1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/io.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/errno.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/pci.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/qed/qed_chain.h> 20 #include "qed.h" 21 #include "qed_hsi.h" 22 #include "qed_hw.h" 23 #include "qed_reg_addr.h" 24 #include "qed_sriov.h" 25 26 #define QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT 1000 27 #define QED_BAR_ACQUIRE_TIMEOUT_USLEEP 1000 28 #define QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT 100000 29 #define QED_BAR_ACQUIRE_TIMEOUT_UDELAY 10 30 31 /* Invalid values */ 32 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1)) 33 34 struct qed_ptt { 35 struct list_head list_entry; 36 unsigned int idx; 37 struct pxp_ptt_entry pxp; 38 u8 hwfn_id; 39 }; 40 41 struct qed_ptt_pool { 42 struct list_head free_list; 43 spinlock_t lock; /* ptt synchronized access */ 44 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM]; 45 }; 46 47 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn) 48 { 49 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL); 50 int i; 51 52 if (!p_pool) 53 return -ENOMEM; 54 55 INIT_LIST_HEAD(&p_pool->free_list); 56 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { 57 p_pool->ptts[i].idx = i; 58 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET; 59 p_pool->ptts[i].pxp.pretend.control = 0; 60 p_pool->ptts[i].hwfn_id = p_hwfn->my_id; 61 if (i >= RESERVED_PTT_MAX) 62 list_add(&p_pool->ptts[i].list_entry, 63 &p_pool->free_list); 64 } 65 66 p_hwfn->p_ptt_pool = p_pool; 67 spin_lock_init(&p_pool->lock); 68 69 return 0; 70 } 71 72 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn) 73 { 74 struct qed_ptt *p_ptt; 75 int i; 76 77 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { 78 p_ptt = &p_hwfn->p_ptt_pool->ptts[i]; 79 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET; 80 } 81 } 82 83 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn) 84 { 85 kfree(p_hwfn->p_ptt_pool); 86 p_hwfn->p_ptt_pool = NULL; 87 } 88 89 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn) 90 { 91 return qed_ptt_acquire_context(p_hwfn, false); 92 } 93 94 struct qed_ptt *qed_ptt_acquire_context(struct qed_hwfn *p_hwfn, bool is_atomic) 95 { 96 struct qed_ptt *p_ptt; 97 unsigned int i, count; 98 99 if (is_atomic) 100 count = QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT; 101 else 102 count = QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT; 103 104 /* Take the free PTT from the list */ 105 for (i = 0; i < count; i++) { 106 spin_lock_bh(&p_hwfn->p_ptt_pool->lock); 107 108 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) { 109 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list, 110 struct qed_ptt, list_entry); 111 list_del(&p_ptt->list_entry); 112 113 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); 114 115 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 116 "allocated ptt %d\n", p_ptt->idx); 117 return p_ptt; 118 } 119 120 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); 121 122 if (is_atomic) 123 udelay(QED_BAR_ACQUIRE_TIMEOUT_UDELAY); 124 else 125 usleep_range(QED_BAR_ACQUIRE_TIMEOUT_USLEEP, 126 QED_BAR_ACQUIRE_TIMEOUT_USLEEP * 2); 127 } 128 129 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n"); 130 return NULL; 131 } 132 133 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 134 { 135 spin_lock_bh(&p_hwfn->p_ptt_pool->lock); 136 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list); 137 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); 138 } 139 140 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 141 { 142 /* The HW is using DWORDS and we need to translate it to Bytes */ 143 return le32_to_cpu(p_ptt->pxp.offset) << 2; 144 } 145 146 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt) 147 { 148 return PXP_PF_WINDOW_ADMIN_PER_PF_START + 149 p_ptt->idx * sizeof(struct pxp_ptt_entry); 150 } 151 152 