1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 Updates 2000 by Keith Underwood. 5 6 This software may be used and distributed according to the terms of 7 the GNU General Public License (GPL), incorporated herein by reference. 8 Drivers based on or derived from this code fall under the GPL and must 9 retain the authorship, copyright and license notice. This file is not 10 a complete program and may only be used when the entire operating 11 system is licensed under the GPL. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet 19 adapter. 20 21 Support and updates available at 22 http://www.scyld.com/network/hamachi.html 23 [link no longer provides useful info -jgarzik] 24 or 25 http://www.parl.clemson.edu/~keithu/hamachi.html 26 27 */ 28 29 #define DRV_NAME "hamachi" 30 #define DRV_VERSION "2.1" 31 #define DRV_RELDATE "Sept 11, 2006" 32 33 34 /* A few user-configurable values. */ 35 36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 37 #define final_version 38 #define hamachi_debug debug 39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 40 static int max_interrupt_work = 40; 41 static int mtu; 42 /* Default values selected by testing on a dual processor PIII-450 */ 43 /* These six interrupt control parameters may be set directly when loading the 44 * module, or through the rx_params and tx_params variables 45 */ 46 static int max_rx_latency = 0x11; 47 static int max_rx_gap = 0x05; 48 static int min_rx_pkt = 0x18; 49 static int max_tx_latency = 0x00; 50 static int max_tx_gap = 0x00; 51 static int min_tx_pkt = 0x30; 52 53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 54 -Setting to > 1518 causes all frames to be copied 55 -Setting to 0 disables copies 56 */ 57 static int rx_copybreak; 58 59 /* An override for the hardware detection of bus width. 60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit. 61 Add 2 to disable parity detection. 62 */ 63 static int force32; 64 65 66 /* Used to pass the media type, etc. 67 These exist for driver interoperability. 68 No media types are currently defined. 69 - The lower 4 bits are reserved for the media type. 70 - The next three bits may be set to one of the following: 71 0x00000000 : Autodetect PCI bus 72 0x00000010 : Force 32 bit PCI bus 73 0x00000020 : Disable parity detection 74 0x00000040 : Force 64 bit PCI bus 75 Default is autodetect 76 - The next bit can be used to force half-duplex. This is a bad 77 idea since no known implementations implement half-duplex, and, 78 in general, half-duplex for gigabit ethernet is a bad idea. 79 0x00000080 : Force half-duplex 80 Default is full-duplex. 81 - In the original driver, the ninth bit could be used to force 82 full-duplex. Maintain that for compatibility 83 0x00000200 : Force full-duplex 84 */ 85 #define MAX_UNITS 8 /* More are supported, limit only on options */ 86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx 89 * interruput management. Parameters will be loaded as specified into 90 * the TxIntControl and RxIntControl registers. 91 * 92 * The registers are arranged as follows: 93 * 23 - 16 15 - 8 7 - 0 94 * _________________________________ 95 * | min_pkt | max_gap | max_latency | 96 * --------------------------------- 97 * min_pkt : The minimum number of packets processed between 98 * interrupts. 99 * max_gap : The maximum inter-packet gap in units of 8.192 us 100 * max_latency : The absolute time between interrupts in units of 8.192 us 101 * 102 */ 103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 105 106 /* Operational parameters that are set at compile time. */ 107 108 /* Keep the ring sizes a power of two for compile efficiency. 109 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 110 Making the Tx ring too large decreases the effectiveness of channel 111 bonding and packet priority. 112 There are no ill effects from too-large receive rings, except for 113 excessive memory usage */ 114 /* Empirically it appears that the Tx ring needs to be a little bigger 115 for these Gbit adapters or you get into an overrun condition really 116 easily. Also, things appear to work a bit better in back-to-back 117 configurations if the Rx ring is 8 times the size of the Tx ring 118 */ 119 #define TX_RING_SIZE 64 120 #define RX_RING_SIZE 512 121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc) 122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc) 123 124 /* 125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment. 126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov> 127 */ 128 129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */ 130 /* #define ADDRLEN 64 */ 131 132 /* 133 * RX_CHECKSUM turns on card-generated receive checksum generation for 134 * TCP and UDP packets. Otherwise the upper layers do the calculation. 