1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/string.h>
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_reg_addr.h"
42 
43 enum cminterface {
44 	MCM_SEC,
45 	MCM_PRI,
46 	UCM_SEC,
47 	UCM_PRI,
48 	TCM_SEC,
49 	TCM_PRI,
50 	YCM_SEC,
51 	YCM_PRI,
52 	XCM_SEC,
53 	XCM_PRI,
54 	NUM_OF_CM_INTERFACES
55 };
56 
57 /* general constants */
58 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
59 							QM_PQ_ELEMENT_SIZE, \
60 							0x1000) : 0)
61 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
62 								0x100) - 1 : 0)
63 #define QM_INVALID_PQ_ID                        0xffff
64 /* feature enable */
65 #define QM_BYPASS_EN                            1
66 #define QM_BYTE_CRD_EN                          1
67 /* other PQ constants */
68 #define QM_OTHER_PQS_PER_PF                     4
69 /* WFQ constants */
70 #define QM_WFQ_UPPER_BOUND		62500000
71 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
72 #define QM_WFQ_VP_PQ_PF_SHIFT           5
73 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000)
74 #define QM_WFQ_MAX_INC_VAL                      43750000
75 
76 /* RL constants */
77 #define QM_RL_UPPER_BOUND                       62500000
78 #define QM_RL_PERIOD                            5               /* in us */
79 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD)
80 #define QM_RL_MAX_INC_VAL                       43750000
81 #define QM_RL_INC_VAL(rate)		max_t(u32,	\
82 					      (u32)(((rate ? rate : \
83 						      1000000) *    \
84 						     QM_RL_PERIOD * \
85 						     101) / (8 * 100)), 1)
86 /* AFullOprtnstcCrdMask constants */
87 #define QM_OPPOR_LINE_VOQ_DEF           1
88 #define QM_OPPOR_FW_STOP_DEF            0
89 #define QM_OPPOR_PQ_EMPTY_DEF           1
90 /* Command Queue constants */
91 #define PBF_CMDQ_PURE_LB_LINES                          150
92 #define PBF_CMDQ_LINES_RT_OFFSET(voq)           (		 \
93 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
94 		(PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET -	 \
95 		 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
96 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq)       (	      \
97 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
98 		(PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET -      \
99 		 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
100 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)          ((((pbf_cmd_lines) - \
101 						   4) *		     \
102 						  2) | QM_LINE_CRD_REG_SIGN_BIT)
103 /* BTB: blocks constants (block size = 256B) */
104 #define BTB_JUMBO_PKT_BLOCKS            38
105 #define BTB_HEADROOM_BLOCKS                     BTB_JUMBO_PKT_BLOCKS
106 #define BTB_PURE_LB_FACTOR                      10
107 #define BTB_PURE_LB_RATIO                       7
108 /* QM stop command constants */
109 #define QM_STOP_PQ_MASK_WIDTH                   32
110 #define QM_STOP_CMD_ADDR                                0x2
111 #define QM_STOP_CMD_STRUCT_SIZE                 2
112 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
113 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
114 #define QM_STOP_CMD_PAUSE_MASK_MASK             -1
115 #define QM_STOP_CMD_GROUP_ID_OFFSET             1
116 #define QM_STOP_CMD_GROUP_ID_SHIFT              16
117 #define QM_STOP_CMD_GROUP_ID_MASK               15
118 #define QM_STOP_CMD_PQ_TYPE_OFFSET              1
119 #define QM_STOP_CMD_PQ_TYPE_SHIFT               24
120 #define QM_STOP_CMD_PQ_TYPE_MASK                1
121 #define QM_STOP_CMD_MAX_POLL_COUNT              100
122 #define QM_STOP_CMD_POLL_PERIOD_US              500
123 /* QM command macros */
124 #define QM_CMD_STRUCT_SIZE(cmd)			cmd ## \
125 	_STRUCT_SIZE
126 #define QM_CMD_SET_FIELD(var, cmd, field,				  \
127 			 value)        SET_FIELD(var[cmd ## _ ## field ## \
128 						     _OFFSET],		  \
129 						 cmd ## _ ## field,	  \
130 						 value)
131 /* QM: VOQ macros */
132 #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) ((port) *	\
133 						   (max_phys_tcs_per_port) + \
134 						   (tc))
135 #define LB_VOQ(port)				( \
136 		MAX_PHYS_VOQS + (port))
137 #define VOQ(port, tc, max_phy_tcs_pr_port)	\
138 	((tc) <		\
139 	 LB_TC ? PHYS_VOQ(port,		\
140 			  tc,			 \
141 			  max_phy_tcs_pr_port) \
142 		: LB_VOQ(port))
143 /******************** INTERNAL IMPLEMENTATION *********************/
144 /* Prepare PF RL enable/disable runtime init values */
145 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
146 {
147 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
148 	if (pf_rl_en) {
