1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2021 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/crc8.h> 9 #include <linux/delay.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/string.h> 13 #include "qed_hsi.h" 14 #include "qed_hw.h" 15 #include "qed_init_ops.h" 16 #include "qed_iro_hsi.h" 17 #include "qed_reg_addr.h" 18 19 #define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG 20 21 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = { 22 {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */ 23 {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */ 24 {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */ 25 }; 26 27 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = { 28 {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */ 29 }; 30 31 /* General constants */ 32 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \ 33 QM_PQ_ELEMENT_SIZE, \ 34 0x1000) : 0) 35 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \ 36 0x100) - 1 : 0) 37 #define QM_INVALID_PQ_ID 0xffff 38 39 /* Max link speed (in Mbps) */ 40 #define QM_MAX_LINK_SPEED 100000 41 42 /* Feature enable */ 43 #define QM_BYPASS_EN 1 44 #define QM_BYTE_CRD_EN 1 45 46 /* Initial VOQ byte credit */ 47 #define QM_INITIAL_VOQ_BYTE_CRD 98304 48 /* Other PQ constants */ 49 #define QM_OTHER_PQS_PER_PF 4 50 51 /* VOQ constants */ 52 #define MAX_NUM_VOQS (MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2) 53 #define VOQS_BIT_MASK (BIT(MAX_NUM_VOQS) - 1) 54 55 /* WFQ constants */ 56 57 /* PF WFQ increment value, 0x9000 = 4*9*1024 */ 58 #define QM_PF_WFQ_INC_VAL(weight) ((weight) * 0x9000) 59 60 /* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */ 61 #define QM_PF_WFQ_UPPER_BOUND 62500000 62 63 /* PF WFQ max increment value, 0.7 * upper bound */ 64 #define QM_PF_WFQ_MAX_INC_VAL ((QM_PF_WFQ_UPPER_BOUND * 7) / 10) 65 66 /* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */ 67 #define QM_PF_WFQ_CRD_E5_NUM_VOQS 16 68 69 /* VP WFQ increment value */ 70 #define QM_VP_WFQ_INC_VAL(weight) ((weight) * QM_VP_WFQ_MIN_INC_VAL) 71 72 /* VP WFQ min increment value */ 73 #define QM_VP_WFQ_MIN_INC_VAL 10800 74 75 /* VP WFQ max increment value, 2^30 */ 76 #define QM_VP_WFQ_MAX_INC_VAL 0x40000000 77 78 /* VP WFQ bypass threshold */ 79 #define QM_VP_WFQ_BYPASS_THRESH (QM_VP_WFQ_MIN_INC_VAL - 100) 80 81 /* VP RL credit task cost */ 82 #define QM_VP_RL_CRD_TASK_COST 9700 83 84 /* Bit of VOQ in VP WFQ PQ map */ 85 #define QM_VP_WFQ_PQ_VOQ_SHIFT 0 86 87 /* Bit of PF in VP WFQ PQ map */ 88 #define QM_VP_WFQ_PQ_PF_SHIFT 5 89 90 /* RL constants */ 91 92 /* Period in us */ 93 #define QM_RL_PERIOD 5 94 95 /* Period in 25MHz cycles */ 96 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD) 97 98 /* RL increment value - rate is specified in mbps */ 99 #define QM_RL_INC_VAL(rate) ({ \ 100 typeof(rate) __rate = (rate); \ 101 max_t(u32, \ 102 (u32)(((__rate ? __rate : \ 103 100000) * \ 104 QM_RL_PERIOD * \ 105 101) / (8 * 100)), 1); }) 106 107 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */ 108 #define QM_PF_RL_UPPER_BOUND 62500000 109 110 /* Max PF RL increment value is 0.7 * upper bound */ 111 #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10) 112 113 /* QCN RL Upper bound, speed is in Mpbs */ 114 #define QM_GLOBAL_RL_UPPER_BOUND(speed) ((u32)max_t( \ 115 u32, \ 116 (u32)(((speed) * \ 117 QM_RL_PERIOD * 101) / (8 * 100)), \ 118 QM_VP_RL_CRD_TASK_COST \ 119 + 1000)) 120 121 /* AFullOprtnstcCrdMask constants */ 122 #define QM_OPPOR_LINE_VOQ_DEF 1 123 #define QM_OPPOR_FW_STOP_DEF 0 124 #define QM_OPPOR_PQ_EMPTY_DEF 1 125 126 /* Command Queue constants */ 127 128 /* Pure LB CmdQ lines (+spare) */ 129 #define PBF_CMDQ_PURE_LB_LINES 150 130 131 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \ 132 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \ 133 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \ 134 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET)) 135 136 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \ 137 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \ 138 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \ 139 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET)) 140 141 /* Returns the VOQ line credit for the specified number of PBF command lines. 142 * PBF lines are specified in 256b units. 143 */ 144 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \ 145 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT) 146 147 /* BTB: blocks constants (block size = 256B) */ 148 149 /* 256B blocks in 9700B packet */ 150 #define BTB_JUMBO_PKT_BLOCKS 38 151 152 /* Headroom per-port */ 153 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS 154 #define BTB_PURE_LB_FACTOR 10 155 156 /* Factored (hence really 0.7) */ 157 #define BTB_PURE_LB_RATIO 7 158 159 /* QM stop command constants */ 160 #define QM_STOP_PQ_MASK_WIDTH 32 161 #define QM_STOP_CMD_ADDR 2 162 #define QM_STOP_CMD_STRUCT_SIZE 2 163 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0 164 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0 165 #define QM_STOP_CMD_PAUSE_MASK_MASK -1 166 #define QM_STOP_CMD_GROUP_ID_OFFSET 1 167 #define QM_STOP_CMD_GROUP_ID_SHIFT 16 168 #define QM_STOP_CMD_GROUP_ID_MASK 15 169 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1 170 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24 171 #define QM_STOP_CMD_PQ_TYPE_MASK 1 172 #define QM_STOP_CMD_MAX_POLL_COUNT 100 173 #define QM_STOP_CMD_POLL_PERIOD_US 500 174 175 /* QM command macros */ 176 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE 177 #define QM_CMD_SET_FIELD(var, cmd, field, value) \ 178 SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \ 179 cmd ## _ ## field, \ 180 value) 181 182 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid, \ 183 rl_id, ext_voq, wrr) \ 184 do { \ 185 u32 __reg = 0; \ 186 \ 187 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \ 188 memset(&(map), 0, sizeof(map)); \ 189 SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1); \ 190 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID, \ 191 !!(rl_valid)); \ 192 SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \ 193 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id)); \ 194 SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq)); \ 195 SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP, \ 196 (wrr)); \ 197 \ 198 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \ 199 __reg); \ 200 (map).reg = cpu_to_le32(__reg); \ 201 } while (0) 202 203 #define WRITE_PQ_INFO_TO_RAM 1 204 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \ 205 (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \ 206 ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \ 207 (((rl) >> 8) << 9)) 208 209 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \ 210 (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \ 211 XSTORM_PQ_INFO_OFFSET(pq_id)) 212 213 static const char * const s_protocol_types[] = { 214 "PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE", 215 "PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP", 216 "PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON", 217 "PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI", 218 }; 219 220 static const char *s_ramrod_cmd_ids[][28] = { 221 { 222 "ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC", 223 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC", 224 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN", 225 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN", 226 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN", 227 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE", 228 "ISCSI_RAMROD_CMD_ID_CONN_STATS", }, 229 { "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC", 230 "FCOE_RAMROD_CMD_ID_STAT_FUNC", 231 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN", 232 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", }, 233 { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT", 