1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <asm/byteorder.h> 35 #include <linux/io.h> 36 #include <linux/delay.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mutex.h> 41 #include <linux/pci.h> 42 #include <linux/slab.h> 43 #include <linux/string.h> 44 #include <linux/vmalloc.h> 45 #include <linux/etherdevice.h> 46 #include <linux/qed/qed_chain.h> 47 #include <linux/qed/qed_if.h> 48 #include "qed.h" 49 #include "qed_cxt.h" 50 #include "qed_dcbx.h" 51 #include "qed_dev_api.h" 52 #include "qed_fcoe.h" 53 #include "qed_hsi.h" 54 #include "qed_hw.h" 55 #include "qed_init_ops.h" 56 #include "qed_int.h" 57 #include "qed_iscsi.h" 58 #include "qed_ll2.h" 59 #include "qed_mcp.h" 60 #include "qed_ooo.h" 61 #include "qed_reg_addr.h" 62 #include "qed_sp.h" 63 #include "qed_sriov.h" 64 #include "qed_vf.h" 65 #include "qed_rdma.h" 66 67 static DEFINE_SPINLOCK(qm_lock); 68 69 #define QED_MIN_DPIS (4) 70 #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) 71 72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, 73 struct qed_ptt *p_ptt, enum BAR_ID bar_id) 74 { 75 u32 bar_reg = (bar_id == BAR_ID_0 ? 76 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 77 u32 val; 78 79 if (IS_VF(p_hwfn->cdev)) 80 return qed_vf_hw_bar_size(p_hwfn, bar_id); 81 82 val = qed_rd(p_hwfn, p_ptt, bar_reg); 83 if (val) 84 return 1 << (val + 15); 85 86 /* Old MFW initialized above registered only conditionally */ 87 if (p_hwfn->cdev->num_hwfns > 1) { 88 DP_INFO(p_hwfn, 89 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 90 return BAR_ID_0 ? 256 * 1024 : 512 * 1024; 91 } else { 92 DP_INFO(p_hwfn, 93 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 94 return 512 * 1024; 95 } 96 } 97 98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) 99 { 100 u32 i; 101 102 cdev->dp_level = dp_level; 103 cdev->dp_module = dp_module; 104 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 105 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 106 107 p_hwfn->dp_level = dp_level; 108 p_hwfn->dp_module = dp_module; 109 } 110 } 111 112 void qed_init_struct(struct qed_dev *cdev) 113 { 114 u8 i; 115 116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 117 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 118 119 p_hwfn->cdev = cdev; 120 p_hwfn->my_id = i; 121 p_hwfn->b_active = false; 122 123 mutex_init(&p_hwfn->dmae_info.mutex); 124 } 125 126 /* hwfn 0 is always active */ 127 cdev->hwfns[0].b_active = true; 128 129 /* set the default cache alignment to 128 */ 130 cdev->cache_shift = 7; 131 } 132 133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn) 134 { 135 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 136 137 kfree(qm_info->qm_pq_params); 138 qm_info->qm_pq_params = NULL; 139 kfree(qm_info->qm_vport_params); 140 qm_info->qm_vport_params = NULL; 141 kfree(qm_info->qm_port_params); 142 qm_info->qm_port_params = NULL; 143 kfree(qm_info->wfq_data); 144 qm_info->wfq_data = NULL; 145 } 146 147 static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn) 148 { 149 kfree(p_hwfn->dbg_user_info); 150 p_hwfn->dbg_user_info = NULL; 151 } 152 153 void qed_resc_free(struct qed_dev *cdev) 154 { 155 int i; 156 157 if (IS_VF(cdev)) { 158 for_each_hwfn(cdev, i) 159 qed_l2_free(&cdev->hwfns[i]); 160 return; 161 } 162 163 kfree(cdev->fw_data); 164 cdev->fw_data = NULL; 165 166 kfree(cdev->reset_stats); 167 cdev->reset_stats = NULL; 168 169 for_each_hwfn(cdev, i) { 170 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 171 172 qed_cxt_mngr_free(p_hwfn); 173 qed_qm_info_free(p_hwfn); 174 qed_spq_free(p_hwfn); 175 qed_eq_free(p_hwfn); 176 qed_consq_free(p_hwfn); 177 qed_int_free(p_hwfn); 178 #ifdef CONFIG_QED_LL2 179 qed_ll2_free(p_hwfn); 180 #endif 181 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 182 qed_fcoe_free(p_hwfn); 183 184 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 185 qed_iscsi_free(p_hwfn); 186 qed_ooo_free(p_hwfn); 187 } 188 189 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) 190 qed_rdma_info_free(p_hwfn); 191 192 qed_iov_free(p_hwfn); 193 qed_l2_free(p_hwfn); 194 qed_dmae_info_free(p_hwfn); 195 qed_dcbx_info_free(p_hwfn); 196 qed_dbg_user_data_free(p_hwfn); 197 } 198 } 199 200 /******************** QM initialization *******************/ 201 #define ACTIVE_TCS_BMAP 0x9f 202 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 203 204 /* determines the physical queue flags for a given PF. */ 205 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) 206 { 207 u32 flags; 208 209 /* common flags */ 210 flags = PQ_FLAGS_LB; 211 212 /* feature flags */ 213 if (IS_QED_SRIOV(p_hwfn->cdev)) 214 flags |= PQ_FLAGS_VFS; 215 216 /* protocol flags */ 217 switch (p_hwfn->hw_info.personality) { 218 case QED_PCI_ETH: 219 flags |= PQ_FLAGS_MCOS; 220 break; 221 case QED_PCI_FCOE: 222 flags |= PQ_FLAGS_OFLD; 223 break; 224 case QED_PCI_ISCSI: 225 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 226 break; 227 case QED_PCI_ETH_ROCE: 228 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 229 if (IS_QED_MULTI_TC_ROCE(p_hwfn)) 230 flags |= PQ_FLAGS_MTC; 231 break; 232 case QED_PCI_ETH_IWARP: 233 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | 234 PQ_FLAGS_OFLD; 235 break; 236 default: 237 DP_ERR(p_hwfn, 238 "unknown personality %d\n", p_hwfn->hw_info.personality); 239 return 0; 240 } 241 242 return flags; 243 } 244 245 /* Getters for resource amounts necessary for qm initialization */ 246 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) 247 { 248 return p_hwfn->hw_info.num_hw_tc; 249 } 250 251 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) 252 { 253 return IS_QED_SRIOV(p_hwfn->cdev) ? 254 p_hwfn->cdev->p_iov_info->total_vfs : 0; 255 } 256 257 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn) 258 { 259 u32 pq_flags = qed_get_pq_flags(p_hwfn); 260 261 if (!(PQ_FLAGS_MTC & pq_flags)) 262 return 1; 263 264 return qed_init_qm_get_num_tcs(p_hwfn); 265 } 266 267 #define NUM_DEFAULT_RLS 1 268 269 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) 270 { 271 u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 272 273 /* num RLs can't exceed resource amount of rls or vports */ 274 num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), 275 RESC_NUM(p_hwfn, QED_VPORT)); 276 277 /* Make sure after we reserve there's something left */ 278 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) 279 return 0; 280 281 /* subtract rls necessary for VFs and one default one for the PF */ 282 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 283 284 return num_pf_rls; 285 } 286 287 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) 288 { 289 u32 pq_flags = qed_get_pq_flags(p_hwfn); 290 291 /* all pqs share the same vport, except for vfs and pf_rl pqs */ 292 return (!!(PQ_FLAGS_RLS & pq_flags)) * 293 qed_init_qm_get_num_pf_rls(p_hwfn) + 294 (!!(PQ_FLAGS_VFS & pq_flags)) * 295 qed_init_qm_get_num_vfs(p_hwfn) + 1; 296 } 297 298 /* calc amount of PQs according to the requested flags */ 299 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) 300 { 301 u32 pq_flags = qed_get_pq_flags(p_hwfn); 302 303 return (!!(PQ_FLAGS_RLS & pq_flags)) * 304 qed_init_qm_get_num_pf_rls(p_hwfn) + 305 (!!(PQ_FLAGS_MCOS & pq_flags)) * 306 qed_init_qm_get_num_tcs(p_hwfn) + 307 (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + 308 (!!(PQ_FLAGS_ACK & pq_flags)) + 309 (!!(PQ_FLAGS_OFLD & pq_flags)) * 310 qed_init_qm_get_num_mtc_tcs(p_hwfn) + 311 (!!(PQ_FLAGS_LLT & pq_flags)) * 312 qed_init_qm_get_num_mtc_tcs(p_hwfn) + 313 (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); 314 } 315 316 /* initialize the top level QM params */ 317 static void qed_init_qm_params(struct qed_hwfn *p_hwfn) 318 { 319 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 320 bool four_port; 321 322 /* pq and vport bases for this PF */ 323 qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); 324 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); 325 326 /* rate limiting and weighted fair queueing are always enabled */ 327 qm_info->vport_rl_en = true; 328 qm_info->vport_wfq_en = true; 329 330 /* TC config is different for AH 4 port */ 331 four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; 332 333 /* in AH 4 port we have fewer TCs per port */ 334 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 335 NUM_OF_PHYS_TCS; 336 337 /* unless MFW indicated otherwise, ooo_tc == 3 for 338 * AH 4-port and 4 otherwise. 339 */ 340 if (!qm_info->ooo_tc) 341 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 342 DCBX_TCP_OOO_TC; 343 } 344 345 /* initialize qm vport params */ 346 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) 347 { 348 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 349 u8 i; 350 351 /* all vports participate in weighted fair queueing */ 352 for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) 353 qm_info->qm_vport_params[i].vport_wfq = 1; 354 } 355 356 /* initialize qm port params */ 357 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) 358 { 359 /* Initialize qm port parameters */ 360 u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; 361 362 /* indicate how ooo and high pri traffic is dealt with */ 363 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 364 ACTIVE_TCS_BMAP_4PORT_K2 : 365 ACTIVE_TCS_BMAP; 366 367 for (i = 0; i < num_ports; i++) { 368 struct init_qm_port_params *p_qm_port = 369 &p_hwfn->qm_info.qm_port_params[i]; 370 371 p_qm_port->active = 1; 372 p_qm_port->active_phys_tcs = active_phys_tcs; 373 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; 374 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; 375 } 376 } 377 378 /* Reset the params which must be reset for qm init. QM init may be called as 379 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 380 * params may be affected by the init but would simply recalculate to the same 381 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 382 * affected as these amounts stay the same. 383 */ 384 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) 385 { 386 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 387 388 qm_info->num_pqs = 0; 389 qm_info->num_vports = 0; 390 qm_info->num_pf_rls = 0; 391 qm_info->num_vf_pqs = 0; 392 qm_info->first_vf_pq = 0; 393 qm_info->first_mcos_pq = 0; 394 qm_info->first_rl_pq = 0; 395 } 396 397 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) 398 { 399 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 400 401 qm_info->num_vports++; 402 403 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 404 DP_ERR(p_hwfn, 405 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 406 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 407 } 408 409 /* initialize a single pq and manage qm_info resources accounting. 410 * The pq_init_flags param determines whether the PQ is rate limited 411 * (for VF or PF) and whether a new vport is allocated to the pq or not 412 * (i.e. vport will be shared). 413 */ 414 415 /* flags for pq init */ 416 #define PQ_INIT_SHARE_VPORT (1 << 0) 417 #define PQ_INIT_PF_RL (1 << 1) 418 #define PQ_INIT_VF_RL (1 << 2) 419 420 /* defines for pq init */ 421 #define PQ_INIT_DEFAULT_WRR_GROUP 1 422 #define PQ_INIT_DEFAULT_TC 0 423 424 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc) 425 { 426 p_info->offload_tc = tc; 427 p_info->offload_tc_set = true; 428 } 429 430 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn) 431 { 432 return p_hwfn->hw_info.offload_tc_set; 433 } 434 435 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn) 436 { 437 if (qed_is_offload_tc_set(p_hwfn)) 438 return p_hwfn->hw_info.offload_tc; 439 440 return PQ_INIT_DEFAULT_TC; 441 } 442 443 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, 444 struct qed_qm_info *qm_info, 445 u8 tc, u32 pq_init_flags) 446 { 447 u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); 448 449 if (pq_idx > max_pq) 450 DP_ERR(p_hwfn, 451 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 452 453 /* init pq params */ 454 qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; 455 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 456 qm_info->num_vports; 457 qm_info->qm_pq_params[pq_idx].tc_id = tc; 458 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 459 qm_info->qm_pq_params[pq_idx].rl_valid = 460 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); 461 462 /* qm params accounting */ 463 qm_info->num_pqs++; 464 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 465 qm_info->num_vports++; 466 467 if (pq_init_flags & PQ_INIT_PF_RL) 468 qm_info->num_pf_rls++; 469 470 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 471 DP_ERR(p_hwfn, 472 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 473 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 474 475 if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) 476 DP_ERR(p_hwfn, 477 "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", 478 qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); 479 } 480 481 /* get pq index according to PQ_FLAGS */ 482 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, 483 u32 pq_flags) 484 { 485 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 486 487 /* Can't have multiple flags set here */ 488 if (bitmap_weight((unsigned long *)&pq_flags, 489 sizeof(pq_flags) * BITS_PER_BYTE) > 1) { 490 DP_ERR(p_hwfn, "requested multiple pq flags 0x%x\n", pq_flags); 491 goto err; 492 } 493 494 if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) { 495 DP_ERR(p_hwfn, "pq flag 0x%x is not set\n", pq_flags); 496 goto err; 497 } 498 499 switch (pq_flags) { 500 case PQ_FLAGS_RLS: 501 return &qm_info->first_rl_pq; 502 case PQ_FLAGS_MCOS: 503 return &qm_info->first_mcos_pq; 504 case PQ_FLAGS_LB: 505 return &qm_info->pure_lb_pq; 506 case PQ_FLAGS_OOO: 507 return &qm_info->ooo_pq; 508 case PQ_FLAGS_ACK: 509 return &qm_info->pure_ack_pq; 510 case PQ_FLAGS_OFLD: 511 return &qm_info->first_ofld_pq; 512 case PQ_FLAGS_LLT: 513 return &qm_info->first_llt_pq; 514 case PQ_FLAGS_VFS: 515 return &qm_info->first_vf_pq; 516 default: 517 goto err; 518 } 519 520 err: 521 return &qm_info->start_pq; 522 } 523 524 /* save pq index in qm info */ 525 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, 526 u32 pq_flags, u16 pq_val) 527 { 528 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 529 530 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 531 } 532 533 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 534 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) 535 { 536 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 537 538 return *base_pq_idx + CM_TX_PQ_BASE; 539 } 540 541 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) 542 { 543 u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); 544 545 if (max_tc == 0) { 546 DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", 547 PQ_FLAGS_MCOS); 548 return p_hwfn->qm_info.start_pq; 549 } 550 551 if (tc > max_tc) 552 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 553 554 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc); 555 } 556 557 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) 558 { 559 u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); 560 561 if (max_vf == 0) { 562 DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", 563 PQ_FLAGS_VFS); 564 return p_hwfn->qm_info.start_pq; 565 } 566 567 if (vf > max_vf) 568 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 569 570 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf); 571 } 572 573 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc) 574 { 575 u16 first_ofld_pq, pq_offset; 576 577 first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD); 578 pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? 579 tc : PQ_INIT_DEFAULT_TC; 580 581 return first_ofld_pq + pq_offset; 582 } 583 584 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc) 585 { 586 u16 first_llt_pq, pq_offset; 587 588 first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT); 589 pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? 