149 		/* enable RLs for all VOQs */
150 		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
151 			     (1 << MAX_NUM_VOQS) - 1);
152 		/* write RL period */
153 		STORE_RT_REG(p_hwfn,
154 			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
155 		STORE_RT_REG(p_hwfn,
156 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
157 			     QM_RL_PERIOD_CLK_25M);
158 		/* set credit threshold for QM bypass flow */
159 		if (QM_BYPASS_EN)
160 			STORE_RT_REG(p_hwfn,
161 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
162 				     QM_RL_UPPER_BOUND);
163 	}
164 }
165 
166 /* Prepare PF WFQ enable/disable runtime init values */
167 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
168 {
169 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
170 	/* set credit threshold for QM bypass flow */
171 	if (pf_wfq_en && QM_BYPASS_EN)
172 		STORE_RT_REG(p_hwfn,
173 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
174 			     QM_WFQ_UPPER_BOUND);
175 }
176 
177 /* Prepare VPORT RL enable/disable runtime init values */
178 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
179 {
180 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
181 		     vport_rl_en ? 1 : 0);
182 	if (vport_rl_en) {
183 		/* write RL period (use timer 0 only) */
184 		STORE_RT_REG(p_hwfn,
185 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
186 			     QM_RL_PERIOD_CLK_25M);
187 		STORE_RT_REG(p_hwfn,
188 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
189 			     QM_RL_PERIOD_CLK_25M);
190 		/* set credit threshold for QM bypass flow */
191 		if (QM_BYPASS_EN)
192 			STORE_RT_REG(p_hwfn,
193 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
194 				     QM_RL_UPPER_BOUND);
195 	}
196 }
197 
198 /* Prepare VPORT WFQ enable/disable runtime init values */
199 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
200 {
201 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
202 		     vport_wfq_en ? 1 : 0);
203 	/* set credit threshold for QM bypass flow */
204 	if (vport_wfq_en && QM_BYPASS_EN)
205 		STORE_RT_REG(p_hwfn,
206 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
207 			     QM_WFQ_UPPER_BOUND);
208 }
209 
210 /* Prepare runtime init values to allocate PBF command queue lines for
211  * the specified VOQ
212  */
213 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
214 				       u8 voq, u16 cmdq_lines)
215 {
216 	u32 qm_line_crd;
217 
218 	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
219 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
220 			 (u32)cmdq_lines);
221 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
222 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
223 		     qm_line_crd);
224 }
225 
226 /* Prepare runtime init values to allocate PBF command queue lines. */
227 static void qed_cmdq_lines_rt_init(
228 	struct qed_hwfn *p_hwfn,
229 	u8 max_ports_per_engine,
230 	u8 max_phys_tcs_per_port,
231 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
232 {
233 	u8 tc, voq, port_id, num_tcs_in_port;
234 
235 	/* clear PBF lines for all VOQs */
236 	for (voq = 0; voq < MAX_NUM_VOQS; voq++)
237 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
238 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
239 		if (port_params[port_id].active) {
240 			u16 phys_lines, phys_lines_per_tc;
241 
242 			/* find #lines to divide between active phys TCs */
243 			phys_lines = port_params[port_id].num_pbf_cmd_lines -
244 				     PBF_CMDQ_PURE_LB_LINES;
245 			/* find #lines per active physical TC */
246 			num_tcs_in_port = 0;
247 			for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
248 				if (((port_params[port_id].active_phys_tcs >>
249 				      tc) & 0x1) == 1)
250 					num_tcs_in_port++;
251 			}
252 
253 			phys_lines_per_tc = phys_lines / num_tcs_in_port;
254 			/* init registers per active TC */
255 			for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
256 				if (((port_params[port_id].active_phys_tcs >>
257 				      tc) & 0x1) != 1)
258 					continue;
259 
260 				voq = PHYS_VOQ(port_id, tc,
261 					       max_phys_tcs_per_port);
262 				qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
263 							   phys_lines_per_tc);
264 			}
265 
266 			/* init registers for pure LB TC */
267 			qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
268 						   PBF_CMDQ_PURE_LB_LINES);
269 		}
270 	}
271 }
272 
273 static void qed_btb_blocks_rt_init(
274 	struct qed_hwfn *p_hwfn,
275 	u8 max_ports_per_engine,
276 	u8 max_phys_tcs_per_port,
277 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
