1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_mcp.h"
33 #include "qed_reg_addr.h"
34 #include "qed_sp.h"
35 #include "qed_sriov.h"
36 #include "qed_vf.h"
37 
38 static spinlock_t qm_lock;
39 static bool qm_lock_init = false;
40 
41 /* API common to all protocols */
42 enum BAR_ID {
43 	BAR_ID_0,       /* used for GRC */
44 	BAR_ID_1        /* Used for doorbells */
45 };
46 
47 static u32 qed_hw_bar_size(struct qed_hwfn	*p_hwfn,
48 			   enum BAR_ID		bar_id)
49 {
50 	u32 bar_reg = (bar_id == BAR_ID_0 ?
51 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
52 	u32 val;
53 
54 	if (IS_VF(p_hwfn->cdev))
55 		return 1 << 17;
56 
57 	val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
58 	if (val)
59 		return 1 << (val + 15);
60 
61 	/* Old MFW initialized above registered only conditionally */
62 	if (p_hwfn->cdev->num_hwfns > 1) {
63 		DP_INFO(p_hwfn,
64 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
65 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
66 	} else {
67 		DP_INFO(p_hwfn,
68 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
69 			return 512 * 1024;
70 	}
71 }
72 
73 void qed_init_dp(struct qed_dev *cdev,
74 		 u32 dp_module, u8 dp_level)
75 {
76 	u32 i;
77 
78 	cdev->dp_level = dp_level;
79 	cdev->dp_module = dp_module;
80 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
81 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
82 
83 		p_hwfn->dp_level = dp_level;
84 		p_hwfn->dp_module = dp_module;
85 	}
86 }
87 
88 void qed_init_struct(struct qed_dev *cdev)
89 {
90 	u8 i;
91 
92 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
93 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
94 
95 		p_hwfn->cdev = cdev;
96 		p_hwfn->my_id = i;
97 		p_hwfn->b_active = false;
98 
99 		mutex_init(&p_hwfn->dmae_info.mutex);
100 	}
101 
102 	/* hwfn 0 is always active */
103 	cdev->hwfns[0].b_active = true;
104 
105 	/* set the default cache alignment to 128 */
106 	cdev->cache_shift = 7;
107 }
108 
109 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
110 {
111 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
112 
113 	kfree(qm_info->qm_pq_params);
114 	qm_info->qm_pq_params = NULL;
115 	kfree(qm_info->qm_vport_params);
116 	qm_info->qm_vport_params = NULL;
117 	kfree(qm_info->qm_port_params);
118 	qm_info->qm_port_params = NULL;
119 	kfree(qm_info->wfq_data);
120 	qm_info->wfq_data = NULL;
121 }
122 
123 void qed_resc_free(struct qed_dev *cdev)
124 {
125 	int i;
126 
127 	if (IS_VF(cdev))
128 		return;
129 
130 	kfree(cdev->fw_data);
131 	cdev->fw_data = NULL;
132 
133 	kfree(cdev->reset_stats);
134 
135 	for_each_hwfn(cdev, i) {
136 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
137 
138 		kfree(p_hwfn->p_tx_cids);
139 		p_hwfn->p_tx_cids = NULL;
140 		kfree(p_hwfn->p_rx_cids);
141 		p_hwfn->p_rx_cids = NULL;
142 	}
143 
144 	for_each_hwfn(cdev, i) {
145 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
146 
147 		qed_cxt_mngr_free(p_hwfn);
148 		qed_qm_info_free(p_hwfn);
149 		qed_spq_free(p_hwfn);
150 		qed_eq_free(p_hwfn, p_hwfn->p_eq);
151 		qed_consq_free(p_hwfn, p_hwfn->p_consq);
152 		qed_int_free(p_hwfn);
153 		qed_iov_free(p_hwfn);
154 		qed_dmae_info_free(p_hwfn);
155 		qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
156 	}
157 }
158 
159 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
160 {
161 	u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
162 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
163 	struct init_qm_port_params *p_qm_port;
164 	bool init_rdma_offload_pq = false;
165 	bool init_pure_ack_pq = false;
166 	bool init_ooo_pq = false;
167 	u16 num_pqs, multi_cos_tcs = 1;
168 	u8 pf_wfq = qm_info->pf_wfq;
169 	u32 pf_rl = qm_info->pf_rl;
170 	u16 num_pf_rls = 0;
171 	u16 num_vfs = 0;
172 
173 #ifdef CONFIG_QED_SRIOV
174 	if (p_hwfn->cdev->p_iov_info)
175 		num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
176 #endif
177 	memset(qm_info, 0, sizeof(*qm_info));
178 
179 	num_pqs = multi_cos_tcs + num_vfs + 1;	/* The '1' is for pure-LB */
180 	num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
181 
182 	if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
183 		num_pqs++;	/* for RoCE queue */
184 		init_rdma_offload_pq = true;
185 		/* we subtract num_vfs because each require a rate limiter,
186 		 * and one default rate limiter
187 		 */
188 		if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
189 			num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
190 
191 		num_pqs += num_pf_rls;
192 		qm_info->num_pf_rls = (u8) num_pf_rls;
193 	}
194 
195 	if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
196 		num_pqs += 2;	/* for iSCSI pure-ACK / OOO queue */
197 		init_pure_ack_pq = true;
198 		init_ooo_pq = true;
199 	}
200 
201 	/* Sanity checking that setup requires legal number of resources */
202 	if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
203 		DP_ERR(p_hwfn,
204 		       "Need too many Physical queues - 0x%04x when only %04x are available\n",
205 		       num_pqs, RESC_NUM(p_hwfn, QED_PQ));
206 		return -EINVAL;
207 	}
208 
209 	/* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
210 	 */
211 	qm_info->qm_pq_params = kcalloc(num_pqs,
212 					sizeof(struct init_qm_pq_params),
213 					b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
214 	if (!qm_info->qm_pq_params)
215 		goto alloc_err;
216 
217 	qm_info->qm_vport_params = kcalloc(num_vports,
218 					   sizeof(struct init_qm_vport_params),
219 					   b_sleepable ? GFP_KERNEL
220 						       : GFP_ATOMIC);
221 	if (!qm_info->qm_vport_params)
222 		goto alloc_err;
223 
224 	qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
225 					  sizeof(struct init_qm_port_params),
226 					  b_sleepable ? GFP_KERNEL
227 						      : GFP_ATOMIC);
228 	if (!qm_info->qm_port_params)
229 		goto alloc_err;
230 
231 	qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
232 				    b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
233 	if (!qm_info->wfq_data)
234 		goto alloc_err;
235 
236 	vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
237 
238 	/* First init rate limited queues */
239 	for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
240 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
241 		qm_info->qm_pq_params[curr_queue].tc_id =
242 		    p_hwfn->hw_info.non_offload_tc;
243 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
244 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
245 	}
246 
247 	/* First init per-TC PQs */
248 	for (i = 0; i < multi_cos_tcs; i++) {
249 		struct init_qm_pq_params *params =
250 		    &qm_info->qm_pq_params[curr_queue++];
251 
252 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
253 		    p_hwfn->hw_info.personality == QED_PCI_ETH) {
254 			params->vport_id = vport_id;
255 			params->tc_id = p_hwfn->hw_info.non_offload_tc;
256 			params->wrr_group = 1;
257 		} else {
258 			params->vport_id = vport_id;
259 			params->tc_id = p_hwfn->hw_info.offload_tc;
260 			params->wrr_group = 1;
261 		}
262 	}
263 
264 	/* Then init pure-LB PQ */
265 	qm_info->pure_lb_pq = curr_queue;
266 	qm_info->qm_pq_params[curr_queue].vport_id =
267 	    (u8) RESC_START(p_hwfn, QED_VPORT);
268 	qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
269 	qm_info->qm_pq_params[curr_queue].wrr_group = 1;
270 	curr_queue++;
271 
272 	qm_info->offload_pq = 0;
273 	if (init_rdma_offload_pq) {
274 		qm_info->offload_pq = curr_queue;
275 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
276 		qm_info->qm_pq_params[curr_queue].tc_id =
277 		    p_hwfn->hw_info.offload_tc;
278 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
279 		curr_queue++;
280 	}
281 
282 	if (init_pure_ack_pq) {
283 		qm_info->pure_ack_pq = curr_queue;
284 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
285 		qm_info->qm_pq_params[curr_queue].tc_id =
286 		    p_hwfn->hw_info.offload_tc;
287 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
288 		curr_queue++;
289 	}
290 
291 	if (init_ooo_pq) {
292 		qm_info->ooo_pq = curr_queue;
293 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
294 		qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
295 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
296 		curr_queue++;
297 	}
298 
299 	/* Then init per-VF PQs */
300 	vf_offset = curr_queue;
301 	for (i = 0; i < num_vfs; i++) {
302 		/* First vport is used by the PF */
303 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
304 		qm_info->qm_pq_params[curr_queue].tc_id =
305 		    p_hwfn->hw_info.non_offload_tc;
306 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
307 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
308 		curr_queue++;
309 	}
310 
311 	qm_info->vf_queues_offset = vf_offset;
312 	qm_info->num_pqs = num_pqs;
313 	qm_info->num_vports = num_vports;
314 
315 	/* Initialize qm port parameters */
316 	num_ports = p_hwfn->cdev->num_ports_in_engines;
317 	for (i = 0; i < num_ports; i++) {
318 		p_qm_port = &qm_info->qm_port_params[i];
319 		p_qm_port->active = 1;
320 		if (num_ports == 4)
321 			p_qm_port->active_phys_tcs = 0x7;
322 		else
323 			p_qm_port->active_phys_tcs = 0x9f;
324 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
325 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
326 	}
327 
328 	qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
329 
330 	qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
331 
332 	qm_info->num_vf_pqs = num_vfs;
333 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
334 
335 	for (i = 0; i < qm_info->num_vports; i++)
336 		qm_info->qm_vport_params[i].vport_wfq = 1;
337 
338 	qm_info->vport_rl_en = 1;
339 	qm_info->vport_wfq_en = 1;
340 	qm_info->pf_rl = pf_rl;
341 	qm_info->pf_wfq = pf_wfq;
342 
343 	return 0;
344 
345 alloc_err:
346 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
347 	qed_qm_info_free(p_hwfn);
348 	return -ENOMEM;
349 }
350 
351 /* This function reconfigures the QM pf on the fly.
