1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66 
67 static DEFINE_SPINLOCK(qm_lock);
68 
69 #define QED_MIN_DPIS            (4)
70 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
71 
72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
73 			   struct qed_ptt *p_ptt, enum BAR_ID bar_id)
74 {
75 	u32 bar_reg = (bar_id == BAR_ID_0 ?
76 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
77 	u32 val;
78 
79 	if (IS_VF(p_hwfn->cdev))
80 		return qed_vf_hw_bar_size(p_hwfn, bar_id);
81 
82 	val = qed_rd(p_hwfn, p_ptt, bar_reg);
83 	if (val)
84 		return 1 << (val + 15);
85 
86 	/* Old MFW initialized above registered only conditionally */
87 	if (p_hwfn->cdev->num_hwfns > 1) {
88 		DP_INFO(p_hwfn,
89 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
90 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
91 	} else {
92 		DP_INFO(p_hwfn,
93 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
94 			return 512 * 1024;
95 	}
96 }
97 
98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
99 {
100 	u32 i;
101 
102 	cdev->dp_level = dp_level;
103 	cdev->dp_module = dp_module;
104 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
105 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
106 
107 		p_hwfn->dp_level = dp_level;
108 		p_hwfn->dp_module = dp_module;
109 	}
110 }
111 
112 void qed_init_struct(struct qed_dev *cdev)
113 {
114 	u8 i;
115 
116 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
118 
119 		p_hwfn->cdev = cdev;
120 		p_hwfn->my_id = i;
121 		p_hwfn->b_active = false;
122 
123 		mutex_init(&p_hwfn->dmae_info.mutex);
124 	}
125 
126 	/* hwfn 0 is always active */
127 	cdev->hwfns[0].b_active = true;
128 
129 	/* set the default cache alignment to 128 */
130 	cdev->cache_shift = 7;
131 }
132 
133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
134 {
135 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
136 
137 	kfree(qm_info->qm_pq_params);
138 	qm_info->qm_pq_params = NULL;
139 	kfree(qm_info->qm_vport_params);
140 	qm_info->qm_vport_params = NULL;
141 	kfree(qm_info->qm_port_params);
142 	qm_info->qm_port_params = NULL;
143 	kfree(qm_info->wfq_data);
144 	qm_info->wfq_data = NULL;
145 }
146 
147 void qed_resc_free(struct qed_dev *cdev)
148 {
149 	int i;
150 
151 	if (IS_VF(cdev)) {
152 		for_each_hwfn(cdev, i)
153 			qed_l2_free(&cdev->hwfns[i]);
154 		return;
155 	}
156 
157 	kfree(cdev->fw_data);
158 	cdev->fw_data = NULL;
159 
160 	kfree(cdev->reset_stats);
161 	cdev->reset_stats = NULL;
162 
163 	for_each_hwfn(cdev, i) {
164 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
165 
166 		qed_cxt_mngr_free(p_hwfn);
167 		qed_qm_info_free(p_hwfn);
168 		qed_spq_free(p_hwfn);
169 		qed_eq_free(p_hwfn);
170 		qed_consq_free(p_hwfn);
171 		qed_int_free(p_hwfn);
172 #ifdef CONFIG_QED_LL2
173 		qed_ll2_free(p_hwfn);
174 #endif
175 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
176 			qed_fcoe_free(p_hwfn);
177 
178 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
179 			qed_iscsi_free(p_hwfn);
180 			qed_ooo_free(p_hwfn);
181 		}
182 		qed_iov_free(p_hwfn);
183 		qed_l2_free(p_hwfn);
184 		qed_dmae_info_free(p_hwfn);
185 		qed_dcbx_info_free(p_hwfn);
186 	}
187 }
188 
189 /******************** QM initialization *******************/
190 #define ACTIVE_TCS_BMAP 0x9f
191 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
192 
193 /* determines the physical queue flags for a given PF. */
194 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
195 {
196 	u32 flags;
197 
198 	/* common flags */
199 	flags = PQ_FLAGS_LB;
200 
201 	/* feature flags */
202 	if (IS_QED_SRIOV(p_hwfn->cdev))
203 		flags |= PQ_FLAGS_VFS;
204 
205 	/* protocol flags */
206 	switch (p_hwfn->hw_info.personality) {
207 	case QED_PCI_ETH:
208 		flags |= PQ_FLAGS_MCOS;
209 		break;
210 	case QED_PCI_FCOE:
211 		flags |= PQ_FLAGS_OFLD;
212 		break;
213 	case QED_PCI_ISCSI:
214 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
215 		break;
216 	case QED_PCI_ETH_ROCE:
217 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
218 		break;
219 	case QED_PCI_ETH_IWARP:
220 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
221 		    PQ_FLAGS_OFLD;
222 		break;
223 	default:
224 		DP_ERR(p_hwfn,
225 		       "unknown personality %d\n", p_hwfn->hw_info.personality);
226 		return 0;
227 	}
228 
229 	return flags;
230 }
231 
232 /* Getters for resource amounts necessary for qm initialization */
233 u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
234 {
235 	return p_hwfn->hw_info.num_hw_tc;
236 }
237 
238 u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
239 {
240 	return IS_QED_SRIOV(p_hwfn->cdev) ?
241 	       p_hwfn->cdev->p_iov_info->total_vfs : 0;
242 }
243 
244 #define NUM_DEFAULT_RLS 1
245 
246 u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
247 {
248 	u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
249 
250 	/* num RLs can't exceed resource amount of rls or vports */
251 	num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
252 				 RESC_NUM(p_hwfn, QED_VPORT));
253 
254 	/* Make sure after we reserve there's something left */
255 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
256 		return 0;
257 
258 	/* subtract rls necessary for VFs and one default one for the PF */
259 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
260 
261 	return num_pf_rls;
262 }
263 
264 u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
265 {
266 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
267 
268 	/* all pqs share the same vport, except for vfs and pf_rl pqs */
269 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
270 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
271 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
272 	       qed_init_qm_get_num_vfs(p_hwfn) + 1;
273 }
274 
275 /* calc amount of PQs according to the requested flags */
276 u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
277 {
278 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
279 
280 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
281 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
282 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
283 	       qed_init_qm_get_num_tcs(p_hwfn) +
284 	       (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
285 	       (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) +
286 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
287 	       (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
288 }
289 
290 /* initialize the top level QM params */
291 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
292 {
293 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
294 	bool four_port;
295 
296 	/* pq and vport bases for this PF */
297 	qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
298 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
299 
300 	/* rate limiting and weighted fair queueing are always enabled */
301 	qm_info->vport_rl_en = true;
302 	qm_info->vport_wfq_en = true;
303 
304 	/* TC config is different for AH 4 port */
305 	four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
306 
307 	/* in AH 4 port we have fewer TCs per port */
308 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
309 						     NUM_OF_PHYS_TCS;
310 
311 	/* unless MFW indicated otherwise, ooo_tc == 3 for
312 	 * AH 4-port and 4 otherwise.
313 	 */
314 	if (!qm_info->ooo_tc)
315 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
316 					      DCBX_TCP_OOO_TC;
317 }
318 
319 /* initialize qm vport params */
320 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
321 {
322 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
323 	u8 i;
324 
325 	/* all vports participate in weighted fair queueing */
326 	for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
327 		qm_info->qm_vport_params[i].vport_wfq = 1;
328 }
329 
330 /* initialize qm port params */
331 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
332 {
333 	/* Initialize qm port parameters */
334 	u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
335 
336 	/* indicate how ooo and high pri traffic is dealt with */
337 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
338 			  ACTIVE_TCS_BMAP_4PORT_K2 :
339 			  ACTIVE_TCS_BMAP;
340 
341 	for (i = 0; i < num_ports; i++) {
342 		struct init_qm_port_params *p_qm_port =
343 		    &p_hwfn->qm_info.qm_port_params[i];
344 
345 		p_qm_port->active = 1;
346 		p_qm_port->active_phys_tcs = active_phys_tcs;
347 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
348 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
349 	}
350 }
351 
352 /* Reset the params which must be reset for qm init. QM init may be called as
353  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
354  * params may be affected by the init but would simply recalculate to the same
355  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
356  * affected as these amounts stay the same.
357  */
358 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
359 {
360 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
361 
362 	qm_info->num_pqs = 0;
363 	qm_info->num_vports = 0;
364 	qm_info->num_pf_rls = 0;
365 	qm_info->num_vf_pqs = 0;
366 	qm_info->first_vf_pq = 0;
367 	qm_info->first_mcos_pq = 0;
368 	qm_info->first_rl_pq = 0;
369 }
370 
371 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
372 {
373 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
374 
375 	qm_info->num_vports++;
376 
377 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
378 		DP_ERR(p_hwfn,
379 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
380 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
381 }
382 
383 /* initialize a single pq and manage qm_info resources accounting.
384  * The pq_init_flags param determines whether the PQ is rate limited
385  * (for VF or PF) and whether a new vport is allocated to the pq or not
386  * (i.e. vport will be shared).
387  */
388 
389 /* flags for pq init */
390 #define PQ_INIT_SHARE_VPORT     (1 << 0)
391 #define PQ_INIT_PF_RL           (1 << 1)
392 #define PQ_INIT_VF_RL           (1 << 2)
393 
394 /* defines for pq init */
395 #define PQ_INIT_DEFAULT_WRR_GROUP       1
396 #define PQ_INIT_DEFAULT_TC              0
397 #define PQ_INIT_OFLD_TC                 (p_hwfn->hw_info.offload_tc)
398 
399 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
400 			   struct qed_qm_info *qm_info,
401 			   u8 tc, u32 pq_init_flags)
402 {
403 	u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
404 
405 	if (pq_idx > max_pq)
406 		DP_ERR(p_hwfn,
407 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
408 
409 	/* init pq params */
410 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
411 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
412 	    qm_info->num_vports;
413 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
414 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
415 	qm_info->qm_pq_params[pq_idx].rl_valid =
416 	    (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
417 
418 	/* qm params accounting */
419 	qm_info->num_pqs++;
420 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
421 		qm_info->num_vports++;
422 
423 	if (pq_init_flags & PQ_INIT_PF_RL)
424 		qm_info->num_pf_rls++;
425 
426 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
427 		DP_ERR(p_hwfn,
428 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
429 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
430 
431 	if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
432 		DP_ERR(p_hwfn,
433 		       "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
434 		       qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
435 }
436 
437 /* get pq index according to PQ_FLAGS */
438 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
439 					   u32 pq_flags)
440 {
441 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
442 
443 	/* Can't have multiple flags set here */
444 	if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
445 		goto err;
446 
447 	switch (pq_flags) {
448 	case PQ_FLAGS_RLS:
449 		return &qm_info->first_rl_pq;
450 	case PQ_FLAGS_MCOS:
451 		return &qm_info->first_mcos_pq;
452 	case PQ_FLAGS_LB:
453 		return &qm_info->pure_lb_pq;
454 	case PQ_FLAGS_OOO:
455 		return &qm_info->ooo_pq;
456 	case PQ_FLAGS_ACK:
457 		return &qm_info->pure_ack_pq;
458 	case PQ_FLAGS_OFLD:
459 		return &qm_info->offload_pq;
460 	case PQ_FLAGS_LLT:
461 		return &qm_info->low_latency_pq;
462 	case PQ_FLAGS_VFS:
463 		return &qm_info->first_vf_pq;
464 	default:
465 		goto err;
466 	}
467 
468 err:
469 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
470 	return NULL;
471 }
472 
473 /* save pq index in qm info */
474 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
475 				u32 pq_flags, u16 pq_val)
476 {
477 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
478 
479 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
480 }
481 
482 /* get tx pq index, with the PQ TX base already set (ready for context init) */
483 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
484 {
485 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
486 
487 	return *base_pq_idx + CM_TX_PQ_BASE;
488 }
489 
490 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
491 {
492 	u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
493 
494 	if (tc > max_tc)
495 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
496 
497 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
498 }
499 
500 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
501 {
502 	u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
503 
504 	if (vf > max_vf)
505 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
506 
507 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
508 }
509 
510 u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl)
511 {
512 	u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn);
513 
514 	if (rl > max_rl)
515 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
516 
517 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
518 }
519 
520 /* Functions for creating specific types of pqs */
521 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
522 {
523 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
524 
525 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
526 		return;
527 
528 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
529 	qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
530 }
531 
532 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
533 {
534 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
535 
536 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
537 		return;
538 
539 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
540 	qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
541 }
542 
543 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
544 {
545 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
546 
547 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
548 		return;
549 
550 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
551 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
552 }
553 
554 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
555 {
556 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
557 
558 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
559 		return;
560 
561 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
562 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
563 }
564 
565 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
566 {
567 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
568 
569 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
570 		return;
571 
572 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
573 	qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
574 }
575 
576 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
577 {
578 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
579 	u8 tc_idx;
580 
581 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
582 		return;
583 
584 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
585 	for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
586 		qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
587 }
588 
589 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
590 {
591 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
592 	u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
593 
594 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
595 		return;
596 
597 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
598 	qm_info->num_vf_pqs = num_vfs;
599 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
600 		qed_init_qm_pq(p_hwfn,
601 			       qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
602 }
603 
604 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
605 {
606 	u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
607 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
608 
609 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
610 		return;
611 
612 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
613 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
614 		qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
615 }
616 
617 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
618 {
619 	/* rate limited pqs, must come first (FW assumption) */
620 	qed_init_qm_rl_pqs(p_hwfn);
621 
622 	/* pqs for multi cos */
623 	qed_init_qm_mcos_pqs(p_hwfn);
624 
625 	/* pure loopback pq */
626 	qed_init_qm_lb_pq(p_hwfn);
627 
628 	/* out of order pq */
629 	qed_init_qm_ooo_pq(p_hwfn);
630 
631 	/* pure ack pq */
632 	qed_init_qm_pure_ack_pq(p_hwfn);
633 
634 	/* pq for offloaded protocol */
635 	qed_init_qm_offload_pq(p_hwfn);
636 
637 	/* low latency pq */
638 	qed_init_qm_low_latency_pq(p_hwfn);
639 
640 	/* done sharing vports */
641 	qed_init_qm_advance_vport(p_hwfn);
642 
643 	/* pqs for vfs */
644 	qed_init_qm_vf_pqs(p_hwfn);
645 }
646 
647 /* compare values of getters against resources amounts */
648 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
649 {
650 	if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
651 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
652 		return -EINVAL;
653 	}
654 
655 	if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) {
656 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
657 		return -EINVAL;
658 	}
659 
660 	return 0;
661 }
662 
663 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
664 {
665 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
666 	struct init_qm_vport_params *vport;
667 	struct init_qm_port_params *port;
668 	struct init_qm_pq_params *pq;
669 	int i, tc;
670 
671 	/* top level params */
672 	DP_VERBOSE(p_hwfn,
673 		   NETIF_MSG_HW,
674 		   "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
675 		   qm_info->start_pq,
676 		   qm_info->start_vport,
677 		   qm_info->pure_lb_pq,
678 		   qm_info->offload_pq, qm_info->pure_ack_pq);
679 	DP_VERBOSE(p_hwfn,
680 		   NETIF_MSG_HW,
681 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
682 		   qm_info->ooo_pq,
683 		   qm_info->first_vf_pq,
684 		   qm_info->num_pqs,
685 		   qm_info->num_vf_pqs,
686 		   qm_info->num_vports, qm_info->max_phys_tcs_per_port);
687 	DP_VERBOSE(p_hwfn,
688 		   NETIF_MSG_HW,
689 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
690 		   qm_info->pf_rl_en,
691 		   qm_info->pf_wfq_en,
692 		   qm_info->vport_rl_en,
693 		   qm_info->vport_wfq_en,
694 		   qm_info->pf_wfq,
695 		   qm_info->pf_rl,
696 		   qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
697 
698 	/* port table */
699 	for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
700 		port = &(qm_info->qm_port_params[i]);
701 		DP_VERBOSE(p_hwfn,
702 			   NETIF_MSG_HW,
703 			   "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
704 			   i,
705 			   port->active,
706 			   port->active_phys_tcs,
707 			   port->num_pbf_cmd_lines,
708 			   port->num_btb_blocks, port->reserved);
709 	}
710 
711 	/* vport table */
712 	for (i = 0; i < qm_info->num_vports; i++) {
713 		vport = &(qm_info->qm_vport_params[i]);
714 		DP_VERBOSE(p_hwfn,
715 			   NETIF_MSG_HW,
716 			   "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
717 			   qm_info->start_vport + i,
718 			   vport->vport_rl, vport->vport_wfq);
719 		for (tc = 0; tc < NUM_OF_TCS; tc++)
720 			DP_VERBOSE(p_hwfn,
721 				   NETIF_MSG_HW,
722 				   "%d ", vport->first_tx_pq_id[tc]);
723 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
724 	}
725 
726 	/* pq table */
727 	for (i = 0; i < qm_info->num_pqs; i++) {
728 		pq = &(qm_info->qm_pq_params[i]);
729 		DP_VERBOSE(p_hwfn,
730 			   NETIF_MSG_HW,
731 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
732 			   qm_info->start_pq + i,
733 			   pq->port_id,
734 			   pq->vport_id,
735 			   pq->tc_id, pq->wrr_group, pq->rl_valid);
736 	}
737 }
738 
739 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
740 {
741 	/* reset params required for init run */
742 	qed_init_qm_reset_params(p_hwfn);
743 
744 	/* init QM top level params */
745 	qed_init_qm_params(p_hwfn);
746 
747 	/* init QM port params */
748 	qed_init_qm_port_params(p_hwfn);
749 
750 	/* init QM vport params */
751 	qed_init_qm_vport_params(p_hwfn);
752 
753 	/* init QM physical queue params */
754 	qed_init_qm_pq_params(p_hwfn);
755 
756 	/* display all that init */
757 	qed_dp_init_qm_params(p_hwfn);
758 }
759 
760 /* This function reconfigures the QM pf on the fly.
