1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <asm/byteorder.h> 35 #include <linux/io.h> 36 #include <linux/delay.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mutex.h> 41 #include <linux/pci.h> 42 #include <linux/slab.h> 43 #include <linux/string.h> 44 #include <linux/vmalloc.h> 45 #include <linux/etherdevice.h> 46 #include <linux/qed/qed_chain.h> 47 #include <linux/qed/qed_if.h> 48 #include "qed.h" 49 #include "qed_cxt.h" 50 #include "qed_dcbx.h" 51 #include "qed_dev_api.h" 52 #include "qed_fcoe.h" 53 #include "qed_hsi.h" 54 #include "qed_hw.h" 55 #include "qed_init_ops.h" 56 #include "qed_int.h" 57 #include "qed_iscsi.h" 58 #include "qed_ll2.h" 59 #include "qed_mcp.h" 60 #include "qed_ooo.h" 61 #include "qed_reg_addr.h" 62 #include "qed_sp.h" 63 #include "qed_sriov.h" 64 #include "qed_vf.h" 65 #include "qed_rdma.h" 66 67 static DEFINE_SPINLOCK(qm_lock); 68 69 #define QED_MIN_DPIS (4) 70 #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) 71 72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, 73 struct qed_ptt *p_ptt, enum BAR_ID bar_id) 74 { 75 u32 bar_reg = (bar_id == BAR_ID_0 ? 76 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 77 u32 val; 78 79 if (IS_VF(p_hwfn->cdev)) 80 return qed_vf_hw_bar_size(p_hwfn, bar_id); 81 82 val = qed_rd(p_hwfn, p_ptt, bar_reg); 83 if (val) 84 return 1 << (val + 15); 85 86 /* Old MFW initialized above registered only conditionally */ 87 if (p_hwfn->cdev->num_hwfns > 1) { 88 DP_INFO(p_hwfn, 89 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 90 return BAR_ID_0 ? 256 * 1024 : 512 * 1024; 91 } else { 92 DP_INFO(p_hwfn, 93 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 94 return 512 * 1024; 95 } 96 } 97 98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) 99 { 100 u32 i; 101 102 cdev->dp_level = dp_level; 103 cdev->dp_module = dp_module; 104 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 105 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 106 107 p_hwfn->dp_level = dp_level; 108 p_hwfn->dp_module = dp_module; 109 } 110 } 111 112 void qed_init_struct(struct qed_dev *cdev) 113 { 114 u8 i; 115 116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 117 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 118 119 p_hwfn->cdev = cdev; 120 p_hwfn->my_id = i; 121 p_hwfn->b_active = false; 122 123 mutex_init(&p_hwfn->dmae_info.mutex); 124 } 125 126 /* hwfn 0 is always active */ 127 cdev->hwfns[0].b_active = true; 128 129 /* set the default cache alignment to 128 */ 130 cdev->cache_shift = 7; 131 } 132 133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn) 134 { 135 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 136 137 kfree(qm_info->qm_pq_params); 138 qm_info->qm_pq_params = NULL; 139 kfree(qm_info->qm_vport_params); 140 qm_info->qm_vport_params = NULL; 141 kfree(qm_info->qm_port_params); 142 qm_info->qm_port_params = NULL; 143 kfree(qm_info->wfq_data); 144 qm_info->wfq_data = NULL; 145 } 146 147 void qed_resc_free(struct qed_dev *cdev) 148 { 149 int i; 150 151 if (IS_VF(cdev)) { 152 for_each_hwfn(cdev, i) 153 qed_l2_free(&cdev->hwfns[i]); 154 return; 155 } 156 157 kfree(cdev->fw_data); 158 cdev->fw_data = NULL; 159 160 kfree(cdev->reset_stats); 161 cdev->reset_stats = NULL; 162 163 for_each_hwfn(cdev, i) { 164 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 165 166 qed_cxt_mngr_free(p_hwfn); 167 qed_qm_info_free(p_hwfn); 168 qed_spq_free(p_hwfn); 169 qed_eq_free(p_hwfn); 170 qed_consq_free(p_hwfn); 171 qed_int_free(p_hwfn); 172 #ifdef CONFIG_QED_LL2 173 qed_ll2_free(p_hwfn); 174 #endif 175 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 176 qed_fcoe_free(p_hwfn); 177 178 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 179 qed_iscsi_free(p_hwfn); 180 qed_ooo_free(p_hwfn); 181 } 182 qed_iov_free(p_hwfn); 183 qed_l2_free(p_hwfn); 184 qed_dmae_info_free(p_hwfn); 185 qed_dcbx_info_free(p_hwfn); 186 } 187 } 188 189 /******************** QM initialization *******************/ 190 #define ACTIVE_TCS_BMAP 0x9f 191 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 192 193 /* determines the physical queue flags for a given PF. */ 194 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) 195 { 196 u32 flags; 197 198 /* common flags */ 199 flags = PQ_FLAGS_LB; 200 201 /* feature flags */ 202 if (IS_QED_SRIOV(p_hwfn->cdev)) 203 flags |= PQ_FLAGS_VFS; 204 205 /* protocol flags */ 206 switch (p_hwfn->hw_info.personality) { 207 case QED_PCI_ETH: 208 flags |= PQ_FLAGS_MCOS; 209 break; 210 case QED_PCI_FCOE: 211 flags |= PQ_FLAGS_OFLD; 212 break; 213 case QED_PCI_ISCSI: 214 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 215 break; 216 case QED_PCI_ETH_ROCE: 217 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 218 if (IS_QED_MULTI_TC_ROCE(p_hwfn)) 219 flags |= PQ_FLAGS_MTC; 220 break; 221 case QED_PCI_ETH_IWARP: 222 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | 223 PQ_FLAGS_OFLD; 224 break; 225 default: 226 DP_ERR(p_hwfn, 227 "unknown personality %d\n", p_hwfn->hw_info.personality); 228 return 0; 229 } 230 231 return flags; 232 } 233 234 /* Getters for resource amounts necessary for qm initialization */ 235 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) 236 { 237 return p_hwfn->hw_info.num_hw_tc; 238 } 239 240 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) 241 { 242 return IS_QED_SRIOV(p_hwfn->cdev) ? 243 p_hwfn->cdev->p_iov_info->total_vfs : 0; 244 } 245 246 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn) 247 { 248 u32 pq_flags = qed_get_pq_flags(p_hwfn); 249 250 if (!(PQ_FLAGS_MTC & pq_flags)) 251 return 1; 252 253 return qed_init_qm_get_num_tcs(p_hwfn); 254 } 255 256 #define NUM_DEFAULT_RLS 1 257 258 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) 259 { 260 u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 261 262 /* num RLs can't exceed resource amount of rls or vports */ 263 num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), 264 RESC_NUM(p_hwfn, QED_VPORT)); 265 266 /* Make sure after we reserve there's something left */ 267 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) 268 return 0; 269 270 /* subtract rls necessary for VFs and one default one for the PF */ 271 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 272 273 return num_pf_rls; 274 } 275 276 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) 277 { 278 u32 pq_flags = qed_get_pq_flags(p_hwfn); 279 280 /* all pqs share the same vport, except for vfs and pf_rl pqs */ 281 return (!!(PQ_FLAGS_RLS & pq_flags)) * 282 qed_init_qm_get_num_pf_rls(p_hwfn) + 283 (!!(PQ_FLAGS_VFS & pq_flags)) * 284 qed_init_qm_get_num_vfs(p_hwfn) + 1; 285 } 286 287 /* calc amount of PQs according to the requested flags */ 288 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) 289 { 290 u32 pq_flags = qed_get_pq_flags(p_hwfn); 291 292 return (!!(PQ_FLAGS_RLS & pq_flags)) * 293 qed_init_qm_get_num_pf_rls(p_hwfn) + 294 (!!(PQ_FLAGS_MCOS & pq_flags)) * 295 qed_init_qm_get_num_tcs(p_hwfn) + 296 (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + 297 (!!(PQ_FLAGS_ACK & pq_flags)) + 298 (!!(PQ_FLAGS_OFLD & pq_flags)) * 299 qed_init_qm_get_num_mtc_tcs(p_hwfn) + 300 (!!(PQ_FLAGS_LLT & pq_flags)) * 301 qed_init_qm_get_num_mtc_tcs(p_hwfn) + 302 (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); 303 } 304 305 /* initialize the top level QM params */ 306 static void qed_init_qm_params(struct qed_hwfn *p_hwfn) 307 { 308 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 309 bool four_port; 310 311 /* pq and vport bases for this PF */ 312 qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); 313 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); 314 315 /* rate limiting and weighted fair queueing are always enabled */ 316 qm_info->vport_rl_en = true; 317 qm_info->vport_wfq_en = true; 318 319 /* TC config is different for AH 4 port */ 320 four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; 321 322 /* in AH 4 port we have fewer TCs per port */ 323 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 324 NUM_OF_PHYS_TCS; 325 326 /* unless MFW indicated otherwise, ooo_tc == 3 for 327 * AH 4-port and 4 otherwise. 328 */ 329 if (!qm_info->ooo_tc) 330 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 331 DCBX_TCP_OOO_TC; 332 } 333 334 /* initialize qm vport params */ 335 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) 336 { 337 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 338 u8 i; 339 340 /* all vports participate in weighted fair queueing */ 341 for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) 342 qm_info->qm_vport_params[i].vport_wfq = 1; 343 } 344 345 /* initialize qm port params */ 346 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) 347 { 348 /* Initialize qm port parameters */ 349 u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; 350 351 /* indicate how ooo and high pri traffic is dealt with */ 352 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 353 ACTIVE_TCS_BMAP_4PORT_K2 : 354 ACTIVE_TCS_BMAP; 355 356 for (i = 0; i < num_ports; i++) { 357 struct init_qm_port_params *p_qm_port = 358 &p_hwfn->qm_info.qm_port_params[i]; 359 360 p_qm_port->active = 1; 361 p_qm_port->active_phys_tcs = active_phys_tcs; 362 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; 363 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; 364 } 365 } 366 367 /* Reset the params which must be reset for qm init. QM init may be called as 368 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 369 * params may be affected by the init but would simply recalculate to the same 370 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 371 * affected as these amounts stay the same. 372 */ 373 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) 374 { 375 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 376 377 qm_info->num_pqs = 0; 378 qm_info->num_vports = 0; 379 qm_info->num_pf_rls = 0; 380 qm_info->num_vf_pqs = 0; 381 qm_info->first_vf_pq = 0; 382 qm_info->first_mcos_pq = 0; 383 qm_info->first_rl_pq = 0; 384 } 385 386 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) 387 { 388 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 389 390 qm_info->num_vports++; 391 392 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 393 DP_ERR(p_hwfn, 394 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 395 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 396 } 397 398 /* initialize a single pq and manage qm_info resources accounting. 399 * The pq_init_flags param determines whether the PQ is rate limited 400 * (for VF or PF) and whether a new vport is allocated to the pq or not 401 * (i.e. vport will be shared). 402 */ 403 404 /* flags for pq init */ 405 #define PQ_INIT_SHARE_VPORT (1 << 0) 406 #define PQ_INIT_PF_RL (1 << 1) 407 #define PQ_INIT_VF_RL (1 << 2) 408 409 /* defines for pq init */ 410 #define PQ_INIT_DEFAULT_WRR_GROUP 1 411 #define PQ_INIT_DEFAULT_TC 0 412 413 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc) 414 { 415 p_info->offload_tc = tc; 416 p_info->offload_tc_set = true; 417 } 418 419 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn) 420 { 421 return p_hwfn->hw_info.offload_tc_set; 422 } 423 424 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn) 425 { 426 if (qed_is_offload_tc_set(p_hwfn)) 427 return p_hwfn->hw_info.offload_tc; 428 429 return PQ_INIT_DEFAULT_TC; 430 } 431 432 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, 433 struct qed_qm_info *qm_info, 434 u8 tc, u32 pq_init_flags) 435 { 436 u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); 437 438 if (pq_idx > max_pq) 439 DP_ERR(p_hwfn, 440 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 441 442 /* init pq params */ 443 qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; 444 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 445 qm_info->num_vports; 446 qm_info->qm_pq_params[pq_idx].tc_id = tc; 447 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 448 qm_info->qm_pq_params[pq_idx].rl_valid = 449 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); 450 451 /* qm params accounting */ 452 qm_info->num_pqs++; 453 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 454 qm_info->num_vports++; 455 456 if (pq_init_flags & PQ_INIT_PF_RL) 457 qm_info->num_pf_rls++; 458 459 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 460 DP_ERR(p_hwfn, 461 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 462 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 463 464 if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) 465 DP_ERR(p_hwfn, 466 "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", 467 qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); 468 } 469 470 /* get pq index according to PQ_FLAGS */ 471 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, 472 u32 pq_flags) 473 { 474 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 475 476 /* Can't have multiple flags set here */ 477 if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1) 478 goto err; 479 480 switch (pq_flags) { 481 case PQ_FLAGS_RLS: 482 return &qm_info->first_rl_pq; 483 case PQ_FLAGS_MCOS: 484 return &qm_info->first_mcos_pq; 485 case PQ_FLAGS_LB: 486 return &qm_info->pure_lb_pq; 487 case PQ_FLAGS_OOO: 488 return &qm_info->ooo_pq; 489 case PQ_FLAGS_ACK: 490 return &qm_info->pure_ack_pq; 491 case PQ_FLAGS_OFLD: 492 return &qm_info->first_ofld_pq; 493 case PQ_FLAGS_LLT: 494 return &qm_info->first_llt_pq; 495 case PQ_FLAGS_VFS: 496 return &qm_info->first_vf_pq; 497 default: 498 goto err; 499 } 500 501 err: 502 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); 503 return NULL; 504 } 505 506 /* save pq index in qm info */ 507 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, 508 u32 pq_flags, u16 pq_val) 509 { 510 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 511 512 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 513 } 514 515 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 516 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) 517 { 518 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 519 520 return *base_pq_idx + CM_TX_PQ_BASE; 521 } 522 523 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) 524 { 525 u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); 526 527 if (tc > max_tc) 528 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 529 530 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc; 531 } 532 533 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) 534 { 535 u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); 536 537 if (vf > max_vf) 538 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 539 540 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf; 541 } 542 543 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc) 544 { 545 u16 first_ofld_pq, pq_offset; 546 547 first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD); 548 pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? 549 tc : PQ_INIT_DEFAULT_TC; 550 551 return first_ofld_pq + pq_offset; 552 } 553 554 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc) 555 { 556 u16 first_llt_pq, pq_offset; 557 558 first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT); 559 pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? 560 tc : PQ_INIT_DEFAULT_TC; 561 562 return first_llt_pq + pq_offset; 563 } 564 565 /* Functions for creating specific types of pqs */ 566 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) 567 { 568 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 569 570 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 571 return; 572 573 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 574 qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 575 } 576 577 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) 578 { 579 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 580 581 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 582 return; 583 584 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 585 qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 586 } 587 588 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) 589 { 590 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 591 592 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 593 return; 594 595 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 596 qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), 597 PQ_INIT_SHARE_VPORT); 598 } 599 600 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn) 601 { 602 u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn); 603 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 604 u8 tc; 605 606 /* override pq's TC if offload TC is set */ 607 for (tc = 0; tc < num_tcs; tc++) 608 qed_init_qm_pq(p_hwfn, qm_info, 609 qed_is_offload_tc_set(p_hwfn) ? 