1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 	Written 1997-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 	It also supports the Symbios Logic version of the same chip core.
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 	Support and updates available at
21 	http://www.scyld.com/network/yellowfin.html
22 	[link no longer provides useful info -jgarzik]
23 
24 */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #define DRV_NAME	"yellowfin"
29 #define DRV_VERSION	"2.1"
30 #define DRV_RELDATE	"Sep 11, 2006"
31 
32 /* The user-configurable values.
33    These may be modified when a driver module is loaded.*/
34 
35 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
43 static int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW)					/* A future perfect board :->.  */
45 static int dma_ctrl = 0x00CAC277;			/* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
49 static const int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
50 #endif
51 
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53    Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55 
56 /* Used to pass the media type, etc.
57    No media types are currently defined.  These exist for driver
58    interoperability.
59 */
60 #define MAX_UNITS 8				/* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63 
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66 
67 /* Operational parameters that are set at compile time. */
68 
69 /* Keep the ring sizes a power of two for efficiency.
70    Making the Tx ring too long decreases the effectiveness of channel
71    bonding and packet priority.
72    There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE	16
74 #define TX_QUEUE_SIZE	12		/* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE	64
76 #define STATUS_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE		2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct yellowfin_desc)
79 
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT  (2*HZ)
83 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
84 
85 #define yellowfin_debug debug
86 
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/init.h>
96 #include <linux/mii.h>
97 #include <linux/netdevice.h>
98 #include <linux/etherdevice.h>
99 #include <linux/skbuff.h>
100 #include <linux/ethtool.h>
101 #include <linux/crc32.h>
102 #include <linux/bitops.h>
103 #include <asm/uaccess.h>
104 #include <asm/processor.h>		/* Processor type for cache alignment. */
105 #include <asm/unaligned.h>
106 #include <asm/io.h>
107 
108 /* These identify the driver base version and may not be removed. */
109 static const char version[] =
110   KERN_INFO DRV_NAME ".c:v1.05  1/09/2001  Written by Donald Becker <becker@scyld.com>\n"
111   "  (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112 
113 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115 MODULE_LICENSE("GPL");
116 
117 module_param(max_interrupt_work, int, 0);
118 module_param(mtu, int, 0);
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param_array(options, int, NULL, 0);
122 module_param_array(full_duplex, int, NULL, 0);
123 module_param(gx_fix, int, 0);
124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131 
132 /*
133 				Theory of Operation
134 
135 I. Board Compatibility
136 
137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138 Ethernet adapter.  The G-NIC 64-bit PCI card is supported, as well as the
139 Symbios 53C885E dual function chip.
140 
141 II. Board-specific settings
142 
143 PCI bus devices are configured by the system at boot time, so no jumpers
144 need to be set on the board.  The system BIOS preferably should assign the
145 PCI INTA signal to an otherwise unused system IRQ line.
146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147 interrupt lines.
148 
149 III. Driver operation
150 
151 IIIa. Ring buffers
152 
153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154 This is a descriptor list scheme similar to that used by the EEPro100 and
155 Tulip.  This driver uses two statically allocated fixed-size descriptor lists
156 formed into rings by a branch from the final descriptor to the beginning of
157 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
158 
159 The driver allocates full frame size skbuffs for the Rx ring buffers at
160 open() time and passes the skb->data field to the Yellowfin as receive data
161 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
162 a fresh skbuff is allocated and the frame is copied to the new skbuff.
163 When the incoming frame is larger, the skbuff is passed directly up the
164 protocol stack and replaced by a newly allocated skbuff.
165 
166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167 using a full-sized skbuff for small frames vs. the copying costs of larger
168 frames.  For small frames the copying cost is negligible (esp. considering
169 that we are pre-loading the cache with immediately useful header
170 information).  For large frames the copying cost is non-trivial, and the
171 larger copy might flush the cache of useful data.
172 
173 IIIC. Synchronization
174 
175 The driver runs as two independent, single-threaded flows of control.  One
176 is the send-packet routine, which enforces single-threaded use by the
177 dev->tbusy flag.  The other thread is the interrupt handler, which is single
178 threaded by the hardware and other software.
179 
180 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181 flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183 the 'yp->tx_full' flag.
184 
185 The interrupt handler has exclusive control over the Rx ring and records stats
186 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188 clears both the tx_full and tbusy flags.
189 
190 IV. Notes
191 
192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194 and an AlphaStation to verifty the Alpha port!
195 
196 IVb. References
197 
198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200    Data Manual v3.0
201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203 
204 IVc. Errata
205 
206 See Packet Engines confidential appendix (prototype chips only).
207 */
208 
209 
210 
211 enum capability_flags {
212 	HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 	HasMACAddrBug=32, /* Only on early revs.  */
214 	DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215 };
216 
217 /* The PCI I/O space extent. */
218 enum {
219 	YELLOWFIN_SIZE	= 0x100,
220 };
221 
222 struct pci_id_info {
223         const char *name;
224         struct match_info {
225                 int     pci, pci_mask, subsystem, subsystem_mask;
226                 int revision, revision_mask;                            /* Only 8 bits. */
227         } id;
228         int drv_flags;                          /* Driver use, intended as capability flags. */
229 };
230 
231 static const struct pci_id_info pci_id_tbl[] = {
232 	{"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 	 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 	{"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 	  HasMII | DontUseEeprom },
236 	{ }
237 };
238 
239 static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
240 	{ 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 	{ 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 	{ }
243 };
244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245 
246 
247 /* Offsets to the Yellowfin registers.  Various sizes and alignments. */
248 enum yellowfin_offsets {
249 	TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 	TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 	RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 	RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 	EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 	ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 	Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 	MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 	MII_Status=0xAE,
258 	RxDepth=0xB8, FlowCtrl=0xBC,
259 	AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 	EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 	EEFeature=0xF5,
262 };
263 
264 /* The Yellowfin Rx and Tx buffer descriptors.