761  * For this purpose we:
762  * 1. reconfigure the QM database
763  * 2. set new values to runtime array
764  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
765  * 4. activate init tool in QM_PF stage
766  * 5. send an sdm_qm_cmd through rbc interface to release the QM
767  */
768 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
769 {
770 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
771 	bool b_rc;
772 	int rc;
773 
774 	/* initialize qed's qm data structure */
775 	qed_init_qm_info(p_hwfn);
776 
777 	/* stop PF's qm queues */
778 	spin_lock_bh(&qm_lock);
779 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
780 				    qm_info->start_pq, qm_info->num_pqs);
781 	spin_unlock_bh(&qm_lock);
782 	if (!b_rc)
783 		return -EINVAL;
784 
785 	/* clear the QM_PF runtime phase leftovers from previous init */
786 	qed_init_clear_rt_data(p_hwfn);
787 
788 	/* prepare QM portion of runtime array */
789 	qed_qm_init_pf(p_hwfn, p_ptt, false);
790 
791 	/* activate init tool on runtime array */
792 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
793 			  p_hwfn->hw_info.hw_mode);
794 	if (rc)
795 		return rc;
796 
797 	/* start PF's qm queues */
798 	spin_lock_bh(&qm_lock);
799 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
800 				    qm_info->start_pq, qm_info->num_pqs);
801 	spin_unlock_bh(&qm_lock);
802 	if (!b_rc)
803 		return -EINVAL;
804 
805 	return 0;
806 }
807 
808 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
809 {
810 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
811 	int rc;
812 
813 	rc = qed_init_qm_sanity(p_hwfn);
814 	if (rc)
815 		goto alloc_err;
816 
817 	qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) *
818 					qed_init_qm_get_num_pqs(p_hwfn),
819 					GFP_KERNEL);
820 	if (!qm_info->qm_pq_params)
821 		goto alloc_err;
822 
823 	qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) *
824 					   qed_init_qm_get_num_vports(p_hwfn),
825 					   GFP_KERNEL);
826 	if (!qm_info->qm_vport_params)
827 		goto alloc_err;
828 
829 	qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) *
830 					  p_hwfn->cdev->num_ports_in_engine,
831 					  GFP_KERNEL);
832 	if (!qm_info->qm_port_params)
833 		goto alloc_err;
834 
835 	qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) *
836 				    qed_init_qm_get_num_vports(p_hwfn),
837 				    GFP_KERNEL);
838 	if (!qm_info->wfq_data)
839 		goto alloc_err;
840 
841 	return 0;
842 
843 alloc_err:
844 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
845 	qed_qm_info_free(p_hwfn);
846 	return -ENOMEM;
847 }
848 
849 int qed_resc_alloc(struct qed_dev *cdev)
850 {
851 	u32 rdma_tasks, excess_tasks;
852 	u32 line_count;
853 	int i, rc = 0;
854 
855 	if (IS_VF(cdev)) {
856 		for_each_hwfn(cdev, i) {
857 			rc = qed_l2_alloc(&cdev->hwfns[i]);
858 			if (rc)
859 				return rc;
860 		}
861 		return rc;
862 	}
863 
864 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
865 	if (!cdev->fw_data)
866 		return -ENOMEM;
867 
868 	for_each_hwfn(cdev, i) {
869 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
870 		u32 n_eqes, num_cons;
871 
872 		/* First allocate the context manager structure */
873 		rc = qed_cxt_mngr_alloc(p_hwfn);
874 		if (rc)
875 			goto alloc_err;
876 
877 		/* Set the HW cid/tid numbers (in the contest manager)
878 		 * Must be done prior to any further computations.
879 		 */
880 		rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
881 		if (rc)
882 			goto alloc_err;
883 
884 		rc = qed_alloc_qm_data(p_hwfn);
885 		if (rc)
886 			goto alloc_err;
887 
888 		/* init qm info */
889 		qed_init_qm_info(p_hwfn);
890 
891 		/* Compute the ILT client partition */
892 		rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
893 		if (rc) {
894 			DP_NOTICE(p_hwfn,
895 				  "too many ILT lines; re-computing with less lines\n");
896 			/* In case there are not enough ILT lines we reduce the
897 			 * number of RDMA tasks and re-compute.
898 			 */
899 			excess_tasks =
900 			    qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
901 			if (!excess_tasks)
902 				goto alloc_err;
903 
904 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
905 			rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
906 			if (rc)
907 				goto alloc_err;
908 
909 			rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
910 			if (rc) {
911 				DP_ERR(p_hwfn,
912 				       "failed ILT compute. Requested too many lines: %u\n",
913 				       line_count);
914 
915 				goto alloc_err;
916 			}
917 		}
918 
919 		/* CID map / ILT shadow table / T2
920 		 * The talbes sizes are determined by the computations above
921 		 */
922 		rc = qed_cxt_tables_alloc(p_hwfn);
923 		if (rc)
924 			goto alloc_err;
925 
926 		/* SPQ, must follow ILT because initializes SPQ context */
927 		rc = qed_spq_alloc(p_hwfn);
928 		if (rc)
929 			goto alloc_err;
930 
931 		/* SP status block allocation */
932 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
933 							 RESERVED_PTT_DPC);
934 
935 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
936 		if (rc)
937 			goto alloc_err;
938 
939 		rc = qed_iov_alloc(p_hwfn);
940 		if (rc)
941 			goto alloc_err;
942 
943 		/* EQ */
944 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
945 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
946 			enum protocol_type rdma_proto;
947 
948 			if (QED_IS_ROCE_PERSONALITY(p_hwfn))
949 				rdma_proto = PROTOCOLID_ROCE;
950 			else
951 				rdma_proto = PROTOCOLID_IWARP;
952 
953 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
954 							       rdma_proto,
955 							       NULL) * 2;
956 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
957 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
958 			num_cons =
959 			    qed_cxt_get_proto_cid_count(p_hwfn,
960 							PROTOCOLID_ISCSI,
961 							NULL);
962 			n_eqes += 2 * num_cons;
963 		}
964 
965 		if (n_eqes > 0xFFFF) {
966 			DP_ERR(p_hwfn,
967 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
968 			       n_eqes, 0xFFFF);
969 			goto alloc_no_mem;
970 		}
971 
972 		rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
973 		if (rc)
974 			goto alloc_err;
975 
976 		rc = qed_consq_alloc(p_hwfn);
977 		if (rc)
978 			goto alloc_err;
979 
980 		rc = qed_l2_alloc(p_hwfn);
981 		if (rc)
982 			goto alloc_err;
983 
984 #ifdef CONFIG_QED_LL2
985 		if (p_hwfn->using_ll2) {
986 			rc = qed_ll2_alloc(p_hwfn);
987 			if (rc)
988 				goto alloc_err;
989 		}
990 #endif
991 
992 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
993 			rc = qed_fcoe_alloc(p_hwfn);
994 			if (rc)
995 				goto alloc_err;
996 		}
997 
998 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
999 			rc = qed_iscsi_alloc(p_hwfn);
1000 			if (rc)
1001 				goto alloc_err;
1002 			rc = qed_ooo_alloc(p_hwfn);
1003 			if (rc)
1004 				goto alloc_err;
1005 		}
1006 
1007 		/* DMA info initialization */
1008 		rc = qed_dmae_info_alloc(p_hwfn);
1009 		if (rc)
1010 			goto alloc_err;
1011 
1012 		/* DCBX initialization */
1013 		rc = qed_dcbx_info_alloc(p_hwfn);
1014 		if (rc)
1015 			goto alloc_err;
1016 	}
1017 
1018 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
1019 	if (!cdev->reset_stats)
1020 		goto alloc_no_mem;
1021 
1022 	return 0;
1023 
1024 alloc_no_mem:
1025 	rc = -ENOMEM;
1026 alloc_err:
1027 	qed_resc_free(cdev);
1028 	return rc;
1029 }
1030 
1031 void qed_resc_setup(struct qed_dev *cdev)
1032 {
1033 	int i;
1034 
1035 	if (IS_VF(cdev)) {
1036 		for_each_hwfn(cdev, i)
1037 			qed_l2_setup(&cdev->hwfns[i]);
1038 		return;
1039 	}
1040 
1041 	for_each_hwfn(cdev, i) {
1042 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1043 
1044 		qed_cxt_mngr_setup(p_hwfn);
1045 		qed_spq_setup(p_hwfn);
1046 		qed_eq_setup(p_hwfn);
1047 		qed_consq_setup(p_hwfn);
1048 
1049 		/* Read shadow of current MFW mailbox */
1050 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1051 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1052 		       p_hwfn->mcp_info->mfw_mb_cur,
1053 		       p_hwfn->mcp_info->mfw_mb_length);
1054 
1055 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1056 
1057 		qed_l2_setup(p_hwfn);
1058 		qed_iov_setup(p_hwfn);
1059 #ifdef CONFIG_QED_LL2
1060 		if (p_hwfn->using_ll2)
1061 			qed_ll2_setup(p_hwfn);
1062 #endif
1063 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1064 			qed_fcoe_setup(p_hwfn);
1065 
1066 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1067 			qed_iscsi_setup(p_hwfn);
1068 			qed_ooo_setup(p_hwfn);
1069 		}
1070 	}
1071 }
1072 
1073 #define FINAL_CLEANUP_POLL_CNT          (100)
1074 #define FINAL_CLEANUP_POLL_TIME         (10)
1075 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
1076 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
1077 {
1078 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1079 	int rc = -EBUSY;
1080 
1081 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1082 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1083 
1084 	if (is_vf)
1085 		id += 0x10;
1086 
1087 	command |= X_FINAL_CLEANUP_AGG_INT <<
1088 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1089 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1090 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1091 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1092 
1093 	/* Make sure notification is not set before initiating final cleanup */
1094 	if (REG_RD(p_hwfn, addr)) {
1095 		DP_NOTICE(p_hwfn,
1096 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1097 		REG_WR(p_hwfn, addr, 0);
1098 	}
1099 
1100 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1101 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1102 		   id, command);
1103 
1104 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1105 
1106 	/* Poll until completion */
1107 	while (!REG_RD(p_hwfn, addr) && count--)
1108 		msleep(FINAL_CLEANUP_POLL_TIME);
1109 
1110 	if (REG_RD(p_hwfn, addr))
1111 		rc = 0;
1112 	else
1113 		DP_NOTICE(p_hwfn,
1114 			  "Failed to receive FW final cleanup notification\n");
1115 
1116 	/* Cleanup afterwards */
1117 	REG_WR(p_hwfn, addr, 0);
1118 
1119 	return rc;
1120 }
1121 
1122 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
1123 {
1124 	int hw_mode = 0;
1125 
1126 	if (QED_IS_BB_B0(p_hwfn->cdev)) {
1127 		hw_mode |= 1 << MODE_BB;
1128 	} else if (QED_IS_AH(p_hwfn->cdev)) {
1129 		hw_mode |= 1 << MODE_K2;
1130 	} else {
1131 		DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
1132 			  p_hwfn->cdev->type);
1133 		return -EINVAL;
1134 	}
1135 
1136 	switch (p_hwfn->cdev->num_ports_in_engine) {
1137 	case 1:
1138 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1139 		break;
1140 	case 2:
1141 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1142 		break;
1143 	case 4:
1144 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1145 		break;
1146 	default:
1147 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
1148 			  p_hwfn->cdev->num_ports_in_engine);
1149 		return -EINVAL;
1150 	}
1151 
1152 	switch (p_hwfn->cdev->mf_mode) {
1153 	case QED_MF_DEFAULT:
1154 	case QED_MF_NPAR:
1155 		hw_mode |= 1 << MODE_MF_SI;
1156 		break;
1157 	case QED_MF_OVLAN:
1158 		hw_mode |= 1 << MODE_MF_SD;
1159 		break;
1160 	default:
1161 		DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
1162 		hw_mode |= 1 << MODE_MF_SI;
1163 	}
1164 
1165 	hw_mode |= 1 << MODE_ASIC;
1166 
1167 	if (p_hwfn->cdev->num_hwfns > 1)
1168 		hw_mode |= 1 << MODE_100G;
1169 
1170 	p_hwfn->hw_info.hw_mode = hw_mode;
1171 
1172 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
1173 		   "Configuring function for hw_mode: 0x%08x\n",
1174 		   p_hwfn->hw_info.hw_mode);
1175 
1176 	return 0;
1177 }
1178 
1179 /* Init run time data for all PFs on an engine. */
1180 static void qed_init_cau_rt_data(struct qed_dev *cdev)
1181 {
1182 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1183 	int i, igu_sb_id;
1184 
1185 	for_each_hwfn(cdev, i) {
1186 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1187 		struct qed_igu_info *p_igu_info;
1188 		struct qed_igu_block *p_block;
1189 		struct cau_sb_entry sb_entry;
1190 
1191 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1192 
1193 		for (igu_sb_id = 0;
1194 		     igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
1195 			p_block = &p_igu_info->entry[igu_sb_id];
1196 
1197 			if (!p_block->is_pf)
1198 				continue;
1199 
1200 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
1201 					      p_block->function_id, 0, 0);
1202 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1203 					 sb_entry);
1204 		}
1205 	}
1206 }
1207 
1208 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
1209 				     struct qed_ptt *p_ptt)
1210 {
1211 	u32 val, wr_mbs, cache_line_size;
1212 
1213 	val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1214 	switch (val) {
1215 	case 0:
1216 		wr_mbs = 128;
1217 		break;
1218 	case 1:
1219 		wr_mbs = 256;
1220 		break;
1221 	case 2:
1222 		wr_mbs = 512;
1223 		break;
1224 	default:
1225 		DP_INFO(p_hwfn,
1226 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1227 			val);
1228 		return;
1229 	}
1230 
1231 	cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
1232 	switch (cache_line_size) {
1233 	case 32:
1234 		val = 0;
1235 		break;
1236 	case 64:
1237 		val = 1;
1238 		break;
1239 	case 128:
1240 		val = 2;
1241 		break;
1242 	case 256:
1243 		val = 3;
1244 		break;
1245 	default:
1246 		DP_INFO(p_hwfn,
1247 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1248 			cache_line_size);
1249 	}
1250 
1251 	if (L1_CACHE_BYTES > wr_mbs)
1252 		DP_INFO(p_hwfn,
1253 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1254 			L1_CACHE_BYTES, wr_mbs);
1255 
1256 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1257 	if (val > 0) {
1258 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
1259 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
1260 	}
1261 }
1262 
1263 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
1264 			      struct qed_ptt *p_ptt, int hw_mode)
1265 {
1266 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1267 	struct qed_qm_common_rt_init_params params;
1268 	struct qed_dev *cdev = p_hwfn->cdev;
1269 	u8 vf_id, max_num_vfs;
1270 	u16 num_pfs, pf_id;
1271 	u32 concrete_fid;
1272 	int rc = 0;
1273 
1274 	qed_init_cau_rt_data(cdev);
1275 
1276 	/* Program GTT windows */
1277 	qed_gtt_init(p_hwfn);
1278 
1279 	if (p_hwfn->mcp_info) {
1280 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1281 			qm_info->pf_rl_en = true;
1282 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1283 			qm_info->pf_wfq_en = true;
1284 	}
1285 
1286 	memset(&params, 0, sizeof(params));
1287 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
1288 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
1289 	params.pf_rl_en = qm_info->pf_rl_en;
1290 	params.pf_wfq_en = qm_info->pf_wfq_en;
1291 	params.vport_rl_en = qm_info->vport_rl_en;
