1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51 
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53 
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
56 
57 struct qed_ptt {
58 	struct list_head	list_entry;
59 	unsigned int		idx;
60 	struct pxp_ptt_entry	pxp;
61 };
62 
63 struct qed_ptt_pool {
64 	struct list_head	free_list;
65 	spinlock_t		lock; /* ptt synchronized access */
66 	struct qed_ptt		ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
67 };
68 
69 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
70 {
71 	struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
72 	int i;
73 
74 	if (!p_pool)
75 		return -ENOMEM;
76 
77 	INIT_LIST_HEAD(&p_pool->free_list);
78 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
79 		p_pool->ptts[i].idx = i;
80 		p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
81 		p_pool->ptts[i].pxp.pretend.control = 0;
82 		if (i >= RESERVED_PTT_MAX)
83 			list_add(&p_pool->ptts[i].list_entry,
84 				 &p_pool->free_list);
85 	}
86 
87 	p_hwfn->p_ptt_pool = p_pool;
88 	spin_lock_init(&p_pool->lock);
89 
90 	return 0;
91 }
92 
93 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
94 {
95 	struct qed_ptt *p_ptt;
96 	int i;
97 
98 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
99 		p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
100 		p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
101 	}
102 }
103 
104 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
105 {
106 	kfree(p_hwfn->p_ptt_pool);
107 	p_hwfn->p_ptt_pool = NULL;
108 }
109 
110 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
111 {
112 	struct qed_ptt *p_ptt;
113 	unsigned int i;
114 
115 	/* Take the free PTT from the list */
116 	for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
117 		spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
118 
119 		if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
120 			p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
121 						 struct qed_ptt, list_entry);
122 			list_del(&p_ptt->list_entry);
123 
124 			spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
125 
126 			DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
127 				   "allocated ptt %d\n", p_ptt->idx);
128 			return p_ptt;
129 		}
130 
131 		spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
132 		usleep_range(1000, 2000);
133 	}
134 
135 	DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
136 	return NULL;
137 }
138 
139 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
140 {
141 	spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
142 	list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
143 	spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
144 }
145 
146 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
147 {
148 	/* The HW is using DWORDS and we need to translate it to Bytes */
149 	return le32_to_cpu(p_ptt->pxp.offset) << 2;
150 }
151 
152 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
153 {
154 	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
155 	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
156 }
157 
158 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
159 {
160 	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
161 	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
162 }
163 
164 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
165 		     struct qed_ptt *p_ptt, u32 new_hw_addr)
166 {
167 	u32 prev_hw_addr;
168 
169 	prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
170 
171 	if (new_hw_addr == prev_hw_addr)
172 		return;
173 
174 	/* Update PTT entery in admin window */
175 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
176 		   "Updating PTT entry %d to offset 0x%x\n",
177 		   p_ptt->idx, new_hw_addr);
178 
179 	/* The HW is using DWORDS and the address is in Bytes */
180 	p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
181 
182 	REG_WR(p_hwfn,
183 	       qed_ptt_config_addr(p_ptt) +
184 	       offsetof(struct pxp_ptt_entry, offset),
185 	       le32_to_cpu(p_ptt->pxp.offset));
186 }
187 
188 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
189 		       struct qed_ptt *p_ptt, u32 hw_addr)
190 {
191 	u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
192 	u32 offset;
193 
194 	offset = hw_addr - win_hw_addr;
195 
196 	/* Verify the address is within the window */
197 	if (hw_addr < win_hw_addr ||
198 	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
199 		qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
200 		offset = 0;
201 	}
202 
203 	return qed_ptt_get_bar_addr(p_ptt) + offset;
204 }
205 
206 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
207 				     enum reserved_ptts ptt_idx)
208 {
209 	if (ptt_idx >= RESERVED_PTT_MAX) {
210 		DP_NOTICE(p_hwfn,
211 			  "Requested PTT %d is out of range\n", ptt_idx);
212 		return NULL;
213 	}
214 
215 	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
216 }
217 
218 void qed_wr(struct qed_hwfn *p_hwfn,
219 	    struct qed_ptt *p_ptt,
220 	    u32 hw_addr, u32 val)
