1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */ 2 /* 3 Written 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter. 13 It also supports the Symbios Logic version of the same chip core. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Support and updates available at 21 http://www.scyld.com/network/yellowfin.html 22 [link no longer provides useful info -jgarzik] 23 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #define DRV_NAME "yellowfin" 29 #define DRV_VERSION "2.1" 30 #define DRV_RELDATE "Sep 11, 2006" 31 32 /* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 37 static int max_interrupt_work = 20; 38 static int mtu; 39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 40 /* System-wide count of bogus-rx frames. */ 41 static int bogus_rx; 42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */ 43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ 44 #elif defined(YF_NEW) /* A future perfect board :->. */ 45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */ 46 static int fifo_cfg = 0x0028; 47 #else 48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */ 49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ 50 #endif 51 52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 53 Setting to > 1514 effectively disables this feature. */ 54 static int rx_copybreak; 55 56 /* Used to pass the media type, etc. 57 No media types are currently defined. These exist for driver 58 interoperability. 59 */ 60 #define MAX_UNITS 8 /* More are supported, limit only on options */ 61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 63 64 /* Do ugly workaround for GX server chipset errata. */ 65 static int gx_fix; 66 67 /* Operational parameters that are set at compile time. */ 68 69 /* Keep the ring sizes a power of two for efficiency. 70 Making the Tx ring too long decreases the effectiveness of channel 71 bonding and packet priority. 72 There are no ill effects from too-large receive rings. */ 73 #define TX_RING_SIZE 16 74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */ 75 #define RX_RING_SIZE 64 76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words) 77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc) 78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc) 79 80 /* Operational parameters that usually are not changed. */ 81 /* Time in jiffies before concluding the transmitter is hung. */ 82 #define TX_TIMEOUT (2*HZ) 83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 84 85 #define yellowfin_debug debug 86 87 #include <linux/module.h> 88 #include <linux/kernel.h> 89 #include <linux/string.h> 90 #include <linux/timer.h> 91 #include <linux/errno.h> 92 #include <linux/ioport.h> 93 #include <linux/interrupt.h> 94 #include <linux/pci.h> 95 #include <linux/init.h> 96 #include <linux/mii.h> 97 #include <linux/netdevice.h> 98 #include <linux/etherdevice.h> 99 #include <linux/skbuff.h> 100 #include <linux/ethtool.h> 101 #include <linux/crc32.h> 102 #include <linux/bitops.h> 103 #include <asm/uaccess.h> 104 #include <asm/processor.h> /* Processor type for cache alignment. */ 105 #include <asm/unaligned.h> 106 #include <asm/io.h> 107 108 /* These identify the driver base version and may not be removed. */ 109 static const char version[] = 110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n" 111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n"; 112 113 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver"); 115 MODULE_LICENSE("GPL"); 116 117 module_param(max_interrupt_work, int, 0); 118 module_param(mtu, int, 0); 119 module_param(debug, int, 0); 120 module_param(rx_copybreak, int, 0); 121 module_param_array(options, int, NULL, 0); 122 module_param_array(full_duplex, int, NULL, 0); 123 module_param(gx_fix, int, 0); 124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt"); 125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)"); 126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)"); 127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames"); 128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex"); 129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)"); 130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)"); 131 132 /* 133 Theory of Operation 134 135 I. Board Compatibility 136 137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit 138 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the 139 Symbios 53C885E dual function chip. 140 141 II. Board-specific settings 142 143 PCI bus devices are configured by the system at boot time, so no jumpers 144 need to be set on the board. The system BIOS preferably should assign the 145 PCI INTA signal to an otherwise unused system IRQ line. 146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI 147 interrupt lines. 148 149 III. Driver operation 150 151 IIIa. Ring buffers 152 153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple. 154 This is a descriptor list scheme similar to that used by the EEPro100 and 155 Tulip. This driver uses two statically allocated fixed-size descriptor lists 156 formed into rings by a branch from the final descriptor to the beginning of 157 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 158 159 The driver allocates full frame size skbuffs for the Rx ring buffers at 160 open() time and passes the skb->data field to the Yellowfin as receive data 161 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 162 a fresh skbuff is allocated and the frame is copied to the new skbuff. 163 When the incoming frame is larger, the skbuff is passed directly up the 164 protocol stack and replaced by a newly allocated skbuff. 