1292 	params.vport_wfq_en = qm_info->vport_wfq_en;
1293 	params.port_params = qm_info->qm_port_params;
1294 
1295 	qed_qm_common_rt_init(p_hwfn, &params);
1296 
1297 	qed_cxt_hw_init_common(p_hwfn);
1298 
1299 	qed_init_cache_line_size(p_hwfn, p_ptt);
1300 
1301 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1302 	if (rc)
1303 		return rc;
1304 
1305 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1306 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1307 
1308 	if (QED_IS_BB(p_hwfn->cdev)) {
1309 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
1310 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1311 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
1312 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1313 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1314 		}
1315 		/* pretend to original PF */
1316 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1317 	}
1318 
1319 	max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1320 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1321 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
1322 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
1323 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1324 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1325 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1326 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1327 	}
1328 	/* pretend to original PF */
1329 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1330 
1331 	return rc;
1332 }
1333 
1334 static int
1335 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
1336 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1337 {
1338 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
1339 	u32 min_dpis;
1340 	u32 n_wids;
1341 
1342 	/* Calculate DPI size */
1343 	n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
1344 	dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
1345 	dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1346 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
1347 	dpi_count = pwm_region_size / dpi_page_size;
1348 
1349 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1350 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
1351 
1352 	p_hwfn->dpi_size = dpi_page_size;
1353 	p_hwfn->dpi_count = dpi_count;
1354 
1355 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1356 
1357 	if (dpi_count < min_dpis)
1358 		return -EINVAL;
1359 
1360 	return 0;
1361 }
1362 
1363 enum QED_ROCE_EDPM_MODE {
1364 	QED_ROCE_EDPM_MODE_ENABLE = 0,
1365 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
1366 	QED_ROCE_EDPM_MODE_DISABLE = 2,
1367 };
1368 
1369 static int
1370 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1371 {
1372 	u32 pwm_regsize, norm_regsize;
1373 	u32 non_pwm_conn, min_addr_reg1;
1374 	u32 db_bar_size, n_cpus = 1;
1375 	u32 roce_edpm_mode;
1376 	u32 pf_dems_shift;
1377 	int rc = 0;
1378 	u8 cond;
1379 
1380 	db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
1381 	if (p_hwfn->cdev->num_hwfns > 1)
1382 		db_bar_size /= 2;
1383 
1384 	/* Calculate doorbell regions */
1385 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1386 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1387 						   NULL) +
1388 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
1389 						   NULL);
1390 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
1391 	min_addr_reg1 = norm_regsize / 4096;
1392 	pwm_regsize = db_bar_size - norm_regsize;
1393 
1394 	/* Check that the normal and PWM sizes are valid */
1395 	if (db_bar_size < norm_regsize) {
1396 		DP_ERR(p_hwfn->cdev,
1397 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1398 		       db_bar_size, norm_regsize);
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (pwm_regsize < QED_MIN_PWM_REGION) {
1403 		DP_ERR(p_hwfn->cdev,
1404 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1405 		       pwm_regsize,
1406 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
1407 		return -EINVAL;
1408 	}
1409 
1410 	/* Calculate number of DPIs */
1411 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1412 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
1413 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
1414 		/* Either EDPM is mandatory, or we are attempting to allocate a
1415 		 * WID per CPU.
1416 		 */
1417 		n_cpus = num_present_cpus();
1418 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1419 	}
1420 
1421 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
1422 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
1423 	if (cond || p_hwfn->dcbx_no_edpm) {
1424 		/* Either EDPM is disabled from user configuration, or it is
1425 		 * disabled via DCBx, or it is not mandatory and we failed to
1426 		 * allocated a WID per CPU.
1427 		 */
1428 		n_cpus = 1;
1429 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1430 
1431 		if (cond)
1432 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
1433 	}
1434 
1435 	p_hwfn->wid_count = (u16) n_cpus;
1436 
1437 	DP_INFO(p_hwfn,
1438 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1439 		norm_regsize,
1440 		pwm_regsize,
1441 		p_hwfn->dpi_size,
1442 		p_hwfn->dpi_count,
1443 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1444 		"disabled" : "enabled");
1445 
1446 	if (rc) {
1447 		DP_ERR(p_hwfn,
1448 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
1449 		       p_hwfn->dpi_count,
1450 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
1451 		return -EINVAL;
1452 	}
1453 
1454 	p_hwfn->dpi_start_offset = norm_regsize;
1455 
1456 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1457 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
1458 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1459 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1460 
1461 	return 0;
1462 }
1463 
1464 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
1465 			    struct qed_ptt *p_ptt, int hw_mode)
1466 {
1467 	int rc = 0;
1468 
1469 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
1470 	if (rc)
1471 		return rc;
1472 
1473 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
1474 
1475 	return 0;
1476 }
1477 
1478 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
1479 			  struct qed_ptt *p_ptt,
1480 			  struct qed_tunnel_info *p_tunn,
1481 			  int hw_mode,
1482 			  bool b_hw_start,
1483 			  enum qed_int_mode int_mode,
1484 			  bool allow_npar_tx_switch)
1485 {
1486 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1487 	int rc = 0;
1488 
1489 	if (p_hwfn->mcp_info) {
1490 		struct qed_mcp_function_info *p_info;
1491 
1492 		p_info = &p_hwfn->mcp_info->func_info;
1493 		if (p_info->bandwidth_min)
1494 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1495 
1496 		/* Update rate limit once we'll actually have a link */
1497 		p_hwfn->qm_info.pf_rl = 100000;
1498 	}
1499 
1500 	qed_cxt_hw_init_pf(p_hwfn, p_ptt);
1501 
1502 	qed_int_igu_init_rt(p_hwfn);
1503 
1504 	/* Set VLAN in NIG if needed */
1505 	if (hw_mode & BIT(MODE_MF_SD)) {
1506 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1507 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1508 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1509 			     p_hwfn->hw_info.ovlan);
1510 	}
1511 
1512 	/* Enable classification by MAC if needed */
1513 	if (hw_mode & BIT(MODE_MF_SI)) {
1514 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
1515 			   "Configuring TAGMAC_CLS_TYPE\n");
1516 		STORE_RT_REG(p_hwfn,
1517 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1518 	}
1519 
1520 	/* Protocol Configuration */
1521 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1522 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
1523 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1524 		     (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
1525 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1526 
1527 	/* Cleanup chip from previous driver if such remains exist */
1528 	rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1529 	if (rc)
1530 		return rc;
1531 
1532 	/* Sanity check before the PF init sequence that uses DMAE */
1533 	rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
1534 	if (rc)
1535 		return rc;
1536 
1537 	/* PF Init sequence */
1538 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1539 	if (rc)
1540 		return rc;
1541 
1542 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1543 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1544 	if (rc)
1545 		return rc;
1546 
1547 	/* Pure runtime initializations - directly to the HW  */
1548 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1549 
1550 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1551 	if (rc)
1552 		return rc;
1553 
1554 	if (b_hw_start) {
1555 		/* enable interrupts */
1556 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1557 
1558 		/* send function start command */
1559 		rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
1560 				     p_hwfn->cdev->mf_mode,
1561 				     allow_npar_tx_switch);
1562 		if (rc) {
1563 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1564 			return rc;
1565 		}
1566 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
1567 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
1568 			qed_wr(p_hwfn, p_ptt,
1569 			       PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1570 			       0x100);
1571 		}
1572 	}
1573 	return rc;
1574 }
1575 
1576 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
1577 			       struct qed_ptt *p_ptt,
1578 			       u8 enable)
1579 {
1580 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1581 
1582 	/* Change PF in PXP */
1583 	qed_wr(p_hwfn, p_ptt,
1584 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1585 
1586 	/* wait until value is set - try for 1 second every 50us */
1587 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1588 		val = qed_rd(p_hwfn, p_ptt,
1589 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1590 		if (val == set_val)
1591 			break;
1592 
1593 		usleep_range(50, 60);
1594 	}
1595 
1596 	if (val != set_val) {
1597 		DP_NOTICE(p_hwfn,
1598 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1599 		return -EAGAIN;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
1606 				struct qed_ptt *p_main_ptt)
1607 {
1608 	/* Read shadow of current MFW mailbox */
1609 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
1610 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1611 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
1612 }
1613 
1614 static void
1615 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
1616 			 struct qed_drv_load_params *p_drv_load)
1617 {
1618 	memset(p_load_req, 0, sizeof(*p_load_req));
1619 
1620 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
1621 			       QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
1622 	p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
1623 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
1624 	p_load_req->override_force_load = p_drv_load->override_force_load;
1625 }
1626 
1627 static int qed_vf_start(struct qed_hwfn *p_hwfn,
1628 			struct qed_hw_init_params *p_params)
1629 {
1630 	if (p_params->p_tunn) {
1631 		qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
1632 		qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
1633 	}
1634 
1635 	p_hwfn->b_int_enabled = true;
1636 
1637 	return 0;
1638 }
1639 
1640 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
1641 {
1642 	struct qed_load_req_params load_req_params;
1643 	u32 load_code, param, drv_mb_param;
1644 	bool b_default_mtu = true;
1645 	struct qed_hwfn *p_hwfn;
1646 	int rc = 0, mfw_rc, i;
1647 
1648 	if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
1649 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
1650 		return -EINVAL;
1651 	}
1652 
1653 	if (IS_PF(cdev)) {
1654 		rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
1655 		if (rc)
1656 			return rc;
1657 	}
1658 
1659 	for_each_hwfn(cdev, i) {
1660 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1661 
1662 		/* If management didn't provide a default, set one of our own */
1663 		if (!p_hwfn->hw_info.mtu) {
1664 			p_hwfn->hw_info.mtu = 1500;
1665 			b_default_mtu = false;
1666 		}
1667 
1668 		if (IS_VF(cdev)) {
1669 			qed_vf_start(p_hwfn, p_params);
1670 			continue;
1671 		}
1672 
1673 		/* Enable DMAE in PXP */
1674 		rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1675 
1676 		rc = qed_calc_hw_mode(p_hwfn);
1677 		if (rc)
1678 			return rc;
1679 
1680 		qed_fill_load_req_params(&load_req_params,
1681 					 p_params->p_drv_load_params);
1682 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
1683 				      &load_req_params);
1684 		if (rc) {
1685 			DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
1686 			return rc;
1687 		}
1688 
1689 		load_code = load_req_params.load_code;
1690 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
1691 			   "Load request was sent. Load code: 0x%x\n",
1692 			   load_code);
1693 
1694 		qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
1695 
1696 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1697 
1698 		p_hwfn->first_on_engine = (load_code ==
1699 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1700 
1701 		switch (load_code) {
1702 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1703 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1704 						p_hwfn->hw_info.hw_mode);
1705 			if (rc)
1706 				break;
1707 		/* Fall into */
1708 		case FW_MSG_CODE_DRV_LOAD_PORT:
1709 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1710 					      p_hwfn->hw_info.hw_mode);
1711 			if (rc)
1712 				break;
1713 
1714 		/* Fall into */
1715 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1716 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1717 					    p_params->p_tunn,
1718 					    p_hwfn->hw_info.hw_mode,
1719 					    p_params->b_hw_start,
1720 					    p_params->int_mode,
1721 					    p_params->allow_npar_tx_switch);
1722 			break;
1723 		default:
1724 			DP_NOTICE(p_hwfn,
1725 				  "Unexpected load code [0x%08x]", load_code);
1726 			rc = -EINVAL;
1727 			break;
1728 		}
1729 
1730 		if (rc)
1731 			DP_NOTICE(p_hwfn,
1732 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1733 				   load_code, rc);
1734 
1735 		/* ACK mfw regardless of success or failure of initialization */
1736 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1737 				     DRV_MSG_CODE_LOAD_DONE,
1738 				     0, &load_code, &param);
1739 		if (rc)
1740 			return rc;
1741 		if (mfw_rc) {
1742 			DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1743 			return mfw_rc;
1744 		}
1745 
1746 		/* Check if there is a DID mismatch between nvm-cfg/efuse */
1747 		if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
1748 			DP_NOTICE(p_hwfn,
1749 				  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
1750 
1751 		/* send DCBX attention request command */
1752 		DP_VERBOSE(p_hwfn,
