1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/string.h>
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_reg_addr.h"
42 
43 enum cminterface {
44 	MCM_SEC,
45 	MCM_PRI,
46 	UCM_SEC,
47 	UCM_PRI,
48 	TCM_SEC,
49 	TCM_PRI,
50 	YCM_SEC,
51 	YCM_PRI,
52 	XCM_SEC,
53 	XCM_PRI,
54 	NUM_OF_CM_INTERFACES
55 };
56 
57 /* general constants */
58 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
59 							QM_PQ_ELEMENT_SIZE, \
60 							0x1000) : 0)
61 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
62 								0x100) - 1 : 0)
63 #define QM_INVALID_PQ_ID                        0xffff
64 /* feature enable */
65 #define QM_BYPASS_EN                            1
66 #define QM_BYTE_CRD_EN                          1
67 /* other PQ constants */
68 #define QM_OTHER_PQS_PER_PF                     4
69 /* WFQ constants */
70 #define QM_WFQ_UPPER_BOUND		62500000
71 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
72 #define QM_WFQ_VP_PQ_PF_SHIFT           5
73 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000)
74 #define QM_WFQ_MAX_INC_VAL                      43750000
75 
76 /* RL constants */
77 #define QM_RL_UPPER_BOUND                       62500000
78 #define QM_RL_PERIOD                            5               /* in us */
79 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD)
80 #define QM_RL_MAX_INC_VAL                       43750000
81 #define QM_RL_INC_VAL(rate)		max_t(u32,	\
82 					      (u32)(((rate ? rate : \
83 						      1000000) *    \
84 						     QM_RL_PERIOD * \
85 						     101) / (8 * 100)), 1)
86 /* AFullOprtnstcCrdMask constants */
87 #define QM_OPPOR_LINE_VOQ_DEF           1
88 #define QM_OPPOR_FW_STOP_DEF            0
89 #define QM_OPPOR_PQ_EMPTY_DEF           1
90 /* Command Queue constants */
91 #define PBF_CMDQ_PURE_LB_LINES                          150
92 #define PBF_CMDQ_LINES_RT_OFFSET(voq)           (		 \
93 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
94 		(PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET -	 \
95 		 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
96 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq)       (	      \
97 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
98 		(PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET -      \
99 		 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
100 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)          ((((pbf_cmd_lines) - \
101 						   4) *		     \
102 						  2) | QM_LINE_CRD_REG_SIGN_BIT)
103 /* BTB: blocks constants (block size = 256B) */
104 #define BTB_JUMBO_PKT_BLOCKS            38
105 #define BTB_HEADROOM_BLOCKS                     BTB_JUMBO_PKT_BLOCKS
106 #define BTB_PURE_LB_FACTOR                      10
107 #define BTB_PURE_LB_RATIO                       7
108 /* QM stop command constants */
109 #define QM_STOP_PQ_MASK_WIDTH                   32
110 #define QM_STOP_CMD_ADDR                                0x2
111 #define QM_STOP_CMD_STRUCT_SIZE                 2
112 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
113 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
114 #define QM_STOP_CMD_PAUSE_MASK_MASK             -1
115 #define QM_STOP_CMD_GROUP_ID_OFFSET             1
116 #define QM_STOP_CMD_GROUP_ID_SHIFT              16
117 #define QM_STOP_CMD_GROUP_ID_MASK               15
118 #define QM_STOP_CMD_PQ_TYPE_OFFSET              1
119 #define QM_STOP_CMD_PQ_TYPE_SHIFT               24
120 #define QM_STOP_CMD_PQ_TYPE_MASK                1
121 #define QM_STOP_CMD_MAX_POLL_COUNT              100
122 #define QM_STOP_CMD_POLL_PERIOD_US              500
123 /* QM command macros */
124 #define QM_CMD_STRUCT_SIZE(cmd)			cmd ## \
125 	_STRUCT_SIZE
126 #define QM_CMD_SET_FIELD(var, cmd, field,				  \
127 			 value)        SET_FIELD(var[cmd ## _ ## field ## \
128 						     _OFFSET],		  \
129 						 cmd ## _ ## field,	  \
130 						 value)
131 /* QM: VOQ macros */
132 #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) ((port) *	\
133 						   (max_phys_tcs_per_port) + \
134 						   (tc))
