xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_dev.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_ll2.h"
33 #include "qed_mcp.h"
34 #include "qed_reg_addr.h"
35 #include "qed_sp.h"
36 #include "qed_sriov.h"
37 #include "qed_vf.h"
38 #include "qed_roce.h"
39 
40 static DEFINE_SPINLOCK(qm_lock);
41 
42 #define QED_MIN_DPIS            (4)
43 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
44 
45 /* API common to all protocols */
46 enum BAR_ID {
47 	BAR_ID_0,       /* used for GRC */
48 	BAR_ID_1        /* Used for doorbells */
49 };
50 
51 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, enum BAR_ID bar_id)
52 {
53 	u32 bar_reg = (bar_id == BAR_ID_0 ?
54 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
55 	u32 val;
56 
57 	if (IS_VF(p_hwfn->cdev))
58 		return 1 << 17;
59 
60 	val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
61 	if (val)
62 		return 1 << (val + 15);
63 
64 	/* Old MFW initialized above registered only conditionally */
65 	if (p_hwfn->cdev->num_hwfns > 1) {
66 		DP_INFO(p_hwfn,
67 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
68 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
69 	} else {
70 		DP_INFO(p_hwfn,
71 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
72 			return 512 * 1024;
73 	}
74 }
75 
76 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
77 {
78 	u32 i;
79 
80 	cdev->dp_level = dp_level;
81 	cdev->dp_module = dp_module;
82 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
83 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
84 
85 		p_hwfn->dp_level = dp_level;
86 		p_hwfn->dp_module = dp_module;
87 	}
88 }
89 
90 void qed_init_struct(struct qed_dev *cdev)
91 {
92 	u8 i;
93 
94 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
95 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
96 
97 		p_hwfn->cdev = cdev;
98 		p_hwfn->my_id = i;
99 		p_hwfn->b_active = false;
100 
101 		mutex_init(&p_hwfn->dmae_info.mutex);
102 	}
103 
104 	/* hwfn 0 is always active */
105 	cdev->hwfns[0].b_active = true;
106 
107 	/* set the default cache alignment to 128 */
108 	cdev->cache_shift = 7;
109 }
110 
111 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
112 {
113 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
114 
115 	kfree(qm_info->qm_pq_params);
116 	qm_info->qm_pq_params = NULL;
117 	kfree(qm_info->qm_vport_params);
118 	qm_info->qm_vport_params = NULL;
119 	kfree(qm_info->qm_port_params);
120 	qm_info->qm_port_params = NULL;
121 	kfree(qm_info->wfq_data);
122 	qm_info->wfq_data = NULL;
123 }
124 
125 void qed_resc_free(struct qed_dev *cdev)
126 {
127 	int i;
128 
129 	if (IS_VF(cdev))
130 		return;
131 
132 	kfree(cdev->fw_data);
133 	cdev->fw_data = NULL;
134 
135 	kfree(cdev->reset_stats);
136 
137 	for_each_hwfn(cdev, i) {
138 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
139 
140 		kfree(p_hwfn->p_tx_cids);
141 		p_hwfn->p_tx_cids = NULL;
142 		kfree(p_hwfn->p_rx_cids);
143 		p_hwfn->p_rx_cids = NULL;
144 	}
145 
146 	for_each_hwfn(cdev, i) {
147 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
148 
149 		qed_cxt_mngr_free(p_hwfn);
150 		qed_qm_info_free(p_hwfn);
151 		qed_spq_free(p_hwfn);
152 		qed_eq_free(p_hwfn, p_hwfn->p_eq);
153 		qed_consq_free(p_hwfn, p_hwfn->p_consq);
154 		qed_int_free(p_hwfn);
155 #ifdef CONFIG_QED_LL2
156 		qed_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
157 #endif
158 		qed_iov_free(p_hwfn);
159 		qed_dmae_info_free(p_hwfn);
160 		qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
161 	}
162 }
163 
164 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
165 {
166 	u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
167 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
168 	struct init_qm_port_params *p_qm_port;
169 	bool init_rdma_offload_pq = false;
170 	bool init_pure_ack_pq = false;
171 	bool init_ooo_pq = false;
172 	u16 num_pqs, multi_cos_tcs = 1;
173 	u8 pf_wfq = qm_info->pf_wfq;
174 	u32 pf_rl = qm_info->pf_rl;
175 	u16 num_pf_rls = 0;
176 	u16 num_vfs = 0;
177 
178 #ifdef CONFIG_QED_SRIOV
179 	if (p_hwfn->cdev->p_iov_info)
180 		num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
181 #endif
182 	memset(qm_info, 0, sizeof(*qm_info));
183 
184 	num_pqs = multi_cos_tcs + num_vfs + 1;	/* The '1' is for pure-LB */
185 	num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
186 
187 	if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
188 		num_pqs++;	/* for RoCE queue */
189 		init_rdma_offload_pq = true;
190 		/* we subtract num_vfs because each require a rate limiter,
191 		 * and one default rate limiter
192 		 */
193 		if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
194 			num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
195 
196 		num_pqs += num_pf_rls;
197 		qm_info->num_pf_rls = (u8) num_pf_rls;
198 	}
199 
200 	if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
201 		num_pqs += 2;	/* for iSCSI pure-ACK / OOO queue */
202 		init_pure_ack_pq = true;
203 		init_ooo_pq = true;
204 	}
205 
206 	/* Sanity checking that setup requires legal number of resources */
207 	if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
208 		DP_ERR(p_hwfn,
209 		       "Need too many Physical queues - 0x%04x when only %04x are available\n",
210 		       num_pqs, RESC_NUM(p_hwfn, QED_PQ));
211 		return -EINVAL;
212 	}
213 
214 	/* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
215 	 */
216 	qm_info->qm_pq_params = kcalloc(num_pqs,
217 					sizeof(struct init_qm_pq_params),
218 					b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
219 	if (!qm_info->qm_pq_params)
220 		goto alloc_err;
221 
222 	qm_info->qm_vport_params = kcalloc(num_vports,
223 					   sizeof(struct init_qm_vport_params),
224 					   b_sleepable ? GFP_KERNEL
225 						       : GFP_ATOMIC);
226 	if (!qm_info->qm_vport_params)
227 		goto alloc_err;
228 
229 	qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
230 					  sizeof(struct init_qm_port_params),
231 					  b_sleepable ? GFP_KERNEL
232 						      : GFP_ATOMIC);
233 	if (!qm_info->qm_port_params)
234 		goto alloc_err;
235 
236 	qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
237 				    b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
238 	if (!qm_info->wfq_data)
239 		goto alloc_err;
240 
241 	vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
242 
243 	/* First init rate limited queues */
244 	for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
245 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
246 		qm_info->qm_pq_params[curr_queue].tc_id =
247 		    p_hwfn->hw_info.non_offload_tc;
248 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
249 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
250 	}
251 
252 	/* First init per-TC PQs */
253 	for (i = 0; i < multi_cos_tcs; i++) {
254 		struct init_qm_pq_params *params =
255 		    &qm_info->qm_pq_params[curr_queue++];
256 
257 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
258 		    p_hwfn->hw_info.personality == QED_PCI_ETH) {
259 			params->vport_id = vport_id;
260 			params->tc_id = p_hwfn->hw_info.non_offload_tc;
261 			params->wrr_group = 1;
262 		} else {
263 			params->vport_id = vport_id;
264 			params->tc_id = p_hwfn->hw_info.offload_tc;
265 			params->wrr_group = 1;
266 		}
267 	}
268 
269 	/* Then init pure-LB PQ */
270 	qm_info->pure_lb_pq = curr_queue;
271 	qm_info->qm_pq_params[curr_queue].vport_id =
272 	    (u8) RESC_START(p_hwfn, QED_VPORT);
273 	qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
274 	qm_info->qm_pq_params[curr_queue].wrr_group = 1;
275 	curr_queue++;
276 
277 	qm_info->offload_pq = 0;
278 	if (init_rdma_offload_pq) {
279 		qm_info->offload_pq = curr_queue;
280 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
281 		qm_info->qm_pq_params[curr_queue].tc_id =
282 		    p_hwfn->hw_info.offload_tc;
283 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
284 		curr_queue++;
285 	}
286 
287 	if (init_pure_ack_pq) {
288 		qm_info->pure_ack_pq = curr_queue;
289 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
290 		qm_info->qm_pq_params[curr_queue].tc_id =
291 		    p_hwfn->hw_info.offload_tc;
292 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
293 		curr_queue++;
294 	}
295 
296 	if (init_ooo_pq) {
297 		qm_info->ooo_pq = curr_queue;
298 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
299 		qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
300 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
301 		curr_queue++;
302 	}
303 
304 	/* Then init per-VF PQs */
305 	vf_offset = curr_queue;
306 	for (i = 0; i < num_vfs; i++) {
307 		/* First vport is used by the PF */
308 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
309 		qm_info->qm_pq_params[curr_queue].tc_id =
310 		    p_hwfn->hw_info.non_offload_tc;
311 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
312 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
313 		curr_queue++;
314 	}
315 
316 	qm_info->vf_queues_offset = vf_offset;
317 	qm_info->num_pqs = num_pqs;
318 	qm_info->num_vports = num_vports;
319 
320 	/* Initialize qm port parameters */
321 	num_ports = p_hwfn->cdev->num_ports_in_engines;
322 	for (i = 0; i < num_ports; i++) {
323 		p_qm_port = &qm_info->qm_port_params[i];
324 		p_qm_port->active = 1;
325 		if (num_ports == 4)
326 			p_qm_port->active_phys_tcs = 0x7;
327 		else
328 			p_qm_port->active_phys_tcs = 0x9f;
329 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
330 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
331 	}
332 
333 	qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
334 
335 	qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
336 
337 	qm_info->num_vf_pqs = num_vfs;
338 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
339 
340 	for (i = 0; i < qm_info->num_vports; i++)
341 		qm_info->qm_vport_params[i].vport_wfq = 1;
342 
343 	qm_info->vport_rl_en = 1;
344 	qm_info->vport_wfq_en = 1;
345 	qm_info->pf_rl = pf_rl;
346 	qm_info->pf_wfq = pf_wfq;
347 
348 	return 0;
349 
350 alloc_err:
351 	qed_qm_info_free(p_hwfn);
352 	return -ENOMEM;
353 }
354 
355 /* This function reconfigures the QM pf on the fly.