352  * For this purpose we:
353  * 1. reconfigure the QM database
354  * 2. set new values to runtime arrat
355  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
356  * 4. activate init tool in QM_PF stage
357  * 5. send an sdm_qm_cmd through rbc interface to release the QM
358  */
359 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
360 {
361 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
362 	bool b_rc;
363 	int rc;
364 
365 	/* qm_info is allocated in qed_init_qm_info() which is already called
366 	 * from qed_resc_alloc() or previous call of qed_qm_reconf().
367 	 * The allocated size may change each init, so we free it before next
368 	 * allocation.
369 	 */
370 	qed_qm_info_free(p_hwfn);
371 
372 	/* initialize qed's qm data structure */
373 	rc = qed_init_qm_info(p_hwfn, false);
374 	if (rc)
375 		return rc;
376 
377 	/* stop PF's qm queues */
378 	spin_lock_bh(&qm_lock);
379 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
380 				    qm_info->start_pq, qm_info->num_pqs);
381 	spin_unlock_bh(&qm_lock);
382 	if (!b_rc)
383 		return -EINVAL;
384 
385 	/* clear the QM_PF runtime phase leftovers from previous init */
386 	qed_init_clear_rt_data(p_hwfn);
387 
388 	/* prepare QM portion of runtime array */
389 	qed_qm_init_pf(p_hwfn);
390 
391 	/* activate init tool on runtime array */
392 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
393 			  p_hwfn->hw_info.hw_mode);
394 	if (rc)
395 		return rc;
396 
397 	/* start PF's qm queues */
398 	spin_lock_bh(&qm_lock);
399 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
400 				    qm_info->start_pq, qm_info->num_pqs);
401 	spin_unlock_bh(&qm_lock);
402 	if (!b_rc)
403 		return -EINVAL;
404 
405 	return 0;
406 }
407 
408 int qed_resc_alloc(struct qed_dev *cdev)
409 {
410 	struct qed_consq *p_consq;
411 	struct qed_eq *p_eq;
412 	int i, rc = 0;
413 
414 	if (IS_VF(cdev))
415 		return rc;
416 
417 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
418 	if (!cdev->fw_data)
419 		return -ENOMEM;
420 
421 	/* Allocate Memory for the Queue->CID mapping */
422 	for_each_hwfn(cdev, i) {
423 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
424 		int tx_size = sizeof(struct qed_hw_cid_data) *
425 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
426 		int rx_size = sizeof(struct qed_hw_cid_data) *
427 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
428 
429 		p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
430 		if (!p_hwfn->p_tx_cids) {
431 			DP_NOTICE(p_hwfn,
432 				  "Failed to allocate memory for Tx Cids\n");
433 			goto alloc_no_mem;
434 		}
435 
436 		p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
437 		if (!p_hwfn->p_rx_cids) {
438 			DP_NOTICE(p_hwfn,
439 				  "Failed to allocate memory for Rx Cids\n");
440 			goto alloc_no_mem;
441 		}
442 	}
443 
444 	for_each_hwfn(cdev, i) {
445 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
446 		u32 n_eqes, num_cons;
447 
448 		/* First allocate the context manager structure */
449 		rc = qed_cxt_mngr_alloc(p_hwfn);
450 		if (rc)
451 			goto alloc_err;
452 
453 		/* Set the HW cid/tid numbers (in the contest manager)
454 		 * Must be done prior to any further computations.
455 		 */
456 		rc = qed_cxt_set_pf_params(p_hwfn);
457 		if (rc)
458 			goto alloc_err;
459 
460 		/* Prepare and process QM requirements */
461 		rc = qed_init_qm_info(p_hwfn, true);
462 		if (rc)
463 			goto alloc_err;
464 
465 		/* Compute the ILT client partition */
466 		rc = qed_cxt_cfg_ilt_compute(p_hwfn);
467 		if (rc)
468 			goto alloc_err;
469 
470 		/* CID map / ILT shadow table / T2
471 		 * The talbes sizes are determined by the computations above
472 		 */
473 		rc = qed_cxt_tables_alloc(p_hwfn);
474 		if (rc)
475 			goto alloc_err;
476 
477 		/* SPQ, must follow ILT because initializes SPQ context */
478 		rc = qed_spq_alloc(p_hwfn);
479 		if (rc)
480 			goto alloc_err;
481 
482 		/* SP status block allocation */
483 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
484 							 RESERVED_PTT_DPC);
485 
486 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
487 		if (rc)
488 			goto alloc_err;
489 
490 		rc = qed_iov_alloc(p_hwfn);
491 		if (rc)
492 			goto alloc_err;
493 
494 		/* EQ */
495 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
496 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
497 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
498 							       PROTOCOLID_ROCE,
499 							       0) * 2;
500 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
501 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
502 			num_cons =
503 			    qed_cxt_get_proto_cid_count(p_hwfn,
504 							PROTOCOLID_ISCSI, 0);
505 			n_eqes += 2 * num_cons;
506 		}
507 
508 		if (n_eqes > 0xFFFF) {
509 			DP_ERR(p_hwfn,
510 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
511 			       n_eqes, 0xFFFF);
512 			goto alloc_err;
513 		}
514 
515 		p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
516 		if (!p_eq)
517 			goto alloc_no_mem;
518 		p_hwfn->p_eq = p_eq;
519 
520 		p_consq = qed_consq_alloc(p_hwfn);
521 		if (!p_consq)
522 			goto alloc_no_mem;
523 		p_hwfn->p_consq = p_consq;
524 
525 		/* DMA info initialization */
526 		rc = qed_dmae_info_alloc(p_hwfn);
527 		if (rc) {
528 			DP_NOTICE(p_hwfn,
529 				  "Failed to allocate memory for dmae_info structure\n");
530 			goto alloc_err;
531 		}
532 
533 		/* DCBX initialization */
534 		rc = qed_dcbx_info_alloc(p_hwfn);
535 		if (rc) {
536 			DP_NOTICE(p_hwfn,
537 				  "Failed to allocate memory for dcbx structure\n");
538 			goto alloc_err;
539 		}
540 	}
541 
542 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
543 	if (!cdev->reset_stats) {
544 		DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
545 		rc = -ENOMEM;
546 		goto alloc_err;
547 	}
548 
549 	return 0;
550 
551 alloc_no_mem:
552 	rc = -ENOMEM;
553 alloc_err:
554 	qed_resc_free(cdev);
555 	return rc;
556 }
557 
558 void qed_resc_setup(struct qed_dev *cdev)
559 {
560 	int i;
561 
562 	if (IS_VF(cdev))
563 		return;
564 
565 	for_each_hwfn(cdev, i) {
566 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
567 
568 		qed_cxt_mngr_setup(p_hwfn);
569 		qed_spq_setup(p_hwfn);
570 		qed_eq_setup(p_hwfn, p_hwfn->p_eq);
571 		qed_consq_setup(p_hwfn, p_hwfn->p_consq);
572 
573 		/* Read shadow of current MFW mailbox */
574 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
575 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
576 		       p_hwfn->mcp_info->mfw_mb_cur,
577 		       p_hwfn->mcp_info->mfw_mb_length);
578 
579 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
580 
581 		qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
582 	}
583 }
584 
585 #define FINAL_CLEANUP_POLL_CNT          (100)
586 #define FINAL_CLEANUP_POLL_TIME         (10)
587 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
588 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
589 {
590 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
591 	int rc = -EBUSY;
592 
593 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
594 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
595 
596 	if (is_vf)
597 		id += 0x10;
598 
599 	command |= X_FINAL_CLEANUP_AGG_INT <<
600 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
601 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
602 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
603 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
604 
605 	/* Make sure notification is not set before initiating final cleanup */
606 	if (REG_RD(p_hwfn, addr)) {
607 		DP_NOTICE(
608 			p_hwfn,
609 			"Unexpected; Found final cleanup notification before initiating final cleanup\n");
610 		REG_WR(p_hwfn, addr, 0);
611 	}
612 
613 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
614 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
615 		   id, command);
616 
617 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
618 
619 	/* Poll until completion */
620 	while (!REG_RD(p_hwfn, addr) && count--)
621 		msleep(FINAL_CLEANUP_POLL_TIME);
622 
623 	if (REG_RD(p_hwfn, addr))
624 		rc = 0;
625 	else
626 		DP_NOTICE(p_hwfn,
627 			  "Failed to receive FW final cleanup notification\n");
628 
629 	/* Cleanup afterwards */
630 	REG_WR(p_hwfn, addr, 0);
631 
632 	return rc;
633 }
634 
635 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
636 {
637 	int hw_mode = 0;
638 
639 	hw_mode = (1 << MODE_BB_B0);
640 
641 	switch (p_hwfn->cdev->num_ports_in_engines) {
642 	case 1:
643 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
644 		break;
645 	case 2:
646 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
647 		break;
648 	case 4:
649 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
650 		break;
651 	default:
652 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
653 			  p_hwfn->cdev->num_ports_in_engines);
654 		return;
655 	}
656 
657 	switch (p_hwfn->cdev->mf_mode) {
658 	case QED_MF_DEFAULT:
659 	case QED_MF_NPAR:
660 		hw_mode |= 1 << MODE_MF_SI;
661 		break;
662 	case QED_MF_OVLAN:
663 		hw_mode |= 1 << MODE_MF_SD;
664 		break;
665 	default:
666 		DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
667 		hw_mode |= 1 << MODE_MF_SI;
668 	}
669 
670 	hw_mode |= 1 << MODE_ASIC;
671 
672 	if (p_hwfn->cdev->num_hwfns > 1)
673 		hw_mode |= 1 << MODE_100G;
674 
675 	p_hwfn->hw_info.hw_mode = hw_mode;
676 
677 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
678 		   "Configuring function for hw_mode: 0x%08x\n",
679 		   p_hwfn->hw_info.hw_mode);
680 }
681 
682 /* Init run time data for all PFs on an engine. */
683 static void qed_init_cau_rt_data(struct qed_dev *cdev)
684 {
685 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
686 	int i, sb_id;
687 
688 	for_each_hwfn(cdev, i) {
689 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
690 		struct qed_igu_info *p_igu_info;
691 		struct qed_igu_block *p_block;
692 		struct cau_sb_entry sb_entry;
693 
694 		p_igu_info = p_hwfn->hw_info.p_igu_info;
695 
696 		for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
697 		     sb_id++) {
698 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
699 			if (!p_block->is_pf)
700 				continue;
701 
702 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
703 					      p_block->function_id,
704 					      0, 0);
705 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
706 					 sb_entry);
707 		}