234 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR", 235 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ", 236 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ", 237 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ", 238 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING", 239 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP", 240 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP", 241 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP", 242 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE", 243 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP", 244 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP", 245 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP", 246 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", }, 247 { "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START", 248 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP", 249 "CORE_RAMROD_TX_QUEUE_STOP", 250 "CORE_RAMROD_RX_QUEUE_FLUSH", 251 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", }, 252 { "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START", 253 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP", 254 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP", 255 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP", 256 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE", 257 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION", 258 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER", 259 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER", 260 "ETH_RAMROD_RX_ADD_UDP_FILTER", 261 "ETH_RAMROD_RX_DELETE_UDP_FILTER", 262 "ETH_RAMROD_RX_CREATE_GFT_ACTION", 263 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE", 264 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL", 265 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL", 266 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", }, 267 { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT", 268 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR", 269 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ", 270 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ", 271 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ", 272 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING", 273 "RDMA_RAMROD_STOP_NS_TRACKING", 274 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD", 275 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD", 276 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR", 277 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP", 278 "IWARP_RAMROD_CMD_ID_MODIFY_QP", 279 "IWARP_RAMROD_CMD_ID_DESTROY_QP", 280 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", }, 281 { NULL }, /*TOE*/ 282 { NULL }, /*PREROCE*/ 283 { "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START", 284 "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START", 285 "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE", 286 "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", } 287 }; 288 289 /******************** INTERNAL IMPLEMENTATION *********************/ 290 291 /* Returns the external VOQ number */ 292 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn, 293 u8 port_id, u8 tc, u8 max_phys_tcs_per_port) 294 { 295 if (tc == PURE_LB_TC) 296 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id; 297 else 298 return port_id * max_phys_tcs_per_port + tc; 299 } 300 301 /* Prepare PF RL enable/disable runtime init values */ 302 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en) 303 { 304 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0); 305 if (pf_rl_en) { 306 u8 num_ext_voqs = MAX_NUM_VOQS; 307 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1; 308 309 /* Enable RLs for all VOQs */ 310 STORE_RT_REG(p_hwfn, 311 QM_REG_RLPFVOQENABLE_RT_OFFSET, 312 (u32)voq_bit_mask); 313 314 /* Write RL period */ 315 STORE_RT_REG(p_hwfn, 316 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M); 317 STORE_RT_REG(p_hwfn, 318 QM_REG_RLPFPERIODTIMER_RT_OFFSET, 319 QM_RL_PERIOD_CLK_25M); 320 321 /* Set credit threshold for QM bypass flow */ 322 if (QM_BYPASS_EN) 323 STORE_RT_REG(p_hwfn, 324 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, 325 QM_PF_RL_UPPER_BOUND); 326 } 327 } 328 329 /* Prepare PF WFQ enable/disable runtime init values */ 330 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en) 331 { 332 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0); 333 334 /* Set credit threshold for QM bypass flow */ 335 if (pf_wfq_en && QM_BYPASS_EN) 336 STORE_RT_REG(p_hwfn, 337 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, 338 QM_PF_WFQ_UPPER_BOUND); 339 } 340 341 /* Prepare global RL enable/disable runtime init values */ 342 static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en) 343 { 344 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, 345 global_rl_en ? 1 : 0); 346 if (global_rl_en) { 347 /* Write RL period (use timer 0 only) */ 348 STORE_RT_REG(p_hwfn, 349 QM_REG_RLGLBLPERIOD_0_RT_OFFSET, 350 QM_RL_PERIOD_CLK_25M); 351 STORE_RT_REG(p_hwfn, 352 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, 353 QM_RL_PERIOD_CLK_25M); 354 355 /* Set credit threshold for QM bypass flow */ 356 if (QM_BYPASS_EN) 357 STORE_RT_REG(p_hwfn, 358 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, 359 QM_GLOBAL_RL_UPPER_BOUND(10000) - 1); 360 } 361 } 362 363 /* Prepare VPORT WFQ enable/disable runtime init values */ 364 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en) 365 { 366 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, 367 vport_wfq_en ? 1 : 0); 368 369 /* Set credit threshold for QM bypass flow */ 370 if (vport_wfq_en && QM_BYPASS_EN) 371 STORE_RT_REG(p_hwfn, 372 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, 373 QM_VP_WFQ_BYPASS_THRESH); 374 } 375 376 /* Prepare runtime init values to allocate PBF command queue lines for 377 * the specified VOQ. 378 */ 379 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn, 380 u8 ext_voq, u16 cmdq_lines) 381 { 382 u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines); 383 384 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 385 (u32)cmdq_lines); 386 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, 387 qm_line_crd); 388 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, 389 qm_line_crd); 390 } 391 392 /* Prepare runtime init values to allocate PBF command queue lines. */ 393 static void 394 qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn, 395 u8 max_ports_per_engine, 396 u8 max_phys_tcs_per_port, 397 struct init_qm_port_params port_params[MAX_NUM_PORTS]) 398 { 399 u8 tc, ext_voq, port_id, num_tcs_in_port; 400 u8 num_ext_voqs = MAX_NUM_VOQS; 401 402 /* Clear PBF lines of all VOQs */ 403 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++) 404 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0); 405 406 for (port_id = 0; port_id < max_ports_per_engine; port_id++) { 407 u16 phys_lines, phys_lines_per_tc; 408 409 if (!port_params[port_id].active) 410 continue; 411 412 /* Find number of command queue lines to divide between the 413 * active physical TCs. 414 */ 415 phys_lines = port_params[port_id].num_pbf_cmd_lines; 416 phys_lines -= PBF_CMDQ_PURE_LB_LINES; 417 418 /* Find #lines per active physical TC */ 419 num_tcs_in_port = 0; 420 for (tc = 0; tc < max_phys_tcs_per_port; tc++) 421 if (((port_params[port_id].active_phys_tcs >> 422 tc) & 0x1) == 1) 423 num_tcs_in_port++; 424 phys_lines_per_tc = phys_lines / num_tcs_in_port; 425 426 /* Init registers per active TC */ 427 for (tc = 0; tc < max_phys_tcs_per_port; tc++) { 428 ext_voq = qed_get_ext_voq(p_hwfn, 429 port_id, 430 tc, max_phys_tcs_per_port); 431 if (((port_params[port_id].active_phys_tcs >> 432 tc) & 0x1) == 1) 433 qed_cmdq_lines_voq_rt_init(p_hwfn, 434 ext_voq, 435 phys_lines_per_tc); 436 } 437 438 /* Init registers for pure LB TC */ 439 ext_voq = qed_get_ext_voq(p_hwfn, 440 port_id, 441 PURE_LB_TC, max_phys_tcs_per_port); 442 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, 443 PBF_CMDQ_PURE_LB_LINES); 444 } 445 } 446 447 /* Prepare runtime init values to allocate guaranteed BTB blocks for the 448 * specified port. The guaranteed BTB space is divided between the TCs as 449 * follows (shared space Is currently not used): 450 * 1. Parameters: 451 * B - BTB blocks for this port 452 * C - Number of physical TCs for this port 453 * 2. Calculation: 454 * a. 38 blocks (9700B jumbo frame) are allocated for global per port 455 * headroom. 