1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51 
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53 
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
56 
57 struct qed_ptt {
58 	struct list_head	list_entry;
59 	unsigned int		idx;
60 	struct pxp_ptt_entry	pxp;
61 	u8			hwfn_id;
62 };
63 
64 struct qed_ptt_pool {
65 	struct list_head	free_list;
66 	spinlock_t		lock; /* ptt synchronized access */
67 	struct qed_ptt		ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69 
70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72 	struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73 	int i;
74 
75 	if (!p_pool)
76 		return -ENOMEM;
77 
78 	INIT_LIST_HEAD(&p_pool->free_list);
79 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80 		p_pool->ptts[i].idx = i;
81 		p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82 		p_pool->ptts[i].pxp.pretend.control = 0;
83 		p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84 		if (i >= RESERVED_PTT_MAX)
85 			list_add(&p_pool->ptts[i].list_entry,
86 				 &p_pool->free_list);
87 	}
88 
89 	p_hwfn->p_ptt_pool = p_pool;
90 	spin_lock_init(&p_pool->lock);
91 
92 	return 0;
93 }
94 
95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97 	struct qed_ptt *p_ptt;
98 	int i;
99 
100 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101 		p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102 		p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103 	}
104 }
105 
106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108 	kfree(p_hwfn->p_ptt_pool);
109 	p_hwfn->p_ptt_pool = NULL;
110 }
111 
112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114 	struct qed_ptt *p_ptt;
115 	unsigned int i;
116 
117 	/* Take the free PTT from the list */
118 	for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119 		spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120 
121 		if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122 			p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123 						 struct qed_ptt, list_entry);
124 			list_del(&p_ptt->list_entry);
125 
126 			spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127 
128 			DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129 				   "allocated ptt %d\n", p_ptt->idx);
130 			return p_ptt;
131 		}
132 
133 		spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134 		usleep_range(1000, 2000);
135 	}
136 
137 	DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138 	return NULL;
139 }
140 
141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143 	spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144 	list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145 	spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147 
148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150 	/* The HW is using DWORDS and we need to translate it to Bytes */
151 	return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153 
154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156 	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157 	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159 
160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162 	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163 	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165 
166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167 		     struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169 	u32 prev_hw_addr;
170 
171 	prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172 
173 	if (new_hw_addr == prev_hw_addr)
174 		return;
175 
176 	/* Update PTT entery in admin window */
177 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178 		   "Updating PTT entry %d to offset 0x%x\n",
179 		   p_ptt->idx, new_hw_addr);
180 
181 	/* The HW is using DWORDS and the address is in Bytes */
182 	p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183 
184 	REG_WR(p_hwfn,
185 	       qed_ptt_config_addr(p_ptt) +
186 	       offsetof(struct pxp_ptt_entry, offset),
187 	       le32_to_cpu(p_ptt->pxp.offset));
188 }
189 
190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191 		       struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193 	u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194 	u32 offset;
195 
196 	offset = hw_addr - win_hw_addr;
197 
198 	if (p_ptt->hwfn_id != p_hwfn->my_id)
199 		DP_NOTICE(p_hwfn,
200 			  "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 			  p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202 
203 	/* Verify the address is within the window */
204 	if (hw_addr < win_hw_addr ||
205 	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206 		qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207 		offset = 0;
208 	}
209 
210 	return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212 
213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214 				     enum reserved_ptts ptt_idx)
215 {
216 	if (ptt_idx >= RESERVED_PTT_MAX) {
217 		DP_NOTICE(p_hwfn,
218 			  "Requested PTT %d is out of range\n", ptt_idx);
219 		return NULL;
220 	}
221 
222 	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224 
225 void qed_wr(struct qed_hwfn *p_hwfn,
226 	    struct qed_ptt *p_ptt,
227 	    u32 hw_addr, u32 val)
228 {
229 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230 
231 	REG_WR(p_hwfn, bar_addr, val);
232 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 		   bar_addr, hw_addr, val);
235 }
236 
237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238 	   struct qed_ptt *p_ptt,
239 	   u32 hw_addr)
240 {
241 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242 	u32 val = REG_RD(p_hwfn, bar_addr);
243 
244 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 		   bar_addr, hw_addr, val);
247 
248 	return val;
249 }
250 
251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252 			  struct qed_ptt *p_ptt,
253 			  void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255 	u32 dw_count, *host_addr, hw_offset;
256 	size_t quota, done = 0;
257 	u32 __iomem *reg_addr;
258 
259 	while (done < n) {
260 		quota = min_t(size_t, n - done,
261 			      PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262 
263 		if (IS_PF(p_hwfn->cdev)) {
264 			qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265 			hw_offset = qed_ptt_get_bar_addr(p_ptt);
266 		} else {
267 			hw_offset = hw_addr + done;
268 		}
269 
270 		dw_count = quota / 4;
271 		host_addr = (u32 *)((u8 *)addr + done);
272 		reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273 		if (to_device)
274 			while (dw_count--)
275 				DIRECT_REG_WR(reg_addr++, *host_addr++);
276 		else
277 			while (dw_count--)
278 				*host_addr++ = DIRECT_REG_RD(reg_addr++);
279 
280 		done += quota;
281 	}
282 }
283 
284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285 		     struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288 		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 		   hw_addr, dest, hw_addr, (unsigned long)n);
290 
291 	qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293 
294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295 		   struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298 		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 		   hw_addr, hw_addr, src, (unsigned long)n);
300 
301 	qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303 
304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306 	u16 control = 0;
307 
308 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310 
311 	/* Every pretend undos previous pretends, including
312 	 * previous port pretend.