356  * For this purpose we:
357  * 1. reconfigure the QM database
358  * 2. set new values to runtime arrat
359  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
360  * 4. activate init tool in QM_PF stage
361  * 5. send an sdm_qm_cmd through rbc interface to release the QM
362  */
363 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
364 {
365 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
366 	bool b_rc;
367 	int rc;
368 
369 	/* qm_info is allocated in qed_init_qm_info() which is already called
370 	 * from qed_resc_alloc() or previous call of qed_qm_reconf().
371 	 * The allocated size may change each init, so we free it before next
372 	 * allocation.
373 	 */
374 	qed_qm_info_free(p_hwfn);
375 
376 	/* initialize qed's qm data structure */
377 	rc = qed_init_qm_info(p_hwfn, false);
378 	if (rc)
379 		return rc;
380 
381 	/* stop PF's qm queues */
382 	spin_lock_bh(&qm_lock);
383 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
384 				    qm_info->start_pq, qm_info->num_pqs);
385 	spin_unlock_bh(&qm_lock);
386 	if (!b_rc)
387 		return -EINVAL;
388 
389 	/* clear the QM_PF runtime phase leftovers from previous init */
390 	qed_init_clear_rt_data(p_hwfn);
391 
392 	/* prepare QM portion of runtime array */
393 	qed_qm_init_pf(p_hwfn);
394 
395 	/* activate init tool on runtime array */
396 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
397 			  p_hwfn->hw_info.hw_mode);
398 	if (rc)
399 		return rc;
400 
401 	/* start PF's qm queues */
402 	spin_lock_bh(&qm_lock);
403 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
404 				    qm_info->start_pq, qm_info->num_pqs);
405 	spin_unlock_bh(&qm_lock);
406 	if (!b_rc)
407 		return -EINVAL;
408 
409 	return 0;
410 }
411 
412 int qed_resc_alloc(struct qed_dev *cdev)
413 {
414 #ifdef CONFIG_QED_LL2
415 	struct qed_ll2_info *p_ll2_info;
416 #endif
417 	struct qed_consq *p_consq;
418 	struct qed_eq *p_eq;
419 	int i, rc = 0;
420 
421 	if (IS_VF(cdev))
422 		return rc;
423 
424 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
425 	if (!cdev->fw_data)
426 		return -ENOMEM;
427 
428 	/* Allocate Memory for the Queue->CID mapping */
429 	for_each_hwfn(cdev, i) {
430 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
431 		int tx_size = sizeof(struct qed_hw_cid_data) *
432 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
433 		int rx_size = sizeof(struct qed_hw_cid_data) *
434 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
435 
436 		p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
437 		if (!p_hwfn->p_tx_cids)
438 			goto alloc_no_mem;
439 
440 		p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
441 		if (!p_hwfn->p_rx_cids)
442 			goto alloc_no_mem;
443 	}
444 
445 	for_each_hwfn(cdev, i) {
446 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
447 		u32 n_eqes, num_cons;
448 
449 		/* First allocate the context manager structure */
450 		rc = qed_cxt_mngr_alloc(p_hwfn);
451 		if (rc)
452 			goto alloc_err;
453 
454 		/* Set the HW cid/tid numbers (in the contest manager)
455 		 * Must be done prior to any further computations.
456 		 */
457 		rc = qed_cxt_set_pf_params(p_hwfn);
458 		if (rc)
459 			goto alloc_err;
460 
461 		/* Prepare and process QM requirements */
462 		rc = qed_init_qm_info(p_hwfn, true);
463 		if (rc)
464 			goto alloc_err;
465 
466 		/* Compute the ILT client partition */
467 		rc = qed_cxt_cfg_ilt_compute(p_hwfn);
468 		if (rc)
469 			goto alloc_err;
470 
471 		/* CID map / ILT shadow table / T2
472 		 * The talbes sizes are determined by the computations above
473 		 */
474 		rc = qed_cxt_tables_alloc(p_hwfn);
475 		if (rc)
476 			goto alloc_err;
477 
478 		/* SPQ, must follow ILT because initializes SPQ context */
479 		rc = qed_spq_alloc(p_hwfn);
480 		if (rc)
481 			goto alloc_err;
482 
483 		/* SP status block allocation */
484 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
485 							 RESERVED_PTT_DPC);
486 
487 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
488 		if (rc)
489 			goto alloc_err;
490 
491 		rc = qed_iov_alloc(p_hwfn);
492 		if (rc)
493 			goto alloc_err;
494 
495 		/* EQ */
496 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
497 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
498 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
499 							       PROTOCOLID_ROCE,
500 							       0) * 2;
501 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
502 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
503 			num_cons =
504 			    qed_cxt_get_proto_cid_count(p_hwfn,
505 							PROTOCOLID_ISCSI, 0);
506 			n_eqes += 2 * num_cons;
507 		}
508 
509 		if (n_eqes > 0xFFFF) {
510 			DP_ERR(p_hwfn,
511 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
512 			       n_eqes, 0xFFFF);
513 			rc = -EINVAL;
514 			goto alloc_err;
515 		}
516 
517 		p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
518 		if (!p_eq)
519 			goto alloc_no_mem;
520 		p_hwfn->p_eq = p_eq;
521 
522 		p_consq = qed_consq_alloc(p_hwfn);
523 		if (!p_consq)
524 			goto alloc_no_mem;
525 		p_hwfn->p_consq = p_consq;
526 
527 #ifdef CONFIG_QED_LL2
528 		if (p_hwfn->using_ll2) {
529 			p_ll2_info = qed_ll2_alloc(p_hwfn);
530 			if (!p_ll2_info)
531 				goto alloc_no_mem;
532 			p_hwfn->p_ll2_info = p_ll2_info;
533 		}
534 #endif
535 
536 		/* DMA info initialization */
537 		rc = qed_dmae_info_alloc(p_hwfn);
538 		if (rc)
539 			goto alloc_err;
540 
541 		/* DCBX initialization */
542 		rc = qed_dcbx_info_alloc(p_hwfn);
543 		if (rc)
544 			goto alloc_err;
545 	}
546 
547 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
548 	if (!cdev->reset_stats)
549 		goto alloc_no_mem;
550 
551 	return 0;
552 
553 alloc_no_mem:
554 	rc = -ENOMEM;
555 alloc_err:
556 	qed_resc_free(cdev);
557 	return rc;
558 }
559 
560 void qed_resc_setup(struct qed_dev *cdev)
561 {
562 	int i;
563 
564 	if (IS_VF(cdev))
565 		return;
566 
567 	for_each_hwfn(cdev, i) {
568 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
569 
570 		qed_cxt_mngr_setup(p_hwfn);
571 		qed_spq_setup(p_hwfn);
572 		qed_eq_setup(p_hwfn, p_hwfn->p_eq);
573 		qed_consq_setup(p_hwfn, p_hwfn->p_consq);
574 
575 		/* Read shadow of current MFW mailbox */
576 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
577 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
578 		       p_hwfn->mcp_info->mfw_mb_cur,
579 		       p_hwfn->mcp_info->mfw_mb_length);
580 
581 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
582 
583 		qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
584 #ifdef CONFIG_QED_LL2
585 		if (p_hwfn->using_ll2)
586 			qed_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
587 #endif
588 	}
589 }
590 
591 #define FINAL_CLEANUP_POLL_CNT          (100)
592 #define FINAL_CLEANUP_POLL_TIME         (10)
593 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
594 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
595 {
596 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
597 	int rc = -EBUSY;
598 
599 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
600 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
601 
602 	if (is_vf)
603 		id += 0x10;
604 
605 	command |= X_FINAL_CLEANUP_AGG_INT <<
606 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
607 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
608 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
609 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
610 
611 	/* Make sure notification is not set before initiating final cleanup */
612 	if (REG_RD(p_hwfn, addr)) {
613 		DP_NOTICE(p_hwfn,
614 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
615 		REG_WR(p_hwfn, addr, 0);
616 	}
617 
618 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
619 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
620 		   id, command);
621 
622 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
623 
624 	/* Poll until completion */
625 	while (!REG_RD(p_hwfn, addr) && count--)
626 		msleep(FINAL_CLEANUP_POLL_TIME);
627 
628 	if (REG_RD(p_hwfn, addr))
629 		rc = 0;
630 	else
631 		DP_NOTICE(p_hwfn,
632 			  "Failed to receive FW final cleanup notification\n");
633 
634 	/* Cleanup afterwards */
635 	REG_WR(p_hwfn, addr, 0);
636 
637 	return rc;
638 }
639 
640 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
641 {
642 	int hw_mode = 0;
643 
644 	hw_mode = (1 << MODE_BB_B0);
645 
646 	switch (p_hwfn->cdev->num_ports_in_engines) {
647 	case 1:
648 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
649 		break;
650 	case 2:
651 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
652 		break;
653 	case 4:
654 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
655 		break;
656 	default:
657 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
658 			  p_hwfn->cdev->num_ports_in_engines);
659 		return;
660 	}
661 
662 	switch (p_hwfn->cdev->mf_mode) {
663 	case QED_MF_DEFAULT:
664 	case QED_MF_NPAR:
665 		hw_mode |= 1 << MODE_MF_SI;
666 		break;
667 	case QED_MF_OVLAN:
668 		hw_mode |= 1 << MODE_MF_SD;
669 		break;
670 	default:
671 		DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
672 		hw_mode |= 1 << MODE_MF_SI;
673 	}
674 
675 	hw_mode |= 1 << MODE_ASIC;
676 
677 	if (p_hwfn->cdev->num_hwfns > 1)
678 		hw_mode |= 1 << MODE_100G;
679 
680 	p_hwfn->hw_info.hw_mode = hw_mode;
681 
682 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
683 		   "Configuring function for hw_mode: 0x%08x\n",
684 		   p_hwfn->hw_info.hw_mode);
685 }
686 
687 /* Init run time data for all PFs on an engine. */
688 static void qed_init_cau_rt_data(struct qed_dev *cdev)
689 {
690 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
691 	int i, sb_id;
692 
693 	for_each_hwfn(cdev, i) {
694 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
695 		struct qed_igu_info *p_igu_info;
696 		struct qed_igu_block *p_block;
697 		struct cau_sb_entry sb_entry;
698 
699 		p_igu_info = p_hwfn->hw_info.p_igu_info;
700 
701 		for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
702 		     sb_id++) {
703 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
704 			if (!p_block->is_pf)
705 				continue;
706 
707 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
708 					      p_block->function_id, 0, 0);
709 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
710 		}
711 	}
712 }
713 
714 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
715 			      struct qed_ptt *p_ptt, int hw_mode)
716 {
717 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
718 	struct qed_qm_common_rt_init_params params;
719 	struct qed_dev *cdev = p_hwfn->cdev;
720 	u16 num_pfs, pf_id;
721 	u32 concrete_fid;
722 	int rc = 0;
723 	u8 vf_id;
724 
725 	qed_init_cau_rt_data(cdev);
726 
727 	/* Program GTT windows */
728 	qed_gtt_init(p_hwfn);
729 
730 	if (p_hwfn->mcp_info) {
731 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
732 			qm_info->pf_rl_en = 1;
733 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
734 			qm_info->pf_wfq_en = 1;
735 	}
736 
737 	memset(&params, 0, sizeof(params));
738 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
739 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
740 	params.pf_rl_en = qm_info->pf_rl_en;
741 	params.pf_wfq_en = qm_info->pf_wfq_en;
742 	params.vport_rl_en = qm_info->vport_rl_en;
743 	params.vport_wfq_en = qm_info->vport_wfq_en;
744 	params.port_params = qm_info->qm_port_params;
745 
746 	qed_qm_common_rt_init(p_hwfn, &params);
747 
748 	qed_cxt_hw_init_common(p_hwfn);
749 
750 	/* Close gate from NIG to BRB/Storm; By default they are open, but
751 	 * we close them to prevent NIG from passing data to reset blocks.