708 	}
709 }
710 
711 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
712 			      struct qed_ptt *p_ptt,
713 			      int hw_mode)
714 {
715 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
716 	struct qed_qm_common_rt_init_params params;
717 	struct qed_dev *cdev = p_hwfn->cdev;
718 	u16 num_pfs, pf_id;
719 	u32 concrete_fid;
720 	int rc = 0;
721 	u8 vf_id;
722 
723 	qed_init_cau_rt_data(cdev);
724 
725 	/* Program GTT windows */
726 	qed_gtt_init(p_hwfn);
727 
728 	if (p_hwfn->mcp_info) {
729 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
730 			qm_info->pf_rl_en = 1;
731 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
732 			qm_info->pf_wfq_en = 1;
733 	}
734 
735 	memset(&params, 0, sizeof(params));
736 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
737 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
738 	params.pf_rl_en = qm_info->pf_rl_en;
739 	params.pf_wfq_en = qm_info->pf_wfq_en;
740 	params.vport_rl_en = qm_info->vport_rl_en;
741 	params.vport_wfq_en = qm_info->vport_wfq_en;
742 	params.port_params = qm_info->qm_port_params;
743 
744 	qed_qm_common_rt_init(p_hwfn, &params);
745 
746 	qed_cxt_hw_init_common(p_hwfn);
747 
748 	/* Close gate from NIG to BRB/Storm; By default they are open, but
749 	 * we close them to prevent NIG from passing data to reset blocks.
750 	 * Should have been done in the ENGINE phase, but init-tool lacks
751 	 * proper port-pretend capabilities.
752 	 */
753 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
754 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
755 	qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
756 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
757 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
758 	qed_port_unpretend(p_hwfn, p_ptt);
759 
760 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
761 	if (rc != 0)
762 		return rc;
763 
764 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
765 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
766 
767 	if (QED_IS_BB(p_hwfn->cdev)) {
768 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
769 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
770 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
771 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
772 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
773 		}
774 		/* pretend to original PF */
775 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
776 	}
777 
778 	for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
779 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
780 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
781 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
782 	}
783 	/* pretend to original PF */
784 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
785 
786 	return rc;
787 }
788 
789 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
790 			    struct qed_ptt *p_ptt,
791 			    int hw_mode)
792 {
793 	int rc = 0;
794 
795 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
796 	if (rc != 0)
797 		return rc;
798 
799 	if (hw_mode & (1 << MODE_MF_SI)) {
800 		u8 pf_id = 0;
801 
802 		if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
803 			DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
804 				   "PF[%08x] is first eth on engine\n", pf_id);
805 
806 			/* We should have configured BIT for ppfid, i.e., the
807 			 * relative function number in the port. But there's a
808 			 * bug in LLH in BB where the ppfid is actually engine
809 			 * based, so we need to take this into account.
810 			 */
811 			qed_wr(p_hwfn, p_ptt,
812 			       NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
813 		}
814 
815 		/* Take the protocol-based hit vector if there is a hit,
816 		 * otherwise take the other vector.
817 		 */
818 		qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
819 	}
820 	return rc;
821 }
822 
823 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
824 			  struct qed_ptt *p_ptt,
825 			  struct qed_tunn_start_params *p_tunn,
826 			  int hw_mode,
827 			  bool b_hw_start,
828 			  enum qed_int_mode int_mode,
829 			  bool allow_npar_tx_switch)
830 {
831 	u8 rel_pf_id = p_hwfn->rel_pf_id;
832 	int rc = 0;
833 
834 	if (p_hwfn->mcp_info) {
835 		struct qed_mcp_function_info *p_info;
836 
837 		p_info = &p_hwfn->mcp_info->func_info;
838 		if (p_info->bandwidth_min)
839 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
840 
841 		/* Update rate limit once we'll actually have a link */
842 		p_hwfn->qm_info.pf_rl = 100000;
843 	}
844 
845 	qed_cxt_hw_init_pf(p_hwfn);
846 
847 	qed_int_igu_init_rt(p_hwfn);
848 
849 	/* Set VLAN in NIG if needed */
850 	if (hw_mode & (1 << MODE_MF_SD)) {
851 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
852 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
853 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
854 			     p_hwfn->hw_info.ovlan);
855 	}
856 
857 	/* Enable classification by MAC if needed */
858 	if (hw_mode & (1 << MODE_MF_SI)) {
859 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
860 			   "Configuring TAGMAC_CLS_TYPE\n");
861 		STORE_RT_REG(p_hwfn,
862 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
863 	}
864 
865 	/* Protocl Configuration  */
866 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
867 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
868 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
869 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
870 
871 	/* Cleanup chip from previous driver if such remains exist */
872 	rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
873 	if (rc != 0)
874 		return rc;
875 
876 	/* PF Init sequence */
877 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
878 	if (rc)
879 		return rc;
880 
881 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
882 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
883 	if (rc)
884 		return rc;
885 
886 	/* Pure runtime initializations - directly to the HW  */
887 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
888 
889 	if (hw_mode & (1 << MODE_MF_SI)) {
890 		u8 pf_id = 0;
891 		u32 val;
892 
893 		if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
894 			if (p_hwfn->rel_pf_id == pf_id) {
895 				DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
896 					   "PF[%d] is first ETH on engine\n",
897 					   pf_id);
898 				val = 1;
899 			}
900 			qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
901 		}
902 	}
903 
904 	if (b_hw_start) {
905 		/* enable interrupts */
906 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
907 
908 		/* send function start command */
909 		rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
910 				     allow_npar_tx_switch);
911 		if (rc)
912 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
913 	}
914 	return rc;
915 }
916 
917 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
918 			       struct qed_ptt *p_ptt,
919 			       u8 enable)
920 {
921 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
922 
923 	/* Change PF in PXP */
924 	qed_wr(p_hwfn, p_ptt,
925 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
926 
927 	/* wait until value is set - try for 1 second every 50us */
928 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
929 		val = qed_rd(p_hwfn, p_ptt,
930 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
931 		if (val == set_val)
932 			break;
933 
934 		usleep_range(50, 60);
935 	}
936 
937 	if (val != set_val) {
938 		DP_NOTICE(p_hwfn,
939 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
940 		return -EAGAIN;
941 	}
942 
943 	return 0;
944 }
945 
946 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
947 				struct qed_ptt *p_main_ptt)
948 {
949 	/* Read shadow of current MFW mailbox */
950 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
951 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
952 	       p_hwfn->mcp_info->mfw_mb_cur,
953 	       p_hwfn->mcp_info->mfw_mb_length);
954 }
955 
956 int qed_hw_init(struct qed_dev *cdev,
957 		struct qed_tunn_start_params *p_tunn,
958 		bool b_hw_start,
959 		enum qed_int_mode int_mode,
960 		bool allow_npar_tx_switch,
961 		const u8 *bin_fw_data)
962 {
963 	u32 load_code, param;
964 	int rc, mfw_rc, i;
965 
966 	if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
967 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
968 		return -EINVAL;
969 	}
970 
971 	if (IS_PF(cdev)) {
972 		rc = qed_init_fw_data(cdev, bin_fw_data);
973 		if (rc != 0)
974 			return rc;
975 	}
976 
977 	for_each_hwfn(cdev, i) {
978 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
979 
980 		if (IS_VF(cdev)) {
981 			p_hwfn->b_int_enabled = 1;
982 			continue;
983 		}
984 
985 		/* Enable DMAE in PXP */
986 		rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
987 
988 		qed_calc_hw_mode(p_hwfn);
989 
990 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
991 				      &load_code);
992 		if (rc) {
993 			DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
994 			return rc;
995 		}
996 
997 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
998 
999 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
1000 			   "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1001 			   rc, load_code);
1002 
1003 		p_hwfn->first_on_engine = (load_code ==
1004 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1005 
1006 		if (!qm_lock_init) {
1007 			spin_lock_init(&qm_lock);
1008 			qm_lock_init = true;
1009 		}
1010 
1011 		switch (load_code) {
1012 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1013 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1014 						p_hwfn->hw_info.hw_mode);
1015 			if (rc)
1016 				break;
1017 		/* Fall into */
1018 		case FW_MSG_CODE_DRV_LOAD_PORT:
1019 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1020 					      p_hwfn->hw_info.hw_mode);
1021 			if (rc)
1022 				break;
1023 
1024 		/* Fall into */
1025 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1026 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1027 					    p_tunn, p_hwfn->hw_info.hw_mode,
1028 					    b_hw_start, int_mode,
1029 					    allow_npar_tx_switch);
1030 			break;
1031 		default:
1032 			rc = -EINVAL;
1033 			break;
1034 		}
1035 
1036 		if (rc)
1037 			DP_NOTICE(p_hwfn,
1038 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1039 				   load_code, rc);
1040 
