1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <asm/byteorder.h> 35 #include <linux/io.h> 36 #include <linux/delay.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mutex.h> 41 #include <linux/pci.h> 42 #include <linux/slab.h> 43 #include <linux/string.h> 44 #include <linux/vmalloc.h> 45 #include <linux/etherdevice.h> 46 #include <linux/qed/qed_chain.h> 47 #include <linux/qed/qed_if.h> 48 #include "qed.h" 49 #include "qed_cxt.h" 50 #include "qed_dcbx.h" 51 #include "qed_dev_api.h" 52 #include "qed_fcoe.h" 53 #include "qed_hsi.h" 54 #include "qed_hw.h" 55 #include "qed_init_ops.h" 56 #include "qed_int.h" 57 #include "qed_iscsi.h" 58 #include "qed_ll2.h" 59 #include "qed_mcp.h" 60 #include "qed_ooo.h" 61 #include "qed_reg_addr.h" 62 #include "qed_sp.h" 63 #include "qed_sriov.h" 64 #include "qed_vf.h" 65 #include "qed_rdma.h" 66 67 static DEFINE_SPINLOCK(qm_lock); 68 69 #define QED_MIN_DPIS (4) 70 #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) 71 72 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, 73 struct qed_ptt *p_ptt, enum BAR_ID bar_id) 74 { 75 u32 bar_reg = (bar_id == BAR_ID_0 ? 76 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 77 u32 val; 78 79 if (IS_VF(p_hwfn->cdev)) 80 return qed_vf_hw_bar_size(p_hwfn, bar_id); 81 82 val = qed_rd(p_hwfn, p_ptt, bar_reg); 83 if (val) 84 return 1 << (val + 15); 85 86 /* Old MFW initialized above registered only conditionally */ 87 if (p_hwfn->cdev->num_hwfns > 1) { 88 DP_INFO(p_hwfn, 89 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 90 return BAR_ID_0 ? 256 * 1024 : 512 * 1024; 91 } else { 92 DP_INFO(p_hwfn, 93 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 94 return 512 * 1024; 95 } 96 } 97 98 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) 99 { 100 u32 i; 101 102 cdev->dp_level = dp_level; 103 cdev->dp_module = dp_module; 104 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 105 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 106 107 p_hwfn->dp_level = dp_level; 108 p_hwfn->dp_module = dp_module; 109 } 110 } 111 112 void qed_init_struct(struct qed_dev *cdev) 113 { 114 u8 i; 115 116 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 117 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 118 119 p_hwfn->cdev = cdev; 120 p_hwfn->my_id = i; 121 p_hwfn->b_active = false; 122 123 mutex_init(&p_hwfn->dmae_info.mutex); 124 } 125 126 /* hwfn 0 is always active */ 127 cdev->hwfns[0].b_active = true; 128 129 /* set the default cache alignment to 128 */ 130 cdev->cache_shift = 7; 131 } 132 133 static void qed_qm_info_free(struct qed_hwfn *p_hwfn) 134 { 135 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 136 137 kfree(qm_info->qm_pq_params); 138 qm_info->qm_pq_params = NULL; 139 kfree(qm_info->qm_vport_params); 140 qm_info->qm_vport_params = NULL; 141 kfree(qm_info->qm_port_params); 142 qm_info->qm_port_params = NULL; 143 kfree(qm_info->wfq_data); 144 qm_info->wfq_data = NULL; 145 } 146 147 void qed_resc_free(struct qed_dev *cdev) 148 { 149 int i; 150 151 if (IS_VF(cdev)) { 152 for_each_hwfn(cdev, i) 153 qed_l2_free(&cdev->hwfns[i]); 154 return; 155 } 156 157 kfree(cdev->fw_data); 158 cdev->fw_data = NULL; 159 160 kfree(cdev->reset_stats); 161 cdev->reset_stats = NULL; 162 163 for_each_hwfn(cdev, i) { 164 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 165 166 qed_cxt_mngr_free(p_hwfn); 167 qed_qm_info_free(p_hwfn); 168 qed_spq_free(p_hwfn); 169 qed_eq_free(p_hwfn); 170 qed_consq_free(p_hwfn); 171 qed_int_free(p_hwfn); 172 #ifdef CONFIG_QED_LL2 173 qed_ll2_free(p_hwfn); 174 #endif 175 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 176 qed_fcoe_free(p_hwfn); 177 178 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 179 qed_iscsi_free(p_hwfn); 180 qed_ooo_free(p_hwfn); 181 } 182 qed_iov_free(p_hwfn); 183 qed_l2_free(p_hwfn); 184 qed_dmae_info_free(p_hwfn); 185 qed_dcbx_info_free(p_hwfn); 186 } 187 } 188 189 /******************** QM initialization *******************/ 190 #define ACTIVE_TCS_BMAP 0x9f 191 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 192 193 /* determines the physical queue flags for a given PF. */ 194 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) 195 { 196 u32 flags; 197 198 /* common flags */ 199 flags = PQ_FLAGS_LB; 200 201 /* feature flags */ 202 if (IS_QED_SRIOV(p_hwfn->cdev)) 203 flags |= PQ_FLAGS_VFS; 204 205 /* protocol flags */ 206 switch (p_hwfn->hw_info.personality) { 207 case QED_PCI_ETH: 208 flags |= PQ_FLAGS_MCOS; 209 break; 210 case QED_PCI_FCOE: 211 flags |= PQ_FLAGS_OFLD; 212 break; 213 case QED_PCI_ISCSI: 214 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 215 break; 216 case QED_PCI_ETH_ROCE: 217 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 218 break; 219 case QED_PCI_ETH_IWARP: 220 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | 221 PQ_FLAGS_OFLD; 222 break; 223 default: 224 DP_ERR(p_hwfn, 225 "unknown personality %d\n", p_hwfn->hw_info.personality); 226 return 0; 227 } 228 229 return flags; 230 } 231 232 /* Getters for resource amounts necessary for qm initialization */ 233 u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) 234 { 235 return p_hwfn->hw_info.num_hw_tc; 236 } 237 238 u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) 239 { 240 return IS_QED_SRIOV(p_hwfn->cdev) ? 241 p_hwfn->cdev->p_iov_info->total_vfs : 0; 242 } 243 244 #define NUM_DEFAULT_RLS 1 245 246 u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) 247 { 248 u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 249 250 /* num RLs can't exceed resource amount of rls or vports */ 251 num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), 252 RESC_NUM(p_hwfn, QED_VPORT)); 253 254 /* Make sure after we reserve there's something left */ 255 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) 256 return 0; 257 258 /* subtract rls necessary for VFs and one default one for the PF */ 259 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 260 261 return num_pf_rls; 262 } 263 264 u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) 265 { 266 u32 pq_flags = qed_get_pq_flags(p_hwfn); 267 268 /* all pqs share the same vport, except for vfs and pf_rl pqs */ 269 return (!!(PQ_FLAGS_RLS & pq_flags)) * 270 qed_init_qm_get_num_pf_rls(p_hwfn) + 271 (!!(PQ_FLAGS_VFS & pq_flags)) * 272 qed_init_qm_get_num_vfs(p_hwfn) + 1; 273 } 274 275 /* calc amount of PQs according to the requested flags */ 276 u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) 277 { 278 u32 pq_flags = qed_get_pq_flags(p_hwfn); 279 280 return (!!(PQ_FLAGS_RLS & pq_flags)) * 281 qed_init_qm_get_num_pf_rls(p_hwfn) + 282 (!!(PQ_FLAGS_MCOS & pq_flags)) * 283 qed_init_qm_get_num_tcs(p_hwfn) + 284 (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + 285 (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) + 286 (!!(PQ_FLAGS_LLT & pq_flags)) + 287 (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); 288 } 289 290 /* initialize the top level QM params */ 291 static void qed_init_qm_params(struct qed_hwfn *p_hwfn) 292 { 293 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 294 bool four_port; 295 296 /* pq and vport bases for this PF */ 297 qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); 298 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); 299 300 /* rate limiting and weighted fair queueing are always enabled */ 301 qm_info->vport_rl_en = 1; 302 qm_info->vport_wfq_en = 1; 303 304 /* TC config is different for AH 4 port */ 305 four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; 306 307 /* in AH 4 port we have fewer TCs per port */ 308 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 309 NUM_OF_PHYS_TCS; 310 311 /* unless MFW indicated otherwise, ooo_tc == 3 for 312 * AH 4-port and 4 otherwise. 313 */ 314 if (!qm_info->ooo_tc) 315 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 316 DCBX_TCP_OOO_TC; 317 } 318 319 /* initialize qm vport params */ 320 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) 321 { 322 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 323 u8 i; 324 325 /* all vports participate in weighted fair queueing */ 326 for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) 327 qm_info->qm_vport_params[i].vport_wfq = 1; 328 } 329 330 /* initialize qm port params */ 331 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) 332 { 333 /* Initialize qm port parameters */ 334 u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; 335 336 /* indicate how ooo and high pri traffic is dealt with */ 337 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 338 ACTIVE_TCS_BMAP_4PORT_K2 : 339 ACTIVE_TCS_BMAP; 340 341 for (i = 0; i < num_ports; i++) { 342 struct init_qm_port_params *p_qm_port = 343 &p_hwfn->qm_info.qm_port_params[i]; 344 345 p_qm_port->active = 1; 346 p_qm_port->active_phys_tcs = active_phys_tcs; 347 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; 348 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; 349 } 350 } 351 352 /* Reset the params which must be reset for qm init. QM init may be called as 353 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 354 * params may be affected by the init but would simply recalculate to the same 355 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 356 * affected as these amounts stay the same. 357 */ 358 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) 359 { 360 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 361 362 qm_info->num_pqs = 0; 363 qm_info->num_vports = 0; 364 qm_info->num_pf_rls = 0; 365 qm_info->num_vf_pqs = 0; 366 qm_info->first_vf_pq = 0; 367 qm_info->first_mcos_pq = 0; 368 qm_info->first_rl_pq = 0; 369 } 370 371 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) 372 { 373 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 374 375 qm_info->num_vports++; 376 377 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 378 DP_ERR(p_hwfn, 379 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 380 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 381 } 382 383 /* initialize a single pq and manage qm_info resources accounting. 384 * The pq_init_flags param determines whether the PQ is rate limited 385 * (for VF or PF) and whether a new vport is allocated to the pq or not 386 * (i.e. vport will be shared). 387 */ 388 389 /* flags for pq init */ 390 #define PQ_INIT_SHARE_VPORT (1 << 0) 391 #define PQ_INIT_PF_RL (1 << 1) 392 #define PQ_INIT_VF_RL (1 << 2) 393 394 /* defines for pq init */ 395 #define PQ_INIT_DEFAULT_WRR_GROUP 1 396 #define PQ_INIT_DEFAULT_TC 0 397 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc) 398 399 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, 400 struct qed_qm_info *qm_info, 401 u8 tc, u32 pq_init_flags) 402 { 403 u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); 404 405 if (pq_idx > max_pq) 406 DP_ERR(p_hwfn, 407 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 408 409 /* init pq params */ 410 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 411 qm_info->num_vports; 412 qm_info->qm_pq_params[pq_idx].tc_id = tc; 413 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 414 qm_info->qm_pq_params[pq_idx].rl_valid = 415 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); 416 417 /* qm params accounting */ 418 qm_info->num_pqs++; 419 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 420 qm_info->num_vports++; 421 422 if (pq_init_flags & PQ_INIT_PF_RL) 423 qm_info->num_pf_rls++; 424 425 if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) 426 DP_ERR(p_hwfn, 427 "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", 428 qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); 429 430 if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) 431 DP_ERR(p_hwfn, 432 "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", 433 qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); 434 } 435 436 /* get pq index according to PQ_FLAGS */ 437 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, 438 u32 pq_flags) 439 { 440 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 441 442 /* Can't have multiple flags set here */ 443 if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1) 444 goto err; 445 446 switch (pq_flags) { 447 case PQ_FLAGS_RLS: 448 return &qm_info->first_rl_pq; 449 case PQ_FLAGS_MCOS: 450 return &qm_info->first_mcos_pq; 451 case PQ_FLAGS_LB: 452 return &qm_info->pure_lb_pq; 453 case PQ_FLAGS_OOO: 454 return &qm_info->ooo_pq; 455 case PQ_FLAGS_ACK: 456 return &qm_info->pure_ack_pq; 457 case PQ_FLAGS_OFLD: 458 return &qm_info->offload_pq; 459 case PQ_FLAGS_LLT: 460 return &qm_info->low_latency_pq; 461 case PQ_FLAGS_VFS: 462 return &qm_info->first_vf_pq; 463 default: 464 goto err; 465 } 466 467 err: 468 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); 469 return NULL; 470 } 471 472 /* save pq index in qm info */ 473 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, 474 u32 pq_flags, u16 pq_val) 475 { 476 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 477 478 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 479 } 480 481 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 482 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) 483 { 484 u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 485 486 return *base_pq_idx + CM_TX_PQ_BASE; 487 } 488 489 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) 490 { 491 u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); 492 493 if (tc > max_tc) 494 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 495 496 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc; 497 } 498 499 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) 500 { 501 u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); 502 503 if (vf > max_vf) 504 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 505 506 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf; 507 } 508 509 u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl) 510 { 511 u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn); 512 513 if (rl > max_rl) 514 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl); 515 516 return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl; 517 } 518 519 /* Functions for creating specific types of pqs */ 520 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) 521 { 522 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 523 524 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 525 return; 526 527 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 528 qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 529 } 530 531 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) 532 { 533 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 534 535 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 536 return; 537 538 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 539 qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 540 } 541 542 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) 543 { 544 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 545 546 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 547 return; 548 549 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 550 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 551 } 552 553 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) 554 { 555 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 556 557 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 558 return; 559 560 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 561 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 