590 tc : PQ_INIT_DEFAULT_TC; 591 592 return first_llt_pq + pq_offset; 593 } 594 595 /* Functions for creating specific types of pqs */ 596 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) 597 { 598 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 599 600 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 601 return; 602 603 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 604 qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 605 } 606 607 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) 608 { 609 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 610 611 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 612 return; 613 614 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 615 qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 616 } 617 618 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) 619 { 620 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 621 622 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 623 return; 624 625 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 626 qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), 627 PQ_INIT_SHARE_VPORT); 628 } 629 630 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn) 631 { 632 u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn); 633 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 634 u8 tc; 635 636 /* override pq's TC if offload TC is set */ 637 for (tc = 0; tc < num_tcs; tc++) 638 qed_init_qm_pq(p_hwfn, qm_info, 639 qed_is_offload_tc_set(p_hwfn) ? 640 p_hwfn->hw_info.offload_tc : tc, 641 PQ_INIT_SHARE_VPORT); 642 } 643 644 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) 645 { 646 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 647 648 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 649 return; 650 651 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 652 qed_init_qm_mtc_pqs(p_hwfn); 653 } 654 655 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) 656 { 657 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 658 659 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) 660 return; 661 662 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); 663 qed_init_qm_mtc_pqs(p_hwfn); 664 } 665 666 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) 667 { 668 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 669 u8 tc_idx; 670 671 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 672 return; 673 674 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 675 for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) 676 qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 677 } 678 679 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) 680 { 681 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 682 u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 683 684 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 685 return; 686 687 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 688 qm_info->num_vf_pqs = num_vfs; 689 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 690 qed_init_qm_pq(p_hwfn, 691 qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); 692 } 693 694 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) 695 { 696 u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); 697 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 698 699 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 700 return; 701 702 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 703 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 704 qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), 705 PQ_INIT_PF_RL); 706 } 707 708 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) 709 { 710 /* rate limited pqs, must come first (FW assumption) */ 711 qed_init_qm_rl_pqs(p_hwfn); 712 713 /* pqs for multi cos */ 714 qed_init_qm_mcos_pqs(p_hwfn); 715 716 /* pure loopback pq */ 717 qed_init_qm_lb_pq(p_hwfn); 718 719 /* out of order pq */ 720 qed_init_qm_ooo_pq(p_hwfn); 721 722 /* pure ack pq */ 723 qed_init_qm_pure_ack_pq(p_hwfn); 724 725 /* pq for offloaded protocol */ 726 qed_init_qm_offload_pq(p_hwfn); 727 728 /* low latency pq */ 729 qed_init_qm_low_latency_pq(p_hwfn); 730 731 /* done sharing vports */ 732 qed_init_qm_advance_vport(p_hwfn); 733 734 /* pqs for vfs */ 735 qed_init_qm_vf_pqs(p_hwfn); 736 } 737 738 /* compare values of getters against resources amounts */ 739 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) 740 { 741 if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { 742 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 743 return -EINVAL; 744 } 745 746 if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) 747 return 0; 748 749 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { 750 p_hwfn->hw_info.multi_tc_roce_en = 0; 751 DP_NOTICE(p_hwfn, 752 "multi-tc roce was disabled to reduce requested amount of pqs\n"); 753 if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) 754 return 0; 755 } 756 757 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 758 return -EINVAL; 759 } 760 761 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) 762 { 763 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 764 struct init_qm_vport_params *vport; 765 struct init_qm_port_params *port; 766 struct init_qm_pq_params *pq; 767 int i, tc; 768 769 /* top level params */ 770 DP_VERBOSE(p_hwfn, 771 NETIF_MSG_HW, 772 "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n", 773 qm_info->start_pq, 774 qm_info->start_vport, 775 qm_info->pure_lb_pq, 776 qm_info->first_ofld_pq, 777 qm_info->first_llt_pq, 778 qm_info->pure_ack_pq); 779 DP_VERBOSE(p_hwfn, 780 NETIF_MSG_HW, 781 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", 782 qm_info->ooo_pq, 783 qm_info->first_vf_pq, 784 qm_info->num_pqs, 785 qm_info->num_vf_pqs, 786 qm_info->num_vports, qm_info->max_phys_tcs_per_port); 787 DP_VERBOSE(p_hwfn, 788 NETIF_MSG_HW, 789 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 790 qm_info->pf_rl_en, 791 qm_info->pf_wfq_en, 792 qm_info->vport_rl_en, 793 qm_info->vport_wfq_en, 794 qm_info->pf_wfq, 795 qm_info->pf_rl, 796 qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); 797 798 /* port table */ 799 for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { 800 port = &(qm_info->qm_port_params[i]); 801 DP_VERBOSE(p_hwfn, 802 NETIF_MSG_HW, 803 "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", 804 i, 805 port->active, 806 port->active_phys_tcs, 807 port->num_pbf_cmd_lines, 808 port->num_btb_blocks, port->reserved); 809 } 810 811 /* vport table */ 812 for (i = 0; i < qm_info->num_vports; i++) { 813 vport = &(qm_info->qm_vport_params[i]); 814 DP_VERBOSE(p_hwfn, 815 NETIF_MSG_HW, 816 "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ", 817 qm_info->start_vport + i, 818 vport->vport_rl, vport->vport_wfq); 819 for (tc = 0; tc < NUM_OF_TCS; tc++) 820 DP_VERBOSE(p_hwfn, 821 NETIF_MSG_HW, 822 "%d ", vport->first_tx_pq_id[tc]); 823 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); 824 } 825 826 /* pq table */ 827 for (i = 0; i < qm_info->num_pqs; i++) { 828 pq = &(qm_info->qm_pq_params[i]); 829 DP_VERBOSE(p_hwfn, 830 NETIF_MSG_HW, 831 "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", 832 qm_info->start_pq + i, 833 pq->port_id, 834 pq->vport_id, 835 pq->tc_id, pq->wrr_group, pq->rl_valid); 836 } 837 } 838 839 static void qed_init_qm_info(struct qed_hwfn *p_hwfn) 840 { 841 /* reset params required for init run */ 842 qed_init_qm_reset_params(p_hwfn); 843 844 /* init QM top level params */ 845 qed_init_qm_params(p_hwfn); 846 847 /* init QM port params */ 848 qed_init_qm_port_params(p_hwfn); 849 850 /* init QM vport params */ 851 qed_init_qm_vport_params(p_hwfn); 852 853 /* init QM physical queue params */ 854 qed_init_qm_pq_params(p_hwfn); 855 856 /* display all that init */ 857 qed_dp_init_qm_params(p_hwfn); 858 } 859 860 /* This function reconfigures the QM pf on the fly. 861 * For this purpose we: 862 * 1. reconfigure the QM database 863 * 2. set new values to runtime array 864 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 865 * 4. activate init tool in QM_PF stage 866 * 5. send an sdm_qm_cmd through rbc interface to release the QM 867 */ 868 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 869 { 870 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 871 bool b_rc; 872 int rc; 873 874 /* initialize qed's qm data structure */ 875 qed_init_qm_info(p_hwfn); 876 877 /* stop PF's qm queues */ 878 spin_lock_bh(&qm_lock); 879 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 880 qm_info->start_pq, qm_info->num_pqs); 881 spin_unlock_bh(&qm_lock); 882 if (!b_rc) 883 return -EINVAL; 884 885 /* clear the QM_PF runtime phase leftovers from previous init */ 886 qed_init_clear_rt_data(p_hwfn); 887 888 /* prepare QM portion of runtime array */ 889 qed_qm_init_pf(p_hwfn, p_ptt, false); 890 891 /* activate init tool on runtime array */ 892 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 893 p_hwfn->hw_info.hw_mode); 894 if (rc) 895 return rc; 896 897 /* start PF's qm queues */ 898 spin_lock_bh(&qm_lock); 899 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 900 qm_info->start_pq, qm_info->num_pqs); 901 spin_unlock_bh(&qm_lock); 902 if (!b_rc) 903 return -EINVAL; 904 905 return 0; 906 } 907 908 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) 909 { 910 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 911 int rc; 912 913 rc = qed_init_qm_sanity(p_hwfn); 914 if (rc) 915 goto alloc_err; 916 917 qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn), 918 sizeof(*qm_info->qm_pq_params), 919 GFP_KERNEL); 920 if (!qm_info->qm_pq_params) 921 goto alloc_err; 922 923 qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn), 924 sizeof(*qm_info->qm_vport_params), 925 GFP_KERNEL); 926 if (!qm_info->qm_vport_params) 927 goto alloc_err; 928 929 qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine, 930 sizeof(*qm_info->qm_port_params), 931 GFP_KERNEL); 932 if (!qm_info->qm_port_params) 933 goto alloc_err; 934 935 qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn), 936 sizeof(*qm_info->wfq_data), 937 GFP_KERNEL); 938 if (!qm_info->wfq_data) 939 goto alloc_err; 940 941 return 0; 942 943 alloc_err: 944 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); 945 qed_qm_info_free(p_hwfn); 946 return -ENOMEM; 947 } 948 949 int qed_resc_alloc(struct qed_dev *cdev) 950 { 951 u32 rdma_tasks, excess_tasks; 952 u32 line_count; 953 int i, rc = 0; 954 955 if (IS_VF(cdev)) { 956 for_each_hwfn(cdev, i) { 957 rc = qed_l2_alloc(&cdev->hwfns[i]); 958 if (rc) 959 return rc; 960 } 961 return rc; 962 } 963 964 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); 965 if (!cdev->fw_data) 966 return -ENOMEM; 967 968 for_each_hwfn(cdev, i) { 969 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 970 u32 n_eqes, num_cons; 971 972 /* First allocate the context manager structure */ 973 rc = qed_cxt_mngr_alloc(p_hwfn); 974 if (rc) 975 goto alloc_err; 976 977 /* Set the HW cid/tid numbers (in the contest manager) 978 * Must be done prior to any further computations. 979 */ 980 rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); 981 if (rc) 982 goto alloc_err; 983 984 rc = qed_alloc_qm_data(p_hwfn); 985 if (rc) 986 goto alloc_err; 987 988 /* init qm info */ 989 qed_init_qm_info(p_hwfn); 990 991 /* Compute the ILT client partition */ 992 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 993 if (rc) { 994 DP_NOTICE(p_hwfn, 995 "too many ILT lines; re-computing with less lines\n"); 996 /* In case there are not enough ILT lines we reduce the 997 * number of RDMA tasks and re-compute. 998 */ 999 excess_tasks = 1000 qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); 1001 if (!excess_tasks) 1002 goto alloc_err; 1003 1004 rdma_tasks = RDMA_MAX_TIDS - excess_tasks; 1005 rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); 1006 if (rc) 1007 goto alloc_err; 1008 1009 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 1010 if (rc) { 1011 DP_ERR(p_hwfn, 1012 "failed ILT compute. Requested too many lines: %u\n", 1013 line_count); 1014 1015 goto alloc_err; 1016 } 1017 } 1018 1019 /* CID map / ILT shadow table / T2 1020 * The talbes sizes are determined by the computations above 1021 */ 1022 rc = qed_cxt_tables_alloc(p_hwfn); 1023 if (rc) 1024 goto alloc_err; 1025 1026 /* SPQ, must follow ILT because initializes SPQ context */ 1027 rc = qed_spq_alloc(p_hwfn); 1028 if (rc) 1029 goto alloc_err; 1030 1031 /* SP status block allocation */ 1032 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, 1033 RESERVED_PTT_DPC); 1034 1035 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 1036 if (rc) 1037 goto alloc_err; 1038 1039 rc = qed_iov_alloc(p_hwfn); 1040 if (rc) 1041 goto alloc_err; 1042 1043 /* EQ */ 1044 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); 1045 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { 1046 enum protocol_type rdma_proto; 1047 1048 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 1049 rdma_proto = PROTOCOLID_ROCE; 1050 else 1051 rdma_proto = PROTOCOLID_IWARP; 1052 1053 num_cons = qed_cxt_get_proto_cid_count(p_hwfn, 1054 rdma_proto, 1055 NULL) * 2; 1056 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 1057 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1058 num_cons = 1059 qed_cxt_get_proto_cid_count(p_hwfn, 1060 PROTOCOLID_ISCSI, 1061 NULL); 1062 n_eqes += 2 * num_cons; 1063 } 1064 1065 if (n_eqes > 0xFFFF) { 1066 DP_ERR(p_hwfn, 1067 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", 1068 n_eqes, 0xFFFF); 1069 goto alloc_no_mem; 1070 } 1071 1072 rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); 1073 if (rc) 1074 goto alloc_err; 1075 1076 rc = qed_consq_alloc(p_hwfn); 1077 if (rc) 1078 goto alloc_err; 1079 1080 rc = qed_l2_alloc(p_hwfn); 1081 if (rc) 1082 goto alloc_err; 1083 1084 #ifdef CONFIG_QED_LL2 1085 if (p_hwfn->using_ll2) { 1086 rc = qed_ll2_alloc(p_hwfn); 1087 if (rc) 1088 goto alloc_err; 1089 } 1090 #endif 1091 1092 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1093 rc = qed_fcoe_alloc(p_hwfn); 1094 if (rc) 1095 goto alloc_err; 1096 } 1097 1098 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1099 rc = qed_iscsi_alloc(p_hwfn); 1100 if (rc) 1101 goto alloc_err; 1102 rc = qed_ooo_alloc(p_hwfn); 1103 if (rc) 1104 goto alloc_err; 1105 } 1106 1107 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { 1108 rc = qed_rdma_info_alloc(p_hwfn); 1109 if (rc) 1110 goto alloc_err; 1111 } 1112 1113 /* DMA info initialization */ 1114 rc = qed_dmae_info_alloc(p_hwfn); 1115 if (rc) 1116 goto alloc_err; 1117 1118 /* DCBX initialization */ 1119 rc = qed_dcbx_info_alloc(p_hwfn); 1120 if (rc) 1121 goto alloc_err; 1122 1123 rc = qed_dbg_alloc_user_data(p_hwfn); 1124 if (rc) 1125 goto alloc_err; 1126 } 1127 1128 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); 1129 if (!cdev->reset_stats) 1130 goto alloc_no_mem; 1131 1132 return 0; 1133 1134 alloc_no_mem: 1135 rc = -ENOMEM; 1136 alloc_err: 1137 qed_resc_free(cdev); 1138 return rc; 1139 } 1140 1141 void qed_resc_setup(struct qed_dev *cdev) 1142 { 1143 int i; 1144 1145 if (IS_VF(cdev)) { 1146 for_each_hwfn(cdev, i) 1147 qed_l2_setup(&cdev->hwfns[i]); 1148 return; 1149 } 1150 1151 for_each_hwfn(cdev, i) { 1152 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1153 1154 qed_cxt_mngr_setup(p_hwfn); 1155 qed_spq_setup(p_hwfn); 1156 qed_eq_setup(p_hwfn); 1157 qed_consq_setup(p_hwfn); 1158 1159 /* Read shadow of current MFW mailbox */ 1160 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 1161 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1162 p_hwfn->mcp_info->mfw_mb_cur, 1163 p_hwfn->mcp_info->mfw_mb_length); 1164 1165 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); 1166 1167 qed_l2_setup(p_hwfn); 1168 qed_iov_setup(p_hwfn); 1169 #ifdef CONFIG_QED_LL2 1170 if (p_hwfn->using_ll2) 1171 qed_ll2_setup(p_hwfn); 1172 #endif 1173 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 1174 qed_fcoe_setup(p_hwfn); 1175 1176 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1177 qed_iscsi_setup(p_hwfn); 1178 qed_ooo_setup(p_hwfn); 1179 } 1180 } 1181 } 1182 1183 #define FINAL_CLEANUP_POLL_CNT (100) 1184 #define FINAL_CLEANUP_POLL_TIME (10) 1185 int qed_final_cleanup(struct qed_hwfn *p_hwfn, 1186 struct qed_ptt *p_ptt, u16 id, bool is_vf) 1187 { 1188 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 1189 int rc = -EBUSY; 1190 1191 addr = GTT_BAR0_MAP_REG_USDM_RAM + 1192 