610 p_hwfn->hw_info.offload_tc : tc, 611 PQ_INIT_SHARE_VPORT); 612 } 613 614 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) 615 { 616 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 617 618 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 619 return; 620 621 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 622 qed_init_qm_mtc_pqs(p_hwfn); 623 } 624 625 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) 626 { 627 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 628 629 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) 630 return; 631 632 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); 633 qed_init_qm_mtc_pqs(p_hwfn); 634 } 635 636 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) 637 { 638 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 639 u8 tc_idx; 640 641 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 642 return; 643 644 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 645 for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) 646 qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 647 } 648 649 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) 650 { 651 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 652 u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 653 654 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 655 return; 656 657 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 658 qm_info->num_vf_pqs = num_vfs; 659 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 660 qed_init_qm_pq(p_hwfn, 661 qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); 662 } 663 664 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) 665 { 666 u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); 667 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 668 669 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 670 return; 671 672 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 673 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 674 qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), 675 PQ_INIT_PF_RL); 676 } 677 678 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) 679 { 680 /* rate limited pqs, must come first (FW assumption) */ 681 qed_init_qm_rl_pqs(p_hwfn); 682 683 /* pqs for multi cos */ 684 qed_init_qm_mcos_pqs(p_hwfn); 685 686 /* pure loopback pq */ 687 qed_init_qm_lb_pq(p_hwfn); 688 689 /* out of order pq */ 690 qed_init_qm_ooo_pq(p_hwfn); 691 692 /* pure ack pq */ 693 qed_init_qm_pure_ack_pq(p_hwfn); 694 695 /* pq for offloaded protocol */ 696 qed_init_qm_offload_pq(p_hwfn); 697 698 /* low latency pq */ 699 qed_init_qm_low_latency_pq(p_hwfn); 700 701 /* done sharing vports */ 702 qed_init_qm_advance_vport(p_hwfn); 703 704 /* pqs for vfs */ 705 qed_init_qm_vf_pqs(p_hwfn); 706 } 707 708 /* compare values of getters against resources amounts */ 709 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) 710 { 711 if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { 712 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 713 return -EINVAL; 714 } 715 716 if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) 717 return 0; 718 719 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { 720 p_hwfn->hw_info.multi_tc_roce_en = 0; 721 DP_NOTICE(p_hwfn, 722 "multi-tc roce was disabled to reduce requested amount of pqs\n"); 723 if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) 724 return 0; 725 } 726 727 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 728 return -EINVAL; 729 } 730 731 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) 732 { 733 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 734 struct init_qm_vport_params *vport; 735 struct init_qm_port_params *port; 736 struct init_qm_pq_params *pq; 737 int i, tc; 738 739 /* top level params */ 740 DP_VERBOSE(p_hwfn, 741 NETIF_MSG_HW, 742 "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n", 743 qm_info->start_pq, 744 qm_info->start_vport, 745 qm_info->pure_lb_pq, 746 qm_info->first_ofld_pq, 747 qm_info->first_llt_pq, 748 qm_info->pure_ack_pq); 749 DP_VERBOSE(p_hwfn, 750 NETIF_MSG_HW, 751 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", 752 qm_info->ooo_pq, 753 qm_info->first_vf_pq, 754 qm_info->num_pqs, 755 qm_info->num_vf_pqs, 756 qm_info->num_vports, qm_info->max_phys_tcs_per_port); 757 DP_VERBOSE(p_hwfn, 758 NETIF_MSG_HW, 759 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 760 qm_info->pf_rl_en, 761 qm_info->pf_wfq_en, 762 qm_info->vport_rl_en, 763 qm_info->vport_wfq_en, 764 qm_info->pf_wfq, 765 qm_info->pf_rl, 766 qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); 767 768 /* port table */ 769 for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { 770 port = &(qm_info->qm_port_params[i]); 771 DP_VERBOSE(p_hwfn, 772 NETIF_MSG_HW, 773 "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", 774 i, 775 port->active, 776 port->active_phys_tcs, 777 port->num_pbf_cmd_lines, 778 port->num_btb_blocks, port->reserved); 779 } 780 781 /* vport table */ 782 for (i = 0; i < qm_info->num_vports; i++) { 783 vport = &(qm_info->qm_vport_params[i]); 784 DP_VERBOSE(p_hwfn, 785 NETIF_MSG_HW, 786 "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ", 787 qm_info->start_vport + i, 788 vport->vport_rl, vport->vport_wfq); 789 for (tc = 0; tc < NUM_OF_TCS; tc++) 790 DP_VERBOSE(p_hwfn, 791 NETIF_MSG_HW, 792 "%d ", vport->first_tx_pq_id[tc]); 793 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); 794 } 795 796 /* pq table */ 797 for (i = 0; i < qm_info->num_pqs; i++) { 798 pq = &(qm_info->qm_pq_params[i]); 799 DP_VERBOSE(p_hwfn, 800 NETIF_MSG_HW, 801 "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", 802 qm_info->start_pq + i, 803 pq->port_id, 804 pq->vport_id, 805 pq->tc_id, pq->wrr_group, pq->rl_valid); 806 } 807 } 808 809 static void qed_init_qm_info(struct qed_hwfn *p_hwfn) 810 { 811 /* reset params required for init run */ 812 qed_init_qm_reset_params(p_hwfn); 813 814 /* init QM top level params */ 815 qed_init_qm_params(p_hwfn); 816 817 /* init QM port params */ 818 qed_init_qm_port_params(p_hwfn); 819 820 /* init QM vport params */ 821 qed_init_qm_vport_params(p_hwfn); 822 823 /* init QM physical queue params */ 824 qed_init_qm_pq_params(p_hwfn); 825 826 /* display all that init */ 827 qed_dp_init_qm_params(p_hwfn); 828 } 829 830 /* This function reconfigures the QM pf on the fly. 831 * For this purpose we: 832 * 1. reconfigure the QM database 833 * 2. set new values to runtime array 834 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 835 * 4. activate init tool in QM_PF stage 836 * 5. send an sdm_qm_cmd through rbc interface to release the QM 837 */ 838 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 839 { 840 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 841 bool b_rc; 842 int rc; 843 844 /* initialize qed's qm data structure */ 845 qed_init_qm_info(p_hwfn); 846 847 /* stop PF's qm queues */ 848 spin_lock_bh(&qm_lock); 849 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 850 qm_info->start_pq, qm_info->num_pqs); 851 spin_unlock_bh(&qm_lock); 852 if (!b_rc) 853 return -EINVAL; 854 855 /* clear the QM_PF runtime phase leftovers from previous init */ 856 qed_init_clear_rt_data(p_hwfn); 857 858 /* prepare QM portion of runtime array */ 859 qed_qm_init_pf(p_hwfn, p_ptt, false); 860 861 /* activate init tool on runtime array */ 862 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 863 p_hwfn->hw_info.hw_mode); 864 if (rc) 865 return rc; 866 867 /* start PF's qm queues */ 868 spin_lock_bh(&qm_lock); 869 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 870 qm_info->start_pq, qm_info->num_pqs); 871 spin_unlock_bh(&qm_lock); 872 if (!b_rc) 873 return -EINVAL; 874 875 return 0; 876 } 877 878 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) 879 { 880 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 881 int rc; 882 883 rc = qed_init_qm_sanity(p_hwfn); 884 if (rc) 885 goto alloc_err; 886 887 qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn), 888 sizeof(*qm_info->qm_pq_params), 889 GFP_KERNEL); 890 if (!qm_info->qm_pq_params) 891 goto alloc_err; 892 893 qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn), 894 sizeof(*qm_info->qm_vport_params), 895 GFP_KERNEL); 896 if (!qm_info->qm_vport_params) 897 goto alloc_err; 898 899 qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine, 900 sizeof(*qm_info->qm_port_params), 901 GFP_KERNEL); 902 if (!qm_info->qm_port_params) 903 goto alloc_err; 904 905 qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn), 906 sizeof(*qm_info->wfq_data), 907 GFP_KERNEL); 908 if (!qm_info->wfq_data) 909 goto alloc_err; 910 911 return 0; 912 913 alloc_err: 914 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); 915 qed_qm_info_free(p_hwfn); 916 return -ENOMEM; 917 } 918 919 int qed_resc_alloc(struct qed_dev *cdev) 920 { 921 u32 rdma_tasks, excess_tasks; 922 u32 line_count; 923 int i, rc = 0; 924 925 if (IS_VF(cdev)) { 926 for_each_hwfn(cdev, i) { 927 rc = qed_l2_alloc(&cdev->hwfns[i]); 928 if (rc) 929 return rc; 930 } 931 return rc; 932 } 933 934 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); 935 if (!cdev->fw_data) 936 return -ENOMEM; 937 938 for_each_hwfn(cdev, i) { 939 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 940 u32 n_eqes, num_cons; 941 942 /* First allocate the context manager structure */ 943 rc = qed_cxt_mngr_alloc(p_hwfn); 944 if (rc) 945 goto alloc_err; 946 947 /* Set the HW cid/tid numbers (in the contest manager) 948 * Must be done prior to any further computations. 949 */ 950 rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); 951 if (rc) 952 goto alloc_err; 953 954 rc = qed_alloc_qm_data(p_hwfn); 955 if (rc) 956 goto alloc_err; 957 958 /* init qm info */ 959 qed_init_qm_info(p_hwfn); 960 961 /* Compute the ILT client partition */ 962 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 963 if (rc) { 964 DP_NOTICE(p_hwfn, 965 "too many ILT lines; re-computing with less lines\n"); 966 /* In case there are not enough ILT lines we reduce the 967 * number of RDMA tasks and re-compute. 968 */ 969 excess_tasks = 970 qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); 971 if (!excess_tasks) 972 goto alloc_err; 973 974 rdma_tasks = RDMA_MAX_TIDS - excess_tasks; 975 rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); 976 if (rc) 977 goto alloc_err; 978 979 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 980 if (rc) { 981 DP_ERR(p_hwfn, 982 "failed ILT compute. Requested too many lines: %u\n", 983 line_count); 984 985 goto alloc_err; 986 } 987 } 988 989 /* CID map / ILT shadow table / T2 990 * The talbes sizes are determined by the computations above 991 */ 992 rc = qed_cxt_tables_alloc(p_hwfn); 993 if (rc) 994 goto alloc_err; 995 996 /* SPQ, must follow ILT because initializes SPQ context */ 997 rc = qed_spq_alloc(p_hwfn); 998 if (rc) 999 goto alloc_err; 1000 1001 /* SP status block allocation */ 1002 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, 1003 RESERVED_PTT_DPC); 1004 1005 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 1006 if (rc) 1007 goto alloc_err; 1008 1009 rc = qed_iov_alloc(p_hwfn); 1010 if (rc) 1011 goto alloc_err; 1012 1013 /* EQ */ 1014 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); 1015 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { 1016 enum protocol_type rdma_proto; 1017 1018 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 1019 rdma_proto = PROTOCOLID_ROCE; 1020 else 1021 rdma_proto = PROTOCOLID_IWARP; 1022 1023 num_cons = qed_cxt_get_proto_cid_count(p_hwfn, 1024 rdma_proto, 1025 NULL) * 2; 1026 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 1027 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1028 num_cons = 1029 qed_cxt_get_proto_cid_count(p_hwfn, 1030 PROTOCOLID_ISCSI, 1031 NULL); 1032 n_eqes += 2 * num_cons; 1033 } 1034 1035 if (n_eqes > 0xFFFF) { 1036 DP_ERR(p_hwfn, 1037 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", 1038 n_eqes, 0xFFFF); 1039 goto alloc_no_mem; 1040 } 1041 1042 rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); 1043 if (rc) 1044 goto alloc_err; 1045 1046 rc = qed_consq_alloc(p_hwfn); 1047 if (rc) 1048 goto alloc_err; 1049 1050 rc = qed_l2_alloc(p_hwfn); 1051 if (rc) 1052 goto alloc_err; 1053 1054 #ifdef CONFIG_QED_LL2 1055 if (p_hwfn->using_ll2) { 1056 rc = qed_ll2_alloc(p_hwfn); 1057 if (rc) 1058 goto alloc_err; 1059 } 1060 #endif 1061 1062 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1063 rc = qed_fcoe_alloc(p_hwfn); 1064 if (rc) 1065 goto alloc_err; 1066 } 1067 1068 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1069 rc = qed_iscsi_alloc(p_hwfn); 1070 if (rc) 1071 goto alloc_err; 1072 rc = qed_ooo_alloc(p_hwfn); 1073 if (rc) 1074 goto alloc_err; 1075 } 1076 1077 /* DMA info initialization */ 1078 rc = qed_dmae_info_alloc(p_hwfn); 1079 if (rc) 1080 goto alloc_err; 1081 1082 /* DCBX initialization */ 1083 rc = qed_dcbx_info_alloc(p_hwfn); 1084 if (rc) 1085 goto alloc_err; 1086 } 1087 1088 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); 1089 if (!cdev->reset_stats) 1090 goto alloc_no_mem; 1091 1092 return 0; 1093 1094 alloc_no_mem: 1095 rc = -ENOMEM; 1096 alloc_err: 1097 qed_resc_free(cdev); 1098 return rc; 1099 } 1100 1101 void qed_resc_setup(struct qed_dev *cdev) 1102 { 1103 int i; 1104 1105 if (IS_VF(cdev)) { 1106 for_each_hwfn(cdev, i) 1107 qed_l2_setup(&cdev->hwfns[i]); 1108 return; 1109 } 1110 1111 for_each_hwfn(cdev, i) { 1112 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1113 1114 qed_cxt_mngr_setup(p_hwfn); 1115 qed_spq_setup(p_hwfn); 1116 qed_eq_setup(p_hwfn); 1117 qed_consq_setup(p_hwfn); 1118 1119 /* Read shadow of current MFW mailbox */ 1120 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 1121 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1122 p_hwfn->mcp_info->mfw_mb_cur, 1123 p_hwfn->mcp_info->mfw_mb_length); 1124 1125 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); 1126 1127 qed_l2_setup(p_hwfn); 1128 qed_iov_setup(p_hwfn); 1129 #ifdef CONFIG_QED_LL2 1130 if (p_hwfn->using_ll2) 1131 qed_ll2_setup(p_hwfn); 1132 #endif 1133 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 1134 qed_fcoe_setup(p_hwfn); 1135 1136 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1137 qed_iscsi_setup(p_hwfn); 1138 qed_ooo_setup(p_hwfn); 1139 } 1140 } 1141 } 1142 1143 #define FINAL_CLEANUP_POLL_CNT (100) 1144 #define FINAL_CLEANUP_POLL_TIME (10) 1145 int qed_final_cleanup(struct qed_hwfn *p_hwfn, 1146 struct qed_ptt *p_ptt, u16 id, bool is_vf) 1147 { 1148 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 1149 int rc = -EBUSY; 1150 1151 addr = GTT_BAR0_MAP_REG_USDM_RAM + 1152 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 1153 1154 if (is_vf) 1155 id += 0x10; 1156 1157 command |= X_FINAL_CLEANUP_AGG_INT << 1158 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 1159 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 1160 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 1161 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 1162 1163 /* Make sure notification is not set before initiating final cleanup */ 1164 if (REG_RD(p_hwfn, addr)) { 1165 DP_NOTICE(p_hwfn, 1166 "Unexpected; Found final cleanup notification before initiating final cleanup\n"); 1167 REG_WR(p_hwfn, addr, 0); 1168 } 1169 1170 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1171 "Sending final cleanup for PFVF[%d] [Command %08x]\n", 1172 id, command); 1173 1174 