313 	 */
314 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317 
318 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320 
321 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
322 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323 
324 	REG_WR(p_hwfn,
325 	       qed_ptt_config_addr(p_ptt) +
326 	       offsetof(struct pxp_ptt_entry, pretend),
327 	       *(u32 *)&p_ptt->pxp.pretend);
328 }
329 
330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331 		      struct qed_ptt *p_ptt, u8 port_id)
332 {
333 	u16 control = 0;
334 
335 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338 
339 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
340 
341 	REG_WR(p_hwfn,
342 	       qed_ptt_config_addr(p_ptt) +
343 	       offsetof(struct pxp_ptt_entry, pretend),
344 	       *(u32 *)&p_ptt->pxp.pretend);
345 }
346 
347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349 	u16 control = 0;
350 
351 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354 
355 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
356 
357 	REG_WR(p_hwfn,
358 	       qed_ptt_config_addr(p_ptt) +
359 	       offsetof(struct pxp_ptt_entry, pretend),
360 	       *(u32 *)&p_ptt->pxp.pretend);
361 }
362 
363 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
364 {
365 	u32 concrete_fid = 0;
366 
367 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
368 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
369 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
370 
371 	return concrete_fid;
372 }
373 
374 /* DMAE */
375 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
376 			    const u8 is_src_type_grc,
377 			    const u8 is_dst_type_grc,
378 			    struct qed_dmae_params *p_params)
379 {
380 	u16 opcode_b = 0;
381 	u32 opcode = 0;
382 
383 	/* Whether the source is the PCIe or the GRC.
384 	 * 0- The source is the PCIe
385 	 * 1- The source is the GRC.
386 	 */
387 	opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
388 				   : DMAE_CMD_SRC_MASK_PCIE) <<
389 		   DMAE_CMD_SRC_SHIFT;
390 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
391 		   DMAE_CMD_SRC_PF_ID_SHIFT);
392 
393 	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
394 	opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
395 				   : DMAE_CMD_DST_MASK_PCIE) <<
396 		   DMAE_CMD_DST_SHIFT;
397 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
398 		   DMAE_CMD_DST_PF_ID_SHIFT);
399 
400 	/* Whether to write a completion word to the completion destination:
401 	 * 0-Do not write a completion word
402 	 * 1-Write the completion word
403 	 */
404 	opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
405 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
406 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
407 
408 	if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
409 		opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
410 
411 	opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
412 
413 	opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
414 
415 	/* reset source address in next go */
416 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
417 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
418 
419 	/* reset dest address in next go */
420 	opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
421 		   DMAE_CMD_DST_ADDR_RESET_SHIFT);
422 
423 	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
424 	if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
425 		opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
426 		opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
427 	} else {
428 		opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
429 			    DMAE_CMD_SRC_VF_ID_SHIFT;
430 	}
431 
432 	if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
433 		opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
434 		opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
435 	} else {
436 		opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
437 	}
438 
439 	p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
440 	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
441 }
442 
443 u32 qed_dmae_idx_to_go_cmd(u8 idx)
444 {
445 	/* All the DMAE 'go' registers form an array in internal memory */
446 	return DMAE_REG_GO_C0 + (idx << 2);
447 }
448 
449 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
450 				 struct qed_ptt *p_ptt)
451 {
452 	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