135 #define LB_VOQ(port)				( \
136 		MAX_PHYS_VOQS + (port))
137 #define VOQ(port, tc, max_phy_tcs_pr_port)	\
138 	((tc) <		\
139 	 LB_TC ? PHYS_VOQ(port,		\
140 			  tc,			 \
141 			  max_phy_tcs_pr_port) \
142 		: LB_VOQ(port))
143 /******************** INTERNAL IMPLEMENTATION *********************/
144 /* Prepare PF RL enable/disable runtime init values */
145 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
146 {
147 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
148 	if (pf_rl_en) {
149 		/* enable RLs for all VOQs */
150 		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
151 			     (1 << MAX_NUM_VOQS) - 1);
152 		/* write RL period */
153 		STORE_RT_REG(p_hwfn,
154 			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
155 		STORE_RT_REG(p_hwfn,
156 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
157 			     QM_RL_PERIOD_CLK_25M);
158 		/* set credit threshold for QM bypass flow */
159 		if (QM_BYPASS_EN)
160 			STORE_RT_REG(p_hwfn,
161 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
162 				     QM_RL_UPPER_BOUND);
163 	}
164 }
165 
166 /* Prepare PF WFQ enable/disable runtime init values */
167 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
168 {
169 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
170 	/* set credit threshold for QM bypass flow */
171 	if (pf_wfq_en && QM_BYPASS_EN)
172 		STORE_RT_REG(p_hwfn,
173 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
174 			     QM_WFQ_UPPER_BOUND);
175 }
176 
177 /* Prepare VPORT RL enable/disable runtime init values */
178 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
179 {
180 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
181 		     vport_rl_en ? 1 : 0);
182 	if (vport_rl_en) {
183 		/* write RL period (use timer 0 only) */
184 		STORE_RT_REG(p_hwfn,
185 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
186 			     QM_RL_PERIOD_CLK_25M);
187 		STORE_RT_REG(p_hwfn,
188 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
189 			     QM_RL_PERIOD_CLK_25M);
190 		/* set credit threshold for QM bypass flow */
191 		if (QM_BYPASS_EN)
192 			STORE_RT_REG(p_hwfn,
193 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
194 				     QM_RL_UPPER_BOUND);
195 	}
196 }
197 
198 /* Prepare VPORT WFQ enable/disable runtime init values */
199 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
200 {
201 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
202 		     vport_wfq_en ? 1 : 0);
203 	/* set credit threshold for QM bypass flow */
204 	if (vport_wfq_en && QM_BYPASS_EN)
205 		STORE_RT_REG(p_hwfn,
206 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
207 			     QM_WFQ_UPPER_BOUND);
208 }
209 
210 /* Prepare runtime init values to allocate PBF command queue lines for
211  * the specified VOQ
212  */
213 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
214 				       u8 voq, u16 cmdq_lines)
215 {
216 	u32 qm_line_crd;
217 
218 	/* In A0 - Limit the size of pbf queue so that only 511 commands with
219 	 * the minimum size of 4 (FCoE minimum size)
220 	 */
221 	bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
222 
223 	if (is_bb_a0)
224 		cmdq_lines = min_t(u32, cmdq_lines, 1022);
225 	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
226 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
227 			 (u32)cmdq_lines);
228 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
229 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
230 		     qm_line_crd);
231 }
232 
233 /* Prepare runtime init values to allocate PBF command queue lines. */
234 static void qed_cmdq_lines_rt_init(
235 	struct qed_hwfn *p_hwfn,
236 	u8 max_ports_per_engine,
237 	u8 max_phys_tcs_per_port,
238 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
239 {
240 	u8 tc, voq, port_id, num_tcs_in_port;
241 
242 	/* clear PBF lines for all VOQs */
243 	for (voq = 0; voq < MAX_NUM_VOQS; voq++)
244 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
245 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
246 		if (port_params[port_id].active) {