456 * b. B = B - 38 (remainder after global headroom allocation). 457 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ. 458 * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation). 459 * e. B/C blocks are allocated for each physical TC. 460 * Assumptions: 461 * - MTU is up to 9700 bytes (38 blocks) 462 * - All TCs are considered symmetrical (same rate and packet size) 463 * - No optimization for lossy TC (all are considered lossless). Shared space 464 * is not enabled and allocated for each TC. 465 */ 466 static void 467 qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn, 468 u8 max_ports_per_engine, 469 u8 max_phys_tcs_per_port, 470 struct init_qm_port_params port_params[MAX_NUM_PORTS]) 471 { 472 u32 usable_blocks, pure_lb_blocks, phys_blocks; 473 u8 tc, ext_voq, port_id, num_tcs_in_port; 474 475 for (port_id = 0; port_id < max_ports_per_engine; port_id++) { 476 if (!port_params[port_id].active) 477 continue; 478 479 /* Subtract headroom blocks */ 480 usable_blocks = port_params[port_id].num_btb_blocks - 481 BTB_HEADROOM_BLOCKS; 482 483 /* Find blocks per physical TC. Use factor to avoid floating 484 * arithmethic. 485 */ 486 num_tcs_in_port = 0; 487 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) 488 if (((port_params[port_id].active_phys_tcs >> 489 tc) & 0x1) == 1) 490 num_tcs_in_port++; 491 492 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / 493 (num_tcs_in_port * BTB_PURE_LB_FACTOR + 494 BTB_PURE_LB_RATIO); 495 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS, 496 pure_lb_blocks / BTB_PURE_LB_FACTOR); 497 phys_blocks = (usable_blocks - pure_lb_blocks) / 498 num_tcs_in_port; 499 500 /* Init physical TCs */ 501 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) { 502 if (((port_params[port_id].active_phys_tcs >> 503 tc) & 0x1) == 1) { 504 ext_voq = 505 qed_get_ext_voq(p_hwfn, 506 port_id, 507 tc, 508 max_phys_tcs_per_port); 509 STORE_RT_REG(p_hwfn, 510 PBF_BTB_GUARANTEED_RT_OFFSET 511 (ext_voq), phys_blocks); 512 } 513 } 514 515 /* Init pure LB TC */ 516 ext_voq = qed_get_ext_voq(p_hwfn, 517 port_id, 518 PURE_LB_TC, max_phys_tcs_per_port); 519 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), 520 pure_lb_blocks); 521 } 522 } 523 524 /* Prepare runtime init values for the specified RL. 525 * Set max link speed (100Gbps) per rate limiter. 526 * Return -1 on error. 527 */ 528 static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn) 529 { 530 u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) | 531 (u32)QM_RL_CRD_REG_SIGN_BIT; 532 u32 inc_val; 533 u16 rl_id; 534 535 /* Go over all global RLs */ 536 for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) { 537 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED); 538 539 STORE_RT_REG(p_hwfn, 540 QM_REG_RLGLBLCRD_RT_OFFSET + rl_id, 541 (u32)QM_RL_CRD_REG_SIGN_BIT); 542 STORE_RT_REG(p_hwfn, 543 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id, 544 upper_bound); 545 STORE_RT_REG(p_hwfn, 546 QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val); 547 } 548 549 return 0; 550 } 551 552 /* Returns the upper bound for the specified Vport RL parameters. 553 * link_speed is in Mbps. 554 * Returns 0 in case of error. 555 */ 556 static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type, 557 u32 link_speed) 558 { 559 switch (vport_rl_type) { 560 case QM_RL_TYPE_NORMAL: 561 return QM_INITIAL_VOQ_BYTE_CRD; 562 case QM_RL_TYPE_QCN: 563 return QM_GLOBAL_RL_UPPER_BOUND(link_speed); 564 default: 565 return 0; 566 } 567 } 568 569 /* Prepare VPORT RL runtime init values. 570 * Return -1 on error. 571 */ 572 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn, 573 u16 start_rl, 574 u16 num_rls, 575 u32 link_speed, 576 struct init_qm_rl_params *rl_params) 577 { 578 u16 i, rl_id; 579 580 if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) { 581 DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n"); 582 return -1; 583 } 584 585 /* Go over all PF VPORTs */ 586 for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) { 587 u32 upper_bound, inc_val; 588 589 upper_bound = 590 qed_get_vport_rl_upper_bound((enum init_qm_rl_type) 591 rl_params[i].vport_rl_type, 592 link_speed); 593 594 inc_val = 595 QM_RL_INC_VAL(rl_params[i].vport_rl ? 596 rl_params[i].vport_rl : link_speed); 597 if (inc_val > upper_bound) { 598 DP_NOTICE(p_hwfn, 599 "Invalid RL rate - limit configuration\n"); 600 return -1; 601 } 602 603 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id, 604 (u32)QM_RL_CRD_REG_SIGN_BIT); 605 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id, 606 upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT); 607 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, 608 inc_val); 609 } 610 611 return 0; 612 } 613 614 /* Prepare Tx PQ mapping runtime init values for the specified PF */ 615 static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn, 616 struct qed_ptt *p_ptt, 617 struct qed_qm_pf_rt_init_params *p_params, 618 u32 base_mem_addr_4kb) 619 { 620 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 }; 621 struct init_qm_vport_params *vport_params = p_params->vport_params; 622 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE; 623 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group; 624 struct init_qm_pq_params *pq_params = p_params->pq_params; 625 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb; 626 627 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; 628 629 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE; 630 last_pq_group = (p_params->start_pq + num_pqs - 1) / 631 QM_PF_QUEUE_GROUP_SIZE; 632 633 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids); 634 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids); 635 mem_addr_4kb = base_mem_addr_4kb; 636 637 /* Set mapping from PQ group to PF */ 638 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++) 639 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, 640 (u32)(p_params->pf_id)); 641 642 /* Set PQ sizes */ 643 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, 644 QM_PQ_SIZE_256B(p_params->num_pf_cids)); 645 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, 646 QM_PQ_SIZE_256B(p_params->num_vf_cids)); 647 648 /* Go over all Tx PQs */ 649 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) { 650 u16 *p_first_tx_pq_id, vport_id_in_pf; 651 struct qm_rf_pq_map tx_pq_map; 652 u8 tc_id = pq_params[i].tc_id; 653 bool is_vf_pq; 654 u8 ext_voq; 655 656 ext_voq = qed_get_ext_voq(p_hwfn, 657 pq_params[i].port_id, 658 tc_id, 659 p_params->max_phys_tcs_per_port); 660 is_vf_pq = (i >= p_params->num_pf_pqs); 661 662 /* Update first Tx PQ of VPORT/TC */ 663 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport; 664 p_first_tx_pq_id = 665 &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id]; 666 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) { 667 u32 map_val = 668 (ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) | 669 (p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT); 670 671 /* Create new VP PQ */ 672 *p_first_tx_pq_id = pq_id; 673 674 /* Map VP PQ to VOQ and PF */ 675 STORE_RT_REG(p_hwfn, 676 QM_REG_WFQVPMAP_RT_OFFSET + 677 *p_first_tx_pq_id, 678 map_val); 679 } 680 681 /* Prepare PQ map entry */ 682 QM_INIT_TX_PQ_MAP(p_hwfn, 683 tx_pq_map, 684 pq_id, 685 *p_first_tx_pq_id, 686 pq_params[i].rl_valid, 687 pq_params[i].rl_id, 688 ext_voq, pq_params[i].wrr_group); 689 690 /* Set PQ base address */ 691 