1041 		/* ACK mfw regardless of success or failure of initialization */
1042 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1043 				     DRV_MSG_CODE_LOAD_DONE,
1044 				     0, &load_code, &param);
1045 		if (rc)
1046 			return rc;
1047 		if (mfw_rc) {
1048 			DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1049 			return mfw_rc;
1050 		}
1051 
1052 		/* send DCBX attention request command */
1053 		DP_VERBOSE(p_hwfn,
1054 			   QED_MSG_DCB,
1055 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1056 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1057 				     DRV_MSG_CODE_SET_DCBX,
1058 				     1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1059 				     &load_code, &param);
1060 		if (mfw_rc) {
1061 			DP_NOTICE(p_hwfn,
1062 				  "Failed to send DCBX attention request\n");
1063 			return mfw_rc;
1064 		}
1065 
1066 		p_hwfn->hw_init_done = true;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 #define QED_HW_STOP_RETRY_LIMIT (10)
1073 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
1074 				      struct qed_hwfn *p_hwfn,
1075 				      struct qed_ptt *p_ptt)
1076 {
1077 	int i;
1078 
1079 	/* close timers */
1080 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1081 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1082 
1083 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1084 		if ((!qed_rd(p_hwfn, p_ptt,
1085 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1086 		    (!qed_rd(p_hwfn, p_ptt,
1087 			     TM_REG_PF_SCAN_ACTIVE_TASK)))
1088 			break;
1089 
1090 		/* Dependent on number of connection/tasks, possibly
1091 		 * 1ms sleep is required between polls
1092 		 */
1093 		usleep_range(1000, 2000);
1094 	}
1095 
1096 	if (i < QED_HW_STOP_RETRY_LIMIT)
1097 		return;
1098 
1099 	DP_NOTICE(p_hwfn,
1100 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1101 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1102 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1103 }
1104 
1105 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1106 {
1107 	int j;
1108 
1109 	for_each_hwfn(cdev, j) {
1110 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1111 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1112 
1113 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1114 	}
1115 }
1116 
1117 int qed_hw_stop(struct qed_dev *cdev)
1118 {
1119 	int rc = 0, t_rc;
1120 	int j;
1121 
1122 	for_each_hwfn(cdev, j) {
1123 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1124 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1125 
1126 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1127 
1128 		if (IS_VF(cdev)) {
1129 			qed_vf_pf_int_cleanup(p_hwfn);
1130 			continue;
1131 		}
1132 
1133 		/* mark the hw as uninitialized... */
1134 		p_hwfn->hw_init_done = false;
1135 
1136 		rc = qed_sp_pf_stop(p_hwfn);
1137 		if (rc)
1138 			DP_NOTICE(p_hwfn,
1139 				  "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1140 
1141 		qed_wr(p_hwfn, p_ptt,
1142 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1143 
1144 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1145 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1146 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1147 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1148 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1149 
1150 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1151 
1152 		/* Disable Attention Generation */
1153 		qed_int_igu_disable_int(p_hwfn, p_ptt);
1154 
1155 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1156 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1157 
1158 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1159 
1160 		/* Need to wait 1ms to guarantee SBs are cleared */
1161 		usleep_range(1000, 2000);
1162 	}
1163 
1164 	if (IS_PF(cdev)) {
1165 		/* Disable DMAE in PXP - in CMT, this should only be done for
1166 		 * first hw-function, and only after all transactions have
1167 		 * stopped for all active hw-functions.
1168 		 */
1169 		t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1170 					   cdev->hwfns[0].p_main_ptt, false);
1171 		if (t_rc != 0)
1172 			rc = t_rc;
1173 	}
1174 
1175 	return rc;
1176 }
1177 
1178 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1179 {
1180 	int j;
1181 
1182 	for_each_hwfn(cdev, j) {
1183 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1184 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1185 
1186 		if (IS_VF(cdev)) {
1187 			qed_vf_pf_int_cleanup(p_hwfn);
1188 			continue;
1189 		}
1190 
1191 		DP_VERBOSE(p_hwfn,
1192 			   NETIF_MSG_IFDOWN,
1193 			   "Shutting down the fastpath\n");
1194 
1195 		qed_wr(p_hwfn, p_ptt,
1196 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1197 
1198 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1199 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1200 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1201 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1202 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1203 
1204 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1205 
1206 		/* Need to wait 1ms to guarantee SBs are cleared */
1207 		usleep_range(1000, 2000);
1208 	}
1209 }
1210 
1211 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1212 {
1213 	if (IS_VF(p_hwfn->cdev))
1214 		return;
1215 
1216 	/* Re-open incoming traffic */
1217 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1218 	       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1219 }
1220 
1221 static int qed_reg_assert(struct qed_hwfn *hwfn,
1222 			  struct qed_ptt *ptt, u32 reg,
1223 			  bool expected)
1224 {
1225 	u32 assert_val = qed_rd(hwfn, ptt, reg);
1226 
1227 	if (assert_val != expected) {
1228 		DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1229 			  reg, expected);
1230 		return -EINVAL;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 int qed_hw_reset(struct qed_dev *cdev)
1237 {
1238 	int rc = 0;
1239 	u32 unload_resp, unload_param;
1240 	int i;
1241 
1242 	for_each_hwfn(cdev, i) {
1243 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1244 
1245 		if (IS_VF(cdev)) {
1246 			rc = qed_vf_pf_reset(p_hwfn);
1247 			if (rc)
1248 				return rc;
1249 			continue;
1250 		}
1251 
1252 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1253 
1254 		/* Check for incorrect states */
1255 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1256 			       QM_REG_USG_CNT_PF_TX, 0);
1257 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1258 			       QM_REG_USG_CNT_PF_OTHER, 0);
1259 
1260 		/* Disable PF in HW blocks */
1261 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1262 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1263 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1264 		       TCFC_REG_STRONG_ENABLE_PF, 0);
1265 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1266 		       CCFC_REG_STRONG_ENABLE_PF, 0);
1267 
1268 		/* Send unload command to MCP */
1269 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1270 				 DRV_MSG_CODE_UNLOAD_REQ,
1271 				 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1272 				 &unload_resp, &unload_param);
1273 		if (rc) {
1274 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1275 			unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1276 		}
1277 
1278 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1279 				 DRV_MSG_CODE_UNLOAD_DONE,
1280 				 0, &unload_resp, &unload_param);
1281 		if (rc) {
1282 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1283 			return rc;
1284 		}
1285 	}
1286 
1287 	return rc;
1288 }
1289 
1290 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1291 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1292 {
1293 	qed_ptt_pool_free(p_hwfn);
1294 	kfree(p_hwfn->hw_info.p_igu_info);
1295 }
1296 
1297 /* Setup bar access */
1298 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1299 {
1300 	/* clear indirect access */
1301 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1302 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1303 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1304 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1305 
1306 	/* Clean Previous errors if such exist */
1307 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1308 	       PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1309 	       1 << p_hwfn->abs_pf_id);
1310 
1311 	/* enable internal target-read */
1312 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1313 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1314 }
1315 
1316 static void get_function_id(struct qed_hwfn *p_hwfn)
1317 {
1318 	/* ME Register */
1319 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1320 
1321 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1322 
1323 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1324 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1325 				      PXP_CONCRETE_FID_PFID);
1326 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1327 				    PXP_CONCRETE_FID_PORT);
1328 }
1329 
1330 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1331 {
1332 	u32 *feat_num = p_hwfn->hw_info.feat_num;
1333 	int num_features = 1;
1334 
1335 	feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1336 						num_features,
1337 					RESC_NUM(p_hwfn, QED_L2_QUEUE));
1338 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1339 		   "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1340 		   feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1341 		   num_features);
1342 }
1343 
1344 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1345 {
1346 	u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1347 	u32 *resc_start = p_hwfn->hw_info.resc_start;
1348 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
1349 	u32 *resc_num = p_hwfn->hw_info.resc_num;
1350 	struct qed_sb_cnt_info sb_cnt_info;
1351 	int i, max_vf_vlan_filters;
1352 
1353 	memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1354 
1355 #ifdef CONFIG_QED_SRIOV
1356 	max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1357 #else
1358 	max_vf_vlan_filters = 0;
1359 #endif
1360 
1361 	qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1362 
1363 	resc_num[QED_SB] = min_t(u32,
1364 				 (MAX_SB_PER_PATH_BB / num_funcs),
1365 				 sb_cnt_info.sb_cnt);