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt) 153 { 154 return PXP_EXTERNAL_BAR_PF_WINDOW_START + 155 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE; 156 } 157 158 void qed_ptt_set_win(struct qed_hwfn *p_hwfn, 159 struct qed_ptt *p_ptt, u32 new_hw_addr) 160 { 161 u32 prev_hw_addr; 162 163 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); 164 165 if (new_hw_addr == prev_hw_addr) 166 return; 167 168 /* Update PTT entery in admin window */ 169 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 170 "Updating PTT entry %d to offset 0x%x\n", 171 p_ptt->idx, new_hw_addr); 172 173 /* The HW is using DWORDS and the address is in Bytes */ 174 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2); 175 176 REG_WR(p_hwfn, 177 qed_ptt_config_addr(p_ptt) + 178 offsetof(struct pxp_ptt_entry, offset), 179 le32_to_cpu(p_ptt->pxp.offset)); 180 } 181 182 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn, 183 struct qed_ptt *p_ptt, u32 hw_addr) 184 { 185 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); 186 u32 offset; 187 188 offset = hw_addr - win_hw_addr; 189 190 if (p_ptt->hwfn_id != p_hwfn->my_id) 191 DP_NOTICE(p_hwfn, 192 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n", 193 p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id); 194 195 /* Verify the address is within the window */ 196 if (hw_addr < win_hw_addr || 197 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) { 198 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr); 199 offset = 0; 200 } 201 202 return qed_ptt_get_bar_addr(p_ptt) + offset; 203 } 204 205 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn, 206 enum reserved_ptts ptt_idx) 207 { 208 if (ptt_idx >= RESERVED_PTT_MAX) { 209 DP_NOTICE(p_hwfn, 210 "Requested PTT %d is out of range\n", ptt_idx); 211 return NULL; 212 } 213 214 return &p_hwfn->p_ptt_pool->ptts[ptt_idx]; 215 } 216 217 void qed_wr(struct qed_hwfn *p_hwfn, 218 struct qed_ptt *p_ptt, 219 u32 hw_addr, u32 val) 220 { 221 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); 222 223 REG_WR(p_hwfn, bar_addr, val); 224 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 225 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", 226 bar_addr, hw_addr, val); 227 } 228 229 u32 qed_rd(struct qed_hwfn *p_hwfn, 230 struct qed_ptt *p_ptt, 231 u32 hw_addr) 232 { 233 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); 234 u32 val = REG_RD(p_hwfn, bar_addr); 235 236 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 237 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", 238 bar_addr, hw_addr, val); 239 240 return val; 241 } 242 243 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn, 244 struct qed_ptt *p_ptt, 245 void *addr, u32 hw_addr, size_t n, bool to_device) 246 { 247 u32 dw_count, *host_addr, hw_offset; 248 size_t quota, done = 0; 249 u32 __iomem *reg_addr; 250 251 while (done < n) { 252 quota = min_t(size_t, n - done, 253 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE); 254 255 if (IS_PF(p_hwfn->cdev)) { 256 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done); 257 hw_offset = qed_ptt_get_bar_addr(p_ptt); 258 } else { 259 hw_offset = hw_addr + done; 260 } 261 262 dw_count = quota / 4; 263 host_addr = (u32 *)((u8 *)addr + done); 264 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset); 265 if (to_device) 266 while (dw_count--) 267 DIRECT_REG_WR(reg_addr++, *host_addr++); 268 else 269 while (dw_count--) 270 *host_addr++ = DIRECT_REG_RD(reg_addr++); 271 272 done += quota; 273 } 274 } 275 276 void qed_memcpy_from(struct qed_hwfn *p_hwfn, 277 struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n) 278 { 279 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 280 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n", 281 hw_addr, dest, hw_addr, (unsigned long)n); 282 283 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false); 284 } 285 286 void qed_memcpy_to(struct qed_hwfn *p_hwfn, 287 struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n) 288 { 289 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 290 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n", 291 hw_addr, hw_addr, src, (unsigned long)n); 292 293 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true); 294 } 295 296 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid) 297 { 298 u16 control = 0; 299 300 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1); 301 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1); 302 303 /* Every pretend undos previous pretends, including 304 * previous port pretend. 