221 {
222 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
223 
224 	REG_WR(p_hwfn, bar_addr, val);
225 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
226 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
227 		   bar_addr, hw_addr, val);
228 }
229 
230 u32 qed_rd(struct qed_hwfn *p_hwfn,
231 	   struct qed_ptt *p_ptt,
232 	   u32 hw_addr)
233 {
234 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
235 	u32 val = REG_RD(p_hwfn, bar_addr);
236 
237 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
238 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
239 		   bar_addr, hw_addr, val);
240 
241 	return val;
242 }
243 
244 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
245 			  struct qed_ptt *p_ptt,
246 			  void *addr, u32 hw_addr, size_t n, bool to_device)
247 {
248 	u32 dw_count, *host_addr, hw_offset;
249 	size_t quota, done = 0;
250 	u32 __iomem *reg_addr;
251 
252 	while (done < n) {
253 		quota = min_t(size_t, n - done,
254 			      PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
255 
256 		if (IS_PF(p_hwfn->cdev)) {
257 			qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
258 			hw_offset = qed_ptt_get_bar_addr(p_ptt);
259 		} else {
260 			hw_offset = hw_addr + done;
261 		}
262 
263 		dw_count = quota / 4;
264 		host_addr = (u32 *)((u8 *)addr + done);
265 		reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
266 		if (to_device)
267 			while (dw_count--)
268 				DIRECT_REG_WR(reg_addr++, *host_addr++);
269 		else
270 			while (dw_count--)
271 				*host_addr++ = DIRECT_REG_RD(reg_addr++);
272 
273 		done += quota;
274 	}
275 }
276 
277 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
278 		     struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
279 {
280 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
281 		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
282 		   hw_addr, dest, hw_addr, (unsigned long)n);
283 
284 	qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
285 }
286 
287 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
288 		   struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
289 {
290 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
291 		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
292 		   hw_addr, hw_addr, src, (unsigned long)n);
293 
294 	qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
295 }
296 
297 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
298 {
299 	u16 control = 0;
300 
301 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
302 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
303 
304 	/* Every pretend undos previous pretends, including
305 	 * previous port pretend.
306 	 */
307 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
308 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
309 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
310 
311 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
312 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
313 
314 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
315 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
316 
317 	REG_WR(p_hwfn,
318 	       qed_ptt_config_addr(p_ptt) +
319 	       offsetof(struct pxp_ptt_entry, pretend),
320 	       *(u32 *)&p_ptt->pxp.pretend);
321 }
322 
323 void qed_port_pretend(struct qed_hwfn *p_hwfn,
324 		      struct qed_ptt *p_ptt, u8 port_id)
325 {
326 	u16 control = 0;
327 
328 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
329 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
330 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
331 
332 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
333 
334 	REG_WR(p_hwfn,
335 	       qed_ptt_config_addr(p_ptt) +
336 	       offsetof(struct pxp_ptt_entry, pretend),
337 	       *(u32 *)&p_ptt->pxp.pretend);
338 }
339 
340 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
341 {
342 	u16 control = 0;
343 
344 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
345 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
346 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
347 
348 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
349 
350 	REG_WR(p_hwfn,
351 	       qed_ptt_config_addr(p_ptt) +
352 	       offsetof(struct pxp_ptt_entry, pretend),
353 	       *(u32 *)&p_ptt->pxp.pretend);
354 }
355 
356 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
357 {
358 	u32 concrete_fid = 0;
359 
360 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
361 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
362 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
363 
364 	return concrete_fid;
365 }
366 
367 /* DMAE */
368 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
369 			    const u8 is_src_type_grc,
370 			    const u8 is_dst_type_grc,
371 			    struct qed_dmae_params *p_params)
372 {
373 	u16 opcode_b = 0;
374 	u32 opcode = 0;
375 
376 	/* Whether the source is the PCIe or the GRC.
377 	 * 0- The source is the PCIe
378 	 * 1- The source is the GRC.