562 } 563 564 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) 565 { 566 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 567 568 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) 569 return; 570 571 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); 572 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 573 } 574 575 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) 576 { 577 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 578 u8 tc_idx; 579 580 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 581 return; 582 583 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 584 for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) 585 qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 586 } 587 588 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) 589 { 590 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 591 u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); 592 593 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 594 return; 595 596 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 597 qm_info->num_vf_pqs = num_vfs; 598 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 599 qed_init_qm_pq(p_hwfn, 600 qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); 601 } 602 603 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) 604 { 605 u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); 606 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 607 608 if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 609 return; 610 611 qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 612 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 613 qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL); 614 } 615 616 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) 617 { 618 /* rate limited pqs, must come first (FW assumption) */ 619 qed_init_qm_rl_pqs(p_hwfn); 620 621 /* pqs for multi cos */ 622 qed_init_qm_mcos_pqs(p_hwfn); 623 624 /* pure loopback pq */ 625 qed_init_qm_lb_pq(p_hwfn); 626 627 /* out of order pq */ 628 qed_init_qm_ooo_pq(p_hwfn); 629 630 /* pure ack pq */ 631 qed_init_qm_pure_ack_pq(p_hwfn); 632 633 /* pq for offloaded protocol */ 634 qed_init_qm_offload_pq(p_hwfn); 635 636 /* low latency pq */ 637 qed_init_qm_low_latency_pq(p_hwfn); 638 639 /* done sharing vports */ 640 qed_init_qm_advance_vport(p_hwfn); 641 642 /* pqs for vfs */ 643 qed_init_qm_vf_pqs(p_hwfn); 644 } 645 646 /* compare values of getters against resources amounts */ 647 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) 648 { 649 if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { 650 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 651 return -EINVAL; 652 } 653 654 if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) { 655 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 656 return -EINVAL; 657 } 658 659 return 0; 660 } 661 662 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) 663 { 664 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 665 struct init_qm_vport_params *vport; 666 struct init_qm_port_params *port; 667 struct init_qm_pq_params *pq; 668 int i, tc; 669 670 /* top level params */ 671 DP_VERBOSE(p_hwfn, 672 NETIF_MSG_HW, 673 "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n", 674 qm_info->start_pq, 675 qm_info->start_vport, 676 qm_info->pure_lb_pq, 677 qm_info->offload_pq, qm_info->pure_ack_pq); 678 DP_VERBOSE(p_hwfn, 679 NETIF_MSG_HW, 680 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", 681 qm_info->ooo_pq, 682 qm_info->first_vf_pq, 683 qm_info->num_pqs, 684 qm_info->num_vf_pqs, 685 qm_info->num_vports, qm_info->max_phys_tcs_per_port); 686 DP_VERBOSE(p_hwfn, 687 NETIF_MSG_HW, 688 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 689 qm_info->pf_rl_en, 690 qm_info->pf_wfq_en, 691 qm_info->vport_rl_en, 692 qm_info->vport_wfq_en, 693 qm_info->pf_wfq, 694 qm_info->pf_rl, 695 qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); 696 697 /* port table */ 698 for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { 699 port = &(qm_info->qm_port_params[i]); 700 DP_VERBOSE(p_hwfn, 701 NETIF_MSG_HW, 702 "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", 703 i, 704 port->active, 705 port->active_phys_tcs, 706 port->num_pbf_cmd_lines, 707 port->num_btb_blocks, port->reserved); 708 } 709 710 /* vport table */ 711 for (i = 0; i < qm_info->num_vports; i++) { 712 vport = &(qm_info->qm_vport_params[i]); 713 DP_VERBOSE(p_hwfn, 714 NETIF_MSG_HW, 715 "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ", 716 qm_info->start_vport + i, 717 vport->vport_rl, vport->vport_wfq); 718 for (tc = 0; tc < NUM_OF_TCS; tc++) 719 DP_VERBOSE(p_hwfn, 720 NETIF_MSG_HW, 721 "%d ", vport->first_tx_pq_id[tc]); 722 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); 723 } 724 725 /* pq table */ 726 for (i = 0; i < qm_info->num_pqs; i++) { 727 pq = &(qm_info->qm_pq_params[i]); 728 DP_VERBOSE(p_hwfn, 729 NETIF_MSG_HW, 730 "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", 731 qm_info->start_pq + i, 732 pq->vport_id, 733 pq->tc_id, pq->wrr_group, pq->rl_valid); 734 } 735 } 736 737 static void qed_init_qm_info(struct qed_hwfn *p_hwfn) 738 { 739 /* reset params required for init run */ 740 qed_init_qm_reset_params(p_hwfn); 741 742 /* init QM top level params */ 743 qed_init_qm_params(p_hwfn); 744 745 /* init QM port params */ 746 qed_init_qm_port_params(p_hwfn); 747 748 /* init QM vport params */ 749 qed_init_qm_vport_params(p_hwfn); 750 751 /* init QM physical queue params */ 752 qed_init_qm_pq_params(p_hwfn); 753 754 /* display all that init */ 755 qed_dp_init_qm_params(p_hwfn); 756 } 757 758 /* This function reconfigures the QM pf on the fly. 759 * For this purpose we: 760 * 1. reconfigure the QM database 761 * 2. set new values to runtime array 762 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 763 * 4. activate init tool in QM_PF stage 764 * 5. send an sdm_qm_cmd through rbc interface to release the QM 765 */ 766 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 767 { 768 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 769 bool b_rc; 770 int rc; 771 772 /* initialize qed's qm data structure */ 773 qed_init_qm_info(p_hwfn); 774 775 /* stop PF's qm queues */ 776 spin_lock_bh(&qm_lock); 777 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 778 qm_info->start_pq, qm_info->num_pqs); 779 spin_unlock_bh(&qm_lock); 780 if (!b_rc) 781 return -EINVAL; 782 783 /* clear the QM_PF runtime phase leftovers from previous init */ 784 qed_init_clear_rt_data(p_hwfn); 785 786 /* prepare QM portion of runtime array */ 787 qed_qm_init_pf(p_hwfn, p_ptt, false); 788 789 /* activate init tool on runtime array */ 790 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 791 p_hwfn->hw_info.hw_mode); 792 if (rc) 793 return rc; 794 795 /* start PF's qm queues */ 796 spin_lock_bh(&qm_lock); 797 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 798 qm_info->start_pq, qm_info->num_pqs); 799 spin_unlock_bh(&qm_lock); 800 if (!b_rc) 801 return -EINVAL; 802 803 return 0; 804 } 805 806 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) 807 { 808 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 809 int rc; 810 811 rc = qed_init_qm_sanity(p_hwfn); 812 if (rc) 813 goto alloc_err; 814 815 qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) * 816 qed_init_qm_get_num_pqs(p_hwfn), 817 GFP_KERNEL); 818 if (!qm_info->qm_pq_params) 819 goto alloc_err; 820 821 qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) * 822 qed_init_qm_get_num_vports(p_hwfn), 823 GFP_KERNEL); 824 if (!qm_info->qm_vport_params) 825 goto alloc_err; 826 827 qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) * 828 p_hwfn->cdev->num_ports_in_engine, 829 GFP_KERNEL); 830 if (!qm_info->qm_port_params) 831 goto alloc_err; 832 833 qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) * 834 qed_init_qm_get_num_vports(p_hwfn), 835 GFP_KERNEL); 836 if (!qm_info->wfq_data) 837 goto alloc_err; 838 839 return 0; 840 841 alloc_err: 842 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); 843 qed_qm_info_free(p_hwfn); 844 return -ENOMEM; 845 } 846 847 int qed_resc_alloc(struct qed_dev *cdev) 848 { 849 u32 rdma_tasks, excess_tasks; 850 u32 line_count; 851 int i, rc = 0; 852 853 if (IS_VF(cdev)) { 854 for_each_hwfn(cdev, i) { 855 rc = qed_l2_alloc(&cdev->hwfns[i]); 856 if (rc) 857 return rc; 858 } 859 return rc; 860 } 861 862 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); 863 if (!cdev->fw_data) 864 return -ENOMEM; 865 866 for_each_hwfn(cdev, i) { 867 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 868 u32 n_eqes, num_cons; 869 870 /* First allocate the context manager structure */ 871 rc = qed_cxt_mngr_alloc(p_hwfn); 872 if (rc) 873 goto alloc_err; 874 875 /* Set the HW cid/tid numbers (in the contest manager) 876 * Must be done prior to any further computations. 877 */ 878 rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); 879 if (rc) 880 goto alloc_err; 881 882 rc = qed_alloc_qm_data(p_hwfn); 883 if (rc) 884 goto alloc_err; 885 886 /* init qm info */ 887 qed_init_qm_info(p_hwfn); 888 889 /* Compute the ILT client partition */ 890 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 891 if (rc) { 892 DP_NOTICE(p_hwfn, 893 "too many ILT lines; re-computing with less lines\n"); 894 /* In case there are not enough ILT lines we reduce the 895 * number of RDMA tasks and re-compute. 896 */ 897 excess_tasks = 898 qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); 899 if (!excess_tasks) 900 goto alloc_err; 901 902 rdma_tasks = RDMA_MAX_TIDS - excess_tasks; 903 rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); 904 if (rc) 905 goto alloc_err; 906 907 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); 908 if (rc) { 909 DP_ERR(p_hwfn, 910 "failed ILT compute. Requested too many lines: %u\n", 911 line_count); 912 913 goto alloc_err; 914 } 915 } 916 917 /* CID map / ILT shadow table / T2 918 * The talbes sizes are determined by the computations above 919 */ 920 rc = qed_cxt_tables_alloc(p_hwfn); 921 if (rc) 922 goto alloc_err; 923 924 /* SPQ, must follow ILT because initializes SPQ context */ 925 rc = qed_spq_alloc(p_hwfn); 926 if (rc) 927 goto alloc_err; 928 929 /* SP status block allocation */ 930 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, 931 RESERVED_PTT_DPC); 932 933 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 934 if (rc) 935 goto alloc_err; 936 937 rc = qed_iov_alloc(p_hwfn); 938 if (rc) 939 goto alloc_err; 940 941 /* EQ */ 942 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); 943 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { 944 enum protocol_type rdma_proto; 945 946 if (QED_IS_ROCE_PERSONALITY(p_hwfn)) 947 rdma_proto = PROTOCOLID_ROCE; 948 else 949 rdma_proto = PROTOCOLID_IWARP; 950 951 num_cons = qed_cxt_get_proto_cid_count(p_hwfn, 952 rdma_proto, 953 NULL) * 2; 954 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 955 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 956 num_cons = 957 qed_cxt_get_proto_cid_count(p_hwfn, 958 PROTOCOLID_ISCSI, 959 NULL); 960 n_eqes += 2 * num_cons; 961 } 962 963 if (n_eqes > 0xFFFF) { 964 DP_ERR(p_hwfn, 965 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", 966 n_eqes, 0xFFFF); 967 goto alloc_no_mem; 968 } 969 970 rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); 971 if (rc) 972 goto alloc_err; 973 974 rc = qed_consq_alloc(p_hwfn); 975 if (rc) 976 goto alloc_err; 977 978 rc = qed_l2_alloc(p_hwfn); 979 if (rc) 980 goto alloc_err; 981 982 #ifdef CONFIG_QED_LL2 983 if (p_hwfn->using_ll2) { 984 rc = qed_ll2_alloc(p_hwfn); 985 if (rc) 986 goto alloc_err; 987 } 988 #endif 989 990 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 991 rc = qed_fcoe_alloc(p_hwfn); 992 if (rc) 993 goto alloc_err; 994 } 995 996 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 997 rc = qed_iscsi_alloc(p_hwfn); 998 if (rc) 999 goto alloc_err; 1000 rc = qed_ooo_alloc(p_hwfn); 1001 if (rc) 1002 goto alloc_err; 1003 } 1004 1005 /* DMA info initialization */ 1006 rc = qed_dmae_info_alloc(p_hwfn); 1007 if (rc) 1008 goto alloc_err; 1009 1010 /* DCBX initialization */ 1011 rc = qed_dcbx_info_alloc(p_hwfn); 1012 if (rc) 1013 goto alloc_err; 1014 } 1015 1016 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); 1017 if (!cdev->reset_stats) 1018 goto alloc_no_mem; 1019 1020 return 0; 1021 1022 alloc_no_mem: 1023 rc = -ENOMEM; 1024 alloc_err: 1025 qed_resc_free(cdev); 1026 return rc; 1027 } 1028 1029 void qed_resc_setup(struct qed_dev *cdev) 1030 { 1031 int i; 1032 1033 if (IS_VF(cdev)) { 1034 for_each_hwfn(cdev, i) 1035 qed_l2_setup(&cdev->hwfns[i]); 1036 return; 1037 } 1038 1039 for_each_hwfn(cdev, i) { 1040 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1041 1042 qed_cxt_mngr_setup(p_hwfn); 1043 qed_spq_setup(p_hwfn); 1044 qed_eq_setup(p_hwfn); 1045 qed_consq_setup(p_hwfn); 1046 1047 /* Read shadow of current MFW mailbox */ 1048 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 1049 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1050 p_hwfn->mcp_info->mfw_mb_cur, 1051 p_hwfn->mcp_info->mfw_mb_length); 1052 1053 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); 1054 1055 qed_l2_setup(p_hwfn); 1056 qed_iov_setup(p_hwfn); 1057 #ifdef CONFIG_QED_LL2 1058 if (p_hwfn->using_ll2) 1059 qed_ll2_setup(p_hwfn); 1060 #endif 1061 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 1062 qed_fcoe_setup(p_hwfn); 1063 1064 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { 1065 qed_iscsi_setup(p_hwfn); 1066 qed_ooo_setup(p_hwfn); 1067 } 1068 } 1069 } 1070 1071 #define FINAL_CLEANUP_POLL_CNT (100) 1072 #define FINAL_CLEANUP_POLL_TIME (10) 1073 int qed_final_cleanup(struct qed_hwfn *p_hwfn, 1074 struct qed_ptt *p_ptt, u16 id, bool is_vf) 1075 { 1076 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 1077 int rc = -EBUSY; 1078 1079 addr = GTT_BAR0_MAP_REG_USDM_RAM + 1080 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 1081 1082 if (is_vf) 1083 id += 0x10; 1084 1085 command |= X_FINAL_CLEANUP_AGG_INT << 1086 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 1087 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 1088 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 1089 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 1090 1091 /* Make sure notification is not set before initiating final cleanup */ 1092 if (REG_RD(p_hwfn, addr)) { 1093 DP_NOTICE(p_hwfn, 1094 "Unexpected; Found final cleanup notification before initiating final cleanup\n"); 1095 REG_WR(p_hwfn, addr, 0); 1096 } 1097 1098 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1099 "Sending final cleanup for PFVF[%d] [Command %08x\n]", 1100 id, command); 1101 1102 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 1103 1104 /* Poll until completion */ 1105 while (!REG_RD(p_hwfn, addr) && count--) 1106 msleep(FINAL_CLEANUP_POLL_TIME); 1107 1108 if (REG_RD(p_hwfn, addr)) 1109 rc = 0; 1110 else 1111 DP_NOTICE(p_hwfn, 1112 "Failed to receive FW final cleanup notification\n"); 1113 1114 /* Cleanup afterwards */ 1115 REG_WR(p_hwfn, addr, 0); 1116 1117 return rc; 1118 } 1119 1120 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) 1121 { 1122 int hw_mode = 0; 1123 1124 if (QED_IS_BB_B0(p_hwfn->cdev)) { 1125 hw_mode |= 1 << MODE_BB; 1126 } else if (QED_IS_AH(p_hwfn->cdev)) { 1127 hw_mode |= 1 << MODE_K2; 1128 } else { 1129 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", 1130 p_hwfn->cdev->type); 1131 return -EINVAL; 1132 } 1133 1134 switch (p_hwfn->cdev->num_ports_in_engine) { 1135 case 1: 1136 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 1137 break; 1138 case 2: 1139 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 1140 break; 1141 case 4: 1142 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 1143 break; 1144 default: 1145 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", 1146 p_hwfn->cdev->num_ports_in_engine); 1147 return -EINVAL; 1148 } 1149 1150 switch (p_hwfn->cdev->mf_mode) { 1151 case QED_MF_DEFAULT: 1152 case QED_MF_NPAR: 1153 hw_mode |= 1 << MODE_MF_SI; 1154 break; 1155 case QED_MF_OVLAN: 1156 hw_mode |= 1 << MODE_MF_SD; 1157 break; 1158 default: 1159 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n"); 1160 hw_mode |= 1 << MODE_MF_SI; 1161 } 1162 1163 hw_mode |= 1 << MODE_ASIC; 1164 1165 if (p_hwfn->cdev->num_hwfns > 1) 1166 hw_mode |= 1 << MODE_100G; 1167 1168 p_hwfn->hw_info.hw_mode = hw_mode; 1169 1170 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), 1171 "Configuring function for hw_mode: 0x%08x\n", 1172 p_hwfn->hw_info.hw_mode); 1173 1174 return 0; 1175 } 1176 1177 /* Init run time data for all PFs on an engine. */ 1178 static void qed_init_cau_rt_data(struct qed_dev *cdev) 1179 { 1180 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 1181 int i, igu_sb_id; 1182 1183 for_each_hwfn(cdev, i) { 1184 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1185 struct qed_igu_info *p_igu_info; 1186 struct qed_igu_block *p_block; 1187 struct cau_sb_entry sb_entry; 1188 1189 p_igu_info = p_hwfn->hw_info.p_igu_info; 1190 1191 for (igu_sb_id = 0; 1192 igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { 1193 p_block = &p_igu_info->entry[igu_sb_id]; 1194 1195 if (!p_block->is_pf) 1196 continue; 1197 1198 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 1199 p_block->function_id, 0, 0); 1200 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 1201 sb_entry); 1202 } 1203 } 1204 } 1205 1206 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, 1207 struct qed_ptt *p_ptt) 1208 { 1209 u32 val, wr_mbs, cache_line_size; 1210 1211 val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 1212 switch (val) { 1213 case 0: 1214 wr_mbs = 128; 1215 break; 1216 case 1: 1217 wr_mbs = 256; 1218 break; 1219 case 2: 1220 wr_mbs = 512; 1221 break; 1222 default: 1223 DP_INFO(p_hwfn, 1224 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1225 val); 1226 return; 1227 } 1228 1229 cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); 1230 switch (cache_line_size) { 1231 case 32: 1232 val = 0; 1233 break; 1234 case 64: 1235 val = 1; 1236 break; 1237 case 128: 1238 val = 2; 1239 break; 1240 case 256: 1241 val = 3; 1242 break; 1243 default: 1244 DP_INFO(p_hwfn, 1245 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 1246 cache_line_size); 1247 } 1248 1249 if (L1_CACHE_BYTES > wr_mbs) 1250 DP_INFO(p_hwfn, 1251 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 1252 L1_CACHE_BYTES, wr_mbs); 1253 1254 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 1255 if (val > 0) { 1256 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 1257 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 1258 } 1259 } 1260 1261 static int qed_hw_init_common(struct qed_hwfn *p_hwfn, 1262 struct qed_ptt *p_ptt, int hw_mode) 1263 { 1264 struct qed_qm_info *qm_info = &p_hwfn->qm_info; 1265 struct qed_qm_common_rt_init_params params; 1266 struct qed_dev *cdev = p_hwfn->cdev; 1267 u8 vf_id, max_num_vfs; 1268 u16 num_pfs, pf_id; 1269 u32 concrete_fid; 1270 int rc = 0; 1271 1272 qed_init_cau_rt_data(cdev); 1273 1274 /* Program GTT windows */ 1275 qed_gtt_init(p_hwfn); 1276 1277 if (p_hwfn->mcp_info) { 1278 if (p_hwfn->mcp_info->func_info.bandwidth_max) 1279 qm_info->pf_rl_en = 1; 1280 if (p_hwfn->mcp_info->func_info.bandwidth_min) 1281 qm_info->pf_wfq_en = 1; 1282 } 1283 1284 memset(¶ms, 0, sizeof(params)); 1285 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; 1286 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; 1287 params.pf_rl_en = qm_info->pf_rl_en; 1288 params.pf_wfq_en = qm_info->pf_wfq_en; 1289 params.vport_rl_en = qm_info->vport_rl_en; 1290 params.vport_wfq_en = qm_info->vport_wfq_en; 1291 params.port_params = qm_info->qm_port_params; 1292 1293 qed_qm_common_rt_init(p_hwfn, ¶ms); 1294 1295 qed_cxt_hw_init_common(p_hwfn); 1296 1297 qed_init_cache_line_size(p_hwfn, p_ptt); 1298 1299 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); 1300 if (rc) 1301 return rc; 1302 1303 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 1304 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 1305 1306 if (QED_IS_BB(p_hwfn->cdev)) { 1307 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); 1308 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 1309 qed_fid_pretend(p_hwfn, p_ptt, pf_id); 1310 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1311 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1312 } 1313 /* pretend to original PF */ 1314 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1315 } 1316 1317 max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; 1318 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 1319 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); 1320 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); 1321 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 1322 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 1323 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 1324 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 1325 } 1326 /* pretend to original PF */ 1327 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 1328 1329 return rc; 1330 } 1331 1332 static int 1333 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, 1334 struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 1335 { 1336 u32 dpi_bit_shift, dpi_count, dpi_page_size; 1337 u32 min_dpis; 1338 u32 n_wids; 1339 1340 /* Calculate DPI size */ 1341 n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); 1342 dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); 1343 dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1344 dpi_bit_shift = ilog2(dpi_page_size / 4096); 1345 dpi_count = pwm_region_size / dpi_page_size; 1346 1347 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 1348 min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); 1349 1350 p_hwfn->dpi_size = dpi_page_size; 1351 p_hwfn->dpi_count = dpi_count; 1352 1353 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 1354 1355 if (dpi_count < min_dpis) 1356 return -EINVAL; 1357 1358 return 0; 1359 } 1360 1361 enum QED_ROCE_EDPM_MODE { 1362 QED_ROCE_EDPM_MODE_ENABLE = 0, 1363 QED_ROCE_EDPM_MODE_FORCE_ON = 1, 1364 QED_ROCE_EDPM_MODE_DISABLE = 2, 1365 }; 1366 1367 static int 1368 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1369 { 1370 u32 pwm_regsize, norm_regsize; 1371 u32 non_pwm_conn, min_addr_reg1; 1372 u32 db_bar_size, n_cpus = 1; 1373 u32 roce_edpm_mode; 1374 u32 pf_dems_shift; 1375 int rc = 0; 1376 u8 cond; 1377 1378 db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 1379 if (p_hwfn->cdev->num_hwfns > 1) 1380 db_bar_size /= 2; 1381 1382 /* Calculate doorbell regions */ 1383 non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 1384 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 1385 NULL) + 1386 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 1387 NULL); 1388 norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); 1389 min_addr_reg1 = norm_regsize / 4096; 1390 pwm_regsize = db_bar_size - norm_regsize; 1391 1392 /* Check that the normal and PWM sizes are valid */ 1393 if (db_bar_size < norm_regsize) { 1394 DP_ERR(p_hwfn->cdev, 1395 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 1396 db_bar_size, norm_regsize); 1397 return -EINVAL; 1398 } 1399 1400 if (pwm_regsize < QED_MIN_PWM_REGION) { 1401 DP_ERR(p_hwfn->cdev, 1402 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 1403 pwm_regsize, 1404 QED_MIN_PWM_REGION, db_bar_size, norm_regsize); 1405 return -EINVAL; 1406 } 1407 1408 /* Calculate number of DPIs */ 1409 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 1410 if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || 1411 ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { 1412 /* Either EDPM is mandatory, or we are attempting to allocate a 1413 * WID per CPU. 1414 */ 1415 n_cpus = num_present_cpus(); 1416 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1417 } 1418 1419 cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || 1420 (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); 1421 if (cond || p_hwfn->dcbx_no_edpm) { 1422 /* Either EDPM is disabled from user configuration, or it is 1423 * disabled via DCBx, or it is not mandatory and we failed to 1424 * allocated a WID per CPU. 1425 */ 1426 n_cpus = 1; 1427 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 1428 1429 if (cond) 1430 qed_rdma_dpm_bar(p_hwfn, p_ptt); 1431 } 1432 1433 p_hwfn->wid_count = (u16) n_cpus; 1434 1435 DP_INFO(p_hwfn, 1436 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 1437 norm_regsize, 1438 pwm_regsize, 1439 p_hwfn->dpi_size, 1440 p_hwfn->dpi_count, 1441 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? 1442 "disabled" : "enabled"); 1443 1444 if (rc) { 1445 DP_ERR(p_hwfn, 1446 "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", 1447 p_hwfn->dpi_count, 1448 p_hwfn->pf_params.rdma_pf_params.min_dpis); 1449 return -EINVAL; 1450 } 1451 1452 p_hwfn->dpi_start_offset = norm_regsize; 1453 1454 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 1455 pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); 1456 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 1457 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 1458 1459 return 0; 1460 } 1461 1462 static int qed_hw_init_port(struct qed_hwfn *p_hwfn, 1463 struct qed_ptt *p_ptt, int hw_mode) 1464 { 1465 int rc = 0; 1466 1467 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); 1468 if (rc) 1469 return rc; 1470 1471 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 1472 1473 return 0; 1474 } 1475 1476 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, 1477 struct qed_ptt *p_ptt, 1478 struct qed_tunnel_info *p_tunn, 1479 int hw_mode, 1480 bool b_hw_start, 1481 enum qed_int_mode int_mode, 1482 bool allow_npar_tx_switch) 1483 { 1484 u8 rel_pf_id = p_hwfn->rel_pf_id; 1485 int rc = 0; 1486 1487 if (p_hwfn->mcp_info) { 1488 struct qed_mcp_function_info *p_info; 1489 1490 p_info = &p_hwfn->mcp_info->func_info; 1491 if (p_info->bandwidth_min) 1492 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 1493 1494 /* Update rate limit once we'll actually have a link */ 1495 p_hwfn->qm_info.pf_rl = 100000; 1496 } 1497 1498 qed_cxt_hw_init_pf(p_hwfn, p_ptt); 1499 1500 qed_int_igu_init_rt(p_hwfn); 1501 1502 /* Set VLAN in NIG if needed */ 1503 if (hw_mode & BIT(MODE_MF_SD)) { 1504 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 1505 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 1506 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 1507 p_hwfn->hw_info.ovlan); 1508 } 1509 1510 /* Enable classification by MAC if needed */ 1511 if (hw_mode & BIT(MODE_MF_SI)) { 1512 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 1513 "Configuring TAGMAC_CLS_TYPE\n"); 1514 STORE_RT_REG(p_hwfn, 1515 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); 1516 } 1517 1518 /* Protocol Configuration */ 1519 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 1520 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); 1521 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 1522 (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); 1523 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 1524 1525 /* Cleanup chip from previous driver if such remains exist */ 1526 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); 1527 if (rc) 1528 return rc; 1529 1530 /* Sanity check before the PF init sequence that uses DMAE */ 1531 rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); 1532 if (rc) 1533 return rc; 1534 1535 /* PF Init sequence */ 1536 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 1537 if (rc) 1538 return rc; 1539 1540 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 1541 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 1542 if (rc) 1543 return rc; 1544 1545 /* Pure runtime initializations - directly to the HW */ 1546 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 1547 1548 rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 1549 if (rc) 1550 return rc; 1551 1552 if (b_hw_start) { 1553 /* enable interrupts */ 1554 qed_int_igu_enable(p_hwfn, p_ptt, int_mode); 1555 1556 /* send function start command */ 1557 rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, 1558 p_hwfn->cdev->mf_mode, 1559 allow_npar_tx_switch); 1560 if (rc) { 1561 DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); 1562 return rc; 1563 } 1564 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { 1565 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); 1566 qed_wr(p_hwfn, p_ptt, 1567 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 1568 0x100); 1569 } 1570 } 1571 return rc; 1572 } 1573 1574 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, 1575 struct qed_ptt *p_ptt, 1576 u8 enable) 1577 { 1578 u32 delay_idx = 0, val, set_val = enable ? 