305 */ 306 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); 307 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); 308 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); 309 310 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID)) 311 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID); 312 313 p_ptt->pxp.pretend.control = cpu_to_le16(control); 314 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid); 315 316 REG_WR(p_hwfn, 317 qed_ptt_config_addr(p_ptt) + 318 offsetof(struct pxp_ptt_entry, pretend), 319 *(u32 *)&p_ptt->pxp.pretend); 320 } 321 322 void qed_port_pretend(struct qed_hwfn *p_hwfn, 323 struct qed_ptt *p_ptt, u8 port_id) 324 { 325 u16 control = 0; 326 327 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id); 328 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1); 329 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); 330 331 p_ptt->pxp.pretend.control = cpu_to_le16(control); 332 333 REG_WR(p_hwfn, 334 qed_ptt_config_addr(p_ptt) + 335 offsetof(struct pxp_ptt_entry, pretend), 336 *(u32 *)&p_ptt->pxp.pretend); 337 } 338 339 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 340 { 341 u16 control = 0; 342 343 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); 344 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); 345 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); 346 347 p_ptt->pxp.pretend.control = cpu_to_le16(control); 348 349 REG_WR(p_hwfn, 350 qed_ptt_config_addr(p_ptt) + 351 offsetof(struct pxp_ptt_entry, pretend), 352 *(u32 *)&p_ptt->pxp.pretend); 353 } 354 355 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn, 356 struct qed_ptt *p_ptt, u8 port_id, u16 fid) 357 { 358 u16 control = 0; 359 360 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id); 361 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1); 362 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); 363 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1); 364 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1); 365 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID)) 366 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID); 367 p_ptt->pxp.pretend.control = cpu_to_le16(control); 368 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid); 369 REG_WR(p_hwfn, 370 qed_ptt_config_addr(p_ptt) + 371 offsetof(struct pxp_ptt_entry, pretend), 372 *(u32 *)&p_ptt->pxp.pretend); 373 } 374 375 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid) 376 { 377 u32 concrete_fid = 0; 378 379 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id); 380 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid); 381 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1); 382 383 return concrete_fid; 384 } 385 386 /* DMAE */ 387 #define QED_DMAE_FLAGS_IS_SET(params, flag) \ 388 ((params) != NULL && GET_FIELD((params)->flags, QED_DMAE_PARAMS_##flag)) 389 390 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn, 391 const u8 is_src_type_grc, 392 const u8 is_dst_type_grc, 393 struct qed_dmae_params *p_params) 394 { 395 u8 src_pfid, dst_pfid, port_id; 396 u16 opcode_b = 0; 397 u32 opcode = 0; 398 399 /* Whether the source is the PCIe or the GRC. 400 * 0- The source is the PCIe 401 * 1- The source is the GRC. 402 */ 403 SET_FIELD(opcode, DMAE_CMD_SRC, 404 (is_src_type_grc ? dmae_cmd_src_grc : dmae_cmd_src_pcie)); 405 src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, SRC_PF_VALID) ? 