1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <asm/byteorder.h> 35 #include <linux/io.h> 36 #include <linux/delay.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mutex.h> 41 #include <linux/pci.h> 42 #include <linux/slab.h> 43 #include <linux/string.h> 44 #include <linux/vmalloc.h> 45 #include <linux/etherdevice.h> 46 #include <linux/qed/qed_chain.h> 47 #include <linux/qed/qed_if.h> 48 #include "qed.h" 49 #include "qed_cxt.h" 50 #include "qed_dcbx.h" 51 #include "qed_dev_api.h" 52 #include "qed_fcoe.h" 53 #include "qed_hsi.h" 54 #include "qed_hw.h" 55 #include "qed_init_ops.h" 56 #include "qed_int.h" 57 #include "qed_iscsi.h" 58 #include "qed_ll2.h" 59 #include "qed_mcp.h" 60 #include "qed_ooo.h" 61 #include "qed_reg_addr.h" 62 #include "qed_sp.h" 63 #include "qed_sriov.h" 64 #include "qed_vf.h" 65 #include "qed_rdma.h" 66 67 static DEFINE_SPINLOCK(qm_lock); 68 69 #define QED_MIN_DPIS (4) 70 #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) 71 72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, 73 struct qed_ptt *p_ptt, enum BAR_ID bar_id) 74 { 75 u32 bar_reg = (bar_id == BAR_ID_0 ? 76 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 77 u32 val; 78 79 if (IS_VF(p_hwfn->cdev)) 80 return qed_vf_hw_bar_size(p_hwfn, bar_id); 81 82 val = qed_rd(p_hwfn, p_ptt, bar_reg); 83 if (val) 84 return 1 << (val + 15); 85 86 /* Old MFW initialized above registered only conditionally */ 87 if (p_hwfn->cdev->num_hwfns > 1) { 88 DP_INFO(p_hwfn, 89 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 90 return BAR_ID_0 ? 256 * 1024 : 512 * 1024; 91 } else { 92 DP_INFO(p_hwfn, 93 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 94 return 512 * 1024; 95 } 96 } 97 98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) 99 { 100 u32 i; 101 102 cdev->dp_level = dp_level; 103 cdev->dp_module = dp_module; 104 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 105 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 106 107 p_hwfn->dp_level = dp_level; 108 p_hwfn->dp_module = dp_module; 109 } 110 } 111 112 void qed_init_struct(struct qed_dev *cdev) 113 { 114 u8 i; 115 116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 117 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 118 119 p_hwfn->cdev = cdev; 120 p_hwfn->my_id = i; 121 p_hwfn->b_active = false; 122 123 mutex_init(&p_hwfn->dmae_info.mutex); 124 } 125 126 /* hwfn 0 is always active */ 127 cdev->hwfns[0].b_active = true; 128 129 /* set the default cache alignment to 128 */ 130 cdev->cache_shift = 7; 131 } 132 133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn) 134 { 135 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 136 137 kfree(qm_info->qm_pq_params); 138 qm_info->qm_pq_params = NULL; 139 kfree(qm_info->qm_vport_params); 140 qm_info->qm_vport_params = NULL; 141 kfree(qm_info->qm_port_params); 142 qm_info->qm_port_params = NULL; 143 kfree(qm_info->wfq_data); 144 qm_info->wfq_data = NULL; 145 } 146 147 void qed_resc_free(struct qed_dev *cdev) 148 { 149 int i; 150 151 if (IS_VF(cdev)) { 152 for_each_hwfn(cdev, i) 153 qed_l2_free(&cdev->hwfns[i]); 154 return; 155 } 156 157 kfree(cdev->fw_data); 158 cdev->fw_data = NULL; 159 160 kfree(cdev->reset_stats); 161 cdev->reset_stats = NULL; 162 163 for_each_hwfn(cdev, i) { 164 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 165 166 qed_cxt_mngr_free(p_hwfn); 167 qed_qm_info_free(p_hwfn); 168 qed_spq_free(p_hwfn); 169 qed_eq_free(p_hwfn); 170 qed_consq_free(p_hwfn); 171 qed_int_free(p_hwfn); 172 #ifdef CONFIG_QED_LL2 173 qed_ll2_free(p_hwfn); 174 #endif 175 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 176 qed_fcoe_free(p_hwfn); 177 178 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 179 qed_iscsi_free(p_hwfn); 180 qed_ooo_free(p_hwfn); 181 } 182 qed_iov_free(p_hwfn); 183 qed_l2_free(p_hwfn); 184 qed_dmae_info_free(p_hwfn); 185 qed_dcbx_info_free(p_hwfn); 186 } 187 } 188 189 /******************** QM initialization *******************/ 190 #define ACTIVE_TCS_BMAP 0x9f 191 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 192 193 /* determines the physical queue flags for a given PF. */ 194 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) 195 { 196 u32 flags; 197 198 /* common flags */ 199 flags = PQ_FLAGS_LB; 200 201 /* feature flags */ 202 if (IS_QED_SRIOV(p_hwfn->cdev)) 203 flags |= PQ_FLAGS_VFS; 204 205 /* protocol flags */ 206 switch (p_hwfn->hw_info.personality) { 207 case QED_PCI_ETH: 208 flags |= PQ_FLAGS_MCOS; 209 break; 210 case QED_PCI_FCOE: 211 flags |= PQ_FLAGS_OFLD; 212 break; 213 case QED_PCI_ISCSI: 214 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 215 break; 216 case QED_PCI_ETH_ROCE: 217 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 218 break; 219 case QED_PCI_ETH_IWARP: 220 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | 221 PQ_FLAGS_OFLD; 222 break; 223 default: 224 DP_ERR(p_hwfn, 225 "unknown personality %d\n", p_hwfn->hw_info.personality); 226 return 0; 227 } 228 229 return flags; 230 } 231 232 /* Getters for resource amounts necessary for qm initialization */ 233 u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) 234 { 235 return p_hwfn->hw_info.num_hw_tc; 236 } 237 238 u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) 239 { 240 return IS_QED_SRIOV(p_hwfn->cdev) ? 241 p_hwfn->cdev->p_iov_info->total_vfs : 0; 242 } 243 244 #define NUM_DEFAULT_RLS 1 245 246 u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) 247 { 248 u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 249 250 /* num RLs can't exceed resource amount of rls or vports */ 251 num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), 252 RESC_NUM(p_hwfn, QED_VPORT)); 253 254 /* Make sure after we reserve there's something left */ 255 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) 256 return 0; 257 258 /* subtract rls necessary for VFs and one default one for the PF */ 259 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 260 261 return num_pf_rls; 262 } 263 264 u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) 265 { 266 u32 pq_flags = qed_get_pq_flags(p_hwfn); 267 268 /* all pqs share the same vport, except for vfs and pf_rl pqs */ 269 return (!!(PQ_FLAGS_RLS & pq_flags)) * 270 qed_init_qm_get_num_pf_rls(p_hwfn) + 271 (!!(PQ_FLAGS_VFS & pq_flags)) * 272 qed_init_qm_get_num_vfs(p_hwfn) + 1; 273 } 274 275 /* calc amount of PQs according to the requested flags */ 276 u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) 277 { 278 u32 pq_flags = qed_get_pq_flags(p_hwfn); 279 280 return (!!(PQ_FLAGS_RLS & pq_flags)) * 281 qed_init_qm_get_num_pf_rls(p_hwfn) + 282 (!!(PQ_FLAGS_MCOS & pq_flags)) * 283 qed_init_qm_get_num_tcs(p_hwfn) + 284 (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + 285 (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) + 286 (!!(PQ_FLAGS_LLT & pq_flags)) + 287 (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); 288 } 289 290 /* initialize the top level QM params */ 291 static void qed_init_qm_params(struct qed_hwfn *p_hwfn) 292 { 293 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 294 bool four_port; 295 296 /* pq and vport bases for this PF */ 297 qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); 298 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); 299 300 /* rate limiting and weighted fair queueing are always enabled */ 301 qm_info->vport_rl_en = 1; 302 qm_info->vport_wfq_en = 1; 303 304 /* TC config is different for AH 4 port */ 305 four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; 306 307 /* in AH 4 port we have fewer TCs per port */ 308 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 309 NUM_OF_PHYS_TCS; 310 311 /* unless MFW indicated otherwise, ooo_tc == 3 for 312 * AH 4-port and 4 otherwise. 313 */ 314 if (!qm_info->ooo_tc) 315 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 316 DCBX_TCP_OOO_TC; 317 } 318 319 /* initialize qm vport params */ 320 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) 321 { 322 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 323 u8 i; 324 325 /* all vports participate in weighted fair queueing */ 326 for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) 327 qm_info->qm_vport_params[i].vport_wfq = 1; 328 } 329 330 /* initialize qm port params */ 331 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) 332 { 333 /* Initialize qm port parameters */ 334 u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; 335 336 /* indicate how ooo and high pri traffic is dealt with */ 337 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 338 ACTIVE_TCS_BMAP_4PORT_K2 : 339 ACTIVE_TCS_BMAP; 340 341 for (i = 0; i < num_ports; i++) { 342 struct init_qm_port_params *p_qm_port = 343 &p_hwfn->qm_info.qm_port_params[i]; 344 345 p_qm_port->active = 1; 346 p_qm_port->active_phys_tcs = active_phys_tcs; 347 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; 348 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; 349 } 350 } 351 352 /* Reset the params which must be reset for qm init. QM init may be called as 353 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 354 * params may be affected by the init but would simply recalculate to the same 355 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 356 * affected as these amounts stay the same. 357 */ 358 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) 359 { 360 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 361 362 qm_info->num_pqs = 0; 363 qm_info->num_vports = 0; 364 qm_info->num_pf_rls = 0; 365 qm_info->num_vf_pqs = 0; 366 qm_info->first_vf_pq = 0; 367 qm_info->first_mcos_pq = 0; 368 qm_info->first_rl_pq = 0; 369 } 370 371 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) 372 { 373 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 374 375 qm_info->num_vports++; 376 377 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 378 DP_ERR(p_hwfn, 379 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 380 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 381 } 382 383 /* initialize a single pq and manage qm_info resources accounting. 384 * The pq_init_flags param determines whether the PQ is rate limited 385 * (for VF or PF) and whether a new vport is allocated to the pq or not 386 * (i.e. vport will be shared). 387 */ 388 389 /* flags for pq init */ 390 #define PQ_INIT_SHARE_VPORT (1 << 0) 391 #define PQ_INIT_PF_RL (1 << 1) 392 #define PQ_INIT_VF_RL (1 << 2) 393 394 /* defines for pq init */ 395 #define PQ_INIT_DEFAULT_WRR_GROUP 1 396 #define PQ_INIT_DEFAULT_TC 0 397 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc) 398 399 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, 400 struct qed_qm_info *qm_info, 401 u8 tc, u32 pq_init_flags) 402 { 403 u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); 404 405 if (pq_idx > max_pq) 406 DP_ERR(p_hwfn, 407 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 408 409 /* init pq params */ 410 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 411 qm_info->num_vports; 412 qm_info->qm_pq_params[pq_idx].tc_id = tc; 413 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 414 qm_info->qm_pq_params[pq_idx].rl_valid = 415 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); 416 417 /* qm params accounting */ 418 qm_info->num_pqs++; 419 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 420 qm_info->num_vports++; 421 422 if (pq_init_flags & PQ_INIT_PF_RL) 423 qm_info->num_pf_rls++; 424 425 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 426 DP_ERR(p_hwfn, 427 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 428 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 429 430 if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) 431 DP_ERR(p_hwfn, 432 "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", 433 qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); 434 } 435 436 /* get pq index according to PQ_FLAGS */ 437 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, 438 u32 pq_flags) 439 { 440 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 441 442 /* Can't have multiple flags set here */ 443 if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1) 444 goto err; 445 446 switch (pq_flags) { 447 case PQ_FLAGS_RLS: 448 return &qm_info->first_rl_pq; 449 case PQ_FLAGS_MCOS: 450 return &qm_info->first_mcos_pq; 451 case PQ_FLAGS_LB: 452 return &qm_info->pure_lb_pq; 453 case PQ_FLAGS_OOO: 454 return &qm_info->ooo_pq; 455 case PQ_FLAGS_ACK: 456 return &qm_info->pure_ack_pq; 457 case PQ_FLAGS_OFLD: 458 return &qm_info->offload_pq; 459 case PQ_FLAGS_LLT: 460 return &qm_info->low_latency_pq; 461 case PQ_FLAGS_VFS: 462 return &qm_info->first_vf_pq; 463 default: 464 goto err; 465 } 466 467 err: 468 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); 469 return NULL; 470 } 471 472 /* save pq index in qm info */ 473 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, 474 u32 pq_flags, u16 pq_val) 475 { 476 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 477 478 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 479 } 480 481 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 482 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) 483 { 484 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 485 486 return *base_pq_idx + CM_TX_PQ_BASE; 487 } 488 489 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) 490 { 491 u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); 492 493 if (tc > max_tc) 494 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 495 496 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc; 497 } 498 499 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) 500 { 501 u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); 502 503 if (vf > max_vf) 504 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 505 506 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf; 507 } 508 509 u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl) 510 { 511 u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn); 512 513 if (rl > max_rl) 514 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl); 515 516 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl; 517 } 518 519 /* Functions for creating specific types of pqs */ 520 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) 521 { 522 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 523 524 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 525 return; 526 527 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 528 qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 529 } 530 531 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) 532 { 533 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 534 535 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 536 return; 537 538 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 539 qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 540 } 541 542 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) 543 { 544 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 545 546 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 547 return; 548 549 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 550 