278 {
279 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
280 	u8 tc, voq, port_id, num_tcs_in_port;
281 
282 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
283 		u32 temp;
284 
285 		if (!port_params[port_id].active)
286 			continue;
287 
288 		/* subtract headroom blocks */
289 		usable_blocks = port_params[port_id].num_btb_blocks -
290 				BTB_HEADROOM_BLOCKS;
291 
292 		/* find blocks per physical TC */
293 		num_tcs_in_port = 0;
294 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
295 			if (((port_params[port_id].active_phys_tcs >>
296 			      tc) & 0x1) == 1)
297 				num_tcs_in_port++;
298 		}
299 
300 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
301 				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
302 				  BTB_PURE_LB_RATIO);
303 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
304 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
305 		phys_blocks = (usable_blocks - pure_lb_blocks) /
306 			      num_tcs_in_port;
307 
308 		/* init physical TCs */
309 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
310 			if (((port_params[port_id].active_phys_tcs >>
311 			      tc) & 0x1) != 1)
312 				continue;
313 
314 			voq = PHYS_VOQ(port_id, tc,
315 				       max_phys_tcs_per_port);
316 			STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
317 				     phys_blocks);
318 		}
319 
320 		/* init pure LB TC */
321 		temp = LB_VOQ(port_id);
322 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
323 			     pure_lb_blocks);
324 	}
325 }
326 
327 /* Prepare Tx PQ mapping runtime init values for the specified PF */
328 static void qed_tx_pq_map_rt_init(
329 	struct qed_hwfn *p_hwfn,
330 	struct qed_ptt *p_ptt,
331 	struct qed_qm_pf_rt_init_params *p_params,
332 	u32 base_mem_addr_4kb)
333 {
334 	struct init_qm_vport_params *vport_params = p_params->vport_params;
335 	u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
336 	u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
337 	u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
338 			    QM_PF_QUEUE_GROUP_SIZE;
339 	u16 i, pq_id, pq_group;
340 
341 	/* a bit per Tx PQ indicating if the PQ is associated with a VF */
342 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
343 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
344 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
345 	u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
346 	u32 mem_addr_4kb = base_mem_addr_4kb;
347 
348 	/* set mapping from PQ group to PF */
349 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
350 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
351 			     (u32)(p_params->pf_id));
352 	/* set PQ sizes */
353 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
354 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
355 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
356 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
357 
358 	/* go over all Tx PQs */
359 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
360 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
361 			     p_params->max_phys_tcs_per_port);
362 		bool is_vf_pq = (i >= p_params->num_pf_pqs);
363 		struct qm_rf_pq_map tx_pq_map;
364 
365 		bool rl_valid = p_params->pq_params[i].rl_valid &&
366 				(p_params->pq_params[i].vport_id <
367 				 MAX_QM_GLOBAL_RLS);
368 
369 		/* update first Tx PQ of VPORT/TC */
370 		u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
371 				    p_params->start_vport;
372 		u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
373 		u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
374 
375 		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
376 			/* create new VP PQ */
377 			pq_ids[p_params->pq_params[i].tc_id] = pq_id;
378 			first_tx_pq_id = pq_id;
379 			/* map VP PQ to VOQ and PF */
380 			STORE_RT_REG(p_hwfn,
381 				     QM_REG_WFQVPMAP_RT_OFFSET +
382 				     first_tx_pq_id,
383 				     (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
384 				     (p_params->pf_id <<
385 				      QM_WFQ_VP_PQ_PF_SHIFT));
386 		}
387 
388 		if (p_params->pq_params[i].rl_valid && !rl_valid)
389 			DP_NOTICE(p_hwfn,
390 				  "Invalid VPORT ID for rate limiter configuration");
391 		/* fill PQ map entry */
392 		memset(&tx_pq_map, 0, sizeof(tx_pq_map));
393 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
394 		SET_FIELD(tx_pq_map.reg,
395 			  QM_RF_PQ_MAP_RL_VALID, rl_valid ? 1 : 0);
396 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
397 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
398 			  rl_valid ?