STORE_RT_REG(p_hwfn, 692 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, 693 mem_addr_4kb); 694 695 /* Clear PQ pointer table entry (64 bit) */ 696 if (p_params->is_pf_loading) 697 for (j = 0; j < 2; j++) 698 STORE_RT_REG(p_hwfn, 699 QM_REG_PTRTBLTX_RT_OFFSET + 700 (pq_id * 2) + j, 0); 701 702 /* Write PQ info to RAM */ 703 if (WRITE_PQ_INFO_TO_RAM != 0) { 704 u32 pq_info = 0; 705 706 pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id, 707 p_params->pf_id, 708 tc_id, 709 pq_params[i].port_id, 710 pq_params[i].rl_valid, 711 pq_params[i].rl_id); 712 qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), 713 pq_info); 714 } 715 716 /* If VF PQ, add indication to PQ VF mask */ 717 if (is_vf_pq) { 718 tx_pq_vf_mask[pq_id / 719 QM_PF_QUEUE_GROUP_SIZE] |= 720 BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE)); 721 mem_addr_4kb += vport_pq_mem_4kb; 722 } else { 723 mem_addr_4kb += pq_mem_4kb; 724 } 725 } 726 727 /* Store Tx PQ VF mask to size select register */ 728 for (i = 0; i < num_tx_pq_vf_masks; i++) 729 if (tx_pq_vf_mask[i]) 730 STORE_RT_REG(p_hwfn, 731 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, 732 tx_pq_vf_mask[i]); 733 734 return 0; 735 } 736 737 /* Prepare Other PQ mapping runtime init values for the specified PF */ 738 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn, 739 u8 pf_id, 740 bool is_pf_loading, 741 u32 num_pf_cids, 742 u32 num_tids, u32 base_mem_addr_4kb) 743 { 744 u32 pq_size, pq_mem_4kb, mem_addr_4kb; 745 u16 i, j, pq_id, pq_group; 746 747 /* A single other PQ group is used in each PF, where PQ group i is used 748 * in PF i. 749 */ 750 pq_group = pf_id; 751 pq_size = num_pf_cids + num_tids; 752 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size); 753 mem_addr_4kb = base_mem_addr_4kb; 754 755 /* Map PQ group to PF */ 756 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, 757 (u32)(pf_id)); 758 759 /* Set PQ sizes */ 760 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, 761 QM_PQ_SIZE_256B(pq_size)); 762 763 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; 764 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) { 765 /* Set PQ base address */ 766 STORE_RT_REG(p_hwfn, 767 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, 768 mem_addr_4kb); 769 770 /* Clear PQ pointer table entry */ 771 if (is_pf_loading) 772 for (j = 0; j < 2; j++) 773 STORE_RT_REG(p_hwfn, 774 QM_REG_PTRTBLOTHER_RT_OFFSET + 775 (pq_id * 2) + j, 0); 776 777 mem_addr_4kb += pq_mem_4kb; 778 } 779 } 780 781 /* Prepare PF WFQ runtime init values for the specified PF. 782 * Return -1 on error. 783 */ 784 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn, 785 struct qed_qm_pf_rt_init_params *p_params) 786 { 787 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; 788 struct init_qm_pq_params *pq_params = p_params->pq_params; 789 u32 inc_val, crd_reg_offset; 790 u8 ext_voq; 791 u16 i; 792 793 inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq); 794 if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) { 795 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); 796 return -1; 797 } 798 799 for (i = 0; i < num_tx_pqs; i++) { 800 ext_voq = qed_get_ext_voq(p_hwfn, 801 pq_params[i].port_id, 802 pq_params[i].tc_id, 803 p_params->max_phys_tcs_per_port); 804 crd_reg_offset = 805 (p_params->pf_id < MAX_NUM_PFS_BB ? 806 QM_REG_WFQPFCRD_RT_OFFSET : 807 QM_REG_WFQPFCRD_MSB_RT_OFFSET) + 808 ext_voq * MAX_NUM_PFS_BB + 809 (p_params->pf_id % MAX_NUM_PFS_BB); 810 OVERWRITE_RT_REG(p_hwfn, 811 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT); 812 } 813 814 STORE_RT_REG(p_hwfn, 815 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id, 816 QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT); 817 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id, 818 inc_val); 819 820 return 0; 821 } 822 823 /* Prepare PF RL runtime init values for the specified PF. 824 * Return -1 on error. 825 */ 826 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl) 827 { 828 u32 inc_val = QM_RL_INC_VAL(pf_rl); 829 830 if (inc_val > QM_PF_RL_MAX_INC_VAL) { 831 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); 832 return -1; 833 } 834 835 STORE_RT_REG(p_hwfn, 836 QM_REG_RLPFCRD_RT_OFFSET + pf_id, 837 (u32)QM_RL_CRD_REG_SIGN_BIT); 838 STORE_RT_REG(p_hwfn, 839 QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, 840 QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT); 841 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val); 842 843 return 0; 844 } 845 846 /* Prepare VPORT WFQ runtime init values for the specified VPORTs. 847 * Return -1 on error. 848 */ 849 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn, 850 u16 num_vports, 851 struct init_qm_vport_params *vport_params) 852 { 853 u16 vport_pq_id, wfq, i; 854 u32 inc_val; 855 u8 tc; 856 857 /* Go over all PF VPORTs */ 858 for (i = 0; i < num_vports; i++) { 859 /* Each VPORT can have several VPORT PQ IDs for various TCs */ 860 for (tc = 0; tc < NUM_OF_TCS; tc++) { 861 /* Check if VPORT/TC is valid */ 862 vport_pq_id = vport_params[i].first_tx_pq_id[tc]; 863 if (vport_pq_id == QM_INVALID_PQ_ID) 864 continue; 865 866 /* Find WFQ weight (per VPORT or per VPORT+TC) */ 867 wfq = vport_params[i].wfq; 868 wfq = wfq ? wfq : vport_params[i].tc_wfq[tc]; 869 inc_val = QM_VP_WFQ_INC_VAL(wfq); 870 if (inc_val > QM_VP_WFQ_MAX_INC_VAL) { 871 DP_NOTICE(p_hwfn, 872 "Invalid VPORT WFQ weight configuration\n"); 873 return -1; 874 } 875 876 /* Config registers */ 877 STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + 878 vport_pq_id, 879 (u32)QM_WFQ_CRD_REG_SIGN_BIT); 880 STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET + 881 vport_pq_id, 882 inc_val | QM_WFQ_CRD_REG_SIGN_BIT); 883 STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + 884 vport_pq_id, inc_val); 885 } 886 } 887 888 return 0; 889 } 890 891 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn, 892 struct qed_ptt *p_ptt) 893 { 894 u32 reg_val, i; 895 896 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; 897 i++) { 898 udelay(QM_STOP_CMD_POLL_PERIOD_US); 899 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY); 900 } 901 902 /* Check if timeout while waiting for SDM command ready */ 903 if (i == QM_STOP_CMD_MAX_POLL_COUNT) { 904 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 905 "Timeout when waiting for QM SDM command ready signal\n"); 906 return false; 907 } 908 909 return true; 910 } 911 912 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn, 913 struct qed_ptt *p_ptt, 914 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb) 915 { 916 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt)) 917 return false; 918 919 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr); 920 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb); 921 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb); 922 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1); 923 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0); 924 925 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt); 926 } 927 928 /******************** INTERFACE IMPLEMENTATION *********************/ 929 930 u32 qed_qm_pf_mem_size(u32 num_pf_cids, 931 u32 num_vf_cids, 932 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs) 933 { 934 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs + 935 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs + 936 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF; 937 } 938 939 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn, 940 struct qed_qm_common_rt_init_params *p_params) 941 { 942 u32 mask = 0; 943 944 /* Init AFullOprtnstcCrdMask */ 945 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ, 946 QM_OPPOR_LINE_VOQ_DEF); 947 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN); 948 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, 949 p_params->pf_wfq_en ? 1 : 0); 950 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, 951 p_params->vport_wfq_en ? 