1753 			   QED_MSG_DCB,
1754 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1755 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1756 				     DRV_MSG_CODE_SET_DCBX,
1757 				     1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1758 				     &load_code, &param);
1759 		if (mfw_rc) {
1760 			DP_NOTICE(p_hwfn,
1761 				  "Failed to send DCBX attention request\n");
1762 			return mfw_rc;
1763 		}
1764 
1765 		p_hwfn->hw_init_done = true;
1766 	}
1767 
1768 	if (IS_PF(cdev)) {
1769 		p_hwfn = QED_LEADING_HWFN(cdev);
1770 		drv_mb_param = STORM_FW_VERSION;
1771 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1772 				 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
1773 				 drv_mb_param, &load_code, &param);
1774 		if (rc)
1775 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
1776 
1777 		if (!b_default_mtu) {
1778 			rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
1779 						   p_hwfn->hw_info.mtu);
1780 			if (rc)
1781 				DP_INFO(p_hwfn,
1782 					"Failed to update default mtu\n");
1783 		}
1784 
1785 		rc = qed_mcp_ov_update_driver_state(p_hwfn,
1786 						    p_hwfn->p_main_ptt,
1787 						  QED_OV_DRIVER_STATE_DISABLED);
1788 		if (rc)
1789 			DP_INFO(p_hwfn, "Failed to update driver state\n");
1790 
1791 		rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
1792 					       QED_OV_ESWITCH_VEB);
1793 		if (rc)
1794 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 #define QED_HW_STOP_RETRY_LIMIT (10)
1801 static void qed_hw_timers_stop(struct qed_dev *cdev,
1802 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1803 {
1804 	int i;
1805 
1806 	/* close timers */
1807 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1808 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1809 
1810 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1811 		if ((!qed_rd(p_hwfn, p_ptt,
1812 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1813 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1814 			break;
1815 
1816 		/* Dependent on number of connection/tasks, possibly
1817 		 * 1ms sleep is required between polls
1818 		 */
1819 		usleep_range(1000, 2000);
1820 	}
1821 
1822 	if (i < QED_HW_STOP_RETRY_LIMIT)
1823 		return;
1824 
1825 	DP_NOTICE(p_hwfn,
1826 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1827 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1828 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1829 }
1830 
1831 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1832 {
1833 	int j;
1834 
1835 	for_each_hwfn(cdev, j) {
1836 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1837 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1838 
1839 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1840 	}
1841 }
1842 
1843 int qed_hw_stop(struct qed_dev *cdev)
1844 {
1845 	struct qed_hwfn *p_hwfn;
1846 	struct qed_ptt *p_ptt;
1847 	int rc, rc2 = 0;
1848 	int j;
1849 
1850 	for_each_hwfn(cdev, j) {
1851 		p_hwfn = &cdev->hwfns[j];
1852 		p_ptt = p_hwfn->p_main_ptt;
1853 
1854 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1855 
1856 		if (IS_VF(cdev)) {
1857 			qed_vf_pf_int_cleanup(p_hwfn);
1858 			rc = qed_vf_pf_reset(p_hwfn);
1859 			if (rc) {
1860 				DP_NOTICE(p_hwfn,
1861 					  "qed_vf_pf_reset failed. rc = %d.\n",
1862 					  rc);
1863 				rc2 = -EINVAL;
1864 			}
1865 			continue;
1866 		}
1867 
1868 		/* mark the hw as uninitialized... */
1869 		p_hwfn->hw_init_done = false;
1870 
1871 		/* Send unload command to MCP */
1872 		rc = qed_mcp_unload_req(p_hwfn, p_ptt);
1873 		if (rc) {
1874 			DP_NOTICE(p_hwfn,
1875 				  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
1876 				  rc);
1877 			rc2 = -EINVAL;
1878 		}
1879 
1880 		qed_slowpath_irq_sync(p_hwfn);
1881 
1882 		/* After this point no MFW attentions are expected, e.g. prevent
1883 		 * race between pf stop and dcbx pf update.
1884 		 */
1885 		rc = qed_sp_pf_stop(p_hwfn);
1886 		if (rc) {
1887 			DP_NOTICE(p_hwfn,
1888 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
1889 				  rc);
1890 			rc2 = -EINVAL;
1891 		}
1892 
1893 		qed_wr(p_hwfn, p_ptt,
1894 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1895 
1896 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1897 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1898 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1899 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1900 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1901 
1902 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1903 
1904 		/* Disable Attention Generation */
1905 		qed_int_igu_disable_int(p_hwfn, p_ptt);
1906 
1907 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1908 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1909 
1910 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1911 
1912 		/* Need to wait 1ms to guarantee SBs are cleared */
1913 		usleep_range(1000, 2000);
1914 
1915 		/* Disable PF in HW blocks */
1916 		qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1917 		qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
1918 
1919 		qed_mcp_unload_done(p_hwfn, p_ptt);
1920 		if (rc) {
1921 			DP_NOTICE(p_hwfn,
1922 				  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
1923 				  rc);
1924 			rc2 = -EINVAL;
1925 		}
1926 	}
1927 
1928 	if (IS_PF(cdev)) {
1929 		p_hwfn = QED_LEADING_HWFN(cdev);
1930 		p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
1931 
1932 		/* Disable DMAE in PXP - in CMT, this should only be done for
1933 		 * first hw-function, and only after all transactions have
1934 		 * stopped for all active hw-functions.
1935 		 */
1936 		rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false);
1937 		if (rc) {
1938 			DP_NOTICE(p_hwfn,
1939 				  "qed_change_pci_hwfn failed. rc = %d.\n", rc);
1940 			rc2 = -EINVAL;
1941 		}
1942 	}
1943 
1944 	return rc2;
1945 }
1946 
1947 int qed_hw_stop_fastpath(struct qed_dev *cdev)
1948 {
1949 	int j;
1950 
1951 	for_each_hwfn(cdev, j) {
1952 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1953 		struct qed_ptt *p_ptt;
1954 
1955 		if (IS_VF(cdev)) {
1956 			qed_vf_pf_int_cleanup(p_hwfn);
1957 			continue;
1958 		}
1959 		p_ptt = qed_ptt_acquire(p_hwfn);
1960 		if (!p_ptt)
1961 			return -EAGAIN;
1962 
1963 		DP_VERBOSE(p_hwfn,
1964 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
1965 
1966 		qed_wr(p_hwfn, p_ptt,
1967 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1968 
1969 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1970 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1971 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1972 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1973 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1974 
1975 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1976 
1977 		/* Need to wait 1ms to guarantee SBs are cleared */
1978 		usleep_range(1000, 2000);
1979 		qed_ptt_release(p_hwfn, p_ptt);
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1986 {
1987 	struct qed_ptt *p_ptt;
1988 
1989 	if (IS_VF(p_hwfn->cdev))
1990 		return 0;
1991 
1992 	p_ptt = qed_ptt_acquire(p_hwfn);
1993 	if (!p_ptt)
1994 		return -EAGAIN;
1995 
1996 	/* If roce info is allocated it means roce is initialized and should
1997 	 * be enabled in searcher.
1998 	 */
1999 	if (p_hwfn->p_rdma_info &&
2000 	    p_hwfn->b_rdma_enabled_in_prs)
2001 		qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
2002 
2003 	/* Re-open incoming traffic */
2004 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2005 	qed_ptt_release(p_hwfn, p_ptt);
2006 
2007 	return 0;
2008 }
2009 
2010 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2011 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
2012 {
2013 	qed_ptt_pool_free(p_hwfn);
2014 	kfree(p_hwfn->hw_info.p_igu_info);
2015 	p_hwfn->hw_info.p_igu_info = NULL;
2016 }
2017 
2018 /* Setup bar access */
2019 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
2020 {
2021 	/* clear indirect access */
2022 	if (QED_IS_AH(p_hwfn->cdev)) {
2023 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2024 		       PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
2025 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2026 		       PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
2027 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2028 		       PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
2029 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2030 		       PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
2031 	} else {
2032 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2033 		       PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2034 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2035 		       PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2036 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2037 		       PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2038 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2039 		       PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2040 	}
2041 
2042 	/* Clean Previous errors if such exist */
2043 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2044 	       PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2045 
2046 	/* enable internal target-read */
2047 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2048 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2049 }
2050 
2051 static void get_function_id(struct qed_hwfn *p_hwfn)
2052 {
2053 	/* ME Register */
2054 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
2055 						  PXP_PF_ME_OPAQUE_ADDR);
2056 
2057 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2058 
2059 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2060 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2061 				      PXP_CONCRETE_FID_PFID);
2062 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2063 				    PXP_CONCRETE_FID_PORT);
2064 
2065 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
2066 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2067 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2068 }
2069 
2070 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
2071 {
2072 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2073 	struct qed_sb_cnt_info sb_cnt;
2074 	u32 non_l2_sbs = 0;
2075 
2076 	memset(&sb_cnt, 0, sizeof(sb_cnt));
2077 	qed_int_get_num_sbs(p_hwfn, &sb_cnt);
2078 
2079 	if (IS_ENABLED(CONFIG_QED_RDMA) &&
2080 	    QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2081 		/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
2082 		 * the status blocks equally between L2 / RoCE but with
2083 		 * consideration as to how many l2 queues / cnqs we have.
2084 		 */
2085 		feat_num[QED_RDMA_CNQ] =
2086 			min_t(u32, sb_cnt.cnt / 2,
2087 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
2088 
2089 		non_l2_sbs = feat_num[QED_RDMA_CNQ];
2090 	}
2091 	if (QED_IS_L2_PERSONALITY(p_hwfn)) {
2092 		/* Start by allocating VF queues, then PF's */
2093 		feat_num[QED_VF_L2_QUE] = min_t(u32,
2094 						RESC_NUM(p_hwfn, QED_L2_QUEUE),
2095 						sb_cnt.iov_cnt);
2096 		feat_num[QED_PF_L2_QUE] = min_t(u32,
2097 						sb_cnt.cnt - non_l2_sbs,
2098 						RESC_NUM(p_hwfn,
2099 							 QED_L2_QUEUE) -
2100 						FEAT_NUM(p_hwfn,
2101 							 QED_VF_L2_QUE));
2102 	}
2103 
2104 	if (QED_IS_FCOE_PERSONALITY(p_hwfn))
2105 		feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
2106 					       RESC_NUM(p_hwfn,
2107 							QED_CMDQS_CQS));
2108 
2109 	if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
2110 		feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
2111 					       RESC_NUM(p_hwfn,
2112 							QED_CMDQS_CQS));
2113 	DP_VERBOSE(p_hwfn,
2114 		   NETIF_MSG_PROBE,
2115 		   "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
2116 		   (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
2117 		   (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
2118 		   (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
2119 		   (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
2120 		   (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
2121 		   (int)sb_cnt.cnt);
2122 }
2123 
2124 const char *qed_hw_get_resc_name(enum qed_resources res_id)
2125 {
2126 	switch (res_id) {
2127 	case QED_L2_QUEUE:
2128 		return "L2_QUEUE";
2129 	case QED_VPORT:
2130 		return "VPORT";
2131 	case QED_RSS_ENG:
2132 		return "RSS_ENG";
2133 	case QED_PQ:
2134 		return "PQ";
2135 	case QED_RL:
2136 		return "RL";
2137 	case QED_MAC:
2138 		return "MAC";
2139 	case QED_VLAN:
2140 		return "VLAN";
2141 	case QED_RDMA_CNQ_RAM:
2142 		return "RDMA_CNQ_RAM";
2143 	case QED_ILT:
2144 		return "ILT";
2145 	case QED_LL2_QUEUE:
2146 		return "LL2_QUEUE";
2147 	case QED_CMDQS_CQS:
2148 		return "CMDQS_CQS";
2149 	case QED_RDMA_STATS_QUEUE:
2150 		return "RDMA_STATS_QUEUE";
2151 	case QED_BDQ:
2152 		return "BDQ";
2153 	case QED_SB:
2154 		return "SB";
2155 	default:
2156 		return "UNKNOWN_RESOURCE";
2157 	}
2158 }
2159 
2160 static int
2161 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
2162 			    struct qed_ptt *p_ptt,
2163 			    enum qed_resources res_id,
2164 			    u32 resc_max_val, u32 *p_mcp_resp)
2165 {
2166 	int rc;
2167 
2168 	rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
2169 				      resc_max_val, p_mcp_resp);
2170 	if (rc) {
2171 		DP_NOTICE(p_hwfn,
2172 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2173 			  res_id, qed_hw_get_resc_name(res_id));
2174 		return rc;
2175 	}
2176 
2177 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2178 		DP_INFO(p_hwfn,
2179 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2180 			res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
2181 
2182 	return 0;
2183 }
2184 
2185 static int
2186 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2187 {
2188 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2189 	u32 resc_max_val, mcp_resp;
2190 	u8 res_id;
2191 	int rc;
2192 
2193 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2194 		switch (res_id) {
2195 		case QED_LL2_QUEUE:
2196 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
2197 			break;
2198 		case QED_RDMA_CNQ_RAM:
2199 			/* No need for a case for QED_CMDQS_CQS since
2200 			 * CNQ/CMDQS are the same resource.
2201 			 */
2202 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
2203 			break;
2204 		case QED_RDMA_STATS_QUEUE:
2205 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
2206 			    : RDMA_NUM_STATISTIC_COUNTERS_BB;
2207 			break;
2208 		case QED_BDQ:
2209 			resc_max_val = BDQ_NUM_RESOURCES;
2210 			break;
2211 		default:
2212 			continue;
2213 		}
2214 
2215 		rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
2216 						 resc_max_val, &mcp_resp);
2217 		if (rc)
2218 			return rc;
2219 
2220 		/* There's no point to continue to the next resource if the
2221 		 * command is not supported by the MFW.