399 			  p_params->pq_params[i].vport_id : 0);
400 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
401 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
402 			  p_params->pq_params[i].wrr_group);
403 		/* write PQ map entry to CAM */
404 		STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
405 			     *((u32 *)&tx_pq_map));
406 		/* set base address */
407 		STORE_RT_REG(p_hwfn,
408 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
409 			     mem_addr_4kb);
410 		/* check if VF PQ */
411 		if (is_vf_pq) {
412 			/* if PQ is associated with a VF, add indication
413 			 * to PQ VF mask
414 			 */
415 			tx_pq_vf_mask[pq_id /
416 				      QM_PF_QUEUE_GROUP_SIZE] |=
417 			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
418 			mem_addr_4kb += vport_pq_mem_4kb;
419 		} else {
420 			mem_addr_4kb += pq_mem_4kb;
421 		}
422 	}
423 
424 	/* store Tx PQ VF mask to size select register */
425 	for (i = 0; i < num_tx_pq_vf_masks; i++) {
426 		if (tx_pq_vf_mask[i]) {
427 			u32 addr;
428 
429 			addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
430 			STORE_RT_REG(p_hwfn, addr,
431 				     tx_pq_vf_mask[i]);
432 		}
433 	}
434 }
435 
436 /* Prepare Other PQ mapping runtime init values for the specified PF */
437 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
438 				     u8 port_id,
439 				     u8 pf_id,
440 				     u32 num_pf_cids,
441 				     u32 num_tids, u32 base_mem_addr_4kb)
442 {
443 	u16 i, pq_id;
444 
445 	/* a single other PQ group is used in each PF,
446 	 * where PQ group i is used in PF i.
447 	 */
448 	u16 pq_group = pf_id;
449 	u32 pq_size = num_pf_cids + num_tids;
450 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
451 	u32 mem_addr_4kb = base_mem_addr_4kb;
452 
453 	/* map PQ group to PF */
454 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
455 		     (u32)(pf_id));
456 	/* set PQ sizes */
457 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
458 		     QM_PQ_SIZE_256B(pq_size));
459 	/* set base address */
460 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
461 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
462 		STORE_RT_REG(p_hwfn,
463 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
464 			     mem_addr_4kb);
465 		mem_addr_4kb += pq_mem_4kb;
466 	}
467 }
468 
469 /* Prepare PF WFQ runtime init values for the specified PF.
470  * Return -1 on error.
471  */
472 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
473 			      struct qed_qm_pf_rt_init_params *p_params)
474 {
475 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
476 	u32 crd_reg_offset;
477 	u32 inc_val;
478 	u16 i;
479 
480 	if (p_params->pf_id < MAX_NUM_PFS_BB)
481 		crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
482 	else
483 		crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET;
484 	crd_reg_offset += p_params->pf_id % MAX_NUM_PFS_BB;
485 
486 	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
487 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
488 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
489 		return -1;
490 	}
491 
492 	for (i = 0; i < num_tx_pqs; i++) {
493 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
494 			     p_params->max_phys_tcs_per_port);
495 
496 		OVERWRITE_RT_REG(p_hwfn,
497 				 crd_reg_offset + voq * MAX_NUM_PFS_BB,
498 				 QM_WFQ_CRD_REG_SIGN_BIT);
499 	}
500 
501 	STORE_RT_REG(p_hwfn,
502 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
503 		     QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
504 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
505 		     inc_val);
506 	return 0;
507 }
508 
509 /* Prepare PF RL runtime init values for the specified PF.