406 p_params->src_pfid : p_hwfn->rel_pf_id; 407 SET_FIELD(opcode, DMAE_CMD_SRC_PF_ID, src_pfid); 408 409 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */ 410 SET_FIELD(opcode, DMAE_CMD_DST, 411 (is_dst_type_grc ? dmae_cmd_dst_grc : dmae_cmd_dst_pcie)); 412 dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, DST_PF_VALID) ? 413 p_params->dst_pfid : p_hwfn->rel_pf_id; 414 SET_FIELD(opcode, DMAE_CMD_DST_PF_ID, dst_pfid); 415 416 417 /* Whether to write a completion word to the completion destination: 418 * 0-Do not write a completion word 419 * 1-Write the completion word 420 */ 421 SET_FIELD(opcode, DMAE_CMD_COMP_WORD_EN, 1); 422 SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1); 423 424 if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST)) 425 SET_FIELD(opcode, DMAE_CMD_COMP_FUNC, 1); 426 427 /* swapping mode 3 - big endian */ 428 SET_FIELD(opcode, DMAE_CMD_ENDIANITY_MODE, DMAE_CMD_ENDIANITY); 429 430 port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT_VALID)) ? 431 p_params->port_id : p_hwfn->port_id; 432 SET_FIELD(opcode, DMAE_CMD_PORT_ID, port_id); 433 434 /* reset source address in next go */ 435 SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1); 436 437 /* reset dest address in next go */ 438 SET_FIELD(opcode, DMAE_CMD_DST_ADDR_RESET, 1); 439 440 /* SRC/DST VFID: all 1's - pf, otherwise VF id */ 441 if (QED_DMAE_FLAGS_IS_SET(p_params, SRC_VF_VALID)) { 442 SET_FIELD(opcode, DMAE_CMD_SRC_VF_ID_VALID, 1); 443 SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, p_params->src_vfid); 444 } else { 445 SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, 0xFF); 446 } 447 if (QED_DMAE_FLAGS_IS_SET(p_params, DST_VF_VALID)) { 448 SET_FIELD(opcode, DMAE_CMD_DST_VF_ID_VALID, 1); 449 SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, p_params->dst_vfid); 450 } else { 451 SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, 0xFF); 452 } 453 454 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode); 455 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b); 456 } 457 458 u32 qed_dmae_idx_to_go_cmd(u8 idx) 459 { 460 /* All the DMAE 'go' registers form an array in internal memory */ 461 return DMAE_REG_GO_C0 + (idx << 2); 462 } 463 464 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn, 465 struct qed_ptt *p_ptt) 466 { 467 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd; 468 u8 idx_cmd = p_hwfn->dmae_info.channel, i; 469 int qed_status = 0; 470 471 /* verify address is not NULL */ 472 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) || 473 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) { 474 DP_NOTICE(p_hwfn, 475 "source or destination address 0 idx_cmd=%d\n" 476 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", 477 idx_cmd, 478 le32_to_cpu(p_command->opcode), 479 le16_to_cpu(p_command->opcode_b), 480 le16_to_cpu(p_command->length_dw), 481 le32_to_cpu(p_command->src_addr_hi), 482 le32_to_cpu(p_command->src_addr_lo), 483 le32_to_cpu(p_command->dst_addr_hi), 484 le32_to_cpu(p_command->dst_addr_lo)); 485 486 return -EINVAL; 487 } 488 489 DP_VERBOSE(p_hwfn, 490 NETIF_MSG_HW, 491 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", 492 idx_cmd, 493 le32_to_cpu(p_command->opcode), 494 le16_to_cpu(p_command->opcode_b), 495 le16_to_cpu(p_command->length_dw), 496 le32_to_cpu(p_command->src_addr_hi), 497 le32_to_cpu(p_command->src_addr_lo), 498 le32_to_cpu(p_command->dst_addr_hi), 499 le32_to_cpu(p_command->dst_addr_lo)); 500 501 /* Copy the command to DMAE - need to do it before every call 502 * for source/dest address no reset. 503 * The first 9 DWs are the command registers, the 10 DW is the 504 * GO register, and the rest are result registers 505 * (which are read only by the client). 506 */ 507 for (i = 0; i < DMAE_CMD_SIZE; i++) { 508 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ? 