1 : 0; 1579 1580 /* Change PF in PXP */ 1581 qed_wr(p_hwfn, p_ptt, 1582 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 1583 1584 /* wait until value is set - try for 1 second every 50us */ 1585 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 1586 val = qed_rd(p_hwfn, p_ptt, 1587 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1588 if (val == set_val) 1589 break; 1590 1591 usleep_range(50, 60); 1592 } 1593 1594 if (val != set_val) { 1595 DP_NOTICE(p_hwfn, 1596 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 1597 return -EAGAIN; 1598 } 1599 1600 return 0; 1601 } 1602 1603 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, 1604 struct qed_ptt *p_main_ptt) 1605 { 1606 /* Read shadow of current MFW mailbox */ 1607 qed_mcp_read_mb(p_hwfn, p_main_ptt); 1608 memcpy(p_hwfn->mcp_info->mfw_mb_shadow, 1609 p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); 1610 } 1611 1612 static void 1613 qed_fill_load_req_params(struct qed_load_req_params *p_load_req, 1614 struct qed_drv_load_params *p_drv_load) 1615 { 1616 memset(p_load_req, 0, sizeof(*p_load_req)); 1617 1618 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 1619 QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; 1620 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 1621 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 1622 p_load_req->override_force_load = p_drv_load->override_force_load; 1623 } 1624 1625 static int qed_vf_start(struct qed_hwfn *p_hwfn, 1626 struct qed_hw_init_params *p_params) 1627 { 1628 if (p_params->p_tunn) { 1629 qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 1630 qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 1631 } 1632 1633 p_hwfn->b_int_enabled = 1; 1634 1635 return 0; 1636 } 1637 1638 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) 1639 { 1640 struct qed_load_req_params load_req_params; 1641 u32 load_code, param, drv_mb_param; 1642 bool b_default_mtu = true; 1643 struct qed_hwfn *p_hwfn; 1644 int rc = 0, mfw_rc, i; 1645 1646 if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { 1647 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); 1648 return -EINVAL; 1649 } 1650 1651 if (IS_PF(cdev)) { 1652 rc = qed_init_fw_data(cdev, p_params->bin_fw_data); 1653 if (rc) 1654 return rc; 1655 } 1656 1657 for_each_hwfn(cdev, i) { 1658 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 1659 1660 /* If management didn't provide a default, set one of our own */ 1661 if (!p_hwfn->hw_info.mtu) { 1662 p_hwfn->hw_info.mtu = 1500; 1663 b_default_mtu = false; 1664 } 1665 1666 if (IS_VF(cdev)) { 1667 qed_vf_start(p_hwfn, p_params); 1668 continue; 1669 } 1670 1671 /* Enable DMAE in PXP */ 1672 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); 1673 1674 rc = qed_calc_hw_mode(p_hwfn); 1675 if (rc) 1676 return rc; 1677 1678 qed_fill_load_req_params(&load_req_params, 1679 p_params->p_drv_load_params); 1680 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 1681 &load_req_params); 1682 if (rc) { 1683 DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); 1684 return rc; 1685 } 1686 1687 load_code = load_req_params.load_code; 1688 DP_VERBOSE(p_hwfn, QED_MSG_SP, 1689 "Load request was sent. Load code: 0x%x\n", 1690 load_code); 1691 1692 qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); 1693 1694 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 1695 1696 p_hwfn->first_on_engine = (load_code == 1697 FW_MSG_CODE_DRV_LOAD_ENGINE); 1698 1699 switch (load_code) { 1700 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1701 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 1702 p_hwfn->hw_info.hw_mode); 1703 if (rc) 1704 break; 1705 /* Fall into */ 1706 case FW_MSG_CODE_DRV_LOAD_PORT: 1707 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 1708 p_hwfn->hw_info.hw_mode); 1709 if (rc) 1710 break; 1711 1712 /* Fall into */ 1713 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1714 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 1715 p_params->p_tunn, 1716 p_hwfn->hw_info.hw_mode, 1717 p_params->b_hw_start, 1718 p_params->int_mode, 1719 p_params->allow_npar_tx_switch); 1720 break; 1721 default: 1722 DP_NOTICE(p_hwfn, 1723 "Unexpected load code [0x%08x]", load_code); 1724 rc = -EINVAL; 1725 break; 1726 } 1727 1728 if (rc) 1729 DP_NOTICE(p_hwfn, 1730 "init phase failed for loadcode 0x%x (rc %d)\n", 1731 load_code, rc); 1732 1733 /* ACK mfw regardless of success or failure of initialization */ 1734 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1735 DRV_MSG_CODE_LOAD_DONE, 1736 0, &load_code, ¶m); 1737 if (rc) 1738 return rc; 1739 if (mfw_rc) { 1740 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); 1741 return mfw_rc; 1742 } 1743 1744 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1745 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1746 DP_NOTICE(p_hwfn, 1747 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1748 1749 /* send DCBX attention request command */ 1750 DP_VERBOSE(p_hwfn, 1751 QED_MSG_DCB, 1752 "sending phony dcbx set command to trigger DCBx attention handling\n"); 1753 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1754 DRV_MSG_CODE_SET_DCBX, 1755 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, 1756 &load_code, ¶m); 1757 if (mfw_rc) { 1758 DP_NOTICE(p_hwfn, 1759 "Failed to send DCBX attention request\n"); 1760 return mfw_rc; 1761 } 1762 1763 p_hwfn->hw_init_done = true; 1764 } 1765 1766 if (IS_PF(cdev)) { 1767 p_hwfn = QED_LEADING_HWFN(cdev); 1768 drv_mb_param = STORM_FW_VERSION; 1769 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 1770 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 1771 drv_mb_param, &load_code, ¶m); 1772 if (rc) 1773 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 1774 1775 if (!b_default_mtu) { 1776 rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 1777 p_hwfn->hw_info.mtu); 1778 if (rc) 1779 DP_INFO(p_hwfn, 1780 "Failed to update default mtu\n"); 1781 } 1782 1783 rc = qed_mcp_ov_update_driver_state(p_hwfn, 1784 p_hwfn->p_main_ptt, 1785 QED_OV_DRIVER_STATE_DISABLED); 1786 if (rc) 1787 DP_INFO(p_hwfn, "Failed to update driver state\n"); 1788 1789 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 1790 QED_OV_ESWITCH_VEB); 1791 if (rc) 1792 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 1793 } 1794 1795 return 0; 1796 } 1797 1798 #define QED_HW_STOP_RETRY_LIMIT (10) 1799 static void qed_hw_timers_stop(struct qed_dev *cdev, 1800 struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1801 { 1802 int i; 1803 1804 /* close timers */ 1805 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 1806 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 1807 1808 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { 1809 if ((!qed_rd(p_hwfn, p_ptt, 1810 TM_REG_PF_SCAN_ACTIVE_CONN)) && 1811 (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 1812 break; 1813 1814 /* Dependent on number of connection/tasks, possibly 1815 * 1ms sleep is required between polls 1816 */ 1817 usleep_range(1000, 2000); 1818 } 1819 1820 if (i < QED_HW_STOP_RETRY_LIMIT) 1821 return; 1822 1823 DP_NOTICE(p_hwfn, 1824 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 1825 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 1826 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 1827 } 1828 1829 void qed_hw_timers_stop_all(struct qed_dev *cdev) 1830 { 1831 int j; 1832 1833 for_each_hwfn(cdev, j) { 1834 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1835 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 1836 1837 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1838 } 1839 } 1840 1841 int qed_hw_stop(struct qed_dev *cdev) 1842 { 1843 struct qed_hwfn *p_hwfn; 1844 struct qed_ptt *p_ptt; 1845 int rc, rc2 = 0; 1846 int j; 1847 1848 for_each_hwfn(cdev, j) { 1849 p_hwfn = &cdev->hwfns[j]; 1850 p_ptt = p_hwfn->p_main_ptt; 1851 1852 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); 1853 1854 if (IS_VF(cdev)) { 1855 qed_vf_pf_int_cleanup(p_hwfn); 1856 rc = qed_vf_pf_reset(p_hwfn); 1857 if (rc) { 1858 DP_NOTICE(p_hwfn, 1859 "qed_vf_pf_reset failed. rc = %d.\n", 1860 rc); 1861 rc2 = -EINVAL; 1862 } 1863 continue; 1864 } 1865 1866 /* mark the hw as uninitialized... */ 1867 p_hwfn->hw_init_done = false; 1868 1869 /* Send unload command to MCP */ 1870 rc = qed_mcp_unload_req(p_hwfn, p_ptt); 1871 if (rc) { 1872 DP_NOTICE(p_hwfn, 1873 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 1874 rc); 1875 rc2 = -EINVAL; 1876 } 1877 1878 qed_slowpath_irq_sync(p_hwfn); 1879 1880 /* After this point no MFW attentions are expected, e.g. prevent 1881 * race between pf stop and dcbx pf update. 1882 */ 1883 rc = qed_sp_pf_stop(p_hwfn); 1884 if (rc) { 1885 DP_NOTICE(p_hwfn, 1886 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 1887 rc); 1888 rc2 = -EINVAL; 1889 } 1890 1891 qed_wr(p_hwfn, p_ptt, 1892 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 1893 1894 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1895 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 1896 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 1897 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1898 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 1899 1900 qed_hw_timers_stop(cdev, p_hwfn, p_ptt); 1901 1902 /* Disable Attention Generation */ 1903 qed_int_igu_disable_int(p_hwfn, p_ptt); 1904 1905 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 1906 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 1907 1908 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 1909 1910 /* Need to wait 1ms to guarantee SBs are cleared */ 1911 usleep_range(1000, 2000); 1912 1913 /* Disable PF in HW blocks */ 1914 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 1915 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 1916 1917 qed_mcp_unload_done(p_hwfn, p_ptt); 1918 if (rc) { 1919 DP_NOTICE(p_hwfn, 1920 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 1921 rc); 1922 rc2 = -EINVAL; 1923 } 1924 } 1925 1926 if (IS_PF(cdev)) { 1927 p_hwfn = QED_LEADING_HWFN(cdev); 1928 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; 1929 1930 /* Disable DMAE in PXP - in CMT, this should only be done for 1931 * first hw-function, and only after all transactions have 1932 * stopped for all active hw-functions. 1933 */ 1934 rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false); 1935 if (rc) { 1936 DP_NOTICE(p_hwfn, 1937 "qed_change_pci_hwfn failed. rc = %d.\n", rc); 1938 rc2 = -EINVAL; 1939 } 1940 } 1941 1942 return rc2; 1943 } 1944 1945 int qed_hw_stop_fastpath(struct qed_dev *cdev) 1946 { 1947 int j; 1948 1949 for_each_hwfn(cdev, j) { 1950 struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; 1951 struct qed_ptt *p_ptt; 1952 1953 if (IS_VF(cdev)) { 1954 qed_vf_pf_int_cleanup(p_hwfn); 1955 continue; 1956 } 1957 p_ptt = qed_ptt_acquire(p_hwfn); 1958 if (!p_ptt) 1959 return -EAGAIN; 1960 1961 DP_VERBOSE(p_hwfn, 1962 NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); 1963 1964 qed_wr(p_hwfn, p_ptt, 1965 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 1966 1967 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 1968 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 1969 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 1970 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 1971 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 1972 1973 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 1974 1975 /* Need to wait 1ms to guarantee SBs are cleared */ 1976 usleep_range(1000, 2000); 1977 qed_ptt_release(p_hwfn, p_ptt); 1978 } 1979 1980 return 0; 1981 } 1982 1983 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) 1984 { 1985 struct qed_ptt *p_ptt; 1986 1987 if (IS_VF(p_hwfn->cdev)) 1988 return 0; 1989 1990 p_ptt = qed_ptt_acquire(p_hwfn); 1991 if (!p_ptt) 1992 return -EAGAIN; 1993 1994 /* If roce info is allocated it means roce is initialized and should 1995 * be enabled in searcher. 1996 */ 1997 if (p_hwfn->p_rdma_info && 1998 p_hwfn->b_rdma_enabled_in_prs) 1999 qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); 2000 2001 /* Re-open incoming traffic */ 2002 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 2003 qed_ptt_release(p_hwfn, p_ptt); 2004 2005 return 0; 2006 } 2007 2008 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 2009 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) 2010 { 2011 qed_ptt_pool_free(p_hwfn); 2012 kfree(p_hwfn->hw_info.p_igu_info); 2013 p_hwfn->hw_info.p_igu_info = NULL; 2014 } 2015 2016 /* Setup bar access */ 2017 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) 2018 { 2019 /* clear indirect access */ 2020 if (QED_IS_AH(p_hwfn->cdev)) { 2021 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2022 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); 2023 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2024 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); 2025 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2026 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); 2027 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2028 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); 2029 } else { 2030 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2031 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 2032 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2033 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 2034 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2035 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 2036 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2037 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 2038 } 2039 2040 /* Clean Previous errors if such exist */ 2041 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2042 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); 2043 2044 /* enable internal target-read */ 2045 qed_wr(p_hwfn, p_hwfn->p_main_ptt, 2046 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 2047 } 2048 2049 static void get_function_id(struct qed_hwfn *p_hwfn) 2050 { 2051 /* ME Register */ 2052 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, 2053 PXP_PF_ME_OPAQUE_ADDR); 2054 2055 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 2056 2057 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 2058 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2059 PXP_CONCRETE_FID_PFID); 2060 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 2061 PXP_CONCRETE_FID_PORT); 2062 2063 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, 2064 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 2065 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 2066 } 2067 2068 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) 2069 { 2070 u32 *feat_num = p_hwfn->hw_info.feat_num; 2071 struct qed_sb_cnt_info sb_cnt; 2072 u32 non_l2_sbs = 0; 2073 2074 memset(&sb_cnt, 0, sizeof(sb_cnt)); 2075 qed_int_get_num_sbs(p_hwfn, &sb_cnt); 2076 2077 if (IS_ENABLED(CONFIG_QED_RDMA) && 2078 QED_IS_RDMA_PERSONALITY(p_hwfn)) { 2079 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide 2080 * the status blocks equally between L2 / RoCE but with 2081 * consideration as to how many l2 queues / cnqs we have. 2082 */ 2083 feat_num[QED_RDMA_CNQ] = 2084 min_t(u32, sb_cnt.cnt / 2, 2085 RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); 2086 2087 non_l2_sbs = feat_num[QED_RDMA_CNQ]; 2088 } 2089 if (QED_IS_L2_PERSONALITY(p_hwfn)) { 2090 /* Start by allocating VF queues, then PF's */ 2091 feat_num[QED_VF_L2_QUE] = min_t(u32, 2092 RESC_NUM(p_hwfn, QED_L2_QUEUE), 2093 sb_cnt.iov_cnt); 2094 feat_num[QED_PF_L2_QUE] = min_t(u32, 2095 sb_cnt.cnt - non_l2_sbs, 2096 RESC_NUM(p_hwfn, 2097 QED_L2_QUEUE) - 2098 FEAT_NUM(p_hwfn, 2099 QED_VF_L2_QUE)); 2100 } 2101 2102 if (QED_IS_FCOE_PERSONALITY(p_hwfn)) 2103 feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, 2104 RESC_NUM(p_hwfn, 2105 QED_CMDQS_CQS)); 2106 2107 if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) 2108 feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, 2109 RESC_NUM(p_hwfn, 2110 QED_CMDQS_CQS)); 2111 DP_VERBOSE(p_hwfn, 2112 NETIF_MSG_PROBE, 2113 "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", 2114 (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), 2115 (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), 2116 (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), 2117 (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), 2118 (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), 2119 (int)sb_cnt.cnt); 2120 } 2121 2122 const char *qed_hw_get_resc_name(enum qed_resources res_id) 2123 { 2124 switch (res_id) { 2125 case QED_L2_QUEUE: 2126 return "L2_QUEUE"; 2127 case QED_VPORT: 2128 return "VPORT"; 2129 case QED_RSS_ENG: 2130 return "RSS_ENG"; 2131 case QED_PQ: 2132 return "PQ"; 2133 case QED_RL: 2134 return "RL"; 2135 case QED_MAC: 2136 return "MAC"; 2137 case QED_VLAN: 2138 return "VLAN"; 2139 case QED_RDMA_CNQ_RAM: 2140 return "RDMA_CNQ_RAM"; 2141 case QED_ILT: 2142 return "ILT"; 2143 case QED_LL2_QUEUE: 2144 return "LL2_QUEUE"; 2145 case QED_CMDQS_CQS: 2146 return "CMDQS_CQS"; 2147 case QED_RDMA_STATS_QUEUE: 2148 return "RDMA_STATS_QUEUE"; 2149 case QED_BDQ: 2150 return "BDQ"; 2151 case QED_SB: 2152 return "SB"; 2153 default: 2154 return "UNKNOWN_RESOURCE"; 2155 } 2156 } 2157 2158 static int 2159 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, 2160 struct qed_ptt *p_ptt, 2161 enum qed_resources res_id, 2162 u32 resc_max_val, u32 *p_mcp_resp) 2163 { 2164 int rc; 2165 2166 rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 2167 resc_max_val, p_mcp_resp); 2168 if (rc) { 2169 DP_NOTICE(p_hwfn, 2170 "MFW response failure for a max value setting of resource %d [%s]\n", 2171 res_id, qed_hw_get_resc_name(res_id)); 2172 return rc; 2173 } 2174 2175 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 2176 DP_INFO(p_hwfn, 2177 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 2178 res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); 2179 2180 return 0; 2181 } 2182 2183 static int 2184 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2185 { 2186 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2187 u32 resc_max_val, mcp_resp; 2188 u8 res_id; 2189 int rc; 2190 2191 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2192 switch (res_id) { 2193 case QED_LL2_QUEUE: 2194 resc_max_val = MAX_NUM_LL2_RX_QUEUES; 2195 break; 2196 case QED_RDMA_CNQ_RAM: 2197 /* No need for a case for QED_CMDQS_CQS since 2198 * CNQ/CMDQS are the same resource. 