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 1193 1194 if (is_vf) 1195 id += 0x10; 1196 1197 command |= X_FINAL_CLEANUP_AGG_INT << 1198 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 1199 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 1200 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 1201 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 1202 1203 /* Make sure notification is not set before initiating final cleanup */ 1204 if (REG_RD(p_hwfn, addr)) { 1205 DP_NOTICE(p_hwfn, 1206 "Unexpected; Found final cleanup notification before initiating final cleanup\n"); 1207 REG_WR(p_hwfn, addr, 0); 1208 } 1209 1210 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1211 "Sending final cleanup for PFVF[%d] [Command %08x]\n", 1212 id, command); 1213 1214 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 1215 1216 /* Poll until completion */ 1217 while (!REG_RD(p_hwfn, addr) && count--) 1218 msleep(FINAL_CLEANUP_POLL_TIME); 1219 1220 if (REG_RD(p_hwfn, addr)) 1221 rc = 0; 1222 else 1223 DP_NOTICE(p_hwfn, 1224 "Failed to receive FW final cleanup notification\n"); 1225 1226 /* Cleanup afterwards */ 1227 REG_WR(p_hwfn, addr, 0); 1228 1229 return rc; 1230 } 1231 1232 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) 1233 { 1234 int hw_mode = 0; 1235 1236 if (QED_IS_BB_B0(p_hwfn->cdev)) { 1237 hw_mode |= 1 << MODE_BB; 1238 } else if (QED_IS_AH(p_hwfn->cdev)) { 1239 hw_mode |= 1 << MODE_K2; 1240 } else { 1241 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", 1242 p_hwfn->cdev->type); 1243 return -EINVAL; 1244 } 1245 1246 switch (p_hwfn->cdev->num_ports_in_engine) { 1247 case 1: 1248 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 1249 break; 1250 case 2: 1251 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 1252 break; 1253 case 4: 1254 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 1255 break; 1256 default: 1257 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", 1258 p_hwfn->cdev->num_ports_in_engine); 1259 return -EINVAL; 1260 } 1261 1262 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) 1263 hw_mode |= 1 << MODE_MF_SD; 1264 else 1265 hw_mode |= 1 << MODE_MF_SI; 1266 1267 hw_mode |= 1 << MODE_ASIC; 1268 1269 if (p_hwfn->cdev->num_hwfns > 1) 1270 hw_mode |= 1 << MODE_100G; 1271 1272 p_hwfn->hw_info.hw_mode = hw_mode; 1273 1274 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), 1275 "Configuring function for hw_mode: 0x%08x\n", 1276 p_hwfn->hw_info.hw_mode); 1277 1278 return 0; 1279 } 1280 1281 /* Init run time data for all PFs on an engine. */ 1282 static void qed_init_cau_rt_data(struct qed_dev *cdev) 1283 { 1284 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 1285 int i, igu_sb_id; 1286 1287 for_each_hwfn(cdev, i) { 1288 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1289 struct qed_igu_info *p_igu_info; 1290 struct qed_igu_block *p_block; 1291 struct cau_sb_entry sb_entry; 1292 1293 p_igu_info = p_hwfn->hw_info.p_igu_info; 1294 1295 for (igu_sb_id = 0; 1296 igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { 1297 p_block = &p_igu_info->entry[igu_sb_id]; 1298 1299 if (!p_block->is_pf) 1300 continue; 1301 1302 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 1303 p_block->function_id, 0, 0); 1304 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 1305 sb_entry); 1306 } 1307 } 1308 } 1309 1310 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, 1311 struct qed_ptt *p_ptt) 1312 { 1313 u32 val, wr_mbs, cache_line_size; 1314 1315 val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 1316 switch (val) { 1317 case 0: 1318 wr_mbs = 128; 1319 break; 1320 case 1: 1321 wr_mbs = 256; 1322 break; 1323 case 2: 1324 wr_mbs = 512; 1325 break; 1326 default: 1327 DP_INFO(p_hwfn, 1328 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1329 val); 1330 return; 1331 } 1332 1333 cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); 1334 switch (cache_line_size) { 1335 case 32: 1336 val = 0; 1337 break; 1338 case 64: 1339 val = 1; 1340 break; 1341 case 128: 1342 val = 2; 1343 break; 1344 case 256: 1345 val = 3; 1346 break; 1347 default: 1348 DP_INFO(p_hwfn, 1349 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1350 cache_line_size); 1351 } 1352 1353 if (L1_CACHE_BYTES > wr_mbs) 1354 DP_INFO(p_hwfn, 1355 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 1356 L1_CACHE_BYTES, wr_mbs); 1357 1358 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 1359 if (val > 0) { 1360 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 1361 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 1362 } 1363 } 1364 1365 static int qed_hw_init_common(struct qed_hwfn *p_hwfn, 1366 struct qed_ptt *p_ptt, int hw_mode) 1367 { 1368 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 1369 struct qed_qm_common_rt_init_params params; 1370 struct qed_dev *cdev = p_hwfn->cdev; 1371 u8 vf_id, max_num_vfs; 1372 u16 num_pfs, pf_id; 1373 u32 concrete_fid; 1374 int rc = 0; 1375 1376 qed_init_cau_rt_data(cdev); 1377 1378 /* Program GTT windows */ 1379 qed_gtt_init(p_hwfn); 1380 1381 if (p_hwfn->mcp_info) { 1382 if (p_hwfn->mcp_info->func_info.bandwidth_max) 1383 qm_info->pf_rl_en = true; 1384 if (p_hwfn->mcp_info->func_info.bandwidth_min) 1385 qm_info->pf_wfq_en = true; 1386 } 1387 1388 memset(¶ms, 0, sizeof(params)); 1389 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; 1390 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; 1391 params.pf_rl_en = qm_info->pf_rl_en; 1392 params.pf_wfq_en = qm_info->pf_wfq_en; 1393 params.vport_rl_en = qm_info->vport_rl_en; 1394 params.vport_wfq_en = qm_info->vport_wfq_en; 1395 params.port_params = qm_info->qm_port_params; 1396 1397 qed_qm_common_rt_init(p_hwfn, ¶ms); 1398 1399 qed_cxt_hw_init_common(p_hwfn); 1400 1401 qed_init_cache_line_size(p_hwfn, p_ptt); 1402 1403 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); 1404 if (rc) 1405 return rc; 1406 1407 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 1408 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 1409 1410 if (QED_IS_BB(p_hwfn->cdev)) { 1411 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); 1412 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 1413 qed_fid_pretend(p_hwfn, p_ptt, pf_id); 1414 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1415 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1416 } 1417 /* pretend to original PF */ 1418 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1419 } 1420 1421 max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; 1422 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 1423 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); 1424 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); 1425 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 1426 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 1427 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 1428 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 1429 } 1430 /* pretend to original PF */ 1431 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1432 1433 return rc; 1434 } 1435 1436 static int 1437 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, 1438 struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 1439 { 1440 u32 dpi_bit_shift, dpi_count, dpi_page_size; 1441 u32 min_dpis; 1442 u32 n_wids; 1443 1444 /* Calculate DPI size */ 1445 n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); 1446 dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); 1447 dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1448 dpi_bit_shift = ilog2(dpi_page_size / 4096); 1449 dpi_count = pwm_region_size / dpi_page_size; 1450 1451 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 1452 min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); 1453 1454 p_hwfn->dpi_size = dpi_page_size; 1455 p_hwfn->dpi_count = dpi_count; 1456 1457 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 1458 1459 if (dpi_count < min_dpis) 1460 return -EINVAL; 1461 1462 return 0; 1463 } 1464 1465 enum QED_ROCE_EDPM_MODE { 1466 QED_ROCE_EDPM_MODE_ENABLE = 0, 1467 QED_ROCE_EDPM_MODE_FORCE_ON = 1, 1468 QED_ROCE_EDPM_MODE_DISABLE = 2, 1469 }; 1470 1471 static int 1472 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1473 { 1474 u32 pwm_regsize, norm_regsize; 1475 u32 non_pwm_conn, min_addr_reg1; 1476 u32 db_bar_size, n_cpus = 1; 1477 u32 roce_edpm_mode; 1478 u32 pf_dems_shift; 1479 int rc = 0; 1480 u8 cond; 1481 1482 db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 1483 if (p_hwfn->cdev->num_hwfns > 1) 1484 db_bar_size /= 2; 1485 1486 /* Calculate doorbell regions */ 1487 non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 1488 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 1489 NULL) + 1490 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 1491 NULL); 1492 norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); 1493 min_addr_reg1 = norm_regsize / 4096; 1494 pwm_regsize = db_bar_size - norm_regsize; 1495 1496 /* Check that the normal and PWM sizes are valid */ 1497 if (db_bar_size < norm_regsize) { 1498 DP_ERR(p_hwfn->cdev, 1499 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 1500 db_bar_size, norm_regsize); 1501 return -EINVAL; 1502 } 1503 1504 if (pwm_regsize < QED_MIN_PWM_REGION) { 1505 DP_ERR(p_hwfn->cdev, 1506 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 1507 pwm_regsize, 1508 QED_MIN_PWM_REGION, db_bar_size, norm_regsize); 1509 return -EINVAL; 1510 } 1511 1512 /* Calculate number of DPIs */ 1513 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 1514 if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || 1515 ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { 1516 /* Either EDPM is mandatory, or we are attempting to allocate a 1517 * WID per CPU. 1518 */ 1519 n_cpus = num_present_cpus(); 1520 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1521 } 1522 1523 cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || 1524 (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); 1525 if (cond || p_hwfn->dcbx_no_edpm) { 1526 /* Either EDPM is disabled from user configuration, or it is 1527 * disabled via DCBx, or it is not mandatory and we failed to 1528 * allocated a WID per CPU. 1529 */ 1530 n_cpus = 1; 1531 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1532 1533 if (cond) 1534 qed_rdma_dpm_bar(p_hwfn, p_ptt); 1535 } 1536 1537 p_hwfn->wid_count = (u16) n_cpus; 1538 1539 DP_INFO(p_hwfn, 1540 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 1541 norm_regsize, 1542 pwm_regsize, 1543 p_hwfn->dpi_size, 1544 p_hwfn->dpi_count, 1545 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? 1546 "disabled" : "enabled"); 1547 1548 if (rc) { 1549 DP_ERR(p_hwfn, 1550 "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", 1551 p_hwfn->dpi_count, 1552 p_hwfn->pf_params.rdma_pf_params.min_dpis); 1553 return -EINVAL; 1554 } 1555 1556 p_hwfn->dpi_start_offset = norm_regsize; 1557 1558 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 1559 pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); 1560 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 1561 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 1562 1563 return 0; 1564 } 1565 1566 static int qed_hw_init_port(struct qed_hwfn *p_hwfn, 1567 struct qed_ptt *p_ptt, int hw_mode) 1568 { 1569 int rc = 0; 1570 1571 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); 1572 if (rc) 1573 return rc; 1574 1575 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 1576 1577 return 0; 1578 } 1579 1580 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, 1581 struct qed_ptt *p_ptt, 1582 struct qed_tunnel_info *p_tunn, 1583 int hw_mode, 1584 bool b_hw_start, 1585 enum qed_int_mode int_mode, 1586 bool allow_npar_tx_switch) 1587 { 1588 u8 rel_pf_id = p_hwfn->rel_pf_id; 1589 int rc = 0; 1590 1591 if (p_hwfn->mcp_info) { 1592 struct qed_mcp_function_info *p_info; 1593 1594 p_info = &p_hwfn->mcp_info->func_info; 1595 if (p_info->bandwidth_min) 1596 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 1597 1598 /* Update rate limit once we'll actually have a link */ 1599 p_hwfn->qm_info.pf_rl = 100000; 1600 } 1601 1602 qed_cxt_hw_init_pf(p_hwfn, p_ptt); 1603 1604 qed_int_igu_init_rt(p_hwfn); 1605 1606 /* Set VLAN in NIG if needed */ 1607 if (hw_mode & BIT(MODE_MF_SD)) { 1608 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 1609 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 1610 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 1611 p_hwfn->hw_info.ovlan); 1612 1613 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1614 "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); 1615 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, 1616 1); 1617 } 1618 1619 /* Enable classification by MAC if needed */ 1620 if (hw_mode & BIT(MODE_MF_SI)) { 1621 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1622 "Configuring TAGMAC_CLS_TYPE\n"); 1623 STORE_RT_REG(p_hwfn, 1624 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); 1625 } 1626 1627 /* Protocol Configuration */ 1628 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 1629 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); 1630 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 1631 (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); 1632 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 1633 1634 /* Cleanup chip from previous driver if such remains exist */ 1635 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); 1636 if (rc) 1637 return rc; 1638 1639 /* Sanity check before the PF init sequence that uses DMAE */ 1640 rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); 1641 if (rc) 1642 return rc; 1643 1644 /* PF Init sequence */ 1645 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 1646 if (rc) 1647 return rc; 1648 1649 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 1650 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 1651 if (rc) 1652 return rc; 1653 1654 /* Pure runtime initializations - directly to the HW */ 1655 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 1656 1657 rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 1658 if (rc) 1659 return rc; 1660 1661 if (b_hw_start) { 1662 /* enable interrupts */ 1663 qed_int_igu_enable(p_hwfn, p_ptt, int_mode); 1664 1665 /* send function start command */ 1666 rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, 1667 allow_npar_tx_switch); 1668 if (rc) { 1669 DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); 1670 return rc; 1671 } 1672 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1673 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); 1674 qed_wr(p_hwfn, p_ptt, 1675 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 1676 0x100); 1677 } 1678 } 1679 return rc; 1680 } 1681 1682 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, 1683 struct qed_ptt *p_ptt, 1684 u8 enable) 1685 { 1686 u32 delay_idx = 0, val, set_val = enable ? 