1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66 
67 static DEFINE_SPINLOCK(qm_lock);
68 
69 #define QED_MIN_DPIS            (4)
70 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
71 
72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
73 			   struct qed_ptt *p_ptt, enum BAR_ID bar_id)
74 {
75 	u32 bar_reg = (bar_id == BAR_ID_0 ?
76 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
77 	u32 val;
78 
79 	if (IS_VF(p_hwfn->cdev))
80 		return qed_vf_hw_bar_size(p_hwfn, bar_id);
81 
82 	val = qed_rd(p_hwfn, p_ptt, bar_reg);
83 	if (val)
84 		return 1 << (val + 15);
85 
86 	/* Old MFW initialized above registered only conditionally */
87 	if (p_hwfn->cdev->num_hwfns > 1) {
88 		DP_INFO(p_hwfn,
89 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
90 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
91 	} else {
92 		DP_INFO(p_hwfn,
93 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
94 			return 512 * 1024;
95 	}
96 }
97 
98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
99 {
100 	u32 i;
101 
102 	cdev->dp_level = dp_level;
103 	cdev->dp_module = dp_module;
104 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
105 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
106 
107 		p_hwfn->dp_level = dp_level;
108 		p_hwfn->dp_module = dp_module;
109 	}
110 }
111 
112 void qed_init_struct(struct qed_dev *cdev)
113 {
114 	u8 i;
115 
116 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
118 
119 		p_hwfn->cdev = cdev;
120 		p_hwfn->my_id = i;
121 		p_hwfn->b_active = false;
122 
123 		mutex_init(&p_hwfn->dmae_info.mutex);
124 	}
125 
126 	/* hwfn 0 is always active */
127 	cdev->hwfns[0].b_active = true;
128 
129 	/* set the default cache alignment to 128 */
130 	cdev->cache_shift = 7;
131 }
132 
133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
134 {
135 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
136 
137 	kfree(qm_info->qm_pq_params);
138 	qm_info->qm_pq_params = NULL;
139 	kfree(qm_info->qm_vport_params);
140 	qm_info->qm_vport_params = NULL;
141 	kfree(qm_info->qm_port_params);
142 	qm_info->qm_port_params = NULL;
143 	kfree(qm_info->wfq_data);
144 	qm_info->wfq_data = NULL;
145 }
146 
147 void qed_resc_free(struct qed_dev *cdev)
148 {
149 	int i;
150 
151 	if (IS_VF(cdev)) {
152 		for_each_hwfn(cdev, i)
153 			qed_l2_free(&cdev->hwfns[i]);
154 		return;
155 	}
156 
157 	kfree(cdev->fw_data);
158 	cdev->fw_data = NULL;
159 
160 	kfree(cdev->reset_stats);
161 	cdev->reset_stats = NULL;
162 
163 	for_each_hwfn(cdev, i) {
164 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
165 
166 		qed_cxt_mngr_free(p_hwfn);
167 		qed_qm_info_free(p_hwfn);
168 		qed_spq_free(p_hwfn);
169 		qed_eq_free(p_hwfn);
170 		qed_consq_free(p_hwfn);
171 		qed_int_free(p_hwfn);
172 #ifdef CONFIG_QED_LL2
173 		qed_ll2_free(p_hwfn);
174 #endif
175 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
176 			qed_fcoe_free(p_hwfn);
177 
178 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
179 			qed_iscsi_free(p_hwfn);
180 			qed_ooo_free(p_hwfn);
181 		}
182 		qed_iov_free(p_hwfn);
183 		qed_l2_free(p_hwfn);
184 		qed_dmae_info_free(p_hwfn);
185 		qed_dcbx_info_free(p_hwfn);
186 	}
187 }
188 
189 /******************** QM initialization *******************/
190 #define ACTIVE_TCS_BMAP 0x9f
191 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
192 
193 /* determines the physical queue flags for a given PF. */
194 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
195 {
196 	u32 flags;
197 
198 	/* common flags */
199 	flags = PQ_FLAGS_LB;
200 
201 	/* feature flags */
202 	if (IS_QED_SRIOV(p_hwfn->cdev))
203 		flags |= PQ_FLAGS_VFS;
204 
205 	/* protocol flags */
206 	switch (p_hwfn->hw_info.personality) {
207 	case QED_PCI_ETH:
208 		flags |= PQ_FLAGS_MCOS;
209 		break;
210 	case QED_PCI_FCOE:
211 		flags |= PQ_FLAGS_OFLD;
212 		break;
213 	case QED_PCI_ISCSI:
214 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
215 		break;
216 	case QED_PCI_ETH_ROCE:
217 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
218 		break;
219 	case QED_PCI_ETH_IWARP:
220 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
221 		    PQ_FLAGS_OFLD;
222 		break;
223 	default:
224 		DP_ERR(p_hwfn,
225 		       "unknown personality %d\n", p_hwfn->hw_info.personality);
226 		return 0;
227 	}
228 
229 	return flags;
230 }
231 
232 /* Getters for resource amounts necessary for qm initialization */
233 u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
234 {
235 	return p_hwfn->hw_info.num_hw_tc;
236 }
237 
238 u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
239 {
240 	return IS_QED_SRIOV(p_hwfn->cdev) ?
241 	       p_hwfn->cdev->p_iov_info->total_vfs : 0;
242 }
243 
244 #define NUM_DEFAULT_RLS 1
245 
246 u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
247 {
248 	u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
249 
250 	/* num RLs can't exceed resource amount of rls or vports */
251 	num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
252 				 RESC_NUM(p_hwfn, QED_VPORT));
253 
254 	/* Make sure after we reserve there's something left */
255 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
256 		return 0;
257 
258 	/* subtract rls necessary for VFs and one default one for the PF */
259 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
260 
261 	return num_pf_rls;
262 }
263 
264 u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
265 {
266 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
267 
268 	/* all pqs share the same vport, except for vfs and pf_rl pqs */
269 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
270 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
271 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
272 	       qed_init_qm_get_num_vfs(p_hwfn) + 1;
273 }
274 
275 /* calc amount of PQs according to the requested flags */
276 u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
277 {
278 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
279 
280 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
281 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
282 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
283 	       qed_init_qm_get_num_tcs(p_hwfn) +
284 	       (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
285 	       (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) +
286 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
287 	       (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
288 }
289 
290 /* initialize the top level QM params */
291 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
292 {
293 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
294 	bool four_port;
295 
296 	/* pq and vport bases for this PF */
297 	qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
298 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
299 
300 	/* rate limiting and weighted fair queueing are always enabled */
301 	qm_info->vport_rl_en = 1;
302 	qm_info->vport_wfq_en = 1;
303 
304 	/* TC config is different for AH 4 port */
305 	four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
306 
307 	/* in AH 4 port we have fewer TCs per port */
308 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
309 						     NUM_OF_PHYS_TCS;
310 
311 	/* unless MFW indicated otherwise, ooo_tc == 3 for
312 	 * AH 4-port and 4 otherwise.
313 	 */
314 	if (!qm_info->ooo_tc)
315 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
316 					      DCBX_TCP_OOO_TC;
317 }
318 
319 /* initialize qm vport params */
320 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
321 {
322 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
323 	u8 i;
324 
325 	/* all vports participate in weighted fair queueing */
326 	for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
327 		qm_info->qm_vport_params[i].vport_wfq = 1;
328 }
329 
330 /* initialize qm port params */
331 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
332 {
333 	/* Initialize qm port parameters */
334 	u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
335 
336 	/* indicate how ooo and high pri traffic is dealt with */
337 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
338 			  ACTIVE_TCS_BMAP_4PORT_K2 :
339 			  ACTIVE_TCS_BMAP;
340 
341 	for (i = 0; i < num_ports; i++) {
342 		struct init_qm_port_params *p_qm_port =
343 		    &p_hwfn->qm_info.qm_port_params[i];
344 
345 		p_qm_port->active = 1;
346 		p_qm_port->active_phys_tcs = active_phys_tcs;
347 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
348 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
349 	}
350 }
351 
352 /* Reset the params which must be reset for qm init. QM init may be called as
353  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
354  * params may be affected by the init but would simply recalculate to the same
355  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
356  * affected as these amounts stay the same.
357  */
358 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
359 {
360 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
361 
362 	qm_info->num_pqs = 0;
363 	qm_info->num_vports = 0;
364 	qm_info->num_pf_rls = 0;
365 	qm_info->num_vf_pqs = 0;
366 	qm_info->first_vf_pq = 0;
367 	qm_info->first_mcos_pq = 0;
368 	qm_info->first_rl_pq = 0;
369 }
370 
371 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
372 {
373 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
374 
375 	qm_info->num_vports++;
376 
377 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
378 		DP_ERR(p_hwfn,
379 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
380 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
381 }
382 
383 /* initialize a single pq and manage qm_info resources accounting.
384  * The pq_init_flags param determines whether the PQ is rate limited
385  * (for VF or PF) and whether a new vport is allocated to the pq or not
386  * (i.e. vport will be shared).
387  */
388 
389 /* flags for pq init */
390 #define PQ_INIT_SHARE_VPORT     (1 << 0)
391 #define PQ_INIT_PF_RL           (1 << 1)
392 #define PQ_INIT_VF_RL           (1 << 2)
393 
394 /* defines for pq init */
395 #define PQ_INIT_DEFAULT_WRR_GROUP       1
396 #define PQ_INIT_DEFAULT_TC              0
397 #define PQ_INIT_OFLD_TC                 (p_hwfn->hw_info.offload_tc)
398 
399 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
400 			   struct qed_qm_info *qm_info,
401 			   u8 tc, u32 pq_init_flags)
402 {
403 	u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
404 
405 	if (pq_idx > max_pq)
406 		DP_ERR(p_hwfn,
407 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
408 
409 	/* init pq params */
410 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
411 	    qm_info->num_vports;
412 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
413 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
414 	qm_info->qm_pq_params[pq_idx].rl_valid =
415 	    (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
416 
417 	/* qm params accounting */
418 	qm_info->num_pqs++;
419 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
420 		qm_info->num_vports++;
421 
422 	if (pq_init_flags & PQ_INIT_PF_RL)
423 		qm_info->num_pf_rls++;
424 
425 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
426 		DP_ERR(p_hwfn,
427 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
428 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
429 
430 	if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
431 		DP_ERR(p_hwfn,
432 		       "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
433 		       qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
434 }
435 
436 /* get pq index according to PQ_FLAGS */
437 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
438 					   u32 pq_flags)
439 {
440 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
441 
442 	/* Can't have multiple flags set here */
443 	if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
444 		goto err;
445 
446 	switch (pq_flags) {
447 	case PQ_FLAGS_RLS:
448 		return &qm_info->first_rl_pq;
449 	case PQ_FLAGS_MCOS:
450 		return &qm_info->first_mcos_pq;
451 	case PQ_FLAGS_LB:
452 		return &qm_info->pure_lb_pq;
453 	case PQ_FLAGS_OOO:
454 		return &qm_info->ooo_pq;
455 	case PQ_FLAGS_ACK:
456 		return &qm_info->pure_ack_pq;
457 	case PQ_FLAGS_OFLD:
458 		return &qm_info->offload_pq;
459 	case PQ_FLAGS_LLT:
460 		return &qm_info->low_latency_pq;
461 	case PQ_FLAGS_VFS:
462 		return &qm_info->first_vf_pq;
463 	default:
464 		goto err;
465 	}
466 
467 err:
468 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
469 	return NULL;
470 }
471 
472 /* save pq index in qm info */
473 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
474 				u32 pq_flags, u16 pq_val)
475 {
476 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
477 
478 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
479 }
480 
481 /* get tx pq index, with the PQ TX base already set (ready for context init) */
482 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
483 {
484 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
485 
486 	return *base_pq_idx + CM_TX_PQ_BASE;
487 }
488 
489 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
490 {
491 	u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
492 
493 	if (tc > max_tc)
494 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
495 
496 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
497 }
498 
499 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
500 {
501 	u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
502 
503 	if (vf > max_vf)
504 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
505 
506 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
507 }
508 
509 u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl)
510 {
511 	u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn);
512 
513 	if (rl > max_rl)
514 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
515 
516 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
517 }
518 
519 /* Functions for creating specific types of pqs */
520 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
521 {
522 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
523 
524 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
525 		return;
526 
527 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
528 	qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
529 }
530 
531 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
532 {
533 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
534 
535 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
536 		return;
537 
538 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
539 	qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
540 }
541 
542 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
543 {
544 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
545 
546 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
547 		return;
548 
549 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
550 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
551 }
552 
553 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
554 {
555 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
556 
557 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
558 		return;
559 
560 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
561 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
562 }
563 
564 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
565 {
566 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
567 
568 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
569 		return;
570 
571 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
572 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
573 }
574 
575 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
576 {
577 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
578 	u8 tc_idx;
579 
580 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
581 		return;
582 
583 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
584 	for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
585 		qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
586 }
587 
588 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
589 {
590 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
591 	u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
592 
593 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
594 		return;
595 
596 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
597 	qm_info->num_vf_pqs = num_vfs;
598 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
599 		qed_init_qm_pq(p_hwfn,
600 			       qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
601 }
602 
603 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
604 {
605 	u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
606 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
607 
608 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
609 		return;
610 
611 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
612 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
613 		qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
614 }
615 
616 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
617 {
618 	/* rate limited pqs, must come first (FW assumption) */
619 	qed_init_qm_rl_pqs(p_hwfn);
620 
621 	/* pqs for multi cos */
622 	qed_init_qm_mcos_pqs(p_hwfn);
623 
624 	/* pure loopback pq */
625 	qed_init_qm_lb_pq(p_hwfn);
626 
627 	/* out of order pq */
628 	qed_init_qm_ooo_pq(p_hwfn);
629 
630 	/* pure ack pq */
631 	qed_init_qm_pure_ack_pq(p_hwfn);
632 
633 	/* pq for offloaded protocol */
634 	qed_init_qm_offload_pq(p_hwfn);
635 
636 	/* low latency pq */
637 	qed_init_qm_low_latency_pq(p_hwfn);
638 
639 	/* done sharing vports */
640 	qed_init_qm_advance_vport(p_hwfn);
641 
642 	/* pqs for vfs */
643 	qed_init_qm_vf_pqs(p_hwfn);
644 }
645 
646 /* compare values of getters against resources amounts */
647 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
648 {
649 	if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
650 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
651 		return -EINVAL;
652 	}
653 
654 	if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) {
655 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
656 		return -EINVAL;
657 	}
658 
659 	return 0;
660 }
661 
662 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
663 {
664 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
665 	struct init_qm_vport_params *vport;
666 	struct init_qm_port_params *port;
667 	struct init_qm_pq_params *pq;
668 	int i, tc;
669 
670 	/* top level params */
671 	DP_VERBOSE(p_hwfn,
672 		   NETIF_MSG_HW,
673 		   "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
674 		   qm_info->start_pq,
675 		   qm_info->start_vport,
676 		   qm_info->pure_lb_pq,
677 		   qm_info->offload_pq, qm_info->pure_ack_pq);
678 	DP_VERBOSE(p_hwfn,
679 		   NETIF_MSG_HW,
680 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
681 		   qm_info->ooo_pq,
682 		   qm_info->first_vf_pq,
683 		   qm_info->num_pqs,
684 		   qm_info->num_vf_pqs,
685 		   qm_info->num_vports, qm_info->max_phys_tcs_per_port);
686 	DP_VERBOSE(p_hwfn,
687 		   NETIF_MSG_HW,
688 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
689 		   qm_info->pf_rl_en,
690 		   qm_info->pf_wfq_en,
691 		   qm_info->vport_rl_en,
692 		   qm_info->vport_wfq_en,
693 		   qm_info->pf_wfq,
694 		   qm_info->pf_rl,
695 		   qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
696 
697 	/* port table */
698 	for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
699 		port = &(qm_info->qm_port_params[i]);
700 		DP_VERBOSE(p_hwfn,
701 			   NETIF_MSG_HW,
702 			   "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
703 			   i,
704 			   port->active,
705 			   port->active_phys_tcs,
706 			   port->num_pbf_cmd_lines,
707 			   port->num_btb_blocks, port->reserved);
708 	}
709 
710 	/* vport table */
711 	for (i = 0; i < qm_info->num_vports; i++) {
712 		vport = &(qm_info->qm_vport_params[i]);
713 		DP_VERBOSE(p_hwfn,
714 			   NETIF_MSG_HW,
715 			   "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
716 			   qm_info->start_vport + i,
717 			   vport->vport_rl, vport->vport_wfq);
718 		for (tc = 0; tc < NUM_OF_TCS; tc++)
719 			DP_VERBOSE(p_hwfn,
720 				   NETIF_MSG_HW,
721 				   "%d ", vport->first_tx_pq_id[tc]);
722 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
723 	}
724 
725 	/* pq table */
726 	for (i = 0; i < qm_info->num_pqs; i++) {
727 		pq = &(qm_info->qm_pq_params[i]);
728 		DP_VERBOSE(p_hwfn,
729 			   NETIF_MSG_HW,
730 			   "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
731 			   qm_info->start_pq + i,
732 			   pq->vport_id,
733 			   pq->tc_id, pq->wrr_group, pq->rl_valid);
734 	}
735 }
736 
737 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
738 {
739 	/* reset params required for init run */
740 	qed_init_qm_reset_params(p_hwfn);
741 
742 	/* init QM top level params */
743 	qed_init_qm_params(p_hwfn);
744 
745 	/* init QM port params */
746 	qed_init_qm_port_params(p_hwfn);
747 
748 	/* init QM vport params */
749 	qed_init_qm_vport_params(p_hwfn);
750 
751 	/* init QM physical queue params */
752 	qed_init_qm_pq_params(p_hwfn);
753 
754 	/* display all that init */
755 	qed_dp_init_qm_params(p_hwfn);
756 }
757 
758 /* This function reconfigures the QM pf on the fly.