2199 */ 2200 resc_max_val = NUM_OF_GLOBAL_QUEUES; 2201 break; 2202 case QED_RDMA_STATS_QUEUE: 2203 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 2204 : RDMA_NUM_STATISTIC_COUNTERS_BB; 2205 break; 2206 case QED_BDQ: 2207 resc_max_val = BDQ_NUM_RESOURCES; 2208 break; 2209 default: 2210 continue; 2211 } 2212 2213 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 2214 resc_max_val, &mcp_resp); 2215 if (rc) 2216 return rc; 2217 2218 /* There's no point to continue to the next resource if the 2219 * command is not supported by the MFW. 2220 * We do continue if the command is supported but the resource 2221 * is unknown to the MFW. Such a resource will be later 2222 * configured with the default allocation values. 2223 */ 2224 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 2225 return -EINVAL; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static 2232 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, 2233 enum qed_resources res_id, 2234 u32 *p_resc_num, u32 *p_resc_start) 2235 { 2236 u8 num_funcs = p_hwfn->num_funcs_on_engine; 2237 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2238 2239 switch (res_id) { 2240 case QED_L2_QUEUE: 2241 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : 2242 MAX_NUM_L2_QUEUES_BB) / num_funcs; 2243 break; 2244 case QED_VPORT: 2245 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 2246 MAX_NUM_VPORTS_BB) / num_funcs; 2247 break; 2248 case QED_RSS_ENG: 2249 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : 2250 ETH_RSS_ENGINE_NUM_BB) / num_funcs; 2251 break; 2252 case QED_PQ: 2253 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : 2254 MAX_QM_TX_QUEUES_BB) / num_funcs; 2255 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ 2256 break; 2257 case QED_RL: 2258 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; 2259 break; 2260 case QED_MAC: 2261 case QED_VLAN: 2262 /* Each VFC resource can accommodate both a MAC and a VLAN */ 2263 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 2264 break; 2265 case QED_ILT: 2266 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : 2267 PXP_NUM_ILT_RECORDS_BB) / num_funcs; 2268 break; 2269 case QED_LL2_QUEUE: 2270 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; 2271 break; 2272 case QED_RDMA_CNQ_RAM: 2273 case QED_CMDQS_CQS: 2274 /* CNQ/CMDQS are the same resource */ 2275 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; 2276 break; 2277 case QED_RDMA_STATS_QUEUE: 2278 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 : 2279 RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs; 2280 break; 2281 case QED_BDQ: 2282 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && 2283 p_hwfn->hw_info.personality != QED_PCI_FCOE) 2284 *p_resc_num = 0; 2285 else 2286 *p_resc_num = 1; 2287 break; 2288 case QED_SB: 2289 /* Since we want its value to reflect whether MFW supports 2290 * the new scheme, have a default of 0. 2291 */ 2292 *p_resc_num = 0; 2293 break; 2294 default: 2295 return -EINVAL; 2296 } 2297 2298 switch (res_id) { 2299 case QED_BDQ: 2300 if (!*p_resc_num) 2301 *p_resc_start = 0; 2302 else if (p_hwfn->cdev->num_ports_in_engine == 4) 2303 *p_resc_start = p_hwfn->port_id; 2304 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) 2305 *p_resc_start = p_hwfn->port_id; 2306 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) 2307 *p_resc_start = p_hwfn->port_id + 2; 2308 break; 2309 default: 2310 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 2311 break; 2312 } 2313 2314 return 0; 2315 } 2316 2317 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, 2318 enum qed_resources res_id) 2319 { 2320 u32 dflt_resc_num = 0, dflt_resc_start = 0; 2321 u32 mcp_resp, *p_resc_num, *p_resc_start; 2322 int rc; 2323 2324 p_resc_num = &RESC_NUM(p_hwfn, res_id); 2325 p_resc_start = &RESC_START(p_hwfn, res_id); 2326 2327 rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 2328 &dflt_resc_start); 2329 if (rc) { 2330 DP_ERR(p_hwfn, 2331 "Failed to get default amount for resource %d [%s]\n", 2332 res_id, qed_hw_get_resc_name(res_id)); 2333 return rc; 2334 } 2335 2336 rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 2337 &mcp_resp, p_resc_num, p_resc_start); 2338 if (rc) { 2339 DP_NOTICE(p_hwfn, 2340 "MFW response failure for an allocation request for resource %d [%s]\n", 2341 res_id, qed_hw_get_resc_name(res_id)); 2342 return rc; 2343 } 2344 2345 /* Default driver values are applied in the following cases: 2346 * - The resource allocation MB command is not supported by the MFW 2347 * - There is an internal error in the MFW while processing the request 2348 * - The resource ID is unknown to the MFW 2349 */ 2350 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 2351 DP_INFO(p_hwfn, 2352 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", 2353 res_id, 2354 qed_hw_get_resc_name(res_id), 2355 mcp_resp, dflt_resc_num, dflt_resc_start); 2356 *p_resc_num = dflt_resc_num; 2357 *p_resc_start = dflt_resc_start; 2358 goto out; 2359 } 2360 2361 out: 2362 /* PQs have to divide by 8 [that's the HW granularity]. 2363 * Reduce number so it would fit. 2364 */ 2365 if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { 2366 DP_INFO(p_hwfn, 2367 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", 2368 *p_resc_num, 2369 (*p_resc_num) & ~0x7, 2370 *p_resc_start, (*p_resc_start) & ~0x7); 2371 *p_resc_num &= ~0x7; 2372 *p_resc_start &= ~0x7; 2373 } 2374 2375 return 0; 2376 } 2377 2378 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) 2379 { 2380 int rc; 2381 u8 res_id; 2382 2383 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { 2384 rc = __qed_hw_set_resc_info(p_hwfn, res_id); 2385 if (rc) 2386 return rc; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2393 { 2394 struct qed_resc_unlock_params resc_unlock_params; 2395 struct qed_resc_lock_params resc_lock_params; 2396 bool b_ah = QED_IS_AH(p_hwfn->cdev); 2397 u8 res_id; 2398 int rc; 2399 2400 /* Setting the max values of the soft resources and the following 2401 * resources allocation queries should be atomic. Since several PFs can 2402 * run in parallel - a resource lock is needed. 2403 * If either the resource lock or resource set value commands are not 2404 * supported - skip the the max values setting, release the lock if 2405 * needed, and proceed to the queries. Other failures, including a 2406 * failure to acquire the lock, will cause this function to fail. 2407 */ 2408 qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 2409 QED_RESC_LOCK_RESC_ALLOC, false); 2410 2411 rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 2412 if (rc && rc != -EINVAL) { 2413 return rc; 2414 } else if (rc == -EINVAL) { 2415 DP_INFO(p_hwfn, 2416 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 2417 } else if (!rc && !resc_lock_params.b_granted) { 2418 DP_NOTICE(p_hwfn, 2419 "Failed to acquire the resource lock for the resource allocation commands\n"); 2420 return -EBUSY; 2421 } else { 2422 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); 2423 if (rc && rc != -EINVAL) { 2424 DP_NOTICE(p_hwfn, 2425 "Failed to set the max values of the soft resources\n"); 2426 goto unlock_and_exit; 2427 } else if (rc == -EINVAL) { 2428 DP_INFO(p_hwfn, 2429 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 2430 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, 2431 &resc_unlock_params); 2432 if (rc) 2433 DP_INFO(p_hwfn, 2434 "Failed to release the resource lock for the resource allocation commands\n"); 2435 } 2436 } 2437 2438 rc = qed_hw_set_resc_info(p_hwfn); 2439 if (rc) 2440 goto unlock_and_exit; 2441 2442 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 2443 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2444 if (rc) 2445 DP_INFO(p_hwfn, 2446 "Failed to release the resource lock for the resource allocation commands\n"); 2447 } 2448 2449 /* Sanity for ILT */ 2450 if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || 2451 (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { 2452 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", 2453 RESC_START(p_hwfn, QED_ILT), 2454 RESC_END(p_hwfn, QED_ILT) - 1); 2455 return -EINVAL; 2456 } 2457 2458 /* This will also learn the number of SBs from MFW */ 2459 if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) 2460 return -EINVAL; 2461 2462 qed_hw_set_feat(p_hwfn); 2463 2464 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) 2465 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", 2466 qed_hw_get_resc_name(res_id), 2467 RESC_NUM(p_hwfn, res_id), 2468 RESC_START(p_hwfn, res_id)); 2469 2470 return 0; 2471 2472 unlock_and_exit: 2473 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 2474 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); 2475 return rc; 2476 } 2477 2478 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2479 { 2480 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 2481 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; 2482 struct qed_mcp_link_capabilities *p_caps; 2483 struct qed_mcp_link_params *link; 2484 2485 /* Read global nvm_cfg address */ 2486 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2487 2488 /* Verify MCP has initialized it */ 2489 if (!nvm_cfg_addr) { 2490 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2491 return -EINVAL; 2492 } 2493 2494 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 2495 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2496 2497 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2498 offsetof(struct nvm_cfg1, glob) + 2499 offsetof(struct nvm_cfg1_glob, core_cfg); 2500 2501 core_cfg = qed_rd(p_hwfn, p_ptt, addr); 2502 2503 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 2504 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 2505 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 2506 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; 2507 break; 2508 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 2509 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; 2510 break; 2511 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 2512 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; 2513 break; 2514 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 2515 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; 2516 break; 2517 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 2518 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; 2519 break; 2520 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 2521 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; 2522 break; 2523 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 2524 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; 2525 break; 2526 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 2527 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; 2528 break; 2529 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 2530 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; 2531 break; 2532 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 2533 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; 2534 break; 2535 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 2536 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; 2537 break; 2538 default: 2539 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); 2540 break; 2541 } 2542 2543 /* Read default link configuration */ 2544 link = &p_hwfn->mcp_info->link_input; 2545 p_caps = &p_hwfn->mcp_info->link_capabilities; 2546 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2547 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2548 link_temp = qed_rd(p_hwfn, p_ptt, 2549 port_cfg_addr + 2550 offsetof(struct nvm_cfg1_port, speed_cap_mask)); 2551 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 2552 link->speed.advertised_speeds = link_temp; 2553 2554 link_temp = link->speed.advertised_speeds; 2555 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; 2556 2557 link_temp = qed_rd(p_hwfn, p_ptt, 2558 port_cfg_addr + 2559 offsetof(struct nvm_cfg1_port, link_settings)); 2560 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 2561 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 2562 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 2563 link->speed.autoneg = true; 2564 break; 2565 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 2566 link->speed.forced_speed = 1000; 2567 break; 2568 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 2569 link->speed.forced_speed = 10000; 2570 break; 2571 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 2572 link->speed.forced_speed = 25000; 2573 break; 2574 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 2575 link->speed.forced_speed = 40000; 2576 break; 2577 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 2578 link->speed.forced_speed = 50000; 2579 break; 2580 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 2581 link->speed.forced_speed = 100000; 2582 break; 2583 default: 2584 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); 2585 } 2586 2587 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = 2588 link->speed.autoneg; 2589 2590 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 2591 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 2592 link->pause.autoneg = !!(link_temp & 2593 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 2594 link->pause.forced_rx = !!(link_temp & 2595 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 2596 link->pause.forced_tx = !!