509 *(((u32 *)p_command) + i) : 0; 510 511 qed_wr(p_hwfn, p_ptt, 512 DMAE_REG_CMD_MEM + 513 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) + 514 (i * sizeof(u32)), data); 515 } 516 517 qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE); 518 519 return qed_status; 520 } 521 522 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn) 523 { 524 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr; 525 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd; 526 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer; 527 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word; 528 529 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 530 sizeof(u32), p_addr, GFP_KERNEL); 531 if (!*p_comp) 532 goto err; 533 534 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr; 535 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 536 sizeof(struct dmae_cmd), 537 p_addr, GFP_KERNEL); 538 if (!*p_cmd) 539 goto err; 540 541 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr; 542 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 543 sizeof(u32) * DMAE_MAX_RW_SIZE, 544 p_addr, GFP_KERNEL); 545 if (!*p_buff) 546 goto err; 547 548 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id; 549 550 return 0; 551 err: 552 qed_dmae_info_free(p_hwfn); 553 return -ENOMEM; 554 } 555 556 void qed_dmae_info_free(struct qed_hwfn *p_hwfn) 557 { 558 dma_addr_t p_phys; 559 560 /* Just make sure no one is in the middle */ 561 mutex_lock(&p_hwfn->dmae_info.mutex); 562 563 if (p_hwfn->dmae_info.p_completion_word) { 564 p_phys = p_hwfn->dmae_info.completion_word_phys_addr; 565 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 566 sizeof(u32), 567 p_hwfn->dmae_info.p_completion_word, p_phys); 568 p_hwfn->dmae_info.p_completion_word = NULL; 569 } 570 571 if (p_hwfn->dmae_info.p_dmae_cmd) { 572 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr; 573 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 574 sizeof(struct dmae_cmd), 575 p_hwfn->dmae_info.p_dmae_cmd, p_phys); 576 p_hwfn->dmae_info.p_dmae_cmd = NULL; 577 } 578 579 if (p_hwfn->dmae_info.p_intermediate_buffer) { 580 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; 581 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 582 sizeof(u32) * DMAE_MAX_RW_SIZE, 583 p_hwfn->dmae_info.p_intermediate_buffer, 584 p_phys); 585 p_hwfn->dmae_info.p_intermediate_buffer = NULL; 586 } 587 588 mutex_unlock(&p_hwfn->dmae_info.mutex); 589 } 590 591 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn) 592 { 593 u32 wait_cnt_limit = 10000, wait_cnt = 0; 594 int qed_status = 0; 595 596 barrier(); 597 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) { 598 udelay(DMAE_MIN_WAIT_TIME); 599 if (++wait_cnt > wait_cnt_limit) { 600 DP_NOTICE(p_hwfn->cdev, 601 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n", 602 *p_hwfn->dmae_info.p_completion_word, 603 DMAE_COMPLETION_VAL); 604 qed_status = -EBUSY; 605 break; 606 } 607 608 /* to sync the completion_word since we are not 609 * using the volatile keyword for p_completion_word 610 */ 611 barrier(); 612 } 613 614 if (qed_status == 0) 615 *p_hwfn->dmae_info.p_completion_word = 0; 616 617 return qed_status; 618 } 619 620 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn, 621 struct qed_ptt *p_ptt, 622 u64 src_addr, 623 u64 dst_addr, 624 u8 src_type, 625 u8 dst_type, 626 u32 length_dw) 627 { 628 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; 629 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; 630 int qed_status = 0; 631 632 switch (src_type) { 633 case QED_DMAE_ADDRESS_GRC: 634 case QED_DMAE_ADDRESS_HOST_PHYS: 635 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr)); 636 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr)); 637 break; 638 /* for virtual source addresses we use the intermediate buffer. */ 639 case QED_DMAE_ADDRESS_HOST_VIRT: 640 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys)); 641 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys)); 642 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0], 643 (void *)(uintptr_t)src_addr, 644 length_dw * sizeof(u32)); 645 break; 646 default: 647 return -EINVAL; 648 } 649 650 switch (dst_type) { 651 case QED_DMAE_ADDRESS_GRC: 652 case QED_DMAE_ADDRESS_HOST_PHYS: 653 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr)); 654 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr)); 655 break; 656 /* for virtual source addresses we use the intermediate buffer. */ 657 case QED_DMAE_ADDRESS_HOST_VIRT: 658 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys)); 659 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys)); 660 break; 661 default: 662 return -EINVAL; 663 } 664 665 cmd->length_dw = cpu_to_le16((u16)length_dw); 666 667 qed_dmae_post_command(p_hwfn, p_ptt); 668 669 qed_status = qed_dmae_operation_wait(p_hwfn); 670 671 if (qed_status) { 672 DP_NOTICE(p_hwfn, 673 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n", 674 src_addr, dst_addr, length_dw); 675 return qed_status; 676 } 677 678 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT) 679 memcpy((void *)(uintptr_t)(dst_addr), 680 &p_hwfn->dmae_info.p_intermediate_buffer[0], 681 length_dw * sizeof(u32)); 682 683 return 0; 684 } 685 686 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn, 687 struct qed_ptt *p_ptt, 688 u64 src_addr, u64 dst_addr, 689 u8 src_type, u8 dst_type, 690 u32 size_in_dwords, 691 struct qed_dmae_params *p_params) 692 { 693 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr; 694 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0; 695 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; 696 u64 src_addr_split = 0, dst_addr_split = 0; 697 u16 length_limit = DMAE_MAX_RW_SIZE; 698 int qed_status = 0; 699 u32 offset = 0; 700 701 if (p_hwfn->cdev->recov_in_prog) { 702 DP_VERBOSE(p_hwfn, 703 NETIF_MSG_HW, 704 "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n", 705 src_addr, src_type, dst_addr, dst_type, 706 size_in_dwords); 707 708 /* Let the flow complete w/o any error handling */ 709 return 0; 710 } 711 712 qed_dmae_opcode(p_hwfn, 713 (src_type == QED_DMAE_ADDRESS_GRC), 714 (dst_type == QED_DMAE_ADDRESS_GRC), 715 p_params); 716 717 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys)); 718 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys)); 719 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL); 720 721 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */ 722 cnt_split = size_in_dwords / length_limit; 723 length_mod = size_in_dwords % length_limit; 724 725 src_addr_split = src_addr; 726 dst_addr_split = dst_addr; 727 728 for (i = 0; i <= cnt_split; i++) { 729 offset = length_limit * i; 730 731 if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) { 732 if (src_type == QED_DMAE_ADDRESS_GRC) 733 src_addr_split = src_addr + offset; 734 else 735 src_addr_split = src_addr + (offset * 4); 736 } 737 738 if (dst_type == QED_DMAE_ADDRESS_GRC) 739 dst_addr_split = dst_addr + offset; 740 else 741 dst_addr_split = dst_addr + (offset * 4); 742 743 length_cur = (cnt_split == i) ? length_mod : length_limit; 744 745 /* might be zero on last iteration */ 746 if (!length_cur) 747 continue; 748 749 qed_status = qed_dmae_execute_sub_operation(p_hwfn, 750 p_ptt, 751 src_addr_split, 752 dst_addr_split, 753 src_type, 754 dst_type, 755 length_cur); 756 if (qed_status) { 757 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_DMAE_FAIL, 758 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n", 759 qed_status, src_addr, 760 dst_addr, length_cur); 761 break; 762 } 763 } 764 765 return qed_status; 766 } 767 768 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn, 769 struct qed_ptt *p_ptt, 770 u64 source_addr, u32 grc_addr, u32 size_in_dwords, 771 struct qed_dmae_params *p_params) 772 { 773 u32 grc_addr_in_dw = grc_addr / sizeof(u32); 774 int rc; 775 776 777 mutex_lock(&p_hwfn->dmae_info.mutex); 778 779 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr, 780 grc_addr_in_dw, 781 QED_DMAE_ADDRESS_HOST_VIRT, 782 