759  * For this purpose we:
760  * 1. reconfigure the QM database
761  * 2. set new values to runtime arrat
762  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
763  * 4. activate init tool in QM_PF stage
764  * 5. send an sdm_qm_cmd through rbc interface to release the QM
765  */
766 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
767 {
768 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
769 	bool b_rc;
770 	int rc;
771 
772 	/* initialize qed's qm data structure */
773 	qed_init_qm_info(p_hwfn);
774 
775 	/* stop PF's qm queues */
776 	spin_lock_bh(&qm_lock);
777 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
778 				    qm_info->start_pq, qm_info->num_pqs);
779 	spin_unlock_bh(&qm_lock);
780 	if (!b_rc)
781 		return -EINVAL;
782 
783 	/* clear the QM_PF runtime phase leftovers from previous init */
784 	qed_init_clear_rt_data(p_hwfn);
785 
786 	/* prepare QM portion of runtime array */
787 	qed_qm_init_pf(p_hwfn, p_ptt);
788 
789 	/* activate init tool on runtime array */
790 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
791 			  p_hwfn->hw_info.hw_mode);
792 	if (rc)
793 		return rc;
794 
795 	/* start PF's qm queues */
796 	spin_lock_bh(&qm_lock);
797 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
798 				    qm_info->start_pq, qm_info->num_pqs);
799 	spin_unlock_bh(&qm_lock);
800 	if (!b_rc)
801 		return -EINVAL;
802 
803 	return 0;
804 }
805 
806 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
807 {
808 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
809 	int rc;
810 
811 	rc = qed_init_qm_sanity(p_hwfn);
812 	if (rc)
813 		goto alloc_err;
814 
815 	qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) *
816 					qed_init_qm_get_num_pqs(p_hwfn),
817 					GFP_KERNEL);
818 	if (!qm_info->qm_pq_params)
819 		goto alloc_err;
820 
821 	qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) *
822 					   qed_init_qm_get_num_vports(p_hwfn),
823 					   GFP_KERNEL);
824 	if (!qm_info->qm_vport_params)
825 		goto alloc_err;
826 
827 	qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) *
828 					  p_hwfn->cdev->num_ports_in_engine,
829 					  GFP_KERNEL);
830 	if (!qm_info->qm_port_params)
831 		goto alloc_err;
832 
833 	qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) *
834 				    qed_init_qm_get_num_vports(p_hwfn),
835 				    GFP_KERNEL);
836 	if (!qm_info->wfq_data)
837 		goto alloc_err;
838 
839 	return 0;
840 
841 alloc_err:
842 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
843 	qed_qm_info_free(p_hwfn);
844 	return -ENOMEM;
845 }
846 
847 int qed_resc_alloc(struct qed_dev *cdev)
848 {
849 	u32 rdma_tasks, excess_tasks;
850 	u32 line_count;
851 	int i, rc = 0;
852 
853 	if (IS_VF(cdev)) {
854 		for_each_hwfn(cdev, i) {
855 			rc = qed_l2_alloc(&cdev->hwfns[i]);
856 			if (rc)
857 				return rc;
858 		}
859 		return rc;
860 	}
861 
862 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
863 	if (!cdev->fw_data)
864 		return -ENOMEM;
865 
866 	for_each_hwfn(cdev, i) {
867 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
868 		u32 n_eqes, num_cons;
869 
870 		/* First allocate the context manager structure */
871 		rc = qed_cxt_mngr_alloc(p_hwfn);
872 		if (rc)
873 			goto alloc_err;
874 
875 		/* Set the HW cid/tid numbers (in the contest manager)
876 		 * Must be done prior to any further computations.
877 		 */
878 		rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
879 		if (rc)
880 			goto alloc_err;
881 
882 		rc = qed_alloc_qm_data(p_hwfn);
883 		if (rc)
884 			goto alloc_err;
885 
886 		/* init qm info */
887 		qed_init_qm_info(p_hwfn);
888 
889 		/* Compute the ILT client partition */
890 		rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
891 		if (rc) {
892 			DP_NOTICE(p_hwfn,
893 				  "too many ILT lines; re-computing with less lines\n");
894 			/* In case there are not enough ILT lines we reduce the
895 			 * number of RDMA tasks and re-compute.
896 			 */
897 			excess_tasks =
898 			    qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
899 			if (!excess_tasks)
900 				goto alloc_err;
901 
902 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
903 			rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
904 			if (rc)
905 				goto alloc_err;
906 
907 			rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
908 			if (rc) {
909 				DP_ERR(p_hwfn,
910 				       "failed ILT compute. Requested too many lines: %u\n",
911 				       line_count);
912 
913 				goto alloc_err;
914 			}
915 		}
916 
917 		/* CID map / ILT shadow table / T2
918 		 * The talbes sizes are determined by the computations above
919 		 */
920 		rc = qed_cxt_tables_alloc(p_hwfn);
921 		if (rc)
922 			goto alloc_err;
923 
924 		/* SPQ, must follow ILT because initializes SPQ context */
925 		rc = qed_spq_alloc(p_hwfn);
926 		if (rc)
927 			goto alloc_err;
928 
929 		/* SP status block allocation */
930 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
931 							 RESERVED_PTT_DPC);
932 
933 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
934 		if (rc)
935 			goto alloc_err;
936 
937 		rc = qed_iov_alloc(p_hwfn);
938 		if (rc)
939 			goto alloc_err;
940 
941 		/* EQ */
942 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
943 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
944 			enum protocol_type rdma_proto;
945 
946 			if (QED_IS_ROCE_PERSONALITY(p_hwfn))
947 				rdma_proto = PROTOCOLID_ROCE;
948 			else
949 				rdma_proto = PROTOCOLID_IWARP;
950 
951 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
952 							       rdma_proto,
953 							       NULL) * 2;
954 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
955 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
956 			num_cons =
957 			    qed_cxt_get_proto_cid_count(p_hwfn,
958 							PROTOCOLID_ISCSI,
959 							NULL);
960 			n_eqes += 2 * num_cons;
961 		}
962 
963 		if (n_eqes > 0xFFFF) {
964 			DP_ERR(p_hwfn,
965 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
966 			       n_eqes, 0xFFFF);
967 			goto alloc_no_mem;
968 		}
969 
970 		rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
971 		if (rc)
972 			goto alloc_err;
973 
974 		rc = qed_consq_alloc(p_hwfn);
975 		if (rc)
976 			goto alloc_err;
977 
978 		rc = qed_l2_alloc(p_hwfn);
979 		if (rc)
980 			goto alloc_err;
981 
982 #ifdef CONFIG_QED_LL2
983 		if (p_hwfn->using_ll2) {
984 			rc = qed_ll2_alloc(p_hwfn);
985 			if (rc)
986 				goto alloc_err;
987 		}
988 #endif
989 
990 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
991 			rc = qed_fcoe_alloc(p_hwfn);
992 			if (rc)
993 				goto alloc_err;
994 		}
995 
996 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
997 			rc = qed_iscsi_alloc(p_hwfn);
998 			if (rc)
999 				goto alloc_err;
1000 			rc = qed_ooo_alloc(p_hwfn);
1001 			if (rc)
1002 				goto alloc_err;
1003 		}
1004 
1005 		/* DMA info initialization */
1006 		rc = qed_dmae_info_alloc(p_hwfn);
1007 		if (rc)
1008 			goto alloc_err;
1009 
1010 		/* DCBX initialization */
1011 		rc = qed_dcbx_info_alloc(p_hwfn);
1012 		if (rc)
1013 			goto alloc_err;
1014 	}
1015 
1016 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
1017 	if (!cdev->reset_stats)
1018 		goto alloc_no_mem;
1019 
1020 	return 0;
1021 
1022 alloc_no_mem:
1023 	rc = -ENOMEM;
1024 alloc_err:
1025 	qed_resc_free(cdev);
1026 	return rc;
1027 }
1028 
1029 void qed_resc_setup(struct qed_dev *cdev)
1030 {
1031 	int i;
1032 
1033 	if (IS_VF(cdev)) {
1034 		for_each_hwfn(cdev, i)
1035 			qed_l2_setup(&cdev->hwfns[i]);
1036 		return;
1037 	}
1038 
1039 	for_each_hwfn(cdev, i) {
1040 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1041 
1042 		qed_cxt_mngr_setup(p_hwfn);
1043 		qed_spq_setup(p_hwfn);
1044 		qed_eq_setup(p_hwfn);
1045 		qed_consq_setup(p_hwfn);
1046 
1047 		/* Read shadow of current MFW mailbox */
1048 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1049 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1050 		       p_hwfn->mcp_info->mfw_mb_cur,
1051 		       p_hwfn->mcp_info->mfw_mb_length);
1052 
1053 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1054 
1055 		qed_l2_setup(p_hwfn);
1056 		qed_iov_setup(p_hwfn);
1057 #ifdef CONFIG_QED_LL2
1058 		if (p_hwfn->using_ll2)
1059 			qed_ll2_setup(p_hwfn);
1060 #endif
1061 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1062 			qed_fcoe_setup(p_hwfn);
1063 
1064 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1065 			qed_iscsi_setup(p_hwfn);
1066 			qed_ooo_setup(p_hwfn);
1067 		}
1068 	}
1069 }
1070 
1071 #define FINAL_CLEANUP_POLL_CNT          (100)
1072 #define FINAL_CLEANUP_POLL_TIME         (10)
1073 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
1074 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
1075 {
1076 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1077 	int rc = -EBUSY;
1078 
1079 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1080 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1081 
1082 	if (is_vf)
1083 		id += 0x10;
1084 
1085 	command |= X_FINAL_CLEANUP_AGG_INT <<
1086 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1087 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1088 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1089 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1090 
1091 	/* Make sure notification is not set before initiating final cleanup */
1092 	if (REG_RD(p_hwfn, addr)) {
1093 		DP_NOTICE(p_hwfn,
1094 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1095 		REG_WR(p_hwfn, addr, 0);
1096 	}
1097 
1098 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1099 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1100 		   id, command);
1101 
1102 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1103 
1104 	/* Poll until completion */
1105 	while (!REG_RD(p_hwfn, addr) && count--)
1106 		msleep(FINAL_CLEANUP_POLL_TIME);
1107 
1108 	if (REG_RD(p_hwfn, addr))
1109 		rc = 0;
1110 	else
1111 		DP_NOTICE(p_hwfn,
1112 			  "Failed to receive FW final cleanup notification\n");
1113 
1114 	/* Cleanup afterwards */
1115 	REG_WR(p_hwfn, addr, 0);
1116 
1117 	return rc;
1118 }
1119 
1120 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
1121 {
1122 	int hw_mode = 0;
1123 
1124 	if (QED_IS_BB_B0(p_hwfn->cdev)) {
1125 		hw_mode |= 1 << MODE_BB;
1126 	} else if (QED_IS_AH(p_hwfn->cdev)) {
1127 		hw_mode |= 1 << MODE_K2;
1128 	} else {
1129 		DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
1130 			  p_hwfn->cdev->type);
1131 		return -EINVAL;
1132 	}
1133 
1134 	switch (p_hwfn->cdev->num_ports_in_engine) {
1135 	case 1:
1136 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1137 		break;
1138 	case 2:
1139 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1140 		break;
1141 	case 4:
1142 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1143 		break;
1144 	default:
1145 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
1146 			  p_hwfn->cdev->num_ports_in_engine);
1147 		return -EINVAL;
1148 	}
1149 
1150 	switch (p_hwfn->cdev->mf_mode) {
1151 	case QED_MF_DEFAULT:
1152 	case QED_MF_NPAR:
1153 		hw_mode |= 1 << MODE_MF_SI;
1154 		break;
1155 	case QED_MF_OVLAN:
1156 		hw_mode |= 1 << MODE_MF_SD;
1157 		break;
1158 	default:
1159 		DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
1160 		hw_mode |= 1 << MODE_MF_SI;
1161 	}
1162 
1163 	hw_mode |= 1 << MODE_ASIC;
1164 
1165 	if (p_hwfn->cdev->num_hwfns > 1)
1166 		hw_mode |= 1 << MODE_100G;
1167 
1168 	p_hwfn->hw_info.hw_mode = hw_mode;
1169 
1170 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
1171 		   "Configuring function for hw_mode: 0x%08x\n",
1172 		   p_hwfn->hw_info.hw_mode);
1173 
1174 	return 0;
1175 }
1176 
1177 /* Init run time data for all PFs on an engine. */
1178 static void qed_init_cau_rt_data(struct qed_dev *cdev)
1179 {
1180 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1181 	int i, igu_sb_id;
1182 
1183 	for_each_hwfn(cdev, i) {
1184 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1185 		struct qed_igu_info *p_igu_info;
1186 		struct qed_igu_block *p_block;
1187 		struct cau_sb_entry sb_entry;
1188 
1189 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1190 
1191 		for (igu_sb_id = 0;
1192 		     igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
1193 			p_block = &p_igu_info->entry[igu_sb_id];
1194 
1195 			if (!p_block->is_pf)
1196 				continue;
1197 
1198 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
1199 					      p_block->function_id, 0, 0);
1200 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1201 					 sb_entry);
1202 		}
1203 	}
1204 }
1205 
1206 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
1207 				     struct qed_ptt *p_ptt)
1208 {
1209 	u32 val, wr_mbs, cache_line_size;
1210 
1211 	val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1212 	switch (val) {
1213 	case 0:
1214 		wr_mbs = 128;
1215 		break;
1216 	case 1:
1217 		wr_mbs = 256;
1218 		break;
1219 	case 2:
1220 		wr_mbs = 512;
1221 		break;
1222 	default:
1223 		DP_INFO(p_hwfn,
1224 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1225 			val);
1226 		return;
1227 	}
1228 
1229 	cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
1230 	switch (cache_line_size) {
1231 	case 32:
1232 		val = 0;
1233 		break;
1234 	case 64:
1235 		val = 1;
1236 		break;
1237 	case 128:
1238 		val = 2;
1239 		break;
1240 	case 256:
1241 		val = 3;
1242 		break;
1243 	default:
1244 		DP_INFO(p_hwfn,
1245 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1246 			cache_line_size);
1247 	}
1248 
1249 	if (L1_CACHE_BYTES > wr_mbs)
1250 		DP_INFO(p_hwfn,
1251 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1252 			L1_CACHE_BYTES, wr_mbs);
1253 
1254 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1255 	if (val > 0) {
1256 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
1257 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
1258 	}
1259 }
1260 
1261 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
1262 			      struct qed_ptt *p_ptt, int hw_mode)
1263 {
1264 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1265 	struct qed_qm_common_rt_init_params params;
1266 	struct qed_dev *cdev = p_hwfn->cdev;
1267 	u8 vf_id, max_num_vfs;
1268 	u16 num_pfs, pf_id;
1269 	u32 concrete_fid;
1270 	int rc = 0;
1271 
1272 	qed_init_cau_rt_data(cdev);
1273 
1274 	/* Program GTT windows */
1275 	qed_gtt_init(p_hwfn);
1276 
1277 	if (p_hwfn->mcp_info) {
1278 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1279 			qm_info->pf_rl_en = 1;
1280 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1281 			qm_info->pf_wfq_en = 1;
1282 	}
1283 
1284 	memset(&params, 0, sizeof(params));