1 : 0); 952 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, 953 p_params->pf_rl_en ? 1 : 0); 954 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL, 955 p_params->global_rl_en ? 1 : 0); 956 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF); 957 SET_FIELD(mask, 958 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF); 959 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask); 960 961 /* Enable/disable PF RL */ 962 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en); 963 964 /* Enable/disable PF WFQ */ 965 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en); 966 967 /* Enable/disable global RL */ 968 qed_enable_global_rl(p_hwfn, p_params->global_rl_en); 969 970 /* Enable/disable VPORT WFQ */ 971 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en); 972 973 /* Init PBF CMDQ line credit */ 974 qed_cmdq_lines_rt_init(p_hwfn, 975 p_params->max_ports_per_engine, 976 p_params->max_phys_tcs_per_port, 977 p_params->port_params); 978 979 /* Init BTB blocks in PBF */ 980 qed_btb_blocks_rt_init(p_hwfn, 981 p_params->max_ports_per_engine, 982 p_params->max_phys_tcs_per_port, 983 p_params->port_params); 984 985 qed_global_rl_rt_init(p_hwfn); 986 987 return 0; 988 } 989 990 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn, 991 struct qed_ptt *p_ptt, 992 struct qed_qm_pf_rt_init_params *p_params) 993 { 994 struct init_qm_vport_params *vport_params = p_params->vport_params; 995 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids + 996 p_params->num_tids) * 997 QM_OTHER_PQS_PER_PF; 998 u16 i; 999 u8 tc; 1000 1001 /* Clear first Tx PQ ID array for each VPORT */ 1002 for (i = 0; i < p_params->num_vports; i++) 1003 for (tc = 0; tc < NUM_OF_TCS; tc++) 1004 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID; 1005 1006 /* Map Other PQs (if any) */ 1007 qed_other_pq_map_rt_init(p_hwfn, 1008 p_params->pf_id, 1009 p_params->is_pf_loading, p_params->num_pf_cids, 1010 p_params->num_tids, 0); 1011 1012 /* Map Tx PQs */ 1013 if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb)) 1014 return -1; 1015 1016 /* Init PF WFQ */ 1017 if (p_params->pf_wfq) 1018 if (qed_pf_wfq_rt_init(p_hwfn, p_params)) 1019 return -1; 1020 1021 /* Init PF RL */ 1022 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl)) 1023 return -1; 1024 1025 /* Init VPORT WFQ */ 1026 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params)) 1027 return -1; 1028 1029 /* Set VPORT RL */ 1030 if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl, 1031 p_params->num_rls, p_params->link_speed, 1032 p_params->rl_params)) 1033 return -1; 1034 1035 return 0; 1036 } 1037 1038 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn, 1039 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq) 1040 { 1041 u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq); 1042 1043 if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) { 1044 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); 1045 return -1; 1046 } 1047 1048 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val); 1049 1050 return 0; 1051 } 1052 1053 int qed_init_pf_rl(struct qed_hwfn *p_hwfn, 1054 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl) 1055 { 1056 u32 inc_val = QM_RL_INC_VAL(pf_rl); 1057 1058 if (inc_val > QM_PF_RL_MAX_INC_VAL) { 1059 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); 1060 return -1; 1061 } 1062 1063 qed_wr(p_hwfn, 1064 p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); 1065 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val); 1066 1067 return 0; 1068 } 1069 1070 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn, 1071 struct qed_ptt *p_ptt, 1072 u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq) 1073 { 1074 int result = 0; 1075 u16 vport_pq_id; 1076 u8 tc; 1077 1078 for (tc = 0; tc < NUM_OF_TCS && !result; tc++) { 1079 vport_pq_id = first_tx_pq_id[tc]; 1080 if (vport_pq_id != QM_INVALID_PQ_ID) 1081 result = qed_init_vport_tc_wfq(p_hwfn, p_ptt, 1082 vport_pq_id, wfq); 1083 } 1084 1085 return result; 1086 } 1087 1088 int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 1089 u16 first_tx_pq_id, u16 wfq) 1090 { 1091 u32 inc_val; 1092 1093 if (first_tx_pq_id == QM_INVALID_PQ_ID) 1094 return -1; 1095 1096 inc_val = QM_VP_WFQ_INC_VAL(wfq); 1097 if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) { 1098 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n"); 1099 return -1; 1100 } 1101 1102 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4, 1103 (u32)QM_WFQ_CRD_REG_SIGN_BIT); 1104 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4, 1105 inc_val | QM_WFQ_CRD_REG_SIGN_BIT); 1106 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4, 1107 inc_val); 1108 1109 return 0; 1110 } 1111 1112 int qed_init_global_rl(struct qed_hwfn *p_hwfn, 1113 struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit, 1114 enum init_qm_rl_type vport_rl_type) 1115 { 1116 u32 inc_val, upper_bound; 1117 1118 upper_bound = 1119 (vport_rl_type == 1120 QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) : 1121 QM_INITIAL_VOQ_BYTE_CRD; 1122 inc_val = QM_RL_INC_VAL(rate_limit); 1123 if (inc_val > upper_bound) { 1124 DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n"); 1125 return -1; 1126 } 1127 1128 qed_wr(p_hwfn, p_ptt, 1129 QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); 1130 qed_wr(p_hwfn, 1131 p_ptt, 1132 QM_REG_RLGLBLUPPERBOUND + rl_id * 4, 1133 upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT); 1134 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val); 1135 1136 return 0; 1137 } 1138 1139 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn, 1140 struct qed_ptt *p_ptt, 1141 bool is_release_cmd, 1142 bool is_tx_pq, u16 start_pq, u16 num_pqs) 1143 { 1144 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 }; 1145 u32 pq_mask = 0, last_pq, pq_id; 1146 1147 last_pq = start_pq + num_pqs - 1; 1148 1149 /* Set command's PQ type */ 1150 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1); 1151 1152 /* Go over requested PQs */ 1153 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) { 1154 /* Set PQ bit in mask (stop command only) */ 1155 if (!is_release_cmd) 1156 pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH)); 1157 1158 /* If last PQ or end of PQ mask, write command */ 1159 if ((pq_id == last_pq) || 1160 (pq_id % QM_STOP_PQ_MASK_WIDTH == 1161 (QM_STOP_PQ_MASK_WIDTH - 1))) { 1162 QM_CMD_SET_FIELD(cmd_arr, 1163 QM_STOP_CMD, PAUSE_MASK, pq_mask); 1164 QM_CMD_SET_FIELD(cmd_arr, 1165 QM_STOP_CMD, 1166 GROUP_ID, 1167 pq_id / QM_STOP_PQ_MASK_WIDTH); 1168 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, 1169 cmd_arr[0], cmd_arr[1])) 1170 return false; 1171 pq_mask = 0; 1172 } 1173 } 1174 1175 return true; 1176 } 1177 1178 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \ 1179 do { \ 1180 typeof(var) *__p_var = &(var); \ 1181 typeof(offset) __offset = offset; \ 1182 *__p_var = (*__p_var & ~BIT(__offset)) | \ 1183 ((enable) ? BIT(__offset) : 0); \ 1184 } while (0) 1185 1186 #define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910 1187 #define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910 1188 1189 #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \ 1190 do { \ 1191 u32 i; \ 1192 \ 1193 for (i = 0; i < (arr_size); i++) \ 1194 qed_wr(dev, ptt, \ 1195 ((addr) + (4 * i)), \ 1196 ((u32 *)&(arr))[i]); \ 1197 } while (0) 1198 1199 /** 1200 * qed_dmae_to_grc() - Internal function for writing from host to 1201 * wide-bus registers (split registers are not supported yet). 1202 * 1203 * @p_hwfn: HW device data. 1204 * @p_ptt: PTT window used for writing the registers. 1205 * @p_data: Pointer to source data. 1206 * @addr: Destination register address. 1207 * @len_in_dwords: Data length in dwords (u32). 1208 * 1209 * Return: Length of the written data in dwords (u32) or -1 on invalid 1210 * input. 