135 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov> 136 */ 137 #define RX_CHECKSUM 138 139 /* Operational parameters that usually are not changed. */ 140 /* Time in jiffies before concluding the transmitter is hung. */ 141 #define TX_TIMEOUT (5*HZ) 142 143 #include <linux/capability.h> 144 #include <linux/module.h> 145 #include <linux/kernel.h> 146 #include <linux/string.h> 147 #include <linux/timer.h> 148 #include <linux/time.h> 149 #include <linux/errno.h> 150 #include <linux/ioport.h> 151 #include <linux/interrupt.h> 152 #include <linux/pci.h> 153 #include <linux/init.h> 154 #include <linux/ethtool.h> 155 #include <linux/mii.h> 156 #include <linux/netdevice.h> 157 #include <linux/etherdevice.h> 158 #include <linux/skbuff.h> 159 #include <linux/ip.h> 160 #include <linux/delay.h> 161 #include <linux/bitops.h> 162 163 #include <linux/uaccess.h> 164 #include <asm/processor.h> /* Processor type for cache alignment. */ 165 #include <asm/io.h> 166 #include <asm/unaligned.h> 167 #include <asm/cache.h> 168 169 static const char version[] = 170 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n" 171 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n" 172 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n"; 173 174 175 /* IP_MF appears to be only defined in <netinet/ip.h>, however, 176 we need it for hardware checksumming support. FYI... some of 177 the definitions in <netinet/ip.h> conflict/duplicate those in 178 other linux headers causing many compiler warnings. 179 */ 180 #ifndef IP_MF 181 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */ 182 #endif 183 184 /* Define IP_OFFSET to be IPOPT_OFFSET */ 185 #ifndef IP_OFFSET 186 #ifdef IPOPT_OFFSET 187 #define IP_OFFSET IPOPT_OFFSET 188 #else 189 #define IP_OFFSET 2 190 #endif 191 #endif 192 193 #define RUN_AT(x) (jiffies + (x)) 194 195 #ifndef ADDRLEN 196 #define ADDRLEN 32 197 #endif 198 199 /* Condensed bus+endian portability operations. */ 200 #if ADDRLEN == 64 201 #define cpu_to_leXX(addr) cpu_to_le64(addr) 202 #define leXX_to_cpu(addr) le64_to_cpu(addr) 203 #else 204 #define cpu_to_leXX(addr) cpu_to_le32(addr) 205 #define leXX_to_cpu(addr) le32_to_cpu(addr) 206 #endif 207 208 209 /* 210 Theory of Operation 211 212 I. Board Compatibility 213 214 This device driver is designed for the Packet Engines "Hamachi" 215 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit 216 66Mhz PCI card. 217 218 II. Board-specific settings 219 220 No jumpers exist on the board. The chip supports software correction of 221 various motherboard wiring errors, however this driver does not support 222 that feature. 223 224 III. Driver operation 225 226 IIIa. Ring buffers 227 228 The Hamachi uses a typical descriptor based bus-master architecture. 229 The descriptor list is similar to that used by the Digital Tulip. 230 This driver uses two statically allocated fixed-size descriptor lists 231 formed into rings by a branch from the final descriptor to the beginning of 232 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 233 234 This driver uses a zero-copy receive and transmit scheme similar my other 235 network drivers. 236 The driver allocates full frame size skbuffs for the Rx ring buffers at 237 open() time and passes the skb->data field to the Hamachi as receive data 238 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 239 a fresh skbuff is allocated and the frame is copied to the new skbuff. 240 When the incoming frame is larger, the skbuff is passed directly up the 241 protocol stack and replaced by a newly allocated skbuff. 242 243 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 244 using a full-sized skbuff for small frames vs. the copying costs of larger 245 frames. Gigabit cards are typically used on generously configured machines 246 and the underfilled buffers have negligible impact compared to the benefit of 247 a single allocation size, so the default value of zero results in never 248 copying packets. 249 250 IIIb/c. Transmit/Receive Structure 251 252 The Rx and Tx descriptor structure are straight-forward, with no historical 253 baggage that must be explained. Unlike the awkward DBDMA structure, there 254 are no unused fields or option bits that had only one allowable setting. 255 256 Two details should be noted about the descriptors: The chip supports both 32 257 bit and 64 bit address structures, and the length field is overwritten on 258 the receive descriptors. The descriptor length is set in the control word 259 for each channel. The development driver uses 32 bit addresses only, however 260 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha. 261 262 IIId. Synchronization 263 264 This driver is very similar to my other network drivers. 265 The driver runs as two independent, single-threaded flows of control. One 266 is the send-packet routine, which enforces single-threaded use by the 267 dev->tbusy flag. The other thread is the interrupt handler, which is single 268 threaded by the hardware and other software. 