1285 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
1286 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
1287 	params.pf_rl_en = qm_info->pf_rl_en;
1288 	params.pf_wfq_en = qm_info->pf_wfq_en;
1289 	params.vport_rl_en = qm_info->vport_rl_en;
1290 	params.vport_wfq_en = qm_info->vport_wfq_en;
1291 	params.port_params = qm_info->qm_port_params;
1292 
1293 	qed_qm_common_rt_init(p_hwfn, &params);
1294 
1295 	qed_cxt_hw_init_common(p_hwfn);
1296 
1297 	qed_init_cache_line_size(p_hwfn, p_ptt);
1298 
1299 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1300 	if (rc)
1301 		return rc;
1302 
1303 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1304 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1305 
1306 	if (QED_IS_BB(p_hwfn->cdev)) {
1307 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
1308 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1309 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
1310 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1311 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1312 		}
1313 		/* pretend to original PF */
1314 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1315 	}
1316 
1317 	max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1318 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1319 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
1320 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
1321 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1322 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1323 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1324 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1325 	}
1326 	/* pretend to original PF */
1327 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1328 
1329 	return rc;
1330 }
1331 
1332 static int
1333 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
1334 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1335 {
1336 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
1337 	u32 min_dpis;
1338 	u32 n_wids;
1339 
1340 	/* Calculate DPI size */
1341 	n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
1342 	dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
1343 	dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1344 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
1345 	dpi_count = pwm_region_size / dpi_page_size;
1346 
1347 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1348 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
1349 
1350 	p_hwfn->dpi_size = dpi_page_size;
1351 	p_hwfn->dpi_count = dpi_count;
1352 
1353 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1354 
1355 	if (dpi_count < min_dpis)
1356 		return -EINVAL;
1357 
1358 	return 0;
1359 }
1360 
1361 enum QED_ROCE_EDPM_MODE {
1362 	QED_ROCE_EDPM_MODE_ENABLE = 0,
1363 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
1364 	QED_ROCE_EDPM_MODE_DISABLE = 2,
1365 };
1366 
1367 static int
1368 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1369 {
1370 	u32 pwm_regsize, norm_regsize;
1371 	u32 non_pwm_conn, min_addr_reg1;
1372 	u32 db_bar_size, n_cpus = 1;
1373 	u32 roce_edpm_mode;
1374 	u32 pf_dems_shift;
1375 	int rc = 0;
1376 	u8 cond;
1377 
1378 	db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
1379 	if (p_hwfn->cdev->num_hwfns > 1)
1380 		db_bar_size /= 2;
1381 
1382 	/* Calculate doorbell regions */
1383 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1384 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1385 						   NULL) +
1386 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
1387 						   NULL);
1388 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
1389 	min_addr_reg1 = norm_regsize / 4096;
1390 	pwm_regsize = db_bar_size - norm_regsize;
1391 
1392 	/* Check that the normal and PWM sizes are valid */
1393 	if (db_bar_size < norm_regsize) {
1394 		DP_ERR(p_hwfn->cdev,
1395 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1396 		       db_bar_size, norm_regsize);
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (pwm_regsize < QED_MIN_PWM_REGION) {
1401 		DP_ERR(p_hwfn->cdev,
1402 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1403 		       pwm_regsize,
1404 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
1405 		return -EINVAL;
1406 	}
1407 
1408 	/* Calculate number of DPIs */
1409 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1410 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
1411 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
1412 		/* Either EDPM is mandatory, or we are attempting to allocate a
1413 		 * WID per CPU.
1414 		 */
1415 		n_cpus = num_present_cpus();
1416 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1417 	}
1418 
1419 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
1420 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
1421 	if (cond || p_hwfn->dcbx_no_edpm) {
1422 		/* Either EDPM is disabled from user configuration, or it is
1423 		 * disabled via DCBx, or it is not mandatory and we failed to
1424 		 * allocated a WID per CPU.
1425 		 */
1426 		n_cpus = 1;
1427 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1428 
1429 		if (cond)
1430 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
1431 	}
1432 
1433 	p_hwfn->wid_count = (u16) n_cpus;
1434 
1435 	DP_INFO(p_hwfn,
1436 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1437 		norm_regsize,
1438 		pwm_regsize,
1439 		p_hwfn->dpi_size,
1440 		p_hwfn->dpi_count,
1441 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1442 		"disabled" : "enabled");
1443 
1444 	if (rc) {
1445 		DP_ERR(p_hwfn,
1446 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
1447 		       p_hwfn->dpi_count,
1448 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
1449 		return -EINVAL;
1450 	}
1451 
1452 	p_hwfn->dpi_start_offset = norm_regsize;
1453 
1454 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1455 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
1456 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1457 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1458 
1459 	return 0;
1460 }
1461 
1462 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
1463 			    struct qed_ptt *p_ptt, int hw_mode)
1464 {
1465 	int rc = 0;
1466 
1467 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
1468 	if (rc)
1469 		return rc;
1470 
1471 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
1472 
1473 	return 0;
1474 }
1475 
1476 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
1477 			  struct qed_ptt *p_ptt,
1478 			  struct qed_tunnel_info *p_tunn,
1479 			  int hw_mode,
1480 			  bool b_hw_start,
1481 			  enum qed_int_mode int_mode,
1482 			  bool allow_npar_tx_switch)
1483 {
1484 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1485 	int rc = 0;
1486 
1487 	if (p_hwfn->mcp_info) {
1488 		struct qed_mcp_function_info *p_info;
1489 
1490 		p_info = &p_hwfn->mcp_info->func_info;
1491 		if (p_info->bandwidth_min)
1492 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1493 
1494 		/* Update rate limit once we'll actually have a link */
1495 		p_hwfn->qm_info.pf_rl = 100000;
1496 	}
1497 
1498 	qed_cxt_hw_init_pf(p_hwfn, p_ptt);
1499 
1500 	qed_int_igu_init_rt(p_hwfn);
1501 
1502 	/* Set VLAN in NIG if needed */
1503 	if (hw_mode & BIT(MODE_MF_SD)) {
1504 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1505 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1506 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1507 			     p_hwfn->hw_info.ovlan);
1508 	}
1509 
1510 	/* Enable classification by MAC if needed */
1511 	if (hw_mode & BIT(MODE_MF_SI)) {
1512 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
1513 			   "Configuring TAGMAC_CLS_TYPE\n");
1514 		STORE_RT_REG(p_hwfn,
1515 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1516 	}
1517 
1518 	/* Protocl Configuration  */
1519 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1520 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
1521 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1522 		     (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
1523 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1524 
1525 	/* Cleanup chip from previous driver if such remains exist */
1526 	rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1527 	if (rc)
1528 		return rc;
1529 
1530 	/* PF Init sequence */
1531 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1532 	if (rc)
1533 		return rc;
1534 
1535 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1536 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1537 	if (rc)
1538 		return rc;
1539 
1540 	/* Pure runtime initializations - directly to the HW  */
1541 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1542 
1543 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1544 	if (rc)
1545 		return rc;
1546 
1547 	if (b_hw_start) {
1548 		/* enable interrupts */
1549 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1550 
1551 		/* send function start command */
1552 		rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
1553 				     p_hwfn->cdev->mf_mode,
1554 				     allow_npar_tx_switch);
1555 		if (rc) {
1556 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1557 			return rc;
1558 		}
1559 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
1560 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
1561 			qed_wr(p_hwfn, p_ptt,
1562 			       PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1563 			       0x100);
1564 		}
1565 	}
1566 	return rc;
1567 }
1568 
1569 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
1570 			       struct qed_ptt *p_ptt,
1571 			       u8 enable)
1572 {
1573 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1574 
1575 	/* Change PF in PXP */
1576 	qed_wr(p_hwfn, p_ptt,
1577 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1578 
1579 	/* wait until value is set - try for 1 second every 50us */
1580 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1581 		val = qed_rd(p_hwfn, p_ptt,
1582 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1583 		if (val == set_val)
1584 			break;
1585 
1586 		usleep_range(50, 60);
1587 	}
1588 
1589 	if (val != set_val) {
1590 		DP_NOTICE(p_hwfn,
1591 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1592 		return -EAGAIN;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
1599 				struct qed_ptt *p_main_ptt)
1600 {
1601 	/* Read shadow of current MFW mailbox */
1602 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
1603 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1604 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
1605 }
1606 
1607 static void
1608 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
1609 			 struct qed_drv_load_params *p_drv_load)
1610 {
1611 	memset(p_load_req, 0, sizeof(*p_load_req));
1612 
1613 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
1614 			       QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
1615 	p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
1616 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
1617 	p_load_req->override_force_load = p_drv_load->override_force_load;
1618 }
1619 
1620 static int qed_vf_start(struct qed_hwfn *p_hwfn,
1621 			struct qed_hw_init_params *p_params)
1622 {
1623 	if (p_params->p_tunn) {
1624 		qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
1625 		qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
1626 	}
1627 
1628 	p_hwfn->b_int_enabled = 1;
1629 
1630 	return 0;
1631 }
1632 
1633 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
1634 {
1635 	struct qed_load_req_params load_req_params;
1636 	u32 load_code, param, drv_mb_param;
1637 	bool b_default_mtu = true;
1638 	struct qed_hwfn *p_hwfn;
1639 	int rc = 0, mfw_rc, i;
1640 
1641 	if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
1642 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
1643 		return -EINVAL;
1644 	}
1645 
1646 	if (IS_PF(cdev)) {
1647 		rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
1648 		if (rc)
1649 			return rc;
1650 	}
1651 
1652 	for_each_hwfn(cdev, i) {
1653 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1654 
1655 		/* If management didn't provide a default, set one of our own */
1656 		if (!p_hwfn->hw_info.mtu) {
1657 			p_hwfn->hw_info.mtu = 1500;
1658 			b_default_mtu = false;
1659 		}
1660 
1661 		if (IS_VF(cdev)) {
1662 			qed_vf_start(p_hwfn, p_params);
1663 			continue;
1664 		}
1665 
1666 		/* Enable DMAE in PXP */
1667 		rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1668 
1669 		rc = qed_calc_hw_mode(p_hwfn);
1670 		if (rc)
1671 			return rc;
1672 
1673 		qed_fill_load_req_params(&load_req_params,
1674 					 p_params->p_drv_load_params);
1675 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
1676 				      &load_req_params);
1677 		if (rc) {
1678 			DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
1679 			return rc;
1680 		}
1681 
1682 		load_code = load_req_params.load_code;
1683 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
1684 			   "Load request was sent. Load code: 0x%x\n",
1685 			   load_code);
1686 
1687 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1688 
1689 		p_hwfn->first_on_engine = (load_code ==
1690 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1691 
1692 		switch (load_code) {
1693 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1694 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1695 						p_hwfn->hw_info.hw_mode);
1696 			if (rc)
1697 				break;
1698 		/* Fall into */
1699 		case FW_MSG_CODE_DRV_LOAD_PORT:
1700 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1701 					      p_hwfn->hw_info.hw_mode);
1702 			if (rc)
1703 				break;
1704 
1705 		/* Fall into */
1706 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1707 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1708 					    p_params->p_tunn,
1709 					    p_hwfn->hw_info.hw_mode,
1710 					    p_params->b_hw_start,
1711 					    p_params->int_mode,
1712 					    p_params->allow_npar_tx_switch);
1713 			break;
1714 		default:
1715 			DP_NOTICE(p_hwfn,
1716 				  "Unexpected load code [0x%08x]", load_code);
1717 			rc = -EINVAL;
1718 			break;
1719 		}
1720 
1721 		if (rc)
1722 			DP_NOTICE(p_hwfn,
1723 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1724 				   load_code, rc);
1725 
1726 		/* ACK mfw regardless of success or failure of initialization */
1727 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1728 				     DRV_MSG_CODE_LOAD_DONE,
1729 				     0, &load_code, &param);
1730 		if (rc)
1731 			return rc;
1732 		if (mfw_rc) {
1733 			DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1734 			return mfw_rc;