165 166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 167 using a full-sized skbuff for small frames vs. the copying costs of larger 168 frames. For small frames the copying cost is negligible (esp. considering 169 that we are pre-loading the cache with immediately useful header 170 information). For large frames the copying cost is non-trivial, and the 171 larger copy might flush the cache of useful data. 172 173 IIIC. Synchronization 174 175 The driver runs as two independent, single-threaded flows of control. One 176 is the send-packet routine, which enforces single-threaded use by the 177 dev->tbusy flag. The other thread is the interrupt handler, which is single 178 threaded by the hardware and other software. 179 180 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 181 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 183 the 'yp->tx_full' flag. 184 185 The interrupt handler has exclusive control over the Rx ring and records stats 186 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it 188 clears both the tx_full and tbusy flags. 189 190 IV. Notes 191 192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards. 193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board 194 and an AlphaStation to verifty the Alpha port! 195 196 IVb. References 197 198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential 199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary 200 Data Manual v3.0 201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html 202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html 203 204 IVc. Errata 205 206 See Packet Engines confidential appendix (prototype chips only). 207 */ 208 209 210 211 enum capability_flags { 212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16, 213 HasMACAddrBug=32, /* Only on early revs. */ 214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */ 215 }; 216 217 /* The PCI I/O space extent. */ 218 enum { 219 YELLOWFIN_SIZE = 0x100, 220 }; 221 222 struct pci_id_info { 223 const char *name; 224 struct match_info { 225 int pci, pci_mask, subsystem, subsystem_mask; 226 int revision, revision_mask; /* Only 8 bits. */ 227 } id; 228 int drv_flags; /* Driver use, intended as capability flags. */ 229 }; 230 231 static const struct pci_id_info pci_id_tbl[] = { 232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff}, 233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom}, 234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff}, 235 HasMII | DontUseEeprom }, 236 { } 237 }; 238 239 static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = { 240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 242 { } 243 }; 244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl); 245 246 247 /* Offsets to the Yellowfin registers. Various sizes and alignments. */ 248 enum yellowfin_offsets { 249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C, 250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18, 251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C, 252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58, 253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86, 254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94, 255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4, 256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC, 257 MII_Status=0xAE, 258 RxDepth=0xB8, FlowCtrl=0xBC, 259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8, 260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4, 261 EEFeature=0xF5, 262 }; 263 264 /* The Yellowfin Rx and Tx buffer descriptors. 265 Elements are written as 32 bit for endian portability. */ 266 struct yellowfin_desc { 267 __le32 dbdma_cmd; 268 __le32 addr; 269 __le32 branch_addr; 270 __le32 result_status; 271 }; 272 273 struct tx_status_words { 274 #ifdef __BIG_ENDIAN 275 u16 tx_errs; 276 u16 tx_cnt; 277 u16 paused; 278 u16 total_tx_cnt; 279 #else /* Little endian chips. */ 280 u16 tx_cnt; 281 u16 tx_errs; 282 u16 total_tx_cnt; 283 u16 paused; 284 #endif /* __BIG_ENDIAN */ 285 }; 286 287 /* Bits in yellowfin_desc.cmd */ 288 enum desc_cmd_bits { 289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000, 290 CMD_NOP=0x60000000, CMD_STOP=0x70000000, 291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000, 292 BRANCH_IFTRUE=0x040000, 293 }; 294 295 /* Bits in yellowfin_desc.status */ 296 enum desc_status_bits { RX_EOP=0x0040, }; 297 298 /* Bits in the interrupt status/mask registers. */ 299 enum intr_status_bits { 300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08, 301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80, 302 IntrEarlyRx=0x100, IntrWakeup=0x200, }; 303 304 #define PRIV_ALIGN 31 /* Required alignment mask */ 305 #define MII_CNT 4 306 struct yellowfin_private { 307 /* Descriptor rings first for alignment. 308 Tx requires a second descriptor for status. */ 309 struct yellowfin_desc *rx_ring; 310 struct yellowfin_desc *tx_ring; 311 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 312 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 313 dma_addr_t rx_ring_dma; 314 dma_addr_t tx_ring_dma; 315 316 struct tx_status_words *tx_status; 317 dma_addr_t tx_status_dma; 318 319 struct timer_list timer; /* Media selection timer. */ 320 /* Frequently used and paired value: keep adjacent for cache effect. */ 321 int chip_id, drv_flags; 322 struct pci_dev *pci_dev; 323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 324 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 325 struct tx_status_words *tx_tail_desc; 326 unsigned int cur_tx, dirty_tx; 327 int tx_threshold; 328 unsigned int tx_full:1; /* The Tx queue is full. */ 329 unsigned int full_duplex:1; /* Full-duplex operation requested. */ 330 unsigned int duplex_lock:1; 331 unsigned int medialock:1; /* Do not sense media. */ 332 unsigned int default_port:4; /* Last dev->if_port value. */ 333 /* MII transceiver section. */ 334 int mii_cnt; /* MII device addresses. */ 335 u16 advertising; /* NWay media advertisement */ 336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */ 337 spinlock_t lock; 338 void __iomem *base; 339 }; 340 341 static int read_eeprom(void __iomem *ioaddr, int location); 342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location); 343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value); 344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 345 static int yellowfin_open(struct net_device *dev); 346 static void yellowfin_timer(unsigned long data); 347 static void yellowfin_tx_timeout(struct net_device *dev); 348 static int yellowfin_init_ring(struct net_device *dev); 349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb, 350 struct net_device *dev); 351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance); 352 static int yellowfin_rx(struct net_device *dev); 353 static void yellowfin_error(struct net_device *dev, int intr_status); 354 static int yellowfin_close(struct net_device *dev); 355 static void set_rx_mode(struct net_device *dev); 356 static const struct ethtool_ops ethtool_ops; 357 358 static const struct net_device_ops netdev_ops = { 359 .ndo_open = yellowfin_open, 360 .ndo_stop = yellowfin_close, 361 .ndo_start_xmit = yellowfin_start_xmit, 362 .ndo_set_rx_mode = set_rx_mode, 363 .ndo_change_mtu = eth_change_mtu, 364 .ndo_validate_addr = eth_validate_addr, 365 .ndo_set_mac_address = eth_mac_addr, 366 .ndo_do_ioctl = netdev_ioctl, 367 .ndo_tx_timeout = yellowfin_tx_timeout, 368 }; 369 370 static int yellowfin_init_one(struct pci_dev *pdev, 371 const struct pci_device_id *ent) 372 { 373 struct net_device *dev; 374 struct yellowfin_private *np; 375 int irq; 376 int chip_idx = ent->driver_data; 377 static int find_cnt; 378 void __iomem *ioaddr; 379 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; 380 int drv_flags = pci_id_tbl[chip_idx].drv_flags; 381 void *ring_space; 382 dma_addr_t ring_dma; 383 #ifdef USE_IO_OPS 384 int bar = 0; 385 #else 386 int bar = 1; 387 #endif 388 389 /* when built into the kernel, we only print version if device is found */ 390 #ifndef MODULE 391 static int printed_version; 392 if (!printed_version++) 393 printk(version); 394 #endif 395 396 i = pci_enable_device(pdev); 397 if (i) return i; 398 399 dev = alloc_etherdev(sizeof(*np)); 400 if (!dev) 401 return -ENOMEM; 402 403 SET_NETDEV_DEV(dev, &pdev->dev); 404 405 np = netdev_priv(dev); 406 407 if (pci_request_regions(pdev, DRV_NAME)) 408 goto err_out_free_netdev; 409 410 pci_set_master (pdev); 411 412 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE); 413 if (!ioaddr) 414 goto err_out_free_res; 415 416 irq = pdev->irq; 417 418 if (drv_flags & DontUseEeprom) 419 for (i = 0; i < 6; i++) 420 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i); 421 else { 422 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0); 423 for (i = 0; i < 6; i++) 424 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i); 425 } 426 427 /* Reset the chip. */ 428 iowrite32(0x80000000, ioaddr + DMACtrl); 429 430 pci_set_drvdata(pdev, dev); 431 spin_lock_init(&np->lock); 432 433 np->pci_dev = pdev; 434 np->chip_id = chip_idx; 435 np->drv_flags = drv_flags; 436 np->base = ioaddr; 437 438 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 439 if (!ring_space) 440 goto err_out_cleardev; 441 np->tx_ring = ring_space; 442 np->tx_ring_dma = ring_dma; 443 444 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 445 if (!ring_space) 446 goto err_out_unmap_tx; 447 np->rx_ring = ring_space; 448 np->rx_ring_dma = ring_dma; 449 450 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma); 451 if (!ring_space) 452 goto err_out_unmap_rx; 453 np->tx_status = ring_space; 454 np->tx_status_dma = ring_dma; 455 456 if (dev->mem_start) 457 option = dev->mem_start; 458 459 /* The lower four bits are the media type. */ 460 if (option > 0) { 461 if (option & 0x200) 462 np->full_duplex = 1; 463 np->default_port = option & 15; 464 if (np->default_port) 465 np->medialock = 1; 466 } 467 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0) 468 np->full_duplex = 1; 469 470 if (np->full_duplex) 471 np->duplex_lock = 1; 472 473 /* The Yellowfin-specific entries in the device structure. */ 474 dev->netdev_ops = &netdev_ops; 475 SET_ETHTOOL_OPS(dev, ðtool_ops); 476 dev->watchdog_timeo = TX_TIMEOUT; 477 478 if (mtu) 479 dev->mtu = mtu; 480 481 i = register_netdev(dev); 482 if (i) 483 goto err_out_unmap_status; 484 485 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n", 486 pci_id_tbl[chip_idx].name, 487 ioread32(ioaddr + ChipRev), ioaddr, 488 dev->dev_addr, irq); 489 490 if (np->drv_flags & HasMII) { 491 int phy, phy_idx = 0; 492 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) { 493 int mii_status = mdio_read(ioaddr, phy, 1); 494 if (mii_status != 0xffff && mii_status != 0x0000) { 495 np->phys[phy_idx++] = phy; 496 np->advertising = mdio_read(ioaddr, phy, 4); 497 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n", 498 phy, mii_status, np->advertising); 499 } 500 } 501 np->mii_cnt = phy_idx; 502 } 503 504 find_cnt++; 505 506 return 0; 507 508 err_out_unmap_status: 509 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status, 510 np->tx_status_dma); 511 err_out_unmap_rx: 512 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 513 err_out_unmap_tx: 514 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 515 err_out_cleardev: 516 pci_iounmap(pdev, ioaddr); 517 err_out_free_res: 518 pci_release_regions(pdev); 519 err_out_free_netdev: 520 free_netdev (dev); 521 return -ENODEV; 522 } 523 524 static int read_eeprom(void __iomem *ioaddr, int location) 525 { 526 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */ 527 528 iowrite8(location, ioaddr + EEAddr); 529 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl); 530 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0) 531 ; 532 return ioread8(ioaddr + EERead); 533 } 534 535 /* MII Managemen Data I/O accesses. 