453 	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
454 	int qed_status = 0;
455 
456 	/* verify address is not NULL */
457 	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
458 	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
459 		DP_NOTICE(p_hwfn,
460 			  "source or destination address 0 idx_cmd=%d\n"
461 			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
462 			  idx_cmd,
463 			  le32_to_cpu(p_command->opcode),
464 			  le16_to_cpu(p_command->opcode_b),
465 			  le16_to_cpu(p_command->length_dw),
466 			  le32_to_cpu(p_command->src_addr_hi),
467 			  le32_to_cpu(p_command->src_addr_lo),
468 			  le32_to_cpu(p_command->dst_addr_hi),
469 			  le32_to_cpu(p_command->dst_addr_lo));
470 
471 		return -EINVAL;
472 	}
473 
474 	DP_VERBOSE(p_hwfn,
475 		   NETIF_MSG_HW,
476 		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
477 		   idx_cmd,
478 		   le32_to_cpu(p_command->opcode),
479 		   le16_to_cpu(p_command->opcode_b),
480 		   le16_to_cpu(p_command->length_dw),
481 		   le32_to_cpu(p_command->src_addr_hi),
482 		   le32_to_cpu(p_command->src_addr_lo),
483 		   le32_to_cpu(p_command->dst_addr_hi),
484 		   le32_to_cpu(p_command->dst_addr_lo));
485 
486 	/* Copy the command to DMAE - need to do it before every call
487 	 * for source/dest address no reset.
488 	 * The first 9 DWs are the command registers, the 10 DW is the
489 	 * GO register, and the rest are result registers
490 	 * (which are read only by the client).
491 	 */
492 	for (i = 0; i < DMAE_CMD_SIZE; i++) {
493 		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
494 			   *(((u32 *)p_command) + i) : 0;
495 
496 		qed_wr(p_hwfn, p_ptt,
497 		       DMAE_REG_CMD_MEM +
498 		       (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
499 		       (i * sizeof(u32)), data);
500 	}
501 
502 	qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
503 
504 	return qed_status;
505 }
506 
507 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
508 {
509 	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
510 	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
511 	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
512 	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
513 
514 	*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
515 				     sizeof(u32), p_addr, GFP_KERNEL);
516 	if (!*p_comp)
517 		goto err;
518 
519 	p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
520 	*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
521 				    sizeof(struct dmae_cmd),
522 				    p_addr, GFP_KERNEL);
523 	if (!*p_cmd)
524 		goto err;
525 
526 	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
527 	*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
528 				     sizeof(u32) * DMAE_MAX_RW_SIZE,
529 				     p_addr, GFP_KERNEL);
530 	if (!*p_buff)
531 		goto err;
532 
533 	p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
534 
535 	return 0;
536 err:
537 	qed_dmae_info_free(p_hwfn);
538 	return -ENOMEM;
539 }
540 
541 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
542 {
543 	dma_addr_t p_phys;
544 
545 	/* Just make sure no one is in the middle */
546 	mutex_lock(&p_hwfn->dmae_info.mutex);
547 
548 	if (p_hwfn->dmae_info.p_completion_word) {
549 		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
550 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
551 				  sizeof(u32),
552 				  p_hwfn->dmae_info.p_completion_word, p_phys);
553 		p_hwfn->dmae_info.p_completion_word = NULL;
554 	}
555 
556 	if (p_hwfn->dmae_info.p_dmae_cmd) {
557 		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
558 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
559 				  sizeof(struct dmae_cmd),
560 				  p_hwfn->dmae_info.p_dmae_cmd, p_phys);
561 		p_hwfn->dmae_info.p_dmae_cmd = NULL;
562 	}
563 
564 	if (p_hwfn->dmae_info.p_intermediate_buffer) {
565 		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
566 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
567 				  sizeof(u32) * DMAE_MAX_RW_SIZE,
568 				  p_hwfn->dmae_info.p_intermediate_buffer,
569 				  p_phys);
570 		p_hwfn->dmae_info.p_intermediate_buffer = NULL;
571 	}
572 
573 	mutex_unlock(&p_hwfn->dmae_info.mutex);
574 }
575 
576 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
577 {
578 	u32 wait_cnt_limit = 10000, wait_cnt = 0;
579 	int qed_status = 0;
580 
581 	barrier();
582 	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
583 		udelay(DMAE_MIN_WAIT_TIME);
584 		if (++wait_cnt > wait_cnt_limit) {