1 : 0; 1687 1688 /* Change PF in PXP */ 1689 qed_wr(p_hwfn, p_ptt, 1690 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 1691 1692 /* wait until value is set - try for 1 second every 50us */ 1693 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 1694 val = qed_rd(p_hwfn, p_ptt, 1695 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1696 if (val == set_val) 1697 break; 1698 1699 usleep_range(50, 60); 1700 } 1701 1702 if (val != set_val) { 1703 DP_NOTICE(p_hwfn, 1704 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 1705 return -EAGAIN; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, 1712 struct qed_ptt *p_main_ptt) 1713 { 1714 /* Read shadow of current MFW mailbox */ 1715 qed_mcp_read_mb(p_hwfn, p_main_ptt); 1716 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1717 p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); 1718 } 1719 1720 static void 1721 qed_fill_load_req_params(struct qed_load_req_params *p_load_req, 1722 struct qed_drv_load_params *p_drv_load) 1723 { 1724 memset(p_load_req, 0, sizeof(*p_load_req)); 1725 1726 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 1727 QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; 1728 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 1729 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 1730 p_load_req->override_force_load = p_drv_load->override_force_load; 1731 } 1732 1733 static int qed_vf_start(struct qed_hwfn *p_hwfn, 1734 struct qed_hw_init_params *p_params) 1735 { 1736 if (p_params->p_tunn) { 1737 qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 1738 qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 1739 } 1740 1741 p_hwfn->b_int_enabled = true; 1742 1743 return 0; 1744 } 1745 1746 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) 1747 { 1748 struct qed_load_req_params load_req_params; 1749 u32 load_code, resp, param, drv_mb_param; 1750 bool b_default_mtu = true; 1751 struct qed_hwfn *p_hwfn; 1752 int rc = 0, mfw_rc, i; 1753 u16 ether_type; 1754 1755 if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { 1756 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); 1757 return -EINVAL; 1758 } 1759 1760 if (IS_PF(cdev)) { 1761 rc = qed_init_fw_data(cdev, p_params->bin_fw_data); 1762 if (rc) 1763 return rc; 1764 } 1765 1766 for_each_hwfn(cdev, i) { 1767 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1768 1769 /* If management didn't provide a default, set one of our own */ 1770 if (!p_hwfn->hw_info.mtu) { 1771 p_hwfn->hw_info.mtu = 1500; 1772 b_default_mtu = false; 1773 } 1774 1775 if (IS_VF(cdev)) { 1776 qed_vf_start(p_hwfn, p_params); 1777 continue; 1778 } 1779 1780 /* Enable DMAE in PXP */ 1781 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); 1782 1783 rc = qed_calc_hw_mode(p_hwfn); 1784 if (rc) 1785 return rc; 1786 1787 if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING, 1788 &cdev->mf_bits) || 1789 test_bit(QED_MF_8021AD_TAGGING, 1790 &cdev->mf_bits))) { 1791 if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits)) 1792 ether_type = ETH_P_8021Q; 1793 else 1794 ether_type = ETH_P_8021AD; 1795 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1796 ether_type); 1797 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1798 ether_type); 1799 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1800 ether_type); 1801 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, 1802 ether_type); 1803 } 1804 1805 qed_fill_load_req_params(&load_req_params, 1806 p_params->p_drv_load_params); 1807 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 1808 &load_req_params); 1809 if (rc) { 1810 DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); 1811 return rc; 1812 } 1813 1814 load_code = load_req_params.load_code; 1815 DP_VERBOSE(p_hwfn, QED_MSG_SP, 1816 "Load request was sent. Load code: 0x%x\n", 1817 load_code); 1818 1819 qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); 1820 1821 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 1822 1823 p_hwfn->first_on_engine = (load_code == 1824 FW_MSG_CODE_DRV_LOAD_ENGINE); 1825 1826 switch (load_code) { 1827 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1828 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 1829 p_hwfn->hw_info.hw_mode); 1830 if (rc) 1831 break; 1832 /* Fall through */ 1833 case FW_MSG_CODE_DRV_LOAD_PORT: 1834 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 1835 p_hwfn->hw_info.hw_mode); 1836 if (rc) 1837 break; 1838 1839 /* Fall through */ 1840 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1841 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 1842 p_params->p_tunn, 1843 p_hwfn->hw_info.hw_mode, 1844 p_params->b_hw_start, 1845 p_params->int_mode, 1846 p_params->allow_npar_tx_switch); 1847 break; 1848 default: 1849 DP_NOTICE(p_hwfn, 1850 "Unexpected load code [0x%08x]", load_code); 1851 rc = -EINVAL; 1852 break; 1853 } 1854 1855 if (rc) 1856 DP_NOTICE(p_hwfn, 1857 "init phase failed for loadcode 0x%x (rc %d)\n", 1858 load_code, rc); 1859 1860 /* ACK mfw regardless of success or failure of initialization */ 1861 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1862 DRV_MSG_CODE_LOAD_DONE, 1863 0, &load_code, ¶m); 1864 if (rc) 1865 return rc; 1866 if (mfw_rc) { 1867 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); 1868 return mfw_rc; 1869 } 1870 1871 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1872 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1873 DP_NOTICE(p_hwfn, 1874 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1875 1876 /* send DCBX attention request command */ 1877 DP_VERBOSE(p_hwfn, 1878 QED_MSG_DCB, 1879 "sending phony dcbx set command to trigger DCBx attention handling\n"); 1880 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1881 DRV_MSG_CODE_SET_DCBX, 1882 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, 1883 &load_code, ¶m); 1884 if (mfw_rc) { 1885 DP_NOTICE(p_hwfn, 1886 "Failed to send DCBX attention request\n"); 1887 return mfw_rc; 1888 } 1889 1890 p_hwfn->hw_init_done = true; 1891 } 1892 1893 if (IS_PF(cdev)) { 1894 p_hwfn = QED_LEADING_HWFN(cdev); 1895 1896 /* Get pre-negotiated values for stag, bandwidth etc. */ 1897 DP_VERBOSE(p_hwfn, 1898 QED_MSG_SPQ, 1899 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 1900 drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET; 1901 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1902 DRV_MSG_CODE_GET_OEM_UPDATES, 1903 drv_mb_param, &resp, ¶m); 1904 if (rc) 1905 DP_NOTICE(p_hwfn, 1906 "Failed to send GET_OEM_UPDATES attention request\n"); 1907 1908 drv_mb_param = STORM_FW_VERSION; 1909 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1910 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 1911 drv_mb_param, &load_code, ¶m); 1912 if (rc) 1913 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 1914 1915 if (!b_default_mtu) { 1916 rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 1917 p_hwfn->hw_info.mtu); 1918 if (rc) 1919 DP_INFO(p_hwfn, 1920 "Failed to update default mtu\n"); 1921 } 1922 1923 rc = qed_mcp_ov_update_driver_state(p_hwfn, 1924 p_hwfn->p_main_ptt, 1925 QED_OV_DRIVER_STATE_DISABLED); 1926 if (rc) 1927 DP_INFO(p_hwfn, "Failed to update driver state\n"); 1928 1929 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 1930 QED_OV_ESWITCH_NONE); 1931 if (rc) 1932 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 1933 } 1934 1935 return 0; 1936 } 1937 1938 #define QED_HW_STOP_RETRY_LIMIT (10) 1939 static void qed_hw_timers_stop(struct qed_dev *cdev, 1940 struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1941 { 1942 int i; 1943 1944 /* close timers */ 1945 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 1946 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 1947 1948 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { 1949 if ((!qed_rd(p_hwfn, p_ptt, 1950 TM_REG_PF_SCAN_ACTIVE_CONN)) && 1951 (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 1952 break; 1953 1954 /* Dependent on number of connection/tasks, possibly 1955 * 1ms sleep is required between polls 1956 */ 1957 usleep_range(1000, 2000); 1958 } 1959 1960 if (i < QED_HW_STOP_RETRY_LIMIT) 1961 return; 1962 1963 DP_NOTICE(p_hwfn, 1964 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 1965 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 1966 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 1967 } 1968 1969 void qed_hw_timers_stop_all(struct qed_dev *cdev) 1970 { 1971 int j; 1972 1973 for_each_hwfn(cdev, j) { 1974 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1975 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 1976 1977 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1978 } 1979 } 1980 1981 int qed_hw_stop(struct qed_dev *cdev) 1982 { 1983 struct qed_hwfn *p_hwfn; 1984 struct qed_ptt *p_ptt; 1985 int rc, rc2 = 0; 1986 int j; 1987 1988 for_each_hwfn(cdev, j) { 1989 p_hwfn = &cdev->hwfns[j]; 1990 p_ptt = p_hwfn->p_main_ptt; 1991 1992 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); 1993 1994 if (IS_VF(cdev)) { 1995 qed_vf_pf_int_cleanup(p_hwfn); 1996 rc = qed_vf_pf_reset(p_hwfn); 1997 if (rc) { 1998 DP_NOTICE(p_hwfn, 1999 "qed_vf_pf_reset failed. rc = %d.\n", 2000 rc); 2001 rc2 = -EINVAL; 2002 } 2003 continue; 2004 } 2005 2006 /* mark the hw as uninitialized... */ 2007 p_hwfn->hw_init_done = false; 2008 2009 /* Send unload command to MCP */ 2010 rc = qed_mcp_unload_req(p_hwfn, p_ptt); 2011 if (rc) { 2012 DP_NOTICE(p_hwfn, 2013 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 2014 rc); 2015 rc2 = -EINVAL; 2016 } 2017 2018 qed_slowpath_irq_sync(p_hwfn); 2019 2020 /* After this point no MFW attentions are expected, e.g. prevent 2021 * race between pf stop and dcbx pf update. 2022 */ 2023 rc = qed_sp_pf_stop(p_hwfn); 2024 if (rc) { 2025 DP_NOTICE(p_hwfn, 2026 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 2027 rc); 2028 rc2 = -EINVAL; 2029 } 2030 2031 qed_wr(p_hwfn, p_ptt, 2032 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 2033 2034 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 2035 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 2036 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 2037 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 2038 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 2039 2040 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 2041 2042 /* Disable Attention Generation */ 2043 qed_int_igu_disable_int(p_hwfn, p_ptt); 2044 2045 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 2046 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 2047 2048 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 2049 2050 /* Need to wait 1ms to guarantee SBs are cleared */ 2051 usleep_range(1000, 2000); 2052 2053 /* Disable PF in HW blocks */ 2054 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 2055 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 2056 2057 qed_mcp_unload_done(p_hwfn, p_ptt); 2058 if (rc) { 2059 DP_NOTICE(p_hwfn, 2060 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 2061 rc); 2062 rc2 = -EINVAL; 2063 } 2064 } 2065 2066 if (IS_PF(cdev)) { 2067 p_hwfn = QED_LEADING_HWFN(cdev); 2068 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; 2069 2070 /* Disable DMAE in PXP - in CMT, this should only be done for 2071 * first hw-function, and only after all transactions have 2072 * stopped for all active hw-functions. 2073 */ 2074 rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false); 2075 if (rc) { 2076 DP_NOTICE(p_hwfn, 2077 "qed_change_pci_hwfn failed. rc = %d.\n", rc); 2078 rc2 = -EINVAL; 2079 } 2080 } 2081 2082 return rc2; 2083 } 2084 2085 int qed_hw_stop_fastpath(struct qed_dev *cdev) 2086 { 2087 int j; 2088 2089 for_each_hwfn(cdev, j) { 2090 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 2091 struct qed_ptt *p_ptt; 2092 2093 if (IS_VF(cdev)) { 2094 qed_vf_pf_int_cleanup(p_hwfn); 2095 continue; 2096 } 2097 p_ptt = qed_ptt_acquire(p_hwfn); 2098 if (!p_ptt) 2099 return -EAGAIN; 2100 2101 DP_VERBOSE(p_hwfn, 2102 NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); 2103 2104 qed_wr(p_hwfn, p_ptt, 2105 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 2106 2107 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 2108 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 2109 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 2110 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 2111 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 2112 2113 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 2114 2115 /* Need to wait 1ms to guarantee SBs are cleared */ 2116 usleep_range(1000, 2000); 2117 qed_ptt_release(p_hwfn, p_ptt); 2118 } 2119 2120 return 0; 2121 } 2122 2123 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) 2124 { 2125 struct qed_ptt *p_ptt; 2126 2127 if (IS_VF(p_hwfn->cdev)) 2128 return 0; 2129 2130 p_ptt = qed_ptt_acquire(p_hwfn); 2131 if (!p_ptt) 2132 return -EAGAIN; 2133 2134 if (p_hwfn->p_rdma_info && 2135 p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs) 2136 qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); 2137 2138 /* Re-open incoming traffic */ 2139 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 2140 qed_ptt_release(p_hwfn, p_ptt); 2141 2142 return 0; 2143 } 2144 2145 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 2146 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) 2147 { 2148 qed_ptt_pool_free(p_hwfn); 2149 kfree(p_hwfn->hw_info.p_igu_info); 2150 p_hwfn->hw_info.p_igu_info = NULL; 2151 } 2152 2153 /* Setup bar access */ 2154 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) 2155 { 2156 /* clear indirect access */ 2157 if (QED_IS_AH(p_hwfn->cdev)) { 2158 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2159 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); 2160 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2161 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); 2162 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2163 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); 2164 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2165 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); 2166 } else { 2167 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2168 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 2169 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2170 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 2171 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2172 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 2173 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2174 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 2175 } 2176 2177 /* Clean Previous errors if such exist */ 2178 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2179 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); 2180 2181 /* enable internal target-read */ 2182 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2183 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 2184 } 2185 2186 static void get_function_id(struct qed_hwfn *p_hwfn) 2187 { 2188 /* ME Register */ 2189 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, 2190 PXP_PF_ME_OPAQUE_ADDR); 2191 2192 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 2193 2194 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 2195 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2196 PXP_CONCRETE_FID_PFID); 2197 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2198 PXP_CONCRETE_FID_PORT); 2199 2200 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, 2201 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 2202 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 2203 } 2204 2205 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) 2206 { 2207 u32 *feat_num = p_hwfn->hw_info.feat_num; 2208 struct qed_sb_cnt_info sb_cnt; 2209 u32 non_l2_sbs = 0; 2210 2211 memset(&sb_cnt, 0, sizeof(sb_cnt)); 2212 qed_int_get_num_sbs(p_hwfn, &sb_cnt); 2213 2214 if (IS_ENABLED(CONFIG_QED_RDMA) && 2215 QED_IS_RDMA_PERSONALITY(p_hwfn)) { 2216 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide 2217 * the status blocks equally between L2 / RoCE but with 2218 * consideration as to how many l2 queues / cnqs we have. 2219 */ 2220 feat_num[QED_RDMA_CNQ] = 2221 min_t(u32, sb_cnt.cnt / 2, 2222 RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); 2223 2224 non_l2_sbs = feat_num[QED_RDMA_CNQ]; 2225 } 2226 if (QED_IS_L2_PERSONALITY(p_hwfn)) { 2227 /* Start by allocating VF queues, then PF's */ 2228 feat_num[QED_VF_L2_QUE] = min_t(u32, 2229 RESC_NUM(p_hwfn, QED_L2_QUEUE), 2230 sb_cnt.iov_cnt); 2231 feat_num[QED_PF_L2_QUE] = min_t(u32, 2232 sb_cnt.cnt - non_l2_sbs, 2233 RESC_NUM(p_hwfn, 2234 QED_L2_QUEUE) - 2235 FEAT_NUM(p_hwfn, 2236 QED_VF_L2_QUE)); 2237 } 2238 2239 if (QED_IS_FCOE_PERSONALITY(p_hwfn)) 2240 feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, 2241 RESC_NUM(p_hwfn, 2242 QED_CMDQS_CQS)); 2243 2244 if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) 2245 feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, 2246 RESC_NUM(p_hwfn, 2247 QED_CMDQS_CQS)); 2248 DP_VERBOSE(p_hwfn, 2249 NETIF_MSG_PROBE, 2250 "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", 2251 (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), 2252 (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), 2253 (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), 2254 (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), 2255 (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), 2256 (int)sb_cnt.cnt); 2257 } 2258 2259 const char *qed_hw_get_resc_name(enum qed_resources res_id) 2260 { 2261 switch (res_id) { 2262 case QED_L2_QUEUE: 2263 return "L2_QUEUE"; 2264 case QED_VPORT: 2265 return "VPORT"; 2266 case QED_RSS_ENG: 2267 return "RSS_ENG"; 2268 case QED_PQ: 2269 return "PQ"; 2270 case QED_RL: 2271 return "RL"; 2272 case QED_MAC: 2273 return "MAC"; 2274 case QED_VLAN: 2275 return "VLAN"; 2276 case QED_RDMA_CNQ_RAM: 2277 return "RDMA_CNQ_RAM"; 2278 case QED_ILT: 2279 return "ILT"; 2280 case QED_LL2_QUEUE: 2281 return "LL2_QUEUE"; 2282 case QED_CMDQS_CQS: 2283 return "CMDQS_CQS"; 2284 case QED_RDMA_STATS_QUEUE: 2285 return "RDMA_STATS_QUEUE"; 2286 case QED_BDQ: 2287 return "BDQ"; 2288 case QED_SB: 2289 return "SB"; 2290 default: 2291 return "UNKNOWN_RESOURCE"; 2292 } 2293 } 2294 2295 static int 2296 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, 2297 struct qed_ptt *p_ptt, 2298 enum qed_resources res_id, 2299 u32 resc_max_val, u32 *p_mcp_resp) 2300 { 2301 int rc; 2302 2303 rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 2304 resc_max_val, p_mcp_resp); 2305 if (rc) { 2306 DP_NOTICE(p_hwfn, 2307 "MFW response failure for a max value setting of resource %d [%s]\n", 2308 res_id, qed_hw_get_resc_name(res_id)); 2309 return rc; 2310 } 2311 2312 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 2313 DP_INFO(p_hwfn, 2314 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 2315 res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); 2316 2317 return 0; 2318 } 2319 2320 static int 2321 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2322 { 2323 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2324 u32 resc_max_val, mcp_resp; 2325 u8 res_id; 2326 int rc; 2327 2328 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2329 switch (res_id) { 2330 case QED_LL2_QUEUE: 2331 resc_max_val = MAX_NUM_LL2_RX_QUEUES; 2332 break; 2333 case QED_RDMA_CNQ_RAM: 2334 /* No need for a case for QED_CMDQS_CQS since 2335 * CNQ/CMDQS are the same resource. 