2222 		 * We do continue if the command is supported but the resource
2223 		 * is unknown to the MFW. Such a resource will be later
2224 		 * configured with the default allocation values.
2225 		 */
2226 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2227 			return -EINVAL;
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 static
2234 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
2235 			 enum qed_resources res_id,
2236 			 u32 *p_resc_num, u32 *p_resc_start)
2237 {
2238 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2239 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2240 
2241 	switch (res_id) {
2242 	case QED_L2_QUEUE:
2243 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2244 			       MAX_NUM_L2_QUEUES_BB) / num_funcs;
2245 		break;
2246 	case QED_VPORT:
2247 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2248 			       MAX_NUM_VPORTS_BB) / num_funcs;
2249 		break;
2250 	case QED_RSS_ENG:
2251 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2252 			       ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2253 		break;
2254 	case QED_PQ:
2255 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2256 			       MAX_QM_TX_QUEUES_BB) / num_funcs;
2257 		*p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */
2258 		break;
2259 	case QED_RL:
2260 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2261 		break;
2262 	case QED_MAC:
2263 	case QED_VLAN:
2264 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2265 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2266 		break;
2267 	case QED_ILT:
2268 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2269 			       PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2270 		break;
2271 	case QED_LL2_QUEUE:
2272 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2273 		break;
2274 	case QED_RDMA_CNQ_RAM:
2275 	case QED_CMDQS_CQS:
2276 		/* CNQ/CMDQS are the same resource */
2277 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
2278 		break;
2279 	case QED_RDMA_STATS_QUEUE:
2280 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
2281 			       RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs;
2282 		break;
2283 	case QED_BDQ:
2284 		if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
2285 		    p_hwfn->hw_info.personality != QED_PCI_FCOE)
2286 			*p_resc_num = 0;
2287 		else
2288 			*p_resc_num = 1;
2289 		break;
2290 	case QED_SB:
2291 		/* Since we want its value to reflect whether MFW supports
2292 		 * the new scheme, have a default of 0.
2293 		 */
2294 		*p_resc_num = 0;
2295 		break;
2296 	default:
2297 		return -EINVAL;
2298 	}
2299 
2300 	switch (res_id) {
2301 	case QED_BDQ:
2302 		if (!*p_resc_num)
2303 			*p_resc_start = 0;
2304 		else if (p_hwfn->cdev->num_ports_in_engine == 4)
2305 			*p_resc_start = p_hwfn->port_id;
2306 		else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
2307 			*p_resc_start = p_hwfn->port_id;
2308 		else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2309 			*p_resc_start = p_hwfn->port_id + 2;
2310 		break;
2311 	default:
2312 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
2313 		break;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
2320 				  enum qed_resources res_id)
2321 {
2322 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
2323 	u32 mcp_resp, *p_resc_num, *p_resc_start;
2324 	int rc;
2325 
2326 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2327 	p_resc_start = &RESC_START(p_hwfn, res_id);
2328 
2329 	rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
2330 				  &dflt_resc_start);
2331 	if (rc) {
2332 		DP_ERR(p_hwfn,
2333 		       "Failed to get default amount for resource %d [%s]\n",
2334 		       res_id, qed_hw_get_resc_name(res_id));
2335 		return rc;
2336 	}
2337 
2338 	rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
2339 				   &mcp_resp, p_resc_num, p_resc_start);
2340 	if (rc) {
2341 		DP_NOTICE(p_hwfn,
2342 			  "MFW response failure for an allocation request for resource %d [%s]\n",
2343 			  res_id, qed_hw_get_resc_name(res_id));
2344 		return rc;
2345 	}
2346 
2347 	/* Default driver values are applied in the following cases:
2348 	 * - The resource allocation MB command is not supported by the MFW
2349 	 * - There is an internal error in the MFW while processing the request
2350 	 * - The resource ID is unknown to the MFW
2351 	 */
2352 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2353 		DP_INFO(p_hwfn,
2354 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
2355 			res_id,
2356 			qed_hw_get_resc_name(res_id),
2357 			mcp_resp, dflt_resc_num, dflt_resc_start);
2358 		*p_resc_num = dflt_resc_num;
2359 		*p_resc_start = dflt_resc_start;
2360 		goto out;
2361 	}
2362 
2363 out:
2364 	/* PQs have to divide by 8 [that's the HW granularity].
2365 	 * Reduce number so it would fit.
2366 	 */
2367 	if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
2368 		DP_INFO(p_hwfn,
2369 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
2370 			*p_resc_num,
2371 			(*p_resc_num) & ~0x7,
2372 			*p_resc_start, (*p_resc_start) & ~0x7);
2373 		*p_resc_num &= ~0x7;
2374 		*p_resc_start &= ~0x7;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
2381 {
2382 	int rc;
2383 	u8 res_id;
2384 
2385 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2386 		rc = __qed_hw_set_resc_info(p_hwfn, res_id);
2387 		if (rc)
2388 			return rc;
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2395 {
2396 	struct qed_resc_unlock_params resc_unlock_params;
2397 	struct qed_resc_lock_params resc_lock_params;
2398 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2399 	u8 res_id;
2400 	int rc;
2401 
2402 	/* Setting the max values of the soft resources and the following
2403 	 * resources allocation queries should be atomic. Since several PFs can
2404 	 * run in parallel - a resource lock is needed.
2405 	 * If either the resource lock or resource set value commands are not
2406 	 * supported - skip the the max values setting, release the lock if
2407 	 * needed, and proceed to the queries. Other failures, including a
2408 	 * failure to acquire the lock, will cause this function to fail.
2409 	 */
2410 	qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
2411 				       QED_RESC_LOCK_RESC_ALLOC, false);
2412 
2413 	rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
2414 	if (rc && rc != -EINVAL) {
2415 		return rc;
2416 	} else if (rc == -EINVAL) {
2417 		DP_INFO(p_hwfn,
2418 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
2419 	} else if (!rc && !resc_lock_params.b_granted) {
2420 		DP_NOTICE(p_hwfn,
2421 			  "Failed to acquire the resource lock for the resource allocation commands\n");
2422 		return -EBUSY;
2423 	} else {
2424 		rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
2425 		if (rc && rc != -EINVAL) {
2426 			DP_NOTICE(p_hwfn,
2427 				  "Failed to set the max values of the soft resources\n");
2428 			goto unlock_and_exit;
2429 		} else if (rc == -EINVAL) {
2430 			DP_INFO(p_hwfn,
2431 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
2432 			rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
2433 						 &resc_unlock_params);
2434 			if (rc)
2435 				DP_INFO(p_hwfn,
2436 					"Failed to release the resource lock for the resource allocation commands\n");
2437 		}
2438 	}
2439 
2440 	rc = qed_hw_set_resc_info(p_hwfn);
2441 	if (rc)
2442 		goto unlock_and_exit;
2443 
2444 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
2445 		rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2446 		if (rc)
2447 			DP_INFO(p_hwfn,
2448 				"Failed to release the resource lock for the resource allocation commands\n");
2449 	}
2450 
2451 	/* Sanity for ILT */
2452 	if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2453 	    (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2454 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
2455 			  RESC_START(p_hwfn, QED_ILT),
2456 			  RESC_END(p_hwfn, QED_ILT) - 1);
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* This will also learn the number of SBs from MFW */
2461 	if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
2462 		return -EINVAL;
2463 
2464 	qed_hw_set_feat(p_hwfn);
2465 
2466 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
2467 		DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
2468 			   qed_hw_get_resc_name(res_id),
2469 			   RESC_NUM(p_hwfn, res_id),
2470 			   RESC_START(p_hwfn, res_id));
2471 
2472 	return 0;
2473 
2474 unlock_and_exit:
2475 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
2476 		qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2477 	return rc;
2478 }
2479 
2480 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2481 {
2482 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2483 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
2484 	struct qed_mcp_link_capabilities *p_caps;
2485 	struct qed_mcp_link_params *link;
2486 
2487 	/* Read global nvm_cfg address */
2488 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2489 
2490 	/* Verify MCP has initialized it */
2491 	if (!nvm_cfg_addr) {
2492 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
2493 		return -EINVAL;
2494 	}
2495 
2496 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2497 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2498 
2499 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2500 	       offsetof(struct nvm_cfg1, glob) +
2501 	       offsetof(struct nvm_cfg1_glob, core_cfg);
2502 
2503 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
2504 
2505 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2506 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2507 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2508 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
2509 		break;
2510 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2511 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
2512 		break;
2513 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2514 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
2515 		break;
2516 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2517 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
2518 		break;
2519 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2520 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
2521 		break;
2522 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2523 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
2524 		break;
2525 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2526 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
2527 		break;
2528 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2529 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
2530 		break;
2531 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2532 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
2533 		break;
2534 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2535 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
2536 		break;
2537 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2538 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
2539 		break;
2540 	default:
2541 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
2542 		break;
2543 	}
2544 
2545 	/* Read default link configuration */
2546 	link = &p_hwfn->mcp_info->link_input;
2547 	p_caps = &p_hwfn->mcp_info->link_capabilities;
2548 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2549 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2550 	link_temp = qed_rd(p_hwfn, p_ptt,
2551 			   port_cfg_addr +
2552 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
2553 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2554 	link->speed.advertised_speeds = link_temp;
2555 
2556 	link_temp = link->speed.advertised_speeds;
2557 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2558 
2559 	link_temp = qed_rd(p_hwfn, p_ptt,
2560 			   port_cfg_addr +
2561 			   offsetof(struct nvm_cfg1_port, link_settings));
2562 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2563 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2564 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2565 		link->speed.autoneg = true;
2566 		break;
2567 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2568 		link->speed.forced_speed = 1000;
2569 		break;
2570 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2571 		link->speed.forced_speed = 10000;
2572 		break;
2573 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2574 		link->speed.forced_speed = 25000;
2575 		break;
2576 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2577 		link->speed.forced_speed = 40000;
2578 		break;
2579 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2580 		link->speed.forced_speed = 50000;
2581 		break;
2582 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2583 		link->speed.forced_speed = 100000;
2584 		break;
2585 	default:
2586 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
2587 	}
2588 
2589 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2590 		link->speed.autoneg;
2591 
2592 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2593 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2594 	link->pause.autoneg = !!(link_temp &
2595 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2596 	link->pause.forced_rx = !!(link_temp &
2597 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2598 	link->pause.forced_tx = !!(link_temp &
2599 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2600 	link->loopback_mode = 0;
2601 
2602 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
2603 		link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
2604 				   offsetof(struct nvm_cfg1_port, ext_phy));
2605 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
2606 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
2607 		p_caps->default_eee = QED_MCP_EEE_ENABLED;
2608 		link->eee.enable = true;
2609 		switch (link_temp) {
2610 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
2611 			p_caps->default_eee = QED_MCP_EEE_DISABLED;
2612 			link->eee.enable = false;
2613 			break;
2614 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
2615 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
2616 			break;
2617 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
2618 			p_caps->eee_lpi_timer =
2619 			    EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
2620 			break;
2621 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
2622 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
2623 			break;
2624 		}
2625 
2626 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
2627 		link->eee.tx_lpi_enable = link->eee.enable;
2628 		link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
2629 	} else {
2630 		p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
2631 	}
2632 
2633 	DP_VERBOSE(p_hwfn,
2634 		   NETIF_MSG_LINK,
2635 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
2636 		   link->speed.forced_speed,
2637 		   link->speed.advertised_speeds,
2638 		   link->speed.autoneg,
2639 		   link->pause.autoneg,
2640 		   p_caps->default_eee, p_caps->eee_lpi_timer);
2641 
2642 	/* Read Multi-function information from shmem */
2643 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2644 	       offsetof(struct nvm_cfg1, glob) +
2645 	       offsetof(struct nvm_cfg1_glob, generic_cont0);
2646 
2647 	generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
2648 
2649 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2650 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
2651 
2652 	switch (mf_mode) {
2653 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2654 		p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
2655 		break;
2656 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2657 		p_hwfn->cdev->mf_mode = QED_MF_NPAR;
2658 		break;
2659 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2660 		p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
2661 		break;
2662 	}
2663 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2664 		p_hwfn->cdev->mf_mode);
2665 
2666 	/* Read Multi-function information from shmem */
2667 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2668 		offsetof(struct nvm_cfg1, glob) +
2669 		offsetof(struct nvm_cfg1_glob, device_capabilities);
2670 
2671 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
2672 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2673 		__set_bit(QED_DEV_CAP_ETH,
2674 			  &p_hwfn->hw_info.device_capabilities);
2675 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2676 		__set_bit(QED_DEV_CAP_FCOE,
2677 			  &p_hwfn->hw_info.device_capabilities);
2678 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2679 		__set_bit(QED_DEV_CAP_ISCSI,
2680 			  &p_hwfn->hw_info.device_capabilities);
2681 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2682 		__set_bit(QED_DEV_CAP_ROCE,
2683 			  &p_hwfn->hw_info.device_capabilities);
2684 
2685 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2686 }
2687 
2688 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2689 {
2690 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2691 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2692 	struct qed_dev *cdev = p_hwfn->cdev;
2693 
2694 	num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2695 
2696 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2697 	 * in the other bits are selected.
2698 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
2699 	 * '0' only for enabled functions (function 0 always exists and
2700 	 * enabled).
2701 	 * In case of CMT, only the "even" functions are enabled, and thus the
2702 	 * number of functions for both hwfns is learnt from the same bits.