1366 	resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1367 	resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1368 	resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1369 	resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1370 	resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1371 	resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1372 	resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1373 			     num_funcs;
1374 	resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1375 
1376 	for (i = 0; i < QED_MAX_RESC; i++)
1377 		resc_start[i] = resc_num[i] * enabled_func_idx;
1378 
1379 	/* Sanity for ILT */
1380 	if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1381 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1382 			  RESC_START(p_hwfn, QED_ILT),
1383 			  RESC_END(p_hwfn, QED_ILT) - 1);
1384 		return -EINVAL;
1385 	}
1386 
1387 	qed_hw_set_feat(p_hwfn);
1388 
1389 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1390 		   "The numbers for each resource are:\n"
1391 		   "SB = %d start = %d\n"
1392 		   "L2_QUEUE = %d start = %d\n"
1393 		   "VPORT = %d start = %d\n"
1394 		   "PQ = %d start = %d\n"
1395 		   "RL = %d start = %d\n"
1396 		   "MAC = %d start = %d\n"
1397 		   "VLAN = %d start = %d\n"
1398 		   "ILT = %d start = %d\n",
1399 		   p_hwfn->hw_info.resc_num[QED_SB],
1400 		   p_hwfn->hw_info.resc_start[QED_SB],
1401 		   p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1402 		   p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1403 		   p_hwfn->hw_info.resc_num[QED_VPORT],
1404 		   p_hwfn->hw_info.resc_start[QED_VPORT],
1405 		   p_hwfn->hw_info.resc_num[QED_PQ],
1406 		   p_hwfn->hw_info.resc_start[QED_PQ],
1407 		   p_hwfn->hw_info.resc_num[QED_RL],
1408 		   p_hwfn->hw_info.resc_start[QED_RL],
1409 		   p_hwfn->hw_info.resc_num[QED_MAC],
1410 		   p_hwfn->hw_info.resc_start[QED_MAC],
1411 		   p_hwfn->hw_info.resc_num[QED_VLAN],
1412 		   p_hwfn->hw_info.resc_start[QED_VLAN],
1413 		   p_hwfn->hw_info.resc_num[QED_ILT],
1414 		   p_hwfn->hw_info.resc_start[QED_ILT]);
1415 
1416 	return 0;
1417 }
1418 
1419 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1420 			       struct qed_ptt *p_ptt)
1421 {
1422 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1423 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1424 	struct qed_mcp_link_params *link;
1425 
1426 	/* Read global nvm_cfg address */
1427 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1428 
1429 	/* Verify MCP has initialized it */
1430 	if (!nvm_cfg_addr) {
1431 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1432 		return -EINVAL;
1433 	}
1434 
1435 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1436 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1437 
1438 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1439 	       offsetof(struct nvm_cfg1, glob) +
1440 	       offsetof(struct nvm_cfg1_glob, core_cfg);
1441 
1442 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1443 
1444 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1445 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1446 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1447 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1448 		break;
1449 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1450 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1451 		break;
1452 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1453 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1454 		break;
1455 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1456 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1457 		break;
1458 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1459 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1460 		break;
1461 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1462 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1463 		break;
1464 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1465 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1466 		break;
1467 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1468 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1469 		break;
1470 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1471 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1472 		break;
1473 	default:
1474 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1475 			  core_cfg);
1476 		break;
1477 	}
1478 
1479 	/* Read default link configuration */
1480 	link = &p_hwfn->mcp_info->link_input;
1481 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1482 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1483 	link_temp = qed_rd(p_hwfn, p_ptt,
1484 			   port_cfg_addr +
1485 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
1486 	link->speed.advertised_speeds =
1487 		link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1488 
1489 	p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1490 						link->speed.advertised_speeds;
1491 
1492 	link_temp = qed_rd(p_hwfn, p_ptt,
1493 			   port_cfg_addr +
1494 			   offsetof(struct nvm_cfg1_port, link_settings));
1495 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1496 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1497 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1498 		link->speed.autoneg = true;
1499 		break;
1500 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1501 		link->speed.forced_speed = 1000;
1502 		break;
1503 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1504 		link->speed.forced_speed = 10000;
1505 		break;
1506 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1507 		link->speed.forced_speed = 25000;
1508 		break;
1509 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1510 		link->speed.forced_speed = 40000;
1511 		break;
1512 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1513 		link->speed.forced_speed = 50000;
1514 		break;
1515 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1516 		link->speed.forced_speed = 100000;
1517 		break;
1518 	default:
1519 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1520 			  link_temp);
1521 	}
1522 
1523 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1524 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1525 	link->pause.autoneg = !!(link_temp &
1526 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1527 	link->pause.forced_rx = !!(link_temp &
1528 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1529 	link->pause.forced_tx = !!(link_temp &
1530 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1531 	link->loopback_mode = 0;
1532 
1533 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1534 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1535 		   link->speed.forced_speed, link->speed.advertised_speeds,
1536 		   link->speed.autoneg, link->pause.autoneg);
1537 
1538 	/* Read Multi-function information from shmem */
1539 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1540 	       offsetof(struct nvm_cfg1, glob) +
1541 	       offsetof(struct nvm_cfg1_glob, generic_cont0);
1542 
1543 	generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1544 
1545 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1546 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
1547 
1548 	switch (mf_mode) {
1549 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1550 		p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1551 		break;
1552 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1553 		p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1554 		break;
1555 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1556 		p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1557 		break;
1558 	}
1559 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1560 		p_hwfn->cdev->mf_mode);
1561 
1562 	/* Read Multi-function information from shmem */
1563 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1564 		offsetof(struct nvm_cfg1, glob) +
1565 		offsetof(struct nvm_cfg1_glob, device_capabilities);
1566 
1567 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1568 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1569 		__set_bit(QED_DEV_CAP_ETH,
1570 			  &p_hwfn->hw_info.device_capabilities);
1571 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1572 		__set_bit(QED_DEV_CAP_ISCSI,
1573 			  &p_hwfn->hw_info.device_capabilities);
1574 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1575 		__set_bit(QED_DEV_CAP_ROCE,
1576 			  &p_hwfn->hw_info.device_capabilities);
1577 
1578 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1579 }
1580 
1581 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1582 {
1583 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1584 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1585 
1586 	num_funcs = MAX_NUM_PFS_BB;
1587 
1588 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1589 	 * in the other bits are selected.
1590 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
1591 	 * '0' only for enabled functions (function 0 always exists and
1592 	 * enabled).
1593 	 * In case of CMT, only the "even" functions are enabled, and thus the
1594 	 * number of functions for both hwfns is learnt from the same bits.
1595 	 */
1596 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1597 
1598 	if (reg_function_hide & 0x1) {
1599 		if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1600 			num_funcs = 0;
1601 			eng_mask = 0xaaaa;
1602 		} else {
1603 			num_funcs = 1;
1604 			eng_mask = 0x5554;
1605 		}
1606 
1607 		/* Get the number of the enabled functions on the engine */
1608 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1609 		while (tmp) {
1610 			if (tmp & 0x1)
1611 				num_funcs++;
1612 			tmp >>= 0x1;
1613 		}
1614 
1615 		/* Get the PF index within the enabled functions */
1616 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1617 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
1618 		while (tmp) {
1619 			if (tmp & 0x1)
1620 				enabled_func_idx--;
1621 			tmp >>= 0x1;
1622 		}
1623 	}
1624 
1625 	p_hwfn->num_funcs_on_engine = num_funcs;
1626 	p_hwfn->enabled_func_idx = enabled_func_idx;
1627 
1628 	DP_VERBOSE(p_hwfn,
1629 		   NETIF_MSG_PROBE,
1630 		   "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1631 		   p_hwfn->rel_pf_id,
1632 		   p_hwfn->abs_pf_id,
1633 		   p_hwfn->num_funcs_on_engine);
1634 }
1635 
1636 static int
1637 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1638 		struct qed_ptt *p_ptt,