2336 */ 2337 resc_max_val = NUM_OF_GLOBAL_QUEUES; 2338 break; 2339 case QED_RDMA_STATS_QUEUE: 2340 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 2341 : RDMA_NUM_STATISTIC_COUNTERS_BB; 2342 break; 2343 case QED_BDQ: 2344 resc_max_val = BDQ_NUM_RESOURCES; 2345 break; 2346 default: 2347 continue; 2348 } 2349 2350 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 2351 resc_max_val, &mcp_resp); 2352 if (rc) 2353 return rc; 2354 2355 /* There's no point to continue to the next resource if the 2356 * command is not supported by the MFW. 2357 * We do continue if the command is supported but the resource 2358 * is unknown to the MFW. Such a resource will be later 2359 * configured with the default allocation values. 2360 */ 2361 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 2362 return -EINVAL; 2363 } 2364 2365 return 0; 2366 } 2367 2368 static 2369 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, 2370 enum qed_resources res_id, 2371 u32 *p_resc_num, u32 *p_resc_start) 2372 { 2373 u8 num_funcs = p_hwfn->num_funcs_on_engine; 2374 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2375 2376 switch (res_id) { 2377 case QED_L2_QUEUE: 2378 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : 2379 MAX_NUM_L2_QUEUES_BB) / num_funcs; 2380 break; 2381 case QED_VPORT: 2382 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 2383 MAX_NUM_VPORTS_BB) / num_funcs; 2384 break; 2385 case QED_RSS_ENG: 2386 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : 2387 ETH_RSS_ENGINE_NUM_BB) / num_funcs; 2388 break; 2389 case QED_PQ: 2390 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : 2391 MAX_QM_TX_QUEUES_BB) / num_funcs; 2392 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ 2393 break; 2394 case QED_RL: 2395 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; 2396 break; 2397 case QED_MAC: 2398 case QED_VLAN: 2399 /* Each VFC resource can accommodate both a MAC and a VLAN */ 2400 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 2401 break; 2402 case QED_ILT: 2403 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : 2404 PXP_NUM_ILT_RECORDS_BB) / num_funcs; 2405 break; 2406 case QED_LL2_QUEUE: 2407 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; 2408 break; 2409 case QED_RDMA_CNQ_RAM: 2410 case QED_CMDQS_CQS: 2411 /* CNQ/CMDQS are the same resource */ 2412 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; 2413 break; 2414 case QED_RDMA_STATS_QUEUE: 2415 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 : 2416 RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs; 2417 break; 2418 case QED_BDQ: 2419 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && 2420 p_hwfn->hw_info.personality != QED_PCI_FCOE) 2421 *p_resc_num = 0; 2422 else 2423 *p_resc_num = 1; 2424 break; 2425 case QED_SB: 2426 /* Since we want its value to reflect whether MFW supports 2427 * the new scheme, have a default of 0. 2428 */ 2429 *p_resc_num = 0; 2430 break; 2431 default: 2432 return -EINVAL; 2433 } 2434 2435 switch (res_id) { 2436 case QED_BDQ: 2437 if (!*p_resc_num) 2438 *p_resc_start = 0; 2439 else if (p_hwfn->cdev->num_ports_in_engine == 4) 2440 *p_resc_start = p_hwfn->port_id; 2441 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) 2442 *p_resc_start = p_hwfn->port_id; 2443 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 2444 *p_resc_start = p_hwfn->port_id + 2; 2445 break; 2446 default: 2447 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 2448 break; 2449 } 2450 2451 return 0; 2452 } 2453 2454 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, 2455 enum qed_resources res_id) 2456 { 2457 u32 dflt_resc_num = 0, dflt_resc_start = 0; 2458 u32 mcp_resp, *p_resc_num, *p_resc_start; 2459 int rc; 2460 2461 p_resc_num = &RESC_NUM(p_hwfn, res_id); 2462 p_resc_start = &RESC_START(p_hwfn, res_id); 2463 2464 rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 2465 &dflt_resc_start); 2466 if (rc) { 2467 DP_ERR(p_hwfn, 2468 "Failed to get default amount for resource %d [%s]\n", 2469 res_id, qed_hw_get_resc_name(res_id)); 2470 return rc; 2471 } 2472 2473 rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 2474 &mcp_resp, p_resc_num, p_resc_start); 2475 if (rc) { 2476 DP_NOTICE(p_hwfn, 2477 "MFW response failure for an allocation request for resource %d [%s]\n", 2478 res_id, qed_hw_get_resc_name(res_id)); 2479 return rc; 2480 } 2481 2482 /* Default driver values are applied in the following cases: 2483 * - The resource allocation MB command is not supported by the MFW 2484 * - There is an internal error in the MFW while processing the request 2485 * - The resource ID is unknown to the MFW 2486 */ 2487 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 2488 DP_INFO(p_hwfn, 2489 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", 2490 res_id, 2491 qed_hw_get_resc_name(res_id), 2492 mcp_resp, dflt_resc_num, dflt_resc_start); 2493 *p_resc_num = dflt_resc_num; 2494 *p_resc_start = dflt_resc_start; 2495 goto out; 2496 } 2497 2498 out: 2499 /* PQs have to divide by 8 [that's the HW granularity]. 2500 * Reduce number so it would fit. 2501 */ 2502 if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { 2503 DP_INFO(p_hwfn, 2504 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", 2505 *p_resc_num, 2506 (*p_resc_num) & ~0x7, 2507 *p_resc_start, (*p_resc_start) & ~0x7); 2508 *p_resc_num &= ~0x7; 2509 *p_resc_start &= ~0x7; 2510 } 2511 2512 return 0; 2513 } 2514 2515 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) 2516 { 2517 int rc; 2518 u8 res_id; 2519 2520 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2521 rc = __qed_hw_set_resc_info(p_hwfn, res_id); 2522 if (rc) 2523 return rc; 2524 } 2525 2526 return 0; 2527 } 2528 2529 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2530 { 2531 struct qed_resc_unlock_params resc_unlock_params; 2532 struct qed_resc_lock_params resc_lock_params; 2533 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2534 u8 res_id; 2535 int rc; 2536 2537 /* Setting the max values of the soft resources and the following 2538 * resources allocation queries should be atomic. Since several PFs can 2539 * run in parallel - a resource lock is needed. 2540 * If either the resource lock or resource set value commands are not 2541 * supported - skip the the max values setting, release the lock if 2542 * needed, and proceed to the queries. Other failures, including a 2543 * failure to acquire the lock, will cause this function to fail. 2544 */ 2545 qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 2546 QED_RESC_LOCK_RESC_ALLOC, false); 2547 2548 rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 2549 if (rc && rc != -EINVAL) { 2550 return rc; 2551 } else if (rc == -EINVAL) { 2552 DP_INFO(p_hwfn, 2553 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 2554 } else if (!rc && !resc_lock_params.b_granted) { 2555 DP_NOTICE(p_hwfn, 2556 "Failed to acquire the resource lock for the resource allocation commands\n"); 2557 return -EBUSY; 2558 } else { 2559 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); 2560 if (rc && rc != -EINVAL) { 2561 DP_NOTICE(p_hwfn, 2562 "Failed to set the max values of the soft resources\n"); 2563 goto unlock_and_exit; 2564 } else if (rc == -EINVAL) { 2565 DP_INFO(p_hwfn, 2566 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 2567 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, 2568 &resc_unlock_params); 2569 if (rc) 2570 DP_INFO(p_hwfn, 2571 "Failed to release the resource lock for the resource allocation commands\n"); 2572 } 2573 } 2574 2575 rc = qed_hw_set_resc_info(p_hwfn); 2576 if (rc) 2577 goto unlock_and_exit; 2578 2579 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 2580 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2581 if (rc) 2582 DP_INFO(p_hwfn, 2583 "Failed to release the resource lock for the resource allocation commands\n"); 2584 } 2585 2586 /* Sanity for ILT */ 2587 if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || 2588 (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { 2589 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", 2590 RESC_START(p_hwfn, QED_ILT), 2591 RESC_END(p_hwfn, QED_ILT) - 1); 2592 return -EINVAL; 2593 } 2594 2595 /* This will also learn the number of SBs from MFW */ 2596 if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) 2597 return -EINVAL; 2598 2599 qed_hw_set_feat(p_hwfn); 2600 2601 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) 2602 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", 2603 qed_hw_get_resc_name(res_id), 2604 RESC_NUM(p_hwfn, res_id), 2605 RESC_START(p_hwfn, res_id)); 2606 2607 return 0; 2608 2609 unlock_and_exit: 2610 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 2611 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2612 return rc; 2613 } 2614 2615 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2616 { 2617 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 2618 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; 2619 struct qed_mcp_link_capabilities *p_caps; 2620 struct qed_mcp_link_params *link; 2621 2622 /* Read global nvm_cfg address */ 2623 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2624 2625 /* Verify MCP has initialized it */ 2626 if (!nvm_cfg_addr) { 2627 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2628 return -EINVAL; 2629 } 2630 2631 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 2632 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2633 2634 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2635 offsetof(struct nvm_cfg1, glob) + 2636 offsetof(struct nvm_cfg1_glob, core_cfg); 2637 2638 core_cfg = qed_rd(p_hwfn, p_ptt, addr); 2639 2640 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 2641 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 2642 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 2643 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; 2644 break; 2645 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 2646 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; 2647 break; 2648 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 2649 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; 2650 break; 2651 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 2652 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; 2653 break; 2654 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 2655 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; 2656 break; 2657 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 2658 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; 2659 break; 2660 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 2661 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; 2662 break; 2663 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 2664 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; 2665 break; 2666 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 2667 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; 2668 break; 2669 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 2670 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; 2671 break; 2672 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 2673 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; 2674 break; 2675 default: 2676 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); 2677 break; 2678 } 2679 2680 /* Read default link configuration */ 2681 link = &p_hwfn->mcp_info->link_input; 2682 p_caps = &p_hwfn->mcp_info->link_capabilities; 2683 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2684 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2685 link_temp = qed_rd(p_hwfn, p_ptt, 2686 port_cfg_addr + 2687 offsetof(struct nvm_cfg1_port, speed_cap_mask)); 2688 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 2689 link->speed.advertised_speeds = link_temp; 2690 2691 link_temp = link->speed.advertised_speeds; 2692 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; 2693 2694 link_temp = qed_rd(p_hwfn, p_ptt, 2695 port_cfg_addr + 2696 offsetof(struct nvm_cfg1_port, link_settings)); 2697 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 2698 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 2699 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 2700 link->speed.autoneg = true; 2701 break; 2702 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 2703 link->speed.forced_speed = 1000; 2704 break; 2705 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 2706 link->speed.forced_speed = 10000; 2707 break; 2708 case NVM_CFG1_PORT_DRV_LINK_SPEED_20G: 2709 link->speed.forced_speed = 20000; 2710 break; 2711 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 2712 link->speed.forced_speed = 25000; 2713 break; 2714 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 2715 link->speed.forced_speed = 40000; 2716 break; 2717 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 2718 link->speed.forced_speed = 50000; 2719 break; 2720 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 2721 link->speed.forced_speed = 100000; 2722 break; 2723 default: 2724 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); 2725 } 2726 2727 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = 2728 link->speed.autoneg; 2729 2730 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 2731 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 2732 link->pause.autoneg = !!(link_temp & 2733 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 2734 link->pause.forced_rx = !!(link_temp & 2735 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 2736 link->pause.forced_tx = !!