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 551 } 552 553 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) 554 { 555 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 556 557 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 558 return; 559 560 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 561 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 562 } 563 564 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) 565 { 566 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 567 568 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) 569 return; 570 571 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); 572 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 573 } 574 575 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) 576 { 577 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 578 u8 tc_idx; 579 580 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 581 return; 582 583 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 584 for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) 585 qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 586 } 587 588 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) 589 { 590 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 591 u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 592 593 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 594 return; 595 596 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 597 qm_info->num_vf_pqs = num_vfs; 598 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 599 qed_init_qm_pq(p_hwfn, 600 qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); 601 } 602 603 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) 604 { 605 u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); 606 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 607 608 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 609 return; 610 611 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 612 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 613 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL); 614 } 615 616 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) 617 { 618 /* rate limited pqs, must come first (FW assumption) */ 619 qed_init_qm_rl_pqs(p_hwfn); 620 621 /* pqs for multi cos */ 622 qed_init_qm_mcos_pqs(p_hwfn); 623 624 /* pure loopback pq */ 625 qed_init_qm_lb_pq(p_hwfn); 626 627 /* out of order pq */ 628 qed_init_qm_ooo_pq(p_hwfn); 629 630 /* pure ack pq */ 631 qed_init_qm_pure_ack_pq(p_hwfn); 632 633 /* pq for offloaded protocol */ 634 qed_init_qm_offload_pq(p_hwfn); 635 636 /* low latency pq */ 637 qed_init_qm_low_latency_pq(p_hwfn); 638 639 /* done sharing vports */ 640 qed_init_qm_advance_vport(p_hwfn); 641 642 /* pqs for vfs */ 643 qed_init_qm_vf_pqs(p_hwfn); 644 } 645 646 /* compare values of getters against resources amounts */ 647 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) 648 { 649 if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { 650 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 651 return -EINVAL; 652 } 653 654 if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) { 655 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 656 return -EINVAL; 657 } 658 659 return 0; 660 } 661 662 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) 663 { 664 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 665 struct init_qm_vport_params *vport; 666 struct init_qm_port_params *port; 667 struct init_qm_pq_params *pq; 668 int i, tc; 669 670 /* top level params */ 671 DP_VERBOSE(p_hwfn, 672 NETIF_MSG_HW, 673 "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n", 674 qm_info->start_pq, 675 qm_info->start_vport, 676 qm_info->pure_lb_pq, 677 qm_info->offload_pq, qm_info->pure_ack_pq); 678 DP_VERBOSE(p_hwfn, 679 NETIF_MSG_HW, 680 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", 681 qm_info->ooo_pq, 682 qm_info->first_vf_pq, 683 qm_info->num_pqs, 684 qm_info->num_vf_pqs, 685 qm_info->num_vports, qm_info->max_phys_tcs_per_port); 686 DP_VERBOSE(p_hwfn, 687 NETIF_MSG_HW, 688 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 689 qm_info->pf_rl_en, 690 qm_info->pf_wfq_en, 691 qm_info->vport_rl_en, 692 qm_info->vport_wfq_en, 693 qm_info->pf_wfq, 694 qm_info->pf_rl, 695 qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); 696 697 /* port table */ 698 for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { 699 port = &(qm_info->qm_port_params[i]); 700 DP_VERBOSE(p_hwfn, 701 NETIF_MSG_HW, 702 "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", 703 i, 704 port->active, 705 port->active_phys_tcs, 706 port->num_pbf_cmd_lines, 707 port->num_btb_blocks, port->reserved); 708 } 709 710 /* vport table */ 711 for (i = 0; i < qm_info->num_vports; i++) { 712 vport = &(qm_info->qm_vport_params[i]); 713 DP_VERBOSE(p_hwfn, 714 NETIF_MSG_HW, 715 "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ", 716 qm_info->start_vport + i, 717 vport->vport_rl, vport->vport_wfq); 718 for (tc = 0; tc < NUM_OF_TCS; tc++) 719 DP_VERBOSE(p_hwfn, 720 NETIF_MSG_HW, 721 "%d ", vport->first_tx_pq_id[tc]); 722 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); 723 } 724 725 /* pq table */ 726 for (i = 0; i < qm_info->num_pqs; i++) { 727 pq = &(qm_info->qm_pq_params[i]); 728 DP_VERBOSE(p_hwfn, 729 NETIF_MSG_HW, 730 "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", 731 qm_info->start_pq + i, 732 pq->vport_id, 733 pq->tc_id, pq->wrr_group, pq->rl_valid); 734 } 735 } 736 737 static void qed_init_qm_info(struct qed_hwfn *p_hwfn) 738 { 739 /* reset params required for init run */ 740 qed_init_qm_reset_params(p_hwfn); 741 742 /* init QM top level params */ 743 qed_init_qm_params(p_hwfn); 744 745 /* init QM port params */ 746 qed_init_qm_port_params(p_hwfn); 747 748 /* init QM vport params */ 749 qed_init_qm_vport_params(p_hwfn); 750 751 /* init QM physical queue params */ 752 qed_init_qm_pq_params(p_hwfn); 753 754 /* display all that init */ 755 qed_dp_init_qm_params(p_hwfn); 756 } 757 758 /* This function reconfigures the QM pf on the fly. 759 * For this purpose we: 760 * 1. reconfigure the QM database 761 * 2. set new values to runtime arrat 762 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 763 * 4. activate init tool in QM_PF stage 764 * 5. send an sdm_qm_cmd through rbc interface to release the QM 765 */ 766 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 767 { 768 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 769 bool b_rc; 770 int rc; 771 772 /* initialize qed's qm data structure */ 773 qed_init_qm_info(p_hwfn); 774 775 /* stop PF's qm queues */ 776 spin_lock_bh(&qm_lock); 777 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 778 qm_info->start_pq, qm_info->num_pqs); 779 spin_unlock_bh(&qm_lock); 780 if (!b_rc) 781 return -EINVAL; 782 783 /* clear the QM_PF runtime phase leftovers from previous init */ 784 qed_init_clear_rt_data(p_hwfn); 785 786 /* prepare QM portion of runtime array */ 787 qed_qm_init_pf(p_hwfn, p_ptt); 788 789 /* activate init tool on runtime array */ 790 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 791 p_hwfn->hw_info.hw_mode); 792 if (rc) 793 return rc; 794 795 /* start PF's qm queues */ 796 spin_lock_bh(&qm_lock); 797 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 798 qm_info->start_pq, qm_info->num_pqs); 799 spin_unlock_bh(&qm_lock); 800 if (!b_rc) 801 return -EINVAL; 802 803 return 0; 804 } 805 806 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) 807 { 808 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 809 int rc; 810 811 rc = qed_init_qm_sanity(p_hwfn); 812 if (rc) 813 goto alloc_err; 814 815 qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) * 816 qed_init_qm_get_num_pqs(p_hwfn), 817 GFP_KERNEL); 818 if (!qm_info->qm_pq_params) 819 goto alloc_err; 820 821 qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) * 822 qed_init_qm_get_num_vports(p_hwfn), 823 GFP_KERNEL); 824 if (!qm_info->qm_vport_params) 825 goto alloc_err; 826 827 qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) * 828 p_hwfn->cdev->num_ports_in_engine, 829 GFP_KERNEL); 830 if (!qm_info->qm_port_params) 831 goto alloc_err; 832 833 qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) * 834 qed_init_qm_get_num_vports(p_hwfn), 835 GFP_KERNEL); 836 if (!qm_info->wfq_data) 837 goto alloc_err; 838 839 return 0; 840 841 alloc_err: 842 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); 843 qed_qm_info_free(p_hwfn); 844 return -ENOMEM; 845 } 846 847 int qed_resc_alloc(struct qed_dev *cdev) 848 { 849 u32 rdma_tasks, excess_tasks; 850 u32 line_count; 851 int i, rc = 0; 852 853 if (IS_VF(cdev)) { 854 for_each_hwfn(cdev, i) { 855 rc = qed_l2_alloc(&cdev->hwfns[i]); 856 if (rc) 857 return rc; 858 } 859 return rc; 860 } 861 862 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); 863 if (!cdev->fw_data) 864 return -ENOMEM; 865 866 for_each_hwfn(cdev, i) { 867 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 868 u32 n_eqes, num_cons; 869 870 /* First allocate the context manager structure */ 871 rc = qed_cxt_mngr_alloc(p_hwfn); 872 if (rc) 873 goto alloc_err; 874 875 /* Set the HW cid/tid numbers (in the contest manager) 876 * Must be done prior to any further computations. 877 */ 878 rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); 879 if (rc) 880 goto alloc_err; 881 882 rc = qed_alloc_qm_data(p_hwfn); 883 if (rc) 884 goto alloc_err; 885 886 /* init qm info */ 887 qed_init_qm_info(p_hwfn); 888 889 /* Compute the ILT client partition */ 890 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 891 if (rc) { 892 DP_NOTICE(p_hwfn, 893 "too many ILT lines; re-computing with less lines\n"); 894 /* In case there are not enough ILT lines we reduce the 895 * number of RDMA tasks and re-compute. 896 */ 897 excess_tasks = 898 qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); 899 if (!excess_tasks) 900 goto alloc_err; 901 902 rdma_tasks = RDMA_MAX_TIDS - excess_tasks; 903 rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); 904 if (rc) 905 goto alloc_err; 906 907 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 908 if (rc) { 909 DP_ERR(p_hwfn, 910 "failed ILT compute. Requested too many lines: %u\n", 911 line_count); 912 913 goto alloc_err; 914 } 915 } 916 917 /* CID map / ILT shadow table / T2 918 * The talbes sizes are determined by the computations above 919 */ 920 rc = qed_cxt_tables_alloc(p_hwfn); 921 if (rc) 922 goto alloc_err; 923 924 /* SPQ, must follow ILT because initializes SPQ context */ 925 rc = qed_spq_alloc(p_hwfn); 926 if (rc) 927 goto alloc_err; 928 929 /* SP status block allocation */ 930 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, 931 RESERVED_PTT_DPC); 932 933 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 934 if (rc) 935 goto alloc_err; 936 937 rc = qed_iov_alloc(p_hwfn); 938 if (rc) 939 goto alloc_err; 940 941 /* EQ */ 942 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); 943 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { 944 enum protocol_type rdma_proto; 945 946 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 947 rdma_proto = PROTOCOLID_ROCE; 948 else 949 rdma_proto = PROTOCOLID_IWARP; 950 951 num_cons = qed_cxt_get_proto_cid_count(p_hwfn, 952 rdma_proto, 953 NULL) * 2; 954 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 955 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 956 num_cons = 957 qed_cxt_get_proto_cid_count(p_hwfn, 958 PROTOCOLID_ISCSI, 959 NULL); 960 n_eqes += 2 * num_cons; 961 } 962 963 if (n_eqes > 0xFFFF) { 964 DP_ERR(p_hwfn, 965 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", 966 n_eqes, 0xFFFF); 967 goto alloc_no_mem; 968 } 969 970 rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); 971 if (rc) 972 goto alloc_err; 973 974 rc = qed_consq_alloc(p_hwfn); 975 if (rc) 976 goto alloc_err; 977 978 rc = qed_l2_alloc(p_hwfn); 979 if (rc) 980 goto alloc_err; 981 982 #ifdef CONFIG_QED_LL2 983 if (p_hwfn->using_ll2) { 984 rc = qed_ll2_alloc(p_hwfn); 985 if (rc) 986 goto alloc_err; 987 } 988 #endif 989 990 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 991 rc = qed_fcoe_alloc(p_hwfn); 992 if (rc) 993 goto alloc_err; 994 } 995 996 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 997 rc = qed_iscsi_alloc(p_hwfn); 998 if (rc) 999 goto alloc_err; 1000 rc = qed_ooo_alloc(p_hwfn); 1001 if (rc) 1002 goto alloc_err; 1003 } 1004 1005 /* DMA info initialization */ 1006 rc = qed_dmae_info_alloc(p_hwfn); 1007 if (rc) 1008 goto alloc_err; 1009 1010 /* DCBX initialization */ 1011 rc = qed_dcbx_info_alloc(p_hwfn); 1012 if (rc) 1013 goto alloc_err; 1014 } 1015 1016 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); 1017 if (!cdev->reset_stats) 1018 goto alloc_no_mem; 1019 1020 return 0; 1021 1022 alloc_no_mem: 1023 rc = -ENOMEM; 1024 alloc_err: 1025 qed_resc_free(cdev); 1026 return rc; 1027 } 1028 1029 void qed_resc_setup(struct qed_dev *cdev) 1030 { 1031 int i; 1032 1033 if (IS_VF(cdev)) { 1034 for_each_hwfn(cdev, i) 1035 qed_l2_setup(&cdev->hwfns[i]); 1036 return; 1037 } 1038 1039 for_each_hwfn(cdev, i) { 1040 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1041 1042 qed_cxt_mngr_setup(p_hwfn); 1043 qed_spq_setup(p_hwfn); 1044 qed_eq_setup(p_hwfn); 1045 qed_consq_setup(p_hwfn); 1046 1047 /* Read shadow of current MFW mailbox */ 1048 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 1049 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1050 p_hwfn->mcp_info->mfw_mb_cur, 1051 p_hwfn->mcp_info->mfw_mb_length); 1052 1053 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); 1054 1055 qed_l2_setup(p_hwfn); 1056 qed_iov_setup(p_hwfn); 1057 #ifdef CONFIG_QED_LL2 1058 if (p_hwfn->using_ll2) 1059 qed_ll2_setup(p_hwfn); 1060 #endif 1061 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 1062 qed_fcoe_setup(p_hwfn); 1063 1064 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1065 qed_iscsi_setup(p_hwfn); 1066 qed_ooo_setup(p_hwfn); 1067 } 1068 } 1069 } 1070 1071 #define FINAL_CLEANUP_POLL_CNT (100) 1072 #define FINAL_CLEANUP_POLL_TIME (10) 1073 int qed_final_cleanup(struct qed_hwfn *p_hwfn, 1074 struct qed_ptt *p_ptt, u16 id, bool is_vf) 1075 { 1076 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 1077 int rc = -EBUSY; 1078 1079 addr = GTT_BAR0_MAP_REG_USDM_RAM + 1080 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 1081 1082 if (is_vf) 1083 id += 0x10; 1084 1085 command |= X_FINAL_CLEANUP_AGG_INT << 1086 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 1087 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 1088 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 1089 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 1090 1091 /* Make sure notification is not set before initiating final cleanup */ 1092 if (REG_RD(p_hwfn, addr)) { 1093 DP_NOTICE(p_hwfn, 1094 "Unexpected; Found final cleanup notification before initiating final cleanup\n"); 1095 REG_WR(p_hwfn, addr, 0); 1096 } 1097 1098 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1099 "Sending final cleanup for PFVF[%d] [Command %08x\n]", 1100 id, command); 1101 1102 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 