1211 */ 1212 static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 1213 __le32 *p_data, u32 addr, u32 len_in_dwords) 1214 { 1215 struct qed_dmae_params params = { 0 }; 1216 u32 *data_cpu; 1217 int rc; 1218 1219 if (!p_data) 1220 return -1; 1221 1222 /* Set DMAE params */ 1223 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1); 1224 1225 /* Execute DMAE command */ 1226 rc = qed_dmae_host2grc(p_hwfn, p_ptt, 1227 (u64)(uintptr_t)(p_data), 1228 addr, len_in_dwords, ¶ms); 1229 1230 /* If not read using DMAE, read using GRC */ 1231 if (rc) { 1232 DP_VERBOSE(p_hwfn, 1233 QED_MSG_DEBUG, 1234 "Failed writing to chip using DMAE, using GRC instead\n"); 1235 1236 /* Swap to CPU byteorder and write to registers using GRC */ 1237 data_cpu = (__force u32 *)p_data; 1238 le32_to_cpu_array(data_cpu, len_in_dwords); 1239 1240 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords); 1241 cpu_to_le32_array(data_cpu, len_in_dwords); 1242 } 1243 1244 return len_in_dwords; 1245 } 1246 1247 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn, 1248 struct qed_ptt *p_ptt, u16 dest_port) 1249 { 1250 /* Update PRS register */ 1251 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port); 1252 1253 /* Update NIG register */ 1254 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port); 1255 1256 /* Update PBF register */ 1257 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port); 1258 } 1259 1260 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn, 1261 struct qed_ptt *p_ptt, bool vxlan_enable) 1262 { 1263 u32 reg_val; 1264 u8 shift; 1265 1266 /* Update PRS register */ 1267 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1268 SET_FIELD(reg_val, 1269 PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable); 1270 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1271 if (reg_val) { 1272 reg_val = 1273 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0); 1274 1275 /* Update output only if tunnel blocks not included. */ 1276 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1277 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0, 1278 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1279 } 1280 1281 /* Update NIG register */ 1282 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); 1283 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT; 1284 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); 1285 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); 1286 1287 /* Update DORQ register */ 1288 qed_wr(p_hwfn, 1289 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0); 1290 } 1291 1292 void qed_set_gre_enable(struct qed_hwfn *p_hwfn, 1293 struct qed_ptt *p_ptt, 1294 bool eth_gre_enable, bool ip_gre_enable) 1295 { 1296 u32 reg_val; 1297 u8 shift; 1298 1299 /* Update PRS register */ 1300 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1301 SET_FIELD(reg_val, 1302 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE, 1303 eth_gre_enable); 1304 SET_FIELD(reg_val, 1305 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE, 1306 ip_gre_enable); 1307 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1308 if (reg_val) { 1309 reg_val = 1310 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0); 1311 1312 /* Update output only if tunnel blocks not included. */ 1313 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1314 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0, 1315 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1316 } 1317 1318 /* Update NIG register */ 1319 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); 1320 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT; 1321 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); 1322 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT; 1323 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); 1324 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); 1325 1326 /* Update DORQ registers */ 1327 qed_wr(p_hwfn, 1328 p_ptt, 1329 DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0); 1330 qed_wr(p_hwfn, 1331 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0); 1332 } 1333 1334 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn, 1335 struct qed_ptt *p_ptt, u16 dest_port) 1336 { 1337 /* Update PRS register */ 1338 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port); 1339 1340 /* Update NIG register */ 1341 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port); 1342 1343 /* Update PBF register */ 1344 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port); 1345 } 1346 1347 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn, 1348 struct qed_ptt *p_ptt, 1349 bool eth_geneve_enable, bool ip_geneve_enable) 1350 { 1351 u32 reg_val; 1352 1353 /* Update PRS register */ 1354 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); 1355 SET_FIELD(reg_val, 1356 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE, 1357 eth_geneve_enable); 1358 SET_FIELD(reg_val, 1359 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE, 1360 ip_geneve_enable); 1361 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); 1362 if (reg_val) { 1363 reg_val = 1364 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0); 1365 1366 /* Update output only if tunnel blocks not included. */ 1367 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) 1368 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0, 1369 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); 1370 } 1371 1372 /* Update NIG register */ 1373 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, 1374 eth_geneve_enable ? 1 : 0); 1375 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0); 1376 1377 /* EDPM with geneve tunnel not supported in BB */ 1378 if (QED_IS_BB_B0(p_hwfn->cdev)) 1379 return; 1380 1381 /* Update DORQ registers */ 1382 qed_wr(p_hwfn, 1383 p_ptt, 1384 DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2, 1385 eth_geneve_enable ? 1 : 0); 1386 qed_wr(p_hwfn, 1387 p_ptt, 1388 DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2, 1389 ip_geneve_enable ? 1 : 0); 1390 } 1391 1392 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3 1393 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT 0xC8DAB910 1394 1395 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn, 1396 struct qed_ptt *p_ptt, bool enable) 1397 { 1398 u32 reg_val, cfg_mask; 1399 1400 /* read PRS config register */ 1401 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO); 1402 1403 /* set VXLAN_NO_L2_ENABLE mask */ 1404 cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET); 1405 1406 if (enable) { 1407 /* set VXLAN_NO_L2_ENABLE flag */ 1408 reg_val |= cfg_mask; 1409 1410 /* update PRS FIC register */ 1411 qed_wr(p_hwfn, 1412 p_ptt, 1413 PRS_REG_OUTPUT_FORMAT_4_0, 1414 (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT); 1415 } else { 1416 /* clear VXLAN_NO_L2_ENABLE flag */ 1417 reg_val &= ~cfg_mask; 1418 } 1419 1420 /* write PRS config register */ 1421 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val); 1422 } 1423 1424 #define T_ETH_PACKET_ACTION_GFT_EVENTID 23 1425 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272 1426 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25 1427 #define PARSER_ETH_CONN_CM_HDR 0 1428 #define CAM_LINE_SIZE sizeof(u32) 1429 #define RAM_LINE_SIZE sizeof(u64) 1430 #define REG_SIZE sizeof(u32) 1431 1432 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id) 1433 { 1434 struct regpair ram_line = { 0 }; 1435 1436 /* Disable gft search for PF */ 1437 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0); 1438 1439 /* Clean ram & cam for next gft session */ 1440 1441 /* Zero camline */ 1442 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0); 1443 1444 /* Zero ramline */ 1445 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, 1446 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 1447 sizeof(ram_line) / REG_SIZE); 1448 } 1449 1450 void qed_gft_config(struct qed_hwfn *p_hwfn, 1451 struct qed_ptt *p_ptt, 1452 u16 pf_id, 1453 bool tcp, 1454 bool udp, 1455 bool ipv4, bool ipv6, enum gft_profile_type profile_type) 1456 { 1457 struct regpair ram_line; 1458 u32 search_non_ip_as_gft; 1459 u32 