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 1175 1176 /* Poll until completion */ 1177 while (!REG_RD(p_hwfn, addr) && count--) 1178 msleep(FINAL_CLEANUP_POLL_TIME); 1179 1180 if (REG_RD(p_hwfn, addr)) 1181 rc = 0; 1182 else 1183 DP_NOTICE(p_hwfn, 1184 "Failed to receive FW final cleanup notification\n"); 1185 1186 /* Cleanup afterwards */ 1187 REG_WR(p_hwfn, addr, 0); 1188 1189 return rc; 1190 } 1191 1192 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) 1193 { 1194 int hw_mode = 0; 1195 1196 if (QED_IS_BB_B0(p_hwfn->cdev)) { 1197 hw_mode |= 1 << MODE_BB; 1198 } else if (QED_IS_AH(p_hwfn->cdev)) { 1199 hw_mode |= 1 << MODE_K2; 1200 } else { 1201 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", 1202 p_hwfn->cdev->type); 1203 return -EINVAL; 1204 } 1205 1206 switch (p_hwfn->cdev->num_ports_in_engine) { 1207 case 1: 1208 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 1209 break; 1210 case 2: 1211 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 1212 break; 1213 case 4: 1214 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 1215 break; 1216 default: 1217 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", 1218 p_hwfn->cdev->num_ports_in_engine); 1219 return -EINVAL; 1220 } 1221 1222 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) 1223 hw_mode |= 1 << MODE_MF_SD; 1224 else 1225 hw_mode |= 1 << MODE_MF_SI; 1226 1227 hw_mode |= 1 << MODE_ASIC; 1228 1229 if (p_hwfn->cdev->num_hwfns > 1) 1230 hw_mode |= 1 << MODE_100G; 1231 1232 p_hwfn->hw_info.hw_mode = hw_mode; 1233 1234 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), 1235 "Configuring function for hw_mode: 0x%08x\n", 1236 p_hwfn->hw_info.hw_mode); 1237 1238 return 0; 1239 } 1240 1241 /* Init run time data for all PFs on an engine. */ 1242 static void qed_init_cau_rt_data(struct qed_dev *cdev) 1243 { 1244 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 1245 int i, igu_sb_id; 1246 1247 for_each_hwfn(cdev, i) { 1248 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1249 struct qed_igu_info *p_igu_info; 1250 struct qed_igu_block *p_block; 1251 struct cau_sb_entry sb_entry; 1252 1253 p_igu_info = p_hwfn->hw_info.p_igu_info; 1254 1255 for (igu_sb_id = 0; 1256 igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { 1257 p_block = &p_igu_info->entry[igu_sb_id]; 1258 1259 if (!p_block->is_pf) 1260 continue; 1261 1262 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 1263 p_block->function_id, 0, 0); 1264 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 1265 sb_entry); 1266 } 1267 } 1268 } 1269 1270 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, 1271 struct qed_ptt *p_ptt) 1272 { 1273 u32 val, wr_mbs, cache_line_size; 1274 1275 val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 1276 switch (val) { 1277 case 0: 1278 wr_mbs = 128; 1279 break; 1280 case 1: 1281 wr_mbs = 256; 1282 break; 1283 case 2: 1284 wr_mbs = 512; 1285 break; 1286 default: 1287 DP_INFO(p_hwfn, 1288 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1289 val); 1290 return; 1291 } 1292 1293 cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); 1294 switch (cache_line_size) { 1295 case 32: 1296 val = 0; 1297 break; 1298 case 64: 1299 val = 1; 1300 break; 1301 case 128: 1302 val = 2; 1303 break; 1304 case 256: 1305 val = 3; 1306 break; 1307 default: 1308 DP_INFO(p_hwfn, 1309 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1310 cache_line_size); 1311 } 1312 1313 if (L1_CACHE_BYTES > wr_mbs) 1314 DP_INFO(p_hwfn, 1315 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 1316 L1_CACHE_BYTES, wr_mbs); 1317 1318 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 1319 if (val > 0) { 1320 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 1321 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 1322 } 1323 } 1324 1325 static int qed_hw_init_common(struct qed_hwfn *p_hwfn, 1326 struct qed_ptt *p_ptt, int hw_mode) 1327 { 1328 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 1329 struct qed_qm_common_rt_init_params params; 1330 struct qed_dev *cdev = p_hwfn->cdev; 1331 u8 vf_id, max_num_vfs; 1332 u16 num_pfs, pf_id; 1333 u32 concrete_fid; 1334 int rc = 0; 1335 1336 qed_init_cau_rt_data(cdev); 1337 1338 /* Program GTT windows */ 1339 qed_gtt_init(p_hwfn); 1340 1341 if (p_hwfn->mcp_info) { 1342 if (p_hwfn->mcp_info->func_info.bandwidth_max) 1343 qm_info->pf_rl_en = true; 1344 if (p_hwfn->mcp_info->func_info.bandwidth_min) 1345 qm_info->pf_wfq_en = true; 1346 } 1347 1348 memset(¶ms, 0, sizeof(params)); 1349 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; 1350 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; 1351 params.pf_rl_en = qm_info->pf_rl_en; 1352 params.pf_wfq_en = qm_info->pf_wfq_en; 1353 params.vport_rl_en = qm_info->vport_rl_en; 1354 params.vport_wfq_en = qm_info->vport_wfq_en; 1355 params.port_params = qm_info->qm_port_params; 1356 1357 qed_qm_common_rt_init(p_hwfn, ¶ms); 1358 1359 qed_cxt_hw_init_common(p_hwfn); 1360 1361 qed_init_cache_line_size(p_hwfn, p_ptt); 1362 1363 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); 1364 if (rc) 1365 return rc; 1366 1367 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 1368 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 1369 1370 if (QED_IS_BB(p_hwfn->cdev)) { 1371 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); 1372 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 1373 qed_fid_pretend(p_hwfn, p_ptt, pf_id); 1374 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1375 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1376 } 1377 /* pretend to original PF */ 1378 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1379 } 1380 1381 max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; 1382 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 1383 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); 1384 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); 1385 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 1386 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 1387 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 1388 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 1389 } 1390 /* pretend to original PF */ 1391 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1392 1393 return rc; 1394 } 1395 1396 static int 1397 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, 1398 struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 1399 { 1400 u32 dpi_bit_shift, dpi_count, dpi_page_size; 1401 u32 min_dpis; 1402 u32 n_wids; 1403 1404 /* Calculate DPI size */ 1405 n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); 1406 dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); 1407 dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1408 dpi_bit_shift = ilog2(dpi_page_size / 4096); 1409 dpi_count = pwm_region_size / dpi_page_size; 1410 1411 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 1412 min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); 1413 1414 p_hwfn->dpi_size = dpi_page_size; 1415 p_hwfn->dpi_count = dpi_count; 1416 1417 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 1418 1419 if (dpi_count < min_dpis) 1420 return -EINVAL; 1421 1422 return 0; 1423 } 1424 1425 enum QED_ROCE_EDPM_MODE { 1426 QED_ROCE_EDPM_MODE_ENABLE = 0, 1427 QED_ROCE_EDPM_MODE_FORCE_ON = 1, 1428 QED_ROCE_EDPM_MODE_DISABLE = 2, 1429 }; 1430 1431 static int 1432 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1433 { 1434 u32 pwm_regsize, norm_regsize; 1435 u32 non_pwm_conn, min_addr_reg1; 1436 u32 db_bar_size, n_cpus = 1; 1437 u32 roce_edpm_mode; 1438 u32 pf_dems_shift; 1439 int rc = 0; 1440 u8 cond; 1441 1442 db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 1443 if (p_hwfn->cdev->num_hwfns > 1) 1444 db_bar_size /= 2; 1445 1446 /* Calculate doorbell regions */ 1447 non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 1448 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 1449 NULL) + 1450 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 1451 NULL); 1452 norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); 1453 min_addr_reg1 = norm_regsize / 4096; 1454 pwm_regsize = db_bar_size - norm_regsize; 1455 1456 /* Check that the normal and PWM sizes are valid */ 1457 if (db_bar_size < norm_regsize) { 1458 DP_ERR(p_hwfn->cdev, 1459 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 1460 db_bar_size, norm_regsize); 1461 return -EINVAL; 1462 } 1463 1464 if (pwm_regsize < QED_MIN_PWM_REGION) { 1465 DP_ERR(p_hwfn->cdev, 1466 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 1467 pwm_regsize, 1468 QED_MIN_PWM_REGION, db_bar_size, norm_regsize); 1469 return -EINVAL; 1470 } 1471 1472 /* Calculate number of DPIs */ 1473 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 1474 if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || 1475 ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { 1476 /* Either EDPM is mandatory, or we are attempting to allocate a 1477 * WID per CPU. 1478 */ 1479 n_cpus = num_present_cpus(); 1480 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1481 } 1482 1483 cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || 1484 (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); 1485 if (cond || p_hwfn->dcbx_no_edpm) { 1486 /* Either EDPM is disabled from user configuration, or it is 1487 * disabled via DCBx, or it is not mandatory and we failed to 1488 * allocated a WID per CPU. 1489 */ 1490 n_cpus = 1; 1491 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1492 1493 if (cond) 1494 qed_rdma_dpm_bar(p_hwfn, p_ptt); 1495 } 1496 1497 p_hwfn->wid_count = (u16) n_cpus; 1498 1499 DP_INFO(p_hwfn, 1500 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 1501 norm_regsize, 1502 pwm_regsize, 1503 p_hwfn->dpi_size, 1504 p_hwfn->dpi_count, 1505 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? 1506 "disabled" : "enabled"); 1507 1508 if (rc) { 1509 DP_ERR(p_hwfn, 1510 "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", 1511 p_hwfn->dpi_count, 1512 p_hwfn->pf_params.rdma_pf_params.min_dpis); 1513 return -EINVAL; 1514 } 1515 1516 p_hwfn->dpi_start_offset = norm_regsize; 1517 1518 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 1519 pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); 1520 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 1521 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 1522 1523 return 0; 1524 } 1525 1526 static int qed_hw_init_port(struct qed_hwfn *p_hwfn, 1527 struct qed_ptt *p_ptt, int hw_mode) 1528 { 1529 int rc = 0; 1530 1531 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); 1532 if (rc) 1533 return rc; 1534 1535 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 1536 1537 return 0; 1538 } 1539 1540 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, 1541 struct qed_ptt *p_ptt, 1542 struct qed_tunnel_info *p_tunn, 1543 int hw_mode, 1544 bool b_hw_start, 1545 enum qed_int_mode int_mode, 1546 bool allow_npar_tx_switch) 1547 { 1548 u8 rel_pf_id = p_hwfn->rel_pf_id; 1549 int rc = 0; 1550 1551 if (p_hwfn->mcp_info) { 1552 struct qed_mcp_function_info *p_info; 1553 1554 p_info = &p_hwfn->mcp_info->func_info; 1555 if (p_info->bandwidth_min) 1556 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 1557 1558 /* Update rate limit once we'll actually have a link */ 1559 p_hwfn->qm_info.pf_rl = 100000; 1560 } 1561 1562 qed_cxt_hw_init_pf(p_hwfn, p_ptt); 1563 1564 qed_int_igu_init_rt(p_hwfn); 1565 1566 /* Set VLAN in NIG if needed */ 1567 if (hw_mode & BIT(MODE_MF_SD)) { 1568 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 1569 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 1570 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 1571 p_hwfn->hw_info.ovlan); 1572 1573 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1574 "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); 1575 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, 1576 1); 1577 } 1578 1579 /* Enable classification by MAC if needed */ 1580 if (hw_mode & BIT(MODE_MF_SI)) { 1581 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1582 "Configuring TAGMAC_CLS_TYPE\n"); 1583 STORE_RT_REG(p_hwfn, 1584 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); 1585 } 1586 1587 /* Protocol Configuration */ 1588 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 1589 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); 1590 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 1591 (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); 1592 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 1593 1594 /* Cleanup chip from previous driver if such remains exist */ 1595 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); 1596 if (rc) 1597 return rc; 1598 1599 /* Sanity check before the PF init sequence that uses DMAE */ 1600 rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); 1601 if (rc) 1602 return rc; 1603 1604 /* PF Init sequence */ 1605 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 1606 if (rc) 1607 return rc; 1608 1609 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 1610 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 1611 if (rc) 1612 return rc; 1613 1614 /* Pure runtime initializations - directly to the HW */ 1615 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 1616 1617 rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 1618 if (rc) 1619 return rc; 1620 1621 if (b_hw_start) { 1622 /* enable interrupts */ 1623 qed_int_igu_enable(p_hwfn, p_ptt, int_mode); 1624 1625 /* send function start command */ 1626 rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, 1627 allow_npar_tx_switch); 1628 if (rc) { 1629 DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); 1630 return rc; 1631 } 1632 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1633 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); 1634 qed_wr(p_hwfn, p_ptt, 1635 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 1636 0x100); 1637 } 1638 } 1639 return rc; 1640 } 1641 1642 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, 1643 struct qed_ptt *p_ptt, 1644 u8 enable) 1645 { 1646 u32 delay_idx = 0, val, set_val = enable ? 