2703 	 */
2704 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2705 
2706 	if (reg_function_hide & 0x1) {
2707 		if (QED_IS_BB(cdev)) {
2708 			if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
2709 				num_funcs = 0;
2710 				eng_mask = 0xaaaa;
2711 			} else {
2712 				num_funcs = 1;
2713 				eng_mask = 0x5554;
2714 			}
2715 		} else {
2716 			num_funcs = 1;
2717 			eng_mask = 0xfffe;
2718 		}
2719 
2720 		/* Get the number of the enabled functions on the engine */
2721 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2722 		while (tmp) {
2723 			if (tmp & 0x1)
2724 				num_funcs++;
2725 			tmp >>= 0x1;
2726 		}
2727 
2728 		/* Get the PF index within the enabled functions */
2729 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2730 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
2731 		while (tmp) {
2732 			if (tmp & 0x1)
2733 				enabled_func_idx--;
2734 			tmp >>= 0x1;
2735 		}
2736 	}
2737 
2738 	p_hwfn->num_funcs_on_engine = num_funcs;
2739 	p_hwfn->enabled_func_idx = enabled_func_idx;
2740 
2741 	DP_VERBOSE(p_hwfn,
2742 		   NETIF_MSG_PROBE,
2743 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2744 		   p_hwfn->rel_pf_id,
2745 		   p_hwfn->abs_pf_id,
2746 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2747 }
2748 
2749 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn,
2750 				    struct qed_ptt *p_ptt)
2751 {
2752 	u32 port_mode;
2753 
2754 	port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0);
2755 
2756 	if (port_mode < 3) {
2757 		p_hwfn->cdev->num_ports_in_engine = 1;
2758 	} else if (port_mode <= 5) {
2759 		p_hwfn->cdev->num_ports_in_engine = 2;
2760 	} else {
2761 		DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
2762 			  p_hwfn->cdev->num_ports_in_engine);
2763 
2764 		/* Default num_ports_in_engine to something */
2765 		p_hwfn->cdev->num_ports_in_engine = 1;
2766 	}
2767 }
2768 
2769 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn,
2770 				    struct qed_ptt *p_ptt)
2771 {
2772 	u32 port;
2773 	int i;
2774 
2775 	p_hwfn->cdev->num_ports_in_engine = 0;
2776 
2777 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2778 		port = qed_rd(p_hwfn, p_ptt,
2779 			      CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2780 		if (port & 1)
2781 			p_hwfn->cdev->num_ports_in_engine++;
2782 	}
2783 
2784 	if (!p_hwfn->cdev->num_ports_in_engine) {
2785 		DP_NOTICE(p_hwfn, "All NIG ports are inactive\n");
2786 
2787 		/* Default num_ports_in_engine to something */
2788 		p_hwfn->cdev->num_ports_in_engine = 1;
2789 	}
2790 }
2791 
2792 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2793 {
2794 	if (QED_IS_BB(p_hwfn->cdev))
2795 		qed_hw_info_port_num_bb(p_hwfn, p_ptt);
2796 	else
2797 		qed_hw_info_port_num_ah(p_hwfn, p_ptt);
2798 }
2799 
2800 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2801 {
2802 	struct qed_mcp_link_capabilities *p_caps;
2803 	u32 eee_status;
2804 
2805 	p_caps = &p_hwfn->mcp_info->link_capabilities;
2806 	if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
2807 		return;
2808 
2809 	p_caps->eee_speed_caps = 0;
2810 	eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
2811 			    offsetof(struct public_port, eee_status));
2812 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
2813 			EEE_SUPPORTED_SPEED_OFFSET;
2814 
2815 	if (eee_status & EEE_1G_SUPPORTED)
2816 		p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
2817 	if (eee_status & EEE_10G_ADV)
2818 		p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
2819 }
2820 
2821 static int
2822 qed_get_hw_info(struct qed_hwfn *p_hwfn,
2823 		struct qed_ptt *p_ptt,
2824 		enum qed_pci_personality personality)
2825 {
2826 	int rc;
2827 
2828 	/* Since all information is common, only first hwfns should do this */
2829 	if (IS_LEAD_HWFN(p_hwfn)) {
2830 		rc = qed_iov_hw_info(p_hwfn);
2831 		if (rc)
2832 			return rc;
2833 	}
2834 
2835 	qed_hw_info_port_num(p_hwfn, p_ptt);
2836 
2837 	qed_mcp_get_capabilities(p_hwfn, p_ptt);
2838 
2839 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
2840 
2841 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
2842 	if (rc)
2843 		return rc;
2844 
2845 	if (qed_mcp_is_init(p_hwfn))
2846 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
2847 				p_hwfn->mcp_info->func_info.mac);
2848 	else
2849 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
2850 
2851 	if (qed_mcp_is_init(p_hwfn)) {
2852 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
2853 			p_hwfn->hw_info.ovlan =
2854 				p_hwfn->mcp_info->func_info.ovlan;
2855 
2856 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
2857 
2858 		qed_get_eee_caps(p_hwfn, p_ptt);
2859 	}
2860 
2861 	if (qed_mcp_is_init(p_hwfn)) {
2862 		enum qed_pci_personality protocol;
2863 
2864 		protocol = p_hwfn->mcp_info->func_info.protocol;
2865 		p_hwfn->hw_info.personality = protocol;
2866 	}
2867 
2868 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2869 	p_hwfn->hw_info.num_active_tc = 1;
2870 
2871 	qed_get_num_funcs(p_hwfn, p_ptt);
2872 
2873 	if (qed_mcp_is_init(p_hwfn))
2874 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
2875 
2876 	return qed_hw_get_resc(p_hwfn, p_ptt);
2877 }
2878 
2879 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2880 {
2881 	struct qed_dev *cdev = p_hwfn->cdev;
2882 	u16 device_id_mask;
2883 	u32 tmp;
2884 
2885 	/* Read Vendor Id / Device Id */
2886 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
2887 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
2888 
2889 	/* Determine type */
2890 	device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
2891 	switch (device_id_mask) {
2892 	case QED_DEV_ID_MASK_BB:
2893 		cdev->type = QED_DEV_TYPE_BB;
2894 		break;
2895 	case QED_DEV_ID_MASK_AH:
2896 		cdev->type = QED_DEV_TYPE_AH;
2897 		break;
2898 	default:
2899 		DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
2900 		return -EBUSY;
2901 	}
2902 
2903 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
2904 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
2905 
2906 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
2907 
2908 	/* Learn number of HW-functions */
2909 	tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
2910 
2911 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
2912 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
2913 		cdev->num_hwfns = 2;
2914 	} else {
2915 		cdev->num_hwfns = 1;
2916 	}
2917 
2918 	cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
2919 				    MISCS_REG_CHIP_TEST_REG) >> 4;
2920 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
2921 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
2922 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
2923 
2924 	DP_INFO(cdev->hwfns,
2925 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2926 		QED_IS_BB(cdev) ? "BB" : "AH",
2927 		'A' + cdev->chip_rev,
2928 		(int)cdev->chip_metal,
2929 		cdev->chip_num, cdev->chip_rev,
2930 		cdev->chip_bond_id, cdev->chip_metal);
2931 
2932 	return 0;
2933 }
2934 
2935 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn)
2936 {
2937 	kfree(p_hwfn->nvm_info.image_att);
2938 	p_hwfn->nvm_info.image_att = NULL;
2939 }
2940 
2941 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
2942 				 void __iomem *p_regview,
2943 				 void __iomem *p_doorbells,
2944 				 enum qed_pci_personality personality)
2945 {
2946 	int rc = 0;
2947 
2948 	/* Split PCI bars evenly between hwfns */
2949 	p_hwfn->regview = p_regview;
2950 	p_hwfn->doorbells = p_doorbells;
2951 
2952 	if (IS_VF(p_hwfn->cdev))
2953 		return qed_vf_hw_prepare(p_hwfn);
2954 
2955 	/* Validate that chip access is feasible */
2956 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2957 		DP_ERR(p_hwfn,
2958 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
2959 		return -EINVAL;
2960 	}
2961 
2962 	get_function_id(p_hwfn);
2963 
2964 	/* Allocate PTT pool */
2965 	rc = qed_ptt_pool_alloc(p_hwfn);
2966 	if (rc)
2967 		goto err0;
2968 
2969 	/* Allocate the main PTT */
2970 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2971 
2972 	/* First hwfn learns basic information, e.g., number of hwfns */
2973 	if (!p_hwfn->my_id) {
2974 		rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
2975 		if (rc)
2976 			goto err1;
2977 	}
2978 
2979 	qed_hw_hwfn_prepare(p_hwfn);
2980 
2981 	/* Initialize MCP structure */
2982 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2983 	if (rc) {
2984 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
2985 		goto err1;
2986 	}
2987 
2988 	/* Read the device configuration information from the HW and SHMEM */
2989 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
2990 	if (rc) {
2991 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
2992 		goto err2;
2993 	}
2994 
2995 	/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
2996 	 * is called as it sets the ports number in an engine.
2997 	 */
2998 	if (IS_LEAD_HWFN(p_hwfn)) {
2999 		rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3000 		if (rc)
3001 			DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
3002 	}
3003 
3004 	/* NVRAM info initialization and population */
3005 	if (IS_LEAD_HWFN(p_hwfn)) {
3006 		rc = qed_mcp_nvm_info_populate(p_hwfn);
3007 		if (rc) {
3008 			DP_NOTICE(p_hwfn,
3009 				  "Failed to populate nvm info shadow\n");
3010 			goto err2;
3011 		}
3012 	}
3013 
3014 	/* Allocate the init RT array and initialize the init-ops engine */
3015 	rc = qed_init_alloc(p_hwfn);
3016 	if (rc)
3017 		goto err3;
3018 
3019 	return rc;
3020 err3:
3021 	if (IS_LEAD_HWFN(p_hwfn))
3022 		qed_nvm_info_free(p_hwfn);
3023 err2:
3024 	if (IS_LEAD_HWFN(p_hwfn))
3025 		qed_iov_free_hw_info(p_hwfn->cdev);
3026 	qed_mcp_free(p_hwfn);
3027 err1:
3028 	qed_hw_hwfn_free(p_hwfn);
3029 err0:
3030 	return rc;
3031 }
3032 
3033 int qed_hw_prepare(struct qed_dev *cdev,
3034 		   int personality)
3035 {
3036 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3037 	int rc;
3038 
3039 	/* Store the precompiled init data ptrs */
3040 	if (IS_PF(cdev))
3041 		qed_init_iro_array(cdev);
3042 
3043 	/* Initialize the first hwfn - will learn number of hwfns */
3044 	rc = qed_hw_prepare_single(p_hwfn,
3045 				   cdev->regview,
3046 				   cdev->doorbells, personality);
3047 	if (rc)
3048 		return rc;
3049 
3050 	personality = p_hwfn->hw_info.personality;
3051 
3052 	/* Initialize the rest of the hwfns */
3053 	if (cdev->num_hwfns > 1) {
3054 		void __iomem *p_regview, *p_doorbell;
3055 		u8 __iomem *addr;
3056 
3057 		/* adjust bar offset for second engine */
3058 		addr = cdev->regview +
3059 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
3060 				       BAR_ID_0) / 2;
3061 		p_regview = addr;
3062 
3063 		addr = cdev->doorbells +
3064 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
3065 				       BAR_ID_1) / 2;
3066 		p_doorbell = addr;
3067 
3068 		/* prepare second hw function */
3069 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
3070 					   p_doorbell, personality);
3071 
3072 		/* in case of error, need to free the previously
3073 		 * initiliazed hwfn 0.
3074 		 */
3075 		if (rc) {
3076 			if (IS_PF(cdev)) {
3077 				qed_init_free(p_hwfn);
3078 				qed_nvm_info_free(p_hwfn);
3079 				qed_mcp_free(p_hwfn);
3080 				qed_hw_hwfn_free(p_hwfn);
3081 			}
3082 		}
3083 	}
3084 
3085 	return rc;
3086 }
3087 
3088 void qed_hw_remove(struct qed_dev *cdev)
3089 {
3090 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3091 	int i;
3092 
3093 	if (IS_PF(cdev))
3094 		qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3095 					       QED_OV_DRIVER_STATE_NOT_LOADED);
3096 
3097 	for_each_hwfn(cdev, i) {
3098 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3099 
3100 		if (IS_VF(cdev)) {
3101 			qed_vf_pf_release(p_hwfn);
3102 			continue;
3103 		}
3104 
3105 		qed_init_free(p_hwfn);
3106 		qed_hw_hwfn_free(p_hwfn);
3107 		qed_mcp_free(p_hwfn);
3108 	}
3109 
3110 	qed_iov_free_hw_info(cdev);
3111 
3112 	qed_nvm_info_free(p_hwfn);
3113 }
3114 
3115 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
3116 				    struct qed_chain *p_chain)
3117 {
3118 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
3119 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3120 	struct qed_chain_next *p_next;
3121 	u32 size, i;
3122 
3123 	if (!p_virt)
3124 		return;
3125 
3126 	size = p_chain->elem_size * p_chain->usable_per_page;
3127 
3128 	for (i = 0; i < p_chain->page_cnt; i++) {
3129 		if (!p_virt)
3130 			break;
3131 
3132 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
3133 		p_virt_next = p_next->next_virt;
3134 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3135 
3136 		dma_free_coherent(&cdev->pdev->dev,
3137 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
3138 
3139 		p_virt = p_virt_next;
3140 		p_phys = p_phys_next;
3141 	}
3142 }
3143 
3144 static void qed_chain_free_single(struct qed_dev *cdev,
3145 				  struct qed_chain *p_chain)
3146 {
3147 	if (!p_chain->p_virt_addr)
3148 		return;
3149 
3150 	dma_free_coherent(&cdev->pdev->dev,
3151 			  QED_CHAIN_PAGE_SIZE,
3152 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
3153 }
3154 
3155 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
3156 {
3157 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3158 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3159 	u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
3160 
3161 	if (!pp_virt_addr_tbl)
3162 		return;
3163 
3164 	if (!p_pbl_virt)
3165 		goto out;
3166 
3167 	for (i = 0; i < page_cnt; i++) {
3168 		if (!pp_virt_addr_tbl[i])
3169 			break;
3170 
3171 		dma_free_coherent(&cdev->pdev->dev,
3172 				  QED_CHAIN_PAGE_SIZE,
3173 				  pp_virt_addr_tbl[i],
3174 				  *(dma_addr_t *)p_pbl_virt);
3175 
3176 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3177 	}
3178 
3179 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3180 
3181 	if (!p_chain->b_external_pbl)
3182 		dma_free_coherent(&cdev->pdev->dev,
3183 				  pbl_size,
3184 				  p_chain->pbl_sp.p_virt_table,
3185 				  p_chain->pbl_sp.p_phys_table);
3186 out:
3187 	vfree(p_chain->pbl.pp_virt_addr_tbl);
3188 	p_chain->pbl.pp_virt_addr_tbl = NULL;
3189 }
3190 
3191 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
3192 {
3193 	switch (p_chain->mode) {
3194 	case QED_CHAIN_MODE_NEXT_PTR:
3195 		qed_chain_free_next_ptr(cdev, p_chain);
3196 		break;
3197 	case QED_CHAIN_MODE_SINGLE:
3198 		qed_chain_free_single(cdev, p_chain);
3199 		break;
3200 	case QED_CHAIN_MODE_PBL:
3201 		qed_chain_free_pbl(cdev, p_chain);
3202 		break;
3203 	}
3204 }
3205 
3206 static int
3207 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
3208 			     enum qed_chain_cnt_type cnt_type,
3209 			     size_t elem_size, u32 page_cnt)
3210 {
3211 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3212 
3213 	/* The actual chain size can be larger than the maximal possible value
3214 	 * after rounding up the requested elements number to pages, and after
3215 	 * taking into acount the unusuable elements (next-ptr elements).
3216 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3217 	 * size/capacity fields are of a u32 type.