265    Elements are written as 32 bit for endian portability. */
266 struct yellowfin_desc {
267 	__le32 dbdma_cmd;
268 	__le32 addr;
269 	__le32 branch_addr;
270 	__le32 result_status;
271 };
272 
273 struct tx_status_words {
274 #ifdef __BIG_ENDIAN
275 	u16 tx_errs;
276 	u16 tx_cnt;
277 	u16 paused;
278 	u16 total_tx_cnt;
279 #else  /* Little endian chips. */
280 	u16 tx_cnt;
281 	u16 tx_errs;
282 	u16 total_tx_cnt;
283 	u16 paused;
284 #endif /* __BIG_ENDIAN */
285 };
286 
287 /* Bits in yellowfin_desc.cmd */
288 enum desc_cmd_bits {
289 	CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 	CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 	BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 	BRANCH_IFTRUE=0x040000,
293 };
294 
295 /* Bits in yellowfin_desc.status */
296 enum desc_status_bits { RX_EOP=0x0040, };
297 
298 /* Bits in the interrupt status/mask registers. */
299 enum intr_status_bits {
300 	IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 	IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 	IntrEarlyRx=0x100, IntrWakeup=0x200, };
303 
304 #define PRIV_ALIGN	31 	/* Required alignment mask */
305 #define MII_CNT		4
306 struct yellowfin_private {
307 	/* Descriptor rings first for alignment.
308 	   Tx requires a second descriptor for status. */
309 	struct yellowfin_desc *rx_ring;
310 	struct yellowfin_desc *tx_ring;
311 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 	dma_addr_t rx_ring_dma;
314 	dma_addr_t tx_ring_dma;
315 
316 	struct tx_status_words *tx_status;
317 	dma_addr_t tx_status_dma;
318 
319 	struct timer_list timer;	/* Media selection timer. */
320 	/* Frequently used and paired value: keep adjacent for cache effect. */
321 	int chip_id, drv_flags;
322 	struct pci_dev *pci_dev;
323 	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
324 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
325 	struct tx_status_words *tx_tail_desc;
326 	unsigned int cur_tx, dirty_tx;
327 	int tx_threshold;
328 	unsigned int tx_full:1;				/* The Tx queue is full. */
329 	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
330 	unsigned int duplex_lock:1;
331 	unsigned int medialock:1;			/* Do not sense media. */
332 	unsigned int default_port:4;		/* Last dev->if_port value. */
333 	/* MII transceiver section. */
334 	int mii_cnt;						/* MII device addresses. */
335 	u16 advertising;					/* NWay media advertisement */
336 	unsigned char phys[MII_CNT];		/* MII device addresses, only first one used */
337 	spinlock_t lock;
338 	void __iomem *base;
339 };
340 
341 static int read_eeprom(void __iomem *ioaddr, int location);
342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static int yellowfin_open(struct net_device *dev);
346 static void yellowfin_timer(unsigned long data);
347 static void yellowfin_tx_timeout(struct net_device *dev);
348 static int yellowfin_init_ring(struct net_device *dev);
349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 					struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357 
358 static const struct net_device_ops netdev_ops = {
359 	.ndo_open 		= yellowfin_open,
360 	.ndo_stop 		= yellowfin_close,
361 	.ndo_start_xmit 	= yellowfin_start_xmit,
362 	.ndo_set_rx_mode	= set_rx_mode,
363 	.ndo_change_mtu		= eth_change_mtu,
364 	.ndo_validate_addr	= eth_validate_addr,
365 	.ndo_set_mac_address 	= eth_mac_addr,
366 	.ndo_do_ioctl 		= netdev_ioctl,
367 	.ndo_tx_timeout 	= yellowfin_tx_timeout,
368 };
369 
370 static int yellowfin_init_one(struct pci_dev *pdev,
371 			      const struct pci_device_id *ent)
372 {
373 	struct net_device *dev;
374 	struct yellowfin_private *np;
375 	int irq;
376 	int chip_idx = ent->driver_data;
377 	static int find_cnt;
378 	void __iomem *ioaddr;
379 	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 	int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381         void *ring_space;
382         dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384 	int bar = 0;
385 #else
386 	int bar = 1;
387 #endif
388 
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391 	static int printed_version;
392 	if (!printed_version++)
393 		printk(version);
394 #endif
395 
396 	i = pci_enable_device(pdev);
397 	if (i) return i;
398 
399 	dev = alloc_etherdev(sizeof(*np));
400 	if (!dev)
401 		return -ENOMEM;
402 
403 	SET_NETDEV_DEV(dev, &pdev->dev);
404 
405 	np = netdev_priv(dev);
406 
407 	if (pci_request_regions(pdev, DRV_NAME))
408 		goto err_out_free_netdev;
409 
410 	pci_set_master (pdev);
411 
412 	ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
413 	if (!ioaddr)
414 		goto err_out_free_res;
415 
416 	irq = pdev->irq;
417 
418 	if (drv_flags & DontUseEeprom)
419 		for (i = 0; i < 6; i++)
420 			dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
421 	else {
422 		int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423 		for (i = 0; i < 6; i++)