1 : 0; 1647 1648 /* Change PF in PXP */ 1649 qed_wr(p_hwfn, p_ptt, 1650 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 1651 1652 /* wait until value is set - try for 1 second every 50us */ 1653 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 1654 val = qed_rd(p_hwfn, p_ptt, 1655 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1656 if (val == set_val) 1657 break; 1658 1659 usleep_range(50, 60); 1660 } 1661 1662 if (val != set_val) { 1663 DP_NOTICE(p_hwfn, 1664 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 1665 return -EAGAIN; 1666 } 1667 1668 return 0; 1669 } 1670 1671 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, 1672 struct qed_ptt *p_main_ptt) 1673 { 1674 /* Read shadow of current MFW mailbox */ 1675 qed_mcp_read_mb(p_hwfn, p_main_ptt); 1676 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1677 p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); 1678 } 1679 1680 static void 1681 qed_fill_load_req_params(struct qed_load_req_params *p_load_req, 1682 struct qed_drv_load_params *p_drv_load) 1683 { 1684 memset(p_load_req, 0, sizeof(*p_load_req)); 1685 1686 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 1687 QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; 1688 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 1689 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 1690 p_load_req->override_force_load = p_drv_load->override_force_load; 1691 } 1692 1693 static int qed_vf_start(struct qed_hwfn *p_hwfn, 1694 struct qed_hw_init_params *p_params) 1695 { 1696 if (p_params->p_tunn) { 1697 qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 1698 qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 1699 } 1700 1701 p_hwfn->b_int_enabled = true; 1702 1703 return 0; 1704 } 1705 1706 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) 1707 { 1708 struct qed_load_req_params load_req_params; 1709 u32 load_code, resp, param, drv_mb_param; 1710 bool b_default_mtu = true; 1711 struct qed_hwfn *p_hwfn; 1712 int rc = 0, mfw_rc, i; 1713 u16 ether_type; 1714 1715 if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { 1716 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); 1717 return -EINVAL; 1718 } 1719 1720 if (IS_PF(cdev)) { 1721 rc = qed_init_fw_data(cdev, p_params->bin_fw_data); 1722 if (rc) 1723 return rc; 1724 } 1725 1726 for_each_hwfn(cdev, i) { 1727 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1728 1729 /* If management didn't provide a default, set one of our own */ 1730 if (!p_hwfn->hw_info.mtu) { 1731 p_hwfn->hw_info.mtu = 1500; 1732 b_default_mtu = false; 1733 } 1734 1735 if (IS_VF(cdev)) { 1736 qed_vf_start(p_hwfn, p_params); 1737 continue; 1738 } 1739 1740 /* Enable DMAE in PXP */ 1741 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); 1742 1743 rc = qed_calc_hw_mode(p_hwfn); 1744 if (rc) 1745 return rc; 1746 1747 if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING, 1748 &cdev->mf_bits) || 1749 test_bit(QED_MF_8021AD_TAGGING, 1750 &cdev->mf_bits))) { 1751 if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits)) 1752 ether_type = ETH_P_8021Q; 1753 else 1754 ether_type = ETH_P_8021AD; 1755 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1756 ether_type); 1757 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1758 ether_type); 1759 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, 1760 ether_type); 1761 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, 1762 ether_type); 1763 } 1764 1765 qed_fill_load_req_params(&load_req_params, 1766 p_params->p_drv_load_params); 1767 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 1768 &load_req_params); 1769 if (rc) { 1770 DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); 1771 return rc; 1772 } 1773 1774 load_code = load_req_params.load_code; 1775 DP_VERBOSE(p_hwfn, QED_MSG_SP, 1776 "Load request was sent. Load code: 0x%x\n", 1777 load_code); 1778 1779 qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); 1780 1781 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 1782 1783 p_hwfn->first_on_engine = (load_code == 1784 FW_MSG_CODE_DRV_LOAD_ENGINE); 1785 1786 switch (load_code) { 1787 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1788 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 1789 p_hwfn->hw_info.hw_mode); 1790 if (rc) 1791 break; 1792 /* Fall through */ 1793 case FW_MSG_CODE_DRV_LOAD_PORT: 1794 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 1795 p_hwfn->hw_info.hw_mode); 1796 if (rc) 1797 break; 1798 1799 /* Fall through */ 1800 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1801 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 1802 p_params->p_tunn, 1803 p_hwfn->hw_info.hw_mode, 1804 p_params->b_hw_start, 1805 p_params->int_mode, 1806 p_params->allow_npar_tx_switch); 1807 break; 1808 default: 1809 DP_NOTICE(p_hwfn, 1810 "Unexpected load code [0x%08x]", load_code); 1811 rc = -EINVAL; 1812 break; 1813 } 1814 1815 if (rc) 1816 DP_NOTICE(p_hwfn, 1817 "init phase failed for loadcode 0x%x (rc %d)\n", 1818 load_code, rc); 1819 1820 /* ACK mfw regardless of success or failure of initialization */ 1821 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1822 DRV_MSG_CODE_LOAD_DONE, 1823 0, &load_code, ¶m); 1824 if (rc) 1825 return rc; 1826 if (mfw_rc) { 1827 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); 1828 return mfw_rc; 1829 } 1830 1831 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1832 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1833 DP_NOTICE(p_hwfn, 1834 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1835 1836 /* send DCBX attention request command */ 1837 DP_VERBOSE(p_hwfn, 1838 QED_MSG_DCB, 1839 "sending phony dcbx set command to trigger DCBx attention handling\n"); 1840 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1841 DRV_MSG_CODE_SET_DCBX, 1842 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, 1843 &load_code, ¶m); 1844 if (mfw_rc) { 1845 DP_NOTICE(p_hwfn, 1846 "Failed to send DCBX attention request\n"); 1847 return mfw_rc; 1848 } 1849 1850 p_hwfn->hw_init_done = true; 1851 } 1852 1853 if (IS_PF(cdev)) { 1854 p_hwfn = QED_LEADING_HWFN(cdev); 1855 1856 /* Get pre-negotiated values for stag, bandwidth etc. */ 1857 DP_VERBOSE(p_hwfn, 1858 QED_MSG_SPQ, 1859 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 1860 drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET; 1861 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1862 DRV_MSG_CODE_GET_OEM_UPDATES, 1863 drv_mb_param, &resp, ¶m); 1864 if (rc) 1865 DP_NOTICE(p_hwfn, 1866 "Failed to send GET_OEM_UPDATES attention request\n"); 1867 1868 drv_mb_param = STORM_FW_VERSION; 1869 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1870 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 1871 drv_mb_param, &load_code, ¶m); 1872 if (rc) 1873 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 1874 1875 if (!b_default_mtu) { 1876 rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 1877 p_hwfn->hw_info.mtu); 1878 if (rc) 1879 DP_INFO(p_hwfn, 1880 "Failed to update default mtu\n"); 1881 } 1882 1883 rc = qed_mcp_ov_update_driver_state(p_hwfn, 1884 p_hwfn->p_main_ptt, 1885 QED_OV_DRIVER_STATE_DISABLED); 1886 if (rc) 1887 DP_INFO(p_hwfn, "Failed to update driver state\n"); 1888 1889 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 1890 QED_OV_ESWITCH_NONE); 1891 if (rc) 1892 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 1893 } 1894 1895 return 0; 1896 } 1897 1898 #define QED_HW_STOP_RETRY_LIMIT (10) 1899 static void qed_hw_timers_stop(struct qed_dev *cdev, 1900 struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1901 { 1902 int i; 1903 1904 /* close timers */ 1905 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 1906 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 1907 1908 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { 1909 if ((!qed_rd(p_hwfn, p_ptt, 1910 TM_REG_PF_SCAN_ACTIVE_CONN)) && 1911 (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 1912 break; 1913 1914 /* Dependent on number of connection/tasks, possibly 1915 * 1ms sleep is required between polls 1916 */ 1917 usleep_range(1000, 2000); 1918 } 1919 1920 if (i < QED_HW_STOP_RETRY_LIMIT) 1921 return; 1922 1923 DP_NOTICE(p_hwfn, 1924 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 1925 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 1926 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 1927 } 1928 1929 void qed_hw_timers_stop_all(struct qed_dev *cdev) 1930 { 1931 int j; 1932 1933 for_each_hwfn(cdev, j) { 1934 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1935 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 1936 1937 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1938 } 1939 } 1940 1941 int qed_hw_stop(struct qed_dev *cdev) 1942 { 1943 struct qed_hwfn *p_hwfn; 1944 struct qed_ptt *p_ptt; 1945 int rc, rc2 = 0; 1946 int j; 1947 1948 for_each_hwfn(cdev, j) { 1949 p_hwfn = &cdev->hwfns[j]; 1950 p_ptt = p_hwfn->p_main_ptt; 1951 1952 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); 1953 1954 if (IS_VF(cdev)) { 1955 qed_vf_pf_int_cleanup(p_hwfn); 1956 rc = qed_vf_pf_reset(p_hwfn); 1957 if (rc) { 1958 DP_NOTICE(p_hwfn, 1959 "qed_vf_pf_reset failed. rc = %d.\n", 1960 rc); 1961 rc2 = -EINVAL; 1962 } 1963 continue; 1964 } 1965 1966 /* mark the hw as uninitialized... */ 1967 p_hwfn->hw_init_done = false; 1968 1969 /* Send unload command to MCP */ 1970 rc = qed_mcp_unload_req(p_hwfn, p_ptt); 1971 if (rc) { 1972 DP_NOTICE(p_hwfn, 1973 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 1974 rc); 1975 rc2 = -EINVAL; 1976 } 1977 1978 qed_slowpath_irq_sync(p_hwfn); 1979 1980 /* After this point no MFW attentions are expected, e.g. prevent 1981 * race between pf stop and dcbx pf update. 1982 */ 1983 rc = qed_sp_pf_stop(p_hwfn); 1984 if (rc) { 1985 DP_NOTICE(p_hwfn, 1986 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 1987 rc); 1988 rc2 = -EINVAL; 1989 } 1990 1991 qed_wr(p_hwfn, p_ptt, 1992 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 1993 1994 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1995 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 1996 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 1997 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1998 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 1999 2000 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 2001 2002 /* Disable Attention Generation */ 2003 qed_int_igu_disable_int(p_hwfn, p_ptt); 2004 2005 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 2006 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 2007 2008 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 2009 2010 /* Need to wait 1ms to guarantee SBs are cleared */ 2011 usleep_range(1000, 2000); 2012 2013 /* Disable PF in HW blocks */ 2014 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 2015 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 2016 2017 qed_mcp_unload_done(p_hwfn, p_ptt); 2018 if (rc) { 2019 DP_NOTICE(p_hwfn, 2020 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 2021 rc); 2022 rc2 = -EINVAL; 2023 } 2024 } 2025 2026 if (IS_PF(cdev)) { 2027 p_hwfn = QED_LEADING_HWFN(cdev); 2028 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; 2029 2030 /* Disable DMAE in PXP - in CMT, this should only be done for 2031 * first hw-function, and only after all transactions have 2032 * stopped for all active hw-functions. 2033 */ 2034 rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false); 2035 if (rc) { 2036 DP_NOTICE(p_hwfn, 2037 "qed_change_pci_hwfn failed. rc = %d.\n", rc); 2038 rc2 = -EINVAL; 2039 } 2040 } 2041 2042 return rc2; 2043 } 2044 2045 int qed_hw_stop_fastpath(struct qed_dev *cdev) 2046 { 2047 int j; 2048 2049 for_each_hwfn(cdev, j) { 2050 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 2051 struct qed_ptt *p_ptt; 2052 2053 if (IS_VF(cdev)) { 2054 qed_vf_pf_int_cleanup(p_hwfn); 2055 continue; 2056 } 2057 p_ptt = qed_ptt_acquire(p_hwfn); 2058 if (!p_ptt) 2059 return -EAGAIN; 2060 2061 DP_VERBOSE(p_hwfn, 2062 NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); 2063 2064 qed_wr(p_hwfn, p_ptt, 2065 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 2066 2067 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 2068 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 2069 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 2070 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 2071 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 2072 2073 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 2074 2075 /* Need to wait 1ms to guarantee SBs are cleared */ 2076 usleep_range(1000, 2000); 2077 qed_ptt_release(p_hwfn, p_ptt); 2078 } 2079 2080 return 0; 2081 } 2082 2083 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) 2084 { 2085 struct qed_ptt *p_ptt; 2086 2087 if (IS_VF(p_hwfn->cdev)) 2088 return 0; 2089 2090 p_ptt = qed_ptt_acquire(p_hwfn); 2091 if (!p_ptt) 2092 return -EAGAIN; 2093 2094 /* If roce info is allocated it means roce is initialized and should 2095 * be enabled in searcher. 2096 */ 2097 if (p_hwfn->p_rdma_info && 2098 p_hwfn->b_rdma_enabled_in_prs) 2099 qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); 2100 2101 /* Re-open incoming traffic */ 2102 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 2103 qed_ptt_release(p_hwfn, p_ptt); 2104 2105 return 0; 2106 } 2107 2108 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 2109 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) 2110 { 2111 qed_ptt_pool_free(p_hwfn); 2112 kfree(p_hwfn->hw_info.p_igu_info); 2113 p_hwfn->hw_info.p_igu_info = NULL; 2114 } 2115 2116 /* Setup bar access */ 2117 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) 2118 { 2119 /* clear indirect access */ 2120 if (QED_IS_AH(p_hwfn->cdev)) { 2121 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2122 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); 2123 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2124 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); 2125 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2126 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); 2127 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2128 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); 2129 } else { 2130 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2131 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 2132 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2133 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 2134 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2135 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 2136 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2137 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 2138 } 2139 2140 /* Clean Previous errors if such exist */ 2141 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2142 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); 2143 2144 /* enable internal target-read */ 2145 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2146 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 2147 } 2148 2149 static void get_function_id(struct qed_hwfn *p_hwfn) 2150 { 2151 /* ME Register */ 2152 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, 2153 PXP_PF_ME_OPAQUE_ADDR); 2154 2155 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 2156 2157 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 2158 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2159 PXP_CONCRETE_FID_PFID); 2160 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2161 PXP_CONCRETE_FID_PORT); 2162 2163 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, 2164 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 2165 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 2166 } 2167 2168 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) 2169 { 2170 u32 *feat_num = p_hwfn->hw_info.feat_num; 2171 struct qed_sb_cnt_info sb_cnt; 2172 u32 non_l2_sbs = 0; 2173 2174 memset(&sb_cnt, 0, sizeof(sb_cnt)); 2175 qed_int_get_num_sbs(p_hwfn, &sb_cnt); 2176 2177 if (IS_ENABLED(CONFIG_QED_RDMA) && 2178 QED_IS_RDMA_PERSONALITY(p_hwfn)) { 2179 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide 2180 * the status blocks equally between L2 / RoCE but with 2181 * consideration as to how many l2 queues / cnqs we have. 2182 */ 2183 feat_num[QED_RDMA_CNQ] = 2184 min_t(u32, sb_cnt.cnt / 2, 2185 RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); 2186 2187 non_l2_sbs = feat_num[QED_RDMA_CNQ]; 2188 } 2189 if (QED_IS_L2_PERSONALITY(p_hwfn)) { 2190 /* Start by allocating VF queues, then PF's */ 2191 feat_num[QED_VF_L2_QUE] = min_t(u32, 2192 RESC_NUM(p_hwfn, QED_L2_QUEUE), 2193 sb_cnt.iov_cnt); 2194 feat_num[QED_PF_L2_QUE] = min_t(u32, 2195 sb_cnt.cnt - non_l2_sbs, 2196 RESC_NUM(p_hwfn, 2197 QED_L2_QUEUE) - 2198 FEAT_NUM(p_hwfn, 2199 QED_VF_L2_QUE)); 2200 } 2201 2202 if (QED_IS_FCOE_PERSONALITY(p_hwfn)) 2203 feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, 2204 RESC_NUM(p_hwfn, 2205 QED_CMDQS_CQS)); 2206 2207 if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) 2208 feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, 2209 RESC_NUM(p_hwfn, 2210 QED_CMDQS_CQS)); 2211 DP_VERBOSE(p_hwfn, 2212 NETIF_MSG_PROBE, 2213 "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", 2214 (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), 2215 (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), 2216 (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), 2217 (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), 2218 (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), 2219 (int)sb_cnt.cnt); 2220 } 2221 2222 const char *qed_hw_get_resc_name(enum qed_resources res_id) 2223 { 2224 switch (res_id) { 2225 case QED_L2_QUEUE: 2226 return "L2_QUEUE"; 2227 case QED_VPORT: 2228 return "VPORT"; 2229 case QED_RSS_ENG: 2230 return "RSS_ENG"; 2231 case QED_PQ: 2232 return "PQ"; 2233 case QED_RL: 2234 return "RL"; 2235 case QED_MAC: 2236 return "MAC"; 2237 case QED_VLAN: 2238 return "VLAN"; 2239 case QED_RDMA_CNQ_RAM: 2240 return "RDMA_CNQ_RAM"; 2241 case QED_ILT: 2242 return "ILT"; 2243 case QED_LL2_QUEUE: 2244 return "LL2_QUEUE"; 2245 case QED_CMDQS_CQS: 2246 return "CMDQS_CQS"; 2247 case QED_RDMA_STATS_QUEUE: 2248 return "RDMA_STATS_QUEUE"; 2249 case QED_BDQ: 2250 return "BDQ"; 2251 case QED_SB: 2252 return "SB"; 2253 default: 2254 return "UNKNOWN_RESOURCE"; 2255 } 2256 } 2257 2258 static int 2259 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, 2260 struct qed_ptt *p_ptt, 2261 enum qed_resources res_id, 2262 u32 resc_max_val, u32 *p_mcp_resp) 2263 { 2264 int rc; 2265 2266 rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 2267 resc_max_val, p_mcp_resp); 2268 if (rc) { 2269 DP_NOTICE(p_hwfn, 2270 "MFW response failure for a max value setting of resource %d [%s]\n", 2271 res_id, qed_hw_get_resc_name(res_id)); 2272 return rc; 2273 } 2274 2275 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 2276 DP_INFO(p_hwfn, 2277 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 2278 res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); 2279 2280 return 0; 2281 } 2282 2283 static int 2284 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2285 { 2286 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2287 u32 resc_max_val, mcp_resp; 2288 u8 res_id; 2289 int rc; 2290 2291 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2292 switch (res_id) { 2293 case QED_LL2_QUEUE: 2294 resc_max_val = MAX_NUM_LL2_RX_QUEUES; 2295 break; 2296 case QED_RDMA_CNQ_RAM: 2297 /* No need for a case for QED_CMDQS_CQS since 2298 * CNQ/CMDQS are the same resource. 