(link_temp & 2597 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 2598 link->loopback_mode = 0; 2599 2600 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { 2601 link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + 2602 offsetof(struct nvm_cfg1_port, ext_phy)); 2603 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; 2604 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; 2605 p_caps->default_eee = QED_MCP_EEE_ENABLED; 2606 link->eee.enable = true; 2607 switch (link_temp) { 2608 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: 2609 p_caps->default_eee = QED_MCP_EEE_DISABLED; 2610 link->eee.enable = false; 2611 break; 2612 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: 2613 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; 2614 break; 2615 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: 2616 p_caps->eee_lpi_timer = 2617 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; 2618 break; 2619 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: 2620 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; 2621 break; 2622 } 2623 2624 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; 2625 link->eee.tx_lpi_enable = link->eee.enable; 2626 link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; 2627 } else { 2628 p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; 2629 } 2630 2631 DP_VERBOSE(p_hwfn, 2632 NETIF_MSG_LINK, 2633 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n", 2634 link->speed.forced_speed, 2635 link->speed.advertised_speeds, 2636 link->speed.autoneg, 2637 link->pause.autoneg, 2638 p_caps->default_eee, p_caps->eee_lpi_timer); 2639 2640 /* Read Multi-function information from shmem */ 2641 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2642 offsetof(struct nvm_cfg1, glob) + 2643 offsetof(struct nvm_cfg1_glob, generic_cont0); 2644 2645 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); 2646 2647 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 2648 NVM_CFG1_GLOB_MF_MODE_OFFSET; 2649 2650 switch (mf_mode) { 2651 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 2652 p_hwfn->cdev->mf_mode = QED_MF_OVLAN; 2653 break; 2654 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 2655 p_hwfn->cdev->mf_mode = QED_MF_NPAR; 2656 break; 2657 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 2658 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT; 2659 break; 2660 } 2661 DP_INFO(p_hwfn, "Multi function mode is %08x\n", 2662 p_hwfn->cdev->mf_mode); 2663 2664 /* Read Multi-function information from shmem */ 2665 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2666 offsetof(struct nvm_cfg1, glob) + 2667 offsetof(struct nvm_cfg1_glob, device_capabilities); 2668 2669 device_capabilities = qed_rd(p_hwfn, p_ptt, addr); 2670 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 2671 __set_bit(QED_DEV_CAP_ETH, 2672 &p_hwfn->hw_info.device_capabilities); 2673 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 2674 __set_bit(QED_DEV_CAP_FCOE, 2675 &p_hwfn->hw_info.device_capabilities); 2676 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 2677 __set_bit(QED_DEV_CAP_ISCSI, 2678 &p_hwfn->hw_info.device_capabilities); 2679 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 2680 __set_bit(QED_DEV_CAP_ROCE, 2681 &p_hwfn->hw_info.device_capabilities); 2682 2683 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 2684 } 2685 2686 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2687 { 2688 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 2689 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 2690 struct qed_dev *cdev = p_hwfn->cdev; 2691 2692 num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 2693 2694 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 2695 * in the other bits are selected. 2696 * Bits 1-15 are for functions 1-15, respectively, and their value is 2697 * '0' only for enabled functions (function 0 always exists and 2698 * enabled). 2699 * In case of CMT, only the "even" functions are enabled, and thus the 2700 * number of functions for both hwfns is learnt from the same bits. 2701 */ 2702 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); 2703 2704 if (reg_function_hide & 0x1) { 2705 if (QED_IS_BB(cdev)) { 2706 if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { 2707 num_funcs = 0; 2708 eng_mask = 0xaaaa; 2709 } else { 2710 num_funcs = 1; 2711 eng_mask = 0x5554; 2712 } 2713 } else { 2714 num_funcs = 1; 2715 eng_mask = 0xfffe; 2716 } 2717 2718 /* Get the number of the enabled functions on the engine */ 2719 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 2720 while (tmp) { 2721 if (tmp & 0x1) 2722 num_funcs++; 2723 tmp >>= 0x1; 2724 } 2725 2726 /* Get the PF index within the enabled functions */ 2727 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 2728 tmp = reg_function_hide & eng_mask & low_pfs_mask; 2729 while (tmp) { 2730 if (tmp & 0x1) 2731 enabled_func_idx--; 2732 tmp >>= 0x1; 2733 } 2734 } 2735 2736 p_hwfn->num_funcs_on_engine = num_funcs; 2737 p_hwfn->enabled_func_idx = enabled_func_idx; 2738 2739 DP_VERBOSE(p_hwfn, 2740 NETIF_MSG_PROBE, 2741 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 2742 p_hwfn->rel_pf_id, 2743 p_hwfn->abs_pf_id, 2744 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 2745 } 2746 2747 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn, 2748 struct qed_ptt *p_ptt) 2749 { 2750 u32 port_mode; 2751 2752 port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0); 2753 2754 if (port_mode < 3) { 2755 p_hwfn->cdev->num_ports_in_engine = 1; 2756 } else if (port_mode <= 5) { 2757 p_hwfn->cdev->num_ports_in_engine = 2; 2758 } else { 2759 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", 2760 p_hwfn->cdev->num_ports_in_engine); 2761 2762 /* Default num_ports_in_engine to something */ 2763 p_hwfn->cdev->num_ports_in_engine = 1; 2764 } 2765 } 2766 2767 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn, 2768 struct qed_ptt *p_ptt) 2769 { 2770 u32 port; 2771 int i; 2772 2773 p_hwfn->cdev->num_ports_in_engine = 0; 2774 2775 for (i = 0; i < MAX_NUM_PORTS_K2; i++) { 2776 port = qed_rd(p_hwfn, p_ptt, 2777 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4)); 2778 if (port & 1) 2779 p_hwfn->cdev->num_ports_in_engine++; 2780 } 2781 2782 if (!p_hwfn->cdev->num_ports_in_engine) { 2783 DP_NOTICE(p_hwfn, "All NIG ports are inactive\n"); 2784 2785 /* Default num_ports_in_engine to something */ 2786 p_hwfn->cdev->num_ports_in_engine = 1; 2787 } 2788 } 2789 2790 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2791 { 2792 if (QED_IS_BB(p_hwfn->cdev)) 2793 qed_hw_info_port_num_bb(p_hwfn, p_ptt); 2794 else 2795 qed_hw_info_port_num_ah(p_hwfn, p_ptt); 2796 } 2797 2798 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2799 { 2800 struct qed_mcp_link_capabilities *p_caps; 2801 u32 eee_status; 2802 2803 p_caps = &p_hwfn->mcp_info->link_capabilities; 2804 if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) 2805 return; 2806 2807 p_caps->eee_speed_caps = 0; 2808 eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 2809 offsetof(struct public_port, eee_status)); 2810 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> 2811 EEE_SUPPORTED_SPEED_OFFSET; 2812 2813 if (eee_status & EEE_1G_SUPPORTED) 2814 p_caps->eee_speed_caps |= QED_EEE_1G_ADV; 2815 if (eee_status & EEE_10G_ADV) 2816 p_caps->eee_speed_caps |= QED_EEE_10G_ADV; 2817 } 2818 2819 static int 2820 qed_get_hw_info(struct qed_hwfn *p_hwfn, 2821 struct qed_ptt *p_ptt, 2822 enum qed_pci_personality personality) 2823 { 2824 int rc; 2825 2826 /* Since all information is common, only first hwfns should do this */ 2827 if (IS_LEAD_HWFN(p_hwfn)) { 2828 rc = qed_iov_hw_info(p_hwfn); 2829 if (rc) 2830 return rc; 2831 } 2832 2833 qed_hw_info_port_num(p_hwfn, p_ptt); 2834 2835 qed_mcp_get_capabilities(p_hwfn, p_ptt); 2836 2837 qed_hw_get_nvm_info(p_hwfn, p_ptt); 2838 2839 rc = qed_int_igu_read_cam(p_hwfn, p_ptt); 2840 if (rc) 2841 return rc; 2842 2843 if (qed_mcp_is_init(p_hwfn)) 2844 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, 2845 p_hwfn->mcp_info->func_info.mac); 2846 else 2847 eth_random_addr(p_hwfn->hw_info.hw_mac_addr); 2848 2849 if (qed_mcp_is_init(p_hwfn)) { 2850 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) 2851 p_hwfn->hw_info.ovlan = 2852 p_hwfn->mcp_info->func_info.ovlan; 2853 2854 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 2855 2856 qed_get_eee_caps(p_hwfn, p_ptt); 2857 } 2858 2859 if (qed_mcp_is_init(p_hwfn)) { 2860 enum qed_pci_personality protocol; 2861 2862 protocol = p_hwfn->mcp_info->func_info.protocol; 2863 p_hwfn->hw_info.personality = protocol; 2864 } 2865 2866 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 2867 p_hwfn->hw_info.num_active_tc = 1; 2868 2869 qed_get_num_funcs(p_hwfn, p_ptt); 2870 2871 if (qed_mcp_is_init(p_hwfn)) 2872 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 2873 2874 return qed_hw_get_resc(p_hwfn, p_ptt); 2875 } 2876 2877 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2878 { 2879 struct qed_dev *cdev = p_hwfn->cdev; 2880 u16 device_id_mask; 2881 u32 tmp; 2882 2883 /* Read Vendor Id / Device Id */ 2884 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); 2885 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); 2886 2887 /* Determine type */ 2888 device_id_mask = cdev->device_id & QED_DEV_ID_MASK; 2889 switch (device_id_mask) { 2890 case QED_DEV_ID_MASK_BB: 2891 cdev->type = QED_DEV_TYPE_BB; 2892 break; 2893 case QED_DEV_ID_MASK_AH: 2894 cdev->type = QED_DEV_TYPE_AH; 2895 break; 2896 default: 2897 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); 2898 return -EBUSY; 2899 } 2900 2901 cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 2902 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 2903 2904 MASK_FIELD(CHIP_REV, cdev->chip_rev); 2905 2906 /* Learn number of HW-functions */ 2907 tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 2908 2909 if (tmp & (1 << p_hwfn->rel_pf_id)) { 2910 DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); 2911 cdev->num_hwfns = 2; 2912 } else { 2913 cdev->num_hwfns = 1; 2914 } 2915 2916 cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, 2917 MISCS_REG_CHIP_TEST_REG) >> 4; 2918 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); 2919 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 2920 MASK_FIELD(CHIP_METAL, cdev->chip_metal); 2921 2922 DP_INFO(cdev->hwfns, 2923 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", 2924 QED_IS_BB(cdev) ? "BB" : "AH", 2925 'A' + cdev->chip_rev, 2926 (int)cdev->chip_metal, 2927 cdev->chip_num, cdev->chip_rev, 2928 cdev->chip_bond_id, cdev->chip_metal); 2929 2930 return 0; 2931 } 2932 2933 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, 2934 void __iomem *p_regview, 2935 void __iomem *p_doorbells, 2936 enum qed_pci_personality personality) 2937 { 2938 int rc = 0; 2939 2940 /* Split PCI bars evenly between hwfns */ 2941 p_hwfn->regview = p_regview; 2942 p_hwfn->doorbells = p_doorbells; 2943 2944 if (IS_VF(p_hwfn->cdev)) 2945 return qed_vf_hw_prepare(p_hwfn); 2946 2947 /* Validate that chip access is feasible */ 2948 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 2949 DP_ERR(p_hwfn, 2950 "Reading the ME register returns all Fs; Preventing further chip access\n"); 2951 return -EINVAL; 2952 } 2953 2954 get_function_id(p_hwfn); 2955 2956 /* Allocate PTT pool */ 2957 rc = qed_ptt_pool_alloc(p_hwfn); 2958 if (rc) 2959 goto err0; 2960 2961 /* Allocate the main PTT */ 2962 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 2963 2964 /* First hwfn learns basic information, e.g., number of hwfns */ 2965 if (!p_hwfn->my_id) { 2966 rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 2967 if (rc) 2968 goto err1; 2969 } 2970 2971 qed_hw_hwfn_prepare(p_hwfn); 2972 2973 /* Initialize MCP structure */ 2974 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 2975 if (rc) { 2976 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); 2977 goto err1; 2978 } 2979 2980 /* Read the device configuration information from the HW and SHMEM */ 2981 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); 2982 if (rc) { 2983 DP_NOTICE(p_hwfn, "Failed to get HW information\n"); 2984 goto err2; 2985 } 2986 2987 /* Sending a mailbox to the MFW should be done after qed_get_hw_info() 2988 * is called as it sets the ports number in an engine. 2989 */ 2990 if (IS_LEAD_HWFN(p_hwfn)) { 2991 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 2992 if (rc) 2993 DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); 2994 } 2995 2996 /* Allocate the init RT array and initialize the init-ops engine */ 2997 rc = qed_init_alloc(p_hwfn); 2998 if (rc) 2999 goto err2; 3000 3001 return rc; 3002 err2: 3003 if (IS_LEAD_HWFN(p_hwfn)) 3004 qed_iov_free_hw_info(p_hwfn->cdev); 3005 qed_mcp_free(p_hwfn); 3006 err1: 3007 qed_hw_hwfn_free(p_hwfn); 3008 err0: 3009 return rc; 3010 } 3011 3012 int qed_hw_prepare(struct qed_dev *cdev, 3013 int personality) 3014 { 3015 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3016 int rc; 3017 3018 /* Store the precompiled init data ptrs */ 3019 if (IS_PF(cdev)) 3020 qed_init_iro_array(cdev); 3021 3022 /* Initialize the first hwfn - will learn number of hwfns */ 3023 rc = qed_hw_prepare_single(p_hwfn, 3024 cdev->regview, 3025 cdev->doorbells, personality); 3026 if (rc) 3027 return rc; 3028 3029 personality = p_hwfn->hw_info.personality; 3030 3031 /* Initialize the rest of the hwfns */ 3032 if (cdev->num_hwfns > 1) { 3033 void __iomem *p_regview, *p_doorbell; 3034 u8 __iomem *addr; 3035 3036 /* adjust bar offset for second engine */ 3037 addr = cdev->regview + 3038 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3039 BAR_ID_0) / 2; 3040 p_regview = addr; 3041 3042 addr = cdev->doorbells + 3043 qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 3044 BAR_ID_1) / 2; 3045 p_doorbell = addr; 3046 3047 /* prepare second hw function */ 3048 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, 3049 p_doorbell, personality); 3050 3051 /* in case of error, need to free the previously 3052 * initiliazed hwfn 0. 3053 */ 3054 if (rc) { 3055 if (IS_PF(cdev)) { 3056 qed_init_free(p_hwfn); 3057 qed_mcp_free(p_hwfn); 3058 qed_hw_hwfn_free(p_hwfn); 3059 } 3060 } 3061 } 3062 3063 return rc; 3064 } 3065 3066 void qed_hw_remove(struct qed_dev *cdev) 3067 { 3068 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3069 int i; 3070 3071 if (IS_PF(cdev)) 3072 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 3073 QED_OV_DRIVER_STATE_NOT_LOADED); 3074 3075 for_each_hwfn(cdev, i) { 3076 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3077 3078 if (IS_VF(cdev)) { 3079 qed_vf_pf_release(p_hwfn); 3080 continue; 3081 } 3082 3083 qed_init_free(p_hwfn); 3084 qed_hw_hwfn_free(p_hwfn); 3085 qed_mcp_free(p_hwfn); 3086 } 3087 3088 qed_iov_free_hw_info(cdev); 3089 } 3090 3091 static void qed_chain_free_next_ptr(struct qed_dev *cdev, 3092 struct qed_chain *p_chain) 3093 { 3094 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; 3095 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 3096 struct qed_chain_next *p_next; 3097 u32 size, i; 3098 3099 if (!p_virt) 3100 return; 3101 3102 size = p_chain->elem_size * p_chain->usable_per_page; 3103 3104 for (i = 0; i < p_chain->page_cnt; i++) { 3105 if (!p_virt) 3106 break; 3107 3108 p_next = (struct qed_chain_next *)((u8 *)p_virt + size); 3109 p_virt_next = p_next->next_virt; 3110 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 3111 3112 dma_free_coherent(&cdev->pdev->dev, 3113 QED_CHAIN_PAGE_SIZE, p_virt, p_phys); 3114 3115 p_virt = p_virt_next; 3116 p_phys = p_phys_next; 3117 } 3118 } 3119 3120 static void qed_chain_free_single(struct qed_dev *cdev, 3121 struct qed_chain *p_chain) 3122 { 3123 if (!p_chain->p_virt_addr) 3124 return; 3125 3126 dma_free_coherent(&cdev->pdev->dev, 3127 QED_CHAIN_PAGE_SIZE, 3128 p_chain->p_virt_addr, p_chain->p_phys_addr); 3129 } 3130 3131 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) 3132 { 3133 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 3134 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 3135 u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table; 3136 3137 if (!pp_virt_addr_tbl) 3138 return; 3139 3140 if (!p_pbl_virt) 3141 goto out; 3142 3143 for (i = 0; i < page_cnt; i++) { 3144 if (!pp_virt_addr_tbl[i]) 3145 break; 3146 3147 dma_free_coherent(&cdev->pdev->dev, 3148 QED_CHAIN_PAGE_SIZE, 3149 pp_virt_addr_tbl[i], 3150 *(dma_addr_t *)p_pbl_virt); 3151 3152 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3153 } 3154 3155 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3156 3157 if (!p_chain->b_external_pbl) 3158 dma_free_coherent(&cdev->pdev->dev, 3159 pbl_size, 3160 p_chain->pbl_sp.p_virt_table, 3161 p_chain->pbl_sp.p_phys_table); 3162 out: 3163 vfree(p_chain->pbl.pp_virt_addr_tbl); 3164 p_chain->pbl.pp_virt_addr_tbl = NULL; 3165 } 3166 3167 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) 3168 { 3169 switch (p_chain->mode) { 3170 case QED_CHAIN_MODE_NEXT_PTR: 3171 qed_chain_free_next_ptr(cdev, p_chain); 3172 break; 3173 case QED_CHAIN_MODE_SINGLE: 3174 qed_chain_free_single(cdev, p_chain); 3175 break; 3176 case QED_CHAIN_MODE_PBL: 3177 qed_chain_free_pbl(cdev, p_chain); 3178 break; 3179 } 3180 } 3181 3182 static int 3183 qed_chain_alloc_sanity_check(struct qed_dev *cdev, 3184 enum qed_chain_cnt_type cnt_type, 3185 size_t elem_size, u32 page_cnt) 3186 { 3187 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 3188 3189 /* The actual chain size can be larger than the maximal possible value 3190 * after rounding up the requested elements number to pages, and after 3191 * taking into acount the unusuable elements (next-ptr elements). 