424 			dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
425 	}
426 
427 	/* Reset the chip. */
428 	iowrite32(0x80000000, ioaddr + DMACtrl);
429 
430 	pci_set_drvdata(pdev, dev);
431 	spin_lock_init(&np->lock);
432 
433 	np->pci_dev = pdev;
434 	np->chip_id = chip_idx;
435 	np->drv_flags = drv_flags;
436 	np->base = ioaddr;
437 
438 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
439 	if (!ring_space)
440 		goto err_out_cleardev;
441 	np->tx_ring = ring_space;
442 	np->tx_ring_dma = ring_dma;
443 
444 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
445 	if (!ring_space)
446 		goto err_out_unmap_tx;
447 	np->rx_ring = ring_space;
448 	np->rx_ring_dma = ring_dma;
449 
450 	ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
451 	if (!ring_space)
452 		goto err_out_unmap_rx;
453 	np->tx_status = ring_space;
454 	np->tx_status_dma = ring_dma;
455 
456 	if (dev->mem_start)
457 		option = dev->mem_start;
458 
459 	/* The lower four bits are the media type. */
460 	if (option > 0) {
461 		if (option & 0x200)
462 			np->full_duplex = 1;
463 		np->default_port = option & 15;
464 		if (np->default_port)
465 			np->medialock = 1;
466 	}
467 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
468 		np->full_duplex = 1;
469 
470 	if (np->full_duplex)
471 		np->duplex_lock = 1;
472 
473 	/* The Yellowfin-specific entries in the device structure. */
474 	dev->netdev_ops = &netdev_ops;
475 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
476 	dev->watchdog_timeo = TX_TIMEOUT;
477 
478 	if (mtu)
479 		dev->mtu = mtu;
480 
481 	i = register_netdev(dev);
482 	if (i)
483 		goto err_out_unmap_status;
484 
485 	netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
486 		    pci_id_tbl[chip_idx].name,
487 		    ioread32(ioaddr + ChipRev), ioaddr,
488 		    dev->dev_addr, irq);
489 
490 	if (np->drv_flags & HasMII) {
491 		int phy, phy_idx = 0;
492 		for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
493 			int mii_status = mdio_read(ioaddr, phy, 1);
494 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
495 				np->phys[phy_idx++] = phy;
496 				np->advertising = mdio_read(ioaddr, phy, 4);
497 				netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
498 					    phy, mii_status, np->advertising);
499 			}
500 		}
501 		np->mii_cnt = phy_idx;
502 	}
503 
504 	find_cnt++;
505 
506 	return 0;
507 
508 err_out_unmap_status:
509         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
510 		np->tx_status_dma);
511 err_out_unmap_rx:
512         pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
513 err_out_unmap_tx:
514         pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
515 err_out_cleardev:
516 	pci_set_drvdata(pdev, NULL);
517 	pci_iounmap(pdev, ioaddr);
518 err_out_free_res:
519 	pci_release_regions(pdev);
520 err_out_free_netdev:
521 	free_netdev (dev);
522 	return -ENODEV;
523 }
524 
525 static int read_eeprom(void __iomem *ioaddr, int location)
526 {
527 	int bogus_cnt = 10000;		/* Typical 33Mhz: 1050 ticks */
528 
529 	iowrite8(location, ioaddr + EEAddr);
530 	iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
531 	while ((ioread8(ioaddr + EEStatus) & 0x80)  &&  --bogus_cnt > 0)
532 		;
533 	return ioread8(ioaddr + EERead);
534 }
535 
536 /* MII Managemen Data I/O accesses.
537    These routines assume the MDIO controller is idle, and do not exit until
538    the command is finished. */
539 
540 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
541 {
542 	int i;
543 
544 	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
545 	iowrite16(1, ioaddr + MII_Cmd);
546 	for (i = 10000; i >= 0; i--)
547 		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
548 			break;
549 	return ioread16(ioaddr + MII_Rd_Data);
550 }
551 
552 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
553 {
554 	int i;
555 
556 	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
557 	iowrite16(value, ioaddr + MII_Wr_Data);
558 
559 	/* Wait for the command to finish. */
560 	for (i = 10000; i >= 0; i--)
561 		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
562 			break;
563 }
564 
565 
566 static int yellowfin_open(struct net_device *dev)
567 {
568 	struct yellowfin_private *yp = netdev_priv(dev);
569 	const int irq = yp->pci_dev->irq;
570 	void __iomem *ioaddr = yp->base;
571 	int i, rc;
572 
573 	/* Reset the chip. */
574 	iowrite32(0x80000000, ioaddr + DMACtrl);
575 
576 	rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
577 	if (rc)
578 		return rc;
579 
580 	rc = yellowfin_init_ring(dev);
581 	if (rc < 0)
582 		goto err_free_irq;
583 
584 	iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
585 	iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
586 
587 	for (i = 0; i < 6; i++)
588 		iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
589 
590 	/* Set up various condition 'select' registers.