247 			u16 phys_lines, phys_lines_per_tc;
248 
249 			/* find #lines to divide between active phys TCs */
250 			phys_lines = port_params[port_id].num_pbf_cmd_lines -
251 				     PBF_CMDQ_PURE_LB_LINES;
252 			/* find #lines per active physical TC */
253 			num_tcs_in_port = 0;
254 			for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
255 				if (((port_params[port_id].active_phys_tcs >>
256 				      tc) & 0x1) == 1)
257 					num_tcs_in_port++;
258 			}
259 
260 			phys_lines_per_tc = phys_lines / num_tcs_in_port;
261 			/* init registers per active TC */
262 			for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
263 				if (((port_params[port_id].active_phys_tcs >>
264 				      tc) & 0x1) != 1)
265 					continue;
266 
267 				voq = PHYS_VOQ(port_id, tc,
268 					       max_phys_tcs_per_port);
269 				qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
270 							   phys_lines_per_tc);
271 			}
272 
273 			/* init registers for pure LB TC */
274 			qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
275 						   PBF_CMDQ_PURE_LB_LINES);
276 		}
277 	}
278 }
279 
280 static void qed_btb_blocks_rt_init(
281 	struct qed_hwfn *p_hwfn,
282 	u8 max_ports_per_engine,
283 	u8 max_phys_tcs_per_port,
284 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
285 {
286 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
287 	u8 tc, voq, port_id, num_tcs_in_port;
288 
289 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
290 		u32 temp;
291 
292 		if (!port_params[port_id].active)
293 			continue;
294 
295 		/* subtract headroom blocks */
296 		usable_blocks = port_params[port_id].num_btb_blocks -
297 				BTB_HEADROOM_BLOCKS;
298 
299 		/* find blocks per physical TC */
300 		num_tcs_in_port = 0;
301 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
302 			if (((port_params[port_id].active_phys_tcs >>
303 			      tc) & 0x1) == 1)
304 				num_tcs_in_port++;
305 		}
306 
307 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
308 				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
309 				  BTB_PURE_LB_RATIO);
310 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
311 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
312 		phys_blocks = (usable_blocks - pure_lb_blocks) /
313 			      num_tcs_in_port;
314 
315 		/* init physical TCs */
316 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
317 			if (((port_params[port_id].active_phys_tcs >>
318 			      tc) & 0x1) != 1)
319 				continue;
320 
321 			voq = PHYS_VOQ(port_id, tc,
322 				       max_phys_tcs_per_port);
323 			STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
324 				     phys_blocks);
325 		}
326 
327 		/* init pure LB TC */
328 		temp = LB_VOQ(port_id);
329 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
330 			     pure_lb_blocks);
331 	}
332 }
333 
334 /* Prepare Tx PQ mapping runtime init values for the specified PF */
335 static void qed_tx_pq_map_rt_init(
336 	struct qed_hwfn *p_hwfn,
337 	struct qed_ptt *p_ptt,
338 	struct qed_qm_pf_rt_init_params *p_params,
339 	u32 base_mem_addr_4kb)
340 {
341 	struct init_qm_vport_params *vport_params = p_params->vport_params;
342 	u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
343 	u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
344 	u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
345 			    QM_PF_QUEUE_GROUP_SIZE;
346 	bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
347 	u16 i, pq_id, pq_group;
348 
349 	/* a bit per Tx PQ indicating if the PQ is associated with a VF */
350 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
351 	u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
352 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
353 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
354 	u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
355 	u32 mem_addr_4kb = base_mem_addr_4kb;
356 
357 	/* set mapping from PQ group to PF */
358 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
359 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
360 			     (u32)(p_params->pf_id));