1639 		enum qed_pci_personality personality)
1640 {
1641 	u32 port_mode;
1642 	int rc;
1643 
1644 	/* Since all information is common, only first hwfns should do this */
1645 	if (IS_LEAD_HWFN(p_hwfn)) {
1646 		rc = qed_iov_hw_info(p_hwfn);
1647 		if (rc)
1648 			return rc;
1649 	}
1650 
1651 	/* Read the port mode */
1652 	port_mode = qed_rd(p_hwfn, p_ptt,
1653 			   CNIG_REG_NW_PORT_MODE_BB_B0);
1654 
1655 	if (port_mode < 3) {
1656 		p_hwfn->cdev->num_ports_in_engines = 1;
1657 	} else if (port_mode <= 5) {
1658 		p_hwfn->cdev->num_ports_in_engines = 2;
1659 	} else {
1660 		DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1661 			  p_hwfn->cdev->num_ports_in_engines);
1662 
1663 		/* Default num_ports_in_engines to something */
1664 		p_hwfn->cdev->num_ports_in_engines = 1;
1665 	}
1666 
1667 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
1668 
1669 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1670 	if (rc)
1671 		return rc;
1672 
1673 	if (qed_mcp_is_init(p_hwfn))
1674 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1675 				p_hwfn->mcp_info->func_info.mac);
1676 	else
1677 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1678 
1679 	if (qed_mcp_is_init(p_hwfn)) {
1680 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1681 			p_hwfn->hw_info.ovlan =
1682 				p_hwfn->mcp_info->func_info.ovlan;
1683 
1684 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1685 	}
1686 
1687 	if (qed_mcp_is_init(p_hwfn)) {
1688 		enum qed_pci_personality protocol;
1689 
1690 		protocol = p_hwfn->mcp_info->func_info.protocol;
1691 		p_hwfn->hw_info.personality = protocol;
1692 	}
1693 
1694 	qed_get_num_funcs(p_hwfn, p_ptt);
1695 
1696 	return qed_hw_get_resc(p_hwfn);
1697 }
1698 
1699 static int qed_get_dev_info(struct qed_dev *cdev)
1700 {
1701 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1702 	u32 tmp;
1703 
1704 	/* Read Vendor Id / Device Id */
1705 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1706 			     &cdev->vendor_id);
1707 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1708 			     &cdev->device_id);
1709 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1710 				     MISCS_REG_CHIP_NUM);
1711 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1712 				     MISCS_REG_CHIP_REV);
1713 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
1714 
1715 	cdev->type = QED_DEV_TYPE_BB;
1716 	/* Learn number of HW-functions */
1717 	tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1718 		     MISCS_REG_CMT_ENABLED_FOR_PAIR);
1719 
1720 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
1721 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1722 		cdev->num_hwfns = 2;
1723 	} else {
1724 		cdev->num_hwfns = 1;
1725 	}
1726 
1727 	cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1728 				    MISCS_REG_CHIP_TEST_REG) >> 4;
1729 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1730 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1731 				       MISCS_REG_CHIP_METAL);
1732 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1733 
1734 	DP_INFO(cdev->hwfns,
1735 		"Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1736 		cdev->chip_num, cdev->chip_rev,
1737 		cdev->chip_bond_id, cdev->chip_metal);
1738 
1739 	if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1740 		DP_NOTICE(cdev->hwfns,
1741 			  "The chip type/rev (BB A0) is not supported!\n");
1742 		return -EINVAL;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1749 				 void __iomem *p_regview,
1750 				 void __iomem *p_doorbells,
1751 				 enum qed_pci_personality personality)
1752 {
1753 	int rc = 0;
1754 
1755 	/* Split PCI bars evenly between hwfns */
1756 	p_hwfn->regview = p_regview;
1757 	p_hwfn->doorbells = p_doorbells;
1758 
1759 	if (IS_VF(p_hwfn->cdev))
1760 		return qed_vf_hw_prepare(p_hwfn);
1761 
1762 	/* Validate that chip access is feasible */
1763 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1764 		DP_ERR(p_hwfn,
1765 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
1766 		return -EINVAL;
1767 	}
1768 
1769 	get_function_id(p_hwfn);
1770 
1771 	/* Allocate PTT pool */
1772 	rc = qed_ptt_pool_alloc(p_hwfn);
1773 	if (rc) {
1774 		DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1775 		goto err0;
1776 	}
1777 
1778 	/* Allocate the main PTT */
1779 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1780 
1781 	/* First hwfn learns basic information, e.g., number of hwfns */
1782 	if (!p_hwfn->my_id) {
1783 		rc = qed_get_dev_info(p_hwfn->cdev);
1784 		if (rc != 0)
1785 			goto err1;
1786 	}
1787 
1788 	qed_hw_hwfn_prepare(p_hwfn);
1789 
1790 	/* Initialize MCP structure */
1791 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1792 	if (rc) {
1793 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1794 		goto err1;
1795 	}
1796 
1797 	/* Read the device configuration information from the HW and SHMEM */
1798 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1799 	if (rc) {
1800 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1801 		goto err2;
1802 	}
1803 
1804 	/* Allocate the init RT array and initialize the init-ops engine */
1805 	rc = qed_init_alloc(p_hwfn);
1806 	if (rc) {
1807 		DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1808 		goto err2;
1809 	}
1810 
1811 	return rc;
1812 err2:
1813 	if (IS_LEAD_HWFN(p_hwfn))
1814 		qed_iov_free_hw_info(p_hwfn->cdev);
1815 	qed_mcp_free(p_hwfn);
1816 err1:
1817 	qed_hw_hwfn_free(p_hwfn);
1818 err0:
1819 	return rc;
1820 }
1821 
1822 int qed_hw_prepare(struct qed_dev *cdev,
1823 		   int personality)
1824 {
1825 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1826 	int rc;
1827 
1828 	/* Store the precompiled init data ptrs */
1829 	if (IS_PF(cdev))
1830 		qed_init_iro_array(cdev);
1831 
1832 	/* Initialize the first hwfn - will learn number of hwfns */
1833 	rc = qed_hw_prepare_single(p_hwfn,
1834 				   cdev->regview,
1835 				   cdev->doorbells, personality);
1836 	if (rc)
1837 		return rc;
1838 
1839 	personality = p_hwfn->hw_info.personality;
1840 
1841 	/* Initialize the rest of the hwfns */
1842 	if (cdev->num_hwfns > 1) {
1843 		void __iomem *p_regview, *p_doorbell;
1844 		u8 __iomem *addr;
1845 
1846 		/* adjust bar offset for second engine */
1847 		addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1848 		p_regview = addr;
1849 
1850 		/* adjust doorbell bar offset for second engine */
1851 		addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1852 		p_doorbell = addr;
1853 
1854 		/* prepare second hw function */
1855 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1856 					   p_doorbell, personality);
1857 
1858 		/* in case of error, need to free the previously
1859 		 * initiliazed hwfn 0.
1860 		 */
1861 		if (rc) {
1862 			if (IS_PF(cdev)) {
1863 				qed_init_free(p_hwfn);
1864 				qed_mcp_free(p_hwfn);
1865 				qed_hw_hwfn_free(p_hwfn);
1866 			}
1867 		}
1868 	}
1869 
1870 	return rc;
1871 }
1872 
1873 void qed_hw_remove(struct qed_dev *cdev)
1874 {
1875 	int i;
1876 
1877 	for_each_hwfn(cdev, i) {
1878 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1879 
1880 		if (IS_VF(cdev)) {
1881 			qed_vf_pf_release(p_hwfn);
1882 			continue;
1883 		}
1884 
1885 		qed_init_free(p_hwfn);
1886 		qed_hw_hwfn_free(p_hwfn);
1887 		qed_mcp_free(p_hwfn);
1888 	}
1889 
1890 	qed_iov_free_hw_info(cdev);
1891 }
1892 
1893 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
1894 				    struct qed_chain *p_chain)
1895 {
1896 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
1897 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
1898 	struct qed_chain_next *p_next;
1899 	u32 size, i;
1900 
1901 	if (!p_virt)
1902 		return;
1903 
1904 	size = p_chain->elem_size * p_chain->usable_per_page;
1905 
1906 	for (i = 0; i < p_chain->page_cnt; i++) {
1907 		if (!p_virt)
1908 			break;
1909 
1910 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
1911 		p_virt_next = p_next->next_virt;
1912 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
1913 
1914 		dma_free_coherent(&cdev->pdev->dev,
1915 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
1916 
1917 		p_virt = p_virt_next;
1918 		p_phys = p_phys_next;
1919 	}
1920 }
1921 
1922 static void qed_chain_free_single(struct qed_dev *cdev,
1923 				  struct qed_chain *p_chain)
1924 {
1925 	if (!p_chain->p_virt_addr)
1926 		return;
1927 
1928 	dma_free_coherent(&cdev->pdev->dev,
1929 			  QED_CHAIN_PAGE_SIZE,
1930 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
1931 }
1932 
1933 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
1934 {
1935 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
1936 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
1937 	u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
1938 
1939 	if (!pp_virt_addr_tbl)
1940 		return;
1941 
1942 	if (!p_chain->pbl.p_virt_table)
1943 		goto out;
1944 
1945 	for (i = 0; i < page_cnt; i++) {
1946 		if (!pp_virt_addr_tbl[i])
1947 			break;
1948 
1949 		dma_free_coherent(&cdev->pdev->dev,
1950 				  QED_CHAIN_PAGE_SIZE,
1951 				  pp_virt_addr_tbl[i],
1952 				  *(dma_addr_t *)p_pbl_virt);
1953 
1954 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
1955 	}
1956 
1957 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1958 	dma_free_coherent(&cdev->pdev->dev,
1959 			  pbl_size,
1960 			  p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
1961 out:
1962 	vfree(p_chain->pbl.pp_virt_addr_tbl);
1963 }
1964 
1965 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
1966 {
1967 	switch (p_chain->mode) {
1968 	case QED_CHAIN_MODE_NEXT_PTR:
1969 		qed_chain_free_next_ptr(cdev, p_chain);
1970 		break;
1971 	case QED_CHAIN_MODE_SINGLE:
1972 		qed_chain_free_single(cdev, p_chain);
1973 		break;
1974 	case QED_CHAIN_MODE_PBL:
1975 		qed_chain_free_pbl(cdev, p_chain);
1976 		break;
1977 	}
1978 }
1979 
1980 static int
1981 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
1982 			     enum qed_chain_cnt_type cnt_type,
1983 			     size_t elem_size, u32 page_cnt)
1984 {
1985 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
1986 
1987 	/* The actual chain size can be larger than the maximal possible value
1988 	 * after rounding up the requested elements number to pages, and after
1989 	 * taking into acount the unusuable elements (next-ptr elements).
1990 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
1991 	 * size/capacity fields are of a u32 type.