1103 1104 /* Poll until completion */ 1105 while (!REG_RD(p_hwfn, addr) && count--) 1106 msleep(FINAL_CLEANUP_POLL_TIME); 1107 1108 if (REG_RD(p_hwfn, addr)) 1109 rc = 0; 1110 else 1111 DP_NOTICE(p_hwfn, 1112 "Failed to receive FW final cleanup notification\n"); 1113 1114 /* Cleanup afterwards */ 1115 REG_WR(p_hwfn, addr, 0); 1116 1117 return rc; 1118 } 1119 1120 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) 1121 { 1122 int hw_mode = 0; 1123 1124 if (QED_IS_BB_B0(p_hwfn->cdev)) { 1125 hw_mode |= 1 << MODE_BB; 1126 } else if (QED_IS_AH(p_hwfn->cdev)) { 1127 hw_mode |= 1 << MODE_K2; 1128 } else { 1129 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", 1130 p_hwfn->cdev->type); 1131 return -EINVAL; 1132 } 1133 1134 switch (p_hwfn->cdev->num_ports_in_engine) { 1135 case 1: 1136 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 1137 break; 1138 case 2: 1139 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 1140 break; 1141 case 4: 1142 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 1143 break; 1144 default: 1145 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", 1146 p_hwfn->cdev->num_ports_in_engine); 1147 return -EINVAL; 1148 } 1149 1150 switch (p_hwfn->cdev->mf_mode) { 1151 case QED_MF_DEFAULT: 1152 case QED_MF_NPAR: 1153 hw_mode |= 1 << MODE_MF_SI; 1154 break; 1155 case QED_MF_OVLAN: 1156 hw_mode |= 1 << MODE_MF_SD; 1157 break; 1158 default: 1159 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n"); 1160 hw_mode |= 1 << MODE_MF_SI; 1161 } 1162 1163 hw_mode |= 1 << MODE_ASIC; 1164 1165 if (p_hwfn->cdev->num_hwfns > 1) 1166 hw_mode |= 1 << MODE_100G; 1167 1168 p_hwfn->hw_info.hw_mode = hw_mode; 1169 1170 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), 1171 "Configuring function for hw_mode: 0x%08x\n", 1172 p_hwfn->hw_info.hw_mode); 1173 1174 return 0; 1175 } 1176 1177 /* Init run time data for all PFs on an engine. */ 1178 static void qed_init_cau_rt_data(struct qed_dev *cdev) 1179 { 1180 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 1181 int i, igu_sb_id; 1182 1183 for_each_hwfn(cdev, i) { 1184 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1185 struct qed_igu_info *p_igu_info; 1186 struct qed_igu_block *p_block; 1187 struct cau_sb_entry sb_entry; 1188 1189 p_igu_info = p_hwfn->hw_info.p_igu_info; 1190 1191 for (igu_sb_id = 0; 1192 igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { 1193 p_block = &p_igu_info->entry[igu_sb_id]; 1194 1195 if (!p_block->is_pf) 1196 continue; 1197 1198 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 1199 p_block->function_id, 0, 0); 1200 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 1201 sb_entry); 1202 } 1203 } 1204 } 1205 1206 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, 1207 struct qed_ptt *p_ptt) 1208 { 1209 u32 val, wr_mbs, cache_line_size; 1210 1211 val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 1212 switch (val) { 1213 case 0: 1214 wr_mbs = 128; 1215 break; 1216 case 1: 1217 wr_mbs = 256; 1218 break; 1219 case 2: 1220 wr_mbs = 512; 1221 break; 1222 default: 1223 DP_INFO(p_hwfn, 1224 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1225 val); 1226 return; 1227 } 1228 1229 cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); 1230 switch (cache_line_size) { 1231 case 32: 1232 val = 0; 1233 break; 1234 case 64: 1235 val = 1; 1236 break; 1237 case 128: 1238 val = 2; 1239 break; 1240 case 256: 1241 val = 3; 1242 break; 1243 default: 1244 DP_INFO(p_hwfn, 1245 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1246 cache_line_size); 1247 } 1248 1249 if (L1_CACHE_BYTES > wr_mbs) 1250 DP_INFO(p_hwfn, 1251 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 1252 L1_CACHE_BYTES, wr_mbs); 1253 1254 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 1255 if (val > 0) { 1256 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 1257 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 1258 } 1259 } 1260 1261 static int qed_hw_init_common(struct qed_hwfn *p_hwfn, 1262 struct qed_ptt *p_ptt, int hw_mode) 1263 { 1264 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 1265 struct qed_qm_common_rt_init_params params; 1266 struct qed_dev *cdev = p_hwfn->cdev; 1267 u8 vf_id, max_num_vfs; 1268 u16 num_pfs, pf_id; 1269 u32 concrete_fid; 1270 int rc = 0; 1271 1272 qed_init_cau_rt_data(cdev); 1273 1274 /* Program GTT windows */ 1275 qed_gtt_init(p_hwfn); 1276 1277 if (p_hwfn->mcp_info) { 1278 if (p_hwfn->mcp_info->func_info.bandwidth_max) 1279 qm_info->pf_rl_en = 1; 1280 if (p_hwfn->mcp_info->func_info.bandwidth_min) 1281 qm_info->pf_wfq_en = 1; 1282 } 1283 1284 memset(¶ms, 0, sizeof(params)); 1285 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; 1286 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; 1287 params.pf_rl_en = qm_info->pf_rl_en; 1288 params.pf_wfq_en = qm_info->pf_wfq_en; 1289 params.vport_rl_en = qm_info->vport_rl_en; 1290 params.vport_wfq_en = qm_info->vport_wfq_en; 1291 params.port_params = qm_info->qm_port_params; 1292 1293 qed_qm_common_rt_init(p_hwfn, ¶ms); 1294 1295 qed_cxt_hw_init_common(p_hwfn); 1296 1297 qed_init_cache_line_size(p_hwfn, p_ptt); 1298 1299 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); 1300 if (rc) 1301 return rc; 1302 1303 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 1304 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 1305 1306 if (QED_IS_BB(p_hwfn->cdev)) { 1307 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); 1308 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 1309 qed_fid_pretend(p_hwfn, p_ptt, pf_id); 1310 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1311 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1312 } 1313 /* pretend to original PF */ 1314 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1315 } 1316 1317 max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; 1318 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 1319 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); 1320 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); 1321 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 1322 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 1323 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 1324 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 1325 } 1326 /* pretend to original PF */ 1327 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1328 1329 return rc; 1330 } 1331 1332 static int 1333 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, 1334 struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 1335 { 1336 u32 dpi_bit_shift, dpi_count, dpi_page_size; 1337 u32 min_dpis; 1338 u32 n_wids; 1339 1340 /* Calculate DPI size */ 1341 n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); 1342 dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); 1343 dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1344 dpi_bit_shift = ilog2(dpi_page_size / 4096); 1345 dpi_count = pwm_region_size / dpi_page_size; 1346 1347 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 1348 min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); 1349 1350 p_hwfn->dpi_size = dpi_page_size; 1351 p_hwfn->dpi_count = dpi_count; 1352 1353 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 1354 1355 if (dpi_count < min_dpis) 1356 return -EINVAL; 1357 1358 return 0; 1359 } 1360 1361 enum QED_ROCE_EDPM_MODE { 1362 QED_ROCE_EDPM_MODE_ENABLE = 0, 1363 QED_ROCE_EDPM_MODE_FORCE_ON = 1, 1364 QED_ROCE_EDPM_MODE_DISABLE = 2, 1365 }; 1366 1367 static int 1368 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1369 { 1370 u32 pwm_regsize, norm_regsize; 1371 u32 non_pwm_conn, min_addr_reg1; 1372 u32 db_bar_size, n_cpus = 1; 1373 u32 roce_edpm_mode; 1374 u32 pf_dems_shift; 1375 int rc = 0; 1376 u8 cond; 1377 1378 db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 1379 if (p_hwfn->cdev->num_hwfns > 1) 1380 db_bar_size /= 2; 1381 1382 /* Calculate doorbell regions */ 1383 non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 1384 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 1385 NULL) + 1386 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 1387 NULL); 1388 norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); 1389 min_addr_reg1 = norm_regsize / 4096; 1390 pwm_regsize = db_bar_size - norm_regsize; 1391 1392 /* Check that the normal and PWM sizes are valid */ 1393 if (db_bar_size < norm_regsize) { 1394 DP_ERR(p_hwfn->cdev, 1395 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 1396 db_bar_size, norm_regsize); 1397 return -EINVAL; 1398 } 1399 1400 if (pwm_regsize < QED_MIN_PWM_REGION) { 1401 DP_ERR(p_hwfn->cdev, 1402 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 1403 pwm_regsize, 1404 QED_MIN_PWM_REGION, db_bar_size, norm_regsize); 1405 return -EINVAL; 1406 } 1407 1408 /* Calculate number of DPIs */ 1409 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 1410 if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || 1411 ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { 1412 /* Either EDPM is mandatory, or we are attempting to allocate a 1413 * WID per CPU. 1414 */ 1415 n_cpus = num_present_cpus(); 1416 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1417 } 1418 1419 cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || 1420 (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); 1421 if (cond || p_hwfn->dcbx_no_edpm) { 1422 /* Either EDPM is disabled from user configuration, or it is 1423 * disabled via DCBx, or it is not mandatory and we failed to 1424 * allocated a WID per CPU. 1425 */ 1426 n_cpus = 1; 1427 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1428 1429 if (cond) 1430 qed_rdma_dpm_bar(p_hwfn, p_ptt); 1431 } 1432 1433 p_hwfn->wid_count = (u16) n_cpus; 1434 1435 DP_INFO(p_hwfn, 1436 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 1437 norm_regsize, 1438 pwm_regsize, 1439 p_hwfn->dpi_size, 1440 p_hwfn->dpi_count, 1441 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? 1442 "disabled" : "enabled"); 1443 1444 if (rc) { 1445 DP_ERR(p_hwfn, 1446 "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", 1447 p_hwfn->dpi_count, 1448 p_hwfn->pf_params.rdma_pf_params.min_dpis); 1449 return -EINVAL; 1450 } 1451 1452 p_hwfn->dpi_start_offset = norm_regsize; 1453 1454 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 1455 pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); 1456 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 1457 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 1458 1459 return 0; 1460 } 1461 1462 static int qed_hw_init_port(struct qed_hwfn *p_hwfn, 1463 struct qed_ptt *p_ptt, int hw_mode) 1464 { 1465 int rc = 0; 1466 1467 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); 1468 if (rc) 1469 return rc; 1470 1471 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 1472 1473 return 0; 1474 } 1475 1476 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, 1477 struct qed_ptt *p_ptt, 1478 struct qed_tunnel_info *p_tunn, 1479 int hw_mode, 1480 bool b_hw_start, 1481 enum qed_int_mode int_mode, 1482 bool allow_npar_tx_switch) 1483 { 1484 u8 rel_pf_id = p_hwfn->rel_pf_id; 1485 int rc = 0; 1486 1487 if (p_hwfn->mcp_info) { 1488 struct qed_mcp_function_info *p_info; 1489 1490 p_info = &p_hwfn->mcp_info->func_info; 1491 if (p_info->bandwidth_min) 1492 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 1493 1494 /* Update rate limit once we'll actually have a link */ 1495 p_hwfn->qm_info.pf_rl = 100000; 1496 } 1497 1498 qed_cxt_hw_init_pf(p_hwfn, p_ptt); 1499 1500 qed_int_igu_init_rt(p_hwfn); 1501 1502 /* Set VLAN in NIG if needed */ 1503 if (hw_mode & BIT(MODE_MF_SD)) { 1504 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 1505 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 1506 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 1507 p_hwfn->hw_info.ovlan); 1508 } 1509 1510 /* Enable classification by MAC if needed */ 1511 if (hw_mode & BIT(MODE_MF_SI)) { 1512 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1513 "Configuring TAGMAC_CLS_TYPE\n"); 1514 STORE_RT_REG(p_hwfn, 1515 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); 1516 } 1517 1518 /* Protocl Configuration */ 1519 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 1520 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); 1521 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 1522 (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); 1523 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 1524 1525 /* Cleanup chip from previous driver if such remains exist */ 1526 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); 1527 if (rc) 1528 return rc; 1529 1530 /* PF Init sequence */ 1531 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 1532 if (rc) 1533 return rc; 1534 1535 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 1536 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 1537 if (rc) 1538 return rc; 1539 1540 /* Pure runtime initializations - directly to the HW */ 1541 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 1542 1543 rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 1544 if (rc) 1545 return rc; 1546 1547 if (b_hw_start) { 1548 /* enable interrupts */ 1549 qed_int_igu_enable(p_hwfn, p_ptt, int_mode); 1550 1551 /* send function start command */ 1552 rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, 1553 p_hwfn->cdev->mf_mode, 1554 allow_npar_tx_switch); 1555 if (rc) { 1556 DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); 1557 return rc; 1558 } 1559 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1560 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); 1561 qed_wr(p_hwfn, p_ptt, 1562 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 1563 0x100); 1564 } 1565 } 1566 return rc; 1567 } 1568 1569 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, 1570 struct qed_ptt *p_ptt, 1571 u8 enable) 1572 { 1573 u32 delay_idx = 0, val, set_val = enable ? 