361 	/* set PQ sizes */
362 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
363 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
364 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
365 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
366 
367 	/* go over all Tx PQs */
368 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
369 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
370 			     p_params->max_phys_tcs_per_port);
371 		bool is_vf_pq = (i >= p_params->num_pf_pqs);
372 		struct qm_rf_pq_map tx_pq_map;
373 
374 		/* update first Tx PQ of VPORT/TC */
375 		u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
376 				    p_params->start_vport;
377 		u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
378 		u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
379 
380 		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
381 			/* create new VP PQ */
382 			pq_ids[p_params->pq_params[i].tc_id] = pq_id;
383 			first_tx_pq_id = pq_id;
384 			/* map VP PQ to VOQ and PF */
385 			STORE_RT_REG(p_hwfn,
386 				     QM_REG_WFQVPMAP_RT_OFFSET +
387 				     first_tx_pq_id,
388 				     (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
389 				     (p_params->pf_id <<
390 				      QM_WFQ_VP_PQ_PF_SHIFT));
391 		}
392 		/* fill PQ map entry */
393 		memset(&tx_pq_map, 0, sizeof(tx_pq_map));
394 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
395 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
396 			  p_params->pq_params[i].rl_valid ? 1 : 0);
397 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
398 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
399 			  p_params->pq_params[i].rl_valid ?
400 			  p_params->pq_params[i].vport_id : 0);
401 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
402 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
403 			  p_params->pq_params[i].wrr_group);
404 		/* write PQ map entry to CAM */
405 		STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
406 			     *((u32 *)&tx_pq_map));
407 		/* set base address */
408 		STORE_RT_REG(p_hwfn,
409 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
410 			     mem_addr_4kb);
411 		/* check if VF PQ */
412 		if (is_vf_pq) {
413 			/* if PQ is associated with a VF, add indication
414 			 * to PQ VF mask
415 			 */
416 			tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
417 				(1 << (pq_id % tx_pq_vf_mask_width));
418 			mem_addr_4kb += vport_pq_mem_4kb;
419 		} else {
420 			mem_addr_4kb += pq_mem_4kb;
421 		}
422 	}
423 
424 	/* store Tx PQ VF mask to size select register */
425 	for (i = 0; i < num_tx_pq_vf_masks; i++) {
426 		if (tx_pq_vf_mask[i]) {
427 			u32 addr;
428 
429 			addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
430 			STORE_RT_REG(p_hwfn, addr,
431 				     tx_pq_vf_mask[i]);
432 		}
433 	}
434 }
435 
436 /* Prepare Other PQ mapping runtime init values for the specified PF */
437 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
438 				     u8 port_id,
439 				     u8 pf_id,
440 				     u32 num_pf_cids,
441 				     u32 num_tids, u32 base_mem_addr_4kb)
442 {
443 	u16 i, pq_id;
444 
445 	/* a single other PQ group is used in each PF,
446 	 * where PQ group i is used in PF i.
447 	 */
448 	u16 pq_group = pf_id;
449 	u32 pq_size = num_pf_cids + num_tids;
450 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
451 	u32 mem_addr_4kb = base_mem_addr_4kb;
452 
453 	/* map PQ group to PF */
454 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
455 		     (u32)(pf_id));
456 	/* set PQ sizes */
457 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
458 		     QM_PQ_SIZE_256B(pq_size));
459 	/* set base address */
460 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
461 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
462 		STORE_RT_REG(p_hwfn,
463 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
464 			     mem_addr_4kb);
465 		mem_addr_4kb += pq_mem_4kb;
466 	}
467 }
468 
469 /* Prepare PF WFQ runtime init values for the specified PF.
470  * Return -1 on error.