269 270 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 271 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 272 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 273 the 'hmp->tx_full' flag. 274 275 The interrupt handler has exclusive control over the Rx ring and records stats 276 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 277 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it 278 clears both the tx_full and tbusy flags. 279 280 IV. Notes 281 282 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards. 283 284 IVb. References 285 286 Hamachi Engineering Design Specification, 5/15/97 287 (Note: This version was marked "Confidential".) 288 289 IVc. Errata 290 291 None noted. 292 293 V. Recent Changes 294 295 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears 296 to help avoid some stall conditions -- this needs further research. 297 298 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans 299 the Tx ring and is called from hamachi_start_xmit (this used to be 300 called from hamachi_interrupt but it tends to delay execution of the 301 interrupt handler and thus reduce bandwidth by reducing the latency 302 between hamachi_rx()'s). Notably, some modification has been made so 303 that the cleaning loop checks only to make sure that the DescOwn bit 304 isn't set in the status flag since the card is not required 305 to set the entire flag to zero after processing. 306 307 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is 308 checked before attempting to add a buffer to the ring. If the ring is full 309 an attempt is made to free any dirty buffers and thus find space for 310 the new buffer or the function returns non-zero which should case the 311 scheduler to reschedule the buffer later. 312 313 01/15/1999 EPK Some adjustments were made to the chip initialization. 314 End-to-end flow control should now be fully active and the interrupt 315 algorithm vars have been changed. These could probably use further tuning. 316 317 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to 318 set the rx and tx latencies for the Hamachi interrupts. If you're having 319 problems with network stalls, try setting these to higher values. 320 Valid values are 0x00 through 0xff. 321 322 01/15/1999 EPK In general, the overall bandwidth has increased and 323 latencies are better (sometimes by a factor of 2). Stalls are rare at 324 this point, however there still appears to be a bug somewhere between the 325 hardware and driver. TCP checksum errors under load also appear to be 326 eliminated at this point. 327 328 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the 329 Rx and Tx rings. This appears to have been affecting whether a particular 330 peer-to-peer connection would hang under high load. I believe the Rx 331 rings was typically getting set correctly, but the Tx ring wasn't getting 332 the DescEndRing bit set during initialization. ??? Does this mean the 333 hamachi card is using the DescEndRing in processing even if a particular 334 slot isn't in use -- hypothetically, the card might be searching the 335 entire Tx ring for slots with the DescOwn bit set and then processing 336 them. If the DescEndRing bit isn't set, then it might just wander off 337 through memory until it hits a chunk of data with that bit set 338 and then looping back. 339 340 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout 341 problem (TxCmd and RxCmd need only to be set when idle or stopped. 342 343 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt. 344 (Michel Mueller pointed out the ``permanently busy'' potential 345 problem here). 346 347 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies. 348 349 02/23/1999 EPK Verified that the interrupt status field bits for Tx were 350 incorrectly defined and corrected (as per Michel Mueller). 351 352 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots 353 were available before resetting the tbusy and tx_full flags 354 (as per Michel Mueller). 355 356 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support. 357 358 12/31/1999 KDU Cleaned up assorted things and added Don's code to force 359 32 bit. 360 361 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the 362 hamachi_start_xmit() and hamachi_interrupt() code. There is still some 363 re-structuring I would like to do. 364 365 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation 366 parameters on a dual P3-450 setup yielded the new default interrupt 367 mitigation parameters. Tx should interrupt VERY infrequently due to 368 Eric's scheme. Rx should be more often... 369 370 03/13/2000 KDU Added a patch to make the Rx Checksum code interact 371 nicely with non-linux machines. 372 373 03/13/2000 KDU Experimented with some of the configuration values: 374 375 -It seems that enabling PCI performance commands for descriptors 376 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal 377 performance impact for any of my tests. (ttcp, netpipe, netperf) I will 378 leave them that way until I hear further feedback. 