1735 		}
1736 
1737 		/* Check if there is a DID mismatch between nvm-cfg/efuse */
1738 		if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
1739 			DP_NOTICE(p_hwfn,
1740 				  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
1741 
1742 		/* send DCBX attention request command */
1743 		DP_VERBOSE(p_hwfn,
1744 			   QED_MSG_DCB,
1745 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1746 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1747 				     DRV_MSG_CODE_SET_DCBX,
1748 				     1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1749 				     &load_code, &param);
1750 		if (mfw_rc) {
1751 			DP_NOTICE(p_hwfn,
1752 				  "Failed to send DCBX attention request\n");
1753 			return mfw_rc;
1754 		}
1755 
1756 		p_hwfn->hw_init_done = true;
1757 	}
1758 
1759 	if (IS_PF(cdev)) {
1760 		p_hwfn = QED_LEADING_HWFN(cdev);
1761 		drv_mb_param = STORM_FW_VERSION;
1762 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1763 				 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
1764 				 drv_mb_param, &load_code, &param);
1765 		if (rc)
1766 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
1767 
1768 		if (!b_default_mtu) {
1769 			rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
1770 						   p_hwfn->hw_info.mtu);
1771 			if (rc)
1772 				DP_INFO(p_hwfn,
1773 					"Failed to update default mtu\n");
1774 		}
1775 
1776 		rc = qed_mcp_ov_update_driver_state(p_hwfn,
1777 						    p_hwfn->p_main_ptt,
1778 						  QED_OV_DRIVER_STATE_DISABLED);
1779 		if (rc)
1780 			DP_INFO(p_hwfn, "Failed to update driver state\n");
1781 
1782 		rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
1783 					       QED_OV_ESWITCH_VEB);
1784 		if (rc)
1785 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 #define QED_HW_STOP_RETRY_LIMIT (10)
1792 static void qed_hw_timers_stop(struct qed_dev *cdev,
1793 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1794 {
1795 	int i;
1796 
1797 	/* close timers */
1798 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1799 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1800 
1801 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1802 		if ((!qed_rd(p_hwfn, p_ptt,
1803 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1804 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1805 			break;
1806 
1807 		/* Dependent on number of connection/tasks, possibly
1808 		 * 1ms sleep is required between polls
1809 		 */
1810 		usleep_range(1000, 2000);
1811 	}
1812 
1813 	if (i < QED_HW_STOP_RETRY_LIMIT)
1814 		return;
1815 
1816 	DP_NOTICE(p_hwfn,
1817 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1818 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1819 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1820 }
1821 
1822 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1823 {
1824 	int j;
1825 
1826 	for_each_hwfn(cdev, j) {
1827 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1828 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1829 
1830 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1831 	}
1832 }
1833 
1834 int qed_hw_stop(struct qed_dev *cdev)
1835 {
1836 	struct qed_hwfn *p_hwfn;
1837 	struct qed_ptt *p_ptt;
1838 	int rc, rc2 = 0;
1839 	int j;
1840 
1841 	for_each_hwfn(cdev, j) {
1842 		p_hwfn = &cdev->hwfns[j];
1843 		p_ptt = p_hwfn->p_main_ptt;
1844 
1845 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1846 
1847 		if (IS_VF(cdev)) {
1848 			qed_vf_pf_int_cleanup(p_hwfn);
1849 			rc = qed_vf_pf_reset(p_hwfn);
1850 			if (rc) {
1851 				DP_NOTICE(p_hwfn,
1852 					  "qed_vf_pf_reset failed. rc = %d.\n",
1853 					  rc);
1854 				rc2 = -EINVAL;
1855 			}
1856 			continue;
1857 		}
1858 
1859 		/* mark the hw as uninitialized... */
1860 		p_hwfn->hw_init_done = false;
1861 
1862 		/* Send unload command to MCP */
1863 		rc = qed_mcp_unload_req(p_hwfn, p_ptt);
1864 		if (rc) {
1865 			DP_NOTICE(p_hwfn,
1866 				  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
1867 				  rc);
1868 			rc2 = -EINVAL;
1869 		}
1870 
1871 		qed_slowpath_irq_sync(p_hwfn);
1872 
1873 		/* After this point no MFW attentions are expected, e.g. prevent
1874 		 * race between pf stop and dcbx pf update.
1875 		 */
1876 		rc = qed_sp_pf_stop(p_hwfn);
1877 		if (rc) {
1878 			DP_NOTICE(p_hwfn,
1879 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
1880 				  rc);
1881 			rc2 = -EINVAL;
1882 		}
1883 
1884 		qed_wr(p_hwfn, p_ptt,
1885 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1886 
1887 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1888 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1889 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1890 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1891 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1892 
1893 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1894 
1895 		/* Disable Attention Generation */
1896 		qed_int_igu_disable_int(p_hwfn, p_ptt);
1897 
1898 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1899 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1900 
1901 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1902 
1903 		/* Need to wait 1ms to guarantee SBs are cleared */
1904 		usleep_range(1000, 2000);
1905 
1906 		/* Disable PF in HW blocks */
1907 		qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1908 		qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
1909 
1910 		qed_mcp_unload_done(p_hwfn, p_ptt);
1911 		if (rc) {
1912 			DP_NOTICE(p_hwfn,
1913 				  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
1914 				  rc);
1915 			rc2 = -EINVAL;
1916 		}
1917 	}
1918 
1919 	if (IS_PF(cdev)) {
1920 		p_hwfn = QED_LEADING_HWFN(cdev);
1921 		p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
1922 
1923 		/* Disable DMAE in PXP - in CMT, this should only be done for
1924 		 * first hw-function, and only after all transactions have
1925 		 * stopped for all active hw-functions.
1926 		 */
1927 		rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false);
1928 		if (rc) {
1929 			DP_NOTICE(p_hwfn,
1930 				  "qed_change_pci_hwfn failed. rc = %d.\n", rc);
1931 			rc2 = -EINVAL;
1932 		}
1933 	}
1934 
1935 	return rc2;
1936 }
1937 
1938 int qed_hw_stop_fastpath(struct qed_dev *cdev)
1939 {
1940 	int j;
1941 
1942 	for_each_hwfn(cdev, j) {
1943 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1944 		struct qed_ptt *p_ptt;
1945 
1946 		if (IS_VF(cdev)) {
1947 			qed_vf_pf_int_cleanup(p_hwfn);
1948 			continue;
1949 		}
1950 		p_ptt = qed_ptt_acquire(p_hwfn);
1951 		if (!p_ptt)
1952 			return -EAGAIN;
1953 
1954 		DP_VERBOSE(p_hwfn,
1955 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
1956 
1957 		qed_wr(p_hwfn, p_ptt,
1958 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1959 
1960 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1961 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1962 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1963 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1964 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1965 
1966 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1967 
1968 		/* Need to wait 1ms to guarantee SBs are cleared */
1969 		usleep_range(1000, 2000);
1970 		qed_ptt_release(p_hwfn, p_ptt);
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1977 {
1978 	struct qed_ptt *p_ptt;
1979 
1980 	if (IS_VF(p_hwfn->cdev))
1981 		return 0;
1982 
1983 	p_ptt = qed_ptt_acquire(p_hwfn);
1984 	if (!p_ptt)
1985 		return -EAGAIN;
1986 
1987 	/* If roce info is allocated it means roce is initialized and should
1988 	 * be enabled in searcher.
1989 	 */
1990 	if (p_hwfn->p_rdma_info &&
1991 	    p_hwfn->b_rdma_enabled_in_prs)
1992 		qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
1993 
1994 	/* Re-open incoming traffic */
1995 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1996 	qed_ptt_release(p_hwfn, p_ptt);
1997 
1998 	return 0;
1999 }
2000 
2001 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2002 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
2003 {
2004 	qed_ptt_pool_free(p_hwfn);
2005 	kfree(p_hwfn->hw_info.p_igu_info);
2006 	p_hwfn->hw_info.p_igu_info = NULL;
2007 }
2008 
2009 /* Setup bar access */
2010 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
2011 {
2012 	/* clear indirect access */
2013 	if (QED_IS_AH(p_hwfn->cdev)) {
2014 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2015 		       PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
2016 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2017 		       PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
2018 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2019 		       PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
2020 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2021 		       PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
2022 	} else {
2023 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2024 		       PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2025 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2026 		       PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2027 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2028 		       PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2029 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2030 		       PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2031 	}
2032 
2033 	/* Clean Previous errors if such exist */
2034 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2035 	       PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2036 
2037 	/* enable internal target-read */
2038 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2039 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2040 }
2041 
2042 static void get_function_id(struct qed_hwfn *p_hwfn)
2043 {
2044 	/* ME Register */
2045 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
2046 						  PXP_PF_ME_OPAQUE_ADDR);
2047 
2048 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2049 
2050 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2051 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2052 				      PXP_CONCRETE_FID_PFID);
2053 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2054 				    PXP_CONCRETE_FID_PORT);
2055 
2056 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
2057 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2058 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2059 }
2060 
2061 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
2062 {
2063 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2064 	struct qed_sb_cnt_info sb_cnt;
2065 	u32 non_l2_sbs = 0;
2066 
2067 	memset(&sb_cnt, 0, sizeof(sb_cnt));
2068 	qed_int_get_num_sbs(p_hwfn, &sb_cnt);
2069 
2070 	if (IS_ENABLED(CONFIG_QED_RDMA) &&
2071 	    QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2072 		/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
2073 		 * the status blocks equally between L2 / RoCE but with
2074 		 * consideration as to how many l2 queues / cnqs we have.
2075 		 */
2076 		feat_num[QED_RDMA_CNQ] =
2077 			min_t(u32, sb_cnt.cnt / 2,
2078 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
2079 
2080 		non_l2_sbs = feat_num[QED_RDMA_CNQ];
2081 	}
2082 	if (QED_IS_L2_PERSONALITY(p_hwfn)) {
2083 		/* Start by allocating VF queues, then PF's */
2084 		feat_num[QED_VF_L2_QUE] = min_t(u32,
2085 						RESC_NUM(p_hwfn, QED_L2_QUEUE),
2086 						sb_cnt.iov_cnt);
2087 		feat_num[QED_PF_L2_QUE] = min_t(u32,
2088 						sb_cnt.cnt - non_l2_sbs,
2089 						RESC_NUM(p_hwfn,
2090 							 QED_L2_QUEUE) -
2091 						FEAT_NUM(p_hwfn,
2092 							 QED_VF_L2_QUE));
2093 	}
2094 
2095 	if (QED_IS_FCOE_PERSONALITY(p_hwfn))
2096 		feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
2097 					       RESC_NUM(p_hwfn,
2098 							QED_CMDQS_CQS));
2099 
2100 	if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
2101 		feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
2102 					       RESC_NUM(p_hwfn,
2103 							QED_CMDQS_CQS));
2104 	DP_VERBOSE(p_hwfn,
2105 		   NETIF_MSG_PROBE,
2106 		   "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
2107 		   (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
2108 		   (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
2109 		   (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
2110 		   (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
2111 		   (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
2112 		   (int)sb_cnt.cnt);
2113 }
2114 
2115 const char *qed_hw_get_resc_name(enum qed_resources res_id)
2116 {
2117 	switch (res_id) {
2118 	case QED_L2_QUEUE:
2119 		return "L2_QUEUE";
2120 	case QED_VPORT:
2121 		return "VPORT";
2122 	case QED_RSS_ENG:
2123 		return "RSS_ENG";
2124 	case QED_PQ:
2125 		return "PQ";
2126 	case QED_RL:
2127 		return "RL";
2128 	case QED_MAC:
2129 		return "MAC";
2130 	case QED_VLAN:
2131 		return "VLAN";
2132 	case QED_RDMA_CNQ_RAM:
2133 		return "RDMA_CNQ_RAM";
2134 	case QED_ILT:
2135 		return "ILT";
2136 	case QED_LL2_QUEUE:
2137 		return "LL2_QUEUE";
2138 	case QED_CMDQS_CQS:
2139 		return "CMDQS_CQS";
2140 	case QED_RDMA_STATS_QUEUE:
2141 		return "RDMA_STATS_QUEUE";
2142 	case QED_BDQ:
2143 		return "BDQ";
2144 	case QED_SB:
2145 		return "SB";
2146 	default:
2147 		return "UNKNOWN_RESOURCE";
2148 	}
2149 }
2150 
2151 static int
2152 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
2153 			    struct qed_ptt *p_ptt,
2154 			    enum qed_resources res_id,
2155 			    u32 resc_max_val, u32 *p_mcp_resp)
2156 {
2157 	int rc;
2158 
2159 	rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
2160 				      resc_max_val, p_mcp_resp);
2161 	if (rc) {
2162 		DP_NOTICE(p_hwfn,
2163 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2164 			  res_id, qed_hw_get_resc_name(res_id));
2165 		return rc;
2166 	}
2167 
2168 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2169 		DP_INFO(p_hwfn,
2170 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2171 			res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
2172 
2173 	return 0;
2174 }
2175 
2176 static int
2177 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2178 {
2179 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2180 	u32 resc_max_val, mcp_resp;
2181 	u8 res_id;
2182 	int rc;
2183 
2184 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2185 		switch (res_id) {
2186 		case QED_LL2_QUEUE:
2187 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
2188 			break;
2189 		case QED_RDMA_CNQ_RAM:
2190 			/* No need for a case for QED_CMDQS_CQS since
2191 			 * CNQ/CMDQS are the same resource.