(link_temp & 2737 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 2738 link->loopback_mode = 0; 2739 2740 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { 2741 link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + 2742 offsetof(struct nvm_cfg1_port, ext_phy)); 2743 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; 2744 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; 2745 p_caps->default_eee = QED_MCP_EEE_ENABLED; 2746 link->eee.enable = true; 2747 switch (link_temp) { 2748 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: 2749 p_caps->default_eee = QED_MCP_EEE_DISABLED; 2750 link->eee.enable = false; 2751 break; 2752 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: 2753 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; 2754 break; 2755 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: 2756 p_caps->eee_lpi_timer = 2757 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; 2758 break; 2759 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: 2760 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; 2761 break; 2762 } 2763 2764 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; 2765 link->eee.tx_lpi_enable = link->eee.enable; 2766 link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; 2767 } else { 2768 p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; 2769 } 2770 2771 DP_VERBOSE(p_hwfn, 2772 NETIF_MSG_LINK, 2773 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n", 2774 link->speed.forced_speed, 2775 link->speed.advertised_speeds, 2776 link->speed.autoneg, 2777 link->pause.autoneg, 2778 p_caps->default_eee, p_caps->eee_lpi_timer); 2779 2780 if (IS_LEAD_HWFN(p_hwfn)) { 2781 struct qed_dev *cdev = p_hwfn->cdev; 2782 2783 /* Read Multi-function information from shmem */ 2784 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2785 offsetof(struct nvm_cfg1, glob) + 2786 offsetof(struct nvm_cfg1_glob, generic_cont0); 2787 2788 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); 2789 2790 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 2791 NVM_CFG1_GLOB_MF_MODE_OFFSET; 2792 2793 switch (mf_mode) { 2794 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 2795 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS); 2796 break; 2797 case NVM_CFG1_GLOB_MF_MODE_UFP: 2798 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | 2799 BIT(QED_MF_LLH_PROTO_CLSS) | 2800 BIT(QED_MF_UFP_SPECIFIC) | 2801 BIT(QED_MF_8021Q_TAGGING); 2802 break; 2803 case NVM_CFG1_GLOB_MF_MODE_BD: 2804 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | 2805 BIT(QED_MF_LLH_PROTO_CLSS) | 2806 BIT(QED_MF_8021AD_TAGGING); 2807 break; 2808 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 2809 cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | 2810 BIT(QED_MF_LLH_PROTO_CLSS) | 2811 BIT(QED_MF_LL2_NON_UNICAST) | 2812 BIT(QED_MF_INTER_PF_SWITCH); 2813 break; 2814 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 2815 cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | 2816 BIT(QED_MF_LLH_PROTO_CLSS) | 2817 BIT(QED_MF_LL2_NON_UNICAST); 2818 if (QED_IS_BB(p_hwfn->cdev)) 2819 cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF); 2820 break; 2821 } 2822 2823 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 2824 cdev->mf_bits); 2825 } 2826 2827 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 2828 p_hwfn->cdev->mf_bits); 2829 2830 /* Read device capabilities information from shmem */ 2831 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2832 offsetof(struct nvm_cfg1, glob) + 2833 offsetof(struct nvm_cfg1_glob, device_capabilities); 2834 2835 device_capabilities = qed_rd(p_hwfn, p_ptt, addr); 2836 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 2837 __set_bit(QED_DEV_CAP_ETH, 2838 &p_hwfn->hw_info.device_capabilities); 2839 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 2840 __set_bit(QED_DEV_CAP_FCOE, 2841 &p_hwfn->hw_info.device_capabilities); 2842 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 2843 __set_bit(QED_DEV_CAP_ISCSI, 2844 &p_hwfn->hw_info.device_capabilities); 2845 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 2846 __set_bit(QED_DEV_CAP_ROCE, 2847 &p_hwfn->hw_info.device_capabilities); 2848 2849 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 2850 } 2851 2852 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2853 { 2854 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 2855 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 2856 struct qed_dev *cdev = p_hwfn->cdev; 2857 2858 num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 2859 2860 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 2861 * in the other bits are selected. 2862 * Bits 1-15 are for functions 1-15, respectively, and their value is 2863 * '0' only for enabled functions (function 0 always exists and 2864 * enabled). 2865 * In case of CMT, only the "even" functions are enabled, and thus the 2866 * number of functions for both hwfns is learnt from the same bits. 2867 */ 2868 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); 2869 2870 if (reg_function_hide & 0x1) { 2871 if (QED_IS_BB(cdev)) { 2872 if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { 2873 num_funcs = 0; 2874 eng_mask = 0xaaaa; 2875 } else { 2876 num_funcs = 1; 2877 eng_mask = 0x5554; 2878 } 2879 } else { 2880 num_funcs = 1; 2881 eng_mask = 0xfffe; 2882 } 2883 2884 /* Get the number of the enabled functions on the engine */ 2885 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 2886 while (tmp) { 2887 if (tmp & 0x1) 2888 num_funcs++; 2889 tmp >>= 0x1; 2890 } 2891 2892 /* Get the PF index within the enabled functions */ 2893 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 2894 tmp = reg_function_hide & eng_mask & low_pfs_mask; 2895 while (tmp) { 2896 if (tmp & 0x1) 2897 enabled_func_idx--; 2898 tmp >>= 0x1; 2899 } 2900 } 2901 2902 p_hwfn->num_funcs_on_engine = num_funcs; 2903 p_hwfn->enabled_func_idx = enabled_func_idx; 2904 2905 DP_VERBOSE(p_hwfn, 2906 NETIF_MSG_PROBE, 2907 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 2908 p_hwfn->rel_pf_id, 2909 p_hwfn->abs_pf_id, 2910 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 2911 } 2912 2913 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn, 2914 struct qed_ptt *p_ptt) 2915 { 2916 u32 port_mode; 2917 2918 port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB); 2919 2920 if (port_mode < 3) { 2921 p_hwfn->cdev->num_ports_in_engine = 1; 2922 } else if (port_mode <= 5) { 2923 p_hwfn->cdev->num_ports_in_engine = 2; 2924 } else { 2925 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", 2926 p_hwfn->cdev->num_ports_in_engine); 2927 2928 /* Default num_ports_in_engine to something */ 2929 p_hwfn->cdev->num_ports_in_engine = 1; 2930 } 2931 } 2932 2933 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn, 2934 struct qed_ptt *p_ptt) 2935 { 2936 u32 port; 2937 int i; 2938 2939 p_hwfn->cdev->num_ports_in_engine = 0; 2940 2941 for (i = 0; i < MAX_NUM_PORTS_K2; i++) { 2942 port = qed_rd(p_hwfn, p_ptt, 2943 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4)); 2944 if (port & 1) 2945 p_hwfn->cdev->num_ports_in_engine++; 2946 } 2947 2948 if (!p_hwfn->cdev->num_ports_in_engine) { 2949 DP_NOTICE(p_hwfn, "All NIG ports are inactive\n"); 2950 2951 /* Default num_ports_in_engine to something */ 2952 p_hwfn->cdev->num_ports_in_engine = 1; 2953 } 2954 } 2955 2956 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2957 { 2958 if (QED_IS_BB(p_hwfn->cdev)) 2959 qed_hw_info_port_num_bb(p_hwfn, p_ptt); 2960 else 2961 qed_hw_info_port_num_ah(p_hwfn, p_ptt); 2962 } 2963 2964 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2965 { 2966 struct qed_mcp_link_capabilities *p_caps; 2967 u32 eee_status; 2968 2969 p_caps = &p_hwfn->mcp_info->link_capabilities; 2970 if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) 2971 return; 2972 2973 p_caps->eee_speed_caps = 0; 2974 eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 2975 offsetof(struct public_port, eee_status)); 2976 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> 2977 EEE_SUPPORTED_SPEED_OFFSET; 2978 2979 if (eee_status & EEE_1G_SUPPORTED) 2980 p_caps->eee_speed_caps |= QED_EEE_1G_ADV; 2981 if (eee_status & EEE_10G_ADV) 2982 p_caps->eee_speed_caps |= QED_EEE_10G_ADV; 2983 } 2984 2985 static int 2986 qed_get_hw_info(struct qed_hwfn *p_hwfn, 2987 struct qed_ptt *p_ptt, 2988 enum qed_pci_personality personality) 2989 { 2990 int rc; 2991 2992 /* Since all information is common, only first hwfns should do this */ 2993 if (IS_LEAD_HWFN(p_hwfn)) { 2994 rc = qed_iov_hw_info(p_hwfn); 2995 if (rc) 2996 return rc; 2997 } 2998 2999 qed_hw_info_port_num(p_hwfn, p_ptt); 3000 3001 qed_mcp_get_capabilities(p_hwfn, p_ptt); 3002 3003 qed_hw_get_nvm_info(p_hwfn, p_ptt); 3004 3005 rc = qed_int_igu_read_cam(p_hwfn, p_ptt); 3006 if (rc) 3007 return rc; 3008 3009 if (qed_mcp_is_init(p_hwfn)) 3010 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, 3011 p_hwfn->mcp_info->func_info.mac); 3012 else 3013 eth_random_addr(p_hwfn->hw_info.hw_mac_addr); 3014 3015 if (qed_mcp_is_init(p_hwfn)) { 3016 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) 3017 p_hwfn->hw_info.ovlan = 3018 p_hwfn->mcp_info->func_info.ovlan; 3019 3020 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 3021 3022 qed_get_eee_caps(p_hwfn, p_ptt); 3023 3024 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 3025 } 3026 3027 if (qed_mcp_is_init(p_hwfn)) { 3028 enum qed_pci_personality protocol; 3029 3030 protocol = p_hwfn->mcp_info->func_info.protocol; 3031 p_hwfn->hw_info.personality = protocol; 3032 } 3033 3034 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 3035 p_hwfn->hw_info.multi_tc_roce_en = 1; 3036 3037 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 3038 p_hwfn->hw_info.num_active_tc = 1; 3039 3040 qed_get_num_funcs(p_hwfn, p_ptt); 3041 3042 if (qed_mcp_is_init(p_hwfn)) 3043 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 3044 3045 return qed_hw_get_resc(p_hwfn, p_ptt); 3046 } 3047 3048 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3049 { 3050 struct qed_dev *cdev = p_hwfn->cdev; 3051 u16 device_id_mask; 3052 u32 tmp; 3053 3054 /* Read Vendor Id / Device Id */ 3055 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); 3056 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); 3057 3058 /* Determine type */ 3059 device_id_mask = cdev->device_id & QED_DEV_ID_MASK; 3060 switch (device_id_mask) { 3061 case QED_DEV_ID_MASK_BB: 3062 cdev->type = QED_DEV_TYPE_BB; 3063 break; 3064 case QED_DEV_ID_MASK_AH: 3065 cdev->type = QED_DEV_TYPE_AH; 3066 break; 3067 default: 3068 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); 3069 return -EBUSY; 3070 } 3071 3072 cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 3073 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 3074 3075 MASK_FIELD(CHIP_REV, cdev->chip_rev); 3076 3077 /* Learn number of HW-functions */ 3078 tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 3079 3080 if (tmp & (1 << p_hwfn->rel_pf_id)) { 3081 DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); 3082 cdev->num_hwfns = 2; 3083 } else { 3084 cdev->num_hwfns = 1; 3085 } 3086 3087 cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, 3088 MISCS_REG_CHIP_TEST_REG) >> 4; 3089 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); 3090 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 3091 MASK_FIELD(CHIP_METAL, cdev->chip_metal); 3092 3093 DP_INFO(cdev->hwfns, 3094 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", 3095 QED_IS_BB(cdev) ? "BB" : "AH", 3096 'A' + cdev->chip_rev, 3097 (int)cdev->chip_metal, 3098 cdev->chip_num, cdev->chip_rev, 3099 cdev->chip_bond_id, cdev->chip_metal); 3100 3101 return 0; 3102 } 3103 3104 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn) 3105 { 3106 kfree(p_hwfn->nvm_info.image_att); 3107 p_hwfn->nvm_info.image_att = NULL; 3108 } 3109 3110 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, 3111 void __iomem *p_regview, 3112 void __iomem *p_doorbells, 3113 enum qed_pci_personality personality) 3114 { 3115 int rc = 0; 3116 3117 /* Split PCI bars evenly between hwfns */ 3118 p_hwfn->regview = p_regview; 3119 p_hwfn->doorbells = p_doorbells; 3120 3121 if (IS_VF(p_hwfn->cdev)) 3122 return qed_vf_hw_prepare(p_hwfn); 3123 3124 /* Validate that chip access is feasible */ 3125 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 3126 DP_ERR(p_hwfn, 3127 "Reading the ME register returns all Fs; Preventing further chip access\n"); 3128 return -EINVAL; 3129 } 3130 3131 get_function_id(p_hwfn); 3132 3133 /* Allocate PTT pool */ 3134 rc = qed_ptt_pool_alloc(p_hwfn); 3135 if (rc) 3136 goto err0; 3137 3138 /* Allocate the main PTT */ 3139 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 3140 3141 /* First hwfn learns basic information, e.g., number of hwfns */ 3142 if (!p_hwfn->my_id) { 3143 rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 3144 if (rc) 3145 goto err1; 3146 } 3147 3148 qed_hw_hwfn_prepare(p_hwfn); 3149 3150 /* Initialize MCP structure */ 3151 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 3152 if (rc) { 3153 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); 3154 goto err1; 3155 } 3156 3157 /* Read the device configuration information from the HW and SHMEM */ 3158 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); 3159 if (rc) { 3160 DP_NOTICE(p_hwfn, "Failed to get HW information\n"); 3161 goto err2; 3162 } 3163 3164 /* Sending a mailbox to the MFW should be done after qed_get_hw_info() 3165 * is called as it sets the ports number in an engine. 3166 */ 3167 if (IS_LEAD_HWFN(p_hwfn)) { 3168 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 3169 if (rc) 3170 DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); 3171 } 3172 3173 /* NVRAM info initialization and population */ 3174 if (IS_LEAD_HWFN(p_hwfn)) { 3175 rc = qed_mcp_nvm_info_populate(p_hwfn); 3176 if (rc) { 3177 DP_NOTICE(p_hwfn, 3178 "Failed to populate nvm info shadow\n"); 3179 goto err2; 3180 } 3181 } 3182 3183 /* Allocate the init RT array and initialize the init-ops engine */ 3184 rc = qed_init_alloc(p_hwfn); 3185 if (rc) 3186 goto err3; 3187 3188 return rc; 3189 err3: 3190 if (IS_LEAD_HWFN(p_hwfn)) 3191 qed_nvm_info_free(p_hwfn); 3192 err2: 3193 if (IS_LEAD_HWFN(p_hwfn)) 3194 qed_iov_free_hw_info(p_hwfn->cdev); 3195 qed_mcp_free(p_hwfn); 3196 err1: 3197 qed_hw_hwfn_free(p_hwfn); 3198 err0: 3199 return rc; 3200 } 3201 3202 int qed_hw_prepare(struct qed_dev *cdev, 3203 int personality) 3204 { 3205 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3206 int rc; 3207 3208 /* Store the precompiled init data ptrs */ 3209 if (IS_PF(cdev)) 3210 qed_init_iro_array(cdev); 3211 3212 /* Initialize the first hwfn - will learn number of hwfns */ 3213 rc = qed_hw_prepare_single(p_hwfn, 3214 cdev->regview, 3215 cdev->doorbells, personality); 3216 if (rc) 3217 return rc; 3218 3219 personality = p_hwfn->hw_info.personality; 3220 3221 /* Initialize the rest of the hwfns */ 3222 if (cdev->num_hwfns > 1) { 3223 void __iomem *p_regview, *p_doorbell; 3224 u8 __iomem *addr; 3225 3226 /* adjust bar offset for second engine */ 3227 addr = cdev->regview + 3228 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3229 BAR_ID_0) / 2; 3230 p_regview = addr; 3231 3232 addr = cdev->doorbells + 3233 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3234 BAR_ID_1) / 2; 3235 p_doorbell = addr; 3236 3237 /* prepare second hw function */ 3238 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, 3239 p_doorbell, personality); 3240 3241 /* in case of error, need to free the previously 3242 * initiliazed hwfn 0. 