585 			DP_NOTICE(p_hwfn->cdev,
586 				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
587 				  *p_hwfn->dmae_info.p_completion_word,
588 				 DMAE_COMPLETION_VAL);
589 			qed_status = -EBUSY;
590 			break;
591 		}
592 
593 		/* to sync the completion_word since we are not
594 		 * using the volatile keyword for p_completion_word
595 		 */
596 		barrier();
597 	}
598 
599 	if (qed_status == 0)
600 		*p_hwfn->dmae_info.p_completion_word = 0;
601 
602 	return qed_status;
603 }
604 
605 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
606 					  struct qed_ptt *p_ptt,
607 					  u64 src_addr,
608 					  u64 dst_addr,
609 					  u8 src_type,
610 					  u8 dst_type,
611 					  u32 length_dw)
612 {
613 	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
614 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
615 	int qed_status = 0;
616 
617 	switch (src_type) {
618 	case QED_DMAE_ADDRESS_GRC:
619 	case QED_DMAE_ADDRESS_HOST_PHYS:
620 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
621 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
622 		break;
623 	/* for virtual source addresses we use the intermediate buffer. */
624 	case QED_DMAE_ADDRESS_HOST_VIRT:
625 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
626 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
627 		memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
628 		       (void *)(uintptr_t)src_addr,
629 		       length_dw * sizeof(u32));
630 		break;
631 	default:
632 		return -EINVAL;
633 	}
634 
635 	switch (dst_type) {
636 	case QED_DMAE_ADDRESS_GRC:
637 	case QED_DMAE_ADDRESS_HOST_PHYS:
638 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
639 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
640 		break;
641 	/* for virtual source addresses we use the intermediate buffer. */
642 	case QED_DMAE_ADDRESS_HOST_VIRT:
643 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
644 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
645 		break;
646 	default:
647 		return -EINVAL;
648 	}
649 
650 	cmd->length_dw = cpu_to_le16((u16)length_dw);
651 
652 	qed_dmae_post_command(p_hwfn, p_ptt);
653 
654 	qed_status = qed_dmae_operation_wait(p_hwfn);
655 
656 	if (qed_status) {
657 		DP_NOTICE(p_hwfn,
658 			  "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
659 			  src_addr, dst_addr, length_dw);
660 		return qed_status;
661 	}
662 
663 	if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
664 		memcpy((void *)(uintptr_t)(dst_addr),
665 		       &p_hwfn->dmae_info.p_intermediate_buffer[0],
666 		       length_dw * sizeof(u32));
667 
668 	return 0;
669 }
670 
671 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
672 				    struct qed_ptt *p_ptt,
673 				    u64 src_addr, u64 dst_addr,
674 				    u8 src_type, u8 dst_type,
675 				    u32 size_in_dwords,
676 				    struct qed_dmae_params *p_params)
677 {
678 	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
679 	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
680 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
681 	u64 src_addr_split = 0, dst_addr_split = 0;
682 	u16 length_limit = DMAE_MAX_RW_SIZE;
683 	int qed_status = 0;
684 	u32 offset = 0;
685 
686 	qed_dmae_opcode(p_hwfn,
687 			(src_type == QED_DMAE_ADDRESS_GRC),
688 			(dst_type == QED_DMAE_ADDRESS_GRC),
689 			p_params);
690 
691 	cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
692 	cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
693 	cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
694 
695 	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
696 	cnt_split = size_in_dwords / length_limit;
697 	length_mod = size_in_dwords % length_limit;
698 
699 	src_addr_split = src_addr;
700 	dst_addr_split = dst_addr;
701 
702 	for (i = 0; i <= cnt_split; i++) {
703 		offset = length_limit * i;
704 
705 		if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
706 			if (src_type == QED_DMAE_ADDRESS_GRC)
707 				src_addr_split = src_addr + offset;
708 			else
709 				src_addr_split = src_addr + (offset * 4);
710 		}
711 
712 		if (dst_type == QED_DMAE_ADDRESS_GRC)
713 			dst_addr_split = dst_addr + offset;
714 		else
715 			dst_addr_split = dst_addr + (offset * 4);
716 
717 		length_cur = (cnt_split == i) ? length_mod : length_limit;
718 
719 		/* might be zero on last iteration */
720 		if (!length_cur)
721 			continue;
722 
723 		qed_status = qed_dmae_execute_sub_operation(p_hwfn,
724 							    p_ptt,
725 							    src_addr_split,