2192 			 */
2193 			resc_max_val = NUM_OF_CMDQS_CQS;
2194 			break;
2195 		case QED_RDMA_STATS_QUEUE:
2196 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
2197 			    : RDMA_NUM_STATISTIC_COUNTERS_BB;
2198 			break;
2199 		case QED_BDQ:
2200 			resc_max_val = BDQ_NUM_RESOURCES;
2201 			break;
2202 		default:
2203 			continue;
2204 		}
2205 
2206 		rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
2207 						 resc_max_val, &mcp_resp);
2208 		if (rc)
2209 			return rc;
2210 
2211 		/* There's no point to continue to the next resource if the
2212 		 * command is not supported by the MFW.
2213 		 * We do continue if the command is supported but the resource
2214 		 * is unknown to the MFW. Such a resource will be later
2215 		 * configured with the default allocation values.
2216 		 */
2217 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2218 			return -EINVAL;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static
2225 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
2226 			 enum qed_resources res_id,
2227 			 u32 *p_resc_num, u32 *p_resc_start)
2228 {
2229 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2230 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2231 
2232 	switch (res_id) {
2233 	case QED_L2_QUEUE:
2234 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2235 			       MAX_NUM_L2_QUEUES_BB) / num_funcs;
2236 		break;
2237 	case QED_VPORT:
2238 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2239 			       MAX_NUM_VPORTS_BB) / num_funcs;
2240 		break;
2241 	case QED_RSS_ENG:
2242 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2243 			       ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2244 		break;
2245 	case QED_PQ:
2246 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2247 			       MAX_QM_TX_QUEUES_BB) / num_funcs;
2248 		*p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */
2249 		break;
2250 	case QED_RL:
2251 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2252 		break;
2253 	case QED_MAC:
2254 	case QED_VLAN:
2255 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2256 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2257 		break;
2258 	case QED_ILT:
2259 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2260 			       PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2261 		break;
2262 	case QED_LL2_QUEUE:
2263 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2264 		break;
2265 	case QED_RDMA_CNQ_RAM:
2266 	case QED_CMDQS_CQS:
2267 		/* CNQ/CMDQS are the same resource */
2268 		*p_resc_num = NUM_OF_CMDQS_CQS / num_funcs;
2269 		break;
2270 	case QED_RDMA_STATS_QUEUE:
2271 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
2272 			       RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs;
2273 		break;
2274 	case QED_BDQ:
2275 		if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
2276 		    p_hwfn->hw_info.personality != QED_PCI_FCOE)
2277 			*p_resc_num = 0;
2278 		else
2279 			*p_resc_num = 1;
2280 		break;
2281 	case QED_SB:
2282 		/* Since we want its value to reflect whether MFW supports
2283 		 * the new scheme, have a default of 0.
2284 		 */
2285 		*p_resc_num = 0;
2286 		break;
2287 	default:
2288 		return -EINVAL;
2289 	}
2290 
2291 	switch (res_id) {
2292 	case QED_BDQ:
2293 		if (!*p_resc_num)
2294 			*p_resc_start = 0;
2295 		else if (p_hwfn->cdev->num_ports_in_engine == 4)
2296 			*p_resc_start = p_hwfn->port_id;
2297 		else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
2298 			*p_resc_start = p_hwfn->port_id;
2299 		else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2300 			*p_resc_start = p_hwfn->port_id + 2;
2301 		break;
2302 	default:
2303 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
2304 		break;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
2311 				  enum qed_resources res_id)
2312 {
2313 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
2314 	u32 mcp_resp, *p_resc_num, *p_resc_start;
2315 	int rc;
2316 
2317 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2318 	p_resc_start = &RESC_START(p_hwfn, res_id);
2319 
2320 	rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
2321 				  &dflt_resc_start);
2322 	if (rc) {
2323 		DP_ERR(p_hwfn,
2324 		       "Failed to get default amount for resource %d [%s]\n",
2325 		       res_id, qed_hw_get_resc_name(res_id));
2326 		return rc;
2327 	}
2328 
2329 	rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
2330 				   &mcp_resp, p_resc_num, p_resc_start);
2331 	if (rc) {
2332 		DP_NOTICE(p_hwfn,
2333 			  "MFW response failure for an allocation request for resource %d [%s]\n",
2334 			  res_id, qed_hw_get_resc_name(res_id));
2335 		return rc;
2336 	}
2337 
2338 	/* Default driver values are applied in the following cases:
2339 	 * - The resource allocation MB command is not supported by the MFW
2340 	 * - There is an internal error in the MFW while processing the request
2341 	 * - The resource ID is unknown to the MFW
2342 	 */
2343 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2344 		DP_INFO(p_hwfn,
2345 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
2346 			res_id,
2347 			qed_hw_get_resc_name(res_id),
2348 			mcp_resp, dflt_resc_num, dflt_resc_start);
2349 		*p_resc_num = dflt_resc_num;
2350 		*p_resc_start = dflt_resc_start;
2351 		goto out;
2352 	}
2353 
2354 out:
2355 	/* PQs have to divide by 8 [that's the HW granularity].
2356 	 * Reduce number so it would fit.
2357 	 */
2358 	if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
2359 		DP_INFO(p_hwfn,
2360 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
2361 			*p_resc_num,
2362 			(*p_resc_num) & ~0x7,
2363 			*p_resc_start, (*p_resc_start) & ~0x7);
2364 		*p_resc_num &= ~0x7;
2365 		*p_resc_start &= ~0x7;
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
2372 {
2373 	int rc;
2374 	u8 res_id;
2375 
2376 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2377 		rc = __qed_hw_set_resc_info(p_hwfn, res_id);
2378 		if (rc)
2379 			return rc;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2386 {
2387 	struct qed_resc_unlock_params resc_unlock_params;
2388 	struct qed_resc_lock_params resc_lock_params;
2389 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2390 	u8 res_id;
2391 	int rc;
2392 
2393 	/* Setting the max values of the soft resources and the following
2394 	 * resources allocation queries should be atomic. Since several PFs can
2395 	 * run in parallel - a resource lock is needed.
2396 	 * If either the resource lock or resource set value commands are not
2397 	 * supported - skip the the max values setting, release the lock if
2398 	 * needed, and proceed to the queries. Other failures, including a
2399 	 * failure to acquire the lock, will cause this function to fail.
2400 	 */
2401 	qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
2402 				       QED_RESC_LOCK_RESC_ALLOC, false);
2403 
2404 	rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
2405 	if (rc && rc != -EINVAL) {
2406 		return rc;
2407 	} else if (rc == -EINVAL) {
2408 		DP_INFO(p_hwfn,
2409 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
2410 	} else if (!rc && !resc_lock_params.b_granted) {
2411 		DP_NOTICE(p_hwfn,
2412 			  "Failed to acquire the resource lock for the resource allocation commands\n");
2413 		return -EBUSY;
2414 	} else {
2415 		rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
2416 		if (rc && rc != -EINVAL) {
2417 			DP_NOTICE(p_hwfn,
2418 				  "Failed to set the max values of the soft resources\n");
2419 			goto unlock_and_exit;
2420 		} else if (rc == -EINVAL) {
2421 			DP_INFO(p_hwfn,
2422 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
2423 			rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
2424 						 &resc_unlock_params);
2425 			if (rc)
2426 				DP_INFO(p_hwfn,
2427 					"Failed to release the resource lock for the resource allocation commands\n");
2428 		}
2429 	}
2430 
2431 	rc = qed_hw_set_resc_info(p_hwfn);
2432 	if (rc)
2433 		goto unlock_and_exit;
2434 
2435 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
2436 		rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2437 		if (rc)
2438 			DP_INFO(p_hwfn,
2439 				"Failed to release the resource lock for the resource allocation commands\n");
2440 	}
2441 
2442 	/* Sanity for ILT */
2443 	if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2444 	    (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2445 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
2446 			  RESC_START(p_hwfn, QED_ILT),
2447 			  RESC_END(p_hwfn, QED_ILT) - 1);
2448 		return -EINVAL;
2449 	}
2450 
2451 	/* This will also learn the number of SBs from MFW */
2452 	if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
2453 		return -EINVAL;
2454 
2455 	qed_hw_set_feat(p_hwfn);
2456 
2457 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
2458 		DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
2459 			   qed_hw_get_resc_name(res_id),
2460 			   RESC_NUM(p_hwfn, res_id),
2461 			   RESC_START(p_hwfn, res_id));
2462 
2463 	return 0;
2464 
2465 unlock_and_exit:
2466 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
2467 		qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2468 	return rc;
2469 }
2470 
2471 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2472 {
2473 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2474 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
2475 	struct qed_mcp_link_params *link;
2476 
2477 	/* Read global nvm_cfg address */
2478 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2479 
2480 	/* Verify MCP has initialized it */
2481 	if (!nvm_cfg_addr) {
2482 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2487 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2488 
2489 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2490 	       offsetof(struct nvm_cfg1, glob) +
2491 	       offsetof(struct nvm_cfg1_glob, core_cfg);
2492 
2493 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
2494 
2495 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2496 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2497 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2498 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
2499 		break;
2500 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2501 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
2502 		break;
2503 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2504 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
2505 		break;
2506 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2507 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
2508 		break;
2509 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2510 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
2511 		break;
2512 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2513 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
2514 		break;
2515 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2516 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
2517 		break;
2518 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2519 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
2520 		break;
2521 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2522 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
2523 		break;
2524 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2525 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
2526 		break;
2527 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2528 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
2529 		break;
2530 	default:
2531 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
2532 		break;
2533 	}
2534 
2535 	/* Read default link configuration */
2536 	link = &p_hwfn->mcp_info->link_input;
2537 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2538 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2539 	link_temp = qed_rd(p_hwfn, p_ptt,
2540 			   port_cfg_addr +
2541 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
2542 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2543 	link->speed.advertised_speeds = link_temp;
2544 
2545 	link_temp = link->speed.advertised_speeds;
2546 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2547 
2548 	link_temp = qed_rd(p_hwfn, p_ptt,
2549 			   port_cfg_addr +
2550 			   offsetof(struct nvm_cfg1_port, link_settings));
2551 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2552 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2553 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2554 		link->speed.autoneg = true;
2555 		break;
2556 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2557 		link->speed.forced_speed = 1000;
2558 		break;
2559 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2560 		link->speed.forced_speed = 10000;
2561 		break;
2562 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2563 		link->speed.forced_speed = 25000;
2564 		break;
2565 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2566 		link->speed.forced_speed = 40000;
2567 		break;
2568 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2569 		link->speed.forced_speed = 50000;
2570 		break;
2571 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2572 		link->speed.forced_speed = 100000;
2573 		break;
2574 	default:
2575 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
2576 	}
2577 
2578 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2579 		link->speed.autoneg;
2580 
2581 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2582 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2583 	link->pause.autoneg = !!(link_temp &
2584 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2585 	link->pause.forced_rx = !!(link_temp &
2586 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2587 	link->pause.forced_tx = !!(link_temp &
2588 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2589 	link->loopback_mode = 0;
2590 
2591 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2592 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2593 		   link->speed.forced_speed, link->speed.advertised_speeds,
2594 		   link->speed.autoneg, link->pause.autoneg);
2595 
2596 	/* Read Multi-function information from shmem */
2597 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2598 	       offsetof(struct nvm_cfg1, glob) +
2599 	       offsetof(struct nvm_cfg1_glob, generic_cont0);
2600 
2601 	generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
2602 
2603 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2604 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
2605 
2606 	switch (mf_mode) {
2607 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2608 		p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
2609 		break;
2610 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2611 		p_hwfn->cdev->mf_mode = QED_MF_NPAR;
2612 		break;
2613 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2614 		p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
2615 		break;
2616 	}
2617 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2618 		p_hwfn->cdev->mf_mode);
2619 
2620 	/* Read Multi-function information from shmem */
2621 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2622 		offsetof(struct nvm_cfg1, glob) +
2623 		offsetof(struct nvm_cfg1_glob, device_capabilities);
2624 
2625 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
2626 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2627 		__set_bit(QED_DEV_CAP_ETH,
2628 			  &p_hwfn->hw_info.device_capabilities);
2629 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2630 		__set_bit(QED_DEV_CAP_FCOE,
2631 			  &p_hwfn->hw_info.device_capabilities);
2632 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2633 		__set_bit(QED_DEV_CAP_ISCSI,
2634 			  &p_hwfn->hw_info.device_capabilities);
2635 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2636 		__set_bit(QED_DEV_CAP_ROCE,
2637 			  &p_hwfn->hw_info.device_capabilities);
2638 
2639 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2640 }
2641 
2642 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2643 {
2644 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2645 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2646 	struct qed_dev *cdev = p_hwfn->cdev;
2647 
2648 	num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2649 
2650 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2651 	 * in the other bits are selected.
2652 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
2653 	 * '0' only for enabled functions (function 0 always exists and
2654 	 * enabled).
2655 	 * In case of CMT, only the "even" functions are enabled, and thus the
2656 	 * number of functions for both hwfns is learnt from the same bits.