536 These routines assume the MDIO controller is idle, and do not exit until 537 the command is finished. */ 538 539 static int mdio_read(void __iomem *ioaddr, int phy_id, int location) 540 { 541 int i; 542 543 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr); 544 iowrite16(1, ioaddr + MII_Cmd); 545 for (i = 10000; i >= 0; i--) 546 if ((ioread16(ioaddr + MII_Status) & 1) == 0) 547 break; 548 return ioread16(ioaddr + MII_Rd_Data); 549 } 550 551 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value) 552 { 553 int i; 554 555 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr); 556 iowrite16(value, ioaddr + MII_Wr_Data); 557 558 /* Wait for the command to finish. */ 559 for (i = 10000; i >= 0; i--) 560 if ((ioread16(ioaddr + MII_Status) & 1) == 0) 561 break; 562 } 563 564 565 static int yellowfin_open(struct net_device *dev) 566 { 567 struct yellowfin_private *yp = netdev_priv(dev); 568 const int irq = yp->pci_dev->irq; 569 void __iomem *ioaddr = yp->base; 570 int i, rc; 571 572 /* Reset the chip. */ 573 iowrite32(0x80000000, ioaddr + DMACtrl); 574 575 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev); 576 if (rc) 577 return rc; 578 579 rc = yellowfin_init_ring(dev); 580 if (rc < 0) 581 goto err_free_irq; 582 583 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr); 584 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr); 585 586 for (i = 0; i < 6; i++) 587 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i); 588 589 /* Set up various condition 'select' registers. 590 There are no options here. */ 591 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */ 592 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */ 593 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */ 594 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */ 595 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */ 596 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */ 597 598 /* Initialize other registers: with so many this eventually this will 599 converted to an offset/value list. */ 600 iowrite32(dma_ctrl, ioaddr + DMACtrl); 601 iowrite16(fifo_cfg, ioaddr + FIFOcfg); 602 /* Enable automatic generation of flow control frames, period 0xffff. */ 603 iowrite32(0x0030FFFF, ioaddr + FlowCtrl); 604 605 yp->tx_threshold = 32; 606 iowrite32(yp->tx_threshold, ioaddr + TxThreshold); 607 608 if (dev->if_port == 0) 609 dev->if_port = yp->default_port; 610 611 netif_start_queue(dev); 612 613 /* Setting the Rx mode will start the Rx process. */ 614 if (yp->drv_flags & IsGigabit) { 615 /* We are always in full-duplex mode with gigabit! */ 616 yp->full_duplex = 1; 617 iowrite16(0x01CF, ioaddr + Cnfg); 618 } else { 619 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */ 620 iowrite16(0x1018, ioaddr + FrameGap1); 621 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); 622 } 623 set_rx_mode(dev); 624 625 /* Enable interrupts by setting the interrupt mask. */ 626 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */ 627 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */ 628 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */ 629 iowrite32(0x80008000, ioaddr + TxCtrl); 630 631 if (yellowfin_debug > 2) { 632 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__); 633 } 634 635 /* Set the timer to check for link beat. */ 636 init_timer(&yp->timer); 637 yp->timer.expires = jiffies + 3*HZ; 638 yp->timer.data = (unsigned long)dev; 639 yp->timer.function = yellowfin_timer; /* timer handler */ 640 add_timer(&yp->timer); 641 out: 642 return rc; 643 644 err_free_irq: 645 free_irq(irq, dev); 646 goto out; 647 } 648 649 static void yellowfin_timer(unsigned long data) 650 { 651 struct net_device *dev = (struct net_device *)data; 652 struct yellowfin_private *yp = netdev_priv(dev); 653 void __iomem *ioaddr = yp->base; 654 int next_tick = 60*HZ; 655 656 if (yellowfin_debug > 3) { 657 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n", 658 ioread16(ioaddr + IntrStatus)); 659 } 660 661 if (yp->mii_cnt) { 662 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR); 663 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA); 664 int negotiated = lpa & yp->advertising; 665 if (yellowfin_debug > 1) 666 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n", 667 yp->phys[0], bmsr, lpa); 668 669 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated); 670 671 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); 672 673 if (bmsr & BMSR_LSTATUS) 674 next_tick = 60*HZ; 675 else 676 next_tick = 3*HZ; 677 } 678 679 yp->timer.expires = jiffies + next_tick; 680 add_timer(&yp->timer); 681 } 682 683 static void yellowfin_tx_timeout(struct net_device *dev) 684 { 685 struct yellowfin_private *yp = netdev_priv(dev); 686 void __iomem *ioaddr = yp->base; 687 688 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n", 689 yp->cur_tx, yp->dirty_tx, 690 ioread32(ioaddr + TxStatus), 691 ioread32(ioaddr + RxStatus)); 692 693 /* Note: these should be KERN_DEBUG. */ 694 if (yellowfin_debug) { 695 int i; 696 pr_warning(" Rx ring %p: ", yp->rx_ring); 697 for (i = 0; i < RX_RING_SIZE; i++) 698 pr_cont(" %08x", yp->rx_ring[i].result_status); 699 pr_cont("\n"); 700 pr_warning(" Tx ring %p: ", yp->tx_ring); 701 for (i = 0; i < TX_RING_SIZE; i++) 702 pr_cont(" %04x /%08x", 703 yp->tx_status[i].tx_errs, 704 yp->tx_ring[i].result_status); 705 pr_cont("\n"); 706 } 707 708 /* If the hardware is found to hang regularly, we will update the code 709 to reinitialize the chip here. */ 710 dev->if_port = 0; 711 712 /* Wake the potentially-idle transmit channel. */ 713 iowrite32(0x10001000, yp->base + TxCtrl); 714 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE) 715 netif_wake_queue (dev); /* Typical path */ 716 717 dev->trans_start = jiffies; /* prevent tx timeout */ 718 dev->stats.tx_errors++; 719 } 720 721 