3218 	 */
3219 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
3220 	     chain_size > ((u32)U16_MAX + 1)) ||
3221 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
3222 		DP_NOTICE(cdev,
3223 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
3224 			  chain_size);
3225 		return -EINVAL;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 static int
3232 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
3233 {
3234 	void *p_virt = NULL, *p_virt_prev = NULL;
3235 	dma_addr_t p_phys = 0;
3236 	u32 i;
3237 
3238 	for (i = 0; i < p_chain->page_cnt; i++) {
3239 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3240 					    QED_CHAIN_PAGE_SIZE,
3241 					    &p_phys, GFP_KERNEL);
3242 		if (!p_virt)
3243 			return -ENOMEM;
3244 
3245 		if (i == 0) {
3246 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3247 			qed_chain_reset(p_chain);
3248 		} else {
3249 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3250 						     p_virt, p_phys);
3251 		}
3252 
3253 		p_virt_prev = p_virt;
3254 	}
3255 	/* Last page's next element should point to the beginning of the
3256 	 * chain.
3257 	 */
3258 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3259 				     p_chain->p_virt_addr,
3260 				     p_chain->p_phys_addr);
3261 
3262 	return 0;
3263 }
3264 
3265 static int
3266 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
3267 {
3268 	dma_addr_t p_phys = 0;
3269 	void *p_virt = NULL;
3270 
3271 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3272 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
3273 	if (!p_virt)
3274 		return -ENOMEM;
3275 
3276 	qed_chain_init_mem(p_chain, p_virt, p_phys);
3277 	qed_chain_reset(p_chain);
3278 
3279 	return 0;
3280 }
3281 
3282 static int
3283 qed_chain_alloc_pbl(struct qed_dev *cdev,
3284 		    struct qed_chain *p_chain,
3285 		    struct qed_chain_ext_pbl *ext_pbl)
3286 {
3287 	u32 page_cnt = p_chain->page_cnt, size, i;
3288 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3289 	void **pp_virt_addr_tbl = NULL;
3290 	u8 *p_pbl_virt = NULL;
3291 	void *p_virt = NULL;
3292 
3293 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3294 	pp_virt_addr_tbl = vzalloc(size);
3295 	if (!pp_virt_addr_tbl)
3296 		return -ENOMEM;
3297 
3298 	/* The allocation of the PBL table is done with its full size, since it
3299 	 * is expected to be successive.
3300 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
3301 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3302 	 * should be saved to allow its freeing during the error flow.
3303 	 */
3304 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3305 
3306 	if (!ext_pbl) {
3307 		p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
3308 						size, &p_pbl_phys, GFP_KERNEL);
3309 	} else {
3310 		p_pbl_virt = ext_pbl->p_pbl_virt;
3311 		p_pbl_phys = ext_pbl->p_pbl_phys;
3312 		p_chain->b_external_pbl = true;
3313 	}
3314 
3315 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3316 			       pp_virt_addr_tbl);
3317 	if (!p_pbl_virt)
3318 		return -ENOMEM;
3319 
3320 	for (i = 0; i < page_cnt; i++) {
3321 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3322 					    QED_CHAIN_PAGE_SIZE,
3323 					    &p_phys, GFP_KERNEL);
3324 		if (!p_virt)
3325 			return -ENOMEM;
3326 
3327 		if (i == 0) {
3328 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3329 			qed_chain_reset(p_chain);
3330 		}
3331 
3332 		/* Fill the PBL table with the physical address of the page */
3333 		*(dma_addr_t *)p_pbl_virt = p_phys;
3334 		/* Keep the virtual address of the page */
3335 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3336 
3337 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3338 	}
3339 
3340 	return 0;
3341 }
3342 
3343 int qed_chain_alloc(struct qed_dev *cdev,
3344 		    enum qed_chain_use_mode intended_use,
3345 		    enum qed_chain_mode mode,
3346 		    enum qed_chain_cnt_type cnt_type,
3347 		    u32 num_elems,
3348 		    size_t elem_size,
3349 		    struct qed_chain *p_chain,
3350 		    struct qed_chain_ext_pbl *ext_pbl)
3351 {
3352 	u32 page_cnt;
3353 	int rc = 0;
3354 
3355 	if (mode == QED_CHAIN_MODE_SINGLE)
3356 		page_cnt = 1;
3357 	else
3358 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3359 
3360 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
3361 	if (rc) {
3362 		DP_NOTICE(cdev,
3363 			  "Cannot allocate a chain with the given arguments:\n");
3364 		DP_NOTICE(cdev,
3365 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3366 			  intended_use, mode, cnt_type, num_elems, elem_size);
3367 		return rc;
3368 	}
3369 
3370 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
3371 			      mode, cnt_type);
3372 
3373 	switch (mode) {
3374 	case QED_CHAIN_MODE_NEXT_PTR:
3375 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
3376 		break;
3377 	case QED_CHAIN_MODE_SINGLE:
3378 		rc = qed_chain_alloc_single(cdev, p_chain);
3379 		break;
3380 	case QED_CHAIN_MODE_PBL:
3381 		rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
3382 		break;
3383 	}
3384 	if (rc)
3385 		goto nomem;
3386 
3387 	return 0;
3388 
3389 nomem:
3390 	qed_chain_free(cdev, p_chain);
3391 	return rc;
3392 }
3393 
3394 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
3395 {
3396 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
3397 		u16 min, max;
3398 
3399 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
3400 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
3401 		DP_NOTICE(p_hwfn,
3402 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3403 			  src_id, min, max);
3404 
3405 		return -EINVAL;
3406 	}
3407 
3408 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
3409 
3410 	return 0;
3411 }
3412 
3413 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3414 {
3415 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
3416 		u8 min, max;
3417 
3418 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
3419 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
3420 		DP_NOTICE(p_hwfn,
3421 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3422 			  src_id, min, max);
3423 
3424 		return -EINVAL;
3425 	}
3426 
3427 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
3428 
3429 	return 0;
3430 }
3431 
3432 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3433 {
3434 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
3435 		u8 min, max;
3436 
3437 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
3438 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
3439 		DP_NOTICE(p_hwfn,
3440 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3441 			  src_id, min, max);
3442 
3443 		return -EINVAL;
3444 	}
3445 
3446 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
3447 
3448 	return 0;
3449 }
3450 
3451 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
3452 				  u8 *p_filter)
3453 {
3454 	*p_high = p_filter[1] | (p_filter[0] << 8);
3455 	*p_low = p_filter[5] | (p_filter[4] << 8) |
3456 		 (p_filter[3] << 16) | (p_filter[2] << 24);
3457 }
3458 
3459 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
3460 			   struct qed_ptt *p_ptt, u8 *p_filter)
3461 {
3462 	u32 high = 0, low = 0, en;
3463 	int i;
3464 
3465 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3466 		return 0;
3467 
3468 	qed_llh_mac_to_filter(&high, &low, p_filter);
3469 
3470 	/* Find a free entry and utilize it */
3471 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3472 		en = qed_rd(p_hwfn, p_ptt,
3473 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3474 		if (en)
3475 			continue;
3476 		qed_wr(p_hwfn, p_ptt,
3477 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3478 		       2 * i * sizeof(u32), low);
3479 		qed_wr(p_hwfn, p_ptt,
3480 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3481 		       (2 * i + 1) * sizeof(u32), high);
3482 		qed_wr(p_hwfn, p_ptt,
3483 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3484 		qed_wr(p_hwfn, p_ptt,
3485 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3486 		       i * sizeof(u32), 0);
3487 		qed_wr(p_hwfn, p_ptt,
3488 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3489 		break;
3490 	}
3491 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3492 		DP_NOTICE(p_hwfn,
3493 			  "Failed to find an empty LLH filter to utilize\n");
3494 		return -EINVAL;
3495 	}
3496 
3497 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3498 		   "mac: %pM is added at %d\n",
3499 		   p_filter, i);
3500 
3501 	return 0;
3502 }
3503 
3504 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
3505 			       struct qed_ptt *p_ptt, u8 *p_filter)
3506 {
3507 	u32 high = 0, low = 0;
3508 	int i;
3509 
3510 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3511 		return;
3512 
3513 	qed_llh_mac_to_filter(&high, &low, p_filter);
3514 
3515 	/* Find the entry and clean it */
3516 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3517 		if (qed_rd(p_hwfn, p_ptt,
3518 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3519 			   2 * i * sizeof(u32)) != low)
3520 			continue;
3521 		if (qed_rd(p_hwfn, p_ptt,
3522 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3523 			   (2 * i + 1) * sizeof(u32)) != high)
3524 			continue;
3525 
3526 		qed_wr(p_hwfn, p_ptt,
3527 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3528 		qed_wr(p_hwfn, p_ptt,
3529 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
3530 		qed_wr(p_hwfn, p_ptt,
3531 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3532 		       (2 * i + 1) * sizeof(u32), 0);
3533 
3534 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3535 			   "mac: %pM is removed from %d\n",
3536 			   p_filter, i);
3537 		break;
3538 	}
3539 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3540 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
3541 }
3542 
3543 int
3544 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
3545 			    struct qed_ptt *p_ptt,
3546 			    u16 source_port_or_eth_type,
3547 			    u16 dest_port, enum qed_llh_port_filter_type_t type)
3548 {
3549 	u32 high = 0, low = 0, en;
3550 	int i;
3551 
3552 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3553 		return 0;
3554 
3555 	switch (type) {
3556 	case QED_LLH_FILTER_ETHERTYPE:
3557 		high = source_port_or_eth_type;
3558 		break;
3559 	case QED_LLH_FILTER_TCP_SRC_PORT:
3560 	case QED_LLH_FILTER_UDP_SRC_PORT:
3561 		low = source_port_or_eth_type << 16;
3562 		break;
3563 	case QED_LLH_FILTER_TCP_DEST_PORT:
3564 	case QED_LLH_FILTER_UDP_DEST_PORT:
3565 		low = dest_port;
3566 		break;
3567 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3568 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3569 		low = (source_port_or_eth_type << 16) | dest_port;
3570 		break;
3571 	default:
3572 		DP_NOTICE(p_hwfn,
3573 			  "Non valid LLH protocol filter type %d\n", type);
3574 		return -EINVAL;
3575 	}
3576 	/* Find a free entry and utilize it */
3577 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3578 		en = qed_rd(p_hwfn, p_ptt,
3579 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3580 		if (en)
3581 			continue;
3582 		qed_wr(p_hwfn, p_ptt,
3583 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3584 		       2 * i * sizeof(u32), low);
3585 		qed_wr(p_hwfn, p_ptt,
3586 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3587 		       (2 * i + 1) * sizeof(u32), high);
3588 		qed_wr(p_hwfn, p_ptt,
3589 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3590 		qed_wr(p_hwfn, p_ptt,
3591 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3592 		       i * sizeof(u32), 1 << type);
3593 		qed_wr(p_hwfn, p_ptt,
3594 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3595 		break;
3596 	}
3597 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3598 		DP_NOTICE(p_hwfn,
3599 			  "Failed to find an empty LLH filter to utilize\n");
3600 		return -EINVAL;
3601 	}
3602 	switch (type) {
3603 	case QED_LLH_FILTER_ETHERTYPE:
3604 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3605 			   "ETH type %x is added at %d\n",
3606 			   source_port_or_eth_type, i);
3607 		break;
3608 	case QED_LLH_FILTER_TCP_SRC_PORT:
3609 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3610 			   "TCP src port %x is added at %d\n",
3611 			   source_port_or_eth_type, i);
3612 		break;
3613 	case QED_LLH_FILTER_UDP_SRC_PORT:
3614 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3615 			   "UDP src port %x is added at %d\n",
3616 			   source_port_or_eth_type, i);
3617 		break;
3618 	case QED_LLH_FILTER_TCP_DEST_PORT:
3619 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3620 			   "TCP dst port %x is added at %d\n", dest_port, i);
3621 		break;
3622 	case QED_LLH_FILTER_UDP_DEST_PORT:
3623 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3624 			   "UDP dst port %x is added at %d\n", dest_port, i);
3625 		break;
3626 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3627 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3628 			   "TCP src/dst ports %x/%x are added at %d\n",
3629 			   source_port_or_eth_type, dest_port, i);
3630 		break;
3631 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3632 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
3633 			   "UDP src/dst ports %x/%x are added at %d\n",
3634 			   source_port_or_eth_type, dest_port, i);
3635 		break;
3636 	}
3637 	return 0;
3638 }
3639 
3640 void
3641 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
3642 			       struct qed_ptt *p_ptt,
3643 			       u16 source_port_or_eth_type,
3644 			       u16 dest_port,
3645 			       enum qed_llh_port_filter_type_t type)
3646 {
3647 	u32 high = 0, low = 0;
3648 	int i;
3649 
3650 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3651 		return;
3652 
3653 	switch (type) {
3654 	case QED_LLH_FILTER_ETHERTYPE:
3655 		high = source_port_or_eth_type;
3656 		break;
3657 	case QED_LLH_FILTER_TCP_SRC_PORT:
3658 	case QED_LLH_FILTER_UDP_SRC_PORT:
3659 		low = source_port_or_eth_type << 16;
3660 		break;
3661 	case QED_LLH_FILTER_TCP_DEST_PORT:
3662 	case QED_LLH_FILTER_UDP_DEST_PORT:
3663 		low = dest_port;
3664 		break;
3665 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3666 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3667 		low = (source_port_or_eth_type << 16) | dest_port;
3668 		break;
3669 	default:
3670 		DP_NOTICE(p_hwfn,
3671 			  "Non valid LLH protocol filter type %d\n", type);
3672 		return;
3673 	}
3674 
3675 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3676 		if (!qed_rd(p_hwfn, p_ptt,
3677 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3678 			continue;
3679 		if (!qed_rd(p_hwfn, p_ptt,
3680 			    NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3681 			continue;
3682 		if (!(qed_rd(p_hwfn, p_ptt,
3683 			     NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3684 			     i * sizeof(u32)) & BIT(type)))
3685 			continue;
3686 		if (qed_rd(p_hwfn, p_ptt,
3687 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3688 			   2 * i * sizeof(u32)) != low)
3689 			continue;
3690 		if (qed_rd(p_hwfn, p_ptt,
3691 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
3692 			   (2 * i + 1) * sizeof(u32)) != high)
3693 			continue;
3694 
3695 		qed_wr(p_hwfn, p_ptt,
3696 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3697 		qed_wr(p_hwfn, p_ptt,
3698 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3699 		qed_wr(p_hwfn, p_ptt,
3700 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3701 		       i * sizeof(u32), 0);
3702 		qed_wr(p_hwfn, p_ptt,
3703 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
3704 		qed_wr(p_hwfn, p_ptt,
3705 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3706 		       (2 * i + 1) * sizeof(u32), 0);
3707 		break;
3708 	}
3709 
3710 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3711 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
3712 }
3713 
3714 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3715 			    u32 hw_addr, void *p_eth_qzone,
3716 			    size_t eth_qzone_size, u8 timeset)
3717 {
3718 	struct coalescing_timeset *p_coal_timeset;
3719 
3720 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
3721 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
3722 		return -EINVAL;
3723 	}
3724 
3725 	p_coal_timeset = p_eth_qzone;
3726 	memset(p_eth_qzone, 0, eth_qzone_size);
3727 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3728 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3729 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3730 
3731 	return 0;
3732 }
3733 
3734 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
3735 {
3736 	struct qed_queue_cid *p_cid = p_handle;
3737 	struct qed_hwfn *p_hwfn;
3738 	struct qed_ptt *p_ptt;
3739 	int rc = 0;
3740 
3741 	p_hwfn = p_cid->p_owner;
3742 
3743 	if (IS_VF(p_hwfn->cdev))
3744 		return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
3745 
3746 	p_ptt = qed_ptt_acquire(p_hwfn);
3747 	if (!p_ptt)
3748 		return -EAGAIN;
3749 
3750 	if (rx_coal) {
3751 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3752 		if (rc)
3753 			goto out;
3754 		p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
3755 	}
3756 
3757 	if (tx_coal) {
3758 		rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
3759 		if (rc)
3760 			goto out;
3761 		p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
3762 	}
3763 out:
3764 	qed_ptt_release(p_hwfn, p_ptt);
3765 	return rc;
3766 }
3767 
3768 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
3769 			 struct qed_ptt *p_ptt,
3770 			 u16 coalesce, struct qed_queue_cid *p_cid)
3771 {
3772 	struct ustorm_eth_queue_zone eth_qzone;
3773 	u8 timeset, timer_res;
3774 	u32 address;
3775 	int rc;
3776 
3777 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3778 	if (coalesce <= 0x7F) {
3779 		timer_res = 0;
3780 	} else if (coalesce <= 0xFF) {
3781 		timer_res = 1;
3782 	} else if (coalesce <= 0x1FF) {
3783 		timer_res = 2;
3784 	} else {
3785 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3786 		return -EINVAL;
3787 	}
3788 	timeset = (u8)(coalesce >> timer_res);
3789 
3790 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
3791 				   p_cid->sb_igu_id, false);
3792 	if (rc)
3793 		goto out;
3794 
3795 	address = BAR0_MAP_REG_USDM_RAM +
3796 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
3797 
3798 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3799 			      sizeof(struct ustorm_eth_queue_zone), timeset);
3800 	if (rc)
3801 		goto out;
3802 
3803 out:
3804 	return rc;
3805 }
3806 
3807 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
3808 			 struct qed_ptt *p_ptt,
3809 			 u16 coalesce, struct qed_queue_cid *p_cid)
3810 {
3811 	struct xstorm_eth_queue_zone eth_qzone;
3812 	u8 timeset, timer_res;
3813 	u32 address;
3814 	int rc;
3815 
3816 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3817 	if (coalesce <= 0x7F) {
3818 		timer_res = 0;
3819 	} else if (coalesce <= 0xFF) {
3820 		timer_res = 1;
3821 	} else if (coalesce <= 0x1FF) {
3822 		timer_res = 2;
3823 	} else {
3824 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3825 		return -EINVAL;
3826 	}
3827 	timeset = (u8)(coalesce >> timer_res);
3828 
3829 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
3830 				   p_cid->sb_igu_id, true);
3831 	if (rc)
3832 		goto out;
3833 
3834 	address = BAR0_MAP_REG_XSDM_RAM +
3835 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
3836 
3837 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3838 			      sizeof(struct xstorm_eth_queue_zone), timeset);
3839 out:
3840 	return rc;
3841 }
3842 
3843 /* Calculate final WFQ values for all vports and configure them.