2657 	 */
2658 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2659 
2660 	if (reg_function_hide & 0x1) {
2661 		if (QED_IS_BB(cdev)) {
2662 			if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
2663 				num_funcs = 0;
2664 				eng_mask = 0xaaaa;
2665 			} else {
2666 				num_funcs = 1;
2667 				eng_mask = 0x5554;
2668 			}
2669 		} else {
2670 			num_funcs = 1;
2671 			eng_mask = 0xfffe;
2672 		}
2673 
2674 		/* Get the number of the enabled functions on the engine */
2675 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2676 		while (tmp) {
2677 			if (tmp & 0x1)
2678 				num_funcs++;
2679 			tmp >>= 0x1;
2680 		}
2681 
2682 		/* Get the PF index within the enabled functions */
2683 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2684 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
2685 		while (tmp) {
2686 			if (tmp & 0x1)
2687 				enabled_func_idx--;
2688 			tmp >>= 0x1;
2689 		}
2690 	}
2691 
2692 	p_hwfn->num_funcs_on_engine = num_funcs;
2693 	p_hwfn->enabled_func_idx = enabled_func_idx;
2694 
2695 	DP_VERBOSE(p_hwfn,
2696 		   NETIF_MSG_PROBE,
2697 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2698 		   p_hwfn->rel_pf_id,
2699 		   p_hwfn->abs_pf_id,
2700 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2701 }
2702 
2703 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn,
2704 				    struct qed_ptt *p_ptt)
2705 {
2706 	u32 port_mode;
2707 
2708 	port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0);
2709 
2710 	if (port_mode < 3) {
2711 		p_hwfn->cdev->num_ports_in_engine = 1;
2712 	} else if (port_mode <= 5) {
2713 		p_hwfn->cdev->num_ports_in_engine = 2;
2714 	} else {
2715 		DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
2716 			  p_hwfn->cdev->num_ports_in_engine);
2717 
2718 		/* Default num_ports_in_engine to something */
2719 		p_hwfn->cdev->num_ports_in_engine = 1;
2720 	}
2721 }
2722 
2723 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn,
2724 				    struct qed_ptt *p_ptt)
2725 {
2726 	u32 port;
2727 	int i;
2728 
2729 	p_hwfn->cdev->num_ports_in_engine = 0;
2730 
2731 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2732 		port = qed_rd(p_hwfn, p_ptt,
2733 			      CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2734 		if (port & 1)
2735 			p_hwfn->cdev->num_ports_in_engine++;
2736 	}
2737 
2738 	if (!p_hwfn->cdev->num_ports_in_engine) {
2739 		DP_NOTICE(p_hwfn, "All NIG ports are inactive\n");
2740 
2741 		/* Default num_ports_in_engine to something */
2742 		p_hwfn->cdev->num_ports_in_engine = 1;
2743 	}
2744 }
2745 
2746 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2747 {
2748 	if (QED_IS_BB(p_hwfn->cdev))
2749 		qed_hw_info_port_num_bb(p_hwfn, p_ptt);
2750 	else
2751 		qed_hw_info_port_num_ah(p_hwfn, p_ptt);
2752 }
2753 
2754 static int
2755 qed_get_hw_info(struct qed_hwfn *p_hwfn,
2756 		struct qed_ptt *p_ptt,
2757 		enum qed_pci_personality personality)
2758 {
2759 	int rc;
2760 
2761 	/* Since all information is common, only first hwfns should do this */
2762 	if (IS_LEAD_HWFN(p_hwfn)) {
2763 		rc = qed_iov_hw_info(p_hwfn);
2764 		if (rc)
2765 			return rc;
2766 	}
2767 
2768 	qed_hw_info_port_num(p_hwfn, p_ptt);
2769 
2770 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
2771 
2772 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
2773 	if (rc)
2774 		return rc;
2775 
2776 	if (qed_mcp_is_init(p_hwfn))
2777 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
2778 				p_hwfn->mcp_info->func_info.mac);
2779 	else
2780 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
2781 
2782 	if (qed_mcp_is_init(p_hwfn)) {
2783 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
2784 			p_hwfn->hw_info.ovlan =
2785 				p_hwfn->mcp_info->func_info.ovlan;
2786 
2787 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
2788 	}
2789 
2790 	if (qed_mcp_is_init(p_hwfn)) {
2791 		enum qed_pci_personality protocol;
2792 
2793 		protocol = p_hwfn->mcp_info->func_info.protocol;
2794 		p_hwfn->hw_info.personality = protocol;
2795 	}
2796 
2797 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2798 	p_hwfn->hw_info.num_active_tc = 1;
2799 
2800 	qed_get_num_funcs(p_hwfn, p_ptt);
2801 
2802 	if (qed_mcp_is_init(p_hwfn))
2803 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
2804 
2805 	return qed_hw_get_resc(p_hwfn, p_ptt);
2806 }
2807 
2808 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2809 {
2810 	struct qed_dev *cdev = p_hwfn->cdev;
2811 	u16 device_id_mask;
2812 	u32 tmp;
2813 
2814 	/* Read Vendor Id / Device Id */
2815 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
2816 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
2817 
2818 	/* Determine type */
2819 	device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
2820 	switch (device_id_mask) {
2821 	case QED_DEV_ID_MASK_BB:
2822 		cdev->type = QED_DEV_TYPE_BB;
2823 		break;
2824 	case QED_DEV_ID_MASK_AH:
2825 		cdev->type = QED_DEV_TYPE_AH;
2826 		break;
2827 	default:
2828 		DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
2829 		return -EBUSY;
2830 	}
2831 
2832 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
2833 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
2834 
2835 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
2836 
2837 	/* Learn number of HW-functions */
2838 	tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
2839 
2840 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
2841 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
2842 		cdev->num_hwfns = 2;
2843 	} else {
2844 		cdev->num_hwfns = 1;
2845 	}
2846 
2847 	cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
2848 				    MISCS_REG_CHIP_TEST_REG) >> 4;
2849 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
2850 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
2851 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
2852 
2853 	DP_INFO(cdev->hwfns,
2854 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2855 		QED_IS_BB(cdev) ? "BB" : "AH",
2856 		'A' + cdev->chip_rev,
2857 		(int)cdev->chip_metal,
2858 		cdev->chip_num, cdev->chip_rev,
2859 		cdev->chip_bond_id, cdev->chip_metal);
2860 
2861 	return 0;
2862 }
2863 
2864 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
2865 				 void __iomem *p_regview,
2866 				 void __iomem *p_doorbells,
2867 				 enum qed_pci_personality personality)
2868 {
2869 	int rc = 0;
2870 
2871 	/* Split PCI bars evenly between hwfns */
2872 	p_hwfn->regview = p_regview;
2873 	p_hwfn->doorbells = p_doorbells;
2874 
2875 	if (IS_VF(p_hwfn->cdev))
2876 		return qed_vf_hw_prepare(p_hwfn);
2877 
2878 	/* Validate that chip access is feasible */
2879 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2880 		DP_ERR(p_hwfn,
2881 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
2882 		return -EINVAL;
2883 	}
2884 
2885 	get_function_id(p_hwfn);
2886 
2887 	/* Allocate PTT pool */
2888 	rc = qed_ptt_pool_alloc(p_hwfn);
2889 	if (rc)
2890 		goto err0;
2891 
2892 	/* Allocate the main PTT */
2893 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2894 
2895 	/* First hwfn learns basic information, e.g., number of hwfns */
2896 	if (!p_hwfn->my_id) {
2897 		rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
2898 		if (rc)
2899 			goto err1;
2900 	}
2901 
2902 	qed_hw_hwfn_prepare(p_hwfn);
2903 
2904 	/* Initialize MCP structure */
2905 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2906 	if (rc) {
2907 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
2908 		goto err1;
2909 	}
2910 
2911 	/* Read the device configuration information from the HW and SHMEM */
2912 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
2913 	if (rc) {
2914 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
2915 		goto err2;
2916 	}
2917 
2918 	/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
2919 	 * is called as it sets the ports number in an engine.
2920 	 */
2921 	if (IS_LEAD_HWFN(p_hwfn)) {
2922 		rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
2923 		if (rc)
2924 			DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
2925 	}
2926 
2927 	/* Allocate the init RT array and initialize the init-ops engine */
2928 	rc = qed_init_alloc(p_hwfn);
2929 	if (rc)
2930 		goto err2;
2931 
2932 	return rc;
2933 err2:
2934 	if (IS_LEAD_HWFN(p_hwfn))
2935 		qed_iov_free_hw_info(p_hwfn->cdev);
2936 	qed_mcp_free(p_hwfn);
2937 err1:
2938 	qed_hw_hwfn_free(p_hwfn);
2939 err0:
2940 	return rc;
2941 }
2942 
2943 int qed_hw_prepare(struct qed_dev *cdev,
2944 		   int personality)
2945 {
2946 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2947 	int rc;
2948 
2949 	/* Store the precompiled init data ptrs */
2950 	if (IS_PF(cdev))
2951 		qed_init_iro_array(cdev);
2952 
2953 	/* Initialize the first hwfn - will learn number of hwfns */
2954 	rc = qed_hw_prepare_single(p_hwfn,
2955 				   cdev->regview,
2956 				   cdev->doorbells, personality);
2957 	if (rc)
2958 		return rc;
2959 
2960 	personality = p_hwfn->hw_info.personality;
2961 
2962 	/* Initialize the rest of the hwfns */
2963 	if (cdev->num_hwfns > 1) {
2964 		void __iomem *p_regview, *p_doorbell;
2965 		u8 __iomem *addr;
2966 
2967 		/* adjust bar offset for second engine */
2968 		addr = cdev->regview +
2969 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
2970 				       BAR_ID_0) / 2;
2971 		p_regview = addr;
2972 
2973 		addr = cdev->doorbells +
2974 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
2975 				       BAR_ID_1) / 2;
2976 		p_doorbell = addr;
2977 
2978 		/* prepare second hw function */
2979 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
2980 					   p_doorbell, personality);
2981 
2982 		/* in case of error, need to free the previously
2983 		 * initiliazed hwfn 0.
2984 		 */
2985 		if (rc) {
2986 			if (IS_PF(cdev)) {
2987 				qed_init_free(p_hwfn);
2988 				qed_mcp_free(p_hwfn);
2989 				qed_hw_hwfn_free(p_hwfn);
2990 			}
2991 		}
2992 	}
2993 
2994 	return rc;
2995 }
2996 
2997 void qed_hw_remove(struct qed_dev *cdev)
2998 {
2999 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3000 	int i;
3001 
3002 	if (IS_PF(cdev))
3003 		qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3004 					       QED_OV_DRIVER_STATE_NOT_LOADED);
3005 
3006 	for_each_hwfn(cdev, i) {
3007 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3008 
3009 		if (IS_VF(cdev)) {
3010 			qed_vf_pf_release(p_hwfn);
3011 			continue;
3012 		}
3013 
3014 		qed_init_free(p_hwfn);
3015 		qed_hw_hwfn_free(p_hwfn);
3016 		qed_mcp_free(p_hwfn);
3017 	}
3018 
3019 	qed_iov_free_hw_info(cdev);
3020 }
3021 
3022 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
3023 				    struct qed_chain *p_chain)
3024 {
3025 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
3026 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3027 	struct qed_chain_next *p_next;
3028 	u32 size, i;
3029 
3030 	if (!p_virt)
3031 		return;
3032 
3033 	size = p_chain->elem_size * p_chain->usable_per_page;
3034 
3035 	for (i = 0; i < p_chain->page_cnt; i++) {
3036 		if (!p_virt)
3037 			break;
3038 
3039 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
3040 		p_virt_next = p_next->next_virt;
3041 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3042 
3043 		dma_free_coherent(&cdev->pdev->dev,
3044 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
3045 
3046 		p_virt = p_virt_next;
3047 		p_phys = p_phys_next;
3048 	}
3049 }
3050 
3051 static void qed_chain_free_single(struct qed_dev *cdev,
3052 				  struct qed_chain *p_chain)
3053 {
3054 	if (!p_chain->p_virt_addr)
3055 		return;
3056 
3057 	dma_free_coherent(&cdev->pdev->dev,
3058 			  QED_CHAIN_PAGE_SIZE,
3059 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
3060 }
3061 
3062 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
3063 {
3064 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3065 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3066 	u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
3067 
3068 	if (!pp_virt_addr_tbl)
3069 		return;
3070 
3071 	if (!p_pbl_virt)
3072 		goto out;
3073 
3074 	for (i = 0; i < page_cnt; i++) {
3075 		if (!pp_virt_addr_tbl[i])
3076 			break;
3077 
3078 		dma_free_coherent(&cdev->pdev->dev,
3079 				  QED_CHAIN_PAGE_SIZE,
3080 				  pp_virt_addr_tbl[i],
3081 				  *(dma_addr_t *)p_pbl_virt);
3082 
3083 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3084 	}
3085 
3086 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3087 
3088 	if (!p_chain->b_external_pbl)
3089 		dma_free_coherent(&cdev->pdev->dev,
3090 				  pbl_size,
3091 				  p_chain->pbl_sp.p_virt_table,
3092 				  p_chain->pbl_sp.p_phys_table);
3093 out:
3094 	vfree(p_chain->pbl.pp_virt_addr_tbl);
3095 	p_chain->pbl.pp_virt_addr_tbl = NULL;
3096 }
3097 
3098 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
3099 {
3100 	switch (p_chain->mode) {
3101 	case QED_CHAIN_MODE_NEXT_PTR:
3102 		qed_chain_free_next_ptr(cdev, p_chain);
3103 		break;
3104 	case QED_CHAIN_MODE_SINGLE:
3105 		qed_chain_free_single(cdev, p_chain);
3106 		break;
3107 	case QED_CHAIN_MODE_PBL:
3108 		qed_chain_free_pbl(cdev, p_chain);
3109 		break;
3110 	}
3111 }
3112 
3113 static int
3114 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
3115 			     enum qed_chain_cnt_type cnt_type,
3116 			     size_t elem_size, u32 page_cnt)
3117 {
3118 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3119 
3120 	/* The actual chain size can be larger than the maximal possible value
3121 	 * after rounding up the requested elements number to pages, and after
3122 	 * taking into acount the unusuable elements (next-ptr elements).
3123 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3124 	 * size/capacity fields are of a u32 type.
3125 	 */
3126 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
3127 	     chain_size > ((u32)U16_MAX + 1)) ||
3128 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
3129 		DP_NOTICE(cdev,
3130 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
3131 			  chain_size);
3132 		return -EINVAL;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 static int
3139 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
3140 {
3141 	void *p_virt = NULL, *p_virt_prev = NULL;
3142 	dma_addr_t p_phys = 0;
3143 	u32 i;
3144 
3145 	for (i = 0; i < p_chain->page_cnt; i++) {
3146 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3147 					    QED_CHAIN_PAGE_SIZE,
3148 					    &p_phys, GFP_KERNEL);
3149 		if (!p_virt)
3150 			return -ENOMEM;
3151 
3152 		if (i == 0) {
3153 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3154 			qed_chain_reset(p_chain);
3155 		} else {
3156 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3157 						     p_virt, p_phys);
3158 		}
3159 
3160 		p_virt_prev = p_virt;
3161 	}
3162 	/* Last page's next element should point to the beginning of the
3163 	 * chain.