1 : 0; 1574 1575 /* Change PF in PXP */ 1576 qed_wr(p_hwfn, p_ptt, 1577 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 1578 1579 /* wait until value is set - try for 1 second every 50us */ 1580 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 1581 val = qed_rd(p_hwfn, p_ptt, 1582 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1583 if (val == set_val) 1584 break; 1585 1586 usleep_range(50, 60); 1587 } 1588 1589 if (val != set_val) { 1590 DP_NOTICE(p_hwfn, 1591 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 1592 return -EAGAIN; 1593 } 1594 1595 return 0; 1596 } 1597 1598 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, 1599 struct qed_ptt *p_main_ptt) 1600 { 1601 /* Read shadow of current MFW mailbox */ 1602 qed_mcp_read_mb(p_hwfn, p_main_ptt); 1603 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1604 p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); 1605 } 1606 1607 static void 1608 qed_fill_load_req_params(struct qed_load_req_params *p_load_req, 1609 struct qed_drv_load_params *p_drv_load) 1610 { 1611 memset(p_load_req, 0, sizeof(*p_load_req)); 1612 1613 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 1614 QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; 1615 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 1616 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 1617 p_load_req->override_force_load = p_drv_load->override_force_load; 1618 } 1619 1620 static int qed_vf_start(struct qed_hwfn *p_hwfn, 1621 struct qed_hw_init_params *p_params) 1622 { 1623 if (p_params->p_tunn) { 1624 qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 1625 qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 1626 } 1627 1628 p_hwfn->b_int_enabled = 1; 1629 1630 return 0; 1631 } 1632 1633 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) 1634 { 1635 struct qed_load_req_params load_req_params; 1636 u32 load_code, param, drv_mb_param; 1637 bool b_default_mtu = true; 1638 struct qed_hwfn *p_hwfn; 1639 int rc = 0, mfw_rc, i; 1640 1641 if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { 1642 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); 1643 return -EINVAL; 1644 } 1645 1646 if (IS_PF(cdev)) { 1647 rc = qed_init_fw_data(cdev, p_params->bin_fw_data); 1648 if (rc) 1649 return rc; 1650 } 1651 1652 for_each_hwfn(cdev, i) { 1653 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1654 1655 /* If management didn't provide a default, set one of our own */ 1656 if (!p_hwfn->hw_info.mtu) { 1657 p_hwfn->hw_info.mtu = 1500; 1658 b_default_mtu = false; 1659 } 1660 1661 if (IS_VF(cdev)) { 1662 qed_vf_start(p_hwfn, p_params); 1663 continue; 1664 } 1665 1666 /* Enable DMAE in PXP */ 1667 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); 1668 1669 rc = qed_calc_hw_mode(p_hwfn); 1670 if (rc) 1671 return rc; 1672 1673 qed_fill_load_req_params(&load_req_params, 1674 p_params->p_drv_load_params); 1675 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 1676 &load_req_params); 1677 if (rc) { 1678 DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); 1679 return rc; 1680 } 1681 1682 load_code = load_req_params.load_code; 1683 DP_VERBOSE(p_hwfn, QED_MSG_SP, 1684 "Load request was sent. Load code: 0x%x\n", 1685 load_code); 1686 1687 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 1688 1689 p_hwfn->first_on_engine = (load_code == 1690 FW_MSG_CODE_DRV_LOAD_ENGINE); 1691 1692 switch (load_code) { 1693 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1694 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 1695 p_hwfn->hw_info.hw_mode); 1696 if (rc) 1697 break; 1698 /* Fall into */ 1699 case FW_MSG_CODE_DRV_LOAD_PORT: 1700 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 1701 p_hwfn->hw_info.hw_mode); 1702 if (rc) 1703 break; 1704 1705 /* Fall into */ 1706 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1707 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 1708 p_params->p_tunn, 1709 p_hwfn->hw_info.hw_mode, 1710 p_params->b_hw_start, 1711 p_params->int_mode, 1712 p_params->allow_npar_tx_switch); 1713 break; 1714 default: 1715 DP_NOTICE(p_hwfn, 1716 "Unexpected load code [0x%08x]", load_code); 1717 rc = -EINVAL; 1718 break; 1719 } 1720 1721 if (rc) 1722 DP_NOTICE(p_hwfn, 1723 "init phase failed for loadcode 0x%x (rc %d)\n", 1724 load_code, rc); 1725 1726 /* ACK mfw regardless of success or failure of initialization */ 1727 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1728 DRV_MSG_CODE_LOAD_DONE, 1729 0, &load_code, ¶m); 1730 if (rc) 1731 return rc; 1732 if (mfw_rc) { 1733 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); 1734 return mfw_rc; 1735 } 1736 1737 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1738 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1739 DP_NOTICE(p_hwfn, 1740 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1741 1742 /* send DCBX attention request command */ 1743 DP_VERBOSE(p_hwfn, 1744 QED_MSG_DCB, 1745 "sending phony dcbx set command to trigger DCBx attention handling\n"); 1746 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1747 DRV_MSG_CODE_SET_DCBX, 1748 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, 1749 &load_code, ¶m); 1750 if (mfw_rc) { 1751 DP_NOTICE(p_hwfn, 1752 "Failed to send DCBX attention request\n"); 1753 return mfw_rc; 1754 } 1755 1756 p_hwfn->hw_init_done = true; 1757 } 1758 1759 if (IS_PF(cdev)) { 1760 p_hwfn = QED_LEADING_HWFN(cdev); 1761 drv_mb_param = STORM_FW_VERSION; 1762 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1763 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 1764 drv_mb_param, &load_code, ¶m); 1765 if (rc) 1766 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 1767 1768 if (!b_default_mtu) { 1769 rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 1770 p_hwfn->hw_info.mtu); 1771 if (rc) 1772 DP_INFO(p_hwfn, 1773 "Failed to update default mtu\n"); 1774 } 1775 1776 rc = qed_mcp_ov_update_driver_state(p_hwfn, 1777 p_hwfn->p_main_ptt, 1778 QED_OV_DRIVER_STATE_DISABLED); 1779 if (rc) 1780 DP_INFO(p_hwfn, "Failed to update driver state\n"); 1781 1782 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 1783 QED_OV_ESWITCH_VEB); 1784 if (rc) 1785 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 1786 } 1787 1788 return 0; 1789 } 1790 1791 #define QED_HW_STOP_RETRY_LIMIT (10) 1792 static void qed_hw_timers_stop(struct qed_dev *cdev, 1793 struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1794 { 1795 int i; 1796 1797 /* close timers */ 1798 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 1799 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 1800 1801 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { 1802 if ((!qed_rd(p_hwfn, p_ptt, 1803 TM_REG_PF_SCAN_ACTIVE_CONN)) && 1804 (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 1805 break; 1806 1807 /* Dependent on number of connection/tasks, possibly 1808 * 1ms sleep is required between polls 1809 */ 1810 usleep_range(1000, 2000); 1811 } 1812 1813 if (i < QED_HW_STOP_RETRY_LIMIT) 1814 return; 1815 1816 DP_NOTICE(p_hwfn, 1817 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 1818 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 1819 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 1820 } 1821 1822 void qed_hw_timers_stop_all(struct qed_dev *cdev) 1823 { 1824 int j; 1825 1826 for_each_hwfn(cdev, j) { 1827 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1828 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 1829 1830 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1831 } 1832 } 1833 1834 int qed_hw_stop(struct qed_dev *cdev) 1835 { 1836 struct qed_hwfn *p_hwfn; 1837 struct qed_ptt *p_ptt; 1838 int rc, rc2 = 0; 1839 int j; 1840 1841 for_each_hwfn(cdev, j) { 1842 p_hwfn = &cdev->hwfns[j]; 1843 p_ptt = p_hwfn->p_main_ptt; 1844 1845 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); 1846 1847 if (IS_VF(cdev)) { 1848 qed_vf_pf_int_cleanup(p_hwfn); 1849 rc = qed_vf_pf_reset(p_hwfn); 1850 if (rc) { 1851 DP_NOTICE(p_hwfn, 1852 "qed_vf_pf_reset failed. rc = %d.\n", 1853 rc); 1854 rc2 = -EINVAL; 1855 } 1856 continue; 1857 } 1858 1859 /* mark the hw as uninitialized... */ 1860 p_hwfn->hw_init_done = false; 1861 1862 /* Send unload command to MCP */ 1863 rc = qed_mcp_unload_req(p_hwfn, p_ptt); 1864 if (rc) { 1865 DP_NOTICE(p_hwfn, 1866 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 1867 rc); 1868 rc2 = -EINVAL; 1869 } 1870 1871 qed_slowpath_irq_sync(p_hwfn); 1872 1873 /* After this point no MFW attentions are expected, e.g. prevent 1874 * race between pf stop and dcbx pf update. 1875 */ 1876 rc = qed_sp_pf_stop(p_hwfn); 1877 if (rc) { 1878 DP_NOTICE(p_hwfn, 1879 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 1880 rc); 1881 rc2 = -EINVAL; 1882 } 1883 1884 qed_wr(p_hwfn, p_ptt, 1885 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 1886 1887 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1888 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 1889 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 1890 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1891 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 1892 1893 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1894 1895 /* Disable Attention Generation */ 1896 qed_int_igu_disable_int(p_hwfn, p_ptt); 1897 1898 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 1899 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 1900 1901 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 1902 1903 /* Need to wait 1ms to guarantee SBs are cleared */ 1904 usleep_range(1000, 2000); 1905 1906 /* Disable PF in HW blocks */ 1907 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 1908 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 1909 1910 qed_mcp_unload_done(p_hwfn, p_ptt); 1911 if (rc) { 1912 DP_NOTICE(p_hwfn, 1913 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 1914 rc); 1915 rc2 = -EINVAL; 1916 } 1917 } 1918 1919 if (IS_PF(cdev)) { 1920 p_hwfn = QED_LEADING_HWFN(cdev); 1921 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; 1922 1923 /* Disable DMAE in PXP - in CMT, this should only be done for 1924 * first hw-function, and only after all transactions have 1925 * stopped for all active hw-functions. 1926 */ 1927 rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false); 1928 if (rc) { 1929 DP_NOTICE(p_hwfn, 1930 "qed_change_pci_hwfn failed. rc = %d.\n", rc); 1931 rc2 = -EINVAL; 1932 } 1933 } 1934 1935 return rc2; 1936 } 1937 1938 int qed_hw_stop_fastpath(struct qed_dev *cdev) 1939 { 1940 int j; 1941 1942 for_each_hwfn(cdev, j) { 1943 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1944 struct qed_ptt *p_ptt; 1945 1946 if (IS_VF(cdev)) { 1947 qed_vf_pf_int_cleanup(p_hwfn); 1948 continue; 1949 } 1950 p_ptt = qed_ptt_acquire(p_hwfn); 1951 if (!p_ptt) 1952 return -EAGAIN; 1953 1954 DP_VERBOSE(p_hwfn, 1955 NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); 1956 1957 qed_wr(p_hwfn, p_ptt, 1958 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 1959 1960 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1961 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 1962 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 1963 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1964 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 1965 1966 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 1967 1968 /* Need to wait 1ms to guarantee SBs are cleared */ 1969 usleep_range(1000, 2000); 1970 qed_ptt_release(p_hwfn, p_ptt); 1971 } 1972 1973 return 0; 1974 } 1975 1976 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) 1977 { 1978 struct qed_ptt *p_ptt; 1979 1980 if (IS_VF(p_hwfn->cdev)) 1981 return 0; 1982 1983 p_ptt = qed_ptt_acquire(p_hwfn); 1984 if (!p_ptt) 1985 return -EAGAIN; 1986 1987 /* If roce info is allocated it means roce is initialized and should 1988 * be enabled in searcher. 1989 */ 1990 if (p_hwfn->p_rdma_info && 1991 p_hwfn->b_rdma_enabled_in_prs) 1992 qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); 1993 1994 /* Re-open incoming traffic */ 1995 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 1996 qed_ptt_release(p_hwfn, p_ptt); 1997 1998 return 0; 1999 } 2000 2001 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 2002 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) 2003 { 2004 qed_ptt_pool_free(p_hwfn); 2005 kfree(p_hwfn->hw_info.p_igu_info); 2006 p_hwfn->hw_info.p_igu_info = NULL; 2007 } 2008 2009 /* Setup bar access */ 2010 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) 2011 { 2012 /* clear indirect access */ 2013 if (QED_IS_AH(p_hwfn->cdev)) { 2014 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2015 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); 2016 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2017 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); 2018 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2019 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); 2020 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2021 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); 2022 } else { 2023 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2024 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 2025 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2026 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 2027 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2028 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 2029 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2030 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 2031 } 2032 2033 /* Clean Previous errors if such exist */ 2034 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2035 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); 2036 2037 /* enable internal target-read */ 2038 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2039 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 2040 } 2041 2042 static void get_function_id(struct qed_hwfn *p_hwfn) 2043 { 2044 /* ME Register */ 2045 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, 2046 PXP_PF_ME_OPAQUE_ADDR); 2047 2048 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 2049 2050 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 2051 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2052 PXP_CONCRETE_FID_PFID); 2053 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2054 PXP_CONCRETE_FID_PORT); 2055 2056 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, 2057 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 2058 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 2059 } 2060 2061 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) 2062 { 2063 u32 *feat_num = p_hwfn->hw_info.feat_num; 2064 struct qed_sb_cnt_info sb_cnt; 2065 u32 non_l2_sbs = 0; 2066 2067 memset(&sb_cnt, 0, sizeof(sb_cnt)); 2068 qed_int_get_num_sbs(p_hwfn, &sb_cnt); 2069 2070 if (IS_ENABLED(CONFIG_QED_RDMA) && 2071 QED_IS_RDMA_PERSONALITY(p_hwfn)) { 2072 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide 2073 * the status blocks equally between L2 / RoCE but with 2074 * consideration as to how many l2 queues / cnqs we have. 2075 */ 2076 feat_num[QED_RDMA_CNQ] = 2077 min_t(u32, sb_cnt.cnt / 2, 2078 RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); 2079 2080 non_l2_sbs = feat_num[QED_RDMA_CNQ]; 2081 } 2082 if (QED_IS_L2_PERSONALITY(p_hwfn)) { 2083 /* Start by allocating VF queues, then PF's */ 2084 feat_num[QED_VF_L2_QUE] = min_t(u32, 2085 RESC_NUM(p_hwfn, QED_L2_QUEUE), 2086 sb_cnt.iov_cnt); 2087 feat_num[QED_PF_L2_QUE] = min_t(u32, 2088 sb_cnt.cnt - non_l2_sbs, 2089 RESC_NUM(p_hwfn, 2090 QED_L2_QUEUE) - 2091 FEAT_NUM(p_hwfn, 2092 QED_VF_L2_QUE)); 2093 } 2094 2095 if (QED_IS_FCOE_PERSONALITY(p_hwfn)) 2096 feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, 2097 RESC_NUM(p_hwfn, 2098 QED_CMDQS_CQS)); 2099 2100 if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) 2101 feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, 2102 RESC_NUM(p_hwfn, 2103 QED_CMDQS_CQS)); 2104 DP_VERBOSE(p_hwfn, 2105 NETIF_MSG_PROBE, 2106 "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", 2107 (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), 2108 (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), 2109 (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), 2110 (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), 2111 (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), 2112 (int)sb_cnt.cnt); 2113 } 2114 2115 const char *qed_hw_get_resc_name(enum qed_resources res_id) 2116 { 2117 switch (res_id) { 2118 case QED_L2_QUEUE: 2119 return "L2_QUEUE"; 2120 case QED_VPORT: 2121 return "VPORT"; 2122 case QED_RSS_ENG: 2123 return "RSS_ENG"; 2124 case QED_PQ: 2125 return "PQ"; 2126 case QED_RL: 2127 return "RL"; 2128 case QED_MAC: 2129 return "MAC"; 2130 case QED_VLAN: 2131 return "VLAN"; 2132 case QED_RDMA_CNQ_RAM: 2133 return "RDMA_CNQ_RAM"; 2134 case QED_ILT: 2135 return "ILT"; 2136 case QED_LL2_QUEUE: 2137 return "LL2_QUEUE"; 2138 case QED_CMDQS_CQS: 2139 return "CMDQS_CQS"; 2140 case QED_RDMA_STATS_QUEUE: 2141 return "RDMA_STATS_QUEUE"; 2142 case QED_BDQ: 2143 return "BDQ"; 2144 case QED_SB: 2145 return "SB"; 2146 default: 2147 return "UNKNOWN_RESOURCE"; 2148 } 2149 } 2150 2151 static int 2152 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, 2153 struct qed_ptt *p_ptt, 2154 enum qed_resources res_id, 2155 u32 resc_max_val, u32 *p_mcp_resp) 2156 { 2157 int rc; 2158 2159 rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 2160 resc_max_val, p_mcp_resp); 2161 if (rc) { 2162 DP_NOTICE(p_hwfn, 2163 "MFW response failure for a max value setting of resource %d [%s]\n", 2164 res_id, qed_hw_get_resc_name(res_id)); 2165 return rc; 2166 } 2167 2168 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 2169 DP_INFO(p_hwfn, 2170 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 2171 res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); 2172 2173 return 0; 2174 } 2175 2176 static int 2177 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2178 { 2179 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2180 u32 resc_max_val, mcp_resp; 2181 u8 res_id; 2182 int rc; 2183 2184 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2185 switch (res_id) { 2186 case QED_LL2_QUEUE: 2187 resc_max_val = MAX_NUM_LL2_RX_QUEUES; 2188 break; 2189 case QED_RDMA_CNQ_RAM: 2190 /* No need for a case for QED_CMDQS_CQS since 2191 * CNQ/CMDQS are the same resource. 