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 722 static int yellowfin_init_ring(struct net_device *dev) 723 { 724 struct yellowfin_private *yp = netdev_priv(dev); 725 int i, j; 726 727 yp->tx_full = 0; 728 yp->cur_rx = yp->cur_tx = 0; 729 yp->dirty_tx = 0; 730 731 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 732 733 for (i = 0; i < RX_RING_SIZE; i++) { 734 yp->rx_ring[i].dbdma_cmd = 735 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); 736 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma + 737 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc)); 738 } 739 740 for (i = 0; i < RX_RING_SIZE; i++) { 741 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2); 742 yp->rx_skbuff[i] = skb; 743 if (skb == NULL) 744 break; 745 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 746 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev, 747 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 748 } 749 if (i != RX_RING_SIZE) { 750 for (j = 0; j < i; j++) 751 dev_kfree_skb(yp->rx_skbuff[j]); 752 return -ENOMEM; 753 } 754 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP); 755 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 756 757 #define NO_TXSTATS 758 #ifdef NO_TXSTATS 759 /* In this mode the Tx ring needs only a single descriptor. */ 760 for (i = 0; i < TX_RING_SIZE; i++) { 761 yp->tx_skbuff[i] = NULL; 762 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); 763 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma + 764 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc)); 765 } 766 /* Wrap ring */ 767 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS); 768 #else 769 { 770 /* Tx ring needs a pair of descriptors, the second for the status. */ 771 for (i = 0; i < TX_RING_SIZE; i++) { 772 j = 2*i; 773 yp->tx_skbuff[i] = 0; 774 /* Branch on Tx error. */ 775 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP); 776 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma + 777 (j+1)*sizeof(struct yellowfin_desc)); 778 j++; 779 if (yp->flags & FullTxStatus) { 780 yp->tx_ring[j].dbdma_cmd = 781 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status)); 782 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status); 783 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma + 784 i*sizeof(struct tx_status_words)); 785 } else { 786 /* Symbios chips write only tx_errs word. */ 787 yp->tx_ring[j].dbdma_cmd = 788 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2); 789 yp->tx_ring[j].request_cnt = 2; 790 /* Om pade ummmmm... */ 791 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma + 792 i*sizeof(struct tx_status_words) + 793 &(yp->tx_status[0].tx_errs) - 794 &(yp->tx_status[0])); 795 } 796 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma + 797 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc)); 798 } 799 /* Wrap ring */ 800 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS); 801 } 802 #endif 803 yp->tx_tail_desc = &yp->tx_status[0]; 804 return 0; 805 } 806 807 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb, 808 struct net_device *dev) 809 { 810 struct yellowfin_private *yp = netdev_priv(dev); 811 unsigned entry; 812 int len = skb->len; 813 814 netif_stop_queue (dev); 815 816 /* Note: Ordering is important here, set the field with the 817 "ownership" bit last, and only then increment cur_tx. */ 818 819 /* Calculate the next Tx descriptor entry. */ 820 entry = yp->cur_tx % TX_RING_SIZE; 821 822 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */ 823 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32; 824 /* Fix GX chipset errata. */ 825 if (cacheline_end > 24 || cacheline_end == 0) { 826 len = skb->len + 32 - cacheline_end + 1; 827 if (skb_padto(skb, len)) { 828 yp->tx_skbuff[entry] = NULL; 829 netif_wake_queue(dev); 830 return NETDEV_TX_OK; 831 } 832 } 833 } 834 yp->tx_skbuff[entry] = skb; 835 836 #ifdef NO_TXSTATS 837 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev, 838 skb->data, len, PCI_DMA_TODEVICE)); 839 yp->tx_ring[entry].result_status = 0; 840 if (entry >= TX_RING_SIZE-1) { 841 /* New stop command. */ 842 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP); 843 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd = 844 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len); 845 } else { 846 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP); 847 yp->tx_ring[entry].dbdma_cmd = 848 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len); 849 } 850 yp->cur_tx++; 851 #else 852 yp->tx_ring[entry<<1].request_cnt = len; 853 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev, 854 skb->data, len, PCI_DMA_TODEVICE)); 855 /* The input_last (status-write) command is constant, but we must 856 rewrite the subsequent 'stop' command. */ 857 858 yp->cur_tx++; 859 { 860 unsigned next_entry = yp->cur_tx % TX_RING_SIZE; 861 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP); 862 } 863 /* Final step -- overwrite the old 'stop' command. */ 864 865 yp->tx_ring[entry<<1].dbdma_cmd = 866 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE : 867 CMD_TX_PKT | BRANCH_IFTRUE) | len); 868 #endif 869 870 /* Non-x86 Todo: explicitly flush cache lines here. */ 871 872 /* Wake the potentially-idle transmit channel. */ 873 iowrite32(0x10001000, yp->base + TxCtrl); 874 875 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE) 876 netif_start_queue (dev); /* Typical path */ 877 else 878 yp->tx_full = 1; 879 880 if (yellowfin_debug > 4) { 881 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n", 882 yp->cur_tx, entry); 883 } 884 return NETDEV_TX_OK; 885 } 886 887 /* The interrupt handler does all of the Rx thread work and cleans up 888 after the Tx thread. */ 889 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance) 890 { 891 struct net_device *dev = dev_instance; 892 struct yellowfin_private *yp; 893 void __iomem *ioaddr; 894 int boguscnt = max_interrupt_work; 895 unsigned int handled = 0; 896 897 yp = netdev_priv(dev); 898 ioaddr = yp->base; 899 900 spin_lock (&yp->lock); 901 902 do { 903 u16 intr_status = ioread16(ioaddr + IntrClear); 904 905 if (yellowfin_debug > 4) 906 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n", 907 intr_status); 908 909 if (intr_status == 0) 910 break; 911 handled = 1; 912 913 if (intr_status & (IntrRxDone | IntrEarlyRx)) { 914 yellowfin_rx(dev); 915 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */ 916 } 917 918 #ifdef NO_TXSTATS 919 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) { 920 int entry = yp->dirty_tx % TX_RING_SIZE; 921 struct sk_buff *skb; 922 923 if (yp->tx_ring[entry].result_status == 0) 924 break; 925 skb = yp->tx_skbuff[entry]; 926 dev->stats.tx_packets++; 927 dev->stats.tx_bytes += skb->len; 928 /* Free the original skb. */ 929 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr), 930 skb->len, PCI_DMA_TODEVICE); 931 dev_kfree_skb_irq(skb); 932 yp->tx_skbuff[entry] = NULL; 933 } 934 if (yp->tx_full && 935 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) { 936 /* The ring is no longer full, clear tbusy. */ 937 yp->tx_full = 0; 938 netif_wake_queue(dev); 939 } 940 #else 941 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) { 942 unsigned dirty_tx = yp->dirty_tx; 943 944 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0; 945 dirty_tx++) { 946 /* Todo: optimize this. */ 947 int entry = dirty_tx % TX_RING_SIZE; 948 u16 tx_errs = yp->tx_status[entry].tx_errs; 949 struct sk_buff *skb; 950 951 #ifndef final_version 952 if (yellowfin_debug > 5) 953 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n", 954 entry, 955 yp->tx_status[entry].tx_cnt, 956 yp->tx_status[entry].tx_errs, 957 yp->tx_status[entry].total_tx_cnt, 958 yp->tx_status[entry].paused); 959 #endif 960 if (tx_errs == 0) 961 break; /* It still hasn't been Txed */ 962 skb = yp->tx_skbuff[entry]; 963 if (tx_errs & 0xF810) { 964 /* There was an major error, log it. */ 965 #ifndef final_version 966 if (yellowfin_debug > 1) 967 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n", 968 tx_errs); 969 #endif 970 dev->stats.tx_errors++; 971 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++; 972 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++; 973 if (tx_errs & 0x2000) dev->stats.tx_window_errors++; 974 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++; 975 } else { 976 #ifndef final_version 977 if (yellowfin_debug > 4) 978 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n", 979 tx_errs); 980 #endif 981 dev->stats.tx_bytes += skb->len; 982 dev->stats.collisions += tx_errs & 15; 983 dev->stats.tx_packets++; 984 } 985 /* Free the original skb. */ 986 pci_unmap_single(yp->pci_dev, 987 yp->tx_ring[entry<<1].addr, skb->len, 988 PCI_DMA_TODEVICE); 989 dev_kfree_skb_irq(skb); 990 yp->tx_skbuff[entry] = 0; 991 /* Mark status as empty. */ 992 yp->tx_status[entry].tx_errs = 0; 993 } 994 995 #ifndef final_version 996 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) { 997 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n", 998 dirty_tx, yp->cur_tx, yp->tx_full); 999 dirty_tx += TX_RING_SIZE; 1000 } 1001 #endif 1002 1003 if (yp->tx_full && 1004 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) { 1005 /* The ring is no longer full, clear tbusy. */ 1006 yp->tx_full = 0; 1007 netif_wake_queue(dev); 1008 } 1009 1010 yp->dirty_tx = dirty_tx; 1011 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE]; 1012 } 1013 #endif 1014 1015 /* Log errors and other uncommon events. */ 1016 if (intr_status & 0x2ee) /* Abnormal error summary. */ 1017 yellowfin_error(dev, intr_status); 1018 1019 if (--boguscnt < 0) { 1020 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n", 1021 intr_status); 1022 break; 1023 } 1024 } while (1); 1025 1026 if (yellowfin_debug > 3) 1027 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n", 1028 ioread16(ioaddr + IntrStatus)); 1029 1030 spin_unlock (&yp->lock); 1031 return IRQ_RETVAL(handled); 1032 } 1033 1034 /* This routine is logically part of the interrupt handler, but separated 1035 for clarity and better register allocation. */ 1036 static int yellowfin_rx(struct net_device *dev) 1037 { 1038 struct yellowfin_private *yp = netdev_priv(dev); 1039 int entry = yp->cur_rx % RX_RING_SIZE; 1040 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx; 1041 1042 if (yellowfin_debug > 4) { 1043 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n", 1044 entry, yp->rx_ring[entry].result_status); 1045 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n", 1046 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr, 1047 yp->rx_ring[entry].result_status); 1048 } 1049 1050 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1051 while (1) { 1052 struct yellowfin_desc *desc = &yp->rx_ring[entry]; 1053 struct sk_buff *rx_skb = yp->rx_skbuff[entry]; 1054 s16 frame_status; 1055 u16 desc_status; 1056 int data_size; 1057 u8 *buf_addr; 1058 1059 if(!desc->result_status) 1060 break; 1061 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr), 1062 yp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1063 desc_status = le32_to_cpu(desc->result_status) >> 16; 1064 buf_addr = rx_skb->data; 1065 data_size = (le32_to_cpu(desc->dbdma_cmd) - 1066 le32_to_cpu(desc->result_status)) & 0xffff; 1067 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2])); 1068 if (yellowfin_debug > 4) 1069 printk(KERN_DEBUG " %s() status was %04x\n", 1070 __func__, frame_status); 1071 if (--boguscnt < 0) 1072 break; 1073 if ( ! (desc_status & RX_EOP)) { 1074 if (data_size != 0) 1075 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n", 1076 desc_status, data_size); 1077 dev->stats.rx_length_errors++; 1078 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) { 1079 /* There was a error. */ 1080 if (yellowfin_debug > 3) 1081 printk(KERN_DEBUG " %s() Rx error was %04x\n", 1082 __func__, frame_status); 1083 dev->stats.rx_errors++; 1084 if (frame_status & 0x0060) dev->stats.rx_length_errors++; 1085 if (frame_status & 0x0008) dev->stats.rx_frame_errors++; 1086 if (frame_status & 0x0010) dev->stats.rx_crc_errors++; 1087 if (frame_status < 0) dev->stats.rx_dropped++; 1088 } else if ( !