2299 */ 2300 resc_max_val = NUM_OF_GLOBAL_QUEUES; 2301 break; 2302 case QED_RDMA_STATS_QUEUE: 2303 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 2304 : RDMA_NUM_STATISTIC_COUNTERS_BB; 2305 break; 2306 case QED_BDQ: 2307 resc_max_val = BDQ_NUM_RESOURCES; 2308 break; 2309 default: 2310 continue; 2311 } 2312 2313 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 2314 resc_max_val, &mcp_resp); 2315 if (rc) 2316 return rc; 2317 2318 /* There's no point to continue to the next resource if the 2319 * command is not supported by the MFW. 2320 * We do continue if the command is supported but the resource 2321 * is unknown to the MFW. Such a resource will be later 2322 * configured with the default allocation values. 2323 */ 2324 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 2325 return -EINVAL; 2326 } 2327 2328 return 0; 2329 } 2330 2331 static 2332 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, 2333 enum qed_resources res_id, 2334 u32 *p_resc_num, u32 *p_resc_start) 2335 { 2336 u8 num_funcs = p_hwfn->num_funcs_on_engine; 2337 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2338 2339 switch (res_id) { 2340 case QED_L2_QUEUE: 2341 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : 2342 MAX_NUM_L2_QUEUES_BB) / num_funcs; 2343 break; 2344 case QED_VPORT: 2345 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 2346 MAX_NUM_VPORTS_BB) / num_funcs; 2347 break; 2348 case QED_RSS_ENG: 2349 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : 2350 ETH_RSS_ENGINE_NUM_BB) / num_funcs; 2351 break; 2352 case QED_PQ: 2353 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : 2354 MAX_QM_TX_QUEUES_BB) / num_funcs; 2355 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ 2356 break; 2357 case QED_RL: 2358 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; 2359 break; 2360 case QED_MAC: 2361 case QED_VLAN: 2362 /* Each VFC resource can accommodate both a MAC and a VLAN */ 2363 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 2364 break; 2365 case QED_ILT: 2366 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : 2367 PXP_NUM_ILT_RECORDS_BB) / num_funcs; 2368 break; 2369 case QED_LL2_QUEUE: 2370 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; 2371 break; 2372 case QED_RDMA_CNQ_RAM: 2373 case QED_CMDQS_CQS: 2374 /* CNQ/CMDQS are the same resource */ 2375 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; 2376 break; 2377 case QED_RDMA_STATS_QUEUE: 2378 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 : 2379 RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs; 2380 break; 2381 case QED_BDQ: 2382 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && 2383 p_hwfn->hw_info.personality != QED_PCI_FCOE) 2384 *p_resc_num = 0; 2385 else 2386 *p_resc_num = 1; 2387 break; 2388 case QED_SB: 2389 /* Since we want its value to reflect whether MFW supports 2390 * the new scheme, have a default of 0. 2391 */ 2392 *p_resc_num = 0; 2393 break; 2394 default: 2395 return -EINVAL; 2396 } 2397 2398 switch (res_id) { 2399 case QED_BDQ: 2400 if (!*p_resc_num) 2401 *p_resc_start = 0; 2402 else if (p_hwfn->cdev->num_ports_in_engine == 4) 2403 *p_resc_start = p_hwfn->port_id; 2404 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) 2405 *p_resc_start = p_hwfn->port_id; 2406 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 2407 *p_resc_start = p_hwfn->port_id + 2; 2408 break; 2409 default: 2410 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 2411 break; 2412 } 2413 2414 return 0; 2415 } 2416 2417 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, 2418 enum qed_resources res_id) 2419 { 2420 u32 dflt_resc_num = 0, dflt_resc_start = 0; 2421 u32 mcp_resp, *p_resc_num, *p_resc_start; 2422 int rc; 2423 2424 p_resc_num = &RESC_NUM(p_hwfn, res_id); 2425 p_resc_start = &RESC_START(p_hwfn, res_id); 2426 2427 rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 2428 &dflt_resc_start); 2429 if (rc) { 2430 DP_ERR(p_hwfn, 2431 "Failed to get default amount for resource %d [%s]\n", 2432 res_id, qed_hw_get_resc_name(res_id)); 2433 return rc; 2434 } 2435 2436 rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 2437 &mcp_resp, p_resc_num, p_resc_start); 2438 if (rc) { 2439 DP_NOTICE(p_hwfn, 2440 "MFW response failure for an allocation request for resource %d [%s]\n", 2441 res_id, qed_hw_get_resc_name(res_id)); 2442 return rc; 2443 } 2444 2445 /* Default driver values are applied in the following cases: 2446 * - The resource allocation MB command is not supported by the MFW 2447 * - There is an internal error in the MFW while processing the request 2448 * - The resource ID is unknown to the MFW 2449 */ 2450 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 2451 DP_INFO(p_hwfn, 2452 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", 2453 res_id, 2454 qed_hw_get_resc_name(res_id), 2455 mcp_resp, dflt_resc_num, dflt_resc_start); 2456 *p_resc_num = dflt_resc_num; 2457 *p_resc_start = dflt_resc_start; 2458 goto out; 2459 } 2460 2461 out: 2462 /* PQs have to divide by 8 [that's the HW granularity]. 2463 * Reduce number so it would fit. 2464 */ 2465 if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { 2466 DP_INFO(p_hwfn, 2467 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", 2468 *p_resc_num, 2469 (*p_resc_num) & ~0x7, 2470 *p_resc_start, (*p_resc_start) & ~0x7); 2471 *p_resc_num &= ~0x7; 2472 *p_resc_start &= ~0x7; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) 2479 { 2480 int rc; 2481 u8 res_id; 2482 2483 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2484 rc = __qed_hw_set_resc_info(p_hwfn, res_id); 2485 if (rc) 2486 return rc; 2487 } 2488 2489 return 0; 2490 } 2491 2492 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2493 { 2494 struct qed_resc_unlock_params resc_unlock_params; 2495 struct qed_resc_lock_params resc_lock_params; 2496 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2497 u8 res_id; 2498 int rc; 2499 2500 /* Setting the max values of the soft resources and the following 2501 * resources allocation queries should be atomic. Since several PFs can 2502 * run in parallel - a resource lock is needed. 2503 * If either the resource lock or resource set value commands are not 2504 * supported - skip the the max values setting, release the lock if 2505 * needed, and proceed to the queries. Other failures, including a 2506 * failure to acquire the lock, will cause this function to fail. 2507 */ 2508 qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 2509 QED_RESC_LOCK_RESC_ALLOC, false); 2510 2511 rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 2512 if (rc && rc != -EINVAL) { 2513 return rc; 2514 } else if (rc == -EINVAL) { 2515 DP_INFO(p_hwfn, 2516 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 2517 } else if (!rc && !resc_lock_params.b_granted) { 2518 DP_NOTICE(p_hwfn, 2519 "Failed to acquire the resource lock for the resource allocation commands\n"); 2520 return -EBUSY; 2521 } else { 2522 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); 2523 if (rc && rc != -EINVAL) { 2524 DP_NOTICE(p_hwfn, 2525 "Failed to set the max values of the soft resources\n"); 2526 goto unlock_and_exit; 2527 } else if (rc == -EINVAL) { 2528 DP_INFO(p_hwfn, 2529 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 2530 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, 2531 &resc_unlock_params); 2532 if (rc) 2533 DP_INFO(p_hwfn, 2534 "Failed to release the resource lock for the resource allocation commands\n"); 2535 } 2536 } 2537 2538 rc = qed_hw_set_resc_info(p_hwfn); 2539 if (rc) 2540 goto unlock_and_exit; 2541 2542 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 2543 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2544 if (rc) 2545 DP_INFO(p_hwfn, 2546 "Failed to release the resource lock for the resource allocation commands\n"); 2547 } 2548 2549 /* Sanity for ILT */ 2550 if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || 2551 (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { 2552 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", 2553 RESC_START(p_hwfn, QED_ILT), 2554 RESC_END(p_hwfn, QED_ILT) - 1); 2555 return -EINVAL; 2556 } 2557 2558 /* This will also learn the number of SBs from MFW */ 2559 if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) 2560 return -EINVAL; 2561 2562 qed_hw_set_feat(p_hwfn); 2563 2564 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) 2565 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", 2566 qed_hw_get_resc_name(res_id), 2567 RESC_NUM(p_hwfn, res_id), 2568 RESC_START(p_hwfn, res_id)); 2569 2570 return 0; 2571 2572 unlock_and_exit: 2573 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 2574 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2575 return rc; 2576 } 2577 2578 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2579 { 2580 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 2581 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; 2582 struct qed_mcp_link_capabilities *p_caps; 2583 struct qed_mcp_link_params *link; 2584 2585 /* Read global nvm_cfg address */ 2586 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2587 2588 /* Verify MCP has initialized it */ 2589 if (!nvm_cfg_addr) { 2590 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2591 return -EINVAL; 2592 } 2593 2594 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 2595 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2596 2597 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2598 offsetof(struct nvm_cfg1, glob) + 2599 offsetof(struct nvm_cfg1_glob, core_cfg); 2600 2601 core_cfg = qed_rd(p_hwfn, p_ptt, addr); 2602 2603 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 2604 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 2605 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 2606 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; 2607 break; 2608 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 2609 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; 2610 break; 2611 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 2612 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; 2613 break; 2614 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 2615 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; 2616 break; 2617 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 2618 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; 2619 break; 2620 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 2621 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; 2622 break; 2623 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 2624 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; 2625 break; 2626 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 2627 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; 2628 break; 2629 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 2630 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; 2631 break; 2632 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 2633 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; 2634 break; 2635 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 2636 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; 2637 break; 2638 default: 2639 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); 2640 break; 2641 } 2642 2643 /* Read default link configuration */ 2644 link = &p_hwfn->mcp_info->link_input; 2645 p_caps = &p_hwfn->mcp_info->link_capabilities; 2646 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2647 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2648 link_temp = qed_rd(p_hwfn, p_ptt, 2649 port_cfg_addr + 2650 offsetof(struct nvm_cfg1_port, speed_cap_mask)); 2651 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 2652 link->speed.advertised_speeds = link_temp; 2653 2654 link_temp = link->speed.advertised_speeds; 2655 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; 2656 2657 link_temp = qed_rd(p_hwfn, p_ptt, 2658 port_cfg_addr + 2659 offsetof(struct nvm_cfg1_port, link_settings)); 2660 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 2661 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 2662 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 2663 link->speed.autoneg = true; 2664 break; 2665 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 2666 link->speed.forced_speed = 1000; 2667 break; 2668 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 2669 link->speed.forced_speed = 10000; 2670 break; 2671 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 2672 link->speed.forced_speed = 25000; 2673 break; 2674 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 2675 link->speed.forced_speed = 40000; 2676 break; 2677 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 2678 link->speed.forced_speed = 50000; 2679 break; 2680 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 2681 link->speed.forced_speed = 100000; 2682 break; 2683 default: 2684 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); 2685 } 2686 2687 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = 2688 link->speed.autoneg; 2689 2690 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 2691 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 2692 link->pause.autoneg = !!(link_temp & 2693 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 2694 link->pause.forced_rx = !!(link_temp & 2695 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 2696 link->pause.forced_tx = !!