3164 	 */
3165 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3166 				     p_chain->p_virt_addr,
3167 				     p_chain->p_phys_addr);
3168 
3169 	return 0;
3170 }
3171 
3172 static int
3173 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
3174 {
3175 	dma_addr_t p_phys = 0;
3176 	void *p_virt = NULL;
3177 
3178 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3179 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
3180 	if (!p_virt)
3181 		return -ENOMEM;
3182 
3183 	qed_chain_init_mem(p_chain, p_virt, p_phys);
3184 	qed_chain_reset(p_chain);
3185 
3186 	return 0;
3187 }
3188 
3189 static int
3190 qed_chain_alloc_pbl(struct qed_dev *cdev,
3191 		    struct qed_chain *p_chain,
3192 		    struct qed_chain_ext_pbl *ext_pbl)
3193 {
3194 	u32 page_cnt = p_chain->page_cnt, size, i;
3195 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3196 	void **pp_virt_addr_tbl = NULL;
3197 	u8 *p_pbl_virt = NULL;
3198 	void *p_virt = NULL;
3199 
3200 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3201 	pp_virt_addr_tbl = vzalloc(size);
3202 	if (!pp_virt_addr_tbl)
3203 		return -ENOMEM;
3204 
3205 	/* The allocation of the PBL table is done with its full size, since it
3206 	 * is expected to be successive.
3207 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
3208 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3209 	 * should be saved to allow its freeing during the error flow.
3210 	 */
3211 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3212 
3213 	if (!ext_pbl) {
3214 		p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
3215 						size, &p_pbl_phys, GFP_KERNEL);
3216 	} else {
3217 		p_pbl_virt = ext_pbl->p_pbl_virt;
3218 		p_pbl_phys = ext_pbl->p_pbl_phys;
3219 		p_chain->b_external_pbl = true;
3220 	}
3221 
3222 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3223 			       pp_virt_addr_tbl);
3224 	if (!p_pbl_virt)
3225 		return -ENOMEM;
3226 
3227 	for (i = 0; i < page_cnt; i++) {
3228 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3229 					    QED_CHAIN_PAGE_SIZE,
3230 					    &p_phys, GFP_KERNEL);
3231 		if (!p_virt)
3232 			return -ENOMEM;
3233 
3234 		if (i == 0) {
3235 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3236 			qed_chain_reset(p_chain);
3237 		}
3238 
3239 		/* Fill the PBL table with the physical address of the page */
3240 		*(dma_addr_t *)p_pbl_virt = p_phys;
3241 		/* Keep the virtual address of the page */
3242 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3243 
3244 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 int qed_chain_alloc(struct qed_dev *cdev,
3251 		    enum qed_chain_use_mode intended_use,
3252 		    enum qed_chain_mode mode,
3253 		    enum qed_chain_cnt_type cnt_type,
3254 		    u32 num_elems,
3255 		    size_t elem_size,
3256 		    struct qed_chain *p_chain,
3257 		    struct qed_chain_ext_pbl *ext_pbl)
3258 {
3259 	u32 page_cnt;
3260 	int rc = 0;
3261 
3262 	if (mode == QED_CHAIN_MODE_SINGLE)
3263 		page_cnt = 1;
3264 	else
3265 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3266 
3267 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
3268 	if (rc) {
3269 		DP_NOTICE(cdev,
3270 			  "Cannot allocate a chain with the given arguments:\n");
3271 		DP_NOTICE(cdev,
3272 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3273 			  intended_use, mode, cnt_type, num_elems, elem_size);
3274 		return rc;
3275 	}
3276 
3277 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
3278 			      mode, cnt_type);
3279 
3280 	switch (mode) {
3281 	case QED_CHAIN_MODE_NEXT_PTR:
3282 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
3283 		break;
3284 	case QED_CHAIN_MODE_SINGLE:
3285 		rc = qed_chain_alloc_single(cdev, p_chain);
3286 		break;
3287 	case QED_CHAIN_MODE_PBL:
3288 		rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
3289 		break;
3290 	}
3291 	if (rc)
3292 		goto nomem;
3293 
3294 	return 0;
3295 
3296 nomem:
3297 	qed_chain_free(cdev, p_chain);
3298 	return rc;
3299 }
3300 
3301 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
3302 {
3303 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
3304 		u16 min, max;
3305 
3306 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
3307 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
3308 		DP_NOTICE(p_hwfn,
3309 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3310 			  src_id, min, max);
3311 
3312 		return -EINVAL;
3313 	}
3314 
3315 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
3316 
3317 	return 0;
3318 }
3319 
3320 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3321 {
3322 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
3323 		u8 min, max;
3324 
3325 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
3326 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
3327 		DP_NOTICE(p_hwfn,
3328 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3329 			  src_id, min, max);
3330 
3331 		return -EINVAL;
3332 	}
3333 
3334 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
3335 
3336 	return 0;
3337 }
3338 
3339 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3340 {
3341 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
3342 		u8 min, max;
3343 
3344 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
3345 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
3346 		DP_NOTICE(p_hwfn,
3347 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3348 			  src_id, min, max);
3349 
3350 		return -EINVAL;
3351 	}
3352 
3353 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
3354 
3355 	return 0;
3356 }
3357 
3358 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
3359 				  u8 *p_filter)
3360 {
3361 	*p_high = p_filter[1] | (p_filter[0] << 8);
3362 	*p_low = p_filter[5] | (p_filter[4] << 8) |
3363 		 (p_filter[3] << 16) | (p_filter[2] << 24);
3364 }
3365 
3366 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
3367 			   struct qed_ptt *p_ptt, u8 *p_filter)
3368 {
3369 	u32 high = 0, low = 0, en;
3370 	int i;
3371 
3372 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3373 		return 0;
3374 
3375 	qed_llh_mac_to_filter(&high, &low, p_filter);
3376 
3377 	/* Find a free entry and utilize it */
3378 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3379 		en = qed_rd(p_hwfn, p_ptt,
3380 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3381 		if (en)
3382 			continue;
3383 		qed_wr(p_hwfn, p_ptt,
3384 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3385 		       2 * i * sizeof(u32), low);
3386 		qed_wr(p_hwfn, p_ptt,
3387 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3388 		       (2 * i + 1) * sizeof(u32), high);
3389 		qed_wr(p_hwfn, p_ptt,
3390 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3391 		qed_wr(p_hwfn, p_ptt,
3392 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3393 		       i * sizeof(u32), 0);
3394 		qed_wr(p_hwfn, p_ptt,
3395 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3396 		break;
3397 	}
3398 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3399 		DP_NOTICE(p_hwfn,
3400 			  "Failed to find an empty LLH filter to utilize\n");
3401 		return -EINVAL;
3402 	}
3403 
3404 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3405 		   "mac: %pM is added at %d\n",
3406 		   p_filter, i);
3407 
3408 	return 0;
3409 }
3410 
3411 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
3412 			       struct qed_ptt *p_ptt, u8 *p_filter)
3413 {
3414 	u32 high = 0, low = 0;
3415 	int i;
3416 
3417 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3418 		return;
3419 
3420 	qed_llh_mac_to_filter(&high, &low, p_filter);
3421 
3422 	/* Find the entry and clean it */
3423 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3424 		if (qed_rd(p_hwfn, p_ptt,
3425 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3426 			   2 * i * sizeof(u32)) != low)
3427 			continue;
3428 		if (qed_rd(p_hwfn, p_ptt,
3429 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3430 			   (2 * i + 1) * sizeof(u32)) != high)
3431 			continue;
3432 
3433 		qed_wr(p_hwfn, p_ptt,
3434 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3435 		qed_wr(p_hwfn, p_ptt,
3436 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
3437 		qed_wr(p_hwfn, p_ptt,
3438 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3439 		       (2 * i + 1) * sizeof(u32), 0);
3440 
3441 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3442 			   "mac: %pM is removed from %d\n",
3443 			   p_filter, i);
3444 		break;
3445 	}
3446 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3447 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
3448 }
3449 
3450 int
3451 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
3452 			    struct qed_ptt *p_ptt,
3453 			    u16 source_port_or_eth_type,
3454 			    u16 dest_port, enum qed_llh_port_filter_type_t type)
3455 {
3456 	u32 high = 0, low = 0, en;
3457 	int i;
3458 
3459 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3460 		return 0;
3461 
3462 	switch (type) {
3463 	case QED_LLH_FILTER_ETHERTYPE:
3464 		high = source_port_or_eth_type;
3465 		break;
3466 	case QED_LLH_FILTER_TCP_SRC_PORT:
3467 	case QED_LLH_FILTER_UDP_SRC_PORT:
3468 		low = source_port_or_eth_type << 16;
3469 		break;
3470 	case QED_LLH_FILTER_TCP_DEST_PORT:
3471 	case QED_LLH_FILTER_UDP_DEST_PORT:
3472 		low = dest_port;
3473 		break;
3474 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3475 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3476 		low = (source_port_or_eth_type << 16) | dest_port;
3477 		break;
3478 	default:
3479 		DP_NOTICE(p_hwfn,
3480 			  "Non valid LLH protocol filter type %d\n", type);
3481 		return -EINVAL;
3482 	}
3483 	/* Find a free entry and utilize it */
3484 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3485 		en = qed_rd(p_hwfn, p_ptt,
3486 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3487 		if (en)
3488 			continue;
3489 		qed_wr(p_hwfn, p_ptt,
3490 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3491 		       2 * i * sizeof(u32), low);
3492 		qed_wr(p_hwfn, p_ptt,
3493 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3494 		       (2 * i + 1) * sizeof(u32), high);
3495 		qed_wr(p_hwfn, p_ptt,
3496 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3497 		qed_wr(p_hwfn, p_ptt,
3498 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3499 		       i * sizeof(u32), 1 << type);
3500 		qed_wr(p_hwfn, p_ptt,
3501 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3502 		break;
3503 	}
3504 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3505 		DP_NOTICE(p_hwfn,
3506 			  "Failed to find an empty LLH filter to utilize\n");
3507 		return -EINVAL;
3508 	}
3509 	switch (type) {
3510 	case QED_LLH_FILTER_ETHERTYPE:
3511 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3512 			   "ETH type %x is added at %d\n",
3513 			   source_port_or_eth_type, i);
3514 		break;
3515 	case QED_LLH_FILTER_TCP_SRC_PORT:
3516 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3517 			   "TCP src port %x is added at %d\n",
3518 			   source_port_or_eth_type, i);
3519 		break;
3520 	case QED_LLH_FILTER_UDP_SRC_PORT:
3521 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3522 			   "UDP src port %x is added at %d\n",
3523 			   source_port_or_eth_type, i);
3524 		break;
3525 	case QED_LLH_FILTER_TCP_DEST_PORT:
3526 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3527 			   "TCP dst port %x is added at %d\n", dest_port, i);
3528 		break;
3529 	case QED_LLH_FILTER_UDP_DEST_PORT:
3530 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3531 			   "UDP dst port %x is added at %d\n", dest_port, i);
3532 		break;
3533 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3534 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3535 			   "TCP src/dst ports %x/%x are added at %d\n",
3536 			   source_port_or_eth_type, dest_port, i);
3537 		break;
3538 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3539 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3540 			   "UDP src/dst ports %x/%x are added at %d\n",
3541 			   source_port_or_eth_type, dest_port, i);
3542 		break;
3543 	}
3544 	return 0;
3545 }
3546 
3547 void
3548 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
3549 			       struct qed_ptt *p_ptt,
3550 			       u16 source_port_or_eth_type,
3551 			       u16 dest_port,
3552 			       enum qed_llh_port_filter_type_t type)
3553 {
3554 	u32 high = 0, low = 0;
3555 	int i;
3556 
3557 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3558 		return;
3559 
3560 	switch (type) {
3561 	case QED_LLH_FILTER_ETHERTYPE:
3562 		high = source_port_or_eth_type;
3563 		break;
3564 	case QED_LLH_FILTER_TCP_SRC_PORT:
3565 	case QED_LLH_FILTER_UDP_SRC_PORT:
3566 		low = source_port_or_eth_type << 16;
3567 		break;
3568 	case QED_LLH_FILTER_TCP_DEST_PORT:
3569 	case QED_LLH_FILTER_UDP_DEST_PORT:
3570 		low = dest_port;
3571 		break;
3572 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3573 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3574 		low = (source_port_or_eth_type << 16) | dest_port;
3575 		break;
3576 	default:
3577 		DP_NOTICE(p_hwfn,
3578 			  "Non valid LLH protocol filter type %d\n", type);
3579 		return;
3580 	}
3581 
3582 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3583 		if (!qed_rd(p_hwfn, p_ptt,
3584 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3585 			continue;
3586 		if (!qed_rd(p_hwfn, p_ptt,
3587 			    NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3588 			continue;
3589 		if (!(qed_rd(p_hwfn, p_ptt,
3590 			     NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3591 			     i * sizeof(u32)) & BIT(type)))
3592 			continue;
3593 		if (qed_rd(p_hwfn, p_ptt,
3594 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3595 			   2 * i * sizeof(u32)) != low)
3596 			continue;
3597 		if (qed_rd(p_hwfn, p_ptt,
3598 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3599 			   (2 * i + 1) * sizeof(u32)) != high)
3600 			continue;
3601 
3602 		qed_wr(p_hwfn, p_ptt,
3603 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3604 		qed_wr(p_hwfn, p_ptt,
3605 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3606 		qed_wr(p_hwfn, p_ptt,
3607 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3608 		       i * sizeof(u32), 0);
3609 		qed_wr(p_hwfn, p_ptt,
3610 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
3611 		qed_wr(p_hwfn, p_ptt,
3612 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3613 		       (2 * i + 1) * sizeof(u32), 0);
3614 		break;
3615 	}
3616 
3617 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3618 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
3619 }
3620 
3621 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3622 			    u32 hw_addr, void *p_eth_qzone,
3623 			    size_t eth_qzone_size, u8 timeset)
3624 {
3625 	struct coalescing_timeset *p_coal_timeset;
3626 
3627 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
3628 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
3629 		return -EINVAL;
3630 	}
3631 
3632 	p_coal_timeset = p_eth_qzone;
3633 	memset(p_coal_timeset, 0, eth_qzone_size);
3634 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3635 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3636 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3637 
3638 	return 0;
3639 }
3640 
3641 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3642 			 u16 coalesce, u16 qid, u16 sb_id)
3643 {
3644 	struct ustorm_eth_queue_zone eth_qzone;
3645 	u8 timeset, timer_res;
3646 	u16 fw_qid = 0;
3647 	u32 address;
3648 	int rc;
3649 
3650 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3651 	if (coalesce <= 0x7F) {
3652 		timer_res = 0;
3653 	} else if (coalesce <= 0xFF) {
3654 		timer_res = 1;
3655 	} else if (coalesce <= 0x1FF) {
3656 		timer_res = 2;
3657 	} else {
3658 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3659 		return -EINVAL;
3660 	}
3661 	timeset = (u8)(coalesce >> timer_res);
3662 
3663 	rc = qed_fw_l2_queue(p_hwfn, qid, &fw_qid);
3664 	if (rc)
3665 		return rc;
3666 
3667 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3668 	if (rc)
3669 		goto out;
3670 
3671 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3672 
3673 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3674 			      sizeof(struct ustorm_eth_queue_zone), timeset);
3675 	if (rc)
3676 		goto out;
3677 
3678 	p_hwfn->cdev->rx_coalesce_usecs = coalesce;
3679 out:
3680 	return rc;
3681 }
3682 
3683 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3684 			 u16 coalesce, u16 qid, u16 sb_id)
3685 {
3686 	struct xstorm_eth_queue_zone eth_qzone;
3687 	u8 timeset, timer_res;
3688 	u16 fw_qid = 0;
3689 	u32 address;
3690 	int rc;
3691 
3692 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3693 	if (coalesce <= 0x7F) {
3694 		timer_res = 0;
3695 	} else if (coalesce <= 0xFF) {
3696 		timer_res = 1;
3697 	} else if (coalesce <= 0x1FF) {
3698 		timer_res = 2;
3699 	} else {
3700 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3701 		return -EINVAL;
3702 	}
3703 	timeset = (u8)(coalesce >> timer_res);
3704 
3705 	rc = qed_fw_l2_queue(p_hwfn, qid, &fw_qid);
3706 	if (rc)
3707 		return rc;
3708 
3709 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3710 	if (rc)
3711 		goto out;
3712 
3713 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3714 
3715 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3716 			      sizeof(struct xstorm_eth_queue_zone), timeset);
3717 	if (rc)
3718 		goto out;
3719 
3720 	p_hwfn->cdev->tx_coalesce_usecs = coalesce;
3721 out:
3722 	return rc;
3723 }
3724 
3725 /* Calculate final WFQ values for all vports and configure them.