726 							    dst_addr_split,
727 							    src_type,
728 							    dst_type,
729 							    length_cur);
730 		if (qed_status) {
731 			DP_NOTICE(p_hwfn,
732 				  "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
733 				  qed_status, src_addr, dst_addr, length_cur);
734 			break;
735 		}
736 	}
737 
738 	return qed_status;
739 }
740 
741 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
742 		      struct qed_ptt *p_ptt,
743 		  u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
744 {
745 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
746 	struct qed_dmae_params params;
747 	int rc;
748 
749 	memset(&params, 0, sizeof(struct qed_dmae_params));
750 	params.flags = flags;
751 
752 	mutex_lock(&p_hwfn->dmae_info.mutex);
753 
754 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
755 				      grc_addr_in_dw,
756 				      QED_DMAE_ADDRESS_HOST_VIRT,
757 				      QED_DMAE_ADDRESS_GRC,
758 				      size_in_dwords, &params);
759 
760 	mutex_unlock(&p_hwfn->dmae_info.mutex);
761 
762 	return rc;
763 }
764 
765 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
766 		      struct qed_ptt *p_ptt,
767 		      u32 grc_addr,
768 		      dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
769 {
770 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
771 	struct qed_dmae_params params;
772 	int rc;
773 
774 	memset(&params, 0, sizeof(struct qed_dmae_params));
775 	params.flags = flags;
776 
777 	mutex_lock(&p_hwfn->dmae_info.mutex);
778 
779 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
780 				      dest_addr, QED_DMAE_ADDRESS_GRC,
781 				      QED_DMAE_ADDRESS_HOST_VIRT,
782 				      size_in_dwords, &params);
783 
784 	mutex_unlock(&p_hwfn->dmae_info.mutex);
785 
786 	return rc;
787 }
788 
789 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
790 		       struct qed_ptt *p_ptt,
791 		       dma_addr_t source_addr,
792 		       dma_addr_t dest_addr,
793 		       u32 size_in_dwords, struct qed_dmae_params *p_params)
794 {
795 	int rc;
796 
797 	mutex_lock(&(p_hwfn->dmae_info.mutex));
798 
799 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
800 				      dest_addr,
801 				      QED_DMAE_ADDRESS_HOST_PHYS,
802 				      QED_DMAE_ADDRESS_HOST_PHYS,
803 				      size_in_dwords, p_params);
804 
805 	mutex_unlock(&(p_hwfn->dmae_info.mutex));
806 
807 	return rc;
808 }
809 
810 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
811 		    struct qed_ptt *p_ptt, const char *phase)
812 {
813 	u32 size = PAGE_SIZE / 2, val;
814 	struct qed_dmae_params params;
815 	int rc = 0;
816 	dma_addr_t p_phys;
817 	void *p_virt;
818 	u32 *p_tmp;
819 
820 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
821 				    2 * size, &p_phys, GFP_KERNEL);
822 	if (!p_virt) {
823 		DP_NOTICE(p_hwfn,
824 			  "DMAE sanity [%s]: failed to allocate memory\n",
825 			  phase);
826 		return -ENOMEM;
827 	}
828 
829 	/* Fill the bottom half of the allocated memory with a known pattern */
830 	for (p_tmp = (u32 *)p_virt;
831 	     p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
832 		/* Save the address itself as the value */
833 		val = (u32)(uintptr_t)p_tmp;
834 		*p_tmp = val;
835 	}
836 
837 	/* Zero the top half of the allocated memory */
838 	memset((u8 *)p_virt + size, 0, size);
839 
840 	DP_VERBOSE(p_hwfn,
841 		   QED_MSG_SP,
842 		   "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
843 		   phase,
844 		   (u64)p_phys,
845 		   p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
846 
847 	memset(&params, 0, sizeof(params));
848 	rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
849 				size / 4 /* size_in_dwords */, &params);
850 	if (rc) {
851 		DP_NOTICE(p_hwfn,
852 			  "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
853 			  phase, rc);
854 		goto out;
855 	}
856 
857 	/* Verify that the top half of the allocated memory has the pattern */
858 	for (p_tmp = (u32 *)((u8 *)p_virt + size);
859 	     p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
860 		/* The corresponding address in the bottom half */
861 		val = (u32)(uintptr_t)p_tmp - size;
862 
863 		if (*p_tmp != val) {
864 			DP_NOTICE(p_hwfn,
865 				  "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
866 				  phase,
867 				  (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
868 				  p_tmp, *p_tmp, val);
869 			rc = -EINVAL;
870 			goto out;
871 		}
872 	}
873 
874 out:
875 	dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
876 	return rc;
877 }
878