2192 */ 2193 resc_max_val = NUM_OF_CMDQS_CQS; 2194 break; 2195 case QED_RDMA_STATS_QUEUE: 2196 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 2197 : RDMA_NUM_STATISTIC_COUNTERS_BB; 2198 break; 2199 case QED_BDQ: 2200 resc_max_val = BDQ_NUM_RESOURCES; 2201 break; 2202 default: 2203 continue; 2204 } 2205 2206 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 2207 resc_max_val, &mcp_resp); 2208 if (rc) 2209 return rc; 2210 2211 /* There's no point to continue to the next resource if the 2212 * command is not supported by the MFW. 2213 * We do continue if the command is supported but the resource 2214 * is unknown to the MFW. Such a resource will be later 2215 * configured with the default allocation values. 2216 */ 2217 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 2218 return -EINVAL; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static 2225 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, 2226 enum qed_resources res_id, 2227 u32 *p_resc_num, u32 *p_resc_start) 2228 { 2229 u8 num_funcs = p_hwfn->num_funcs_on_engine; 2230 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2231 2232 switch (res_id) { 2233 case QED_L2_QUEUE: 2234 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : 2235 MAX_NUM_L2_QUEUES_BB) / num_funcs; 2236 break; 2237 case QED_VPORT: 2238 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 2239 MAX_NUM_VPORTS_BB) / num_funcs; 2240 break; 2241 case QED_RSS_ENG: 2242 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : 2243 ETH_RSS_ENGINE_NUM_BB) / num_funcs; 2244 break; 2245 case QED_PQ: 2246 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : 2247 MAX_QM_TX_QUEUES_BB) / num_funcs; 2248 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ 2249 break; 2250 case QED_RL: 2251 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; 2252 break; 2253 case QED_MAC: 2254 case QED_VLAN: 2255 /* Each VFC resource can accommodate both a MAC and a VLAN */ 2256 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 2257 break; 2258 case QED_ILT: 2259 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : 2260 PXP_NUM_ILT_RECORDS_BB) / num_funcs; 2261 break; 2262 case QED_LL2_QUEUE: 2263 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; 2264 break; 2265 case QED_RDMA_CNQ_RAM: 2266 case QED_CMDQS_CQS: 2267 /* CNQ/CMDQS are the same resource */ 2268 *p_resc_num = NUM_OF_CMDQS_CQS / num_funcs; 2269 break; 2270 case QED_RDMA_STATS_QUEUE: 2271 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 : 2272 RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs; 2273 break; 2274 case QED_BDQ: 2275 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && 2276 p_hwfn->hw_info.personality != QED_PCI_FCOE) 2277 *p_resc_num = 0; 2278 else 2279 *p_resc_num = 1; 2280 break; 2281 case QED_SB: 2282 /* Since we want its value to reflect whether MFW supports 2283 * the new scheme, have a default of 0. 2284 */ 2285 *p_resc_num = 0; 2286 break; 2287 default: 2288 return -EINVAL; 2289 } 2290 2291 switch (res_id) { 2292 case QED_BDQ: 2293 if (!*p_resc_num) 2294 *p_resc_start = 0; 2295 else if (p_hwfn->cdev->num_ports_in_engine == 4) 2296 *p_resc_start = p_hwfn->port_id; 2297 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) 2298 *p_resc_start = p_hwfn->port_id; 2299 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 2300 *p_resc_start = p_hwfn->port_id + 2; 2301 break; 2302 default: 2303 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 2304 break; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, 2311 enum qed_resources res_id) 2312 { 2313 u32 dflt_resc_num = 0, dflt_resc_start = 0; 2314 u32 mcp_resp, *p_resc_num, *p_resc_start; 2315 int rc; 2316 2317 p_resc_num = &RESC_NUM(p_hwfn, res_id); 2318 p_resc_start = &RESC_START(p_hwfn, res_id); 2319 2320 rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 2321 &dflt_resc_start); 2322 if (rc) { 2323 DP_ERR(p_hwfn, 2324 "Failed to get default amount for resource %d [%s]\n", 2325 res_id, qed_hw_get_resc_name(res_id)); 2326 return rc; 2327 } 2328 2329 rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 2330 &mcp_resp, p_resc_num, p_resc_start); 2331 if (rc) { 2332 DP_NOTICE(p_hwfn, 2333 "MFW response failure for an allocation request for resource %d [%s]\n", 2334 res_id, qed_hw_get_resc_name(res_id)); 2335 return rc; 2336 } 2337 2338 /* Default driver values are applied in the following cases: 2339 * - The resource allocation MB command is not supported by the MFW 2340 * - There is an internal error in the MFW while processing the request 2341 * - The resource ID is unknown to the MFW 2342 */ 2343 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 2344 DP_INFO(p_hwfn, 2345 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", 2346 res_id, 2347 qed_hw_get_resc_name(res_id), 2348 mcp_resp, dflt_resc_num, dflt_resc_start); 2349 *p_resc_num = dflt_resc_num; 2350 *p_resc_start = dflt_resc_start; 2351 goto out; 2352 } 2353 2354 out: 2355 /* PQs have to divide by 8 [that's the HW granularity]. 2356 * Reduce number so it would fit. 2357 */ 2358 if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { 2359 DP_INFO(p_hwfn, 2360 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", 2361 *p_resc_num, 2362 (*p_resc_num) & ~0x7, 2363 *p_resc_start, (*p_resc_start) & ~0x7); 2364 *p_resc_num &= ~0x7; 2365 *p_resc_start &= ~0x7; 2366 } 2367 2368 return 0; 2369 } 2370 2371 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) 2372 { 2373 int rc; 2374 u8 res_id; 2375 2376 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2377 rc = __qed_hw_set_resc_info(p_hwfn, res_id); 2378 if (rc) 2379 return rc; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2386 { 2387 struct qed_resc_unlock_params resc_unlock_params; 2388 struct qed_resc_lock_params resc_lock_params; 2389 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2390 u8 res_id; 2391 int rc; 2392 2393 /* Setting the max values of the soft resources and the following 2394 * resources allocation queries should be atomic. Since several PFs can 2395 * run in parallel - a resource lock is needed. 2396 * If either the resource lock or resource set value commands are not 2397 * supported - skip the the max values setting, release the lock if 2398 * needed, and proceed to the queries. Other failures, including a 2399 * failure to acquire the lock, will cause this function to fail. 2400 */ 2401 qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 2402 QED_RESC_LOCK_RESC_ALLOC, false); 2403 2404 rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 2405 if (rc && rc != -EINVAL) { 2406 return rc; 2407 } else if (rc == -EINVAL) { 2408 DP_INFO(p_hwfn, 2409 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 2410 } else if (!rc && !resc_lock_params.b_granted) { 2411 DP_NOTICE(p_hwfn, 2412 "Failed to acquire the resource lock for the resource allocation commands\n"); 2413 return -EBUSY; 2414 } else { 2415 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); 2416 if (rc && rc != -EINVAL) { 2417 DP_NOTICE(p_hwfn, 2418 "Failed to set the max values of the soft resources\n"); 2419 goto unlock_and_exit; 2420 } else if (rc == -EINVAL) { 2421 DP_INFO(p_hwfn, 2422 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 2423 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, 2424 &resc_unlock_params); 2425 if (rc) 2426 DP_INFO(p_hwfn, 2427 "Failed to release the resource lock for the resource allocation commands\n"); 2428 } 2429 } 2430 2431 rc = qed_hw_set_resc_info(p_hwfn); 2432 if (rc) 2433 goto unlock_and_exit; 2434 2435 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 2436 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2437 if (rc) 2438 DP_INFO(p_hwfn, 2439 "Failed to release the resource lock for the resource allocation commands\n"); 2440 } 2441 2442 /* Sanity for ILT */ 2443 if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || 2444 (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { 2445 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", 2446 RESC_START(p_hwfn, QED_ILT), 2447 RESC_END(p_hwfn, QED_ILT) - 1); 2448 return -EINVAL; 2449 } 2450 2451 /* This will also learn the number of SBs from MFW */ 2452 if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) 2453 return -EINVAL; 2454 2455 qed_hw_set_feat(p_hwfn); 2456 2457 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) 2458 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", 2459 qed_hw_get_resc_name(res_id), 2460 RESC_NUM(p_hwfn, res_id), 2461 RESC_START(p_hwfn, res_id)); 2462 2463 return 0; 2464 2465 unlock_and_exit: 2466 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 2467 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2468 return rc; 2469 } 2470 2471 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2472 { 2473 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 2474 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; 2475 struct qed_mcp_link_params *link; 2476 2477 /* Read global nvm_cfg address */ 2478 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2479 2480 /* Verify MCP has initialized it */ 2481 if (!nvm_cfg_addr) { 2482 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2483 return -EINVAL; 2484 } 2485 2486 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 2487 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2488 2489 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2490 offsetof(struct nvm_cfg1, glob) + 2491 offsetof(struct nvm_cfg1_glob, core_cfg); 2492 2493 core_cfg = qed_rd(p_hwfn, p_ptt, addr); 2494 2495 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 2496 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 2497 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 2498 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; 2499 break; 2500 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 2501 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; 2502 break; 2503 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 2504 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; 2505 break; 2506 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 2507 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; 2508 break; 2509 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 2510 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; 2511 break; 2512 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 2513 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; 2514 break; 2515 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 2516 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; 2517 break; 2518 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 2519 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; 2520 break; 2521 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 2522 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; 2523 break; 2524 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 2525 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; 2526 break; 2527 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 2528 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; 2529 break; 2530 default: 2531 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); 2532 break; 2533 } 2534 2535 /* Read default link configuration */ 2536 link = &p_hwfn->mcp_info->link_input; 2537 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2538 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2539 link_temp = qed_rd(p_hwfn, p_ptt, 2540 port_cfg_addr + 2541 offsetof(struct nvm_cfg1_port, speed_cap_mask)); 2542 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 2543 link->speed.advertised_speeds = link_temp; 2544 2545 link_temp = link->speed.advertised_speeds; 2546 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; 2547 2548 link_temp = qed_rd(p_hwfn, p_ptt, 2549 port_cfg_addr + 2550 offsetof(struct nvm_cfg1_port, link_settings)); 2551 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 2552 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 2553 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 2554 link->speed.autoneg = true; 2555 break; 2556 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 2557 link->speed.forced_speed = 1000; 2558 break; 2559 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 2560 link->speed.forced_speed = 10000; 2561 break; 2562 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 2563 link->speed.forced_speed = 25000; 2564 break; 2565 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 2566 link->speed.forced_speed = 40000; 2567 break; 2568 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 2569 link->speed.forced_speed = 50000; 2570 break; 2571 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 2572 link->speed.forced_speed = 100000; 2573 break; 2574 default: 2575 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); 2576 } 2577 2578 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = 2579 link->speed.autoneg; 2580 2581 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 2582 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 2583 link->pause.autoneg = !!