(link_temp & 2697 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 2698 link->loopback_mode = 0; 2699 2700 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { 2701 link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + 2702 offsetof(struct nvm_cfg1_port, ext_phy)); 2703 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; 2704 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; 2705 p_caps->default_eee = QED_MCP_EEE_ENABLED; 2706 link->eee.enable = true; 2707 switch (link_temp) { 2708 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: 2709 p_caps->default_eee = QED_MCP_EEE_DISABLED; 2710 link->eee.enable = false; 2711 break; 2712 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: 2713 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; 2714 break; 2715 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: 2716 p_caps->eee_lpi_timer = 2717 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; 2718 break; 2719 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: 2720 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; 2721 break; 2722 } 2723 2724 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; 2725 link->eee.tx_lpi_enable = link->eee.enable; 2726 link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; 2727 } else { 2728 p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; 2729 } 2730 2731 DP_VERBOSE(p_hwfn, 2732 NETIF_MSG_LINK, 2733 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n", 2734 link->speed.forced_speed, 2735 link->speed.advertised_speeds, 2736 link->speed.autoneg, 2737 link->pause.autoneg, 2738 p_caps->default_eee, p_caps->eee_lpi_timer); 2739 2740 if (IS_LEAD_HWFN(p_hwfn)) { 2741 struct qed_dev *cdev = p_hwfn->cdev; 2742 2743 /* Read Multi-function information from shmem */ 2744 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2745 offsetof(struct nvm_cfg1, glob) + 2746 offsetof(struct nvm_cfg1_glob, generic_cont0); 2747 2748 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); 2749 2750 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 2751 NVM_CFG1_GLOB_MF_MODE_OFFSET; 2752 2753 switch (mf_mode) { 2754 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 2755 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS); 2756 break; 2757 case NVM_CFG1_GLOB_MF_MODE_UFP: 2758 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | 2759 BIT(QED_MF_LLH_PROTO_CLSS) | 2760 BIT(QED_MF_UFP_SPECIFIC) | 2761 BIT(QED_MF_8021Q_TAGGING); 2762 break; 2763 case NVM_CFG1_GLOB_MF_MODE_BD: 2764 cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | 2765 BIT(QED_MF_LLH_PROTO_CLSS) | 2766 BIT(QED_MF_8021AD_TAGGING); 2767 break; 2768 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 2769 cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | 2770 BIT(QED_MF_LLH_PROTO_CLSS) | 2771 BIT(QED_MF_LL2_NON_UNICAST) | 2772 BIT(QED_MF_INTER_PF_SWITCH); 2773 break; 2774 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 2775 cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | 2776 BIT(QED_MF_LLH_PROTO_CLSS) | 2777 BIT(QED_MF_LL2_NON_UNICAST); 2778 if (QED_IS_BB(p_hwfn->cdev)) 2779 cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF); 2780 break; 2781 } 2782 2783 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 2784 cdev->mf_bits); 2785 } 2786 2787 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 2788 p_hwfn->cdev->mf_bits); 2789 2790 /* Read device capabilities information from shmem */ 2791 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2792 offsetof(struct nvm_cfg1, glob) + 2793 offsetof(struct nvm_cfg1_glob, device_capabilities); 2794 2795 device_capabilities = qed_rd(p_hwfn, p_ptt, addr); 2796 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 2797 __set_bit(QED_DEV_CAP_ETH, 2798 &p_hwfn->hw_info.device_capabilities); 2799 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 2800 __set_bit(QED_DEV_CAP_FCOE, 2801 &p_hwfn->hw_info.device_capabilities); 2802 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 2803 __set_bit(QED_DEV_CAP_ISCSI, 2804 &p_hwfn->hw_info.device_capabilities); 2805 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 2806 __set_bit(QED_DEV_CAP_ROCE, 2807 &p_hwfn->hw_info.device_capabilities); 2808 2809 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 2810 } 2811 2812 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2813 { 2814 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 2815 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 2816 struct qed_dev *cdev = p_hwfn->cdev; 2817 2818 num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 2819 2820 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 2821 * in the other bits are selected. 2822 * Bits 1-15 are for functions 1-15, respectively, and their value is 2823 * '0' only for enabled functions (function 0 always exists and 2824 * enabled). 2825 * In case of CMT, only the "even" functions are enabled, and thus the 2826 * number of functions for both hwfns is learnt from the same bits. 2827 */ 2828 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); 2829 2830 if (reg_function_hide & 0x1) { 2831 if (QED_IS_BB(cdev)) { 2832 if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { 2833 num_funcs = 0; 2834 eng_mask = 0xaaaa; 2835 } else { 2836 num_funcs = 1; 2837 eng_mask = 0x5554; 2838 } 2839 } else { 2840 num_funcs = 1; 2841 eng_mask = 0xfffe; 2842 } 2843 2844 /* Get the number of the enabled functions on the engine */ 2845 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 2846 while (tmp) { 2847 if (tmp & 0x1) 2848 num_funcs++; 2849 tmp >>= 0x1; 2850 } 2851 2852 /* Get the PF index within the enabled functions */ 2853 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 2854 tmp = reg_function_hide & eng_mask & low_pfs_mask; 2855 while (tmp) { 2856 if (tmp & 0x1) 2857 enabled_func_idx--; 2858 tmp >>= 0x1; 2859 } 2860 } 2861 2862 p_hwfn->num_funcs_on_engine = num_funcs; 2863 p_hwfn->enabled_func_idx = enabled_func_idx; 2864 2865 DP_VERBOSE(p_hwfn, 2866 NETIF_MSG_PROBE, 2867 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 2868 p_hwfn->rel_pf_id, 2869 p_hwfn->abs_pf_id, 2870 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 2871 } 2872 2873 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn, 2874 struct qed_ptt *p_ptt) 2875 { 2876 u32 port_mode; 2877 2878 port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB); 2879 2880 if (port_mode < 3) { 2881 p_hwfn->cdev->num_ports_in_engine = 1; 2882 } else if (port_mode <= 5) { 2883 p_hwfn->cdev->num_ports_in_engine = 2; 2884 } else { 2885 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", 2886 p_hwfn->cdev->num_ports_in_engine); 2887 2888 /* Default num_ports_in_engine to something */ 2889 p_hwfn->cdev->num_ports_in_engine = 1; 2890 } 2891 } 2892 2893 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn, 2894 struct qed_ptt *p_ptt) 2895 { 2896 u32 port; 2897 int i; 2898 2899 p_hwfn->cdev->num_ports_in_engine = 0; 2900 2901 for (i = 0; i < MAX_NUM_PORTS_K2; i++) { 2902 port = qed_rd(p_hwfn, p_ptt, 2903 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4)); 2904 if (port & 1) 2905 p_hwfn->cdev->num_ports_in_engine++; 2906 } 2907 2908 if (!p_hwfn->cdev->num_ports_in_engine) { 2909 DP_NOTICE(p_hwfn, "All NIG ports are inactive\n"); 2910 2911 /* Default num_ports_in_engine to something */ 2912 p_hwfn->cdev->num_ports_in_engine = 1; 2913 } 2914 } 2915 2916 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2917 { 2918 if (QED_IS_BB(p_hwfn->cdev)) 2919 qed_hw_info_port_num_bb(p_hwfn, p_ptt); 2920 else 2921 qed_hw_info_port_num_ah(p_hwfn, p_ptt); 2922 } 2923 2924 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2925 { 2926 struct qed_mcp_link_capabilities *p_caps; 2927 u32 eee_status; 2928 2929 p_caps = &p_hwfn->mcp_info->link_capabilities; 2930 if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) 2931 return; 2932 2933 p_caps->eee_speed_caps = 0; 2934 eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 2935 offsetof(struct public_port, eee_status)); 2936 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> 2937 EEE_SUPPORTED_SPEED_OFFSET; 2938 2939 if (eee_status & EEE_1G_SUPPORTED) 2940 p_caps->eee_speed_caps |= QED_EEE_1G_ADV; 2941 if (eee_status & EEE_10G_ADV) 2942 p_caps->eee_speed_caps |= QED_EEE_10G_ADV; 2943 } 2944 2945 static int 2946 qed_get_hw_info(struct qed_hwfn *p_hwfn, 2947 struct qed_ptt *p_ptt, 2948 enum qed_pci_personality personality) 2949 { 2950 int rc; 2951 2952 /* Since all information is common, only first hwfns should do this */ 2953 if (IS_LEAD_HWFN(p_hwfn)) { 2954 rc = qed_iov_hw_info(p_hwfn); 2955 if (rc) 2956 return rc; 2957 } 2958 2959 qed_hw_info_port_num(p_hwfn, p_ptt); 2960 2961 qed_mcp_get_capabilities(p_hwfn, p_ptt); 2962 2963 qed_hw_get_nvm_info(p_hwfn, p_ptt); 2964 2965 rc = qed_int_igu_read_cam(p_hwfn, p_ptt); 2966 if (rc) 2967 return rc; 2968 2969 if (qed_mcp_is_init(p_hwfn)) 2970 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, 2971 p_hwfn->mcp_info->func_info.mac); 2972 else 2973 eth_random_addr(p_hwfn->hw_info.hw_mac_addr); 2974 2975 if (qed_mcp_is_init(p_hwfn)) { 2976 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) 2977 p_hwfn->hw_info.ovlan = 2978 p_hwfn->mcp_info->func_info.ovlan; 2979 2980 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 2981 2982 qed_get_eee_caps(p_hwfn, p_ptt); 2983 2984 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 2985 } 2986 2987 if (qed_mcp_is_init(p_hwfn)) { 2988 enum qed_pci_personality protocol; 2989 2990 protocol = p_hwfn->mcp_info->func_info.protocol; 2991 p_hwfn->hw_info.personality = protocol; 2992 } 2993 2994 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 2995 p_hwfn->hw_info.multi_tc_roce_en = 1; 2996 2997 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 2998 p_hwfn->hw_info.num_active_tc = 1; 2999 3000 qed_get_num_funcs(p_hwfn, p_ptt); 3001 3002 if (qed_mcp_is_init(p_hwfn)) 3003 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 3004 3005 return qed_hw_get_resc(p_hwfn, p_ptt); 3006 } 3007 3008 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3009 { 3010 struct qed_dev *cdev = p_hwfn->cdev; 3011 u16 device_id_mask; 3012 u32 tmp; 3013 3014 /* Read Vendor Id / Device Id */ 3015 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); 3016 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); 3017 3018 /* Determine type */ 3019 device_id_mask = cdev->device_id & QED_DEV_ID_MASK; 3020 switch (device_id_mask) { 3021 case QED_DEV_ID_MASK_BB: 3022 cdev->type = QED_DEV_TYPE_BB; 3023 break; 3024 case QED_DEV_ID_MASK_AH: 3025 cdev->type = QED_DEV_TYPE_AH; 3026 break; 3027 default: 3028 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); 3029 return -EBUSY; 3030 } 3031 3032 cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 3033 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 3034 3035 MASK_FIELD(CHIP_REV, cdev->chip_rev); 3036 3037 /* Learn number of HW-functions */ 3038 tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 3039 3040 if (tmp & (1 << p_hwfn->rel_pf_id)) { 3041 DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); 3042 cdev->num_hwfns = 2; 3043 } else { 3044 cdev->num_hwfns = 1; 3045 } 3046 3047 cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, 3048 MISCS_REG_CHIP_TEST_REG) >> 4; 3049 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); 3050 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 3051 MASK_FIELD(CHIP_METAL, cdev->chip_metal); 3052 3053 DP_INFO(cdev->hwfns, 3054 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", 3055 QED_IS_BB(cdev) ? "BB" : "AH", 3056 'A' + cdev->chip_rev, 3057 (int)cdev->chip_metal, 3058 cdev->chip_num, cdev->chip_rev, 3059 cdev->chip_bond_id, cdev->chip_metal); 3060 3061 return 0; 3062 } 3063 3064 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn) 3065 { 3066 kfree(p_hwfn->nvm_info.image_att); 3067 p_hwfn->nvm_info.image_att = NULL; 3068 } 3069 3070 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, 3071 void __iomem *p_regview, 3072 void __iomem *p_doorbells, 3073 enum qed_pci_personality personality) 3074 { 3075 int rc = 0; 3076 3077 /* Split PCI bars evenly between hwfns */ 3078 p_hwfn->regview = p_regview; 3079 p_hwfn->doorbells = p_doorbells; 3080 3081 if (IS_VF(p_hwfn->cdev)) 3082 return qed_vf_hw_prepare(p_hwfn); 3083 3084 /* Validate that chip access is feasible */ 3085 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 3086 DP_ERR(p_hwfn, 3087 "Reading the ME register returns all Fs; Preventing further chip access\n"); 3088 return -EINVAL; 3089 } 3090 3091 get_function_id(p_hwfn); 3092 3093 /* Allocate PTT pool */ 3094 rc = qed_ptt_pool_alloc(p_hwfn); 3095 if (rc) 3096 goto err0; 3097 3098 /* Allocate the main PTT */ 3099 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 3100 3101 /* First hwfn learns basic information, e.g., number of hwfns */ 3102 if (!p_hwfn->my_id) { 3103 rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 3104 if (rc) 3105 goto err1; 3106 } 3107 3108 qed_hw_hwfn_prepare(p_hwfn); 3109 3110 /* Initialize MCP structure */ 3111 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 3112 if (rc) { 3113 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); 3114 goto err1; 3115 } 3116 3117 /* Read the device configuration information from the HW and SHMEM */ 3118 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); 3119 if (rc) { 3120 DP_NOTICE(p_hwfn, "Failed to get HW information\n"); 3121 goto err2; 3122 } 3123 3124 /* Sending a mailbox to the MFW should be done after qed_get_hw_info() 3125 * is called as it sets the ports number in an engine. 3126 */ 3127 if (IS_LEAD_HWFN(p_hwfn)) { 3128 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 3129 if (rc) 3130 DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); 3131 } 3132 3133 /* NVRAM info initialization and population */ 3134 if (IS_LEAD_HWFN(p_hwfn)) { 3135 rc = qed_mcp_nvm_info_populate(p_hwfn); 3136 if (rc) { 3137 DP_NOTICE(p_hwfn, 3138 "Failed to populate nvm info shadow\n"); 3139 goto err2; 3140 } 3141 } 3142 3143 /* Allocate the init RT array and initialize the init-ops engine */ 3144 rc = qed_init_alloc(p_hwfn); 3145 if (rc) 3146 goto err3; 3147 3148 return rc; 3149 err3: 3150 if (IS_LEAD_HWFN(p_hwfn)) 3151 qed_nvm_info_free(p_hwfn); 3152 err2: 3153 if (IS_LEAD_HWFN(p_hwfn)) 3154 qed_iov_free_hw_info(p_hwfn->cdev); 3155 qed_mcp_free(p_hwfn); 3156 err1: 3157 qed_hw_hwfn_free(p_hwfn); 3158 err0: 3159 return rc; 3160 } 3161 3162 int qed_hw_prepare(struct qed_dev *cdev, 3163 int personality) 3164 { 3165 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3166 int rc; 3167 3168 /* Store the precompiled init data ptrs */ 3169 if (IS_PF(cdev)) 3170 qed_init_iro_array(cdev); 3171 3172 /* Initialize the first hwfn - will learn number of hwfns */ 3173 rc = qed_hw_prepare_single(p_hwfn, 3174 cdev->regview, 3175 cdev->doorbells, personality); 3176 if (rc) 3177 return rc; 3178 3179 personality = p_hwfn->hw_info.personality; 3180 3181 /* Initialize the rest of the hwfns */ 3182 if (cdev->num_hwfns > 1) { 3183 void __iomem *p_regview, *p_doorbell; 3184 u8 __iomem *addr; 3185 3186 /* adjust bar offset for second engine */ 3187 addr = cdev->regview + 3188 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3189 BAR_ID_0) / 2; 3190 p_regview = addr; 3191 3192 addr = cdev->doorbells + 3193 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3194 BAR_ID_1) / 2; 3195 p_doorbell = addr; 3196 3197 /* prepare second hw function */ 3198 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, 3199 p_doorbell, personality); 3200 3201 /* in case of error, need to free the previously 3202 * initiliazed hwfn 0. 