(yp->drv_flags & IsGigabit) && 1089 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) { 1090 u8 status1 = buf_addr[data_size-2]; 1091 u8 status2 = buf_addr[data_size-1]; 1092 dev->stats.rx_errors++; 1093 if (status1 & 0xC0) dev->stats.rx_length_errors++; 1094 if (status2 & 0x03) dev->stats.rx_frame_errors++; 1095 if (status2 & 0x04) dev->stats.rx_crc_errors++; 1096 if (status2 & 0x80) dev->stats.rx_dropped++; 1097 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 1098 } else if ((yp->flags & HasMACAddrBug) && 1099 memcmp(le32_to_cpu(yp->rx_ring_dma + 1100 entry*sizeof(struct yellowfin_desc)), 1101 dev->dev_addr, 6) != 0 && 1102 memcmp(le32_to_cpu(yp->rx_ring_dma + 1103 entry*sizeof(struct yellowfin_desc)), 1104 "\377\377\377\377\377\377", 6) != 0) { 1105 if (bogus_rx++ == 0) 1106 netdev_warn(dev, "Bad frame to %pM\n", 1107 buf_addr); 1108 #endif 1109 } else { 1110 struct sk_buff *skb; 1111 int pkt_len = data_size - 1112 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]); 1113 /* To verify: Yellowfin Length should omit the CRC! */ 1114 1115 #ifndef final_version 1116 if (yellowfin_debug > 4) 1117 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n", 1118 __func__, pkt_len, data_size, boguscnt); 1119 #endif 1120 /* Check if the packet is long enough to just pass up the skbuff 1121 without copying to a properly sized skbuff. */ 1122 if (pkt_len > rx_copybreak) { 1123 skb_put(skb = rx_skb, pkt_len); 1124 pci_unmap_single(yp->pci_dev, 1125 le32_to_cpu(yp->rx_ring[entry].addr), 1126 yp->rx_buf_sz, 1127 PCI_DMA_FROMDEVICE); 1128 yp->rx_skbuff[entry] = NULL; 1129 } else { 1130 skb = netdev_alloc_skb(dev, pkt_len + 2); 1131 if (skb == NULL) 1132 break; 1133 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1134 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len); 1135 skb_put(skb, pkt_len); 1136 pci_dma_sync_single_for_device(yp->pci_dev, 1137 le32_to_cpu(desc->addr), 1138 yp->rx_buf_sz, 1139 PCI_DMA_FROMDEVICE); 1140 } 1141 skb->protocol = eth_type_trans(skb, dev); 1142 netif_rx(skb); 1143 dev->stats.rx_packets++; 1144 dev->stats.rx_bytes += pkt_len; 1145 } 1146 entry = (++yp->cur_rx) % RX_RING_SIZE; 1147 } 1148 1149 /* Refill the Rx ring buffers. */ 1150 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) { 1151 entry = yp->dirty_rx % RX_RING_SIZE; 1152 if (yp->rx_skbuff[entry] == NULL) { 1153 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2); 1154 if (skb == NULL) 1155 break; /* Better luck next round. */ 1156 yp->rx_skbuff[entry] = skb; 1157 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1158 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev, 1159 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 1160 } 1161 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP); 1162 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */ 1163 if (entry != 0) 1164 yp->rx_ring[entry - 1].dbdma_cmd = 1165 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); 1166 else 1167 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd = 1168 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS 1169 | yp->rx_buf_sz); 1170 } 1171 1172 return 0; 1173 } 1174 1175 static void yellowfin_error(struct net_device *dev, int intr_status) 1176 { 1177 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status); 1178 /* Hmmmmm, it's not clear what to do here. */ 1179 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault)) 1180 dev->stats.tx_errors++; 1181 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault)) 1182 dev->stats.rx_errors++; 1183 } 1184 1185 static int yellowfin_close(struct net_device *dev) 1186 { 1187 struct yellowfin_private *yp = netdev_priv(dev); 1188 void __iomem *ioaddr = yp->base; 1189 int i; 1190 1191 netif_stop_queue (dev); 1192 1193 if (yellowfin_debug > 1) { 1194 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n", 1195 ioread16(ioaddr + TxStatus), 1196 ioread16(ioaddr + RxStatus), 1197 ioread16(ioaddr + IntrStatus)); 1198 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n", 1199 yp->cur_tx, yp->dirty_tx, 1200 yp->cur_rx, yp->dirty_rx); 1201 } 1202 1203 /* Disable interrupts by clearing the interrupt mask. */ 1204 iowrite16(0x0000, ioaddr + IntrEnb); 1205 1206 /* Stop the chip's Tx and Rx processes. */ 1207 iowrite32(0x80000000, ioaddr + RxCtrl); 1208 iowrite32(0x80000000, ioaddr + TxCtrl); 1209 1210 del_timer(&yp->timer); 1211 1212 #if defined(__i386__) 1213 if (yellowfin_debug > 2) { 1214 printk(KERN_DEBUG " Tx ring at %08llx:\n", 1215 (unsigned long long)yp->tx_ring_dma); 1216 for (i = 0; i < TX_RING_SIZE*2; i++) 1217 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n", 1218 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ', 1219 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr, 1220 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status); 1221 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status); 1222 for (i = 0; i < TX_RING_SIZE; i++) 1223 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n", 1224 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs, 1225 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused); 1226 1227 printk(KERN_DEBUG " Rx ring %08llx:\n", 1228 (unsigned long long)yp->rx_ring_dma); 1229 for (i = 0; i < RX_RING_SIZE; i++) { 1230 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n", 1231 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ', 