3192 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 3193 * size/capacity fields are of a u32 type. 3194 */ 3195 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && 3196 chain_size > ((u32)U16_MAX + 1)) || 3197 (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { 3198 DP_NOTICE(cdev, 3199 "The actual chain size (0x%llx) is larger than the maximal possible value\n", 3200 chain_size); 3201 return -EINVAL; 3202 } 3203 3204 return 0; 3205 } 3206 3207 static int 3208 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) 3209 { 3210 void *p_virt = NULL, *p_virt_prev = NULL; 3211 dma_addr_t p_phys = 0; 3212 u32 i; 3213 3214 for (i = 0; i < p_chain->page_cnt; i++) { 3215 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3216 QED_CHAIN_PAGE_SIZE, 3217 &p_phys, GFP_KERNEL); 3218 if (!p_virt) 3219 return -ENOMEM; 3220 3221 if (i == 0) { 3222 qed_chain_init_mem(p_chain, p_virt, p_phys); 3223 qed_chain_reset(p_chain); 3224 } else { 3225 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3226 p_virt, p_phys); 3227 } 3228 3229 p_virt_prev = p_virt; 3230 } 3231 /* Last page's next element should point to the beginning of the 3232 * chain. 3233 */ 3234 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, 3235 p_chain->p_virt_addr, 3236 p_chain->p_phys_addr); 3237 3238 return 0; 3239 } 3240 3241 static int 3242 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) 3243 { 3244 dma_addr_t p_phys = 0; 3245 void *p_virt = NULL; 3246 3247 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3248 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); 3249 if (!p_virt) 3250 return -ENOMEM; 3251 3252 qed_chain_init_mem(p_chain, p_virt, p_phys); 3253 qed_chain_reset(p_chain); 3254 3255 return 0; 3256 } 3257 3258 static int 3259 qed_chain_alloc_pbl(struct qed_dev *cdev, 3260 struct qed_chain *p_chain, 3261 struct qed_chain_ext_pbl *ext_pbl) 3262 { 3263 u32 page_cnt = p_chain->page_cnt, size, i; 3264 dma_addr_t p_phys = 0, p_pbl_phys = 0; 3265 void **pp_virt_addr_tbl = NULL; 3266 u8 *p_pbl_virt = NULL; 3267 void *p_virt = NULL; 3268 3269 size = page_cnt * sizeof(*pp_virt_addr_tbl); 3270 pp_virt_addr_tbl = vzalloc(size); 3271 if (!pp_virt_addr_tbl) 3272 return -ENOMEM; 3273 3274 /* The allocation of the PBL table is done with its full size, since it 3275 * is expected to be successive. 3276 * qed_chain_init_pbl_mem() is called even in a case of an allocation 3277 * failure, since pp_virt_addr_tbl was previously allocated, and it 3278 * should be saved to allow its freeing during the error flow. 3279 */ 3280 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; 3281 3282 if (!ext_pbl) { 3283 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, 3284 size, &p_pbl_phys, GFP_KERNEL); 3285 } else { 3286 p_pbl_virt = ext_pbl->p_pbl_virt; 3287 p_pbl_phys = ext_pbl->p_pbl_phys; 3288 p_chain->b_external_pbl = true; 3289 } 3290 3291 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 3292 pp_virt_addr_tbl); 3293 if (!p_pbl_virt) 3294 return -ENOMEM; 3295 3296 for (i = 0; i < page_cnt; i++) { 3297 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 3298 QED_CHAIN_PAGE_SIZE, 3299 &p_phys, GFP_KERNEL); 3300 if (!p_virt) 3301 return -ENOMEM; 3302 3303 if (i == 0) { 3304 qed_chain_init_mem(p_chain, p_virt, p_phys); 3305 qed_chain_reset(p_chain); 3306 } 3307 3308 /* Fill the PBL table with the physical address of the page */ 3309 *(dma_addr_t *)p_pbl_virt = p_phys; 3310 /* Keep the virtual address of the page */ 3311 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 3312 3313 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; 3314 } 3315 3316 return 0; 3317 } 3318 3319 int qed_chain_alloc(struct qed_dev *cdev, 3320 enum qed_chain_use_mode intended_use, 3321 enum qed_chain_mode mode, 3322 enum qed_chain_cnt_type cnt_type, 3323 u32 num_elems, 3324 size_t elem_size, 3325 struct qed_chain *p_chain, 3326 struct qed_chain_ext_pbl *ext_pbl) 3327 { 3328 u32 page_cnt; 3329 int rc = 0; 3330 3331 if (mode == QED_CHAIN_MODE_SINGLE) 3332 page_cnt = 1; 3333 else 3334 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 3335 3336 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); 3337 if (rc) { 3338 DP_NOTICE(cdev, 3339 "Cannot allocate a chain with the given arguments:\n"); 3340 DP_NOTICE(cdev, 3341 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 3342 intended_use, mode, cnt_type, num_elems, elem_size); 3343 return rc; 3344 } 3345 3346 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, 3347 mode, cnt_type); 3348 3349 switch (mode) { 3350 case QED_CHAIN_MODE_NEXT_PTR: 3351 rc = qed_chain_alloc_next_ptr(cdev, p_chain); 3352 break; 3353 case QED_CHAIN_MODE_SINGLE: 3354 rc = qed_chain_alloc_single(cdev, p_chain); 3355 break; 3356 case QED_CHAIN_MODE_PBL: 3357 rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); 3358 break; 3359 } 3360 if (rc) 3361 goto nomem; 3362 3363 return 0; 3364 3365 nomem: 3366 qed_chain_free(cdev, p_chain); 3367 return rc; 3368 } 3369 3370 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) 3371 { 3372 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { 3373 u16 min, max; 3374 3375 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); 3376 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); 3377 DP_NOTICE(p_hwfn, 3378 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 3379 src_id, min, max); 3380 3381 return -EINVAL; 3382 } 3383 3384 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; 3385 3386 return 0; 3387 } 3388 3389 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3390 { 3391 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { 3392 u8 min, max; 3393 3394 min = (u8)RESC_START(p_hwfn, QED_VPORT); 3395 max = min + RESC_NUM(p_hwfn, QED_VPORT); 3396 DP_NOTICE(p_hwfn, 3397 "vport id [%d] is not valid, available indices [%d - %d]\n", 3398 src_id, min, max); 3399 3400 return -EINVAL; 3401 } 3402 3403 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; 3404 3405 return 0; 3406 } 3407 3408 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) 3409 { 3410 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { 3411 u8 min, max; 3412 3413 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); 3414 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); 3415 DP_NOTICE(p_hwfn, 3416 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 3417 src_id, min, max); 3418 3419 return -EINVAL; 3420 } 3421 3422 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; 3423 3424 return 0; 3425 } 3426 3427 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, 3428 u8 *p_filter) 3429 { 3430 *p_high = p_filter[1] | (p_filter[0] << 8); 3431 *p_low = p_filter[5] | (p_filter[4] << 8) | 3432 (p_filter[3] << 16) | (p_filter[2] << 24); 3433 } 3434 3435 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, 3436 struct qed_ptt *p_ptt, u8 *p_filter) 3437 { 3438 u32 high = 0, low = 0, en; 3439 int i; 3440 3441 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3442 return 0; 3443 3444 qed_llh_mac_to_filter(&high, &low, p_filter); 3445 3446 /* Find a free entry and utilize it */ 3447 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3448 en = qed_rd(p_hwfn, p_ptt, 3449 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3450 if (en) 3451 continue; 3452 qed_wr(p_hwfn, p_ptt, 3453 NIG_REG_LLH_FUNC_FILTER_VALUE + 3454 2 * i * sizeof(u32), low); 3455 qed_wr(p_hwfn, p_ptt, 3456 NIG_REG_LLH_FUNC_FILTER_VALUE + 3457 (2 * i + 1) * sizeof(u32), high); 3458 qed_wr(p_hwfn, p_ptt, 3459 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3460 qed_wr(p_hwfn, p_ptt, 3461 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3462 i * sizeof(u32), 0); 3463 qed_wr(p_hwfn, p_ptt, 3464 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3465 break; 3466 } 3467 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3468 DP_NOTICE(p_hwfn, 3469 "Failed to find an empty LLH filter to utilize\n"); 3470 return -EINVAL; 3471 } 3472 3473 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3474 "mac: %pM is added at %d\n", 3475 p_filter, i); 3476 3477 return 0; 3478 } 3479 3480 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, 3481 struct qed_ptt *p_ptt, u8 *p_filter) 3482 { 3483 u32 high = 0, low = 0; 3484 int i; 3485 3486 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3487 return; 3488 3489 qed_llh_mac_to_filter(&high, &low, p_filter); 3490 3491 /* Find the entry and clean it */ 3492 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3493 if (qed_rd(p_hwfn, p_ptt, 3494 NIG_REG_LLH_FUNC_FILTER_VALUE + 3495 2 * i * sizeof(u32)) != low) 3496 continue; 3497 if (qed_rd(p_hwfn, p_ptt, 3498 NIG_REG_LLH_FUNC_FILTER_VALUE + 3499 (2 * i + 1) * sizeof(u32)) != high) 3500 continue; 3501 3502 qed_wr(p_hwfn, p_ptt, 3503 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3504 qed_wr(p_hwfn, p_ptt, 3505 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3506 qed_wr(p_hwfn, p_ptt, 3507 NIG_REG_LLH_FUNC_FILTER_VALUE + 3508 (2 * i + 1) * sizeof(u32), 0); 3509 3510 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3511 "mac: %pM is removed from %d\n", 3512 p_filter, i); 3513 break; 3514 } 3515 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3516 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3517 } 3518 3519 int 3520 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn, 3521 struct qed_ptt *p_ptt, 3522 u16 source_port_or_eth_type, 3523 u16 dest_port, enum qed_llh_port_filter_type_t type) 3524 { 3525 u32 high = 0, low = 0, en; 3526 int i; 3527 3528 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3529 return 0; 3530 3531 switch (type) { 3532 case QED_LLH_FILTER_ETHERTYPE: 3533 high = source_port_or_eth_type; 3534 break; 3535 case QED_LLH_FILTER_TCP_SRC_PORT: 3536 case QED_LLH_FILTER_UDP_SRC_PORT: 3537 low = source_port_or_eth_type << 16; 3538 break; 3539 case QED_LLH_FILTER_TCP_DEST_PORT: 3540 case QED_LLH_FILTER_UDP_DEST_PORT: 3541 low = dest_port; 3542 break; 3543 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3544 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3545 low = (source_port_or_eth_type << 16) | dest_port; 3546 break; 3547 default: 3548 DP_NOTICE(p_hwfn, 3549 "Non valid LLH protocol filter type %d\n", type); 3550 return -EINVAL; 3551 } 3552 /* Find a free entry and utilize it */ 3553 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3554 en = qed_rd(p_hwfn, p_ptt, 3555 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); 3556 if (en) 3557 continue; 3558 qed_wr(p_hwfn, p_ptt, 3559 NIG_REG_LLH_FUNC_FILTER_VALUE + 3560 2 * i * sizeof(u32), low); 3561 qed_wr(p_hwfn, p_ptt, 3562 NIG_REG_LLH_FUNC_FILTER_VALUE + 3563 (2 * i + 1) * sizeof(u32), high); 3564 qed_wr(p_hwfn, p_ptt, 3565 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1); 3566 qed_wr(p_hwfn, p_ptt, 3567 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3568 i * sizeof(u32), 1 << type); 3569 qed_wr(p_hwfn, p_ptt, 3570 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); 3571 break; 3572 } 3573 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 3574 DP_NOTICE(p_hwfn, 3575 "Failed to find an empty LLH filter to utilize\n"); 3576 return -EINVAL; 3577 } 3578 switch (type) { 3579 case QED_LLH_FILTER_ETHERTYPE: 3580 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3581 "ETH type %x is added at %d\n", 3582 source_port_or_eth_type, i); 3583 break; 3584 case QED_LLH_FILTER_TCP_SRC_PORT: 3585 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3586 "TCP src port %x is added at %d\n", 3587 source_port_or_eth_type, i); 3588 break; 3589 case QED_LLH_FILTER_UDP_SRC_PORT: 3590 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3591 "UDP src port %x is added at %d\n", 3592 source_port_or_eth_type, i); 3593 break; 3594 case QED_LLH_FILTER_TCP_DEST_PORT: 3595 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3596 "TCP dst port %x is added at %d\n", dest_port, i); 3597 break; 3598 case QED_LLH_FILTER_UDP_DEST_PORT: 3599 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3600 "UDP dst port %x is added at %d\n", dest_port, i); 3601 break; 3602 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3603 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3604 "TCP src/dst ports %x/%x are added at %d\n", 3605 source_port_or_eth_type, dest_port, i); 3606 break; 3607 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3608 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, 3609 "UDP src/dst ports %x/%x are added at %d\n", 3610 source_port_or_eth_type, dest_port, i); 3611 break; 3612 } 3613 return 0; 3614 } 3615 3616 void 3617 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn, 3618 struct qed_ptt *p_ptt, 3619 u16 source_port_or_eth_type, 3620 u16 dest_port, 3621 enum qed_llh_port_filter_type_t type) 3622 { 3623 u32 high = 0, low = 0; 3624 int i; 3625 3626 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) 3627 return; 3628 3629 switch (type) { 3630 case QED_LLH_FILTER_ETHERTYPE: 3631 high = source_port_or_eth_type; 3632 break; 3633 case QED_LLH_FILTER_TCP_SRC_PORT: 3634 case QED_LLH_FILTER_UDP_SRC_PORT: 3635 low = source_port_or_eth_type << 16; 3636 break; 3637 case QED_LLH_FILTER_TCP_DEST_PORT: 3638 case QED_LLH_FILTER_UDP_DEST_PORT: 3639 low = dest_port; 3640 break; 3641 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 3642 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 3643 low = (source_port_or_eth_type << 16) | dest_port; 3644 break; 3645 default: 3646 DP_NOTICE(p_hwfn, 3647 "Non valid LLH protocol filter type %d\n", type); 3648 return; 3649 } 3650 3651 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 3652 if (!qed_rd(p_hwfn, p_ptt, 3653 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32))) 3654 continue; 3655 if (!qed_rd(p_hwfn, p_ptt, 3656 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32))) 3657 continue; 3658 if (!