(link_temp & 2584 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 2585 link->pause.forced_rx = !!(link_temp & 2586 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 2587 link->pause.forced_tx = !!(link_temp & 2588 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 2589 link->loopback_mode = 0; 2590 2591 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 2592 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n", 2593 link->speed.forced_speed, link->speed.advertised_speeds, 2594 link->speed.autoneg, link->pause.autoneg); 2595 2596 /* Read Multi-function information from shmem */ 2597 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2598 offsetof(struct nvm_cfg1, glob) + 2599 offsetof(struct nvm_cfg1_glob, generic_cont0); 2600 2601 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); 2602 2603 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 2604 NVM_CFG1_GLOB_MF_MODE_OFFSET; 2605 2606 switch (mf_mode) { 2607 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 2608 p_hwfn->cdev->mf_mode = QED_MF_OVLAN; 2609 break; 2610 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 2611 p_hwfn->cdev->mf_mode = QED_MF_NPAR; 2612 break; 2613 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 2614 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT; 2615 break; 2616 } 2617 DP_INFO(p_hwfn, "Multi function mode is %08x\n", 2618 p_hwfn->cdev->mf_mode); 2619 2620 /* Read Multi-function information from shmem */ 2621 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2622 offsetof(struct nvm_cfg1, glob) + 2623 offsetof(struct nvm_cfg1_glob, device_capabilities); 2624 2625 device_capabilities = qed_rd(p_hwfn, p_ptt, addr); 2626 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 2627 __set_bit(QED_DEV_CAP_ETH, 2628 &p_hwfn->hw_info.device_capabilities); 2629 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 2630 __set_bit(QED_DEV_CAP_FCOE, 2631 &p_hwfn->hw_info.device_capabilities); 2632 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 2633 __set_bit(QED_DEV_CAP_ISCSI, 2634 &p_hwfn->hw_info.device_capabilities); 2635 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 2636 __set_bit(QED_DEV_CAP_ROCE, 2637 &p_hwfn->hw_info.device_capabilities); 2638 2639 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 2640 } 2641 2642 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2643 { 2644 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 2645 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 2646 struct qed_dev *cdev = p_hwfn->cdev; 2647 2648 num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 2649 2650 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 2651 * in the other bits are selected. 2652 * Bits 1-15 are for functions 1-15, respectively, and their value is 2653 * '0' only for enabled functions (function 0 always exists and 2654 * enabled). 2655 * In case of CMT, only the "even" functions are enabled, and thus the 2656 * number of functions for both hwfns is learnt from the same bits. 2657 */ 2658 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); 2659 2660 if (reg_function_hide & 0x1) { 2661 if (QED_IS_BB(cdev)) { 2662 if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { 2663 num_funcs = 0; 2664 eng_mask = 0xaaaa; 2665 } else { 2666 num_funcs = 1; 2667 eng_mask = 0x5554; 2668 } 2669 } else { 2670 num_funcs = 1; 2671 eng_mask = 0xfffe; 2672 } 2673 2674 /* Get the number of the enabled functions on the engine */ 2675 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 2676 while (tmp) { 2677 if (tmp & 0x1) 2678 num_funcs++; 2679 tmp >>= 0x1; 2680 } 2681 2682 /* Get the PF index within the enabled functions */ 2683 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 2684 tmp = reg_function_hide & eng_mask & low_pfs_mask; 2685 while (tmp) { 2686 if (tmp & 0x1) 2687 enabled_func_idx--; 2688 tmp >>= 0x1; 2689 } 2690 } 2691 2692 p_hwfn->num_funcs_on_engine = num_funcs; 2693 p_hwfn->enabled_func_idx = enabled_func_idx; 2694 2695 DP_VERBOSE(p_hwfn, 2696 NETIF_MSG_PROBE, 2697 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 2698 p_hwfn->rel_pf_id, 2699 p_hwfn->abs_pf_id, 2700 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 2701 } 2702 2703 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn, 2704 struct qed_ptt *p_ptt) 2705 { 2706 u32 port_mode; 2707 2708 port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0); 2709 2710 if (port_mode < 3) { 2711 p_hwfn->cdev->num_ports_in_engine = 1; 2712 } else if (port_mode <= 5) { 2713 p_hwfn->cdev->num_ports_in_engine = 2; 2714 } else { 2715 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", 2716 p_hwfn->cdev->num_ports_in_engine); 2717 2718 /* Default num_ports_in_engine to something */ 2719 p_hwfn->cdev->num_ports_in_engine = 1; 2720 } 2721 } 2722 2723 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn, 2724 struct qed_ptt *p_ptt) 2725 { 2726 u32 port; 2727 int i; 2728 2729 p_hwfn->cdev->num_ports_in_engine = 0; 2730 2731 for (i = 0; i < MAX_NUM_PORTS_K2; i++) { 2732 port = qed_rd(p_hwfn, p_ptt, 2733 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4)); 2734 if (port & 1) 2735 p_hwfn->cdev->num_ports_in_engine++; 2736 } 2737 2738 if (!p_hwfn->cdev->num_ports_in_engine) { 2739 DP_NOTICE(p_hwfn, "All NIG ports are inactive\n"); 2740 2741 /* Default num_ports_in_engine to something */ 2742 p_hwfn->cdev->num_ports_in_engine = 1; 2743 } 2744 } 2745 2746 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2747 { 2748 if (QED_IS_BB(p_hwfn->cdev)) 2749 qed_hw_info_port_num_bb(p_hwfn, p_ptt); 2750 else 2751 qed_hw_info_port_num_ah(p_hwfn, p_ptt); 2752 } 2753 2754 static int 2755 qed_get_hw_info(struct qed_hwfn *p_hwfn, 2756 struct qed_ptt *p_ptt, 2757 enum qed_pci_personality personality) 2758 { 2759 int rc; 2760 2761 /* Since all information is common, only first hwfns should do this */ 2762 if (IS_LEAD_HWFN(p_hwfn)) { 2763 rc = qed_iov_hw_info(p_hwfn); 2764 if (rc) 2765 return rc; 2766 } 2767 2768 qed_hw_info_port_num(p_hwfn, p_ptt); 2769 2770 qed_hw_get_nvm_info(p_hwfn, p_ptt); 2771 2772 rc = qed_int_igu_read_cam(p_hwfn, p_ptt); 2773 if (rc) 2774 return rc; 2775 2776 if (qed_mcp_is_init(p_hwfn)) 2777 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, 2778 p_hwfn->mcp_info->func_info.mac); 2779 else 2780 eth_random_addr(p_hwfn->hw_info.hw_mac_addr); 2781 2782 if (qed_mcp_is_init(p_hwfn)) { 2783 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) 2784 p_hwfn->hw_info.ovlan = 2785 p_hwfn->mcp_info->func_info.ovlan; 2786 2787 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 2788 } 2789 2790 if (qed_mcp_is_init(p_hwfn)) { 2791 enum qed_pci_personality protocol; 2792 2793 protocol = p_hwfn->mcp_info->func_info.protocol; 2794 p_hwfn->hw_info.personality = protocol; 2795 } 2796 2797 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 2798 p_hwfn->hw_info.num_active_tc = 1; 2799 2800 qed_get_num_funcs(p_hwfn, p_ptt); 2801 2802 if (qed_mcp_is_init(p_hwfn)) 2803 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 2804 2805 return qed_hw_get_resc(p_hwfn, p_ptt); 2806 } 2807 2808 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2809 { 2810 struct qed_dev *cdev = p_hwfn->cdev; 2811 u16 device_id_mask; 2812 u32 tmp; 2813 2814 /* Read Vendor Id / Device Id */ 2815 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); 2816 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); 2817 2818 /* Determine type */ 2819 device_id_mask = cdev->device_id & QED_DEV_ID_MASK; 2820 switch (device_id_mask) { 2821 case QED_DEV_ID_MASK_BB: 2822 cdev->type = QED_DEV_TYPE_BB; 2823 break; 2824 case QED_DEV_ID_MASK_AH: 2825 cdev->type = QED_DEV_TYPE_AH; 2826 break; 2827 default: 2828 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); 2829 return -EBUSY; 2830 } 2831 2832 cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 2833 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 2834 2835 MASK_FIELD(CHIP_REV, cdev->chip_rev); 2836 2837 /* Learn number of HW-functions */ 2838 tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 2839 2840 if (tmp & (1 << p_hwfn->rel_pf_id)) { 2841 DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); 2842 cdev->num_hwfns = 2; 2843 } else { 2844 cdev->num_hwfns = 1; 2845 } 2846 2847 cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, 2848 MISCS_REG_CHIP_TEST_REG) >> 4; 2849 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); 2850 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 2851 MASK_FIELD(CHIP_METAL, cdev->chip_metal); 2852 2853 DP_INFO(cdev->hwfns, 2854 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", 2855 QED_IS_BB(cdev) ? "BB" : "AH", 2856 'A' + cdev->chip_rev, 2857 (int)cdev->chip_metal, 2858 cdev->chip_num, cdev->chip_rev, 2859 cdev->chip_bond_id, cdev->chip_metal); 2860 2861 return 0; 2862 } 2863 2864 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, 2865 void __iomem *p_regview, 2866 void __iomem *p_doorbells, 2867 enum qed_pci_personality personality) 2868 { 2869 int rc = 0; 2870 2871 /* Split PCI bars evenly between hwfns */ 2872 p_hwfn->regview = p_regview; 2873 p_hwfn->doorbells = p_doorbells; 2874 2875 if (IS_VF(p_hwfn->cdev)) 2876 return qed_vf_hw_prepare(p_hwfn); 2877 2878 /* Validate that chip access is feasible */ 2879 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 2880 DP_ERR(p_hwfn, 2881 "Reading the ME register returns all Fs; Preventing further chip access\n"); 2882 return -EINVAL; 2883 } 2884 2885 get_function_id(p_hwfn); 2886 2887 /* Allocate PTT pool */ 2888 rc = qed_ptt_pool_alloc(p_hwfn); 2889 if (rc) 2890 goto err0; 2891 2892 /* Allocate the main PTT */ 2893 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 2894 2895 /* First hwfn learns basic information, e.g., number of hwfns */ 2896 if (!p_hwfn->my_id) { 2897 rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 2898 if (rc) 2899 goto err1; 2900 } 2901 2902 qed_hw_hwfn_prepare(p_hwfn); 2903 2904 /* Initialize MCP structure */ 2905 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 2906 if (rc) { 2907 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); 2908 goto err1; 2909 } 2910 2911 /* Read the device configuration information from the HW and SHMEM */ 2912 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); 2913 if (rc) { 2914 DP_NOTICE(p_hwfn, "Failed to get HW information\n"); 2915 goto err2; 2916 } 2917 2918 /* Sending a mailbox to the MFW should be done after qed_get_hw_info() 2919 * is called as it sets the ports number in an engine. 2920 */ 2921 if (IS_LEAD_HWFN(p_hwfn)) { 2922 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 2923 if (rc) 2924 DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); 2925 } 2926 2927 /* Allocate the init RT array and initialize the init-ops engine */ 2928 rc = qed_init_alloc(p_hwfn); 2929 if (rc) 2930 goto err2; 2931 2932 return rc; 2933 err2: 2934 if (IS_LEAD_HWFN(p_hwfn)) 2935 qed_iov_free_hw_info(p_hwfn->cdev); 2936 qed_mcp_free(p_hwfn); 2937 err1: 2938 qed_hw_hwfn_free(p_hwfn); 2939 err0: 2940 return rc; 2941 } 2942 2943 int qed_hw_prepare(struct qed_dev *cdev, 2944 int personality) 2945 { 2946 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2947 int rc; 2948 2949 /* Store the precompiled init data ptrs */ 2950 if (IS_PF(cdev)) 2951 qed_init_iro_array(cdev); 2952 2953 /* Initialize the first hwfn - will learn number of hwfns */ 2954 rc = qed_hw_prepare_single(p_hwfn, 2955 cdev->regview, 2956 cdev->doorbells, personality); 2957 if (rc) 2958 return rc; 2959 2960 personality = p_hwfn->hw_info.personality; 2961 2962 /* Initialize the rest of the hwfns */ 2963 if (cdev->num_hwfns > 1) { 2964 void __iomem *p_regview, *p_doorbell; 2965 u8 __iomem *addr; 2966 2967 /* adjust bar offset for second engine */ 2968 addr = cdev->regview + 2969 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 2970 BAR_ID_0) / 2; 2971 p_regview = addr; 2972 2973 addr = cdev->doorbells + 2974 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 2975 BAR_ID_1) / 2; 2976 p_doorbell = addr; 2977 2978 /* prepare second hw function */ 2979 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, 2980 p_doorbell, personality); 2981 2982 /* in case of error, need to free the previously 2983 * initiliazed hwfn 0. 2984 */ 2985 if (rc) { 2986 if (IS_PF(cdev)) { 2987 qed_init_free(p_hwfn); 2988 qed_mcp_free(p_hwfn); 2989 qed_hw_hwfn_free(p_hwfn); 2990 } 2991 } 2992 } 2993 2994 return rc; 2995 } 2996 2997 void qed_hw_remove(struct qed_dev *cdev) 2998 { 2999 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3000 int i; 3001 3002 if (IS_PF(cdev)) 3003 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 3004 QED_OV_DRIVER_STATE_NOT_LOADED); 3005 3006 for_each_hwfn(cdev, i) { 3007 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3008 3009 if (IS_VF(cdev)) { 3010 qed_vf_pf_release(p_hwfn); 3011 continue; 3012 } 3013 3014 qed_init_free(p_hwfn); 3015 qed_hw_hwfn_free(p_hwfn); 3016 qed_mcp_free(p_hwfn); 3017 } 3018 3019 qed_iov_free_hw_info(cdev); 3020 } 3021 3022 static void qed_chain_free_next_ptr(struct qed_dev *cdev, 3023 struct qed_chain *p_chain) 3024 { 3025 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; 3026 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 3027 struct qed_chain_next *p_next; 3028 u32 size, i; 3029 3030 if (!p_virt) 3031 return; 3032 3033 size = p_chain->elem_size * p_chain->usable_per_page; 3034 3035 for (i = 0; i < p_chain->page_cnt; i++) { 3036 if (!p_virt) 3037 break; 3038 3039 p_next = (struct qed_chain_next *)((u8 *)p_virt + size); 3040 p_virt_next = p_next->next_virt; 3041 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 3042 3043 dma_free_coherent(&cdev->pdev->dev, 3044 QED_CHAIN_PAGE_SIZE, p_virt, p_phys); 3045 3046 p_virt = p_virt_next; 3047 p_phys = p_phys_next; 3048 } 3049 } 3050 3051 static void qed_chain_free_single(struct qed_dev *cdev, 3052 struct qed_chain *p_chain) 3053 { 3054 if (!p_chain->p_virt_addr) 3055 return; 3056 3057 dma_free_coherent(&cdev->pdev->dev, 3058 QED_CHAIN_PAGE_SIZE, 3059 p_chain->p_virt_addr, p_chain->p_phys_addr); 3060 } 3061 3062 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) 3063 { 3064 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 3065 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 3066 u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table; 3067 3068 if (!pp_virt_addr_tbl) 3069 return; 3070 3071 if (!p_pbl_virt) 3072 goto out; 3073 3074 for (i = 0; i < page_cnt; i++) { 3075 if (!pp_virt_addr_tbl[i]) 3076 break; 3077 3078 dma_free_coherent(&cdev->pdev->dev, 3079 QED_CHAIN_PAGE_SIZE, 3080 pp_virt_addr_tbl[i], 3081 *(dma_addr_t *)p_pbl_virt); 3082 3083 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3084 } 3085 3086 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3087 3088 if (!p_chain->b_external_pbl) 3089 dma_free_coherent(&cdev->pdev->dev, 3090 pbl_size, 3091 p_chain->pbl_sp.p_virt_table, 3092 p_chain->pbl_sp.p_phys_table); 3093 out: 3094 vfree(p_chain->pbl.pp_virt_addr_tbl); 3095 p_chain->pbl.pp_virt_addr_tbl = NULL; 3096 } 3097 3098 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) 3099 { 3100 switch (p_chain->mode) { 3101 case QED_CHAIN_MODE_NEXT_PTR: 3102 qed_chain_free_next_ptr(cdev, p_chain); 3103 break; 3104 case QED_CHAIN_MODE_SINGLE: 3105 qed_chain_free_single(cdev, p_chain); 3106 break; 3107 case QED_CHAIN_MODE_PBL: 3108 qed_chain_free_pbl(cdev, p_chain); 3109 break; 3110 } 3111 } 3112 3113 static int 3114 qed_chain_alloc_sanity_check(struct qed_dev *cdev, 3115 enum qed_chain_cnt_type cnt_type, 3116 size_t elem_size, u32 page_cnt) 3117 { 3118 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 3119 3120 /* The actual chain size can be larger than the maximal possible value 3121 * after rounding up the requested elements number to pages, and after 3122 * taking into acount the unusuable elements (next-ptr elements). 