510  * Return -1 on error.
511  */
512 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
513 {
514 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
515 
516 	if (inc_val > QM_RL_MAX_INC_VAL) {
517 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
518 		return -1;
519 	}
520 	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
521 		     QM_RL_CRD_REG_SIGN_BIT);
522 	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
523 		     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
524 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
525 	return 0;
526 }
527 
528 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
529  * Return -1 on error.
530  */
531 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
532 			      u8 num_vports,
533 			      struct init_qm_vport_params *vport_params)
534 {
535 	u32 inc_val;
536 	u8 tc, i;
537 
538 	/* go over all PF VPORTs */
539 	for (i = 0; i < num_vports; i++) {
540 
541 		if (!vport_params[i].vport_wfq)
542 			continue;
543 
544 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
545 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
546 			DP_NOTICE(p_hwfn,
547 				  "Invalid VPORT WFQ weight configuration");
548 			return -1;
549 		}
550 
551 		/* each VPORT can have several VPORT PQ IDs for
552 		 * different TCs
553 		 */
554 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
555 			u16 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
556 
557 			if (vport_pq_id != QM_INVALID_PQ_ID) {
558 				STORE_RT_REG(p_hwfn,
559 					     QM_REG_WFQVPCRD_RT_OFFSET +
560 					     vport_pq_id,
561 					     QM_WFQ_CRD_REG_SIGN_BIT);
562 				STORE_RT_REG(p_hwfn,
563 					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
564 					     vport_pq_id, inc_val);
565 			}
566 		}
567 	}
568 
569 	return 0;
570 }
571 
572 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573 				u8 start_vport,
574 				u8 num_vports,
575 				struct init_qm_vport_params *vport_params)
576 {
577 	u8 i, vport_id;
578 
579 	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
580 		DP_NOTICE(p_hwfn,
581 			  "Invalid VPORT ID for rate limiter configuration");
582 		return -1;
583 	}
584 
585 	/* go over all PF VPORTs */
586 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
587 		u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
588 
589 		if (inc_val > QM_RL_MAX_INC_VAL) {
590 			DP_NOTICE(p_hwfn,
591 				  "Invalid VPORT rate-limit configuration");
592 			return -1;
593 		}
594 
595 		STORE_RT_REG(p_hwfn,
596 			     QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
597 			     QM_RL_CRD_REG_SIGN_BIT);
598 		STORE_RT_REG(p_hwfn,
599 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
600 			     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
601 		STORE_RT_REG(p_hwfn,
602 			     QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
603 			     inc_val);
604 	}
605 
606 	return 0;
607 }
608 
609 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
610 				     struct qed_ptt *p_ptt)
611 {
612 	u32 reg_val, i;
613 
614 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
615 	     i++) {
616 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
617 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
618 	}
619 
620 	/* check if timeout while waiting for SDM command ready */
621 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
622 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
623 			   "Timeout when waiting for QM SDM command ready signal\n");
624 		return false;
625 	}
626 
627 	return true;
628 }
629 
630 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
631 			    struct qed_ptt *p_ptt,
632 			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
633 {
634 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
635 		return false;
636 
637 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
638 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
639 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
640 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
641 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
642 
643 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
644 }
645 
646 /******************** INTERFACE IMPLEMENTATION *********************/
647 u32 qed_qm_pf_mem_size(u8 pf_id,
648 		       u32 num_pf_cids,
649 		       u32 num_vf_cids,
650 		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
651 {
652 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
653 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
654 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
655 }
656 
657 int qed_qm_common_rt_init(
658 	struct qed_hwfn *p_hwfn,
659 	struct qed_qm_common_rt_init_params *p_params)
660 {
661 	/* init AFullOprtnstcCrdMask */
662 	u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
663 		    QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
664 		   (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
665 		   (p_params->pf_wfq_en <<
666 		    QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