591 	   There are no options here. */
592 	iowrite32(0x00800080, ioaddr + TxIntrSel); 	/* Interrupt on Tx abort */
593 	iowrite32(0x00800080, ioaddr + TxBranchSel);	/* Branch on Tx abort */
594 	iowrite32(0x00400040, ioaddr + TxWaitSel); 	/* Wait on Tx status */
595 	iowrite32(0x00400040, ioaddr + RxIntrSel);	/* Interrupt on Rx done */
596 	iowrite32(0x00400040, ioaddr + RxBranchSel);	/* Branch on Rx error */
597 	iowrite32(0x00400040, ioaddr + RxWaitSel);	/* Wait on Rx done */
598 
599 	/* Initialize other registers: with so many this eventually this will
600 	   converted to an offset/value list. */
601 	iowrite32(dma_ctrl, ioaddr + DMACtrl);
602 	iowrite16(fifo_cfg, ioaddr + FIFOcfg);
603 	/* Enable automatic generation of flow control frames, period 0xffff. */
604 	iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
605 
606 	yp->tx_threshold = 32;
607 	iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
608 
609 	if (dev->if_port == 0)
610 		dev->if_port = yp->default_port;
611 
612 	netif_start_queue(dev);
613 
614 	/* Setting the Rx mode will start the Rx process. */
615 	if (yp->drv_flags & IsGigabit) {
616 		/* We are always in full-duplex mode with gigabit! */
617 		yp->full_duplex = 1;
618 		iowrite16(0x01CF, ioaddr + Cnfg);
619 	} else {
620 		iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
621 		iowrite16(0x1018, ioaddr + FrameGap1);
622 		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
623 	}
624 	set_rx_mode(dev);
625 
626 	/* Enable interrupts by setting the interrupt mask. */
627 	iowrite16(0x81ff, ioaddr + IntrEnb);			/* See enum intr_status_bits */
628 	iowrite16(0x0000, ioaddr + EventStatus);		/* Clear non-interrupting events */
629 	iowrite32(0x80008000, ioaddr + RxCtrl);		/* Start Rx and Tx channels. */
630 	iowrite32(0x80008000, ioaddr + TxCtrl);
631 
632 	if (yellowfin_debug > 2) {
633 		netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
634 	}
635 
636 	/* Set the timer to check for link beat. */
637 	init_timer(&yp->timer);
638 	yp->timer.expires = jiffies + 3*HZ;
639 	yp->timer.data = (unsigned long)dev;
640 	yp->timer.function = yellowfin_timer;				/* timer handler */
641 	add_timer(&yp->timer);
642 out:
643 	return rc;
644 
645 err_free_irq:
646 	free_irq(irq, dev);
647 	goto out;
648 }
649 
650 static void yellowfin_timer(unsigned long data)
651 {
652 	struct net_device *dev = (struct net_device *)data;
653 	struct yellowfin_private *yp = netdev_priv(dev);
654 	void __iomem *ioaddr = yp->base;
655 	int next_tick = 60*HZ;
656 
657 	if (yellowfin_debug > 3) {
658 		netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
659 			      ioread16(ioaddr + IntrStatus));
660 	}
661 
662 	if (yp->mii_cnt) {
663 		int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
664 		int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
665 		int negotiated = lpa & yp->advertising;
666 		if (yellowfin_debug > 1)
667 			netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
668 				      yp->phys[0], bmsr, lpa);
669 
670 		yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
671 
672 		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
673 
674 		if (bmsr & BMSR_LSTATUS)
675 			next_tick = 60*HZ;
676 		else
677 			next_tick = 3*HZ;
678 	}
679 
680 	yp->timer.expires = jiffies + next_tick;
681 	add_timer(&yp->timer);
682 }
683 
684 static void yellowfin_tx_timeout(struct net_device *dev)
685 {
686 	struct yellowfin_private *yp = netdev_priv(dev);
687 	void __iomem *ioaddr = yp->base;
688 
689 	netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
690 		    yp->cur_tx, yp->dirty_tx,
691 		    ioread32(ioaddr + TxStatus),
692 		    ioread32(ioaddr + RxStatus));
693 
694 	/* Note: these should be KERN_DEBUG. */
695 	if (yellowfin_debug) {
696 		int i;
697 		pr_warning("  Rx ring %p: ", yp->rx_ring);
698 		for (i = 0; i < RX_RING_SIZE; i++)
699 			pr_cont(" %08x", yp->rx_ring[i].result_status);
700 		pr_cont("\n");
701 		pr_warning("  Tx ring %p: ", yp->tx_ring);
702 		for (i = 0; i < TX_RING_SIZE; i++)
703 			pr_cont(" %04x /%08x",
704 			       yp->tx_status[i].tx_errs,
705 			       yp->tx_ring[i].result_status);
706 		pr_cont("\n");
707 	}
708 
709 	/* If the hardware is found to hang regularly, we will update the code
710 	   to reinitialize the chip here. */
711 	dev->if_port = 0;
712 
713 	/* Wake the potentially-idle transmit channel. */
714 	iowrite32(0x10001000, yp->base + TxCtrl);
715 	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
716 		netif_wake_queue (dev);		/* Typical path */
717 
718 	dev->trans_start = jiffies; /* prevent tx timeout */
719 	dev->stats.tx_errors++;
720 }
721 
722 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
723 static int yellowfin_init_ring(struct net_device *dev)
724 {
725 	struct yellowfin_private *yp = netdev_priv(dev);
726 	int i, j;
727 
728 	yp->tx_full = 0;
729 	yp->cur_rx = yp->cur_tx = 0;
730 	yp->dirty_tx = 0;
731 
732 	yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
733 
734 	for (i = 0; i < RX_RING_SIZE; i++) {
735 		yp->rx_ring[i].dbdma_cmd =
736 			cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
737 		yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
738 			((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
739 	}
740 
741 	for (i = 0; i < RX_RING_SIZE; i++) {
742 		struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
743 		yp->rx_skbuff[i] = skb;
744 		if (skb == NULL)
745 			break;
746 		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
747 		yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
748 			skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
749 	}
750 	if (i != RX_RING_SIZE) {
751 		for (j = 0; j < i; j++)
752 			dev_kfree_skb(yp->rx_skbuff[j]);
753 		return -ENOMEM;
754 	}
755 	yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
756 	yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
757 
758 #define NO_TXSTATS