3123 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 3124 * size/capacity fields are of a u32 type. 3125 */ 3126 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && 3127 chain_size > ((u32)U16_MAX + 1)) || 3128 (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { 3129 DP_NOTICE(cdev, 3130 "The actual chain size (0x%llx) is larger than the maximal possible value\n", 3131 chain_size); 3132 return -EINVAL; 3133 } 3134 3135 return 0; 3136 } 3137 3138 static int 3139 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) 3140 { 3141 void *p_virt = NULL, *p_virt_prev = NULL; 3142 dma_addr_t p_phys = 0; 3143 u32 i; 3144 3145 for (i = 0; i < p_chain->page_cnt; i++) { 3146 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3147 QED_CHAIN_PAGE_SIZE, 3148 &p_phys, GFP_KERNEL); 3149 if (!p_virt) 3150 return -ENOMEM; 3151 3152 if (i == 0) { 3153 qed_chain_init_mem(p_chain, p_virt, p_phys); 3154 qed_chain_reset(p_chain); 3155 } else { 3156 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3157 p_virt, p_phys); 3158 } 3159 3160 p_virt_prev = p_virt; 3161 } 3162 /* Last page's next element should point to the beginning of the 3163 * chain. 3164 */ 3165 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3166 p_chain->p_virt_addr, 3167 p_chain->p_phys_addr); 3168 3169 return 0; 3170 } 3171 3172 static int 3173 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) 3174 { 3175 dma_addr_t p_phys = 0; 3176 void *p_virt = NULL; 3177 3178 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3179 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); 3180 if (!p_virt) 3181 return -ENOMEM; 3182 3183 qed_chain_init_mem(p_chain, p_virt, p_phys); 3184 qed_chain_reset(p_chain); 3185 3186 return 0; 3187 } 3188 3189 static int 3190 qed_chain_alloc_pbl(struct qed_dev *cdev, 3191 struct qed_chain *p_chain, 3192 struct qed_chain_ext_pbl *ext_pbl) 3193 { 3194 u32 page_cnt = p_chain->page_cnt, size, i; 3195 dma_addr_t p_phys = 0, p_pbl_phys = 0; 3196 void **pp_virt_addr_tbl = NULL; 3197 u8 *p_pbl_virt = NULL; 3198 void *p_virt = NULL; 3199 3200 size = page_cnt * sizeof(*pp_virt_addr_tbl); 3201 pp_virt_addr_tbl = vzalloc(size); 3202 if (!pp_virt_addr_tbl) 3203 return -ENOMEM; 3204 3205 /* The allocation of the PBL table is done with its full size, since it 3206 * is expected to be successive. 3207 * qed_chain_init_pbl_mem() is called even in a case of an allocation 3208 * failure, since pp_virt_addr_tbl was previously allocated, and it 3209 * should be saved to allow its freeing during the error flow. 3210 */ 3211 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3212 3213 if (!ext_pbl) { 3214 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, 3215 size, &p_pbl_phys, GFP_KERNEL); 3216 } else { 3217 p_pbl_virt = ext_pbl->p_pbl_virt; 3218 p_pbl_phys = ext_pbl->p_pbl_phys; 3219 p_chain->b_external_pbl = true; 3220 } 3221 3222 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 3223 pp_virt_addr_tbl); 3224 if (!p_pbl_virt) 3225 return -ENOMEM; 3226 3227 for (i = 0; i < page_cnt; i++) { 3228 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3229 QED_CHAIN_PAGE_SIZE, 3230 &p_phys, GFP_KERNEL); 3231 if (!p_virt) 3232 return -ENOMEM; 3233 3234 if (i == 0) { 3235 qed_chain_init_mem(p_chain, p_virt, p_phys); 3236 qed_chain_reset(p_chain); 3237 } 3238 3239 /* Fill the PBL table with the physical address of the page */ 3240 *(dma_addr_t *)p_pbl_virt = p_phys; 3241 /* Keep the virtual address of the page */ 3242 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 3243 3244 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3245 } 3246 3247 return 0; 3248 } 3249 3250 int qed_chain_alloc(struct qed_dev *cdev, 3251 enum qed_chain_use_mode intended_use, 3252 enum qed_chain_mode mode, 3253 enum qed_chain_cnt_type cnt_type, 3254 u32 num_elems, 3255 size_t elem_size, 3256 struct qed_chain *p_chain, 3257 struct qed_chain_ext_pbl *ext_pbl) 3258 { 3259 u32 page_cnt; 3260 int rc = 0; 3261 3262 if (mode == QED_CHAIN_MODE_SINGLE) 3263 page_cnt = 1; 3264 else 3265 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 3266 3267 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); 3268 if (rc) { 3269 DP_NOTICE(cdev, 3270 "Cannot allocate a chain with the given arguments:\n"); 3271 DP_NOTICE(cdev, 3272 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 3273 intended_use, mode, cnt_type, num_elems, elem_size); 3274 return rc; 3275 } 3276 3277 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, 3278 mode, cnt_type); 3279 3280 switch (mode) { 3281 case QED_CHAIN_MODE_NEXT_PTR: 3282 rc = qed_chain_alloc_next_ptr(cdev, p_chain); 3283 break; 3284 case QED_CHAIN_MODE_SINGLE: 3285 rc = qed_chain_alloc_single(cdev, p_chain); 3286 break; 3287 case QED_CHAIN_MODE_PBL: 3288 rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); 3289 break; 3290 } 3291 if (rc) 3292 goto nomem; 3293 3294 return 0; 3295 3296 nomem: 3297 qed_chain_free(cdev, p_chain); 3298 return rc; 3299 } 3300 3301 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) 3302 { 3303 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { 3304 u16 min, max; 3305 3306 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); 3307 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); 3308 DP_NOTICE(p_hwfn, 3309 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 3310 src_id, min, max); 3311 3312 return -EINVAL; 3313 } 3314 3315 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; 3316 3317 return 0; 3318 } 3319 3320 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3321 { 3322 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { 3323 u8 min, max; 3324 3325 min = (u8)RESC_START(p_hwfn, QED_VPORT); 3326 max = min + RESC_NUM(p_hwfn, QED_VPORT); 3327 DP_NOTICE(p_hwfn, 3328 "vport id [%d] is not valid, available indices [%d - %d]\n", 3329 src_id, min, max); 3330 3331 return -EINVAL; 3332 } 3333 3334 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; 3335 3336 return 0; 3337 } 3338 3339 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3340 { 3341 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { 3342 u8 min, max; 3343 3344 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); 3345 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); 3346 DP_NOTICE(p_hwfn, 3347 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 3348 src_id, min, max); 3349 3350 return -EINVAL; 3351 } 3352 3353 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; 3354 3355 return 0; 3356 } 3357 3358 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, 3359 u8 *p_filter) 3360 { 3361 *p_high = p_filter[1] | (p_filter[0] << 8); 3362 *p_low = p_filter[5] | (p_filter[4] << 8) | 3363 (p_filter[3] << 16) | (p_filter[2] << 24); 3364 } 3365 3366 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, 3367 struct qed_ptt *p_ptt, u8 *p_filter) 3368 { 3369 u32 high = 0, low = 0, en; 3370 int i; 3371 3372 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3373 return 0; 3374 3375 qed_llh_mac_to_filter(&high, &low, p_filter); 3376 3377 /* Find a free entry and utilize it */ 3378 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3379 en = qed_rd(p_hwfn, p_ptt, 3380 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3381 if (en) 3382 continue; 3383 qed_wr(p_hwfn, p_ptt, 3384 NIG_REG_LLH_FUNC_FILTER_VALUE + 3385 2 * i * sizeof(u32), low); 3386 qed_wr(p_hwfn, p_ptt, 3387 NIG_REG_LLH_FUNC_FILTER_VALUE + 3388 (2 * i + 1) * sizeof(u32), high); 3389 qed_wr(p_hwfn, p_ptt, 3390 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3391 qed_wr(p_hwfn, p_ptt, 3392 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3393 i * sizeof(u32), 0); 3394 qed_wr(p_hwfn, p_ptt, 3395 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3396 break; 3397 } 3398 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3399 DP_NOTICE(p_hwfn, 3400 "Failed to find an empty LLH filter to utilize\n"); 3401 return -EINVAL; 3402 } 3403 3404 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3405 "mac: %pM is added at %d\n", 3406 p_filter, i); 3407 3408 return 0; 3409 } 3410 3411 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, 3412 struct qed_ptt *p_ptt, u8 *p_filter) 3413 { 3414 u32 high = 0, low = 0; 3415 int i; 3416 3417 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3418 return; 3419 3420 qed_llh_mac_to_filter(&high, &low, p_filter); 3421 3422 /* Find the entry and clean it */ 3423 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3424 if (qed_rd(p_hwfn, p_ptt, 3425 NIG_REG_LLH_FUNC_FILTER_VALUE + 3426 2 * i * sizeof(u32)) != low) 3427 continue; 3428 if (qed_rd(p_hwfn, p_ptt, 3429 NIG_REG_LLH_FUNC_FILTER_VALUE + 3430 (2 * i + 1) * sizeof(u32)) != high) 3431 continue; 3432 3433 qed_wr(p_hwfn, p_ptt, 3434 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3435 qed_wr(p_hwfn, p_ptt, 3436 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3437 qed_wr(p_hwfn, p_ptt, 3438 NIG_REG_LLH_FUNC_FILTER_VALUE + 3439 (2 * i + 1) * sizeof(u32), 0); 3440 3441 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3442 "mac: %pM is removed from %d\n", 3443 p_filter, i); 3444 break; 3445 } 3446 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3447 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3448 } 3449 3450 int 3451 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn, 3452 struct qed_ptt *p_ptt, 3453 u16 source_port_or_eth_type, 3454 u16 dest_port, enum qed_llh_port_filter_type_t type) 3455 { 3456 u32 high = 0, low = 0, en; 3457 int i; 3458 3459 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3460 return 0; 3461 3462 switch (type) { 3463 case QED_LLH_FILTER_ETHERTYPE: 3464 high = source_port_or_eth_type; 3465 break; 3466 case QED_LLH_FILTER_TCP_SRC_PORT: 3467 case QED_LLH_FILTER_UDP_SRC_PORT: 3468 low = source_port_or_eth_type << 16; 3469 break; 3470 case QED_LLH_FILTER_TCP_DEST_PORT: 3471 case QED_LLH_FILTER_UDP_DEST_PORT: 3472 low = dest_port; 3473 break; 3474 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3475 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3476 low = (source_port_or_eth_type << 16) | dest_port; 3477 break; 3478 default: 3479 DP_NOTICE(p_hwfn, 3480 "Non valid LLH protocol filter type %d\n", type); 3481 return -EINVAL; 3482 } 3483 /* Find a free entry and utilize it */ 3484 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3485 en = qed_rd(p_hwfn, p_ptt, 3486 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3487 if (en) 3488 continue; 3489 qed_wr(p_hwfn, p_ptt, 3490 NIG_REG_LLH_FUNC_FILTER_VALUE + 3491 2 * i * sizeof(u32), low); 3492 qed_wr(p_hwfn, p_ptt, 3493 NIG_REG_LLH_FUNC_FILTER_VALUE + 3494 (2 * i + 1) * sizeof(u32), high); 3495 qed_wr(p_hwfn, p_ptt, 3496 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1); 3497 qed_wr(p_hwfn, p_ptt, 3498 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3499 i * sizeof(u32), 1 << type); 3500 qed_wr(p_hwfn, p_ptt, 3501 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3502 break; 3503 } 3504 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3505 DP_NOTICE(p_hwfn, 3506 "Failed to find an empty LLH filter to utilize\n"); 3507 return -EINVAL; 3508 } 3509 switch (type) { 3510 case QED_LLH_FILTER_ETHERTYPE: 3511 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3512 "ETH type %x is added at %d\n", 3513 source_port_or_eth_type, i); 3514 break; 3515 case QED_LLH_FILTER_TCP_SRC_PORT: 3516 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3517 "TCP src port %x is added at %d\n", 3518 source_port_or_eth_type, i); 3519 break; 3520 case QED_LLH_FILTER_UDP_SRC_PORT: 3521 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3522 "UDP src port %x is added at %d\n", 3523 source_port_or_eth_type, i); 3524 break; 3525 case QED_LLH_FILTER_TCP_DEST_PORT: 3526 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3527 "TCP dst port %x is added at %d\n", dest_port, i); 3528 break; 3529 case QED_LLH_FILTER_UDP_DEST_PORT: 3530 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3531 "UDP dst port %x is added at %d\n", dest_port, i); 3532 break; 3533 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3534 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3535 "TCP src/dst ports %x/%x are added at %d\n", 3536 source_port_or_eth_type, dest_port, i); 3537 break; 3538 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3539 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3540 "UDP src/dst ports %x/%x are added at %d\n", 3541 source_port_or_eth_type, dest_port, i); 3542 break; 3543 } 3544 return 0; 3545 } 3546 3547 void 3548 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn, 3549 struct qed_ptt *p_ptt, 3550 u16 source_port_or_eth_type, 3551 u16 dest_port, 3552 enum qed_llh_port_filter_type_t type) 3553 { 3554 u32 high = 0, low = 0; 3555 int i; 3556 3557 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3558 return; 3559 3560 switch (type) { 3561 case QED_LLH_FILTER_ETHERTYPE: 3562 high = source_port_or_eth_type; 3563 break; 3564 case QED_LLH_FILTER_TCP_SRC_PORT: 3565 case QED_LLH_FILTER_UDP_SRC_PORT: 3566 low = source_port_or_eth_type << 16; 3567 break; 3568 case QED_LLH_FILTER_TCP_DEST_PORT: 3569 case QED_LLH_FILTER_UDP_DEST_PORT: 3570 low = dest_port; 3571 break; 3572 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3573 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3574 low = (source_port_or_eth_type << 16) | dest_port; 3575 break; 3576 default: 3577 DP_NOTICE(p_hwfn, 3578 "Non valid LLH protocol filter type %d\n", type); 3579 return; 3580 } 3581 3582 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3583 if (!qed_rd(p_hwfn, p_ptt, 3584 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32))) 3585 continue; 3586 if (!qed_rd(p_hwfn, p_ptt, 3587 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32))) 3588 continue; 3589 if (!