3243 */ 3244 if (rc) { 3245 if (IS_PF(cdev)) { 3246 qed_init_free(p_hwfn); 3247 qed_nvm_info_free(p_hwfn); 3248 qed_mcp_free(p_hwfn); 3249 qed_hw_hwfn_free(p_hwfn); 3250 } 3251 } 3252 } 3253 3254 return rc; 3255 } 3256 3257 void qed_hw_remove(struct qed_dev *cdev) 3258 { 3259 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3260 int i; 3261 3262 if (IS_PF(cdev)) 3263 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 3264 QED_OV_DRIVER_STATE_NOT_LOADED); 3265 3266 for_each_hwfn(cdev, i) { 3267 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3268 3269 if (IS_VF(cdev)) { 3270 qed_vf_pf_release(p_hwfn); 3271 continue; 3272 } 3273 3274 qed_init_free(p_hwfn); 3275 qed_hw_hwfn_free(p_hwfn); 3276 qed_mcp_free(p_hwfn); 3277 } 3278 3279 qed_iov_free_hw_info(cdev); 3280 3281 qed_nvm_info_free(p_hwfn); 3282 } 3283 3284 static void qed_chain_free_next_ptr(struct qed_dev *cdev, 3285 struct qed_chain *p_chain) 3286 { 3287 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; 3288 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 3289 struct qed_chain_next *p_next; 3290 u32 size, i; 3291 3292 if (!p_virt) 3293 return; 3294 3295 size = p_chain->elem_size * p_chain->usable_per_page; 3296 3297 for (i = 0; i < p_chain->page_cnt; i++) { 3298 if (!p_virt) 3299 break; 3300 3301 p_next = (struct qed_chain_next *)((u8 *)p_virt + size); 3302 p_virt_next = p_next->next_virt; 3303 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 3304 3305 dma_free_coherent(&cdev->pdev->dev, 3306 QED_CHAIN_PAGE_SIZE, p_virt, p_phys); 3307 3308 p_virt = p_virt_next; 3309 p_phys = p_phys_next; 3310 } 3311 } 3312 3313 static void qed_chain_free_single(struct qed_dev *cdev, 3314 struct qed_chain *p_chain) 3315 { 3316 if (!p_chain->p_virt_addr) 3317 return; 3318 3319 dma_free_coherent(&cdev->pdev->dev, 3320 QED_CHAIN_PAGE_SIZE, 3321 p_chain->p_virt_addr, p_chain->p_phys_addr); 3322 } 3323 3324 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) 3325 { 3326 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 3327 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 3328 u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table; 3329 3330 if (!pp_virt_addr_tbl) 3331 return; 3332 3333 if (!p_pbl_virt) 3334 goto out; 3335 3336 for (i = 0; i < page_cnt; i++) { 3337 if (!pp_virt_addr_tbl[i]) 3338 break; 3339 3340 dma_free_coherent(&cdev->pdev->dev, 3341 QED_CHAIN_PAGE_SIZE, 3342 pp_virt_addr_tbl[i], 3343 *(dma_addr_t *)p_pbl_virt); 3344 3345 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3346 } 3347 3348 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3349 3350 if (!p_chain->b_external_pbl) 3351 dma_free_coherent(&cdev->pdev->dev, 3352 pbl_size, 3353 p_chain->pbl_sp.p_virt_table, 3354 p_chain->pbl_sp.p_phys_table); 3355 out: 3356 vfree(p_chain->pbl.pp_virt_addr_tbl); 3357 p_chain->pbl.pp_virt_addr_tbl = NULL; 3358 } 3359 3360 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) 3361 { 3362 switch (p_chain->mode) { 3363 case QED_CHAIN_MODE_NEXT_PTR: 3364 qed_chain_free_next_ptr(cdev, p_chain); 3365 break; 3366 case QED_CHAIN_MODE_SINGLE: 3367 qed_chain_free_single(cdev, p_chain); 3368 break; 3369 case QED_CHAIN_MODE_PBL: 3370 qed_chain_free_pbl(cdev, p_chain); 3371 break; 3372 } 3373 } 3374 3375 static int 3376 qed_chain_alloc_sanity_check(struct qed_dev *cdev, 3377 enum qed_chain_cnt_type cnt_type, 3378 size_t elem_size, u32 page_cnt) 3379 { 3380 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 3381 3382 /* The actual chain size can be larger than the maximal possible value 3383 * after rounding up the requested elements number to pages, and after 3384 * taking into acount the unusuable elements (next-ptr elements). 3385 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 3386 * size/capacity fields are of a u32 type. 3387 */ 3388 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && 3389 chain_size > ((u32)U16_MAX + 1)) || 3390 (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { 3391 DP_NOTICE(cdev, 3392 "The actual chain size (0x%llx) is larger than the maximal possible value\n", 3393 chain_size); 3394 return -EINVAL; 3395 } 3396 3397 return 0; 3398 } 3399 3400 static int 3401 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) 3402 { 3403 void *p_virt = NULL, *p_virt_prev = NULL; 3404 dma_addr_t p_phys = 0; 3405 u32 i; 3406 3407 for (i = 0; i < p_chain->page_cnt; i++) { 3408 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3409 QED_CHAIN_PAGE_SIZE, 3410 &p_phys, GFP_KERNEL); 3411 if (!p_virt) 3412 return -ENOMEM; 3413 3414 if (i == 0) { 3415 qed_chain_init_mem(p_chain, p_virt, p_phys); 3416 qed_chain_reset(p_chain); 3417 } else { 3418 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3419 p_virt, p_phys); 3420 } 3421 3422 p_virt_prev = p_virt; 3423 } 3424 /* Last page's next element should point to the beginning of the 3425 * chain. 3426 */ 3427 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3428 p_chain->p_virt_addr, 3429 p_chain->p_phys_addr); 3430 3431 return 0; 3432 } 3433 3434 static int 3435 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) 3436 { 3437 dma_addr_t p_phys = 0; 3438 void *p_virt = NULL; 3439 3440 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3441 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); 3442 if (!p_virt) 3443 return -ENOMEM; 3444 3445 qed_chain_init_mem(p_chain, p_virt, p_phys); 3446 qed_chain_reset(p_chain); 3447 3448 return 0; 3449 } 3450 3451 static int 3452 qed_chain_alloc_pbl(struct qed_dev *cdev, 3453 struct qed_chain *p_chain, 3454 struct qed_chain_ext_pbl *ext_pbl) 3455 { 3456 u32 page_cnt = p_chain->page_cnt, size, i; 3457 dma_addr_t p_phys = 0, p_pbl_phys = 0; 3458 void **pp_virt_addr_tbl = NULL; 3459 u8 *p_pbl_virt = NULL; 3460 void *p_virt = NULL; 3461 3462 size = page_cnt * sizeof(*pp_virt_addr_tbl); 3463 pp_virt_addr_tbl = vzalloc(size); 3464 if (!pp_virt_addr_tbl) 3465 return -ENOMEM; 3466 3467 /* The allocation of the PBL table is done with its full size, since it 3468 * is expected to be successive. 3469 * qed_chain_init_pbl_mem() is called even in a case of an allocation 3470 * failure, since pp_virt_addr_tbl was previously allocated, and it 3471 * should be saved to allow its freeing during the error flow. 3472 */ 3473 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3474 3475 if (!ext_pbl) { 3476 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, 3477 size, &p_pbl_phys, GFP_KERNEL); 3478 } else { 3479 p_pbl_virt = ext_pbl->p_pbl_virt; 3480 p_pbl_phys = ext_pbl->p_pbl_phys; 3481 p_chain->b_external_pbl = true; 3482 } 3483 3484 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 3485 pp_virt_addr_tbl); 3486 if (!p_pbl_virt) 3487 return -ENOMEM; 3488 3489 for (i = 0; i < page_cnt; i++) { 3490 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3491 QED_CHAIN_PAGE_SIZE, 3492 &p_phys, GFP_KERNEL); 3493 if (!p_virt) 3494 return -ENOMEM; 3495 3496 if (i == 0) { 3497 qed_chain_init_mem(p_chain, p_virt, p_phys); 3498 qed_chain_reset(p_chain); 3499 } 3500 3501 /* Fill the PBL table with the physical address of the page */ 3502 *(dma_addr_t *)p_pbl_virt = p_phys; 3503 /* Keep the virtual address of the page */ 3504 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 3505 3506 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3507 } 3508 3509 return 0; 3510 } 3511 3512 int qed_chain_alloc(struct qed_dev *cdev, 3513 enum qed_chain_use_mode intended_use, 3514 enum qed_chain_mode mode, 3515 enum qed_chain_cnt_type cnt_type, 3516 u32 num_elems, 3517 size_t elem_size, 3518 struct qed_chain *p_chain, 3519 struct qed_chain_ext_pbl *ext_pbl) 3520 { 3521 u32 page_cnt; 3522 int rc = 0; 3523 3524 if (mode == QED_CHAIN_MODE_SINGLE) 3525 page_cnt = 1; 3526 else 3527 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 3528 3529 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); 3530 if (rc) { 3531 DP_NOTICE(cdev, 3532 "Cannot allocate a chain with the given arguments:\n"); 3533 DP_NOTICE(cdev, 3534 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 3535 intended_use, mode, cnt_type, num_elems, elem_size); 3536 return rc; 3537 } 3538 3539 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, 3540 mode, cnt_type); 3541 3542 switch (mode) { 3543 case QED_CHAIN_MODE_NEXT_PTR: 3544 rc = qed_chain_alloc_next_ptr(cdev, p_chain); 3545 break; 3546 case QED_CHAIN_MODE_SINGLE: 3547 rc = qed_chain_alloc_single(cdev, p_chain); 3548 break; 3549 case QED_CHAIN_MODE_PBL: 3550 rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); 3551 break; 3552 } 3553 if (rc) 3554 goto nomem; 3555 3556 return 0; 3557 3558 nomem: 3559 qed_chain_free(cdev, p_chain); 3560 return rc; 3561 } 3562 3563 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) 3564 { 3565 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { 3566 u16 min, max; 3567 3568 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); 3569 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); 3570 DP_NOTICE(p_hwfn, 3571 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 3572 src_id, min, max); 3573 3574 return -EINVAL; 3575 } 3576 3577 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; 3578 3579 return 0; 3580 } 3581 3582 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3583 { 3584 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { 3585 u8 min, max; 3586 3587 min = (u8)RESC_START(p_hwfn, QED_VPORT); 3588 max = min + RESC_NUM(p_hwfn, QED_VPORT); 3589 DP_NOTICE(p_hwfn, 3590 "vport id [%d] is not valid, available indices [%d - %d]\n", 3591 src_id, min, max); 3592 3593 return -EINVAL; 3594 } 3595 3596 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; 3597 3598 return 0; 3599 } 3600 3601 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3602 { 3603 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { 3604 u8 min, max; 3605 3606 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); 3607 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); 3608 DP_NOTICE(p_hwfn, 3609 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 3610 src_id, min, max); 3611 3612 return -EINVAL; 3613 } 3614 3615 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; 3616 3617 return 0; 3618 } 3619 3620 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, 3621 u8 *p_filter) 3622 { 3623 *p_high = p_filter[1] | (p_filter[0] << 8); 3624 *p_low = p_filter[5] | (p_filter[4] << 8) | 3625 (p_filter[3] << 16) | (p_filter[2] << 24); 3626 } 3627 3628 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, 3629 struct qed_ptt *p_ptt, u8 *p_filter) 3630 { 3631 u32 high = 0, low = 0, en; 3632 int i; 3633 3634 if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits)) 3635 return 0; 3636 3637 qed_llh_mac_to_filter(&high, &low, p_filter); 3638 3639 /* Find a free entry and utilize it */ 3640 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3641 en = qed_rd(p_hwfn, p_ptt, 3642 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3643 if (en) 3644 continue; 3645 qed_wr(p_hwfn, p_ptt, 3646 NIG_REG_LLH_FUNC_FILTER_VALUE + 3647 2 * i * sizeof(u32), low); 3648 qed_wr(p_hwfn, p_ptt, 3649 NIG_REG_LLH_FUNC_FILTER_VALUE + 3650 (2 * i + 1) * sizeof(u32), high); 3651 qed_wr(p_hwfn, p_ptt, 3652 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3653 qed_wr(p_hwfn, p_ptt, 3654 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3655 i * sizeof(u32), 0); 3656 qed_wr(p_hwfn, p_ptt, 3657 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3658 break; 3659 } 3660 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3661 DP_NOTICE(p_hwfn, 3662 "Failed to find an empty LLH filter to utilize\n"); 3663 return -EINVAL; 3664 } 3665 3666 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3667 "mac: %pM is added at %d\n", 3668 p_filter, i); 3669 3670 return 0; 3671 } 3672 3673 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, 3674 struct qed_ptt *p_ptt, u8 *p_filter) 3675 { 3676 u32 high = 0, low = 0; 3677 int i; 3678 3679 if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits)) 3680 return; 3681 3682 qed_llh_mac_to_filter(&high, &low, p_filter); 3683 3684 /* Find the entry and clean it */ 3685 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3686 if (qed_rd(p_hwfn, p_ptt, 3687 NIG_REG_LLH_FUNC_FILTER_VALUE + 3688 2 * i * sizeof(u32)) != low) 3689 continue; 3690 if (qed_rd(p_hwfn, p_ptt, 3691 NIG_REG_LLH_FUNC_FILTER_VALUE + 3692 (2 * i + 1) * sizeof(u32)) != high) 3693 continue; 3694 3695 qed_wr(p_hwfn, p_ptt, 3696 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3697 qed_wr(p_hwfn, p_ptt, 3698 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3699 qed_wr(p_hwfn, p_ptt, 3700 NIG_REG_LLH_FUNC_FILTER_VALUE + 3701 (2 * i + 1) * sizeof(u32), 0); 3702 3703 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3704 "mac: %pM is removed from %d\n", 3705 p_filter, i); 3706 break; 3707 } 3708 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3709 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3710 } 3711 3712 int 3713 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn, 3714 struct qed_ptt *p_ptt, 3715 u16 source_port_or_eth_type, 3716 u16 dest_port, enum qed_llh_port_filter_type_t type) 3717 { 3718 u32 high = 0, low = 0, en; 3719 int i; 3720 3721 if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits)) 3722 return 0; 3723 3724 switch (type) { 3725 case QED_LLH_FILTER_ETHERTYPE: 3726 high = source_port_or_eth_type; 3727 break; 3728 case QED_LLH_FILTER_TCP_SRC_PORT: 3729 case QED_LLH_FILTER_UDP_SRC_PORT: 3730 low = source_port_or_eth_type << 16; 3731 break; 3732 case QED_LLH_FILTER_TCP_DEST_PORT: 3733 case QED_LLH_FILTER_UDP_DEST_PORT: 3734 low = dest_port; 3735 break; 3736 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3737 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3738 low = (source_port_or_eth_type << 16) | dest_port; 3739 break; 3740 default: 3741 DP_NOTICE(p_hwfn, 3742 "Non valid LLH protocol filter type %d\n", type); 3743 return -EINVAL; 3744 } 3745 /* Find a free entry and utilize it */ 3746 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3747 en = qed_rd(p_hwfn, p_ptt, 3748 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3749 if (en) 3750 continue; 3751 qed_wr(p_hwfn, p_ptt, 3752 NIG_REG_LLH_FUNC_FILTER_VALUE + 3753 2 * i * sizeof(u32), low); 3754 qed_wr(p_hwfn, p_ptt, 3755 NIG_REG_LLH_FUNC_FILTER_VALUE + 3756 (2 * i + 1) * sizeof(u32), high); 3757 qed_wr(p_hwfn, p_ptt, 3758 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1); 3759 qed_wr(p_hwfn, p_ptt, 3760 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3761 i * sizeof(u32), 1 << type); 3762 qed_wr(p_hwfn, p_ptt, 3763 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3764 break; 3765 } 3766 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3767 DP_NOTICE(p_hwfn, 3768 "Failed to find an empty LLH filter to utilize\n"); 3769 return -EINVAL; 3770 } 3771 switch (type) { 3772 case QED_LLH_FILTER_ETHERTYPE: 3773 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3774 "ETH type %x is added at %d\n", 3775 source_port_or_eth_type, i); 3776 break; 3777 case QED_LLH_FILTER_TCP_SRC_PORT: 3778 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3779 "TCP src port %x is added at %d\n", 3780 source_port_or_eth_type, i); 3781 break; 3782 case QED_LLH_FILTER_UDP_SRC_PORT: 3783 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3784 "UDP src port %x is added at %d\n", 3785 source_port_or_eth_type, i); 3786 break; 3787 case QED_LLH_FILTER_TCP_DEST_PORT: 3788 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3789 "TCP dst port %x is added at %d\n", dest_port, i); 3790 break; 3791 case QED_LLH_FILTER_UDP_DEST_PORT: 3792 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3793 "UDP dst port %x is added at %d\n", dest_port, i); 3794 break; 3795 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3796 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3797 "TCP src/dst ports %x/%x are added at %d\n", 3798 source_port_or_eth_type, dest_port, i); 3799 break; 3800 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3801 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3802 "UDP src/dst ports %x/%x are added at %d\n", 3803 source_port_or_eth_type, dest_port, i); 3804 break; 3805 } 3806 return 0; 3807 } 3808 3809 void 3810 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn, 3811 struct qed_ptt *p_ptt, 3812 u16 source_port_or_eth_type, 3813 u16 dest_port, 3814 enum qed_llh_port_filter_type_t type) 3815 { 3816 u32 high = 0, low = 0; 3817 int i; 3818 3819 if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits)) 3820 return; 3821 3822 switch (type) { 3823 case QED_LLH_FILTER_ETHERTYPE: 3824 high = source_port_or_eth_type; 3825 break; 3826 case QED_LLH_FILTER_TCP_SRC_PORT: 3827 case QED_LLH_FILTER_UDP_SRC_PORT: 3828 low = source_port_or_eth_type << 16; 3829 break; 3830 case QED_LLH_FILTER_TCP_DEST_PORT: 3831 case QED_LLH_FILTER_UDP_DEST_PORT: 3832 low = dest_port; 3833 break; 3834 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3835 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3836 low = (source_port_or_eth_type << 16) | dest_port; 3837 break; 3838 default: 3839 DP_NOTICE(p_hwfn, 3840 "Non valid LLH protocol filter type %d\n", type); 3841 return; 3842 } 3843 3844 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3845 if (!qed_rd(p_hwfn, p_ptt, 3846 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32))) 3847 continue; 3848 if (!qed_rd(p_hwfn, p_ptt, 3849 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32))) 3850 continue; 3851 if (!