759 #ifdef NO_TXSTATS
760 	/* In this mode the Tx ring needs only a single descriptor. */
761 	for (i = 0; i < TX_RING_SIZE; i++) {
762 		yp->tx_skbuff[i] = NULL;
763 		yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
764 		yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
765 			((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
766 	}
767 	/* Wrap ring */
768 	yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
769 #else
770 {
771 	/* Tx ring needs a pair of descriptors, the second for the status. */
772 	for (i = 0; i < TX_RING_SIZE; i++) {
773 		j = 2*i;
774 		yp->tx_skbuff[i] = 0;
775 		/* Branch on Tx error. */
776 		yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777 		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778 			(j+1)*sizeof(struct yellowfin_desc));
779 		j++;
780 		if (yp->flags & FullTxStatus) {
781 			yp->tx_ring[j].dbdma_cmd =
782 				cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783 			yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784 			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785 				i*sizeof(struct tx_status_words));
786 		} else {
787 			/* Symbios chips write only tx_errs word. */
788 			yp->tx_ring[j].dbdma_cmd =
789 				cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
790 			yp->tx_ring[j].request_cnt = 2;
791 			/* Om pade ummmmm... */
792 			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793 				i*sizeof(struct tx_status_words) +
794 				&(yp->tx_status[0].tx_errs) -
795 				&(yp->tx_status[0]));
796 		}
797 		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798 			((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
799 	}
800 	/* Wrap ring */
801 	yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
802 }
803 #endif
804 	yp->tx_tail_desc = &yp->tx_status[0];
805 	return 0;
806 }
807 
808 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
809 					struct net_device *dev)
810 {
811 	struct yellowfin_private *yp = netdev_priv(dev);
812 	unsigned entry;
813 	int len = skb->len;
814 
815 	netif_stop_queue (dev);
816 
817 	/* Note: Ordering is important here, set the field with the
818 	   "ownership" bit last, and only then increment cur_tx. */
819 
820 	/* Calculate the next Tx descriptor entry. */
821 	entry = yp->cur_tx % TX_RING_SIZE;
822 
823 	if (gx_fix) {	/* Note: only works for paddable protocols e.g.  IP. */
824 		int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
825 		/* Fix GX chipset errata. */
826 		if (cacheline_end > 24  || cacheline_end == 0) {
827 			len = skb->len + 32 - cacheline_end + 1;
828 			if (skb_padto(skb, len)) {
829 				yp->tx_skbuff[entry] = NULL;
830 				netif_wake_queue(dev);
831 				return NETDEV_TX_OK;
832 			}
833 		}
834 	}
835 	yp->tx_skbuff[entry] = skb;
836 
837 #ifdef NO_TXSTATS
838 	yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
839 		skb->data, len, PCI_DMA_TODEVICE));
840 	yp->tx_ring[entry].result_status = 0;
841 	if (entry >= TX_RING_SIZE-1) {
842 		/* New stop command. */
843 		yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
844 		yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
845 			cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
846 	} else {
847 		yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 		yp->tx_ring[entry].dbdma_cmd =
849 			cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
850 	}
851 	yp->cur_tx++;
852 #else
853 	yp->tx_ring[entry<<1].request_cnt = len;
854 	yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
855 		skb->data, len, PCI_DMA_TODEVICE));
856 	/* The input_last (status-write) command is constant, but we must
857 	   rewrite the subsequent 'stop' command. */
858 
859 	yp->cur_tx++;
860 	{
861 		unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
862 		yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
863 	}
864 	/* Final step -- overwrite the old 'stop' command. */
865 
866 	yp->tx_ring[entry<<1].dbdma_cmd =
867 		cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
868 					  CMD_TX_PKT | BRANCH_IFTRUE) | len);
869 #endif
870 
871 	/* Non-x86 Todo: explicitly flush cache lines here. */
872 
873 	/* Wake the potentially-idle transmit channel. */
874 	iowrite32(0x10001000, yp->base + TxCtrl);
875 
876 	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
877 		netif_start_queue (dev);		/* Typical path */
878 	else
879 		yp->tx_full = 1;
880 
881 	if (yellowfin_debug > 4) {
882 		netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
883 			      yp->cur_tx, entry);
884 	}
885 	return NETDEV_TX_OK;
886 }
887 
888 /* The interrupt handler does all of the Rx thread work and cleans up
889    after the Tx thread. */
890 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
891 {
892 	struct net_device *dev = dev_instance;
893 	struct yellowfin_private *yp;
894 	void __iomem *ioaddr;
895 	int boguscnt = max_interrupt_work;
896 	unsigned int handled = 0;
897 
898 	yp = netdev_priv(dev);
899 	ioaddr = yp->base;
900 
901 	spin_lock (&yp->lock);
902 
903 	do {
904 		u16 intr_status = ioread16(ioaddr + IntrClear);
905 
906 		if (yellowfin_debug > 4)
907 			netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
908 				      intr_status);
909 
910 		if (intr_status == 0)
911 			break;
912 		handled = 1;
913 
914 		if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915 			yellowfin_rx(dev);
916 			iowrite32(0x10001000, ioaddr + RxCtrl);		/* Wake Rx engine. */
917 		}
918 
919 #ifdef NO_TXSTATS
920 		for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
921 			int entry = yp->dirty_tx % TX_RING_SIZE;
922 			struct sk_buff *skb;
923 
924 			if (yp->tx_ring[entry].result_status == 0)
925 				break;
926 			skb = yp->tx_skbuff[entry];
927 			dev->stats.tx_packets++;
928 			dev->stats.tx_bytes += skb->len;
929 			/* Free the original skb. */
930 			pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
931 				skb->len, PCI_DMA_TODEVICE);