3203 */ 3204 if (rc) { 3205 if (IS_PF(cdev)) { 3206 qed_init_free(p_hwfn); 3207 qed_nvm_info_free(p_hwfn); 3208 qed_mcp_free(p_hwfn); 3209 qed_hw_hwfn_free(p_hwfn); 3210 } 3211 } 3212 } 3213 3214 return rc; 3215 } 3216 3217 void qed_hw_remove(struct qed_dev *cdev) 3218 { 3219 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3220 int i; 3221 3222 if (IS_PF(cdev)) 3223 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 3224 QED_OV_DRIVER_STATE_NOT_LOADED); 3225 3226 for_each_hwfn(cdev, i) { 3227 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3228 3229 if (IS_VF(cdev)) { 3230 qed_vf_pf_release(p_hwfn); 3231 continue; 3232 } 3233 3234 qed_init_free(p_hwfn); 3235 qed_hw_hwfn_free(p_hwfn); 3236 qed_mcp_free(p_hwfn); 3237 } 3238 3239 qed_iov_free_hw_info(cdev); 3240 3241 qed_nvm_info_free(p_hwfn); 3242 } 3243 3244 static void qed_chain_free_next_ptr(struct qed_dev *cdev, 3245 struct qed_chain *p_chain) 3246 { 3247 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; 3248 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 3249 struct qed_chain_next *p_next; 3250 u32 size, i; 3251 3252 if (!p_virt) 3253 return; 3254 3255 size = p_chain->elem_size * p_chain->usable_per_page; 3256 3257 for (i = 0; i < p_chain->page_cnt; i++) { 3258 if (!p_virt) 3259 break; 3260 3261 p_next = (struct qed_chain_next *)((u8 *)p_virt + size); 3262 p_virt_next = p_next->next_virt; 3263 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 3264 3265 dma_free_coherent(&cdev->pdev->dev, 3266 QED_CHAIN_PAGE_SIZE, p_virt, p_phys); 3267 3268 p_virt = p_virt_next; 3269 p_phys = p_phys_next; 3270 } 3271 } 3272 3273 static void qed_chain_free_single(struct qed_dev *cdev, 3274 struct qed_chain *p_chain) 3275 { 3276 if (!p_chain->p_virt_addr) 3277 return; 3278 3279 dma_free_coherent(&cdev->pdev->dev, 3280 QED_CHAIN_PAGE_SIZE, 3281 p_chain->p_virt_addr, p_chain->p_phys_addr); 3282 } 3283 3284 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) 3285 { 3286 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 3287 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 3288 u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table; 3289 3290 if (!pp_virt_addr_tbl) 3291 return; 3292 3293 if (!p_pbl_virt) 3294 goto out; 3295 3296 for (i = 0; i < page_cnt; i++) { 3297 if (!pp_virt_addr_tbl[i]) 3298 break; 3299 3300 dma_free_coherent(&cdev->pdev->dev, 3301 QED_CHAIN_PAGE_SIZE, 3302 pp_virt_addr_tbl[i], 3303 *(dma_addr_t *)p_pbl_virt); 3304 3305 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3306 } 3307 3308 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3309 3310 if (!p_chain->b_external_pbl) 3311 dma_free_coherent(&cdev->pdev->dev, 3312 pbl_size, 3313 p_chain->pbl_sp.p_virt_table, 3314 p_chain->pbl_sp.p_phys_table); 3315 out: 3316 vfree(p_chain->pbl.pp_virt_addr_tbl); 3317 p_chain->pbl.pp_virt_addr_tbl = NULL; 3318 } 3319 3320 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) 3321 { 3322 switch (p_chain->mode) { 3323 case QED_CHAIN_MODE_NEXT_PTR: 3324 qed_chain_free_next_ptr(cdev, p_chain); 3325 break; 3326 case QED_CHAIN_MODE_SINGLE: 3327 qed_chain_free_single(cdev, p_chain); 3328 break; 3329 case QED_CHAIN_MODE_PBL: 3330 qed_chain_free_pbl(cdev, p_chain); 3331 break; 3332 } 3333 } 3334 3335 static int 3336 qed_chain_alloc_sanity_check(struct qed_dev *cdev, 3337 enum qed_chain_cnt_type cnt_type, 3338 size_t elem_size, u32 page_cnt) 3339 { 3340 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 3341 3342 /* The actual chain size can be larger than the maximal possible value 3343 * after rounding up the requested elements number to pages, and after 3344 * taking into acount the unusuable elements (next-ptr elements). 3345 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 3346 * size/capacity fields are of a u32 type. 3347 */ 3348 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && 3349 chain_size > ((u32)U16_MAX + 1)) || 3350 (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { 3351 DP_NOTICE(cdev, 3352 "The actual chain size (0x%llx) is larger than the maximal possible value\n", 3353 chain_size); 3354 return -EINVAL; 3355 } 3356 3357 return 0; 3358 } 3359 3360 static int 3361 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) 3362 { 3363 void *p_virt = NULL, *p_virt_prev = NULL; 3364 dma_addr_t p_phys = 0; 3365 u32 i; 3366 3367 for (i = 0; i < p_chain->page_cnt; i++) { 3368 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3369 QED_CHAIN_PAGE_SIZE, 3370 &p_phys, GFP_KERNEL); 3371 if (!p_virt) 3372 return -ENOMEM; 3373 3374 if (i == 0) { 3375 qed_chain_init_mem(p_chain, p_virt, p_phys); 3376 qed_chain_reset(p_chain); 3377 } else { 3378 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3379 p_virt, p_phys); 3380 } 3381 3382 p_virt_prev = p_virt; 3383 } 3384 /* Last page's next element should point to the beginning of the 3385 * chain. 3386 */ 3387 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3388 p_chain->p_virt_addr, 3389 p_chain->p_phys_addr); 3390 3391 return 0; 3392 } 3393 3394 static int 3395 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) 3396 { 3397 dma_addr_t p_phys = 0; 3398 void *p_virt = NULL; 3399 3400 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3401 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); 3402 if (!p_virt) 3403 return -ENOMEM; 3404 3405 qed_chain_init_mem(p_chain, p_virt, p_phys); 3406 qed_chain_reset(p_chain); 3407 3408 return 0; 3409 } 3410 3411 static int 3412 qed_chain_alloc_pbl(struct qed_dev *cdev, 3413 struct qed_chain *p_chain, 3414 struct qed_chain_ext_pbl *ext_pbl) 3415 { 3416 u32 page_cnt = p_chain->page_cnt, size, i; 3417 dma_addr_t p_phys = 0, p_pbl_phys = 0; 3418 void **pp_virt_addr_tbl = NULL; 3419 u8 *p_pbl_virt = NULL; 3420 void *p_virt = NULL; 3421 3422 size = page_cnt * sizeof(*pp_virt_addr_tbl); 3423 pp_virt_addr_tbl = vzalloc(size); 3424 if (!pp_virt_addr_tbl) 3425 return -ENOMEM; 3426 3427 /* The allocation of the PBL table is done with its full size, since it 3428 * is expected to be successive. 3429 * qed_chain_init_pbl_mem() is called even in a case of an allocation 3430 * failure, since pp_virt_addr_tbl was previously allocated, and it 3431 * should be saved to allow its freeing during the error flow. 3432 */ 3433 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3434 3435 if (!ext_pbl) { 3436 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, 3437 size, &p_pbl_phys, GFP_KERNEL); 3438 } else { 3439 p_pbl_virt = ext_pbl->p_pbl_virt; 3440 p_pbl_phys = ext_pbl->p_pbl_phys; 3441 p_chain->b_external_pbl = true; 3442 } 3443 3444 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 3445 pp_virt_addr_tbl); 3446 if (!p_pbl_virt) 3447 return -ENOMEM; 3448 3449 for (i = 0; i < page_cnt; i++) { 3450 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3451 QED_CHAIN_PAGE_SIZE, 3452 &p_phys, GFP_KERNEL); 3453 if (!p_virt) 3454 return -ENOMEM; 3455 3456 if (i == 0) { 3457 qed_chain_init_mem(p_chain, p_virt, p_phys); 3458 qed_chain_reset(p_chain); 3459 } 3460 3461 /* Fill the PBL table with the physical address of the page */ 3462 *(dma_addr_t *)p_pbl_virt = p_phys; 3463 /* Keep the virtual address of the page */ 3464 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 3465 3466 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3467 } 3468 3469 return 0; 3470 } 3471 3472 int qed_chain_alloc(struct qed_dev *cdev, 3473 enum qed_chain_use_mode intended_use, 3474 enum qed_chain_mode mode, 3475 enum qed_chain_cnt_type cnt_type, 3476 u32 num_elems, 3477 size_t elem_size, 3478 struct qed_chain *p_chain, 3479 struct qed_chain_ext_pbl *ext_pbl) 3480 { 3481 u32 page_cnt; 3482 int rc = 0; 3483 3484 if (mode == QED_CHAIN_MODE_SINGLE) 3485 page_cnt = 1; 3486 else 3487 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 3488 3489 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); 3490 if (rc) { 3491 DP_NOTICE(cdev, 3492 "Cannot allocate a chain with the given arguments:\n"); 3493 DP_NOTICE(cdev, 3494 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 3495 intended_use, mode, cnt_type, num_elems, elem_size); 3496 return rc; 3497 } 3498 3499 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, 3500 mode, cnt_type); 3501 3502 switch (mode) { 3503 case QED_CHAIN_MODE_NEXT_PTR: 3504 rc = qed_chain_alloc_next_ptr(cdev, p_chain); 3505 break; 3506 case QED_CHAIN_MODE_SINGLE: 3507 rc = qed_chain_alloc_single(cdev, p_chain); 3508 break; 3509 case QED_CHAIN_MODE_PBL: 3510 rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); 3511 break; 3512 } 3513 if (rc) 3514 goto nomem; 3515 3516 return 0; 3517 3518 nomem: 3519 qed_chain_free(cdev, p_chain); 3520 return rc; 3521 } 3522 3523 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) 3524 { 3525 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { 3526 u16 min, max; 3527 3528 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); 3529 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); 3530 DP_NOTICE(p_hwfn, 3531 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 3532 src_id, min, max); 3533 3534 return -EINVAL; 3535 } 3536 3537 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; 3538 3539 return 0; 3540 } 3541 3542 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3543 { 3544 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { 3545 u8 min, max; 3546 3547 min = (u8)RESC_START(p_hwfn, QED_VPORT); 3548 max = min + RESC_NUM(p_hwfn, QED_VPORT); 3549 DP_NOTICE(p_hwfn, 3550 "vport id [%d] is not valid, available indices [%d - %d]\n", 3551 src_id, min, max); 3552 3553 return -EINVAL; 3554 } 3555 3556 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; 3557 3558 return 0; 3559 } 3560 3561 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3562 { 3563 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { 3564 u8 min, max; 3565 3566 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); 3567 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); 3568 DP_NOTICE(p_hwfn, 3569 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 3570 src_id, min, max); 3571 3572 return -EINVAL; 3573 } 3574 3575 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; 3576 3577 return 0; 3578 } 3579 3580 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, 3581 u8 *p_filter) 3582 { 3583 *p_high = p_filter[1] | (p_filter[0] << 8); 3584 *p_low = p_filter[5] | (p_filter[4] << 8) | 3585 (p_filter[3] << 16) | (p_filter[2] << 24); 3586 } 3587 3588 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, 3589 struct qed_ptt *p_ptt, u8 *p_filter) 3590 { 3591 u32 high = 0, low = 0, en; 3592 int i; 3593 3594 if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits)) 3595 return 0; 3596 3597 qed_llh_mac_to_filter(&high, &low, p_filter); 3598 3599 /* Find a free entry and utilize it */ 3600 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3601 en = qed_rd(p_hwfn, p_ptt, 3602 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3603 if (en) 3604 continue; 3605 qed_wr(p_hwfn, p_ptt, 3606 NIG_REG_LLH_FUNC_FILTER_VALUE + 3607 2 * i * sizeof(u32), low); 3608 qed_wr(p_hwfn, p_ptt, 3609 NIG_REG_LLH_FUNC_FILTER_VALUE + 3610 (2 * i + 1) * sizeof(u32), high); 3611 qed_wr(p_hwfn, p_ptt, 3612 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3613 qed_wr(p_hwfn, p_ptt, 3614 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3615 i * sizeof(u32), 0); 3616 qed_wr(p_hwfn, p_ptt, 3617 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3618 break; 3619 } 3620 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3621 DP_NOTICE(p_hwfn, 3622 "Failed to find an empty LLH filter to utilize\n"); 3623 return -EINVAL; 3624 } 3625 3626 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3627 "mac: %pM is added at %d\n", 3628 p_filter, i); 3629 3630 return 0; 3631 } 3632 3633 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, 3634 struct qed_ptt *p_ptt, u8 *p_filter) 3635 { 3636 u32 high = 0, low = 0; 3637 int i; 3638 3639 if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits)) 3640 return; 3641 3642 qed_llh_mac_to_filter(&high, &low, p_filter); 3643 3644 /* Find the entry and clean it */ 3645 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3646 if (qed_rd(p_hwfn, p_ptt, 3647 NIG_REG_LLH_FUNC_FILTER_VALUE + 3648 2 * i * sizeof(u32)) != low) 3649 continue; 3650 if (qed_rd(p_hwfn, p_ptt, 3651 NIG_REG_LLH_FUNC_FILTER_VALUE + 3652 (2 * i + 1) * sizeof(u32)) != high) 3653 continue; 3654 3655 qed_wr(p_hwfn, p_ptt, 3656 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3657 qed_wr(p_hwfn, p_ptt, 3658 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3659 qed_wr(p_hwfn, p_ptt, 3660 NIG_REG_LLH_FUNC_FILTER_VALUE + 3661 (2 * i + 1) * sizeof(u32), 0); 3662 3663 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3664 "mac: %pM is removed from %d\n", 3665 p_filter, i); 3666 break; 3667 } 3668 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3669 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3670 } 3671 3672 int 3673 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn, 3674 struct qed_ptt *p_ptt, 3675 u16 source_port_or_eth_type, 3676 u16 dest_port, enum qed_llh_port_filter_type_t type) 3677 { 3678 u32 high = 0, low = 0, en; 3679 int i; 3680 3681 if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits)) 3682 return 0; 3683 3684 switch (type) { 3685 case QED_LLH_FILTER_ETHERTYPE: 3686 high = source_port_or_eth_type; 3687 break; 3688 case QED_LLH_FILTER_TCP_SRC_PORT: 3689 case QED_LLH_FILTER_UDP_SRC_PORT: 3690 low = source_port_or_eth_type << 16; 3691 break; 3692 case QED_LLH_FILTER_TCP_DEST_PORT: 3693 case QED_LLH_FILTER_UDP_DEST_PORT: 3694 low = dest_port; 3695 break; 3696 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3697 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3698 low = (source_port_or_eth_type << 16) | dest_port; 3699 break; 3700 default: 3701 DP_NOTICE(p_hwfn, 3702 "Non valid LLH protocol filter type %d\n", type); 3703 return -EINVAL; 3704 } 3705 /* Find a free entry and utilize it */ 3706 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3707 en = qed_rd(p_hwfn, p_ptt, 3708 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3709 if (en) 3710 continue; 3711 qed_wr(p_hwfn, p_ptt, 3712 NIG_REG_LLH_FUNC_FILTER_VALUE + 3713 2 * i * sizeof(u32), low); 3714 qed_wr(p_hwfn, p_ptt, 3715 NIG_REG_LLH_FUNC_FILTER_VALUE + 3716 (2 * i + 1) * sizeof(u32), high); 3717 qed_wr(p_hwfn, p_ptt, 3718 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1); 3719 qed_wr(p_hwfn, p_ptt, 3720 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3721 i * sizeof(u32), 1 << type); 3722 qed_wr(p_hwfn, p_ptt, 3723 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3724 break; 3725 } 3726 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3727 DP_NOTICE(p_hwfn, 3728 "Failed to find an empty LLH filter to utilize\n"); 3729 return -EINVAL; 3730 } 3731 switch (type) { 3732 case QED_LLH_FILTER_ETHERTYPE: 3733 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3734 "ETH type %x is added at %d\n", 3735 source_port_or_eth_type, i); 3736 break; 3737 case QED_LLH_FILTER_TCP_SRC_PORT: 3738 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3739 "TCP src port %x is added at %d\n", 3740 source_port_or_eth_type, i); 3741 break; 3742 case QED_LLH_FILTER_UDP_SRC_PORT: 3743 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3744 "UDP src port %x is added at %d\n", 3745 source_port_or_eth_type, i); 3746 break; 3747 case QED_LLH_FILTER_TCP_DEST_PORT: 3748 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3749 "TCP dst port %x is added at %d\n", dest_port, i); 3750 break; 3751 case QED_LLH_FILTER_UDP_DEST_PORT: 3752 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3753 "UDP dst port %x is added at %d\n", dest_port, i); 3754 break; 3755 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3756 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3757 "TCP src/dst ports %x/%x are added at %d\n", 3758 source_port_or_eth_type, dest_port, i); 3759 break; 3760 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3761 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3762 "UDP src/dst ports %x/%x are added at %d\n", 3763 source_port_or_eth_type, dest_port, i); 3764 break; 3765 } 3766 return 0; 3767 } 3768 3769 void 3770 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn, 3771 struct qed_ptt *p_ptt, 3772 u16 source_port_or_eth_type, 3773 u16 dest_port, 3774 enum qed_llh_port_filter_type_t type) 3775 { 3776 u32 high = 0, low = 0; 3777 int i; 3778 3779 if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits)) 3780 return; 3781 3782 switch (type) { 3783 case QED_LLH_FILTER_ETHERTYPE: 3784 high = source_port_or_eth_type; 3785 break; 3786 case QED_LLH_FILTER_TCP_SRC_PORT: 3787 case QED_LLH_FILTER_UDP_SRC_PORT: 3788 low = source_port_or_eth_type << 16; 3789 break; 3790 case QED_LLH_FILTER_TCP_DEST_PORT: 3791 case QED_LLH_FILTER_UDP_DEST_PORT: 3792 low = dest_port; 3793 break; 3794 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3795 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3796 low = (source_port_or_eth_type << 16) | dest_port; 3797 break; 3798 default: 3799 DP_NOTICE(p_hwfn, 3800 "Non valid LLH protocol filter type %d\n", type); 3801 return; 3802 } 3803 3804 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3805 if (!qed_rd(p_hwfn, p_ptt, 3806 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32))) 3807 continue; 3808 if (!qed_rd(p_hwfn, p_ptt, 3809 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32))) 3810 continue; 3811 if (!