667 		   (p_params->vport_wfq_en <<
668 		    QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
669 		   (p_params->pf_rl_en <<
670 		    QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
671 		   (p_params->vport_rl_en <<
672 		    QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
673 		   (QM_OPPOR_FW_STOP_DEF <<
674 		    QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
675 		   (QM_OPPOR_PQ_EMPTY_DEF <<
676 		    QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
677 
678 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
679 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
680 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
681 	qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
682 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
683 	qed_cmdq_lines_rt_init(p_hwfn,
684 			       p_params->max_ports_per_engine,
685 			       p_params->max_phys_tcs_per_port,
686 			       p_params->port_params);
687 	qed_btb_blocks_rt_init(p_hwfn,
688 			       p_params->max_ports_per_engine,
689 			       p_params->max_phys_tcs_per_port,
690 			       p_params->port_params);
691 	return 0;
692 }
693 
694 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
695 		      struct qed_ptt *p_ptt,
696 		      struct qed_qm_pf_rt_init_params *p_params)
697 {
698 	struct init_qm_vport_params *vport_params = p_params->vport_params;
699 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
700 					       p_params->num_tids) *
701 				 QM_OTHER_PQS_PER_PF;
702 	u8 tc, i;
703 
704 	/* clear first Tx PQ ID array for each VPORT */
705 	for (i = 0; i < p_params->num_vports; i++)
706 		for (tc = 0; tc < NUM_OF_TCS; tc++)
707 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
708 
709 	/* map Other PQs (if any) */
710 	qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
711 				 p_params->num_pf_cids, p_params->num_tids, 0);
712 
713 	/* map Tx PQs */
714 	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
715 
716 	if (p_params->pf_wfq)
717 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
718 			return -1;
719 
720 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
721 		return -1;
722 
723 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
724 		return -1;
725 
726 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
727 				 p_params->num_vports, vport_params))
728 		return -1;
729 
730 	return 0;
731 }
732 
733 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
734 		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
735 {
736 	u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
737 
738 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
739 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
740 		return -1;
741 	}
742 
743 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
744 	return 0;
745 }
746 
747 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
748 		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
749 {
750 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
751 
752 	if (inc_val > QM_RL_MAX_INC_VAL) {
753 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
754 		return -1;
755 	}
756 
757 	qed_wr(p_hwfn, p_ptt,
758 	       QM_REG_RLPFCRD + pf_id * 4,
759 	       QM_RL_CRD_REG_SIGN_BIT);
760 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
761 
762 	return 0;
763 }
764 
765 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
766 		       struct qed_ptt *p_ptt,
767 		       u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
768 {
769 	u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
770 	u8 tc;
771 
772 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
773 		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration");
774 		return -1;
775 	}
776 
777 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
778 		u16 vport_pq_id = first_tx_pq_id[tc];
779 
780 		if (vport_pq_id != QM_INVALID_PQ_ID)
781 			qed_wr(p_hwfn, p_ptt,
782 			       QM_REG_WFQVPWEIGHT + vport_pq_id * 4,
783 			       inc_val);
784 	}
785 
786 	return 0;
787 }
788 
789 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
790 		      struct qed_ptt *p_ptt, u8 vport_id, u32 vport_rl)
791 {
792 	u32 inc_val = QM_RL_INC_VAL(vport_rl);
793 
794 	if (vport_id >= MAX_QM_GLOBAL_RLS) {
795 		DP_NOTICE(p_hwfn,
796 			  "Invalid VPORT ID for rate limiter configuration");
797 		return -1;
798 	}
799 
800 	if (inc_val > QM_RL_MAX_INC_VAL) {
801 		DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration");
802 		return -1;
803 	}
804 
805 	qed_wr(p_hwfn, p_ptt,
806 	       QM_REG_RLGLBLCRD + vport_id * 4,
807 	       QM_RL_CRD_REG_SIGN_BIT);
808 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
809 
810 	return 0;
811 }
812 
813 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
814 			  struct qed_ptt *p_ptt,
815 			  bool is_release_cmd,
816 			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
817 {
818 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
819 	u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