1992 	 */
1993 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
1994 	     chain_size > 0x10000) ||
1995 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
1996 	     chain_size > 0x100000000ULL)) {
1997 		DP_NOTICE(cdev,
1998 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
1999 			  chain_size);
2000 		return -EINVAL;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int
2007 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2008 {
2009 	void *p_virt = NULL, *p_virt_prev = NULL;
2010 	dma_addr_t p_phys = 0;
2011 	u32 i;
2012 
2013 	for (i = 0; i < p_chain->page_cnt; i++) {
2014 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2015 					    QED_CHAIN_PAGE_SIZE,
2016 					    &p_phys, GFP_KERNEL);
2017 		if (!p_virt) {
2018 			DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2019 			return -ENOMEM;
2020 		}
2021 
2022 		if (i == 0) {
2023 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2024 			qed_chain_reset(p_chain);
2025 		} else {
2026 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2027 						     p_virt, p_phys);
2028 		}
2029 
2030 		p_virt_prev = p_virt;
2031 	}
2032 	/* Last page's next element should point to the beginning of the
2033 	 * chain.
2034 	 */
2035 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2036 				     p_chain->p_virt_addr,
2037 				     p_chain->p_phys_addr);
2038 
2039 	return 0;
2040 }
2041 
2042 static int
2043 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2044 {
2045 	dma_addr_t p_phys = 0;
2046 	void *p_virt = NULL;
2047 
2048 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2049 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2050 	if (!p_virt) {
2051 		DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2052 		return -ENOMEM;
2053 	}
2054 
2055 	qed_chain_init_mem(p_chain, p_virt, p_phys);
2056 	qed_chain_reset(p_chain);
2057 
2058 	return 0;
2059 }
2060 
2061 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2062 {
2063 	u32 page_cnt = p_chain->page_cnt, size, i;
2064 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
2065 	void **pp_virt_addr_tbl = NULL;
2066 	u8 *p_pbl_virt = NULL;
2067 	void *p_virt = NULL;
2068 
2069 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
2070 	pp_virt_addr_tbl = vmalloc(size);
2071 	if (!pp_virt_addr_tbl) {
2072 		DP_NOTICE(cdev,
2073 			  "Failed to allocate memory for the chain virtual addresses table\n");
2074 		return -ENOMEM;
2075 	}
2076 	memset(pp_virt_addr_tbl, 0, size);
2077 
2078 	/* The allocation of the PBL table is done with its full size, since it
2079 	 * is expected to be successive.
2080 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
2081 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
2082 	 * should be saved to allow its freeing during the error flow.
2083 	 */
2084 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2085 	p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2086 					size, &p_pbl_phys, GFP_KERNEL);
2087 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2088 			       pp_virt_addr_tbl);
2089 	if (!p_pbl_virt) {
2090 		DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n");
2091 		return -ENOMEM;
2092 	}
2093 
2094 	for (i = 0; i < page_cnt; i++) {
2095 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2096 					    QED_CHAIN_PAGE_SIZE,
2097 					    &p_phys, GFP_KERNEL);
2098 		if (!p_virt) {
2099 			DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2100 			return -ENOMEM;
2101 		}
2102 
2103 		if (i == 0) {
2104 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2105 			qed_chain_reset(p_chain);
2106 		}
2107 
2108 		/* Fill the PBL table with the physical address of the page */
2109 		*(dma_addr_t *)p_pbl_virt = p_phys;
2110 		/* Keep the virtual address of the page */
2111 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2112 
2113 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 int qed_chain_alloc(struct qed_dev *cdev,
2120 		    enum qed_chain_use_mode intended_use,
2121 		    enum qed_chain_mode mode,
2122 		    enum qed_chain_cnt_type cnt_type,
2123 		    u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2124 {
2125 	u32 page_cnt;
2126 	int rc = 0;
2127 
2128 	if (mode == QED_CHAIN_MODE_SINGLE)
2129 		page_cnt = 1;
2130 	else
2131 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2132 
2133 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2134 	if (rc) {
2135 		DP_NOTICE(cdev,
2136 			  "Cannot allocate a chain with the given arguments:\n"
2137 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2138 			  intended_use, mode, cnt_type, num_elems, elem_size);
2139 		return rc;
2140 	}
2141 
2142 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2143 			      mode, cnt_type);
2144 
2145 	switch (mode) {
2146 	case QED_CHAIN_MODE_NEXT_PTR:
2147 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2148 		break;
2149 	case QED_CHAIN_MODE_SINGLE:
2150 		rc = qed_chain_alloc_single(cdev, p_chain);
2151 		break;
2152 	case QED_CHAIN_MODE_PBL:
2153 		rc = qed_chain_alloc_pbl(cdev, p_chain);
2154 		break;
2155 	}
2156 	if (rc)
2157 		goto nomem;
2158 
2159 	return 0;
2160 
2161 nomem:
2162 	qed_chain_free(cdev, p_chain);
2163 	return rc;
2164 }
2165 
2166 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2167 {
2168 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2169 		u16 min, max;
2170 
2171 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2172 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2173 		DP_NOTICE(p_hwfn,
2174 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2175 			  src_id, min, max);
2176 
2177 		return -EINVAL;
2178 	}
2179 
2180 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2181 
2182 	return 0;
2183 }
2184 
2185 int qed_fw_vport(struct qed_hwfn *p_hwfn,
2186 		 u8 src_id, u8 *dst_id)
2187 {
2188 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2189 		u8 min, max;
2190 
2191 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
2192 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
2193 		DP_NOTICE(p_hwfn,
2194 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
2195 			  src_id, min, max);
2196 
2197 		return -EINVAL;
2198 	}
2199 
2200 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2201 
2202 	return 0;
2203 }
2204 
2205 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
2206 		   u8 src_id, u8 *dst_id)
2207 {
2208 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2209 		u8 min, max;
2210 
2211 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2212 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2213 		DP_NOTICE(p_hwfn,
2214 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2215 			  src_id, min, max);
2216 
2217 		return -EINVAL;
2218 	}
2219 
2220 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2221 
2222 	return 0;
2223 }
2224 
2225 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2226 			    u32 hw_addr, void *p_eth_qzone,
2227 			    size_t eth_qzone_size, u8 timeset)
2228 {
2229 	struct coalescing_timeset *p_coal_timeset;
2230 
2231 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2232 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2233 		return -EINVAL;
2234 	}
2235 
2236 	p_coal_timeset = p_eth_qzone;
2237 	memset(p_coal_timeset, 0, eth_qzone_size);
2238 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2239 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2240 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2241 
2242 	return 0;
2243 }
2244 
2245 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2246 			 u16 coalesce, u8 qid, u16 sb_id)
2247 {
2248 	struct ustorm_eth_queue_zone eth_qzone;
2249 	u8 timeset, timer_res;
2250 	u16 fw_qid = 0;
2251 	u32 address;
2252 	int rc;
2253 
2254 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2255 	if (coalesce <= 0x7F) {
2256 		timer_res = 0;
2257 	} else if (coalesce <= 0xFF) {
2258 		timer_res = 1;
2259 	} else if (coalesce <= 0x1FF) {
2260 		timer_res = 2;
2261 	} else {
2262 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2263 		return -EINVAL;
2264 	}
2265 	timeset = (u8)(coalesce >> timer_res);
2266 
2267 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2268 	if (rc)
2269 		return rc;
2270 
2271 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2272 	if (rc)
2273 		goto out;
2274 
2275 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2276 
2277 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2278 			      sizeof(struct ustorm_eth_queue_zone), timeset);
2279 	if (rc)
2280 		goto out;
2281 
2282 	p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2283 out:
2284 	return rc;
2285 }
2286 
2287 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2288 			 u16 coalesce, u8 qid, u16 sb_id)
2289 {
2290 	struct xstorm_eth_queue_zone eth_qzone;
2291 	u8 timeset, timer_res;
2292 	u16 fw_qid = 0;
2293 	u32 address;
2294 	int rc;
2295 
2296 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2297 	if (coalesce <= 0x7F) {
2298 		timer_res = 0;
2299 	} else if (coalesce <= 0xFF) {
2300 		timer_res = 1;
2301 	} else if (coalesce <= 0x1FF) {
2302 		timer_res = 2;
2303 	} else {
2304 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2305 		return -EINVAL;
2306 	}
2307 	timeset = (u8)(coalesce >> timer_res);
2308 
2309 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2310 	if (rc)
2311 		return rc;
2312 
2313 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2314 	if (rc)
2315 		goto out;
2316 
2317 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2318 
2319 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2320 			      sizeof(struct xstorm_eth_queue_zone), timeset);
2321 	if (rc)
2322 		goto out;
2323 
2324 	p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2325 out:
2326 	return rc;
2327 }
2328 
2329 /* Calculate final WFQ values for all vports and configure them.
2330  * After this configuration each vport will have
2331  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2332  */
2333 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2334 					     struct qed_ptt *p_ptt,
2335 					     u32 min_pf_rate)
2336 {
2337 	struct init_qm_vport_params *vport_params;
2338 	int i;
2339 
2340 	vport_params = p_hwfn->qm_info.qm_vport_params;
2341 
2342 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2343 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2344 
2345 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2346 						min_pf_rate;
2347 		qed_init_vport_wfq(p_hwfn, p_ptt,
2348 				   vport_params[i].first_tx_pq_id,
2349 				   vport_params[i].vport_wfq);
2350 	}
2351 }
2352 
2353 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2354 				       u32 min_pf_rate)
2355 
2356 {
2357 	int i;
2358 
2359 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2360 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2361 }
2362 
2363 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2364 					   struct qed_ptt *p_ptt,
2365 					   u32 min_pf_rate)
2366 {
2367 	struct init_qm_vport_params *vport_params;
2368 	int i;
2369 
2370 	vport_params = p_hwfn->qm_info.qm_vport_params;
2371 
2372 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2373 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2374 		qed_init_vport_wfq(p_hwfn, p_ptt,
2375 				   vport_params[i].first_tx_pq_id,
2376 				   vport_params[i].vport_wfq);
2377 	}
2378 }
2379 
2380 /* This function performs several validations for WFQ
2381  * configuration and required min rate for a given vport
2382  * 1. req_rate must be greater than one percent of min_pf_rate.