379 	 */
380 	opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
381 				   : DMAE_CMD_SRC_MASK_PCIE) <<
382 		   DMAE_CMD_SRC_SHIFT;
383 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
384 		   DMAE_CMD_SRC_PF_ID_SHIFT);
385 
386 	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
387 	opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
388 				   : DMAE_CMD_DST_MASK_PCIE) <<
389 		   DMAE_CMD_DST_SHIFT;
390 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
391 		   DMAE_CMD_DST_PF_ID_SHIFT);
392 
393 	/* Whether to write a completion word to the completion destination:
394 	 * 0-Do not write a completion word
395 	 * 1-Write the completion word
396 	 */
397 	opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
398 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
399 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
400 
401 	if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
402 		opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
403 
404 	opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
405 
406 	opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
407 
408 	/* reset source address in next go */
409 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
410 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
411 
412 	/* reset dest address in next go */
413 	opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
414 		   DMAE_CMD_DST_ADDR_RESET_SHIFT);
415 
416 	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
417 	if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
418 		opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
419 		opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
420 	} else {
421 		opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
422 			    DMAE_CMD_SRC_VF_ID_SHIFT;
423 	}
424 
425 	if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
426 		opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
427 		opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
428 	} else {
429 		opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
430 	}
431 
432 	p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
433 	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
434 }
435 
436 u32 qed_dmae_idx_to_go_cmd(u8 idx)
437 {
438 	/* All the DMAE 'go' registers form an array in internal memory */
439 	return DMAE_REG_GO_C0 + (idx << 2);
440 }
441 
442 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
443 				 struct qed_ptt *p_ptt)
444 {
445 	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
446 	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
447 	int qed_status = 0;
448 
449 	/* verify address is not NULL */
450 	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
451 	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
452 		DP_NOTICE(p_hwfn,
453 			  "source or destination address 0 idx_cmd=%d\n"
454 			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
455 			  idx_cmd,
456 			  le32_to_cpu(p_command->opcode),
457 			  le16_to_cpu(p_command->opcode_b),
458 			  le16_to_cpu(p_command->length_dw),
459 			  le32_to_cpu(p_command->src_addr_hi),
460 			  le32_to_cpu(p_command->src_addr_lo),
461 			  le32_to_cpu(p_command->dst_addr_hi),
462 			  le32_to_cpu(p_command->dst_addr_lo));
463 
464 		return -EINVAL;
465 	}
466 
467 	DP_VERBOSE(p_hwfn,
468 		   NETIF_MSG_HW,
469 		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
470 		   idx_cmd,
471 		   le32_to_cpu(p_command->opcode),
472 		   le16_to_cpu(p_command->opcode_b),
473 		   le16_to_cpu(p_command->length_dw),
474 		   le32_to_cpu(p_command->src_addr_hi),
475 		   le32_to_cpu(p_command->src_addr_lo),
476 		   le32_to_cpu(p_command->dst_addr_hi),
477 		   le32_to_cpu(p_command->dst_addr_lo));
478 
479 	/* Copy the command to DMAE - need to do it before every call
480 	 * for source/dest address no reset.
481 	 * The first 9 DWs are the command registers, the 10 DW is the
482 	 * GO register, and the rest are result registers
483 	 * (which are read only by the client).