932 			dev_kfree_skb_irq(skb);
933 			yp->tx_skbuff[entry] = NULL;
934 		}
935 		if (yp->tx_full &&
936 		    yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
937 			/* The ring is no longer full, clear tbusy. */
938 			yp->tx_full = 0;
939 			netif_wake_queue(dev);
940 		}
941 #else
942 		if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
943 			unsigned dirty_tx = yp->dirty_tx;
944 
945 			for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946 				 dirty_tx++) {
947 				/* Todo: optimize this. */
948 				int entry = dirty_tx % TX_RING_SIZE;
949 				u16 tx_errs = yp->tx_status[entry].tx_errs;
950 				struct sk_buff *skb;
951 
952 #ifndef final_version
953 				if (yellowfin_debug > 5)
954 					netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
955 						      entry,
956 						      yp->tx_status[entry].tx_cnt,
957 						      yp->tx_status[entry].tx_errs,
958 						      yp->tx_status[entry].total_tx_cnt,
959 						      yp->tx_status[entry].paused);
960 #endif
961 				if (tx_errs == 0)
962 					break;	/* It still hasn't been Txed */
963 				skb = yp->tx_skbuff[entry];
964 				if (tx_errs & 0xF810) {
965 					/* There was an major error, log it. */
966 #ifndef final_version
967 					if (yellowfin_debug > 1)
968 						netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
969 							      tx_errs);
970 #endif
971 					dev->stats.tx_errors++;
972 					if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
973 					if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
974 					if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
975 					if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
976 				} else {
977 #ifndef final_version
978 					if (yellowfin_debug > 4)
979 						netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
980 							      tx_errs);
981 #endif
982 					dev->stats.tx_bytes += skb->len;
983 					dev->stats.collisions += tx_errs & 15;
984 					dev->stats.tx_packets++;
985 				}
986 				/* Free the original skb. */
987 				pci_unmap_single(yp->pci_dev,
988 					yp->tx_ring[entry<<1].addr, skb->len,
989 					PCI_DMA_TODEVICE);
990 				dev_kfree_skb_irq(skb);
991 				yp->tx_skbuff[entry] = 0;
992 				/* Mark status as empty. */
993 				yp->tx_status[entry].tx_errs = 0;
994 			}
995 
996 #ifndef final_version
997 			if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
998 				netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
999 					   dirty_tx, yp->cur_tx, yp->tx_full);
1000 				dirty_tx += TX_RING_SIZE;
1001 			}
1002 #endif
1003 
1004 			if (yp->tx_full &&
1005 			    yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006 				/* The ring is no longer full, clear tbusy. */
1007 				yp->tx_full = 0;
1008 				netif_wake_queue(dev);
1009 			}
1010 
1011 			yp->dirty_tx = dirty_tx;
1012 			yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1013 		}
1014 #endif
1015 
1016 		/* Log errors and other uncommon events. */
1017 		if (intr_status & 0x2ee)	/* Abnormal error summary. */
1018 			yellowfin_error(dev, intr_status);
1019 
1020 		if (--boguscnt < 0) {
1021 			netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1022 				    intr_status);
1023 			break;
1024 		}
1025 	} while (1);
1026 
1027 	if (yellowfin_debug > 3)
1028 		netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1029 			      ioread16(ioaddr + IntrStatus));
1030 
1031 	spin_unlock (&yp->lock);
1032 	return IRQ_RETVAL(handled);
1033 }
1034 
1035 /* This routine is logically part of the interrupt handler, but separated
1036    for clarity and better register allocation. */
1037 static int yellowfin_rx(struct net_device *dev)
1038 {
1039 	struct yellowfin_private *yp = netdev_priv(dev);
1040 	int entry = yp->cur_rx % RX_RING_SIZE;
1041 	int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1042 
1043 	if (yellowfin_debug > 4) {
1044 		printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1045 			   entry, yp->rx_ring[entry].result_status);
1046 		printk(KERN_DEBUG "   #%d desc. %08x %08x %08x\n",
1047 			   entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1048 			   yp->rx_ring[entry].result_status);
1049 	}
1050 
1051 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1052 	while (1) {
1053 		struct yellowfin_desc *desc = &yp->rx_ring[entry];
1054 		struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1055 		s16 frame_status;
1056 		u16 desc_status;
1057 		int data_size;
1058 		u8 *buf_addr;
1059 
1060 		if(!desc->result_status)
1061 			break;
1062 		pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1063 			yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1064 		desc_status = le32_to_cpu(desc->result_status) >> 16;
1065 		buf_addr = rx_skb->data;
1066 		data_size = (le32_to_cpu(desc->dbdma_cmd) -
1067 			le32_to_cpu(desc->result_status)) & 0xffff;
1068 		frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1069 		if (yellowfin_debug > 4)
1070 			printk(KERN_DEBUG "  %s() status was %04x\n",
1071 			       __func__, frame_status);
1072 		if (--boguscnt < 0)
1073 			break;
1074 		if ( ! (desc_status & RX_EOP)) {
1075 			if (data_size != 0)
1076 				netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1077 					    desc_status, data_size);
1078 			dev->stats.rx_length_errors++;
1079 		} else if ((yp->drv_flags & IsGigabit)  &&  (frame_status & 0x0038)) {
1080 			/* There was a error. */
1081 			if (yellowfin_debug > 3)
1082 				printk(KERN_DEBUG "  %s() Rx error was %04x\n",
1083 				       __func__, frame_status);
1084 			dev->stats.rx_errors++;
1085 			if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1086 			if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1087 			if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1088 			if (frame_status < 0) dev->stats.rx_dropped++;
1089 		} else if ( !(yp->drv_flags & IsGigabit)  &&
1090 				   ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1091 			u8 status1 = buf_addr[data_size-2];