752 	 * Should have been done in the ENGINE phase, but init-tool lacks
753 	 * proper port-pretend capabilities.
754 	 */
755 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
756 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
757 	qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
758 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
759 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
760 	qed_port_unpretend(p_hwfn, p_ptt);
761 
762 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
763 	if (rc)
764 		return rc;
765 
766 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
767 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
768 
769 	if (QED_IS_BB(p_hwfn->cdev)) {
770 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
771 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
772 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
773 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
774 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
775 		}
776 		/* pretend to original PF */
777 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
778 	}
779 
780 	for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
781 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
782 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
783 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
784 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
785 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
786 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
787 	}
788 	/* pretend to original PF */
789 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
790 
791 	return rc;
792 }
793 
794 static int
795 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
796 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
797 {
798 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
799 	u32 dpi_bit_shift, dpi_count;
800 	u32 min_dpis;
801 
802 	/* Calculate DPI size */
803 	dpi_page_size_1 = QED_WID_SIZE * n_cpus;
804 	dpi_page_size_2 = max_t(u32, QED_WID_SIZE, PAGE_SIZE);
805 	dpi_page_size = max_t(u32, dpi_page_size_1, dpi_page_size_2);
806 	dpi_page_size = roundup_pow_of_two(dpi_page_size);
807 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
808 
809 	dpi_count = pwm_region_size / dpi_page_size;
810 
811 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
812 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
813 
814 	p_hwfn->dpi_size = dpi_page_size;
815 	p_hwfn->dpi_count = dpi_count;
816 
817 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
818 
819 	if (dpi_count < min_dpis)
820 		return -EINVAL;
821 
822 	return 0;
823 }
824 
825 enum QED_ROCE_EDPM_MODE {
826 	QED_ROCE_EDPM_MODE_ENABLE = 0,
827 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
828 	QED_ROCE_EDPM_MODE_DISABLE = 2,
829 };
830 
831 static int
832 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
833 {
834 	u32 pwm_regsize, norm_regsize;
835 	u32 non_pwm_conn, min_addr_reg1;
836 	u32 db_bar_size, n_cpus;
837 	u32 roce_edpm_mode;
838 	u32 pf_dems_shift;
839 	int rc = 0;
840 	u8 cond;
841 
842 	db_bar_size = qed_hw_bar_size(p_hwfn, BAR_ID_1);
843 	if (p_hwfn->cdev->num_hwfns > 1)
844 		db_bar_size /= 2;
845 
846 	/* Calculate doorbell regions */
847 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
848 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
849 						   NULL) +
850 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
851 						   NULL);
852 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, 4096);
853 	min_addr_reg1 = norm_regsize / 4096;
854 	pwm_regsize = db_bar_size - norm_regsize;
855 
856 	/* Check that the normal and PWM sizes are valid */
857 	if (db_bar_size < norm_regsize) {
858 		DP_ERR(p_hwfn->cdev,
859 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
860 		       db_bar_size, norm_regsize);
861 		return -EINVAL;
862 	}
863 
864 	if (pwm_regsize < QED_MIN_PWM_REGION) {
865 		DP_ERR(p_hwfn->cdev,
866 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
867 		       pwm_regsize,
868 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
869 		return -EINVAL;
870 	}
871 
872 	/* Calculate number of DPIs */
873 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
874 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
875 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
876 		/* Either EDPM is mandatory, or we are attempting to allocate a
877 		 * WID per CPU.
878 		 */
879 		n_cpus = num_active_cpus();
880 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
881 	}
882 
883 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
884 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
885 	if (cond || p_hwfn->dcbx_no_edpm) {
886 		/* Either EDPM is disabled from user configuration, or it is
887 		 * disabled via DCBx, or it is not mandatory and we failed to
888 		 * allocated a WID per CPU.
889 		 */
890 		n_cpus = 1;
891 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
892 
893 		if (cond)
894 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
895 	}
896 
897 	DP_INFO(p_hwfn,
898 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
899 		norm_regsize,
900 		pwm_regsize,
901 		p_hwfn->dpi_size,
902 		p_hwfn->dpi_count,
903 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
904 		"disabled" : "enabled");
905 
906 	if (rc) {
907 		DP_ERR(p_hwfn,
908 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
909 		       p_hwfn->dpi_count,
910 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
911 		return -EINVAL;
912 	}
913 
914 	p_hwfn->dpi_start_offset = norm_regsize;
915 
916 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
917 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
918 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
919 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
920 
921 	return 0;
922 }
923 
924 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
925 			    struct qed_ptt *p_ptt, int hw_mode)
926 {
927 	return qed_init_run(p_hwfn, p_ptt, PHASE_PORT,
928 			    p_hwfn->port_id, hw_mode);
929 }
930 
931 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
932 			  struct qed_ptt *p_ptt,
933 			  struct qed_tunn_start_params *p_tunn,
934 			  int hw_mode,
935 			  bool b_hw_start,
936 			  enum qed_int_mode int_mode,
937 			  bool allow_npar_tx_switch)
938 {
939 	u8 rel_pf_id = p_hwfn->rel_pf_id;
940 	int rc = 0;
941 
942 	if (p_hwfn->mcp_info) {
943 		struct qed_mcp_function_info *p_info;
944 
945 		p_info = &p_hwfn->mcp_info->func_info;
946 		if (p_info->bandwidth_min)
947 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
948 
949 		/* Update rate limit once we'll actually have a link */
950 		p_hwfn->qm_info.pf_rl = 100000;
951 	}
952 
953 	qed_cxt_hw_init_pf(p_hwfn);
954 
955 	qed_int_igu_init_rt(p_hwfn);
956 
957 	/* Set VLAN in NIG if needed */
958 	if (hw_mode & BIT(MODE_MF_SD)) {
959 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
960 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
961 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
962 			     p_hwfn->hw_info.ovlan);
963 	}
964 
965 	/* Enable classification by MAC if needed */
966 	if (hw_mode & BIT(MODE_MF_SI)) {
967 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
968 			   "Configuring TAGMAC_CLS_TYPE\n");
969 		STORE_RT_REG(p_hwfn,
970 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
971 	}
972 
973 	/* Protocl Configuration  */
974 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
975 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
976 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
977 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
978 
979 	/* Cleanup chip from previous driver if such remains exist */
980 	rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
981 	if (rc)
982 		return rc;
983 
984 	/* PF Init sequence */
985 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
986 	if (rc)
987 		return rc;
988 
989 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
990 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
991 	if (rc)
992 		return rc;
993 
994 	/* Pure runtime initializations - directly to the HW  */
995 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
996 
997 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
998 	if (rc)
999 		return rc;
1000 
1001 	if (b_hw_start) {
1002 		/* enable interrupts */
1003 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1004 
1005 		/* send function start command */
1006 		rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
1007 				     allow_npar_tx_switch);
1008 		if (rc)
1009 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1010 	}
1011 	return rc;
1012 }
1013 
1014 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
1015 			       struct qed_ptt *p_ptt,
1016 			       u8 enable)
1017 {
1018 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1019 
1020 	/* Change PF in PXP */
1021 	qed_wr(p_hwfn, p_ptt,
1022 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1023 
1024 	/* wait until value is set - try for 1 second every 50us */
1025 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1026 		val = qed_rd(p_hwfn, p_ptt,
1027 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1028 		if (val == set_val)
1029 			break;
1030 
1031 		usleep_range(50, 60);
1032 	}
1033 
1034 	if (val != set_val) {
1035 		DP_NOTICE(p_hwfn,
1036 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1037 		return -EAGAIN;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
1044 				struct qed_ptt *p_main_ptt)
1045 {
1046 	/* Read shadow of current MFW mailbox */
1047 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
1048 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1049 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
1050 }
1051 
1052 int qed_hw_init(struct qed_dev *cdev,
1053 		struct qed_tunn_start_params *p_tunn,
1054 		bool b_hw_start,
1055 		enum qed_int_mode int_mode,
1056 		bool allow_npar_tx_switch,
1057 		const u8 *bin_fw_data)
1058 {
1059 	u32 load_code, param;
1060 	int rc, mfw_rc, i;
1061 
1062 	if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
1063 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
1064 		return -EINVAL;
1065 	}
1066 
1067 	if (IS_PF(cdev)) {
1068 		rc = qed_init_fw_data(cdev, bin_fw_data);
1069 		if (rc)
1070 			return rc;
1071 	}
1072 
1073 	for_each_hwfn(cdev, i) {
1074 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1075 
1076 		if (IS_VF(cdev)) {
1077 			p_hwfn->b_int_enabled = 1;
1078 			continue;
1079 		}
1080 
1081 		/* Enable DMAE in PXP */
1082 		rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1083 
1084 		qed_calc_hw_mode(p_hwfn);
1085 
1086 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1087 		if (rc) {
1088 			DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
1089 			return rc;
1090 		}