(qed_rd(p_hwfn, p_ptt, 3852 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3853 i * sizeof(u32)) & BIT(type))) 3854 continue; 3855 if (qed_rd(p_hwfn, p_ptt, 3856 NIG_REG_LLH_FUNC_FILTER_VALUE + 3857 2 * i * sizeof(u32)) != low) 3858 continue; 3859 if (qed_rd(p_hwfn, p_ptt, 3860 NIG_REG_LLH_FUNC_FILTER_VALUE + 3861 (2 * i + 1) * sizeof(u32)) != high) 3862 continue; 3863 3864 qed_wr(p_hwfn, p_ptt, 3865 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3866 qed_wr(p_hwfn, p_ptt, 3867 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3868 qed_wr(p_hwfn, p_ptt, 3869 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3870 i * sizeof(u32), 0); 3871 qed_wr(p_hwfn, p_ptt, 3872 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3873 qed_wr(p_hwfn, p_ptt, 3874 NIG_REG_LLH_FUNC_FILTER_VALUE + 3875 (2 * i + 1) * sizeof(u32), 0); 3876 break; 3877 } 3878 3879 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3880 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3881 } 3882 3883 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3884 u32 hw_addr, void *p_eth_qzone, 3885 size_t eth_qzone_size, u8 timeset) 3886 { 3887 struct coalescing_timeset *p_coal_timeset; 3888 3889 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { 3890 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); 3891 return -EINVAL; 3892 } 3893 3894 p_coal_timeset = p_eth_qzone; 3895 memset(p_eth_qzone, 0, eth_qzone_size); 3896 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 3897 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 3898 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 3899 3900 return 0; 3901 } 3902 3903 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) 3904 { 3905 struct qed_queue_cid *p_cid = p_handle; 3906 struct qed_hwfn *p_hwfn; 3907 struct qed_ptt *p_ptt; 3908 int rc = 0; 3909 3910 p_hwfn = p_cid->p_owner; 3911 3912 if (IS_VF(p_hwfn->cdev)) 3913 return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); 3914 3915 p_ptt = qed_ptt_acquire(p_hwfn); 3916 if (!p_ptt) 3917 return -EAGAIN; 3918 3919 if (rx_coal) { 3920 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3921 if (rc) 3922 goto out; 3923 p_hwfn->cdev->rx_coalesce_usecs = rx_coal; 3924 } 3925 3926 if (tx_coal) { 3927 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); 3928 if (rc) 3929 goto out; 3930 p_hwfn->cdev->tx_coalesce_usecs = tx_coal; 3931 } 3932 out: 3933 qed_ptt_release(p_hwfn, p_ptt); 3934 return rc; 3935 } 3936 3937 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, 3938 struct qed_ptt *p_ptt, 3939 u16 coalesce, struct qed_queue_cid *p_cid) 3940 { 3941 struct ustorm_eth_queue_zone eth_qzone; 3942 u8 timeset, timer_res; 3943 u32 address; 3944 int rc; 3945 3946 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3947 if (coalesce <= 0x7F) { 3948 timer_res = 0; 3949 } else if (coalesce <= 0xFF) { 3950 timer_res = 1; 3951 } else if (coalesce <= 0x1FF) { 3952 timer_res = 2; 3953 } else { 3954 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3955 return -EINVAL; 3956 } 3957 timeset = (u8)(coalesce >> timer_res); 3958 3959 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3960 p_cid->sb_igu_id, false); 3961 if (rc) 3962 goto out; 3963 3964 address = BAR0_MAP_REG_USDM_RAM + 3965 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 3966 3967 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3968 sizeof(struct ustorm_eth_queue_zone), timeset); 3969 if (rc) 3970 goto out; 3971 3972 out: 3973 return rc; 3974 } 3975 3976 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, 3977 struct qed_ptt *p_ptt, 3978 u16 coalesce, struct qed_queue_cid *p_cid) 3979 { 3980 struct xstorm_eth_queue_zone eth_qzone; 3981 u8 timeset, timer_res; 3982 u32 address; 3983 int rc; 3984 3985 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3986 if (coalesce <= 0x7F) { 3987 timer_res = 0; 3988 } else if (coalesce <= 0xFF) { 3989 timer_res = 1; 3990 } else if (coalesce <= 0x1FF) { 3991 timer_res = 2; 3992 } else { 3993 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3994 return -EINVAL; 3995 } 3996 timeset = (u8)(coalesce >> timer_res); 3997 3998 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3999 p_cid->sb_igu_id, true); 4000 if (rc) 4001 goto out; 4002 4003 address = BAR0_MAP_REG_XSDM_RAM + 4004 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 4005 4006 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 4007 sizeof(struct xstorm_eth_queue_zone), timeset); 4008 out: 4009 return rc; 4010 } 4011 4012 /* Calculate final WFQ values for all vports and configure them. 4013 * After this configuration each vport will have 4014 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) 4015 */ 4016 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 4017 struct qed_ptt *p_ptt, 4018 u32 min_pf_rate) 4019 { 4020 struct init_qm_vport_params *vport_params; 4021 int i; 4022 4023 vport_params = p_hwfn->qm_info.qm_vport_params; 4024 4025 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 4026 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 4027 4028 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / 4029 min_pf_rate; 4030 qed_init_vport_wfq(p_hwfn, p_ptt, 4031 vport_params[i].first_tx_pq_id, 4032 vport_params[i].vport_wfq); 4033 } 4034 } 4035 4036 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, 4037 u32 min_pf_rate) 4038 4039 { 4040 int i; 4041 4042 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 4043 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; 4044 } 4045 4046 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 4047 struct qed_ptt *p_ptt, 4048 u32 min_pf_rate) 4049 { 4050 struct init_qm_vport_params *vport_params; 4051 int i; 4052 4053 vport_params = p_hwfn->qm_info.qm_vport_params; 4054 4055 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 4056 qed_init_wfq_default_param(p_hwfn, min_pf_rate); 4057 qed_init_vport_wfq(p_hwfn, p_ptt, 4058 vport_params[i].first_tx_pq_id, 4059 vport_params[i].vport_wfq); 4060 } 4061 } 4062 4063 /* This function performs several validations for WFQ 4064 * configuration and required min rate for a given vport 4065 * 1. req_rate must be greater than one percent of min_pf_rate. 4066 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 4067 * rates to get less than one percent of min_pf_rate. 4068 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 4069 */ 4070 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, 4071 u16 vport_id, u32 req_rate, u32 min_pf_rate) 4072 { 4073 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 4074 int non_requested_count = 0, req_count = 0, i, num_vports; 4075 4076 num_vports = p_hwfn->qm_info.num_vports; 4077 4078 /* Accounting for the vports which are configured for WFQ explicitly */ 4079 for (i = 0; i < num_vports; i++) { 4080 u32 tmp_speed; 4081 4082 if ((i != vport_id) && 4083 p_hwfn->qm_info.wfq_data[i].configured) { 4084 req_count++; 4085 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 4086 total_req_min_rate += tmp_speed; 4087 } 4088 } 4089 4090 /* Include current vport data as well */ 4091 req_count++; 4092 total_req_min_rate += req_rate; 4093 non_requested_count = num_vports - req_count; 4094 4095 if (req_rate < min_pf_rate / QED_WFQ_UNIT) { 4096 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4097 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 4098 vport_id, req_rate, min_pf_rate); 4099 return -EINVAL; 4100 } 4101 4102 if (num_vports > QED_WFQ_UNIT) { 4103 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4104 "Number of vports is greater than %d\n", 4105 QED_WFQ_UNIT); 4106 return -EINVAL; 4107 } 4108 4109 if (total_req_min_rate > min_pf_rate) { 4110 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4111 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 4112 total_req_min_rate, min_pf_rate); 4113 return -EINVAL; 4114 } 4115 4116 total_left_rate = min_pf_rate - total_req_min_rate; 4117 4118 left_rate_per_vp = total_left_rate / non_requested_count; 4119 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { 4120 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4121 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 4122 left_rate_per_vp, min_pf_rate); 4123 return -EINVAL; 4124 } 4125 4126 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 4127 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 4128 4129 for (i = 0; i < num_vports; i++) { 4130 if (p_hwfn->qm_info.wfq_data[i].configured) 4131 continue; 4132 4133 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 4134 } 4135 4136 return 0; 4137 } 4138 4139 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, 4140 struct qed_ptt *p_ptt, u16 vp_id, u32 rate) 4141 { 4142 struct qed_mcp_link_state *p_link; 4143 int rc = 0; 4144 4145 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; 4146 4147 if (!p_link->min_pf_rate) { 4148 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 4149 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 4150 return rc; 4151 } 4152 4153 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 4154 4155 if (!rc) 4156 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, 4157 p_link->min_pf_rate); 4158 else 4159 DP_NOTICE(p_hwfn, 4160 "Validation failed while configuring min rate\n"); 4161 4162 return rc; 4163 } 4164 4165 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, 4166 struct qed_ptt *p_ptt, 4167 u32 min_pf_rate) 4168 { 4169 bool use_wfq = false; 4170 int rc = 0; 4171 u16 i; 4172 4173 /* Validate all pre configured vports for wfq */ 4174 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 4175 u32 rate; 4176 4177 if (!p_hwfn->qm_info.wfq_data[i].configured) 4178 continue; 4179 4180 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 4181 use_wfq = true; 4182 4183 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 4184 if (rc) { 4185 DP_NOTICE(p_hwfn, 4186 "WFQ validation failed while configuring min rate\n"); 4187 break; 4188 } 4189 } 4190 4191 if (!rc && use_wfq) 4192 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4193 else 4194 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4195 4196 return rc; 4197 } 4198 4199 /* Main API for qed clients to configure vport min rate. 4200 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 4201 * rate - Speed in Mbps needs to be assigned to a given vport. 4202 */ 4203 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) 4204 { 4205 int i, rc = -EINVAL; 4206 4207 /* Currently not supported; Might change in future */ 4208 if (cdev->num_hwfns > 1) { 4209 DP_NOTICE(cdev, 4210 "WFQ configuration is not supported for this device\n"); 4211 return rc; 4212 } 4213 4214 for_each_hwfn(cdev, i) { 4215 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4216 struct qed_ptt *p_ptt; 4217 4218 p_ptt = qed_ptt_acquire(p_hwfn); 4219 if (!p_ptt) 4220 return -EBUSY; 4221 4222 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 4223 4224 if (rc) { 4225 qed_ptt_release(p_hwfn, p_ptt); 4226 return rc; 4227 } 4228 4229 qed_ptt_release(p_hwfn, p_ptt); 4230 } 4231 4232 return rc; 4233 } 4234 4235 /* API to configure WFQ from mcp link change */ 4236 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, 4237 struct qed_ptt *p_ptt, u32 min_pf_rate) 4238 { 4239 int i; 4240 4241 if (cdev->num_hwfns > 1) { 4242 DP_VERBOSE(cdev, 4243 NETIF_MSG_LINK, 4244 "WFQ configuration is not supported for this device\n"); 4245 return; 4246 } 4247 4248 for_each_hwfn(cdev, i) { 4249 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4250 4251 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 4252 min_pf_rate); 4253 } 4254 } 4255 4256 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, 4257 struct qed_ptt *p_ptt, 4258 struct qed_mcp_link_state *p_link, 4259 u8 max_bw) 4260 { 4261 int rc = 0; 4262 4263 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 4264 4265 if (!p_link->line_speed && (max_bw != 100)) 4266 return rc; 4267 4268 p_link->speed = (p_link->line_speed * max_bw) / 100; 4269 p_hwfn->qm_info.pf_rl = p_link->speed; 4270 4271 /* Since the limiter also affects Tx-switched traffic, we don't want it 4272 * to limit such traffic in case there's no actual limit. 4273 * In that case, set limit to imaginary high boundary. 4274 */ 4275 if (max_bw == 100) 4276 p_hwfn->qm_info.pf_rl = 100000; 4277 4278 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 4279 p_hwfn->qm_info.pf_rl); 4280 4281 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4282 "Configured MAX bandwidth to be %08x Mb/sec\n", 4283 p_link->speed); 4284 4285 return rc; 4286 } 4287 4288 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 4289 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) 4290 { 4291 int i, rc = -EINVAL; 4292 4293 if (max_bw < 1 || max_bw > 100) { 4294 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); 4295 return rc; 4296 } 4297 4298 for_each_hwfn(cdev, i) { 4299 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4300 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4301 struct qed_mcp_link_state *p_link; 4302 struct qed_ptt *p_ptt; 4303 4304 p_link = &p_lead->mcp_info->link_output; 4305 4306 p_ptt = qed_ptt_acquire(p_hwfn); 4307 if (!p_ptt) 4308 return -EBUSY; 4309 4310 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, 4311 p_link, max_bw); 4312 4313 qed_ptt_release(p_hwfn, p_ptt); 4314 4315 if (rc) 4316 break; 4317 } 4318 4319 return rc; 4320 } 4321 4322 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, 4323 struct qed_ptt *p_ptt, 4324 struct qed_mcp_link_state *p_link, 4325 u8 min_bw) 4326 { 4327 int rc = 0; 4328 4329 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 4330 p_hwfn->qm_info.pf_wfq = min_bw; 4331 4332 if (!p_link->line_speed) 4333 return rc; 4334 4335 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 4336 4337 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 4338 4339 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4340 "Configured MIN bandwidth to be %d Mb/sec\n", 4341 p_link->min_pf_rate); 4342 4343 return rc; 4344 } 4345 4346 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 4347 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) 4348 { 4349 int i, rc = -EINVAL; 4350 4351 if (min_bw < 1 || min_bw > 100) { 4352 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); 4353 return rc; 4354 } 4355 4356 for_each_hwfn(cdev, i) { 4357 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4358 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4359 struct qed_mcp_link_state *p_link; 4360 struct qed_ptt *p_ptt; 4361 4362 p_link = &p_lead->mcp_info->link_output; 4363 4364 p_ptt = qed_ptt_acquire(p_hwfn); 4365 if (!p_ptt) 4366 return -EBUSY; 4367 4368 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, 4369 p_link, min_bw); 4370 if (rc) { 4371 qed_ptt_release(p_hwfn, p_ptt); 4372 return rc; 4373 } 4374 4375 if (p_link->min_pf_rate) { 4376 u32 min_rate = p_link->min_pf_rate; 4377 4378 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, 4379 p_ptt, 4380 min_rate); 4381 } 4382 4383 qed_ptt_release(p_hwfn, p_ptt); 4384 } 4385 4386 return rc; 4387 } 4388 4389 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4390 { 4391 struct qed_mcp_link_state *p_link; 4392 4393 p_link = &p_hwfn->mcp_info->link_output; 4394 4395 if (p_link->min_pf_rate) 4396 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, 4397 p_link->min_pf_rate); 4398 4399 memset(p_hwfn->qm_info.wfq_data, 0, 4400 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); 4401 } 4402 4403 int qed_device_num_engines(struct qed_dev *cdev) 4404 { 4405 return QED_IS_BB(cdev) ? 2 : 1; 4406 } 4407 4408 static int qed_device_num_ports(struct qed_dev *cdev) 4409 { 4410 /* in CMT always only one port */ 4411 if (cdev->num_hwfns > 1) 4412 return 1; 4413 4414 return cdev->num_ports_in_engine * qed_device_num_engines(cdev); 4415 } 4416 4417 int qed_device_get_port_id(struct qed_dev *cdev) 4418 { 4419 return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev); 4420 } 4421 4422 void qed_set_fw_mac_addr(__le16 *fw_msb, 4423 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) 4424 { 4425 ((u8 *)fw_msb)[0] = mac[1]; 4426 ((u8 *)fw_msb)[1] = mac[0]; 4427 ((u8 *)fw_mid)[0] = mac[3]; 4428 ((u8 *)fw_mid)[1] = mac[2]; 4429 ((u8 *)fw_lsb)[0] = mac[5]; 4430 ((u8 *)fw_lsb)[1] = mac[4]; 4431 } 4432