820 
821 	/* set command's PQ type */
822 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
823 
824 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
825 		/* set PQ bit in mask (stop command only) */
826 		if (!is_release_cmd)
827 			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
828 
829 		/* if last PQ or end of PQ mask, write command */
830 		if ((pq_id == last_pq) ||
831 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
832 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
833 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
834 					 PAUSE_MASK, pq_mask);
835 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
836 					 GROUP_ID,
837 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
838 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
839 					     cmd_arr[0], cmd_arr[1]))
840 				return false;
841 			pq_mask = 0;
842 		}
843 	}
844 
845 	return true;
846 }
847 
848 static void
849 qed_set_tunnel_type_enable_bit(unsigned long *var, int bit, bool enable)
850 {
851 	if (enable)
852 		set_bit(bit, var);
853 	else
854 		clear_bit(bit, var);
855 }
856 
857 #define PRS_ETH_TUNN_FIC_FORMAT	-188897008
858 
859 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
860 			     struct qed_ptt *p_ptt, u16 dest_port)
861 {
862 	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
863 	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
864 	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
865 }
866 
867 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
868 			  struct qed_ptt *p_ptt, bool vxlan_enable)
869 {
870 	unsigned long reg_val = 0;
871 	u8 shift;
872 
873 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
874 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
875 	qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
876 
877 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
878 
879 	if (reg_val)
880 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
881 		       PRS_ETH_TUNN_FIC_FORMAT);
882 
883 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
884 	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
885 	qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
886 
887 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
888 
889 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
890 	       vxlan_enable ? 1 : 0);
891 }
892 
893 void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
894 			bool eth_gre_enable, bool ip_gre_enable)
895 {
896 	unsigned long reg_val = 0;
897 	u8 shift;
898 
899 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
900 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
901 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
902 
903 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
904 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
905 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
906 	if (reg_val)
907 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
908 		       PRS_ETH_TUNN_FIC_FORMAT);
909 
910 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
911 	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
912 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
913 
914 	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
915 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
916 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
917 
918 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
919 	       eth_gre_enable ? 1 : 0);
920 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
921 	       ip_gre_enable ? 1 : 0);
922 }
923 
924 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
925 			      struct qed_ptt *p_ptt, u16 dest_port)
926 {
927 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
928 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
929 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
930 }
931 
932 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
933 			   struct qed_ptt *p_ptt,
934 			   bool eth_geneve_enable, bool ip_geneve_enable)
935 {
936 	unsigned long reg_val = 0;
937 	u8 shift;
938 
939 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
940 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
941 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_geneve_enable);
942 
943 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
944 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_geneve_enable);
945 
946 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
947 	if (reg_val)
948 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
949 		       PRS_ETH_TUNN_FIC_FORMAT);
950 
951 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
952 	       eth_geneve_enable ? 1 : 0);
953 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
954 
955 	/* EDPM with geneve tunnel not supported in BB_B0 */
956 	if (QED_IS_BB_B0(p_hwfn->cdev))
957 		return;
958 
959 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
960 	       eth_geneve_enable ? 1 : 0);
961 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