3726  * After this configuration each vport will have
3727  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
3728  */
3729 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3730 					     struct qed_ptt *p_ptt,
3731 					     u32 min_pf_rate)
3732 {
3733 	struct init_qm_vport_params *vport_params;
3734 	int i;
3735 
3736 	vport_params = p_hwfn->qm_info.qm_vport_params;
3737 
3738 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3739 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3740 
3741 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
3742 						min_pf_rate;
3743 		qed_init_vport_wfq(p_hwfn, p_ptt,
3744 				   vport_params[i].first_tx_pq_id,
3745 				   vport_params[i].vport_wfq);
3746 	}
3747 }
3748 
3749 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
3750 				       u32 min_pf_rate)
3751 
3752 {
3753 	int i;
3754 
3755 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3756 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3757 }
3758 
3759 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3760 					   struct qed_ptt *p_ptt,
3761 					   u32 min_pf_rate)
3762 {
3763 	struct init_qm_vport_params *vport_params;
3764 	int i;
3765 
3766 	vport_params = p_hwfn->qm_info.qm_vport_params;
3767 
3768 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3769 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
3770 		qed_init_vport_wfq(p_hwfn, p_ptt,
3771 				   vport_params[i].first_tx_pq_id,
3772 				   vport_params[i].vport_wfq);
3773 	}
3774 }
3775 
3776 /* This function performs several validations for WFQ
3777  * configuration and required min rate for a given vport
3778  * 1. req_rate must be greater than one percent of min_pf_rate.
3779  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3780  *    rates to get less than one percent of min_pf_rate.
3781  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3782  */
3783 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
3784 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
3785 {
3786 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3787 	int non_requested_count = 0, req_count = 0, i, num_vports;
3788 
3789 	num_vports = p_hwfn->qm_info.num_vports;
3790 
3791 	/* Accounting for the vports which are configured for WFQ explicitly */
3792 	for (i = 0; i < num_vports; i++) {
3793 		u32 tmp_speed;
3794 
3795 		if ((i != vport_id) &&
3796 		    p_hwfn->qm_info.wfq_data[i].configured) {
3797 			req_count++;
3798 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3799 			total_req_min_rate += tmp_speed;
3800 		}
3801 	}
3802 
3803 	/* Include current vport data as well */
3804 	req_count++;
3805 	total_req_min_rate += req_rate;
3806 	non_requested_count = num_vports - req_count;
3807 
3808 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
3809 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3810 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3811 			   vport_id, req_rate, min_pf_rate);
3812 		return -EINVAL;
3813 	}
3814 
3815 	if (num_vports > QED_WFQ_UNIT) {
3816 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3817 			   "Number of vports is greater than %d\n",
3818 			   QED_WFQ_UNIT);
3819 		return -EINVAL;
3820 	}
3821 
3822 	if (total_req_min_rate > min_pf_rate) {
3823 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3824 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3825 			   total_req_min_rate, min_pf_rate);
3826 		return -EINVAL;
3827 	}
3828 
3829 	total_left_rate	= min_pf_rate - total_req_min_rate;
3830 
3831 	left_rate_per_vp = total_left_rate / non_requested_count;
3832 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
3833 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3834 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3835 			   left_rate_per_vp, min_pf_rate);
3836 		return -EINVAL;
3837 	}
3838 
3839 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
3840 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
3841 
3842 	for (i = 0; i < num_vports; i++) {
3843 		if (p_hwfn->qm_info.wfq_data[i].configured)
3844 			continue;
3845 
3846 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
3847 	}
3848 
3849 	return 0;
3850 }
3851 
3852 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
3853 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
3854 {
3855 	struct qed_mcp_link_state *p_link;
3856 	int rc = 0;
3857 
3858 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
3859 
3860 	if (!p_link->min_pf_rate) {
3861 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
3862 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
3863 		return rc;
3864 	}
3865 
3866 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
3867 
3868 	if (!rc)
3869 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
3870 						 p_link->min_pf_rate);
3871 	else
3872 		DP_NOTICE(p_hwfn,
3873 			  "Validation failed while configuring min rate\n");
3874 
3875 	return rc;
3876 }
3877 
3878 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
3879 						 struct qed_ptt *p_ptt,
3880 						 u32 min_pf_rate)
3881 {
3882 	bool use_wfq = false;
3883 	int rc = 0;
3884 	u16 i;
3885 
3886 	/* Validate all pre configured vports for wfq */
3887 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3888 		u32 rate;
3889 
3890 		if (!p_hwfn->qm_info.wfq_data[i].configured)
3891 			continue;
3892 
3893 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
3894 		use_wfq = true;
3895 
3896 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
3897 		if (rc) {
3898 			DP_NOTICE(p_hwfn,
3899 				  "WFQ validation failed while configuring min rate\n");
3900 			break;
3901 		}
3902 	}
3903 
3904 	if (!rc && use_wfq)
3905 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
3906 	else
3907 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
3908 
3909 	return rc;
3910 }
3911 
3912 /* Main API for qed clients to configure vport min rate.
3913  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
3914  * rate - Speed in Mbps needs to be assigned to a given vport.
3915  */
3916 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
3917 {
3918 	int i, rc = -EINVAL;
3919 
3920 	/* Currently not supported; Might change in future */
3921 	if (cdev->num_hwfns > 1) {
3922 		DP_NOTICE(cdev,
3923 			  "WFQ configuration is not supported for this device\n");
3924 		return rc;
3925 	}
3926 
3927 	for_each_hwfn(cdev, i) {
3928 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3929 		struct qed_ptt *p_ptt;
3930 
3931 		p_ptt = qed_ptt_acquire(p_hwfn);
3932 		if (!p_ptt)
3933 			return -EBUSY;
3934 
3935 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
3936 
3937 		if (rc) {
3938 			qed_ptt_release(p_hwfn, p_ptt);
3939 			return rc;
3940 		}
3941 
3942 		qed_ptt_release(p_hwfn, p_ptt);
3943 	}
3944 
3945 	return rc;
3946 }
3947 
3948 /* API to configure WFQ from mcp link change */
3949 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
3950 					 struct qed_ptt *p_ptt, u32 min_pf_rate)
3951 {
3952 	int i;
3953 
3954 	if (cdev->num_hwfns > 1) {
3955 		DP_VERBOSE(cdev,
3956 			   NETIF_MSG_LINK,
3957 			   "WFQ configuration is not supported for this device\n");
3958 		return;
3959 	}
3960 
3961 	for_each_hwfn(cdev, i) {
3962 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3963 
3964 		__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
3965 						      min_pf_rate);
3966 	}
3967 }
3968 
3969 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
3970 				     struct qed_ptt *p_ptt,
3971 				     struct qed_mcp_link_state *p_link,
3972 				     u8 max_bw)
3973 {
3974 	int rc = 0;
3975 
3976 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
3977 
3978 	if (!p_link->line_speed && (max_bw != 100))
3979 		return rc;
3980 
3981 	p_link->speed = (p_link->line_speed * max_bw) / 100;
3982 	p_hwfn->qm_info.pf_rl = p_link->speed;
3983 
3984 	/* Since the limiter also affects Tx-switched traffic, we don't want it
3985 	 * to limit such traffic in case there's no actual limit.
3986 	 * In that case, set limit to imaginary high boundary.
3987 	 */
3988 	if (max_bw == 100)
3989 		p_hwfn->qm_info.pf_rl = 100000;
3990 
3991 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
3992 			    p_hwfn->qm_info.pf_rl);
3993 
3994 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3995 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
3996 		   p_link->speed);
3997 
3998 	return rc;
3999 }
4000 
4001 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4002 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
4003 {
4004 	int i, rc = -EINVAL;
4005 
4006 	if (max_bw < 1 || max_bw > 100) {
4007 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
4008 		return rc;
4009 	}
4010 
4011 	for_each_hwfn(cdev, i) {
4012 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
4013 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4014 		struct qed_mcp_link_state *p_link;
4015 		struct qed_ptt *p_ptt;
4016 
4017 		p_link = &p_lead->mcp_info->link_output;
4018 
4019 		p_ptt = qed_ptt_acquire(p_hwfn);
4020 		if (!p_ptt)
4021 			return -EBUSY;
4022 
4023 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4024 						      p_link, max_bw);
4025 
4026 		qed_ptt_release(p_hwfn, p_ptt);
4027 
4028 		if (rc)
4029 			break;
4030 	}
4031 
4032 	return rc;
4033 }
4034 
4035 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
4036 				     struct qed_ptt *p_ptt,
4037 				     struct qed_mcp_link_state *p_link,
4038 				     u8 min_bw)
4039 {
4040 	int rc = 0;
4041 
4042 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4043 	p_hwfn->qm_info.pf_wfq = min_bw;
4044 
4045 	if (!p_link->line_speed)
4046 		return rc;
4047 
4048 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4049 
4050 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4051 
4052 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4053 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4054 		   p_link->min_pf_rate);
4055 
4056 	return rc;
4057 }
4058 
4059 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4060 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
4061 {
4062 	int i, rc = -EINVAL;
4063 
4064 	if (min_bw < 1 || min_bw > 100) {
4065 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
4066 		return rc;
4067 	}
4068 
4069 	for_each_hwfn(cdev, i) {
4070 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4071 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4072 		struct qed_mcp_link_state *p_link;
4073 		struct qed_ptt *p_ptt;
4074 
4075 		p_link = &p_lead->mcp_info->link_output;
4076 
4077 		p_ptt = qed_ptt_acquire(p_hwfn);
4078 		if (!p_ptt)
4079 			return -EBUSY;
4080 
4081 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4082 						      p_link, min_bw);
4083 		if (rc) {
4084 			qed_ptt_release(p_hwfn, p_ptt);
4085 			return rc;
4086 		}
4087 
4088 		if (p_link->min_pf_rate) {
4089 			u32 min_rate = p_link->min_pf_rate;
4090 
4091 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
4092 								   p_ptt,
4093 								   min_rate);
4094 		}
4095 
4096 		qed_ptt_release(p_hwfn, p_ptt);
4097 	}
4098 
4099 	return rc;
4100 }
4101 
4102 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4103 {
4104 	struct qed_mcp_link_state *p_link;
4105 
4106 	p_link = &p_hwfn->mcp_info->link_output;
4107 
4108 	if (p_link->min_pf_rate)
4109 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4110 					       p_link->min_pf_rate);
4111 
4112 	memset(p_hwfn->qm_info.wfq_data, 0,
4113 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
4114 }
4115 
4116 int qed_device_num_engines(struct qed_dev *cdev)
4117 {
4118 	return QED_IS_BB(cdev) ? 2 : 1;
4119 }
4120 
4121 static int qed_device_num_ports(struct qed_dev *cdev)
4122 {
4123 	/* in CMT always only one port */
4124 	if (cdev->num_hwfns > 1)
4125 		return 1;
4126 
4127 	return cdev->num_ports_in_engine * qed_device_num_engines(cdev);
4128 }
4129 
4130 int qed_device_get_port_id(struct qed_dev *cdev)
4131 {
4132 	return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev);
4133 }
4134 
4135 void qed_set_fw_mac_addr(__le16 *fw_msb,
4136 			 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
4137 {
4138 	((u8 *)fw_msb)[0] = mac[1];
4139 	((u8 *)fw_msb)[1] = mac[0];
4140 	((u8 *)fw_mid)[0] = mac[3];
4141 	((u8 *)fw_mid)[1] = mac[2];
4142 	((u8 *)fw_lsb)[0] = mac[5];
4143 	((u8 *)fw_lsb)[1] = mac[4];
4144 }
4145