reg_val, cam_line; 1460 u32 lo = 0, hi = 0; 1461 1462 if (!ipv6 && !ipv4) 1463 DP_NOTICE(p_hwfn, 1464 "gft_config: must accept at least on of - ipv4 or ipv6'\n"); 1465 if (!tcp && !udp) 1466 DP_NOTICE(p_hwfn, 1467 "gft_config: must accept at least on of - udp or tcp\n"); 1468 if (profile_type >= MAX_GFT_PROFILE_TYPE) 1469 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n"); 1470 1471 /* Set RFS event ID to be awakened i Tstorm By Prs */ 1472 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << 1473 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT; 1474 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT; 1475 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val); 1476 1477 /* Do not load context only cid in PRS on match. */ 1478 qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); 1479 1480 /* Do not use tenant ID exist bit for gft search */ 1481 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0); 1482 1483 /* Set Cam */ 1484 cam_line = 0; 1485 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1); 1486 1487 /* Filters are per PF!! */ 1488 SET_FIELD(cam_line, 1489 GFT_CAM_LINE_MAPPED_PF_ID_MASK, 1490 GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK); 1491 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id); 1492 1493 if (!(tcp && udp)) { 1494 SET_FIELD(cam_line, 1495 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, 1496 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK); 1497 if (tcp) 1498 SET_FIELD(cam_line, 1499 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, 1500 GFT_PROFILE_TCP_PROTOCOL); 1501 else 1502 SET_FIELD(cam_line, 1503 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, 1504 GFT_PROFILE_UDP_PROTOCOL); 1505 } 1506 1507 if (!(ipv4 && ipv6)) { 1508 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1); 1509 if (ipv4) 1510 SET_FIELD(cam_line, 1511 GFT_CAM_LINE_MAPPED_IP_VERSION, 1512 GFT_PROFILE_IPV4); 1513 else 1514 SET_FIELD(cam_line, 1515 GFT_CAM_LINE_MAPPED_IP_VERSION, 1516 GFT_PROFILE_IPV6); 1517 } 1518 1519 /* Write characteristics to cam */ 1520 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 1521 cam_line); 1522 cam_line = 1523 qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id); 1524 1525 /* Write line to RAM - compare to filter 4 tuple */ 1526 1527 /* Search no IP as GFT */ 1528 search_non_ip_as_gft = 0; 1529 1530 /* Tunnel type */ 1531 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1); 1532 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1); 1533 1534 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) { 1535 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1); 1536 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1); 1537 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); 1538 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); 1539 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1); 1540 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1); 1541 } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) { 1542 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); 1543 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); 1544 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1); 1545 } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) { 1546 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1); 1547 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); 1548 } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) { 1549 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1); 1550 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); 1551 } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) { 1552 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1); 1553 1554 /* Allow tunneled traffic without inner IP */ 1555 search_non_ip_as_gft = 1; 1556 } 1557 1558 ram_line.lo = cpu_to_le32(lo); 1559 ram_line.hi = cpu_to_le32(hi); 1560 1561 qed_wr(p_hwfn, 1562 p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft); 1563 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, 1564 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 1565 sizeof(ram_line) / REG_SIZE); 1566 1567 /* Set default profile so that no filter match will happen */ 1568 ram_line.lo = cpu_to_le32(0xffffffff); 1569 ram_line.hi = cpu_to_le32(0x3ff); 1570 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, 1571 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * 1572 PRS_GFT_CAM_LINES_NO_MATCH, 1573 sizeof(ram_line) / REG_SIZE); 1574 1575 /* Enable gft search */ 1576 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1); 1577 } 1578 1579 DECLARE_CRC8_TABLE(cdu_crc8_table); 1580 1581 /* Calculate and return CDU validation byte per connection type/region/cid */ 1582 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid) 1583 { 1584 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG; 1585 u8 crc, validation_byte = 0; 1586 static u8 crc8_table_valid; /* automatically initialized to 0 */ 1587 u32 validation_string = 0; 1588 __be32 data_to_crc; 1589 1590 if (!crc8_table_valid) { 1591 crc8_populate_msb(cdu_crc8_table, 0x07); 1592 crc8_table_valid = 1; 1593 } 1594 1595 /* The CRC is calculated on the String-to-compress: 1596 * [31:8] = {CID[31:20],CID[11:0]} 1597 * [7:4] = Region 1598 * [3:0] = Type 1599 */ 1600 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1) 1601 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8); 1602 1603 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1) 1604 validation_string |= ((region & 0xF) << 4); 1605 1606 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1) 1607 validation_string |= (conn_type & 0xF); 1608 1609 /* Convert to big-endian and calculate CRC8 */ 1610 data_to_crc = cpu_to_be32(validation_string); 1611 crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), 1612 CRC8_INIT_VALUE); 1613 1614 /* The validation byte [7:0] is composed: 1615 * for type A validation 1616 * [7] = active configuration bit 1617 * [6:0] = crc[6:0] 1618 * 1619 * for type B validation 1620 * [7] = active configuration bit 1621 * [6:3] = connection_type[3:0] 1622 * [2:0] = crc[2:0] 1623 */ 1624 validation_byte |= 1625 ((validation_cfg >> 1626 CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7; 1627 1628 if ((validation_cfg >> 1629 CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1) 1630 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7); 1631 else 1632 validation_byte |= crc & 0x7F; 1633 1634 return validation_byte; 1635 } 1636 1637 /* Calcualte and set validation bytes for session context */ 1638 void qed_calc_session_ctx_validation(void *p_ctx_mem, 1639 u16 ctx_size, u8 ctx_type, u32 cid) 1640 { 1641 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; 1642 1643 p_ctx = (u8 * const)p_ctx_mem; 1644 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; 1645 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; 1646 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; 1647 1648 memset(p_ctx, 0, ctx_size); 1649 1650 *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid); 1651 *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid); 1652 *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid); 1653 } 1654 1655 /* Calcualte and set validation bytes for task context */ 1656 void qed_calc_task_ctx_validation(void *p_ctx_mem, 1657 u16 ctx_size, u8 ctx_type, u32 tid) 1658 { 1659 u8 *p_ctx, *region1_val_ptr; 1660 1661 p_ctx = (u8 * const)p_ctx_mem; 1662 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; 1663 1664 memset(p_ctx, 0, ctx_size); 1665 1666 *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid); 1667 } 1668 1669 /* Memset session context to 0 while preserving validation bytes */ 1670 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) 1671 { 1672 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; 1673 u8 x_val, t_val, u_val; 1674 1675 p_ctx = (u8 * const)p_ctx_mem; 1676 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; 1677 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; 1678 