 		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1520 	case 3:
1521 		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1522 		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1523 	case 4:
1524 		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1525 		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1526 	case 5:
1527 		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1528 		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1529 
1530 	default:
1531 		return 0;
1532 	}
1533 }
1534 
1535 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1536 			      struct qed_ptt *p_ptt,
1537 			      u8 assert_level[NUM_STORMS])
1538 {
1539 	u8 storm_id;
1540 
1541 	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1542 		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1543 
1544 		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1545 	}
1546 }
1547