471  */
472 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
473 			      struct qed_qm_pf_rt_init_params *p_params)
474 {
475 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
476 	u32 crd_reg_offset;
477 	u32 inc_val;
478 	u16 i;
479 
480 	if (p_params->pf_id < MAX_NUM_PFS_BB)
481 		crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
482 	else
483 		crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET +
484 				 (p_params->pf_id % MAX_NUM_PFS_BB);
485 
486 	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
487 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
488 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
489 		return -1;
490 	}
491 
492 	for (i = 0; i < num_tx_pqs; i++) {
493 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
494 			     p_params->max_phys_tcs_per_port);
495 
496 		OVERWRITE_RT_REG(p_hwfn,
497 				 crd_reg_offset + voq * MAX_NUM_PFS_BB,
498 				 QM_WFQ_CRD_REG_SIGN_BIT);
499 	}
500 
501 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
502 		     inc_val);
503 	STORE_RT_REG(p_hwfn,
504 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
505 		     QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
506 	return 0;
507 }
508 
509 /* Prepare PF RL runtime init values for the specified PF.
510  * Return -1 on error.
511  */
512 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
513 {
514 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
515 
516 	if (inc_val > QM_RL_MAX_INC_VAL) {
517 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
518 		return -1;
519 	}
520 	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
521 		     QM_RL_CRD_REG_SIGN_BIT);
522 	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
523 		     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
524 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
525 	return 0;
526 }
527 
528 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
529  * Return -1 on error.
530  */
531 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
532 			      u8 num_vports,
533 			      struct init_qm_vport_params *vport_params)
534 {
535 	u32 inc_val;
536 	u8 tc, i;
537 
538 	/* go over all PF VPORTs */
539 	for (i = 0; i < num_vports; i++) {
540 
541 		if (!vport_params[i].vport_wfq)
542 			continue;
543 
544 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
545 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
546 			DP_NOTICE(p_hwfn,
547 				  "Invalid VPORT WFQ weight configuration");
548 			return -1;
549 		}
550 
551 		/* each VPORT can have several VPORT PQ IDs for
552 		 * different TCs
553 		 */
554 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
555 			u16 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
556 
557 			if (vport_pq_id != QM_INVALID_PQ_ID) {
558 				STORE_RT_REG(p_hwfn,
559 					     QM_REG_WFQVPCRD_RT_OFFSET +
560 					     vport_pq_id,
561 					     QM_WFQ_CRD_REG_SIGN_BIT);
562 				STORE_RT_REG(p_hwfn,
563 					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
564 					     vport_pq_id, inc_val);
565 			}
566 		}
567 	}
568 
569 	return 0;
570 }
571 
572 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573 				u8 start_vport,
574 				u8 num_vports,
575 				struct init_qm_vport_params *vport_params)
576 {
577 	u8 i, vport_id;
578 
579 	/* go over all PF VPORTs */
580 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
581 		u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
582 
583 		if (inc_val > QM_RL_MAX_INC_VAL) {
584 			DP_NOTICE(p_hwfn,
585 				  "Invalid VPORT rate-limit configuration");
586 			return -1;
587 		}
588 
589 		STORE_RT_REG(p_hwfn,
590 			     QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
591 			     QM_RL_CRD_REG_SIGN_BIT);
592 		STORE_RT_REG(p_hwfn,
593 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
594 			     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
595 		STORE_RT_REG(p_hwfn,
596 			     QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
597 			     inc_val);
598 	}
599 
600 	return 0;
601 }
602 
603 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
604 				     struct qed_ptt *p_ptt)
605 {
606 	u32 reg_val, i;
607 
608 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
609 	     i++) {
610 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
611 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
612 	}
613 
614 	/* check if timeout while waiting for SDM command ready */
615 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
616 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
617 			   "Timeout when waiting for QM SDM command ready signal\n");
618 		return false;
619 	}
620 
621 	return true;
622 }
623 
624 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
625 			    struct qed_ptt *p_ptt,
626 			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
627 {
628 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
629 		return false;
630 
631 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
632 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
633 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
634 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
635 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
636 
637 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
638 }
639 
640 /******************** INTERFACE IMPLEMENTATION *********************/
641 u32 qed_qm_pf_mem_size(u8 pf_id,
642 		       u32 num_pf_cids,
643 		       u32 num_vf_cids,