1232 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr, 1233 yp->rx_ring[i].result_status); 1234 if (yellowfin_debug > 6) { 1235 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) { 1236 int j; 1237 1238 printk(KERN_DEBUG); 1239 for (j = 0; j < 0x50; j++) 1240 pr_cont(" %04x", 1241 get_unaligned(((u16*)yp->rx_ring[i].addr) + j)); 1242 pr_cont("\n"); 1243 } 1244 } 1245 } 1246 } 1247 #endif /* __i386__ debugging only */ 1248 1249 free_irq(yp->pci_dev->irq, dev); 1250 1251 /* Free all the skbuffs in the Rx queue. */ 1252 for (i = 0; i < RX_RING_SIZE; i++) { 1253 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); 1254 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1255 if (yp->rx_skbuff[i]) { 1256 dev_kfree_skb(yp->rx_skbuff[i]); 1257 } 1258 yp->rx_skbuff[i] = NULL; 1259 } 1260 for (i = 0; i < TX_RING_SIZE; i++) { 1261 if (yp->tx_skbuff[i]) 1262 dev_kfree_skb(yp->tx_skbuff[i]); 1263 yp->tx_skbuff[i] = NULL; 1264 } 1265 1266 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 1267 if (yellowfin_debug > 0) { 1268 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n", 1269 bogus_rx); 1270 } 1271 #endif 1272 1273 return 0; 1274 } 1275 1276 /* Set or clear the multicast filter for this adaptor. */ 1277 1278 static void set_rx_mode(struct net_device *dev) 1279 { 1280 struct yellowfin_private *yp = netdev_priv(dev); 1281 void __iomem *ioaddr = yp->base; 1282 u16 cfg_value = ioread16(ioaddr + Cnfg); 1283 1284 /* Stop the Rx process to change any value. */ 1285 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg); 1286 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1287 iowrite16(0x000F, ioaddr + AddrMode); 1288 } else if ((netdev_mc_count(dev) > 64) || 1289 (dev->flags & IFF_ALLMULTI)) { 1290 /* Too many to filter well, or accept all multicasts. */ 1291 iowrite16(0x000B, ioaddr + AddrMode); 1292 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */ 1293 struct netdev_hw_addr *ha; 1294 u16 hash_table[4]; 1295 int i; 1296 1297 memset(hash_table, 0, sizeof(hash_table)); 1298 netdev_for_each_mc_addr(ha, dev) { 1299 unsigned int bit; 1300 1301 /* Due to a bug in the early chip versions, multiple filter 1302 slots must be set for each address. */ 1303 if (yp->drv_flags & HasMulticastBug) { 1304 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f; 1305 hash_table[bit >> 4] |= (1 << bit); 1306 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f; 1307 hash_table[bit >> 4] |= (1 << bit); 1308 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f; 1309 hash_table[bit >> 4] |= (1 << bit); 1310 } 1311 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f; 1312 hash_table[bit >> 4] |= (1 << bit); 1313 } 1314 /* Copy the hash table to the chip. */ 1315 for (i = 0; i < 4; i++) 1316 iowrite16(hash_table[i], ioaddr + HashTbl + i*2); 1317 iowrite16(0x0003, ioaddr + AddrMode); 1318 } else { /* Normal, unicast/broadcast-only mode. */ 1319 iowrite16(0x0001, ioaddr + AddrMode); 1320 } 1321 /* Restart the Rx process. */ 1322 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg); 1323 } 1324 1325 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1326 { 1327 struct yellowfin_private *np = netdev_priv(dev); 1328 1329 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1330 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1331 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1332 } 1333 1334 static const struct ethtool_ops ethtool_ops = { 1335 .get_drvinfo = yellowfin_get_drvinfo 1336 }; 1337 1338 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1339 { 1340 struct yellowfin_private *np = netdev_priv(dev); 1341 void __iomem *ioaddr = np->base; 1342 struct mii_ioctl_data *data = if_mii(rq); 1343 1344 switch(cmd) { 1345 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 1346 data->phy_id = np->phys[0] & 0x1f; 1347 /* Fall Through */ 1348 1349 case SIOCGMIIREG: /* Read MII PHY register. */ 1350 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f); 1351 return 0; 1352 1353 case SIOCSMIIREG: /* Write MII PHY register. */ 1354 if (data->phy_id == np->phys[0]) { 1355 u16 value = data->val_in; 1356 switch (data->reg_num) { 1357 case 0: 1358 /* Check for autonegotiation on or reset. */ 1359 np->medialock = (value & 0x9000) ? 0 : 1; 1360 if (np->medialock) 1361 np->full_duplex = (value & 0x0100) ? 1 : 0; 1362 break; 1363 case 4: np->advertising = value; break; 1364 } 1365 /* Perhaps check_duplex(dev), depending on chip semantics. */ 1366 } 1367 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 1368 return 0; 1369 default: 1370 return -EOPNOTSUPP; 1371 } 1372 } 1373 1374 1375 static void yellowfin_remove_one(struct pci_dev *pdev) 1376 { 1377 struct net_device *dev = pci_get_drvdata(pdev); 1378 struct yellowfin_private *np; 1379 1380 BUG_ON(!dev); 1381 np = netdev_priv(dev); 1382 1383 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status, 1384 np->tx_status_dma); 1385 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 1386 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 1387 unregister_netdev (dev); 1388 1389 pci_iounmap(pdev, np->base); 1390 1391 pci_release_regions (pdev); 1392 1393 free_netdev (dev); 1394 } 1395 1396 1397 static struct pci_driver yellowfin_driver = { 1398 .name = DRV_NAME, 1399 .id_table = yellowfin_pci_tbl, 1400 .probe = yellowfin_init_one, 1401 .remove = yellowfin_remove_one, 1402 }; 1403 1404 1405 static int __init yellowfin_init (void) 1406 { 1407 /* when a module, this is printed whether or not devices are found in probe */ 1408 #ifdef MODULE 1409 printk(version); 1410 #endif 1411 return pci_register_driver(&yellowfin_driver); 1412 } 1413 1414 1415 static void __exit yellowfin_cleanup (void) 1416 { 1417 pci_unregister_driver (&yellowfin_driver); 1418 } 1419 1420 1421 module_init(yellowfin_init); 1422 module_exit(yellowfin_cleanup); 1423