3844  * After this configuration each vport will have
3845  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
3846  */
3847 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3848 					     struct qed_ptt *p_ptt,
3849 					     u32 min_pf_rate)
3850 {
3851 	struct init_qm_vport_params *vport_params;
3852 	int i;
3853 
3854 	vport_params = p_hwfn->qm_info.qm_vport_params;
3855 
3856 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3857 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3858 
3859 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
3860 						min_pf_rate;
3861 		qed_init_vport_wfq(p_hwfn, p_ptt,
3862 				   vport_params[i].first_tx_pq_id,
3863 				   vport_params[i].vport_wfq);
3864 	}
3865 }
3866 
3867 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
3868 				       u32 min_pf_rate)
3869 
3870 {
3871 	int i;
3872 
3873 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3874 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3875 }
3876 
3877 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3878 					   struct qed_ptt *p_ptt,
3879 					   u32 min_pf_rate)
3880 {
3881 	struct init_qm_vport_params *vport_params;
3882 	int i;
3883 
3884 	vport_params = p_hwfn->qm_info.qm_vport_params;
3885 
3886 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3887 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
3888 		qed_init_vport_wfq(p_hwfn, p_ptt,
3889 				   vport_params[i].first_tx_pq_id,
3890 				   vport_params[i].vport_wfq);
3891 	}
3892 }
3893 
3894 /* This function performs several validations for WFQ
3895  * configuration and required min rate for a given vport
3896  * 1. req_rate must be greater than one percent of min_pf_rate.
3897  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3898  *    rates to get less than one percent of min_pf_rate.
3899  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3900  */
3901 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
3902 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
3903 {
3904 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3905 	int non_requested_count = 0, req_count = 0, i, num_vports;
3906 
3907 	num_vports = p_hwfn->qm_info.num_vports;
3908 
3909 	/* Accounting for the vports which are configured for WFQ explicitly */
3910 	for (i = 0; i < num_vports; i++) {
3911 		u32 tmp_speed;
3912 
3913 		if ((i != vport_id) &&
3914 		    p_hwfn->qm_info.wfq_data[i].configured) {
3915 			req_count++;
3916 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3917 			total_req_min_rate += tmp_speed;
3918 		}
3919 	}
3920 
3921 	/* Include current vport data as well */
3922 	req_count++;
3923 	total_req_min_rate += req_rate;
3924 	non_requested_count = num_vports - req_count;
3925 
3926 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
3927 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3928 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3929 			   vport_id, req_rate, min_pf_rate);
3930 		return -EINVAL;
3931 	}
3932 
3933 	if (num_vports > QED_WFQ_UNIT) {
3934 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3935 			   "Number of vports is greater than %d\n",
3936 			   QED_WFQ_UNIT);
3937 		return -EINVAL;
3938 	}
3939 
3940 	if (total_req_min_rate > min_pf_rate) {
3941 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3942 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3943 			   total_req_min_rate, min_pf_rate);
3944 		return -EINVAL;
3945 	}
3946 
3947 	total_left_rate	= min_pf_rate - total_req_min_rate;
3948 
3949 	left_rate_per_vp = total_left_rate / non_requested_count;
3950 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
3951 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3952 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3953 			   left_rate_per_vp, min_pf_rate);
3954 		return -EINVAL;
3955 	}
3956 
3957 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
3958 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
3959 
3960 	for (i = 0; i < num_vports; i++) {
3961 		if (p_hwfn->qm_info.wfq_data[i].configured)
3962 			continue;
3963 
3964 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
3965 	}
3966 
3967 	return 0;
3968 }
3969 
3970 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
3971 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
3972 {
3973 	struct qed_mcp_link_state *p_link;
3974 	int rc = 0;
3975 
3976 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
3977 
3978 	if (!p_link->min_pf_rate) {
3979 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
3980 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
3981 		return rc;
3982 	}
3983 
3984 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
3985 
3986 	if (!rc)
3987 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
3988 						 p_link->min_pf_rate);
3989 	else
3990 		DP_NOTICE(p_hwfn,
3991 			  "Validation failed while configuring min rate\n");
3992 
3993 	return rc;
3994 }
3995 
3996 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
3997 						 struct qed_ptt *p_ptt,
3998 						 u32 min_pf_rate)
3999 {
4000 	bool use_wfq = false;
4001 	int rc = 0;
4002 	u16 i;
4003 
4004 	/* Validate all pre configured vports for wfq */
4005 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4006 		u32 rate;
4007 
4008 		if (!p_hwfn->qm_info.wfq_data[i].configured)
4009 			continue;
4010 
4011 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4012 		use_wfq = true;
4013 
4014 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4015 		if (rc) {
4016 			DP_NOTICE(p_hwfn,
4017 				  "WFQ validation failed while configuring min rate\n");
4018 			break;
4019 		}
4020 	}
4021 
4022 	if (!rc && use_wfq)
4023 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4024 	else
4025 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4026 
4027 	return rc;
4028 }
4029 
4030 /* Main API for qed clients to configure vport min rate.
4031  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4032  * rate - Speed in Mbps needs to be assigned to a given vport.
4033  */
4034 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
4035 {
4036 	int i, rc = -EINVAL;
4037 
4038 	/* Currently not supported; Might change in future */
4039 	if (cdev->num_hwfns > 1) {
4040 		DP_NOTICE(cdev,
4041 			  "WFQ configuration is not supported for this device\n");
4042 		return rc;
4043 	}
4044 
4045 	for_each_hwfn(cdev, i) {
4046 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4047 		struct qed_ptt *p_ptt;
4048 
4049 		p_ptt = qed_ptt_acquire(p_hwfn);
4050 		if (!p_ptt)
4051 			return -EBUSY;
4052 
4053 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4054 
4055 		if (rc) {
4056 			qed_ptt_release(p_hwfn, p_ptt);
4057 			return rc;
4058 		}
4059 
4060 		qed_ptt_release(p_hwfn, p_ptt);
4061 	}
4062 
4063 	return rc;
4064 }
4065 
4066 /* API to configure WFQ from mcp link change */
4067 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
4068 					 struct qed_ptt *p_ptt, u32 min_pf_rate)
4069 {
4070 	int i;
4071 
4072 	if (cdev->num_hwfns > 1) {
4073 		DP_VERBOSE(cdev,
4074 			   NETIF_MSG_LINK,
4075 			   "WFQ configuration is not supported for this device\n");
4076 		return;
4077 	}
4078 
4079 	for_each_hwfn(cdev, i) {
4080 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4081 
4082 		__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
4083 						      min_pf_rate);
4084 	}
4085 }
4086 
4087 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
4088 				     struct qed_ptt *p_ptt,
4089 				     struct qed_mcp_link_state *p_link,
4090 				     u8 max_bw)
4091 {
4092 	int rc = 0;
4093 
4094 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4095 
4096 	if (!p_link->line_speed && (max_bw != 100))
4097 		return rc;
4098 
4099 	p_link->speed = (p_link->line_speed * max_bw) / 100;
4100 	p_hwfn->qm_info.pf_rl = p_link->speed;
4101 
4102 	/* Since the limiter also affects Tx-switched traffic, we don't want it
4103 	 * to limit such traffic in case there's no actual limit.
4104 	 * In that case, set limit to imaginary high boundary.
4105 	 */
4106 	if (max_bw == 100)
4107 		p_hwfn->qm_info.pf_rl = 100000;
4108 
4109 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4110 			    p_hwfn->qm_info.pf_rl);
4111 
4112 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4113 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
4114 		   p_link->speed);
4115 
4116 	return rc;
4117 }
4118 
4119 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4120 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
4121 {
4122 	int i, rc = -EINVAL;
4123 
4124 	if (max_bw < 1 || max_bw > 100) {
4125 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
4126 		return rc;
4127 	}
4128 
4129 	for_each_hwfn(cdev, i) {
4130 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
4131 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4132 		struct qed_mcp_link_state *p_link;
4133 		struct qed_ptt *p_ptt;
4134 
4135 		p_link = &p_lead->mcp_info->link_output;
4136 
4137 		p_ptt = qed_ptt_acquire(p_hwfn);
4138 		if (!p_ptt)
4139 			return -EBUSY;
4140 
4141 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4142 						      p_link, max_bw);
4143 
4144 		qed_ptt_release(p_hwfn, p_ptt);
4145 
4146 		if (rc)
4147 			break;
4148 	}
4149 
4150 	return rc;
4151 }
4152 
4153 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
4154 				     struct qed_ptt *p_ptt,
4155 				     struct qed_mcp_link_state *p_link,
4156 				     u8 min_bw)
4157 {
4158 	int rc = 0;
4159 
4160 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4161 	p_hwfn->qm_info.pf_wfq = min_bw;
4162 
4163 	if (!p_link->line_speed)
4164 		return rc;
4165 
4166 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4167 
4168 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4169 
4170 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4171 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4172 		   p_link->min_pf_rate);
4173 
4174 	return rc;
4175 }
4176 
4177 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4178 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
4179 {
4180 	int i, rc = -EINVAL;
4181 
4182 	if (min_bw < 1 || min_bw > 100) {
4183 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
4184 		return rc;
4185 	}
4186 
4187 	for_each_hwfn(cdev, i) {
4188 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4189 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4190 		struct qed_mcp_link_state *p_link;
4191 		struct qed_ptt *p_ptt;
4192 
4193 		p_link = &p_lead->mcp_info->link_output;
4194 
4195 		p_ptt = qed_ptt_acquire(p_hwfn);
4196 		if (!p_ptt)
4197 			return -EBUSY;
4198 
4199 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4200 						      p_link, min_bw);
4201 		if (rc) {
4202 			qed_ptt_release(p_hwfn, p_ptt);
4203 			return rc;
4204 		}
4205 
4206 		if (p_link->min_pf_rate) {
4207 			u32 min_rate = p_link->min_pf_rate;
4208 
4209 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
4210 								   p_ptt,
4211 								   min_rate);
4212 		}
4213 
4214 		qed_ptt_release(p_hwfn, p_ptt);
4215 	}
4216 
4217 	return rc;
4218 }
4219 
4220 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4221 {
4222 	struct qed_mcp_link_state *p_link;
4223 
4224 	p_link = &p_hwfn->mcp_info->link_output;
4225 
4226 	if (p_link->min_pf_rate)
4227 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4228 					       p_link->min_pf_rate);
4229 
4230 	memset(p_hwfn->qm_info.wfq_data, 0,
4231 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
4232 }
4233 
4234 int qed_device_num_engines(struct qed_dev *cdev)
4235 {
4236 	return QED_IS_BB(cdev) ? 2 : 1;
4237 }
4238 
4239 static int qed_device_num_ports(struct qed_dev *cdev)
4240 {
4241 	/* in CMT always only one port */
4242 	if (cdev->num_hwfns > 1)
4243 		return 1;
4244 
4245 	return cdev->num_ports_in_engine * qed_device_num_engines(cdev);
4246 }
4247 
4248 int qed_device_get_port_id(struct qed_dev *cdev)
4249 {
4250 	return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev);
4251 }
4252 
4253 void qed_set_fw_mac_addr(__le16 *fw_msb,
4254 			 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
4255 {
4256 	((u8 *)fw_msb)[0] = mac[1];
4257 	((u8 *)fw_msb)[1] = mac[0];
4258 	((u8 *)fw_mid)[0] = mac[3];
4259 	((u8 *)fw_mid)[1] = mac[2];
4260 	((u8 *)fw_lsb)[0] = mac[5];
4261 	((u8 *)fw_lsb)[1] = mac[4];
4262 }
4263