644 		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
645 {
646 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
647 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
648 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
649 }
650 
651 int qed_qm_common_rt_init(
652 	struct qed_hwfn *p_hwfn,
653 	struct qed_qm_common_rt_init_params *p_params)
654 {
655 	/* init AFullOprtnstcCrdMask */
656 	u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
657 		    QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
658 		   (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
659 		   (p_params->pf_wfq_en <<
660 		    QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
661 		   (p_params->vport_wfq_en <<
662 		    QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
663 		   (p_params->pf_rl_en <<
664 		    QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
665 		   (p_params->vport_rl_en <<
666 		    QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
667 		   (QM_OPPOR_FW_STOP_DEF <<
668 		    QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
669 		   (QM_OPPOR_PQ_EMPTY_DEF <<
670 		    QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
671 
672 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
673 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
674 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
675 	qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
676 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
677 	qed_cmdq_lines_rt_init(p_hwfn,
678 			       p_params->max_ports_per_engine,
679 			       p_params->max_phys_tcs_per_port,
680 			       p_params->port_params);
681 	qed_btb_blocks_rt_init(p_hwfn,
682 			       p_params->max_ports_per_engine,
683 			       p_params->max_phys_tcs_per_port,
684 			       p_params->port_params);
685 	return 0;
686 }
687 
688 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
689 		      struct qed_ptt *p_ptt,
690 		      struct qed_qm_pf_rt_init_params *p_params)
691 {
692 	struct init_qm_vport_params *vport_params = p_params->vport_params;
693 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
694 					       p_params->num_tids) *
695 				 QM_OTHER_PQS_PER_PF;
696 	u8 tc, i;
697 
698 	/* clear first Tx PQ ID array for each VPORT */
699 	for (i = 0; i < p_params->num_vports; i++)
700 		for (tc = 0; tc < NUM_OF_TCS; tc++)
701 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
702 
703 	/* map Other PQs (if any) */
704 	qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
705 				 p_params->num_pf_cids, p_params->num_tids, 0);
706 
707 	/* map Tx PQs */
708 	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
709 
710 	if (p_params->pf_wfq)
711 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
712 			return -1;
713 
714 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
715 		return -1;
716 
717 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
718 		return -1;
719 
720 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
721 				 p_params->num_vports, vport_params))
722 		return -1;
723 
724 	return 0;
725 }
726 
727 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
728 		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
729 {
730 	u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
731 
732 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
733 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
734 		return -1;
735 	}
736 
737 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
738 	return 0;
739 }
740 
741 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
742 		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
743 {
744 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
745 
746 	if (inc_val > QM_RL_MAX_INC_VAL) {
747 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
748 		return -1;
749 	}
750 
751 	qed_wr(p_hwfn, p_ptt,
752 	       QM_REG_RLPFCRD + pf_id * 4,
753 	       QM_RL_CRD_REG_SIGN_BIT);
754 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
755 
756 	return 0;
757 }
758 
759 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
760 		       struct qed_ptt *p_ptt,
761 		       u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
762 {
763 	u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
764 	u8 tc;
765 
766 	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
767 		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration");
768 		return -1;
769 	}
770 
771 	for (tc = 0; tc < NUM_OF_TCS; tc++) {
772 		u16 vport_pq_id = first_tx_pq_id[tc];
773 
774 		if (vport_pq_id != QM_INVALID_PQ_ID)
775 			qed_wr(p_hwfn, p_ptt,
776 			       QM_REG_WFQVPWEIGHT + vport_pq_id * 4,
777 			       inc_val);
778 	}
779 
780 	return 0;
781 }
782 
783 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
784 		      struct qed_ptt *p_ptt, u8 vport_id, u32 vport_rl)
785 {
786 	u32 inc_val = QM_RL_INC_VAL(vport_rl);
787 
788 	if (inc_val > QM_RL_MAX_INC_VAL) {
789 		DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration");
790 		return -1;
791 	}
792 
793 	qed_wr(p_hwfn, p_ptt,
794 	       QM_REG_RLGLBLCRD + vport_id * 4,
795 	       QM_RL_CRD_REG_SIGN_BIT);
796 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
797 
798 	return 0;
799 }
800 
801 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
802 			  struct qed_ptt *p_ptt,
803 			  bool is_release_cmd,
804 			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
805 {
806 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