1091 
1092 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1093 
1094 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
1095 			   "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1096 			   rc, load_code);
1097 
1098 		p_hwfn->first_on_engine = (load_code ==
1099 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1100 
1101 		switch (load_code) {
1102 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1103 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1104 						p_hwfn->hw_info.hw_mode);
1105 			if (rc)
1106 				break;
1107 		/* Fall into */
1108 		case FW_MSG_CODE_DRV_LOAD_PORT:
1109 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1110 					      p_hwfn->hw_info.hw_mode);
1111 			if (rc)
1112 				break;
1113 
1114 		/* Fall into */
1115 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1116 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1117 					    p_tunn, p_hwfn->hw_info.hw_mode,
1118 					    b_hw_start, int_mode,
1119 					    allow_npar_tx_switch);
1120 			break;
1121 		default:
1122 			rc = -EINVAL;
1123 			break;
1124 		}
1125 
1126 		if (rc)
1127 			DP_NOTICE(p_hwfn,
1128 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1129 				   load_code, rc);
1130 
1131 		/* ACK mfw regardless of success or failure of initialization */
1132 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1133 				     DRV_MSG_CODE_LOAD_DONE,
1134 				     0, &load_code, &param);
1135 		if (rc)
1136 			return rc;
1137 		if (mfw_rc) {
1138 			DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1139 			return mfw_rc;
1140 		}
1141 
1142 		/* send DCBX attention request command */
1143 		DP_VERBOSE(p_hwfn,
1144 			   QED_MSG_DCB,
1145 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1146 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1147 				     DRV_MSG_CODE_SET_DCBX,
1148 				     1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1149 				     &load_code, &param);
1150 		if (mfw_rc) {
1151 			DP_NOTICE(p_hwfn,
1152 				  "Failed to send DCBX attention request\n");
1153 			return mfw_rc;
1154 		}
1155 
1156 		p_hwfn->hw_init_done = true;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 #define QED_HW_STOP_RETRY_LIMIT (10)
1163 static void qed_hw_timers_stop(struct qed_dev *cdev,
1164 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1165 {
1166 	int i;
1167 
1168 	/* close timers */
1169 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1170 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1171 
1172 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1173 		if ((!qed_rd(p_hwfn, p_ptt,
1174 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1175 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1176 			break;
1177 
1178 		/* Dependent on number of connection/tasks, possibly
1179 		 * 1ms sleep is required between polls
1180 		 */
1181 		usleep_range(1000, 2000);
1182 	}
1183 
1184 	if (i < QED_HW_STOP_RETRY_LIMIT)
1185 		return;
1186 
1187 	DP_NOTICE(p_hwfn,
1188 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1189 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1190 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1191 }
1192 
1193 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1194 {
1195 	int j;
1196 
1197 	for_each_hwfn(cdev, j) {
1198 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1199 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1200 
1201 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1202 	}
1203 }
1204 
1205 int qed_hw_stop(struct qed_dev *cdev)
1206 {
1207 	int rc = 0, t_rc;
1208 	int j;
1209 
1210 	for_each_hwfn(cdev, j) {
1211 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1212 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1213 
1214 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1215 
1216 		if (IS_VF(cdev)) {
1217 			qed_vf_pf_int_cleanup(p_hwfn);
1218 			continue;
1219 		}
1220 
1221 		/* mark the hw as uninitialized... */
1222 		p_hwfn->hw_init_done = false;
1223 
1224 		rc = qed_sp_pf_stop(p_hwfn);
1225 		if (rc)
1226 			DP_NOTICE(p_hwfn,
1227 				  "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1228 
1229 		qed_wr(p_hwfn, p_ptt,
1230 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1231 
1232 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1233 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1234 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1235 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1236 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1237 
1238 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1239 
1240 		/* Disable Attention Generation */
1241 		qed_int_igu_disable_int(p_hwfn, p_ptt);
1242 
1243 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1244 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1245 
1246 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1247 
1248 		/* Need to wait 1ms to guarantee SBs are cleared */
1249 		usleep_range(1000, 2000);
1250 	}
1251 
1252 	if (IS_PF(cdev)) {
1253 		/* Disable DMAE in PXP - in CMT, this should only be done for
1254 		 * first hw-function, and only after all transactions have
1255 		 * stopped for all active hw-functions.
1256 		 */
1257 		t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1258 					   cdev->hwfns[0].p_main_ptt, false);
1259 		if (t_rc != 0)
1260 			rc = t_rc;
1261 	}
1262 
1263 	return rc;
1264 }
1265 
1266 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1267 {
1268 	int j;
1269 
1270 	for_each_hwfn(cdev, j) {
1271 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1272 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1273 
1274 		if (IS_VF(cdev)) {
1275 			qed_vf_pf_int_cleanup(p_hwfn);
1276 			continue;
1277 		}
1278 
1279 		DP_VERBOSE(p_hwfn,
1280 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
1281 
1282 		qed_wr(p_hwfn, p_ptt,
1283 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1284 
1285 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1286 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1287 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1288 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1289 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1290 
1291 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1292 
1293 		/* Need to wait 1ms to guarantee SBs are cleared */
1294 		usleep_range(1000, 2000);
1295 	}
1296 }
1297 
1298 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1299 {
1300 	if (IS_VF(p_hwfn->cdev))
1301 		return;
1302 
1303 	/* Re-open incoming traffic */
1304 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1305 	       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1306 }
1307 
1308 static int qed_reg_assert(struct qed_hwfn *p_hwfn,
1309 			  struct qed_ptt *p_ptt, u32 reg, bool expected)
1310 {
1311 	u32 assert_val = qed_rd(p_hwfn, p_ptt, reg);
1312 
1313 	if (assert_val != expected) {
1314 		DP_NOTICE(p_hwfn, "Value at address 0x%08x != 0x%08x\n",
1315 			  reg, expected);
1316 		return -EINVAL;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 int qed_hw_reset(struct qed_dev *cdev)
1323 {
1324 	int rc = 0;
1325 	u32 unload_resp, unload_param;
1326 	int i;
1327 
1328 	for_each_hwfn(cdev, i) {
1329 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1330 
1331 		if (IS_VF(cdev)) {
1332 			rc = qed_vf_pf_reset(p_hwfn);
1333 			if (rc)
1334 				return rc;
1335 			continue;
1336 		}
1337 
1338 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1339 
1340 		/* Check for incorrect states */
1341 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1342 			       QM_REG_USG_CNT_PF_TX, 0);
1343 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1344 			       QM_REG_USG_CNT_PF_OTHER, 0);
1345 
1346 		/* Disable PF in HW blocks */
1347 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1348 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1349 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1350 		       TCFC_REG_STRONG_ENABLE_PF, 0);
1351 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1352 		       CCFC_REG_STRONG_ENABLE_PF, 0);
1353 
1354 		/* Send unload command to MCP */
1355 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1356 				 DRV_MSG_CODE_UNLOAD_REQ,
1357 				 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1358 				 &unload_resp, &unload_param);
1359 		if (rc) {
1360 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1361 			unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1362 		}
1363 
1364 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1365 				 DRV_MSG_CODE_UNLOAD_DONE,
1366 				 0, &unload_resp, &unload_param);
1367 		if (rc) {
1368 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1369 			return rc;
1370 		}
1371 	}
1372 
1373 	return rc;
1374 }
1375 
1376 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1377 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1378 {
1379 	qed_ptt_pool_free(p_hwfn);
1380 	kfree(p_hwfn->hw_info.p_igu_info);
1381 }
1382 
1383 /* Setup bar access */
1384 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1385 {
1386 	/* clear indirect access */
1387 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1388 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1389 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1390 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1391 
1392 	/* Clean Previous errors if such exist */
1393 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1394 	       PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
1395 
1396 	/* enable internal target-read */
1397 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1398 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1399 }
1400 
1401 static void get_function_id(struct qed_hwfn *p_hwfn)
1402 {
1403 	/* ME Register */
1404 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
1405 						  PXP_PF_ME_OPAQUE_ADDR);
1406 
1407 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1408 
1409 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1410 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1411 				      PXP_CONCRETE_FID_PFID);
1412 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1413 				    PXP_CONCRETE_FID_PORT);
1414 
1415 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1416 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
1417 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
1418 }
1419 
1420 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1421 {
1422 	u32 *feat_num = p_hwfn->hw_info.feat_num;
1423 	int num_features = 1;
1424 
1425 #if IS_ENABLED(CONFIG_INFINIBAND_QEDR)
1426 	/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide the
1427 	 * status blocks equally between L2 / RoCE but with consideration as
1428 	 * to how many l2 queues / cnqs we have
1429 	 */
1430 	if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