(qed_rd(p_hwfn, p_ptt, 3659 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3660 i * sizeof(u32)) & BIT(type))) 3661 continue; 3662 if (qed_rd(p_hwfn, p_ptt, 3663 NIG_REG_LLH_FUNC_FILTER_VALUE + 3664 2 * i * sizeof(u32)) != low) 3665 continue; 3666 if (qed_rd(p_hwfn, p_ptt, 3667 NIG_REG_LLH_FUNC_FILTER_VALUE + 3668 (2 * i + 1) * sizeof(u32)) != high) 3669 continue; 3670 3671 qed_wr(p_hwfn, p_ptt, 3672 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); 3673 qed_wr(p_hwfn, p_ptt, 3674 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); 3675 qed_wr(p_hwfn, p_ptt, 3676 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + 3677 i * sizeof(u32), 0); 3678 qed_wr(p_hwfn, p_ptt, 3679 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); 3680 qed_wr(p_hwfn, p_ptt, 3681 NIG_REG_LLH_FUNC_FILTER_VALUE + 3682 (2 * i + 1) * sizeof(u32), 0); 3683 break; 3684 } 3685 3686 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) 3687 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); 3688 } 3689 3690 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3691 u32 hw_addr, void *p_eth_qzone, 3692 size_t eth_qzone_size, u8 timeset) 3693 { 3694 struct coalescing_timeset *p_coal_timeset; 3695 3696 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { 3697 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); 3698 return -EINVAL; 3699 } 3700 3701 p_coal_timeset = p_eth_qzone; 3702 memset(p_eth_qzone, 0, eth_qzone_size); 3703 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 3704 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 3705 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 3706 3707 return 0; 3708 } 3709 3710 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) 3711 { 3712 struct qed_queue_cid *p_cid = p_handle; 3713 struct qed_hwfn *p_hwfn; 3714 struct qed_ptt *p_ptt; 3715 int rc = 0; 3716 3717 p_hwfn = p_cid->p_owner; 3718 3719 if (IS_VF(p_hwfn->cdev)) 3720 return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); 3721 3722 p_ptt = qed_ptt_acquire(p_hwfn); 3723 if (!p_ptt) 3724 return -EAGAIN; 3725 3726 if (rx_coal) { 3727 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3728 if (rc) 3729 goto out; 3730 p_hwfn->cdev->rx_coalesce_usecs = rx_coal; 3731 } 3732 3733 if (tx_coal) { 3734 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); 3735 if (rc) 3736 goto out; 3737 p_hwfn->cdev->tx_coalesce_usecs = tx_coal; 3738 } 3739 out: 3740 qed_ptt_release(p_hwfn, p_ptt); 3741 return rc; 3742 } 3743 3744 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, 3745 struct qed_ptt *p_ptt, 3746 u16 coalesce, struct qed_queue_cid *p_cid) 3747 { 3748 struct ustorm_eth_queue_zone eth_qzone; 3749 u8 timeset, timer_res; 3750 u32 address; 3751 int rc; 3752 3753 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3754 if (coalesce <= 0x7F) { 3755 timer_res = 0; 3756 } else if (coalesce <= 0xFF) { 3757 timer_res = 1; 3758 } else if (coalesce <= 0x1FF) { 3759 timer_res = 2; 3760 } else { 3761 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3762 return -EINVAL; 3763 } 3764 timeset = (u8)(coalesce >> timer_res); 3765 3766 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3767 p_cid->sb_igu_id, false); 3768 if (rc) 3769 goto out; 3770 3771 address = BAR0_MAP_REG_USDM_RAM + 3772 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 3773 3774 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3775 sizeof(struct ustorm_eth_queue_zone), timeset); 3776 if (rc) 3777 goto out; 3778 3779 out: 3780 return rc; 3781 } 3782 3783 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, 3784 struct qed_ptt *p_ptt, 3785 u16 coalesce, struct qed_queue_cid *p_cid) 3786 { 3787 struct xstorm_eth_queue_zone eth_qzone; 3788 u8 timeset, timer_res; 3789 u32 address; 3790 int rc; 3791 3792 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 3793 if (coalesce <= 0x7F) { 3794 timer_res = 0; 3795 } else if (coalesce <= 0xFF) { 3796 timer_res = 1; 3797 } else if (coalesce <= 0x1FF) { 3798 timer_res = 2; 3799 } else { 3800 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 3801 return -EINVAL; 3802 } 3803 timeset = (u8)(coalesce >> timer_res); 3804 3805 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, 3806 p_cid->sb_igu_id, true); 3807 if (rc) 3808 goto out; 3809 3810 address = BAR0_MAP_REG_XSDM_RAM + 3811 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 3812 3813 rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 3814 sizeof(struct xstorm_eth_queue_zone), timeset); 3815 out: 3816 return rc; 3817 } 3818 3819 /* Calculate final WFQ values for all vports and configure them. 3820 * After this configuration each vport will have 3821 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) 3822 */ 3823 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 3824 struct qed_ptt *p_ptt, 3825 u32 min_pf_rate) 3826 { 3827 struct init_qm_vport_params *vport_params; 3828 int i; 3829 3830 vport_params = p_hwfn->qm_info.qm_vport_params; 3831 3832 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3833 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 3834 3835 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / 3836 min_pf_rate; 3837 qed_init_vport_wfq(p_hwfn, p_ptt, 3838 vport_params[i].first_tx_pq_id, 3839 vport_params[i].vport_wfq); 3840 } 3841 } 3842 3843 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, 3844 u32 min_pf_rate) 3845 3846 { 3847 int i; 3848 3849 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 3850 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; 3851 } 3852 3853 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, 3854 struct qed_ptt *p_ptt, 3855 u32 min_pf_rate) 3856 { 3857 struct init_qm_vport_params *vport_params; 3858 int i; 3859 3860 vport_params = p_hwfn->qm_info.qm_vport_params; 3861 3862 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3863 qed_init_wfq_default_param(p_hwfn, min_pf_rate); 3864 qed_init_vport_wfq(p_hwfn, p_ptt, 3865 vport_params[i].first_tx_pq_id, 3866 vport_params[i].vport_wfq); 3867 } 3868 } 3869 3870 /* This function performs several validations for WFQ 3871 * configuration and required min rate for a given vport 3872 * 1. req_rate must be greater than one percent of min_pf_rate. 3873 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 3874 * rates to get less than one percent of min_pf_rate. 3875 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 3876 */ 3877 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, 3878 u16 vport_id, u32 req_rate, u32 min_pf_rate) 3879 { 3880 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 3881 int non_requested_count = 0, req_count = 0, i, num_vports; 3882 3883 num_vports = p_hwfn->qm_info.num_vports; 3884 3885 /* Accounting for the vports which are configured for WFQ explicitly */ 3886 for (i = 0; i < num_vports; i++) { 3887 u32 tmp_speed; 3888 3889 if ((i != vport_id) && 3890 p_hwfn->qm_info.wfq_data[i].configured) { 3891 req_count++; 3892 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 3893 total_req_min_rate += tmp_speed; 3894 } 3895 } 3896 3897 /* Include current vport data as well */ 3898 req_count++; 3899 total_req_min_rate += req_rate; 3900 non_requested_count = num_vports - req_count; 3901 3902 if (req_rate < min_pf_rate / QED_WFQ_UNIT) { 3903 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3904 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 3905 vport_id, req_rate, min_pf_rate); 3906 return -EINVAL; 3907 } 3908 3909 if (num_vports > QED_WFQ_UNIT) { 3910 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3911 "Number of vports is greater than %d\n", 3912 QED_WFQ_UNIT); 3913 return -EINVAL; 3914 } 3915 3916 if (total_req_min_rate > min_pf_rate) { 3917 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3918 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 3919 total_req_min_rate, min_pf_rate); 3920 return -EINVAL; 3921 } 3922 3923 total_left_rate = min_pf_rate - total_req_min_rate; 3924 3925 left_rate_per_vp = total_left_rate / non_requested_count; 3926 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { 3927 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 3928 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 3929 left_rate_per_vp, min_pf_rate); 3930 return -EINVAL; 3931 } 3932 3933 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 3934 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 3935 3936 for (i = 0; i < num_vports; i++) { 3937 if (p_hwfn->qm_info.wfq_data[i].configured) 3938 continue; 3939 3940 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 3941 } 3942 3943 return 0; 3944 } 3945 3946 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, 3947 struct qed_ptt *p_ptt, u16 vp_id, u32 rate) 3948 { 3949 struct qed_mcp_link_state *p_link; 3950 int rc = 0; 3951 3952 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; 3953 3954 if (!p_link->min_pf_rate) { 3955 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 3956 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 3957 return rc; 3958 } 3959 3960 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 3961 3962 if (!rc) 3963 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, 3964 p_link->min_pf_rate); 3965 else 3966 DP_NOTICE(p_hwfn, 3967 "Validation failed while configuring min rate\n"); 3968 3969 return rc; 3970 } 3971 3972 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, 3973 struct qed_ptt *p_ptt, 3974 u32 min_pf_rate) 3975 { 3976 bool use_wfq = false; 3977 int rc = 0; 3978 u16 i; 3979 3980 /* Validate all pre configured vports for wfq */ 3981 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 3982 u32 rate; 3983 3984 if (!p_hwfn->qm_info.wfq_data[i].configured) 3985 continue; 3986 3987 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 3988 use_wfq = true; 3989 3990 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 3991 if (rc) { 3992 DP_NOTICE(p_hwfn, 3993 "WFQ validation failed while configuring min rate\n"); 3994 break; 3995 } 3996 } 3997 3998 if (!rc && use_wfq) 3999 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4000 else 4001 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 4002 4003 return rc; 4004 } 4005 4006 /* Main API for qed clients to configure vport min rate. 4007 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 4008 * rate - Speed in Mbps needs to be assigned to a given vport. 4009 */ 4010 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) 4011 { 4012 int i, rc = -EINVAL; 4013 4014 /* Currently not supported; Might change in future */ 4015 if (cdev->num_hwfns > 1) { 4016 DP_NOTICE(cdev, 4017 "WFQ configuration is not supported for this device\n"); 4018 return rc; 4019 } 4020 4021 for_each_hwfn(cdev, i) { 4022 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4023 struct qed_ptt *p_ptt; 4024 4025 p_ptt = qed_ptt_acquire(p_hwfn); 4026 if (!p_ptt) 4027 return -EBUSY; 4028 4029 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 4030 4031 if (rc) { 4032 qed_ptt_release(p_hwfn, p_ptt); 4033 return rc; 4034 } 4035 4036 qed_ptt_release(p_hwfn, p_ptt); 4037 } 4038 4039 return rc; 4040 } 4041 4042 /* API to configure WFQ from mcp link change */ 4043 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, 4044 struct qed_ptt *p_ptt, u32 min_pf_rate) 4045 { 4046 int i; 4047 4048 if (cdev->num_hwfns > 1) { 4049 DP_VERBOSE(cdev, 4050 NETIF_MSG_LINK, 4051 "WFQ configuration is not supported for this device\n"); 4052 return; 4053 } 4054 4055 for_each_hwfn(cdev, i) { 4056 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4057 4058 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 4059 min_pf_rate); 4060 } 4061 } 4062 4063 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, 4064 struct qed_ptt *p_ptt, 4065 struct qed_mcp_link_state *p_link, 4066 u8 max_bw) 4067 { 4068 int rc = 0; 4069 4070 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 4071 4072 if (!p_link->line_speed && (max_bw != 100)) 4073 return rc; 4074 4075 p_link->speed = (p_link->line_speed * max_bw) / 100; 4076 p_hwfn->qm_info.pf_rl = p_link->speed; 4077 4078 /* Since the limiter also affects Tx-switched traffic, we don't want it 4079 * to limit such traffic in case there's no actual limit. 4080 * In that case, set limit to imaginary high boundary. 4081 */ 4082 if (max_bw == 100) 4083 p_hwfn->qm_info.pf_rl = 100000; 4084 4085 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 4086 p_hwfn->qm_info.pf_rl); 4087 4088 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4089 "Configured MAX bandwidth to be %08x Mb/sec\n", 4090 p_link->speed); 4091 4092 return rc; 4093 } 4094 4095 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 4096 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) 4097 { 4098 int i, rc = -EINVAL; 4099 4100 if (max_bw < 1 || max_bw > 100) { 4101 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); 4102 return rc; 4103 } 4104 4105 for_each_hwfn(cdev, i) { 4106 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4107 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4108 struct qed_mcp_link_state *p_link; 4109 struct qed_ptt *p_ptt; 4110 4111 p_link = &p_lead->mcp_info->link_output; 4112 4113 p_ptt = qed_ptt_acquire(p_hwfn); 4114 if (!p_ptt) 4115 return -EBUSY; 4116 4117 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, 4118 p_link, max_bw); 4119 4120 qed_ptt_release(p_hwfn, p_ptt); 4121 4122 if (rc) 4123 break; 4124 } 4125 4126 return rc; 4127 } 4128 4129 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, 4130 struct qed_ptt *p_ptt, 4131 struct qed_mcp_link_state *p_link, 4132 u8 min_bw) 4133 { 4134 int rc = 0; 4135 4136 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 4137 p_hwfn->qm_info.pf_wfq = min_bw; 4138 4139 if (!p_link->line_speed) 4140 return rc; 4141 4142 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 4143 4144 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 4145 4146 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 4147 "Configured MIN bandwidth to be %d Mb/sec\n", 4148 p_link->min_pf_rate); 4149 4150 return rc; 4151 } 4152 4153 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 4154 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) 4155 { 4156 int i, rc = -EINVAL; 4157 4158 if (min_bw < 1 || min_bw > 100) { 4159 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); 4160 return rc; 4161 } 4162 4163 for_each_hwfn(cdev, i) { 4164 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4165 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); 4166 struct qed_mcp_link_state *p_link; 4167 struct qed_ptt *p_ptt; 4168 4169 p_link = &p_lead->mcp_info->link_output; 4170 4171 p_ptt = qed_ptt_acquire(p_hwfn); 4172 if (!p_ptt) 4173 return -EBUSY; 4174 4175 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, 4176 p_link, min_bw); 4177 if (rc) { 4178 qed_ptt_release(p_hwfn, p_ptt); 4179 return rc; 4180 } 4181 4182 if (p_link->min_pf_rate) { 4183 u32 min_rate = p_link->min_pf_rate; 4184 4185 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, 4186 p_ptt, 4187 min_rate); 4188 } 4189 4190 qed_ptt_release(p_hwfn, p_ptt); 4191 } 4192 4193 return rc; 4194 } 4195 4196 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4197 { 4198 struct qed_mcp_link_state *p_link; 4199 4200 p_link = &p_hwfn->mcp_info->link_output; 4201 4202 if (p_link->min_pf_rate) 4203 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, 4204 p_link->min_pf_rate); 4205 4206 memset(p_hwfn->qm_info.wfq_data, 0, 4207 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); 4208 } 4209 4210 int qed_device_num_engines(struct qed_dev *cdev) 4211 { 4212 return QED_IS_BB(cdev) ? 2 : 1; 4213 } 4214 4215 static int qed_device_num_ports(struct qed_dev *cdev) 4216 { 4217 /* in CMT always only one port */ 4218 if (cdev->num_hwfns > 1) 4219 return 1; 4220 4221 return cdev->num_ports_in_engine * qed_device_num_engines(cdev); 4222 } 4223 4224 int qed_device_get_port_id(struct qed_dev *cdev) 4225 { 4226 return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev); 4227 } 4228 4229 void qed_set_fw_mac_addr(__le16 *fw_msb, 4230 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) 4231 { 4232 ((u8 *)fw_msb)[0] = mac[1]; 4233 ((u8 *)fw_msb)[1] = mac[0]; 4234 ((u8 *)fw_mid)[0] = mac[3]; 4235 ((u8 *)fw_mid)[1] = mac[2]; 4236 ((u8 *)fw_lsb)[0] = mac[5]; 4237 ((u8 *)fw_lsb)[1] = mac[4]; 4238 } 4239