1092 			u8 status2 = buf_addr[data_size-1];
1093 			dev->stats.rx_errors++;
1094 			if (status1 & 0xC0) dev->stats.rx_length_errors++;
1095 			if (status2 & 0x03) dev->stats.rx_frame_errors++;
1096 			if (status2 & 0x04) dev->stats.rx_crc_errors++;
1097 			if (status2 & 0x80) dev->stats.rx_dropped++;
1098 #ifdef YF_PROTOTYPE		/* Support for prototype hardware errata. */
1099 		} else if ((yp->flags & HasMACAddrBug)  &&
1100 			memcmp(le32_to_cpu(yp->rx_ring_dma +
1101 				entry*sizeof(struct yellowfin_desc)),
1102 				dev->dev_addr, 6) != 0 &&
1103 			memcmp(le32_to_cpu(yp->rx_ring_dma +
1104 				entry*sizeof(struct yellowfin_desc)),
1105 				"\377\377\377\377\377\377", 6) != 0) {
1106 			if (bogus_rx++ == 0)
1107 				netdev_warn(dev, "Bad frame to %pM\n",
1108 					    buf_addr);
1109 #endif
1110 		} else {
1111 			struct sk_buff *skb;
1112 			int pkt_len = data_size -
1113 				(yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1114 			/* To verify: Yellowfin Length should omit the CRC! */
1115 
1116 #ifndef final_version
1117 			if (yellowfin_debug > 4)
1118 				printk(KERN_DEBUG "  %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1119 				       __func__, pkt_len, data_size, boguscnt);
1120 #endif
1121 			/* Check if the packet is long enough to just pass up the skbuff
1122 			   without copying to a properly sized skbuff. */
1123 			if (pkt_len > rx_copybreak) {
1124 				skb_put(skb = rx_skb, pkt_len);
1125 				pci_unmap_single(yp->pci_dev,
1126 					le32_to_cpu(yp->rx_ring[entry].addr),
1127 					yp->rx_buf_sz,
1128 					PCI_DMA_FROMDEVICE);
1129 				yp->rx_skbuff[entry] = NULL;
1130 			} else {
1131 				skb = netdev_alloc_skb(dev, pkt_len + 2);
1132 				if (skb == NULL)
1133 					break;
1134 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1135 				skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1136 				skb_put(skb, pkt_len);
1137 				pci_dma_sync_single_for_device(yp->pci_dev,
1138 								le32_to_cpu(desc->addr),
1139 								yp->rx_buf_sz,
1140 								PCI_DMA_FROMDEVICE);
1141 			}
1142 			skb->protocol = eth_type_trans(skb, dev);
1143 			netif_rx(skb);
1144 			dev->stats.rx_packets++;
1145 			dev->stats.rx_bytes += pkt_len;
1146 		}
1147 		entry = (++yp->cur_rx) % RX_RING_SIZE;
1148 	}
1149 
1150 	/* Refill the Rx ring buffers. */
1151 	for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1152 		entry = yp->dirty_rx % RX_RING_SIZE;
1153 		if (yp->rx_skbuff[entry] == NULL) {
1154 			struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1155 			if (skb == NULL)
1156 				break;				/* Better luck next round. */
1157 			yp->rx_skbuff[entry] = skb;
1158 			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1159 			yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1160 				skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1161 		}
1162 		yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1163 		yp->rx_ring[entry].result_status = 0;	/* Clear complete bit. */
1164 		if (entry != 0)
1165 			yp->rx_ring[entry - 1].dbdma_cmd =
1166 				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1167 		else
1168 			yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1169 				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1170 							| yp->rx_buf_sz);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static void yellowfin_error(struct net_device *dev, int intr_status)
1177 {
1178 	netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1179 	/* Hmmmmm, it's not clear what to do here. */
1180 	if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1181 		dev->stats.tx_errors++;
1182 	if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1183 		dev->stats.rx_errors++;
1184 }
1185 
1186 static int yellowfin_close(struct net_device *dev)
1187 {
1188 	struct yellowfin_private *yp = netdev_priv(dev);
1189 	void __iomem *ioaddr = yp->base;
1190 	int i;
1191 
1192 	netif_stop_queue (dev);
1193 
1194 	if (yellowfin_debug > 1) {
1195 		netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1196 			      ioread16(ioaddr + TxStatus),
1197 			      ioread16(ioaddr + RxStatus),
1198 			      ioread16(ioaddr + IntrStatus));
1199 		netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1200 			      yp->cur_tx, yp->dirty_tx,
1201 			      yp->cur_rx, yp->dirty_rx);
1202 	}
1203 
1204 	/* Disable interrupts by clearing the interrupt mask. */
1205 	iowrite16(0x0000, ioaddr + IntrEnb);
1206 
1207 	/* Stop the chip's Tx and Rx processes. */
1208 	iowrite32(0x80000000, ioaddr + RxCtrl);
1209 	iowrite32(0x80000000, ioaddr + TxCtrl);
1210 
1211 	del_timer(&yp->timer);
1212 
1213 #if defined(__i386__)
1214 	if (yellowfin_debug > 2) {
1215 		printk(KERN_DEBUG "  Tx ring at %08llx:\n",
1216 				(unsigned long long)yp->tx_ring_dma);
1217 		for (i = 0; i < TX_RING_SIZE*2; i++)
1218 			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1219 				   ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220 				   i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221 				   yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222 		printk(KERN_DEBUG "  Tx status %p:\n", yp->tx_status);
1223 		for (i = 0; i < TX_RING_SIZE; i++)
1224 			printk(KERN_DEBUG "   #%d status %04x %04x %04x %04x\n",
1225 				   i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226 				   yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1227 
1228 		printk(KERN_DEBUG "  Rx ring %08llx:\n",
1229 				(unsigned long long)yp->rx_ring_dma);
1230 		for (i = 0; i < RX_RING_SIZE; i++) {
1231 			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1232 				   ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233 				   i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234 				   yp->rx_ring[i].result_status);
1235 			if (yellowfin_debug > 6) {
1236 				if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1237 					int j;
1238 
1239 					printk(KERN_DEBUG);