1431 		num_features++;
1432 
1433 		feat_num[QED_RDMA_CNQ] =
1434 			min_t(u32, RESC_NUM(p_hwfn, QED_SB) / num_features,
1435 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
1436 	}
1437 #endif
1438 	feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1439 						num_features,
1440 					RESC_NUM(p_hwfn, QED_L2_QUEUE));
1441 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1442 		   "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1443 		   feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1444 		   num_features);
1445 }
1446 
1447 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1448 {
1449 	u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1450 	u32 *resc_start = p_hwfn->hw_info.resc_start;
1451 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
1452 	u32 *resc_num = p_hwfn->hw_info.resc_num;
1453 	struct qed_sb_cnt_info sb_cnt_info;
1454 	int i, max_vf_vlan_filters;
1455 
1456 	memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1457 
1458 #ifdef CONFIG_QED_SRIOV
1459 	max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1460 #else
1461 	max_vf_vlan_filters = 0;
1462 #endif
1463 
1464 	qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1465 
1466 	resc_num[QED_SB] = min_t(u32,
1467 				 (MAX_SB_PER_PATH_BB / num_funcs),
1468 				 sb_cnt_info.sb_cnt);
1469 	resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1470 	resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1471 	resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1472 	resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1473 	resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1474 	resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1475 	resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1476 			     num_funcs;
1477 	resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1478 	resc_num[QED_LL2_QUEUE] = MAX_NUM_LL2_RX_QUEUES / num_funcs;
1479 	resc_num[QED_RDMA_CNQ_RAM] = NUM_OF_CMDQS_CQS / num_funcs;
1480 	resc_num[QED_RDMA_STATS_QUEUE] = RDMA_NUM_STATISTIC_COUNTERS_BB /
1481 					 num_funcs;
1482 
1483 	for (i = 0; i < QED_MAX_RESC; i++)
1484 		resc_start[i] = resc_num[i] * enabled_func_idx;
1485 
1486 	/* Sanity for ILT */
1487 	if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1488 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1489 			  RESC_START(p_hwfn, QED_ILT),
1490 			  RESC_END(p_hwfn, QED_ILT) - 1);
1491 		return -EINVAL;
1492 	}
1493 
1494 	qed_hw_set_feat(p_hwfn);
1495 
1496 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1497 		   "The numbers for each resource are:\n"
1498 		   "SB = %d start = %d\n"
1499 		   "L2_QUEUE = %d start = %d\n"
1500 		   "VPORT = %d start = %d\n"
1501 		   "PQ = %d start = %d\n"
1502 		   "RL = %d start = %d\n"
1503 		   "MAC = %d start = %d\n"
1504 		   "VLAN = %d start = %d\n"
1505 		   "ILT = %d start = %d\n"
1506 		   "LL2_QUEUE = %d start = %d\n",
1507 		   p_hwfn->hw_info.resc_num[QED_SB],
1508 		   p_hwfn->hw_info.resc_start[QED_SB],
1509 		   p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1510 		   p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1511 		   p_hwfn->hw_info.resc_num[QED_VPORT],
1512 		   p_hwfn->hw_info.resc_start[QED_VPORT],
1513 		   p_hwfn->hw_info.resc_num[QED_PQ],
1514 		   p_hwfn->hw_info.resc_start[QED_PQ],
1515 		   p_hwfn->hw_info.resc_num[QED_RL],
1516 		   p_hwfn->hw_info.resc_start[QED_RL],
1517 		   p_hwfn->hw_info.resc_num[QED_MAC],
1518 		   p_hwfn->hw_info.resc_start[QED_MAC],
1519 		   p_hwfn->hw_info.resc_num[QED_VLAN],
1520 		   p_hwfn->hw_info.resc_start[QED_VLAN],
1521 		   p_hwfn->hw_info.resc_num[QED_ILT],
1522 		   p_hwfn->hw_info.resc_start[QED_ILT],
1523 		   RESC_NUM(p_hwfn, QED_LL2_QUEUE),
1524 		   RESC_START(p_hwfn, QED_LL2_QUEUE));
1525 
1526 	return 0;
1527 }
1528 
1529 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1530 {
1531 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1532 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1533 	struct qed_mcp_link_params *link;
1534 
1535 	/* Read global nvm_cfg address */
1536 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1537 
1538 	/* Verify MCP has initialized it */
1539 	if (!nvm_cfg_addr) {
1540 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1541 		return -EINVAL;
1542 	}
1543 
1544 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1545 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1546 
1547 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1548 	       offsetof(struct nvm_cfg1, glob) +
1549 	       offsetof(struct nvm_cfg1_glob, core_cfg);
1550 
1551 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1552 
1553 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1554 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1555 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1556 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1557 		break;
1558 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1559 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1560 		break;
1561 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1562 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1563 		break;
1564 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1565 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1566 		break;
1567 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1568 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1569 		break;
1570 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1571 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1572 		break;
1573 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1574 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1575 		break;
1576 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1577 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1578 		break;
1579 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1580 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1581 		break;
1582 	default:
1583 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
1584 		break;
1585 	}
1586 
1587 	/* Read default link configuration */
1588 	link = &p_hwfn->mcp_info->link_input;
1589 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1590 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1591 	link_temp = qed_rd(p_hwfn, p_ptt,
1592 			   port_cfg_addr +
1593 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
1594 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1595 	link->speed.advertised_speeds = link_temp;
1596 
1597 	link_temp = link->speed.advertised_speeds;
1598 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
1599 
1600 	link_temp = qed_rd(p_hwfn, p_ptt,
1601 			   port_cfg_addr +
1602 			   offsetof(struct nvm_cfg1_port, link_settings));
1603 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1604 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1605 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1606 		link->speed.autoneg = true;
1607 		break;
1608 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1609 		link->speed.forced_speed = 1000;
1610 		break;
1611 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1612 		link->speed.forced_speed = 10000;
1613 		break;
1614 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1615 		link->speed.forced_speed = 25000;
1616 		break;
1617 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1618 		link->speed.forced_speed = 40000;
1619 		break;
1620 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1621 		link->speed.forced_speed = 50000;
1622 		break;
1623 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1624 		link->speed.forced_speed = 100000;
1625 		break;
1626 	default:
1627 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
1628 	}
1629 
1630 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1631 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1632 	link->pause.autoneg = !!(link_temp &
1633 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1634 	link->pause.forced_rx = !!(link_temp &
1635 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1636 	link->pause.forced_tx = !!(link_temp &
1637 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1638 	link->loopback_mode = 0;
1639 
1640 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1641 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1642 		   link->speed.forced_speed, link->speed.advertised_speeds,
1643 		   link->speed.autoneg, link->pause.autoneg);
1644 
1645 	/* Read Multi-function information from shmem */
1646 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1647 	       offsetof(struct nvm_cfg1, glob) +
1648 	       offsetof(struct nvm_cfg1_glob, generic_cont0);
1649 
1650 	generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1651 
1652 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1653 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
1654 
1655 	switch (mf_mode) {
1656 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1657 		p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1658 		break;
1659 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1660 		p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1661 		break;
1662 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1663 		p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1664 		break;
1665 	}
1666 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1667 		p_hwfn->cdev->mf_mode);
1668 
1669 	/* Read Multi-function information from shmem */
1670 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1671 		offsetof(struct nvm_cfg1, glob) +
1672 		offsetof(struct nvm_cfg1_glob, device_capabilities);
1673 
1674 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1675 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1676 		__set_bit(QED_DEV_CAP_ETH,
1677 			  &p_hwfn->hw_info.device_capabilities);
1678 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1679 		__set_bit(QED_DEV_CAP_ISCSI,
1680 			  &p_hwfn->hw_info.device_capabilities);
1681 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1682 		__set_bit(QED_DEV_CAP_ROCE,
1683 			  &p_hwfn->hw_info.device_capabilities);
1684 
1685 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1686 }
1687 
1688 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1689 {
1690 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1691 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1692 
1693 	num_funcs = MAX_NUM_PFS_BB;
1694 
1695 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1696 	 * in the other bits are selected.
1697 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
1698 	 * '0' only for enabled functions (function 0 always exists and
1699 	 * enabled).
1700 	 * In case of CMT, only the "even" functions are enabled, and thus the
1701 	 * number of functions for both hwfns is learnt from the same bits.