(qed_rd(p_hwfn, p_ptt, 3590 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3591 i * sizeof(u32)) & BIT(type))) 3592 continue; 3593 if (qed_rd(p_hwfn, p_ptt, 3594 NIG_REG_LLH_FUNC_FILTER_VALUE + 3595 2 * i * sizeof(u32)) != low) 3596 continue; 3597 if (qed_rd(p_hwfn, p_ptt, 3598 NIG_REG_LLH_FUNC_FILTER_VALUE + 3599 (2 * i + 1) * sizeof(u32)) != high) 3600 continue; 3601 3602 qed_wr(p_hwfn, p_ptt, 3603 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3604 qed_wr(p_hwfn, p_ptt, 3605 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3606 qed_wr(p_hwfn, p_ptt, 3607 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3608 i * sizeof(u32), 0); 3609 qed_wr(p_hwfn, p_ptt, 3610 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3611 qed_wr(p_hwfn, p_ptt, 3612 NIG_REG_LLH_FUNC_FILTER_VALUE + 3613 (2 * i + 1) * sizeof(u32), 0); 3614 break; 3615 } 3616 3617 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3618 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3619 } 3620 3621 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3622 u32 hw_addr, void *p_eth_qzone, 3623 size_t eth_qzone_size, u8 timeset) 3624 { 3625 struct coalescing_timeset *p_coal_timeset; 3626 3627 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { 3628 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); 3629 return -EINVAL; 3630 } 3631 3632 p_coal_timeset = p_eth_qzone; 3633 memset(p_coal_timeset, 0, eth_qzone_size); 3634 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 3635 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 3636 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 3637 3638 return 0; 3639 } 3640 3641 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3642 u16 coalesce, u16 qid, u16 sb_id) 3643 { 3644 struct ustorm_eth_queue_zone eth_qzone; 3645 u8 timeset, timer_res; 3646 u16 fw_qid = 0; 3647 u32 address; 3648 int rc; 3649 3650 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3651 if (coalesce <= 0x7F) { 3652 timer_res = 0; 3653 } else if (coalesce <= 0xFF) { 3654 timer_res = 1; 3655 } else if (coalesce <= 0x1FF) { 3656 timer_res = 2; 3657 } else { 3658 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3659 return -EINVAL; 3660 } 3661 timeset = (u8)(coalesce >> timer_res); 3662 3663 rc = qed_fw_l2_queue(p_hwfn, qid, &fw_qid); 3664 if (rc) 3665 return rc; 3666 3667 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false); 3668 if (rc) 3669 goto out; 3670 3671 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); 3672 3673 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3674 sizeof(struct ustorm_eth_queue_zone), timeset); 3675 if (rc) 3676 goto out; 3677 3678 p_hwfn->cdev->rx_coalesce_usecs = coalesce; 3679 out: 3680 return rc; 3681 } 3682 3683 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3684 u16 coalesce, u16 qid, u16 sb_id) 3685 { 3686 struct xstorm_eth_queue_zone eth_qzone; 3687 u8 timeset, timer_res; 3688 u16 fw_qid = 0; 3689 u32 address; 3690 int rc; 3691 3692 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3693 if (coalesce <= 0x7F) { 3694 timer_res = 0; 3695 } else if (coalesce <= 0xFF) { 3696 timer_res = 1; 3697 } else if (coalesce <= 0x1FF) { 3698 timer_res = 2; 3699 } else { 3700 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3701 return -EINVAL; 3702 } 3703 timeset = (u8)(coalesce >> timer_res); 3704 3705 rc = qed_fw_l2_queue(p_hwfn, qid, &fw_qid); 3706 if (rc) 3707 return rc; 3708 3709 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true); 3710 if (rc) 3711 goto out; 3712 3713 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); 3714 3715 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3716 sizeof(struct xstorm_eth_queue_zone), timeset); 3717 if (rc) 3718 goto out; 3719 3720 p_hwfn->cdev->tx_coalesce_usecs = coalesce; 3721 out: 3722 return rc; 3723 } 3724 3725 /* Calculate final WFQ values for all vports and configure them. 3726 * After this configuration each vport will have 3727 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) 3728 */ 3729 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 3730 struct qed_ptt *p_ptt, 3731 u32 min_pf_rate) 3732 { 3733 struct init_qm_vport_params *vport_params; 3734 int i; 3735 3736 vport_params = p_hwfn->qm_info.qm_vport_params; 3737 3738 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3739 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 3740 3741 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / 3742 min_pf_rate; 3743 qed_init_vport_wfq(p_hwfn, p_ptt, 3744 vport_params[i].first_tx_pq_id, 3745 vport_params[i].vport_wfq); 3746 } 3747 } 3748 3749 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, 3750 u32 min_pf_rate) 3751 3752 { 3753 int i; 3754 3755 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 3756 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; 3757 } 3758 3759 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 3760 struct qed_ptt *p_ptt, 3761 u32 min_pf_rate) 3762 { 3763 struct init_qm_vport_params *vport_params; 3764 int i; 3765 3766 vport_params = p_hwfn->qm_info.qm_vport_params; 3767 3768 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3769 qed_init_wfq_default_param(p_hwfn, min_pf_rate); 3770 qed_init_vport_wfq(p_hwfn, p_ptt, 3771 vport_params[i].first_tx_pq_id, 3772 vport_params[i].vport_wfq); 3773 } 3774 } 3775 3776 /* This function performs several validations for WFQ 3777 * configuration and required min rate for a given vport 3778 * 1. req_rate must be greater than one percent of min_pf_rate. 3779 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 3780 * rates to get less than one percent of min_pf_rate. 3781 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 3782 */ 3783 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, 3784 u16 vport_id, u32 req_rate, u32 min_pf_rate) 3785 { 3786 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 3787 int non_requested_count = 0, req_count = 0, i, num_vports; 3788 3789 num_vports = p_hwfn->qm_info.num_vports; 3790 3791 /* Accounting for the vports which are configured for WFQ explicitly */ 3792 for (i = 0; i < num_vports; i++) { 3793 u32 tmp_speed; 3794 3795 if ((i != vport_id) && 3796 p_hwfn->qm_info.wfq_data[i].configured) { 3797 req_count++; 3798 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 3799 total_req_min_rate += tmp_speed; 3800 } 3801 } 3802 3803 /* Include current vport data as well */ 3804 req_count++; 3805 total_req_min_rate += req_rate; 3806 non_requested_count = num_vports - req_count; 3807 3808 if (req_rate < min_pf_rate / QED_WFQ_UNIT) { 3809 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3810 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 3811 vport_id, req_rate, min_pf_rate); 3812 return -EINVAL; 3813 } 3814 3815 if (num_vports > QED_WFQ_UNIT) { 3816 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3817 "Number of vports is greater than %d\n", 3818 QED_WFQ_UNIT); 3819 return -EINVAL; 3820 } 3821 3822 if (total_req_min_rate > min_pf_rate) { 3823 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3824 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 3825 total_req_min_rate, min_pf_rate); 3826 return -EINVAL; 3827 } 3828 3829 total_left_rate = min_pf_rate - total_req_min_rate; 3830 3831 left_rate_per_vp = total_left_rate / non_requested_count; 3832 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { 3833 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3834 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 3835 left_rate_per_vp, min_pf_rate); 3836 return -EINVAL; 3837 } 3838 3839 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 3840 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 3841 3842 for (i = 0; i < num_vports; i++) { 3843 if (p_hwfn->qm_info.wfq_data[i].configured) 3844 continue; 3845 3846 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 3847 } 3848 3849 return 0; 3850 } 3851 3852 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, 3853 struct qed_ptt *p_ptt, u16 vp_id, u32 rate) 3854 { 3855 struct qed_mcp_link_state *p_link; 3856 int rc = 0; 3857 3858 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; 3859 3860 if (!p_link->min_pf_rate) { 3861 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 3862 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 3863 return rc; 3864 } 3865 3866 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 3867 3868 if (!rc) 3869 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, 3870 p_link->min_pf_rate); 3871 else 3872 DP_NOTICE(p_hwfn, 3873 "Validation failed while configuring min rate\n"); 3874 3875 return rc; 3876 } 3877 3878 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, 3879 struct qed_ptt *p_ptt, 3880 u32 min_pf_rate) 3881 { 3882 bool use_wfq = false; 3883 int rc = 0; 3884 u16 i; 3885 3886 /* Validate all pre configured vports for wfq */ 3887 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3888 u32 rate; 3889 3890 if (!p_hwfn->qm_info.wfq_data[i].configured) 3891 continue; 3892 3893 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 3894 use_wfq = true; 3895 3896 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 3897 if (rc) { 3898 DP_NOTICE(p_hwfn, 3899 "WFQ validation failed while configuring min rate\n"); 3900 break; 3901 } 3902 } 3903 3904 if (!rc && use_wfq) 3905 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 3906 else 3907 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 3908 3909 return rc; 3910 } 3911 3912 /* Main API for qed clients to configure vport min rate. 3913 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 3914 * rate - Speed in Mbps needs to be assigned to a given vport. 3915 */ 3916 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) 3917 { 3918 int i, rc = -EINVAL; 3919 3920 /* Currently not supported; Might change in future */ 3921 if (cdev->num_hwfns > 1) { 3922 DP_NOTICE(cdev, 3923 "WFQ configuration is not supported for this device\n"); 3924 return rc; 3925 } 3926 3927 for_each_hwfn(cdev, i) { 3928 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3929 struct qed_ptt *p_ptt; 3930 3931 p_ptt = qed_ptt_acquire(p_hwfn); 3932 if (!p_ptt) 3933 return -EBUSY; 3934 3935 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 3936 3937 if (rc) { 3938 qed_ptt_release(p_hwfn, p_ptt); 3939 return rc; 3940 } 3941 3942 qed_ptt_release(p_hwfn, p_ptt); 3943 } 3944 3945 return rc; 3946 } 3947 3948 /* API to configure WFQ from mcp link change */ 3949 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, 3950 struct qed_ptt *p_ptt, u32 min_pf_rate) 3951 { 3952 int i; 3953 3954 if (cdev->num_hwfns > 1) { 3955 DP_VERBOSE(cdev, 3956 NETIF_MSG_LINK, 3957 "WFQ configuration is not supported for this device\n"); 3958 return; 3959 } 3960 3961 for_each_hwfn(cdev, i) { 3962 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3963 3964 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 3965 min_pf_rate); 3966 } 3967 } 3968 3969 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, 3970 struct qed_ptt *p_ptt, 3971 struct qed_mcp_link_state *p_link, 3972 u8 max_bw) 3973 { 3974 int rc = 0; 3975 3976 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 3977 3978 if (!p_link->line_speed && (max_bw != 100)) 3979 return rc; 3980 3981 p_link->speed = (p_link->line_speed * max_bw) / 100; 3982 p_hwfn->qm_info.pf_rl = p_link->speed; 3983 3984 /* Since the limiter also affects Tx-switched traffic, we don't want it 3985 * to limit such traffic in case there's no actual limit. 3986 * In that case, set limit to imaginary high boundary. 3987 */ 3988 if (max_bw == 100) 3989 p_hwfn->qm_info.pf_rl = 100000; 3990 3991 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 3992 p_hwfn->qm_info.pf_rl); 3993 3994 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3995 "Configured MAX bandwidth to be %08x Mb/sec\n", 3996 p_link->speed); 3997 3998 return rc; 3999 } 4000 4001 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 4002 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) 4003 { 4004 int i, rc = -EINVAL; 4005 4006 if (max_bw < 1 || max_bw > 100) { 4007 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); 4008 return rc; 4009 } 4010 4011 for_each_hwfn(cdev, i) { 4012 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4013 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4014 struct qed_mcp_link_state *p_link; 4015 struct qed_ptt *p_ptt; 4016 4017 p_link = &p_lead->mcp_info->link_output; 4018 4019 p_ptt = qed_ptt_acquire(p_hwfn); 4020 if (!p_ptt) 4021 return -EBUSY; 4022 4023 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, 4024 p_link, max_bw); 4025 4026 qed_ptt_release(p_hwfn, p_ptt); 4027 4028 if (rc) 4029 break; 4030 } 4031 4032 return rc; 4033 } 4034 4035 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, 4036 struct qed_ptt *p_ptt, 4037 struct qed_mcp_link_state *p_link, 4038 u8 min_bw) 4039 { 4040 int rc = 0; 4041 4042 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 4043 p_hwfn->qm_info.pf_wfq = min_bw; 4044 4045 if (!p_link->line_speed) 4046 return rc; 4047 4048 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 4049 4050 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 4051 4052 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4053 "Configured MIN bandwidth to be %d Mb/sec\n", 4054 p_link->min_pf_rate); 4055 4056 return rc; 4057 } 4058 4059 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 4060 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) 4061 { 4062 int i, rc = -EINVAL; 4063 4064 if (min_bw < 1 || min_bw > 100) { 4065 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); 4066 return rc; 4067 } 4068 4069 for_each_hwfn(cdev, i) { 4070 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4071 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4072 struct qed_mcp_link_state *p_link; 4073 struct qed_ptt *p_ptt; 4074 4075 p_link = &p_lead->mcp_info->link_output; 4076 4077 p_ptt = qed_ptt_acquire(p_hwfn); 4078 if (!p_ptt) 4079 return -EBUSY; 4080 4081 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, 4082 p_link, min_bw); 4083 if (rc) { 4084 qed_ptt_release(p_hwfn, p_ptt); 4085 return rc; 4086 } 4087 4088 if (p_link->min_pf_rate) { 4089 u32 min_rate = p_link->min_pf_rate; 4090 4091 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, 4092 p_ptt, 4093 min_rate); 4094 } 4095 4096 qed_ptt_release(p_hwfn, p_ptt); 4097 } 4098 4099 return rc; 4100 } 4101 4102 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4103 { 4104 struct qed_mcp_link_state *p_link; 4105 4106 p_link = &p_hwfn->mcp_info->link_output; 4107 4108 if (p_link->min_pf_rate) 4109 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, 4110 p_link->min_pf_rate); 4111 4112 memset(p_hwfn->qm_info.wfq_data, 0, 4113 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); 4114 } 4115 4116 int qed_device_num_engines(struct qed_dev *cdev) 4117 { 4118 return QED_IS_BB(cdev) ? 2 : 1; 4119 } 4120 4121 static int qed_device_num_ports(struct qed_dev *cdev) 4122 { 4123 /* in CMT always only one port */ 4124 if (cdev->num_hwfns > 1) 4125 return 1; 4126 4127 return cdev->num_ports_in_engine * qed_device_num_engines(cdev); 4128 } 4129 4130 int qed_device_get_port_id(struct qed_dev *cdev) 4131 { 4132 return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev); 4133 } 4134 4135 void qed_set_fw_mac_addr(__le16 *fw_msb, 4136 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) 4137 { 4138 ((u8 *)fw_msb)[0] = mac[1]; 4139 ((u8 *)fw_msb)[1] = mac[0]; 4140 ((u8 *)fw_mid)[0] = mac[3]; 4141 ((u8 *)fw_mid)[1] = mac[2]; 4142 ((u8 *)fw_lsb)[0] = mac[5]; 4143 ((u8 *)fw_lsb)[1] = mac[4]; 4144 } 4145