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; 1679 1680 x_val = *x_val_ptr; 1681 t_val = *t_val_ptr; 1682 u_val = *u_val_ptr; 1683 1684 memset(p_ctx, 0, ctx_size); 1685 1686 *x_val_ptr = x_val; 1687 *t_val_ptr = t_val; 1688 *u_val_ptr = u_val; 1689 } 1690 1691 /* Memset task context to 0 while preserving validation bytes */ 1692 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) 1693 { 1694 u8 *p_ctx, *region1_val_ptr; 1695 u8 region1_val; 1696 1697 p_ctx = (u8 * const)p_ctx_mem; 1698 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; 1699 1700 region1_val = *region1_val_ptr; 1701 1702 memset(p_ctx, 0, ctx_size); 1703 1704 *region1_val_ptr = region1_val; 1705 } 1706 1707 /* Enable and configure context validation */ 1708 void qed_enable_context_validation(struct qed_hwfn *p_hwfn, 1709 struct qed_ptt *p_ptt) 1710 { 1711 u32 ctx_validation; 1712 1713 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */ 1714 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24; 1715 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation); 1716 1717 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */ 1718 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; 1719 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation); 1720 1721 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */ 1722 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; 1723 qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation); 1724 } 1725 1726 const char *qed_get_protocol_type_str(u32 protocol_type) 1727 { 1728 if (protocol_type >= ARRAY_SIZE(s_protocol_types)) 1729 return "Invalid protocol type"; 1730 1731 return s_protocol_types[protocol_type]; 1732 } 1733 1734 const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id) 1735 { 1736 const char *ramrod_cmd_id_str; 1737 1738 if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids)) 1739 return "Invalid protocol type"; 1740 1741 if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0])) 1742 return "Invalid Ramrod command ID"; 1743 1744 ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id]; 1745 1746 if (!ramrod_cmd_id_str) 1747 return "Invalid Ramrod command ID"; 1748 1749 return ramrod_cmd_id_str; 1750 } 1751 1752 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) 1753 { 1754 switch (storm_id) { 1755 case 0: 1756 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1757 TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1758 case 1: 1759 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1760 MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1761 case 2: 1762 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1763 USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1764 case 3: 1765 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1766 XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1767 case 4: 1768 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1769 YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1770 case 5: 1771 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1772 PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); 1773 1774 default: 1775 return 0; 1776 } 1777 } 1778 1779 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn, 1780 struct qed_ptt *p_ptt, 1781 u8 assert_level[NUM_STORMS]) 1782 { 1783 u8 storm_id; 1784 1785 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { 1786 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id); 1787 1788 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]); 1789 } 1790 } 1791 1792 #define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4) 1793 #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4) 1794 1795 static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) 1796 { 1797 switch (storm_id) { 1798 case 0: 1799 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1800 TSTORM_OVERLAY_BUF_ADDR_OFFSET; 1801 case 1: 1802 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1803 MSTORM_OVERLAY_BUF_ADDR_OFFSET; 1804 case 2: 1805 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1806 USTORM_OVERLAY_BUF_ADDR_OFFSET; 1807 case 3: 1808 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1809 XSTORM_OVERLAY_BUF_ADDR_OFFSET; 1810 case 4: 1811 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1812 YSTORM_OVERLAY_BUF_ADDR_OFFSET; 1813 case 5: 1814 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 1815 PSTORM_OVERLAY_BUF_ADDR_OFFSET; 1816 1817 default: 1818 return 0; 1819 } 1820 } 1821 1822 struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn, 1823 const u32 * const 1824 fw_overlay_in_buf, 1825 u32 buf_size_in_bytes) 1826 { 1827 u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0; 1828 struct phys_mem_desc *allocated_mem; 1829 1830 if (!buf_size) 1831 return NULL; 1832 1833 allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc), 1834 GFP_KERNEL); 1835 if (!allocated_mem) 1836 return NULL; 1837 1838 memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc)); 1839 1840 /* For each Storm, set physical address in RAM */ 1841 while (buf_offset < buf_size) { 1842 struct phys_mem_desc *storm_mem_desc; 1843 struct fw_overlay_buf_hdr *hdr; 1844 u32 storm_buf_size; 1845 u8 storm_id; 1846 1847 hdr = 1848 (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset]; 1849 storm_buf_size = GET_FIELD(hdr->data, 1850 FW_OVERLAY_BUF_HDR_BUF_SIZE); 1851 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID); 1852 if (storm_id >= NUM_STORMS) 1853 break; 1854 storm_mem_desc = allocated_mem + storm_id; 1855 storm_mem_desc->size = storm_buf_size * sizeof(u32); 1856 1857 /* Allocate physical memory for Storm's overlays buffer */ 1858 storm_mem_desc->virt_addr = 1859 dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 1860 storm_mem_desc->size, 1861 &storm_mem_desc->phys_addr, GFP_KERNEL); 1862 if (!storm_mem_desc->virt_addr) 1863 break; 1864 1865 /* Skip overlays buffer header */ 1866 buf_offset += OVERLAY_HDR_SIZE_DWORDS; 1867 1868 /* Copy Storm's overlays buffer to allocated memory */ 1869 memcpy(storm_mem_desc->virt_addr, 1870 &fw_overlay_in_buf[buf_offset], storm_mem_desc->size); 1871 1872 /* Advance to next Storm */ 1873 buf_offset += storm_buf_size; 1874 } 1875 1876 /* If memory allocation has failed, free all allocated memory */ 1877 if (buf_offset < buf_size) { 1878 qed_fw_overlay_mem_free(p_hwfn, &allocated_mem); 1879 return NULL; 1880 } 1881 1882 return allocated_mem; 1883 } 1884 1885 void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn, 1886 struct qed_ptt *p_ptt, 1887 struct phys_mem_desc *fw_overlay_mem) 1888 { 1889 u8 storm_id; 1890 1891 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { 1892 struct phys_mem_desc *storm_mem_desc = 1893 (struct phys_mem_desc *)fw_overlay_mem + storm_id; 1894 u32 ram_addr, i; 1895 1896 /* Skip Storms with no FW overlays */ 1897 if (!storm_mem_desc->virt_addr) 1898 continue; 1899 1900 /* Calculate overlay RAM GRC address of current PF */ 1901 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) + 1902 sizeof(dma_addr_t) * p_hwfn->rel_pf_id; 1903 1904 /* Write Storm's overlay physical address to RAM */ 1905 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32)) 1906 qed_wr(p_hwfn, p_ptt, ram_addr, 1907 ((u32 *)&storm_mem_desc->phys_addr)[i]); 1908 } 1909 } 1910 1911 void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn, 1912 struct phys_mem_desc **fw_overlay_mem) 1913 { 1914 u8 storm_id; 1915 1916 if (!fw_overlay_mem || !(*fw_overlay_mem)) 1917 return; 1918 1919 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { 1920 struct phys_mem_desc *storm_mem_desc = 1921 (struct phys_mem_desc *)*fw_overlay_mem + storm_id; 1922 1923 /* Free Storm's physical memory */ 1924 if (storm_mem_desc->virt_addr) 1925 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 1926 storm_mem_desc->size, 1927 storm_mem_desc->virt_addr, 1928 storm_mem_desc->phys_addr); 1929 } 1930 1931 /* Free allocated virtual memory */ 1932 kfree(*fw_overlay_mem); 1933 *fw_overlay_mem = NULL; 1934 } 1935