1702 	 */
1703 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1704 
1705 	if (reg_function_hide & 0x1) {
1706 		if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1707 			num_funcs = 0;
1708 			eng_mask = 0xaaaa;
1709 		} else {
1710 			num_funcs = 1;
1711 			eng_mask = 0x5554;
1712 		}
1713 
1714 		/* Get the number of the enabled functions on the engine */
1715 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1716 		while (tmp) {
1717 			if (tmp & 0x1)
1718 				num_funcs++;
1719 			tmp >>= 0x1;
1720 		}
1721 
1722 		/* Get the PF index within the enabled functions */
1723 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1724 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
1725 		while (tmp) {
1726 			if (tmp & 0x1)
1727 				enabled_func_idx--;
1728 			tmp >>= 0x1;
1729 		}
1730 	}
1731 
1732 	p_hwfn->num_funcs_on_engine = num_funcs;
1733 	p_hwfn->enabled_func_idx = enabled_func_idx;
1734 
1735 	DP_VERBOSE(p_hwfn,
1736 		   NETIF_MSG_PROBE,
1737 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
1738 		   p_hwfn->rel_pf_id,
1739 		   p_hwfn->abs_pf_id,
1740 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
1741 }
1742 
1743 static int
1744 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1745 		struct qed_ptt *p_ptt,
1746 		enum qed_pci_personality personality)
1747 {
1748 	u32 port_mode;
1749 	int rc;
1750 
1751 	/* Since all information is common, only first hwfns should do this */
1752 	if (IS_LEAD_HWFN(p_hwfn)) {
1753 		rc = qed_iov_hw_info(p_hwfn);
1754 		if (rc)
1755 			return rc;
1756 	}
1757 
1758 	/* Read the port mode */
1759 	port_mode = qed_rd(p_hwfn, p_ptt,
1760 			   CNIG_REG_NW_PORT_MODE_BB_B0);
1761 
1762 	if (port_mode < 3) {
1763 		p_hwfn->cdev->num_ports_in_engines = 1;
1764 	} else if (port_mode <= 5) {
1765 		p_hwfn->cdev->num_ports_in_engines = 2;
1766 	} else {
1767 		DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1768 			  p_hwfn->cdev->num_ports_in_engines);
1769 
1770 		/* Default num_ports_in_engines to something */
1771 		p_hwfn->cdev->num_ports_in_engines = 1;
1772 	}
1773 
1774 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
1775 
1776 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1777 	if (rc)
1778 		return rc;
1779 
1780 	if (qed_mcp_is_init(p_hwfn))
1781 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1782 				p_hwfn->mcp_info->func_info.mac);
1783 	else
1784 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1785 
1786 	if (qed_mcp_is_init(p_hwfn)) {
1787 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1788 			p_hwfn->hw_info.ovlan =
1789 				p_hwfn->mcp_info->func_info.ovlan;
1790 
1791 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1792 	}
1793 
1794 	if (qed_mcp_is_init(p_hwfn)) {
1795 		enum qed_pci_personality protocol;
1796 
1797 		protocol = p_hwfn->mcp_info->func_info.protocol;
1798 		p_hwfn->hw_info.personality = protocol;
1799 	}
1800 
1801 	qed_get_num_funcs(p_hwfn, p_ptt);
1802 
1803 	return qed_hw_get_resc(p_hwfn);
1804 }
1805 
1806 static int qed_get_dev_info(struct qed_dev *cdev)
1807 {
1808 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1809 	u32 tmp;
1810 
1811 	/* Read Vendor Id / Device Id */
1812 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
1813 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
1814 
1815 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1816 				     MISCS_REG_CHIP_NUM);
1817 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1818 				     MISCS_REG_CHIP_REV);
1819 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
1820 
1821 	cdev->type = QED_DEV_TYPE_BB;
1822 	/* Learn number of HW-functions */
1823 	tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1824 		     MISCS_REG_CMT_ENABLED_FOR_PAIR);
1825 
1826 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
1827 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1828 		cdev->num_hwfns = 2;
1829 	} else {
1830 		cdev->num_hwfns = 1;
1831 	}
1832 
1833 	cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1834 				    MISCS_REG_CHIP_TEST_REG) >> 4;
1835 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1836 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1837 				       MISCS_REG_CHIP_METAL);
1838 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1839 
1840 	DP_INFO(cdev->hwfns,
1841 		"Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1842 		cdev->chip_num, cdev->chip_rev,
1843 		cdev->chip_bond_id, cdev->chip_metal);
1844 
1845 	if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1846 		DP_NOTICE(cdev->hwfns,
1847 			  "The chip type/rev (BB A0) is not supported!\n");
1848 		return -EINVAL;
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1855 				 void __iomem *p_regview,
1856 				 void __iomem *p_doorbells,
1857 				 enum qed_pci_personality personality)
1858 {
1859 	int rc = 0;
1860 
1861 	/* Split PCI bars evenly between hwfns */
1862 	p_hwfn->regview = p_regview;
1863 	p_hwfn->doorbells = p_doorbells;
1864 
1865 	if (IS_VF(p_hwfn->cdev))
1866 		return qed_vf_hw_prepare(p_hwfn);
1867 
1868 	/* Validate that chip access is feasible */
1869 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1870 		DP_ERR(p_hwfn,
1871 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
1872 		return -EINVAL;
1873 	}
1874 
1875 	get_function_id(p_hwfn);
1876 
1877 	/* Allocate PTT pool */
1878 	rc = qed_ptt_pool_alloc(p_hwfn);
1879 	if (rc)
1880 		goto err0;
1881 
1882 	/* Allocate the main PTT */
1883 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1884 
1885 	/* First hwfn learns basic information, e.g., number of hwfns */
1886 	if (!p_hwfn->my_id) {
1887 		rc = qed_get_dev_info(p_hwfn->cdev);
1888 		if (rc)
1889 			goto err1;
1890 	}
1891 
1892 	qed_hw_hwfn_prepare(p_hwfn);
1893 
1894 	/* Initialize MCP structure */
1895 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1896 	if (rc) {
1897 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1898 		goto err1;
1899 	}
1900 
1901 	/* Read the device configuration information from the HW and SHMEM */
1902 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1903 	if (rc) {
1904 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1905 		goto err2;
1906 	}
1907 
1908 	/* Allocate the init RT array and initialize the init-ops engine */
1909 	rc = qed_init_alloc(p_hwfn);
1910 	if (rc)
1911 		goto err2;
1912 
1913 	return rc;
1914 err2:
1915 	if (IS_LEAD_HWFN(p_hwfn))
1916 		qed_iov_free_hw_info(p_hwfn->cdev);
1917 	qed_mcp_free(p_hwfn);
1918 err1:
1919 	qed_hw_hwfn_free(p_hwfn);
1920 err0:
1921 	return rc;
1922 }
1923 
1924 int qed_hw_prepare(struct qed_dev *cdev,
1925 		   int personality)
1926 {
1927 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1928 	int rc;
1929 
1930 	/* Store the precompiled init data ptrs */
1931 	if (IS_PF(cdev))
1932 		qed_init_iro_array(cdev);
1933 
1934 	/* Initialize the first hwfn - will learn number of hwfns */
1935 	rc = qed_hw_prepare_single(p_hwfn,
1936 				   cdev->regview,
1937 				   cdev->doorbells, personality);
1938 	if (rc)
1939 		return rc;
1940 
1941 	personality = p_hwfn->hw_info.personality;
1942 
1943 	/* Initialize the rest of the hwfns */
1944 	if (cdev->num_hwfns > 1) {
1945 		void __iomem *p_regview, *p_doorbell;
1946 		u8 __iomem *addr;
1947 
1948 		/* adjust bar offset for second engine */
1949 		addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1950 		p_regview = addr;
1951 
1952 		/* adjust doorbell bar offset for second engine */
1953 		addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1954 		p_doorbell = addr;
1955 
1956 		/* prepare second hw function */
1957 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1958 					   p_doorbell, personality);
1959 
1960 		/* in case of error, need to free the previously
1961 		 * initiliazed hwfn 0.
1962 		 */
1963 		if (rc) {
1964 			if (IS_PF(cdev)) {
1965 				qed_init_free(p_hwfn);
1966 				qed_mcp_free(p_hwfn);
1967 				qed_hw_hwfn_free(p_hwfn);
1968 			}
1969 		}
1970 	}
1971 
1972 	return rc;
1973 }
1974 
1975 void qed_hw_remove(struct qed_dev *cdev)
1976 {
1977 	int i;
1978 
1979 	for_each_hwfn(cdev, i) {
1980 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1981 
1982 		if (IS_VF(cdev)) {
1983 			qed_vf_pf_release(p_hwfn);
1984 			continue;
1985 		}
1986 
1987 		qed_init_free(p_hwfn);
1988 		qed_hw_hwfn_free(p_hwfn);
1989 		qed_mcp_free(p_hwfn);
1990 	}
1991 
1992 	qed_iov_free_hw_info(cdev);
1993 }
1994 
1995 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
1996 				    struct qed_chain *p_chain)
1997 {
1998 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
1999 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
2000 	struct qed_chain_next *p_next;
2001 	u32 size, i;
2002 
2003 	if (!p_virt)
2004 		return;
2005 
2006 	size = p_chain->elem_size * p_chain->usable_per_page;
2007 
2008 	for (i = 0; i < p_chain->page_cnt; i++) {
2009 		if (!p_virt)
2010 			break;
2011 
2012 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
2013 		p_virt_next = p_next->next_virt;
2014 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
2015 
2016 		dma_free_coherent(&cdev->pdev->dev,
2017 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
2018 
2019 		p_virt = p_virt_next;
2020 		p_phys = p_phys_next;
2021 	}
2022 }
2023 
2024 static void qed_chain_free_single(struct qed_dev *cdev,
2025 				  struct qed_chain *p_chain)
2026 {
2027 	if (!p_chain->p_virt_addr)
2028 		return;
2029 
2030 	dma_free_coherent(&cdev->pdev->dev,
2031 			  QED_CHAIN_PAGE_SIZE,
2032 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
2033 }
2034 
2035 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2036 {
2037 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
2038 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
2039 	u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
2040 
2041 	if (!pp_virt_addr_tbl)
2042 		return;
2043 
2044 	if (!p_chain->pbl.p_virt_table)
2045 		goto out;
2046 
2047 	for (i = 0; i < page_cnt; i++) {
2048 		if (!pp_virt_addr_tbl[i])
2049 			break;
2050 
2051 		dma_free_coherent(&cdev->pdev->dev,
2052 				  QED_CHAIN_PAGE_SIZE,
2053 				  pp_virt_addr_tbl[i],
2054 				  *(dma_addr_t *)p_pbl_virt);
2055 
2056 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2057 	}
2058 
2059 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2060 	dma_free_coherent(&cdev->pdev->dev,
2061 			  pbl_size,
2062 			  p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
2063 out:
2064 	vfree(p_chain->pbl.pp_virt_addr_tbl);
2065 }
2066 
2067 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
2068 {
2069 	switch (p_chain->mode) {
2070 	case QED_CHAIN_MODE_NEXT_PTR:
2071 		qed_chain_free_next_ptr(cdev, p_chain);
2072 		break;
2073 	case QED_CHAIN_MODE_SINGLE:
2074 		qed_chain_free_single(cdev, p_chain);
2075 		break;
2076 	case QED_CHAIN_MODE_PBL:
2077 		qed_chain_free_pbl(cdev, p_chain);
2078 		break;
2079 	}
2080 }
2081 
2082 static int
2083 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
2084 			     enum qed_chain_cnt_type cnt_type,
2085 			     size_t elem_size, u32 page_cnt)
2086 {
2087 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
2088 
2089 	/* The actual chain size can be larger than the maximal possible value
2090 	 * after rounding up the requested elements number to pages, and after
2091 	 * taking into acount the unusuable elements (next-ptr elements).
2092 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
2093 	 * size/capacity fields are of a u32 type.
2094 	 */
2095 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
2096 	     chain_size > 0x10000) ||
2097 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
2098 	     chain_size > 0x100000000ULL)) {
2099 		DP_NOTICE(cdev,
2100 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
2101 			  chain_size);
2102 		return -EINVAL;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 static int
2109 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2110 {
2111 	void *p_virt = NULL, *p_virt_prev = NULL;
2112 	dma_addr_t p_phys = 0;
2113 	u32 i;
2114 
2115 	for (i = 0; i < p_chain->page_cnt; i++) {
2116 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2117 					    QED_CHAIN_PAGE_SIZE,
2118 					    &p_phys, GFP_KERNEL);
2119 		if (!p_virt)
2120 			return -ENOMEM;
2121 
2122 		if (i == 0) {
2123 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2124 			qed_chain_reset(p_chain);
2125 		} else {
2126 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2127 						     p_virt, p_phys);
2128 		}
2129 
2130 		p_virt_prev = p_virt;
2131 	}
2132 	/* Last page's next element should point to the beginning of the
2133 	 * chain.