1240 					for (j = 0; j < 0x50; j++)
1241 						pr_cont(" %04x",
1242 							get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1243 					pr_cont("\n");
1244 				}
1245 			}
1246 		}
1247 	}
1248 #endif /* __i386__ debugging only */
1249 
1250 	free_irq(yp->pci_dev->irq, dev);
1251 
1252 	/* Free all the skbuffs in the Rx queue. */
1253 	for (i = 0; i < RX_RING_SIZE; i++) {
1254 		yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1255 		yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1256 		if (yp->rx_skbuff[i]) {
1257 			dev_kfree_skb(yp->rx_skbuff[i]);
1258 		}
1259 		yp->rx_skbuff[i] = NULL;
1260 	}
1261 	for (i = 0; i < TX_RING_SIZE; i++) {
1262 		if (yp->tx_skbuff[i])
1263 			dev_kfree_skb(yp->tx_skbuff[i]);
1264 		yp->tx_skbuff[i] = NULL;
1265 	}
1266 
1267 #ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
1268 	if (yellowfin_debug > 0) {
1269 		netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1270 			      bogus_rx);
1271 	}
1272 #endif
1273 
1274 	return 0;
1275 }
1276 
1277 /* Set or clear the multicast filter for this adaptor. */
1278 
1279 static void set_rx_mode(struct net_device *dev)
1280 {
1281 	struct yellowfin_private *yp = netdev_priv(dev);
1282 	void __iomem *ioaddr = yp->base;
1283 	u16 cfg_value = ioread16(ioaddr + Cnfg);
1284 
1285 	/* Stop the Rx process to change any value. */
1286 	iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1287 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1288 		iowrite16(0x000F, ioaddr + AddrMode);
1289 	} else if ((netdev_mc_count(dev) > 64) ||
1290 		   (dev->flags & IFF_ALLMULTI)) {
1291 		/* Too many to filter well, or accept all multicasts. */
1292 		iowrite16(0x000B, ioaddr + AddrMode);
1293 	} else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1294 		struct netdev_hw_addr *ha;
1295 		u16 hash_table[4];
1296 		int i;
1297 
1298 		memset(hash_table, 0, sizeof(hash_table));
1299 		netdev_for_each_mc_addr(ha, dev) {
1300 			unsigned int bit;
1301 
1302 			/* Due to a bug in the early chip versions, multiple filter
1303 			   slots must be set for each address. */
1304 			if (yp->drv_flags & HasMulticastBug) {
1305 				bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1306 				hash_table[bit >> 4] |= (1 << bit);
1307 				bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1308 				hash_table[bit >> 4] |= (1 << bit);
1309 				bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1310 				hash_table[bit >> 4] |= (1 << bit);
1311 			}
1312 			bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1313 			hash_table[bit >> 4] |= (1 << bit);
1314 		}
1315 		/* Copy the hash table to the chip. */
1316 		for (i = 0; i < 4; i++)
1317 			iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1318 		iowrite16(0x0003, ioaddr + AddrMode);
1319 	} else {					/* Normal, unicast/broadcast-only mode. */
1320 		iowrite16(0x0001, ioaddr + AddrMode);
1321 	}
1322 	/* Restart the Rx process. */
1323 	iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1324 }
1325 
1326 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1327 {
1328 	struct yellowfin_private *np = netdev_priv(dev);
1329 
1330 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1331 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1332 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1333 }
1334 
1335 static const struct ethtool_ops ethtool_ops = {
1336 	.get_drvinfo = yellowfin_get_drvinfo
1337 };
1338 
1339 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1340 {
1341 	struct yellowfin_private *np = netdev_priv(dev);
1342 	void __iomem *ioaddr = np->base;
1343 	struct mii_ioctl_data *data = if_mii(rq);
1344 
1345 	switch(cmd) {
1346 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1347 		data->phy_id = np->phys[0] & 0x1f;
1348 		/* Fall Through */
1349 
1350 	case SIOCGMIIREG:		/* Read MII PHY register. */
1351 		data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1352 		return 0;
1353 
1354 	case SIOCSMIIREG:		/* Write MII PHY register. */
1355 		if (data->phy_id == np->phys[0]) {
1356 			u16 value = data->val_in;
1357 			switch (data->reg_num) {
1358 			case 0:
1359 				/* Check for autonegotiation on or reset. */
1360 				np->medialock = (value & 0x9000) ? 0 : 1;
1361 				if (np->medialock)
1362 					np->full_duplex = (value & 0x0100) ? 1 : 0;
1363 				break;
1364 			case 4: np->advertising = value; break;
1365 			}
1366 			/* Perhaps check_duplex(dev), depending on chip semantics. */
1367 		}
1368 		mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1369 		return 0;
1370 	default:
1371 		return -EOPNOTSUPP;
1372 	}
1373 }
1374 
1375 
1376 static void yellowfin_remove_one(struct pci_dev *pdev)
1377 {
1378 	struct net_device *dev = pci_get_drvdata(pdev);
1379 	struct yellowfin_private *np;
1380 
1381 	BUG_ON(!dev);
1382 	np = netdev_priv(dev);
1383 
1384         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1385 		np->tx_status_dma);
1386 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1387 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1388 	unregister_netdev (dev);
1389 
1390 	pci_iounmap(pdev, np->base);
1391 
1392 	pci_release_regions (pdev);
1393 
1394 	free_netdev (dev);
1395 	pci_set_drvdata(pdev, NULL);
1396 }
1397 
1398 
1399 static struct pci_driver yellowfin_driver = {
1400 	.name		= DRV_NAME,
1401 	.id_table	= yellowfin_pci_tbl,
1402 	.probe		= yellowfin_init_one,
1403 	.remove		= yellowfin_remove_one,
1404 };
1405 
1406 
1407 static int __init yellowfin_init (void)
1408 {
1409 /* when a module, this is printed whether or not devices are found in probe */
1410 #ifdef MODULE
1411 	printk(version);
1412 #endif
1413 	return pci_register_driver(&yellowfin_driver);
1414 }
1415 
1416 
1417 static void __exit yellowfin_cleanup (void)
1418 {
1419 	pci_unregister_driver (&yellowfin_driver);
1420 }
1421 
1422 
1423 module_init(yellowfin_init);
1424 module_exit(yellowfin_cleanup);
1425