807 	u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
808 
809 	/* set command's PQ type */
810 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
811 
812 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
813 		/* set PQ bit in mask (stop command only) */
814 		if (!is_release_cmd)
815 			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
816 
817 		/* if last PQ or end of PQ mask, write command */
818 		if ((pq_id == last_pq) ||
819 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
820 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
821 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
822 					 PAUSE_MASK, pq_mask);
823 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
824 					 GROUP_ID,
825 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
826 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
827 					     cmd_arr[0], cmd_arr[1]))
828 				return false;
829 			pq_mask = 0;
830 		}
831 	}
832 
833 	return true;
834 }
835 
836 static void
837 qed_set_tunnel_type_enable_bit(unsigned long *var, int bit, bool enable)
838 {
839 	if (enable)
840 		set_bit(bit, var);
841 	else
842 		clear_bit(bit, var);
843 }
844 
845 #define PRS_ETH_TUNN_FIC_FORMAT	-188897008
846 
847 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
848 			     struct qed_ptt *p_ptt, u16 dest_port)
849 {
850 	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
851 	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
852 	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
853 }
854 
855 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
856 			  struct qed_ptt *p_ptt, bool vxlan_enable)
857 {
858 	unsigned long reg_val = 0;
859 	u8 shift;
860 
861 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
862 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
863 	qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
864 
865 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
866 
867 	if (reg_val)
868 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
869 		       PRS_ETH_TUNN_FIC_FORMAT);
870 
871 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
872 	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
873 	qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
874 
875 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
876 
877 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
878 	       vxlan_enable ? 1 : 0);
879 }
880 
881 void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
882 			bool eth_gre_enable, bool ip_gre_enable)
883 {
884 	unsigned long reg_val = 0;
885 	u8 shift;
886 
887 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
888 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
889 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
890 
891 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
892 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
893 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
894 	if (reg_val)
895 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
896 		       PRS_ETH_TUNN_FIC_FORMAT);
897 
898 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
899 	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
900 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
901 
902 	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
903 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
904 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
905 
906 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
907 	       eth_gre_enable ? 1 : 0);
908 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
909 	       ip_gre_enable ? 1 : 0);
910 }
911 
912 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
913 			      struct qed_ptt *p_ptt, u16 dest_port)
914 {
915 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
916 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
917 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
918 }
919 
920 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
921 			   struct qed_ptt *p_ptt,
922 			   bool eth_geneve_enable, bool ip_geneve_enable)
923 {
924 	unsigned long reg_val = 0;
925 	u8 shift;
926 
927 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
928 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
929 	qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_geneve_enable);
930 
931 	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
932 	qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_geneve_enable);
933 
934 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
935 	if (reg_val)
936 		qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
937 		       PRS_ETH_TUNN_FIC_FORMAT);
938 
939 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
940 	       eth_geneve_enable ? 1 : 0);
941 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
942 
943 	/* comp ver */
944 	reg_val = (ip_geneve_enable || eth_geneve_enable) ? 1 : 0;
945 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_COMP_VER, reg_val);
946 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_COMP_VER, reg_val);
947 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_COMP_VER, reg_val);
948 
949 	/* EDPM with geneve tunnel not supported in BB_B0 */
950 	if (QED_IS_BB_B0(p_hwfn->cdev))
951 		return;
952 
953 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
954 	       eth_geneve_enable ? 1 : 0);
955 	qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
956 	       ip_geneve_enable ? 1 : 0);
957 }
958