2383  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2384  *    rates to get less than one percent of min_pf_rate.
2385  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2386  */
2387 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2388 			      u16 vport_id, u32 req_rate,
2389 			      u32 min_pf_rate)
2390 {
2391 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2392 	int non_requested_count = 0, req_count = 0, i, num_vports;
2393 
2394 	num_vports = p_hwfn->qm_info.num_vports;
2395 
2396 	/* Accounting for the vports which are configured for WFQ explicitly */
2397 	for (i = 0; i < num_vports; i++) {
2398 		u32 tmp_speed;
2399 
2400 		if ((i != vport_id) &&
2401 		    p_hwfn->qm_info.wfq_data[i].configured) {
2402 			req_count++;
2403 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2404 			total_req_min_rate += tmp_speed;
2405 		}
2406 	}
2407 
2408 	/* Include current vport data as well */
2409 	req_count++;
2410 	total_req_min_rate += req_rate;
2411 	non_requested_count = num_vports - req_count;
2412 
2413 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2414 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2415 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2416 			   vport_id, req_rate, min_pf_rate);
2417 		return -EINVAL;
2418 	}
2419 
2420 	if (num_vports > QED_WFQ_UNIT) {
2421 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2422 			   "Number of vports is greater than %d\n",
2423 			   QED_WFQ_UNIT);
2424 		return -EINVAL;
2425 	}
2426 
2427 	if (total_req_min_rate > min_pf_rate) {
2428 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2429 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2430 			   total_req_min_rate, min_pf_rate);
2431 		return -EINVAL;
2432 	}
2433 
2434 	total_left_rate	= min_pf_rate - total_req_min_rate;
2435 
2436 	left_rate_per_vp = total_left_rate / non_requested_count;
2437 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
2438 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2439 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2440 			   left_rate_per_vp, min_pf_rate);
2441 		return -EINVAL;
2442 	}
2443 
2444 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2445 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2446 
2447 	for (i = 0; i < num_vports; i++) {
2448 		if (p_hwfn->qm_info.wfq_data[i].configured)
2449 			continue;
2450 
2451 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2458 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2459 {
2460 	struct qed_mcp_link_state *p_link;
2461 	int rc = 0;
2462 
2463 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2464 
2465 	if (!p_link->min_pf_rate) {
2466 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2467 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2468 		return rc;
2469 	}
2470 
2471 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2472 
2473 	if (rc == 0)
2474 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2475 						 p_link->min_pf_rate);
2476 	else
2477 		DP_NOTICE(p_hwfn,
2478 			  "Validation failed while configuring min rate\n");
2479 
2480 	return rc;
2481 }
2482 
2483 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2484 						 struct qed_ptt *p_ptt,
2485 						 u32 min_pf_rate)
2486 {
2487 	bool use_wfq = false;
2488 	int rc = 0;
2489 	u16 i;
2490 
2491 	/* Validate all pre configured vports for wfq */
2492 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2493 		u32 rate;
2494 
2495 		if (!p_hwfn->qm_info.wfq_data[i].configured)
2496 			continue;
2497 
2498 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2499 		use_wfq = true;
2500 
2501 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2502 		if (rc) {
2503 			DP_NOTICE(p_hwfn,
2504 				  "WFQ validation failed while configuring min rate\n");
2505 			break;
2506 		}
2507 	}
2508 
2509 	if (!rc && use_wfq)
2510 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2511 	else
2512 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2513 
2514 	return rc;
2515 }
2516 
2517 /* Main API for qed clients to configure vport min rate.
2518  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2519  * rate - Speed in Mbps needs to be assigned to a given vport.
2520  */
2521 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2522 {
2523 	int i, rc = -EINVAL;
2524 
2525 	/* Currently not supported; Might change in future */
2526 	if (cdev->num_hwfns > 1) {
2527 		DP_NOTICE(cdev,
2528 			  "WFQ configuration is not supported for this device\n");
2529 		return rc;
2530 	}
2531 
2532 	for_each_hwfn(cdev, i) {
2533 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2534 		struct qed_ptt *p_ptt;
2535 
2536 		p_ptt = qed_ptt_acquire(p_hwfn);
2537 		if (!p_ptt)
2538 			return -EBUSY;
2539 
2540 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2541 
2542 		if (!rc) {
2543 			qed_ptt_release(p_hwfn, p_ptt);
2544 			return rc;
2545 		}
2546 
2547 		qed_ptt_release(p_hwfn, p_ptt);
2548 	}
2549 
2550 	return rc;
2551 }
2552 
2553 /* API to configure WFQ from mcp link change */
2554 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2555 {
2556 	int i;
2557 
2558 	if (cdev->num_hwfns > 1) {
2559 		DP_VERBOSE(cdev,
2560 			   NETIF_MSG_LINK,
2561 			   "WFQ configuration is not supported for this device\n");
2562 		return;
2563 	}
2564 
2565 	for_each_hwfn(cdev, i) {
2566 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2567 
2568 		__qed_configure_vp_wfq_on_link_change(p_hwfn,
2569 						      p_hwfn->p_dpc_ptt,
2570 						      min_pf_rate);
2571 	}
2572 }
2573 
2574 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2575 				     struct qed_ptt *p_ptt,
2576 				     struct qed_mcp_link_state *p_link,
2577 				     u8 max_bw)
2578 {
2579 	int rc = 0;
2580 
2581 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2582 
2583 	if (!p_link->line_speed && (max_bw != 100))
2584 		return rc;
2585 
2586 	p_link->speed = (p_link->line_speed * max_bw) / 100;
2587 	p_hwfn->qm_info.pf_rl = p_link->speed;
2588 
2589 	/* Since the limiter also affects Tx-switched traffic, we don't want it
2590 	 * to limit such traffic in case there's no actual limit.
2591 	 * In that case, set limit to imaginary high boundary.
2592 	 */
2593 	if (max_bw == 100)
2594 		p_hwfn->qm_info.pf_rl = 100000;
2595 
2596 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2597 			    p_hwfn->qm_info.pf_rl);
2598 
2599 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2600 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
2601 		   p_link->speed);
2602 
2603 	return rc;
2604 }
2605 
2606 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2607 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2608 {
2609 	int i, rc = -EINVAL;
2610 
2611 	if (max_bw < 1 || max_bw > 100) {
2612 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2613 		return rc;
2614 	}
2615 
2616 	for_each_hwfn(cdev, i) {
2617 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
2618 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2619 		struct qed_mcp_link_state *p_link;
2620 		struct qed_ptt *p_ptt;
2621 
2622 		p_link = &p_lead->mcp_info->link_output;
2623 
2624 		p_ptt = qed_ptt_acquire(p_hwfn);
2625 		if (!p_ptt)
2626 			return -EBUSY;
2627 
2628 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2629 						      p_link, max_bw);
2630 
2631 		qed_ptt_release(p_hwfn, p_ptt);
2632 
2633 		if (rc)
2634 			break;
2635 	}
2636 
2637 	return rc;
2638 }
2639 
2640 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2641 				     struct qed_ptt *p_ptt,
2642 				     struct qed_mcp_link_state *p_link,
2643 				     u8 min_bw)
2644 {
2645 	int rc = 0;
2646 
2647 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2648 	p_hwfn->qm_info.pf_wfq = min_bw;
2649 
2650 	if (!p_link->line_speed)
2651 		return rc;
2652 
2653 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2654 
2655 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2656 
2657 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2658 		   "Configured MIN bandwidth to be %d Mb/sec\n",
2659 		   p_link->min_pf_rate);
2660 
2661 	return rc;
2662 }
2663 
2664 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2665 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2666 {
2667 	int i, rc = -EINVAL;
2668 
2669 	if (min_bw < 1 || min_bw > 100) {
2670 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2671 		return rc;
2672 	}
2673 
2674 	for_each_hwfn(cdev, i) {
2675 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2676 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2677 		struct qed_mcp_link_state *p_link;
2678 		struct qed_ptt *p_ptt;
2679 
2680 		p_link = &p_lead->mcp_info->link_output;
2681 
2682 		p_ptt = qed_ptt_acquire(p_hwfn);
2683 		if (!p_ptt)
2684 			return -EBUSY;
2685 
2686 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2687 						      p_link, min_bw);
2688 		if (rc) {
2689 			qed_ptt_release(p_hwfn, p_ptt);
2690 			return rc;
2691 		}
2692 
2693 		if (p_link->min_pf_rate) {
2694 			u32 min_rate = p_link->min_pf_rate;
2695 
2696 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2697 								   p_ptt,
2698 								   min_rate);
2699 		}
2700 
2701 		qed_ptt_release(p_hwfn, p_ptt);
2702 	}
2703 
2704 	return rc;
2705 }
2706 
2707 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2708 {
2709 	struct qed_mcp_link_state *p_link;
2710 
2711 	p_link = &p_hwfn->mcp_info->link_output;
2712 
2713 	if (p_link->min_pf_rate)
2714 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2715 					       p_link->min_pf_rate);
2716 
2717 	memset(p_hwfn->qm_info.wfq_data, 0,
2718 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2719 }
2720