484 	 */
485 	for (i = 0; i < DMAE_CMD_SIZE; i++) {
486 		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
487 			   *(((u32 *)p_command) + i) : 0;
488 
489 		qed_wr(p_hwfn, p_ptt,
490 		       DMAE_REG_CMD_MEM +
491 		       (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
492 		       (i * sizeof(u32)), data);
493 	}
494 
495 	qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
496 
497 	return qed_status;
498 }
499 
500 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
501 {
502 	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
503 	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
504 	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
505 	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
506 
507 	*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
508 				     sizeof(u32), p_addr, GFP_KERNEL);
509 	if (!*p_comp)
510 		goto err;
511 
512 	p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
513 	*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
514 				    sizeof(struct dmae_cmd),
515 				    p_addr, GFP_KERNEL);
516 	if (!*p_cmd)
517 		goto err;
518 
519 	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
520 	*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
521 				     sizeof(u32) * DMAE_MAX_RW_SIZE,
522 				     p_addr, GFP_KERNEL);
523 	if (!*p_buff)
524 		goto err;
525 
526 	p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
527 
528 	return 0;
529 err:
530 	qed_dmae_info_free(p_hwfn);
531 	return -ENOMEM;
532 }
533 
534 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
535 {
536 	dma_addr_t p_phys;
537 
538 	/* Just make sure no one is in the middle */
539 	mutex_lock(&p_hwfn->dmae_info.mutex);
540 
541 	if (p_hwfn->dmae_info.p_completion_word) {
542 		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
543 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
544 				  sizeof(u32),
545 				  p_hwfn->dmae_info.p_completion_word, p_phys);
546 		p_hwfn->dmae_info.p_completion_word = NULL;
547 	}
548 
549 	if (p_hwfn->dmae_info.p_dmae_cmd) {
550 		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
551 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
552 				  sizeof(struct dmae_cmd),
553 				  p_hwfn->dmae_info.p_dmae_cmd, p_phys);
554 		p_hwfn->dmae_info.p_dmae_cmd = NULL;
555 	}
556 
557 	if (p_hwfn->dmae_info.p_intermediate_buffer) {
558 		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
559 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
560 				  sizeof(u32) * DMAE_MAX_RW_SIZE,
561 				  p_hwfn->dmae_info.p_intermediate_buffer,
562 				  p_phys);
563 		p_hwfn->dmae_info.p_intermediate_buffer = NULL;
564 	}
565 
566 	mutex_unlock(&p_hwfn->dmae_info.mutex);
567 }
568 
569 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
570 {
571 	u32 wait_cnt_limit = 10000, wait_cnt = 0;
572 	int qed_status = 0;
573 
574 	barrier();
575 	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
576 		udelay(DMAE_MIN_WAIT_TIME);
577 		if (++wait_cnt > wait_cnt_limit) {
578 			DP_NOTICE(p_hwfn->cdev,
579 				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
580 				  *p_hwfn->dmae_info.p_completion_word,
581 				 DMAE_COMPLETION_VAL);
582 			qed_status = -EBUSY;
583 			break;
584 		}
585 
586 		/* to sync the completion_word since we are not
587 		 * using the volatile keyword for p_completion_word
588 		 */
589 		barrier();
590 	}
591 
592 	if (qed_status == 0)
593 		*p_hwfn->dmae_info.p_completion_word = 0;
594 
595 	return qed_status;
596 }
597 
598 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
599 					  struct qed_ptt *p_ptt,
600 					  u64 src_addr,
601 					  u64 dst_addr,
602 					  u8 src_type,
603 					  u8 dst_type,
604 					  u32 length_dw)
605 {
606 	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
607 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
608 	int qed_status = 0;
609 
610 	switch (src_type) {
611 	case QED_DMAE_ADDRESS_GRC:
612 	case QED_DMAE_ADDRESS_HOST_PHYS:
613 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
614 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
615 		break;
616 	/* for virtual source addresses we use the intermediate buffer. */
617 	case QED_DMAE_ADDRESS_HOST_VIRT:
618 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
619 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
620 		memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
621 		       (void *)(uintptr_t)src_addr,
622 		       length_dw * sizeof(u32));
623 		break;
624 	default:
625 		return -EINVAL;
626 	}
627 
628 	switch (dst_type) {
629 	case QED_DMAE_ADDRESS_GRC:
630 	case QED_DMAE_ADDRESS_HOST_PHYS:
631 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
632 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
633 		break;
634 	/* for virtual source addresses we use the intermediate buffer. */
635 	case QED_DMAE_ADDRESS_HOST_VIRT:
636 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
637 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	cmd->length_dw = cpu_to_le16((u16)length_dw);
644 
645 	qed_dmae_post_command(p_hwfn, p_ptt);
646 
647 	qed_status = qed_dmae_operation_wait(p_hwfn);
648 
649 	if (qed_status) {
650 		DP_NOTICE(p_hwfn,
651 			  "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
652 			  src_addr, dst_addr, length_dw);
653 		return qed_status;
654 	}
655 
656 	if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
657 		memcpy((void *)(uintptr_t)(dst_addr),
658 		       &p_hwfn->dmae_info.p_intermediate_buffer[0],
659 		       length_dw * sizeof(u32));
660 
661 	return 0;
662 }
663 
664 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
665 				    struct qed_ptt *p_ptt,
666 				    u64 src_addr, u64 dst_addr,
667 				    u8 src_type, u8 dst_type,
668 				    u32 size_in_dwords,
669 				    struct qed_dmae_params *p_params)
670 {
671 	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
672 	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
673 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
674 	u64 src_addr_split = 0, dst_addr_split = 0;
675 	u16 length_limit = DMAE_MAX_RW_SIZE;
676 	int qed_status = 0;
677 	u32 offset = 0;
678 
679 	qed_dmae_opcode(p_hwfn,
680 			(src_type == QED_DMAE_ADDRESS_GRC),
681 			(dst_type == QED_DMAE_ADDRESS_GRC),
682 			p_params);
683 
684 	cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
685 	cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
686 	cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
687 
688 	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
689 	cnt_split = size_in_dwords / length_limit;
690 	length_mod = size_in_dwords % length_limit;
691 
692 	src_addr_split = src_addr;
693 	dst_addr_split = dst_addr;
694 
695 	for (i = 0; i <= cnt_split; i++) {
696 		offset = length_limit * i;
697 
698 		if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
699 			if (src_type == QED_DMAE_ADDRESS_GRC)
700 				src_addr_split = src_addr + offset;
701 			else
702 				src_addr_split = src_addr + (offset * 4);
703 		}
704 
705 		if (dst_type == QED_DMAE_ADDRESS_GRC)
706 			dst_addr_split = dst_addr + offset;
707 		else
708 			dst_addr_split = dst_addr + (offset * 4);
709 
710 		length_cur = (cnt_split == i) ? length_mod : length_limit;
711 
712 		/* might be zero on last iteration */
713 		if (!length_cur)
714 			continue;
715 
716 		qed_status = qed_dmae_execute_sub_operation(p_hwfn,
717 							    p_ptt,
718 							    src_addr_split,
719 							    dst_addr_split,
720 							    src_type,
721 							    dst_type,
722 							    length_cur);
723 		if (qed_status) {
724 			DP_NOTICE(p_hwfn,
725 				  "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
726 				  qed_status, src_addr, dst_addr, length_cur);
727 			break;
728 		}
729 	}
730 
731 	return qed_status;
732 }
733 
734 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
735 		      struct qed_ptt *p_ptt,
736 		  u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
737 {
738 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
739 	struct qed_dmae_params params;
740 	int rc;
741 
742 	memset(&params, 0, sizeof(struct qed_dmae_params));
743 	params.flags = flags;
744 
745 	mutex_lock(&p_hwfn->dmae_info.mutex);
746 
747 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
748 				      grc_addr_in_dw,
749 				      QED_DMAE_ADDRESS_HOST_VIRT,
750 				      QED_DMAE_ADDRESS_GRC,
751 				      size_in_dwords, &params);
752 
753 	mutex_unlock(&p_hwfn->dmae_info.mutex);
754 
755 	return rc;
756 }
757 
758 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
759 		      struct qed_ptt *p_ptt,
760 		      u32 grc_addr,
761 		      dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
762 {
763 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
764 	struct qed_dmae_params params;
765 	int rc;
766 
767 	memset(&params, 0, sizeof(struct qed_dmae_params));
768 	params.flags = flags;
769 
770 	mutex_lock(&p_hwfn->dmae_info.mutex);
771 
772 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
773 				      dest_addr, QED_DMAE_ADDRESS_GRC,
774 				      QED_DMAE_ADDRESS_HOST_VIRT,
775 				      size_in_dwords, &params);
776 
777 	mutex_unlock(&p_hwfn->dmae_info.mutex);
778 
779 	return rc;
780 }
781 
782 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
783 		       struct qed_ptt *p_ptt,
784 		       dma_addr_t source_addr,
785 		       dma_addr_t dest_addr,
786 		       u32 size_in_dwords, struct qed_dmae_params *p_params)
787 {
788 	int rc;
789 
790 	mutex_lock(&(p_hwfn->dmae_info.mutex));
791 
792 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
793 				      dest_addr,
794 				      QED_DMAE_ADDRESS_HOST_PHYS,
795 				      QED_DMAE_ADDRESS_HOST_PHYS,
796 				      size_in_dwords, p_params);
797 
798 	mutex_unlock(&(p_hwfn->dmae_info.mutex));
799 
800 	return rc;
801 }
802 
803