2134 	 */
2135 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2136 				     p_chain->p_virt_addr,
2137 				     p_chain->p_phys_addr);
2138 
2139 	return 0;
2140 }
2141 
2142 static int
2143 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2144 {
2145 	dma_addr_t p_phys = 0;
2146 	void *p_virt = NULL;
2147 
2148 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2149 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2150 	if (!p_virt)
2151 		return -ENOMEM;
2152 
2153 	qed_chain_init_mem(p_chain, p_virt, p_phys);
2154 	qed_chain_reset(p_chain);
2155 
2156 	return 0;
2157 }
2158 
2159 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2160 {
2161 	u32 page_cnt = p_chain->page_cnt, size, i;
2162 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
2163 	void **pp_virt_addr_tbl = NULL;
2164 	u8 *p_pbl_virt = NULL;
2165 	void *p_virt = NULL;
2166 
2167 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
2168 	pp_virt_addr_tbl = vzalloc(size);
2169 	if (!pp_virt_addr_tbl)
2170 		return -ENOMEM;
2171 
2172 	/* The allocation of the PBL table is done with its full size, since it
2173 	 * is expected to be successive.
2174 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
2175 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
2176 	 * should be saved to allow its freeing during the error flow.
2177 	 */
2178 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2179 	p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2180 					size, &p_pbl_phys, GFP_KERNEL);
2181 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2182 			       pp_virt_addr_tbl);
2183 	if (!p_pbl_virt)
2184 		return -ENOMEM;
2185 
2186 	for (i = 0; i < page_cnt; i++) {
2187 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2188 					    QED_CHAIN_PAGE_SIZE,
2189 					    &p_phys, GFP_KERNEL);
2190 		if (!p_virt)
2191 			return -ENOMEM;
2192 
2193 		if (i == 0) {
2194 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2195 			qed_chain_reset(p_chain);
2196 		}
2197 
2198 		/* Fill the PBL table with the physical address of the page */
2199 		*(dma_addr_t *)p_pbl_virt = p_phys;
2200 		/* Keep the virtual address of the page */
2201 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2202 
2203 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 int qed_chain_alloc(struct qed_dev *cdev,
2210 		    enum qed_chain_use_mode intended_use,
2211 		    enum qed_chain_mode mode,
2212 		    enum qed_chain_cnt_type cnt_type,
2213 		    u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2214 {
2215 	u32 page_cnt;
2216 	int rc = 0;
2217 
2218 	if (mode == QED_CHAIN_MODE_SINGLE)
2219 		page_cnt = 1;
2220 	else
2221 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2222 
2223 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2224 	if (rc) {
2225 		DP_NOTICE(cdev,
2226 			  "Cannot allocate a chain with the given arguments:\n");
2227 		DP_NOTICE(cdev,
2228 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2229 			  intended_use, mode, cnt_type, num_elems, elem_size);
2230 		return rc;
2231 	}
2232 
2233 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2234 			      mode, cnt_type);
2235 
2236 	switch (mode) {
2237 	case QED_CHAIN_MODE_NEXT_PTR:
2238 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2239 		break;
2240 	case QED_CHAIN_MODE_SINGLE:
2241 		rc = qed_chain_alloc_single(cdev, p_chain);
2242 		break;
2243 	case QED_CHAIN_MODE_PBL:
2244 		rc = qed_chain_alloc_pbl(cdev, p_chain);
2245 		break;
2246 	}
2247 	if (rc)
2248 		goto nomem;
2249 
2250 	return 0;
2251 
2252 nomem:
2253 	qed_chain_free(cdev, p_chain);
2254 	return rc;
2255 }
2256 
2257 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2258 {
2259 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2260 		u16 min, max;
2261 
2262 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2263 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2264 		DP_NOTICE(p_hwfn,
2265 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2266 			  src_id, min, max);
2267 
2268 		return -EINVAL;
2269 	}
2270 
2271 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2272 
2273 	return 0;
2274 }
2275 
2276 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2277 {
2278 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2279 		u8 min, max;
2280 
2281 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
2282 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
2283 		DP_NOTICE(p_hwfn,
2284 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
2285 			  src_id, min, max);
2286 
2287 		return -EINVAL;
2288 	}
2289 
2290 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2291 
2292 	return 0;
2293 }
2294 
2295 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2296 {
2297 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2298 		u8 min, max;
2299 
2300 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2301 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2302 		DP_NOTICE(p_hwfn,
2303 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2304 			  src_id, min, max);
2305 
2306 		return -EINVAL;
2307 	}
2308 
2309 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2310 
2311 	return 0;
2312 }
2313 
2314 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
2315 				  u8 *p_filter)
2316 {
2317 	*p_high = p_filter[1] | (p_filter[0] << 8);
2318 	*p_low = p_filter[5] | (p_filter[4] << 8) |
2319 		 (p_filter[3] << 16) | (p_filter[2] << 24);
2320 }
2321 
2322 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
2323 			   struct qed_ptt *p_ptt, u8 *p_filter)
2324 {
2325 	u32 high = 0, low = 0, en;
2326 	int i;
2327 
2328 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2329 		return 0;
2330 
2331 	qed_llh_mac_to_filter(&high, &low, p_filter);
2332 
2333 	/* Find a free entry and utilize it */
2334 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2335 		en = qed_rd(p_hwfn, p_ptt,
2336 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
2337 		if (en)
2338 			continue;
2339 		qed_wr(p_hwfn, p_ptt,
2340 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
2341 		       2 * i * sizeof(u32), low);
2342 		qed_wr(p_hwfn, p_ptt,
2343 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
2344 		       (2 * i + 1) * sizeof(u32), high);
2345 		qed_wr(p_hwfn, p_ptt,
2346 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
2347 		qed_wr(p_hwfn, p_ptt,
2348 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
2349 		       i * sizeof(u32), 0);
2350 		qed_wr(p_hwfn, p_ptt,
2351 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
2352 		break;
2353 	}
2354 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
2355 		DP_NOTICE(p_hwfn,
2356 			  "Failed to find an empty LLH filter to utilize\n");
2357 		return -EINVAL;
2358 	}
2359 
2360 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2361 		   "mac: %pM is added at %d\n",
2362 		   p_filter, i);
2363 
2364 	return 0;
2365 }
2366 
2367 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
2368 			       struct qed_ptt *p_ptt, u8 *p_filter)
2369 {
2370 	u32 high = 0, low = 0;
2371 	int i;
2372 
2373 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2374 		return;
2375 
2376 	qed_llh_mac_to_filter(&high, &low, p_filter);
2377 
2378 	/* Find the entry and clean it */
2379 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2380 		if (qed_rd(p_hwfn, p_ptt,
2381 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
2382 			   2 * i * sizeof(u32)) != low)
2383 			continue;
2384 		if (qed_rd(p_hwfn, p_ptt,
2385 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
2386 			   (2 * i + 1) * sizeof(u32)) != high)
2387 			continue;
2388 
2389 		qed_wr(p_hwfn, p_ptt,
2390 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
2391 		qed_wr(p_hwfn, p_ptt,
2392 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
2393 		qed_wr(p_hwfn, p_ptt,
2394 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
2395 		       (2 * i + 1) * sizeof(u32), 0);
2396 
2397 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2398 			   "mac: %pM is removed from %d\n",
2399 			   p_filter, i);
2400 		break;
2401 	}
2402 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
2403 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
2404 }
2405 
2406 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2407 			    u32 hw_addr, void *p_eth_qzone,
2408 			    size_t eth_qzone_size, u8 timeset)
2409 {
2410 	struct coalescing_timeset *p_coal_timeset;
2411 
2412 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2413 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2414 		return -EINVAL;
2415 	}
2416 
2417 	p_coal_timeset = p_eth_qzone;
2418 	memset(p_coal_timeset, 0, eth_qzone_size);
2419 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2420 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2421 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2422 
2423 	return 0;
2424 }
2425 
2426 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2427 			 u16 coalesce, u8 qid, u16 sb_id)
2428 {
2429 	struct ustorm_eth_queue_zone eth_qzone;
2430 	u8 timeset, timer_res;
2431 	u16 fw_qid = 0;
2432 	u32 address;
2433 	int rc;
2434 
2435 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2436 	if (coalesce <= 0x7F) {
2437 		timer_res = 0;
2438 	} else if (coalesce <= 0xFF) {
2439 		timer_res = 1;
2440 	} else if (coalesce <= 0x1FF) {
2441 		timer_res = 2;
2442 	} else {
2443 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2444 		return -EINVAL;
2445 	}
2446 	timeset = (u8)(coalesce >> timer_res);
2447 
2448 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2449 	if (rc)
2450 		return rc;
2451 
2452 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2453 	if (rc)
2454 		goto out;
2455 
2456 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2457 
2458 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2459 			      sizeof(struct ustorm_eth_queue_zone), timeset);
2460 	if (rc)
2461 		goto out;
2462 
2463 	p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2464 out:
2465 	return rc;
2466 }
2467 
2468 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2469 			 u16 coalesce, u8 qid, u16 sb_id)
2470 {
2471 	struct xstorm_eth_queue_zone eth_qzone;
2472 	u8 timeset, timer_res;
2473 	u16 fw_qid = 0;
2474 	u32 address;
2475 	int rc;
2476 
2477 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2478 	if (coalesce <= 0x7F) {
2479 		timer_res = 0;
2480 	} else if (coalesce <= 0xFF) {
2481 		timer_res = 1;
2482 	} else if (coalesce <= 0x1FF) {
2483 		timer_res = 2;
2484 	} else {
2485 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2486 		return -EINVAL;
2487 	}
2488 	timeset = (u8)(coalesce >> timer_res);
2489 
2490 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2491 	if (rc)
2492 		return rc;
2493 
2494 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2495 	if (rc)
2496 		goto out;
2497 
2498 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2499 
2500 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2501 			      sizeof(struct xstorm_eth_queue_zone), timeset);
2502 	if (rc)
2503 		goto out;
2504 
2505 	p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2506 out:
2507 	return rc;
2508 }
2509 
2510 /* Calculate final WFQ values for all vports and configure them.