962 	       ip_geneve_enable ? 1 : 0);
963 }
964 
965 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
966 #define PARSER_ETH_CONN_CM_HDR (0x0)
967 #define CAM_LINE_SIZE sizeof(u32)
968 #define RAM_LINE_SIZE sizeof(u64)
969 #define REG_SIZE sizeof(u32)
970 
971 void qed_set_rfs_mode_disable(struct qed_hwfn *p_hwfn,
972 			      struct qed_ptt *p_ptt, u16 pf_id)
973 {
974 	union gft_cam_line_union camline;
975 	struct gft_ram_line ramline;
976 	u32 *p_ramline, i;
977 
978 	p_ramline = (u32 *)&ramline;
979 
980 	/*stop using gft logic */
981 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
982 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, 0x0);
983 	memset(&camline, 0, sizeof(union gft_cam_line_union));
984 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
985 	       camline.cam_line_mapped.camline);
986 	memset(&ramline, 0, sizeof(ramline));
987 
988 	for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++) {
989 		u32 hw_addr = PRS_REG_GFT_PROFILE_MASK_RAM;
990 
991 		hw_addr += (RAM_LINE_SIZE * pf_id + i * REG_SIZE);
992 
993 		qed_wr(p_hwfn, p_ptt, hw_addr, *(p_ramline + i));
994 	}
995 }
996 
997 void qed_set_rfs_mode_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
998 			     u16 pf_id, bool tcp, bool udp,
999 			     bool ipv4, bool ipv6)
1000 {
1001 	u32 rfs_cm_hdr_event_id, *p_ramline;
1002 	union gft_cam_line_union camline;
1003 	struct gft_ram_line ramline;
1004 	int i;
1005 
1006 	rfs_cm_hdr_event_id = qed_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1007 	p_ramline = (u32 *)&ramline;
1008 
1009 	if (!ipv6 && !ipv4)
1010 		DP_NOTICE(p_hwfn,
1011 			  "set_rfs_mode_enable: must accept at least on of - ipv4 or ipv6");
1012 	if (!tcp && !udp)
1013 		DP_NOTICE(p_hwfn,
1014 			  "set_rfs_mode_enable: must accept at least on of - udp or tcp");
1015 
1016 	rfs_cm_hdr_event_id |= T_ETH_PACKET_MATCH_RFS_EVENTID <<
1017 					PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1018 	rfs_cm_hdr_event_id |= PARSER_ETH_CONN_CM_HDR <<
1019 					PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1020 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1021 
1022 	/* Configure Registers for RFS mode */
1023 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1024 	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1025 	camline.cam_line_mapped.camline = 0;
1026 
1027 	/* cam line is now valid!! */
1028 	SET_FIELD(camline.cam_line_mapped.camline,
1029 		  GFT_CAM_LINE_MAPPED_VALID, 1);
1030 
1031 	/* filters are per PF!! */
1032 	SET_FIELD(camline.cam_line_mapped.camline,
1033 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK, 1);
1034 	SET_FIELD(camline.cam_line_mapped.camline,
1035 		  GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1036 	if (!(tcp && udp)) {
1037 		SET_FIELD(camline.cam_line_mapped.camline,
1038 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, 1);
1039 		if (tcp)
1040 			SET_FIELD(camline.cam_line_mapped.camline,
1041 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1042 				  GFT_PROFILE_TCP_PROTOCOL);
1043 		else
1044 			SET_FIELD(camline.cam_line_mapped.camline,
1045 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1046 				  GFT_PROFILE_UDP_PROTOCOL);
1047 	}
1048 
1049 	if (!(ipv4 && ipv6)) {
1050 		SET_FIELD(camline.cam_line_mapped.camline,
1051 			  GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1052 		if (ipv4)
1053 			SET_FIELD(camline.cam_line_mapped.camline,
1054 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1055 				  GFT_PROFILE_IPV4);
1056 		else
1057 			SET_FIELD(camline.cam_line_mapped.camline,
1058 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1059 				  GFT_PROFILE_IPV6);
1060 	}
1061 
1062 	/* write characteristics to cam */
1063 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1064 	       camline.cam_line_mapped.camline);
1065 	camline.cam_line_mapped.camline = qed_rd(p_hwfn, p_ptt,
1066 						 PRS_REG_GFT_CAM +
1067 						 CAM_LINE_SIZE * pf_id);
1068 
1069 	/* write line to RAM - compare to filter 4 tuple */
1070 	ramline.low32bits = 0;
1071 	ramline.high32bits = 0;
1072 	SET_FIELD(ramline.high32bits, GFT_RAM_LINE_DST_IP, 1);
1073 	SET_FIELD(ramline.high32bits, GFT_RAM_LINE_SRC_IP, 1);
1074 	SET_FIELD(ramline.low32bits, GFT_RAM_LINE_SRC_PORT, 1);
1075 	SET_FIELD(ramline.low32bits, GFT_RAM_LINE_DST_PORT, 1);
1076 
1077 	/* each iteration write to reg */
1078 	for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1079 		qed_wr(p_hwfn, p_ptt,
1080 		       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id +
1081 		       i * REG_SIZE, *(p_ramline + i));
1082 
1083 	/* set default profile so that no filter match will happen */
1084 	ramline.low32bits = 0xffff;
1085 	ramline.high32bits = 0xffff;
1086 
1087 	for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1088 		qed_wr(p_hwfn, p_ptt,
1089 		       PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1090 		       PRS_GFT_CAM_LINES_NO_MATCH + i * REG_SIZE,
1091 		       *(p_ramline + i));
1092 }
1093