(qed_rd(p_hwfn, p_ptt, 3812 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3813 i * sizeof(u32)) & BIT(type))) 3814 continue; 3815 if (qed_rd(p_hwfn, p_ptt, 3816 NIG_REG_LLH_FUNC_FILTER_VALUE + 3817 2 * i * sizeof(u32)) != low) 3818 continue; 3819 if (qed_rd(p_hwfn, p_ptt, 3820 NIG_REG_LLH_FUNC_FILTER_VALUE + 3821 (2 * i + 1) * sizeof(u32)) != high) 3822 continue; 3823 3824 qed_wr(p_hwfn, p_ptt, 3825 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3826 qed_wr(p_hwfn, p_ptt, 3827 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3828 qed_wr(p_hwfn, p_ptt, 3829 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3830 i * sizeof(u32), 0); 3831 qed_wr(p_hwfn, p_ptt, 3832 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3833 qed_wr(p_hwfn, p_ptt, 3834 NIG_REG_LLH_FUNC_FILTER_VALUE + 3835 (2 * i + 1) * sizeof(u32), 0); 3836 break; 3837 } 3838 3839 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3840 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3841 } 3842 3843 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3844 u32 hw_addr, void *p_eth_qzone, 3845 size_t eth_qzone_size, u8 timeset) 3846 { 3847 struct coalescing_timeset *p_coal_timeset; 3848 3849 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { 3850 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); 3851 return -EINVAL; 3852 } 3853 3854 p_coal_timeset = p_eth_qzone; 3855 memset(p_eth_qzone, 0, eth_qzone_size); 3856 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 3857 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 3858 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 3859 3860 return 0; 3861 } 3862 3863 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) 3864 { 3865 struct qed_queue_cid *p_cid = p_handle; 3866 struct qed_hwfn *p_hwfn; 3867 struct qed_ptt *p_ptt; 3868 int rc = 0; 3869 3870 p_hwfn = p_cid->p_owner; 3871 3872 if (IS_VF(p_hwfn->cdev)) 3873 return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); 3874 3875 p_ptt = qed_ptt_acquire(p_hwfn); 3876 if (!p_ptt) 3877 return -EAGAIN; 3878 3879 if (rx_coal) { 3880 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3881 if (rc) 3882 goto out; 3883 p_hwfn->cdev->rx_coalesce_usecs = rx_coal; 3884 } 3885 3886 if (tx_coal) { 3887 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); 3888 if (rc) 3889 goto out; 3890 p_hwfn->cdev->tx_coalesce_usecs = tx_coal; 3891 } 3892 out: 3893 qed_ptt_release(p_hwfn, p_ptt); 3894 return rc; 3895 } 3896 3897 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, 3898 struct qed_ptt *p_ptt, 3899 u16 coalesce, struct qed_queue_cid *p_cid) 3900 { 3901 struct ustorm_eth_queue_zone eth_qzone; 3902 u8 timeset, timer_res; 3903 u32 address; 3904 int rc; 3905 3906 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3907 if (coalesce <= 0x7F) { 3908 timer_res = 0; 3909 } else if (coalesce <= 0xFF) { 3910 timer_res = 1; 3911 } else if (coalesce <= 0x1FF) { 3912 timer_res = 2; 3913 } else { 3914 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3915 return -EINVAL; 3916 } 3917 timeset = (u8)(coalesce >> timer_res); 3918 3919 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3920 p_cid->sb_igu_id, false); 3921 if (rc) 3922 goto out; 3923 3924 address = BAR0_MAP_REG_USDM_RAM + 3925 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 3926 3927 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3928 sizeof(struct ustorm_eth_queue_zone), timeset); 3929 if (rc) 3930 goto out; 3931 3932 out: 3933 return rc; 3934 } 3935 3936 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, 3937 struct qed_ptt *p_ptt, 3938 u16 coalesce, struct qed_queue_cid *p_cid) 3939 { 3940 struct xstorm_eth_queue_zone eth_qzone; 3941 u8 timeset, timer_res; 3942 u32 address; 3943 int rc; 3944 3945 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3946 if (coalesce <= 0x7F) { 3947 timer_res = 0; 3948 } else if (coalesce <= 0xFF) { 3949 timer_res = 1; 3950 } else if (coalesce <= 0x1FF) { 3951 timer_res = 2; 3952 } else { 3953 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3954 return -EINVAL; 3955 } 3956 timeset = (u8)(coalesce >> timer_res); 3957 3958 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3959 p_cid->sb_igu_id, true); 3960 if (rc) 3961 goto out; 3962 3963 address = BAR0_MAP_REG_XSDM_RAM + 3964 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 3965 3966 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3967 sizeof(struct xstorm_eth_queue_zone), timeset); 3968 out: 3969 return rc; 3970 } 3971 3972 /* Calculate final WFQ values for all vports and configure them. 3973 * After this configuration each vport will have 3974 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) 3975 */ 3976 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 3977 struct qed_ptt *p_ptt, 3978 u32 min_pf_rate) 3979 { 3980 struct init_qm_vport_params *vport_params; 3981 int i; 3982 3983 vport_params = p_hwfn->qm_info.qm_vport_params; 3984 3985 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3986 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 3987 3988 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / 3989 min_pf_rate; 3990 qed_init_vport_wfq(p_hwfn, p_ptt, 3991 vport_params[i].first_tx_pq_id, 3992 vport_params[i].vport_wfq); 3993 } 3994 } 3995 3996 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, 3997 u32 min_pf_rate) 3998 3999 { 4000 int i; 4001 4002 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 4003 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; 4004 } 4005 4006 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 4007 struct qed_ptt *p_ptt, 4008 u32 min_pf_rate) 4009 { 4010 struct init_qm_vport_params *vport_params; 4011 int i; 4012 4013 vport_params = p_hwfn->qm_info.qm_vport_params; 4014 4015 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 4016 qed_init_wfq_default_param(p_hwfn, min_pf_rate); 4017 qed_init_vport_wfq(p_hwfn, p_ptt, 4018 vport_params[i].first_tx_pq_id, 4019 vport_params[i].vport_wfq); 4020 } 4021 } 4022 4023 /* This function performs several validations for WFQ 4024 * configuration and required min rate for a given vport 4025 * 1. req_rate must be greater than one percent of min_pf_rate. 4026 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 4027 * rates to get less than one percent of min_pf_rate. 4028 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 4029 */ 4030 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, 4031 u16 vport_id, u32 req_rate, u32 min_pf_rate) 4032 { 4033 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 4034 int non_requested_count = 0, req_count = 0, i, num_vports; 4035 4036 num_vports = p_hwfn->qm_info.num_vports; 4037 4038 /* Accounting for the vports which are configured for WFQ explicitly */ 4039 for (i = 0; i < num_vports; i++) { 4040 u32 tmp_speed; 4041 4042 if ((i != vport_id) && 4043 p_hwfn->qm_info.wfq_data[i].configured) { 4044 req_count++; 4045 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 4046 total_req_min_rate += tmp_speed; 4047 } 4048 } 4049 4050 /* Include current vport data as well */ 4051 req_count++; 4052 total_req_min_rate += req_rate; 4053 non_requested_count = num_vports - req_count; 4054 4055 if (req_rate < min_pf_rate / QED_WFQ_UNIT) { 4056 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4057 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 4058 vport_id, req_rate, min_pf_rate); 4059 return -EINVAL; 4060 } 4061 4062 if (num_vports > QED_WFQ_UNIT) { 4063 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4064 "Number of vports is greater than %d\n", 4065 QED_WFQ_UNIT); 4066 return -EINVAL; 4067 } 4068 4069 if (total_req_min_rate > min_pf_rate) { 4070 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4071 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 4072 total_req_min_rate, min_pf_rate); 4073 return -EINVAL; 4074 } 4075 4076 total_left_rate = min_pf_rate - total_req_min_rate; 4077 4078 left_rate_per_vp = total_left_rate / non_requested_count; 4079 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { 4080 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4081 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 4082 left_rate_per_vp, min_pf_rate); 4083 return -EINVAL; 4084 } 4085 4086 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 4087 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 4088 4089 for (i = 0; i < num_vports; i++) { 4090 if (p_hwfn->qm_info.wfq_data[i].configured) 4091 continue; 4092 4093 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 4094 } 4095 4096 return 0; 4097 } 4098 4099 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, 4100 struct qed_ptt *p_ptt, u16 vp_id, u32 rate) 4101 { 4102 struct qed_mcp_link_state *p_link; 4103 int rc = 0; 4104 4105 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; 4106 4107 if (!p_link->min_pf_rate) { 4108 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 4109 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 4110 return rc; 4111 } 4112 4113 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 4114 4115 if (!rc) 4116 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, 4117 p_link->min_pf_rate); 4118 else 4119 DP_NOTICE(p_hwfn, 4120 "Validation failed while configuring min rate\n"); 4121 4122 return rc; 4123 } 4124 4125 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, 4126 struct qed_ptt *p_ptt, 4127 u32 min_pf_rate) 4128 { 4129 bool use_wfq = false; 4130 int rc = 0; 4131 u16 i; 4132 4133 /* Validate all pre configured vports for wfq */ 4134 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 4135 u32 rate; 4136 4137 if (!p_hwfn->qm_info.wfq_data[i].configured) 4138 continue; 4139 4140 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 4141 use_wfq = true; 4142 4143 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 4144 if (rc) { 4145 DP_NOTICE(p_hwfn, 4146 "WFQ validation failed while configuring min rate\n"); 4147 break; 4148 } 4149 } 4150 4151 if (!rc && use_wfq) 4152 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4153 else 4154 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4155 4156 return rc; 4157 } 4158 4159 /* Main API for qed clients to configure vport min rate. 4160 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 4161 * rate - Speed in Mbps needs to be assigned to a given vport. 4162 */ 4163 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) 4164 { 4165 int i, rc = -EINVAL; 4166 4167 /* Currently not supported; Might change in future */ 4168 if (cdev->num_hwfns > 1) { 4169 DP_NOTICE(cdev, 4170 "WFQ configuration is not supported for this device\n"); 4171 return rc; 4172 } 4173 4174 for_each_hwfn(cdev, i) { 4175 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4176 struct qed_ptt *p_ptt; 4177 4178 p_ptt = qed_ptt_acquire(p_hwfn); 4179 if (!p_ptt) 4180 return -EBUSY; 4181 4182 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 4183 4184 if (rc) { 4185 qed_ptt_release(p_hwfn, p_ptt); 4186 return rc; 4187 } 4188 4189 qed_ptt_release(p_hwfn, p_ptt); 4190 } 4191 4192 return rc; 4193 } 4194 4195 /* API to configure WFQ from mcp link change */ 4196 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, 4197 struct qed_ptt *p_ptt, u32 min_pf_rate) 4198 { 4199 int i; 4200 4201 if (cdev->num_hwfns > 1) { 4202 DP_VERBOSE(cdev, 4203 NETIF_MSG_LINK, 4204 "WFQ configuration is not supported for this device\n"); 4205 return; 4206 } 4207 4208 for_each_hwfn(cdev, i) { 4209 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4210 4211 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 4212 min_pf_rate); 4213 } 4214 } 4215 4216 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, 4217 struct qed_ptt *p_ptt, 4218 struct qed_mcp_link_state *p_link, 4219 u8 max_bw) 4220 { 4221 int rc = 0; 4222 4223 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 4224 4225 if (!p_link->line_speed && (max_bw != 100)) 4226 return rc; 4227 4228 p_link->speed = (p_link->line_speed * max_bw) / 100; 4229 p_hwfn->qm_info.pf_rl = p_link->speed; 4230 4231 /* Since the limiter also affects Tx-switched traffic, we don't want it 4232 * to limit such traffic in case there's no actual limit. 4233 * In that case, set limit to imaginary high boundary. 4234 */ 4235 if (max_bw == 100) 4236 p_hwfn->qm_info.pf_rl = 100000; 4237 4238 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 4239 p_hwfn->qm_info.pf_rl); 4240 4241 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4242 "Configured MAX bandwidth to be %08x Mb/sec\n", 4243 p_link->speed); 4244 4245 return rc; 4246 } 4247 4248 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 4249 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) 4250 { 4251 int i, rc = -EINVAL; 4252 4253 if (max_bw < 1 || max_bw > 100) { 4254 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); 4255 return rc; 4256 } 4257 4258 for_each_hwfn(cdev, i) { 4259 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4260 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4261 struct qed_mcp_link_state *p_link; 4262 struct qed_ptt *p_ptt; 4263 4264 p_link = &p_lead->mcp_info->link_output; 4265 4266 p_ptt = qed_ptt_acquire(p_hwfn); 4267 if (!p_ptt) 4268 return -EBUSY; 4269 4270 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, 4271 p_link, max_bw); 4272 4273 qed_ptt_release(p_hwfn, p_ptt); 4274 4275 if (rc) 4276 break; 4277 } 4278 4279 return rc; 4280 } 4281 4282 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, 4283 struct qed_ptt *p_ptt, 4284 struct qed_mcp_link_state *p_link, 4285 u8 min_bw) 4286 { 4287 int rc = 0; 4288 4289 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 4290 p_hwfn->qm_info.pf_wfq = min_bw; 4291 4292 if (!p_link->line_speed) 4293 return rc; 4294 4295 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 4296 4297 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 4298 4299 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4300 "Configured MIN bandwidth to be %d Mb/sec\n", 4301 p_link->min_pf_rate); 4302 4303 return rc; 4304 } 4305 4306 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 4307 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) 4308 { 4309 int i, rc = -EINVAL; 4310 4311 if (min_bw < 1 || min_bw > 100) { 4312 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); 4313 return rc; 4314 } 4315 4316 for_each_hwfn(cdev, i) { 4317 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4318 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4319 struct qed_mcp_link_state *p_link; 4320 struct qed_ptt *p_ptt; 4321 4322 p_link = &p_lead->mcp_info->link_output; 4323 4324 p_ptt = qed_ptt_acquire(p_hwfn); 4325 if (!p_ptt) 4326 return -EBUSY; 4327 4328 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, 4329 p_link, min_bw); 4330 if (rc) { 4331 qed_ptt_release(p_hwfn, p_ptt); 4332 return rc; 4333 } 4334 4335 if (p_link->min_pf_rate) { 4336 u32 min_rate = p_link->min_pf_rate; 4337 4338 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, 4339 p_ptt, 4340 min_rate); 4341 } 4342 4343 qed_ptt_release(p_hwfn, p_ptt); 4344 } 4345 4346 return rc; 4347 } 4348 4349 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4350 { 4351 struct qed_mcp_link_state *p_link; 4352 4353 p_link = &p_hwfn->mcp_info->link_output; 4354 4355 if (p_link->min_pf_rate) 4356 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, 4357 p_link->min_pf_rate); 4358 4359 memset(p_hwfn->qm_info.wfq_data, 0, 4360 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); 4361 } 4362 4363 int qed_device_num_engines(struct qed_dev *cdev) 4364 { 4365 return QED_IS_BB(cdev) ? 2 : 1; 4366 } 4367 4368 static int qed_device_num_ports(struct qed_dev *cdev) 4369 { 4370 /* in CMT always only one port */ 4371 if (cdev->num_hwfns > 1) 4372 return 1; 4373 4374 return cdev->num_ports_in_engine * qed_device_num_engines(cdev); 4375 } 4376 4377 int qed_device_get_port_id(struct qed_dev *cdev) 4378 { 4379 return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev); 4380 } 4381 4382 void qed_set_fw_mac_addr(__le16 *fw_msb, 4383 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) 4384 { 4385 ((u8 *)fw_msb)[0] = mac[1]; 4386 ((u8 *)fw_msb)[1] = mac[0]; 4387 ((u8 *)fw_mid)[0] = mac[3]; 4388 ((u8 *)fw_mid)[1] = mac[2]; 4389 ((u8 *)fw_lsb)[0] = mac[5]; 4390 ((u8 *)fw_lsb)[1] = mac[4]; 4391 } 4392