2511  * After this configuration each vport will have
2512  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2513  */
2514 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2515 					     struct qed_ptt *p_ptt,
2516 					     u32 min_pf_rate)
2517 {
2518 	struct init_qm_vport_params *vport_params;
2519 	int i;
2520 
2521 	vport_params = p_hwfn->qm_info.qm_vport_params;
2522 
2523 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2524 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2525 
2526 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2527 						min_pf_rate;
2528 		qed_init_vport_wfq(p_hwfn, p_ptt,
2529 				   vport_params[i].first_tx_pq_id,
2530 				   vport_params[i].vport_wfq);
2531 	}
2532 }
2533 
2534 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2535 				       u32 min_pf_rate)
2536 
2537 {
2538 	int i;
2539 
2540 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2541 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2542 }
2543 
2544 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2545 					   struct qed_ptt *p_ptt,
2546 					   u32 min_pf_rate)
2547 {
2548 	struct init_qm_vport_params *vport_params;
2549 	int i;
2550 
2551 	vport_params = p_hwfn->qm_info.qm_vport_params;
2552 
2553 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2554 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2555 		qed_init_vport_wfq(p_hwfn, p_ptt,
2556 				   vport_params[i].first_tx_pq_id,
2557 				   vport_params[i].vport_wfq);
2558 	}
2559 }
2560 
2561 /* This function performs several validations for WFQ
2562  * configuration and required min rate for a given vport
2563  * 1. req_rate must be greater than one percent of min_pf_rate.
2564  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2565  *    rates to get less than one percent of min_pf_rate.
2566  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2567  */
2568 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2569 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
2570 {
2571 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2572 	int non_requested_count = 0, req_count = 0, i, num_vports;
2573 
2574 	num_vports = p_hwfn->qm_info.num_vports;
2575 
2576 	/* Accounting for the vports which are configured for WFQ explicitly */
2577 	for (i = 0; i < num_vports; i++) {
2578 		u32 tmp_speed;
2579 
2580 		if ((i != vport_id) &&
2581 		    p_hwfn->qm_info.wfq_data[i].configured) {
2582 			req_count++;
2583 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2584 			total_req_min_rate += tmp_speed;
2585 		}
2586 	}
2587 
2588 	/* Include current vport data as well */
2589 	req_count++;
2590 	total_req_min_rate += req_rate;
2591 	non_requested_count = num_vports - req_count;
2592 
2593 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2594 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2595 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2596 			   vport_id, req_rate, min_pf_rate);
2597 		return -EINVAL;
2598 	}
2599 
2600 	if (num_vports > QED_WFQ_UNIT) {
2601 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2602 			   "Number of vports is greater than %d\n",
2603 			   QED_WFQ_UNIT);
2604 		return -EINVAL;
2605 	}
2606 
2607 	if (total_req_min_rate > min_pf_rate) {
2608 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2609 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2610 			   total_req_min_rate, min_pf_rate);
2611 		return -EINVAL;
2612 	}
2613 
2614 	total_left_rate	= min_pf_rate - total_req_min_rate;
2615 
2616 	left_rate_per_vp = total_left_rate / non_requested_count;
2617 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
2618 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2619 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2620 			   left_rate_per_vp, min_pf_rate);
2621 		return -EINVAL;
2622 	}
2623 
2624 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2625 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2626 
2627 	for (i = 0; i < num_vports; i++) {
2628 		if (p_hwfn->qm_info.wfq_data[i].configured)
2629 			continue;
2630 
2631 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2638 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2639 {
2640 	struct qed_mcp_link_state *p_link;
2641 	int rc = 0;
2642 
2643 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2644 
2645 	if (!p_link->min_pf_rate) {
2646 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2647 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2648 		return rc;
2649 	}
2650 
2651 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2652 
2653 	if (!rc)
2654 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2655 						 p_link->min_pf_rate);
2656 	else
2657 		DP_NOTICE(p_hwfn,
2658 			  "Validation failed while configuring min rate\n");
2659 
2660 	return rc;
2661 }
2662 
2663 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2664 						 struct qed_ptt *p_ptt,
2665 						 u32 min_pf_rate)
2666 {
2667 	bool use_wfq = false;
2668 	int rc = 0;
2669 	u16 i;
2670 
2671 	/* Validate all pre configured vports for wfq */
2672 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2673 		u32 rate;
2674 
2675 		if (!p_hwfn->qm_info.wfq_data[i].configured)
2676 			continue;
2677 
2678 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2679 		use_wfq = true;
2680 
2681 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2682 		if (rc) {
2683 			DP_NOTICE(p_hwfn,
2684 				  "WFQ validation failed while configuring min rate\n");
2685 			break;
2686 		}
2687 	}
2688 
2689 	if (!rc && use_wfq)
2690 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2691 	else
2692 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2693 
2694 	return rc;
2695 }
2696 
2697 /* Main API for qed clients to configure vport min rate.
2698  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2699  * rate - Speed in Mbps needs to be assigned to a given vport.
2700  */
2701 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2702 {
2703 	int i, rc = -EINVAL;
2704 
2705 	/* Currently not supported; Might change in future */
2706 	if (cdev->num_hwfns > 1) {
2707 		DP_NOTICE(cdev,
2708 			  "WFQ configuration is not supported for this device\n");
2709 		return rc;
2710 	}
2711 
2712 	for_each_hwfn(cdev, i) {
2713 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2714 		struct qed_ptt *p_ptt;
2715 
2716 		p_ptt = qed_ptt_acquire(p_hwfn);
2717 		if (!p_ptt)
2718 			return -EBUSY;
2719 
2720 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2721 
2722 		if (rc) {
2723 			qed_ptt_release(p_hwfn, p_ptt);
2724 			return rc;
2725 		}
2726 
2727 		qed_ptt_release(p_hwfn, p_ptt);
2728 	}
2729 
2730 	return rc;
2731 }
2732 
2733 /* API to configure WFQ from mcp link change */
2734 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2735 {
2736 	int i;
2737 
2738 	if (cdev->num_hwfns > 1) {
2739 		DP_VERBOSE(cdev,
2740 			   NETIF_MSG_LINK,
2741 			   "WFQ configuration is not supported for this device\n");
2742 		return;
2743 	}
2744 
2745 	for_each_hwfn(cdev, i) {
2746 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2747 
2748 		__qed_configure_vp_wfq_on_link_change(p_hwfn,
2749 						      p_hwfn->p_dpc_ptt,
2750 						      min_pf_rate);
2751 	}
2752 }
2753 
2754 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2755 				     struct qed_ptt *p_ptt,
2756 				     struct qed_mcp_link_state *p_link,
2757 				     u8 max_bw)
2758 {
2759 	int rc = 0;
2760 
2761 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2762 
2763 	if (!p_link->line_speed && (max_bw != 100))
2764 		return rc;
2765 
2766 	p_link->speed = (p_link->line_speed * max_bw) / 100;
2767 	p_hwfn->qm_info.pf_rl = p_link->speed;
2768 
2769 	/* Since the limiter also affects Tx-switched traffic, we don't want it
2770 	 * to limit such traffic in case there's no actual limit.
2771 	 * In that case, set limit to imaginary high boundary.
2772 	 */
2773 	if (max_bw == 100)
2774 		p_hwfn->qm_info.pf_rl = 100000;
2775 
2776 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2777 			    p_hwfn->qm_info.pf_rl);
2778 
2779 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2780 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
2781 		   p_link->speed);
2782 
2783 	return rc;
2784 }
2785 
2786 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2787 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2788 {
2789 	int i, rc = -EINVAL;
2790 
2791 	if (max_bw < 1 || max_bw > 100) {
2792 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2793 		return rc;
2794 	}
2795 
2796 	for_each_hwfn(cdev, i) {
2797 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
2798 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2799 		struct qed_mcp_link_state *p_link;
2800 		struct qed_ptt *p_ptt;
2801 
2802 		p_link = &p_lead->mcp_info->link_output;
2803 
2804 		p_ptt = qed_ptt_acquire(p_hwfn);
2805 		if (!p_ptt)
2806 			return -EBUSY;
2807 
2808 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2809 						      p_link, max_bw);
2810 
2811 		qed_ptt_release(p_hwfn, p_ptt);
2812 
2813 		if (rc)
2814 			break;
2815 	}
2816 
2817 	return rc;
2818 }
2819 
2820 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2821 				     struct qed_ptt *p_ptt,
2822 				     struct qed_mcp_link_state *p_link,
2823 				     u8 min_bw)
2824 {
2825 	int rc = 0;
2826 
2827 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2828 	p_hwfn->qm_info.pf_wfq = min_bw;
2829 
2830 	if (!p_link->line_speed)
2831 		return rc;
2832 
2833 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2834 
2835 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2836 
2837 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2838 		   "Configured MIN bandwidth to be %d Mb/sec\n",
2839 		   p_link->min_pf_rate);
2840 
2841 	return rc;
2842 }
2843 
2844 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2845 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2846 {
2847 	int i, rc = -EINVAL;
2848 
2849 	if (min_bw < 1 || min_bw > 100) {
2850 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2851 		return rc;
2852 	}
2853 
2854 	for_each_hwfn(cdev, i) {
2855 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2856 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2857 		struct qed_mcp_link_state *p_link;
2858 		struct qed_ptt *p_ptt;
2859 
2860 		p_link = &p_lead->mcp_info->link_output;
2861 
2862 		p_ptt = qed_ptt_acquire(p_hwfn);
2863 		if (!p_ptt)
2864 			return -EBUSY;
2865 
2866 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2867 						      p_link, min_bw);
2868 		if (rc) {
2869 			qed_ptt_release(p_hwfn, p_ptt);
2870 			return rc;
2871 		}
2872 
2873 		if (p_link->min_pf_rate) {
2874 			u32 min_rate = p_link->min_pf_rate;
2875 
2876 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2877 								   p_ptt,
2878 								   min_rate);
2879 		}
2880 
2881 		qed_ptt_release(p_hwfn, p_ptt);
2882 	}
2883 
2884 	return rc;
2885 }
2886 
2887 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2888 {
2889 	struct qed_mcp_link_state *p_link;
2890 
2891 	p_link = &p_hwfn->mcp_info->link_output;
2892 
2893 	if (p_link->min_pf_rate)
2894 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2895 					       p_link->min_pf_rate);
2896 
2897 	memset(p_hwfn->qm_info.wfq_data, 0,
2898 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2899 }
2900