QED_DMAE_ADDRESS_GRC, 783 size_in_dwords, p_params); 784 785 mutex_unlock(&p_hwfn->dmae_info.mutex); 786 787 return rc; 788 } 789 790 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn, 791 struct qed_ptt *p_ptt, 792 u32 grc_addr, 793 dma_addr_t dest_addr, u32 size_in_dwords, 794 struct qed_dmae_params *p_params) 795 { 796 u32 grc_addr_in_dw = grc_addr / sizeof(u32); 797 int rc; 798 799 800 mutex_lock(&p_hwfn->dmae_info.mutex); 801 802 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw, 803 dest_addr, QED_DMAE_ADDRESS_GRC, 804 QED_DMAE_ADDRESS_HOST_VIRT, 805 size_in_dwords, p_params); 806 807 mutex_unlock(&p_hwfn->dmae_info.mutex); 808 809 return rc; 810 } 811 812 int qed_dmae_host2host(struct qed_hwfn *p_hwfn, 813 struct qed_ptt *p_ptt, 814 dma_addr_t source_addr, 815 dma_addr_t dest_addr, 816 u32 size_in_dwords, struct qed_dmae_params *p_params) 817 { 818 int rc; 819 820 mutex_lock(&(p_hwfn->dmae_info.mutex)); 821 822 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr, 823 dest_addr, 824 QED_DMAE_ADDRESS_HOST_PHYS, 825 QED_DMAE_ADDRESS_HOST_PHYS, 826 size_in_dwords, p_params); 827 828 mutex_unlock(&(p_hwfn->dmae_info.mutex)); 829 830 return rc; 831 } 832 833 void qed_hw_err_notify(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 834 enum qed_hw_err_type err_type, const char *fmt, ...) 835 { 836 char buf[QED_HW_ERR_MAX_STR_SIZE]; 837 va_list vl; 838 int len; 839 840 if (fmt) { 841 va_start(vl, fmt); 842 len = vsnprintf(buf, QED_HW_ERR_MAX_STR_SIZE, fmt, vl); 843 va_end(vl); 844 845 if (len > QED_HW_ERR_MAX_STR_SIZE - 1) 846 len = QED_HW_ERR_MAX_STR_SIZE - 1; 847 848 DP_NOTICE(p_hwfn, "%s", buf); 849 } 850 851 /* Fan failure cannot be masked by handling of another HW error */ 852 if (p_hwfn->cdev->recov_in_prog && 853 err_type != QED_HW_ERR_FAN_FAIL) { 854 DP_VERBOSE(p_hwfn, 855 NETIF_MSG_DRV, 856 "Recovery is in progress. Avoid notifying about HW error %d.\n", 857 err_type); 858 return; 859 } 860 861 qed_hw_error_occurred(p_hwfn, err_type); 862 863 if (fmt) 864 qed_mcp_send_raw_debug_data(p_hwfn, p_ptt, buf, len); 865 } 866 867 int qed_dmae_sanity(struct qed_hwfn *p_hwfn, 868 struct qed_ptt *p_ptt, const char *phase) 869 { 870 u32 size = PAGE_SIZE / 2, val; 871 int rc = 0; 872 dma_addr_t p_phys; 873 void *p_virt; 874 u32 *p_tmp; 875 876 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 877 2 * size, &p_phys, GFP_KERNEL); 878 if (!p_virt) { 879 DP_NOTICE(p_hwfn, 880 "DMAE sanity [%s]: failed to allocate memory\n", 881 phase); 882 return -ENOMEM; 883 } 884 885 /* Fill the bottom half of the allocated memory with a known pattern */ 886 for (p_tmp = (u32 *)p_virt; 887 p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) { 888 /* Save the address itself as the value */ 889 val = (u32)(uintptr_t)p_tmp; 890 *p_tmp = val; 891 } 892 893 /* Zero the top half of the allocated memory */ 894 memset((u8 *)p_virt + size, 0, size); 895 896 DP_VERBOSE(p_hwfn, 897 QED_MSG_SP, 898 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n", 899 phase, 900 (u64)p_phys, 901 p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size); 902 903 rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size, 904 size / 4, NULL); 905 if (rc) { 906 DP_NOTICE(p_hwfn, 907 "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n", 908 phase, rc); 909 goto out; 910 } 911 912 /* Verify that the top half of the allocated memory has the pattern */ 913 for (p_tmp = (u32 *)((u8 *)p_virt + size); 914 p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) { 915 /* The corresponding address in the bottom half */ 916 val = (u32)(uintptr_t)p_tmp - size; 917 918 if (*p_tmp != val) { 919 DP_NOTICE(p_hwfn, 920 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n", 921 phase, 922 (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt), 923 p_tmp, *p_tmp, val); 924 rc = -EINVAL; 925 goto out; 926 } 927 } 928 929 out: 930 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys); 931 return rc; 932 } 933