379 380 -Increasing the PCI_LATENCY_TIMER to 130 381 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly 382 degrade performance. Leaving default at 64 pending further information. 383 384 03/14/2000 KDU Further tuning: 385 386 -adjusted boguscnt in hamachi_rx() to depend on interrupt 387 mitigation parameters chosen. 388 389 -Selected a set of interrupt parameters based on some extensive testing. 390 These may change with more testing. 391 392 TO DO: 393 394 -Consider borrowing from the acenic driver code to check PCI_COMMAND for 395 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in 396 that case. 397 398 -fix the reset procedure. It doesn't quite work. 399 */ 400 401 /* A few values that may be tweaked. */ 402 /* Size of each temporary Rx buffer, calculated as: 403 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for 404 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum 405 */ 406 #define PKT_BUF_SZ 1536 407 408 /* For now, this is going to be set to the maximum size of an ethernet 409 * packet. Eventually, we may want to make it a variable that is 410 * related to the MTU 411 */ 412 #define MAX_FRAME_SIZE 1518 413 414 /* The rest of these values should never change. */ 415 416 static void hamachi_timer(struct timer_list *t); 417 418 enum capability_flags {CanHaveMII=1, }; 419 static const struct chip_info { 420 u16 vendor_id, device_id, device_id_mask, pad; 421 const char *name; 422 void (*media_timer)(struct timer_list *t); 423 int flags; 424 } chip_tbl[] = { 425 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0}, 426 {0,}, 427 }; 428 429 /* Offsets to the Hamachi registers. Various sizes. */ 430 enum hamachi_offsets { 431 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10, 432 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30, 433 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B, 434 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E, 435 TxChecksum=0x074, RxChecksum=0x076, 436 TxIntrCtrl=0x078, RxIntrCtrl=0x07C, 437 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088, 438 EventStatus=0x08C, 439 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4, 440 /* See enum MII_offsets below. */ 441 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE, 442 AddrMode=0x0D0, StationAddr=0x0D2, 443 /* Gigabit AutoNegotiation. */ 444 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8, 445 ANLinkPartnerAbility=0x0EA, 446 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2, 447 FIFOcfg=0x0F8, 448 }; 449 450 /* Offsets to the MII-mode registers. */ 451 enum MII_offsets { 452 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC, 453 MII_Status=0xAE, 454 }; 455 456 /* Bits in the interrupt status/mask registers. */ 457 enum intr_status_bits { 458 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04, 459 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400, 460 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, }; 461 462 /* The Hamachi Rx and Tx buffer descriptors. */ 463 struct hamachi_desc { 464 __le32 status_n_length; 465 #if ADDRLEN == 64 466 u32 pad; 467 __le64 addr; 468 #else 469 __le32 addr; 470 #endif 471 }; 472 473 /* Bits in hamachi_desc.status_n_length */ 474 enum desc_status_bits { 475 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000, 476 DescIntr=0x10000000, 477 }; 478 479 #define PRIV_ALIGN 15 /* Required alignment mask */ 480 #define MII_CNT 4 481 struct hamachi_private { 482 /* Descriptor rings first for alignment. Tx requires a second descriptor 483 for status. */ 484 struct hamachi_desc *rx_ring; 485 struct hamachi_desc *tx_ring; 486 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 487 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 488 dma_addr_t tx_ring_dma; 489 dma_addr_t rx_ring_dma; 490 struct timer_list timer; /* Media selection timer. */ 491 /* Frequently used and paired value: keep adjacent for cache effect. */ 492 spinlock_t lock; 493 int chip_id; 494 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 495 unsigned int cur_tx, dirty_tx; 496 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 497 unsigned int tx_full:1; /* The Tx queue is full. */ 498 unsigned int duplex_lock:1; 499 unsigned int default_port:4; /* Last dev->if_port value. */ 500 /* MII transceiver section. */ 501 int mii_cnt; /* MII device addresses. */ 502 struct mii_if_info mii_if; /* MII lib hooks/info */ 503 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ 504 u32 rx_int_var, tx_int_var; /* interrupt control variables */ 505 u32 option; /* Hold on to a copy of the options */ 506 struct pci_dev *pci_dev; 507 void __iomem *base; 508 }; 509 510 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>"); 511 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver"); 512 MODULE_LICENSE("GPL"); 513 514 module_param(max_interrupt_work, int, 0); 515 module_param(mtu, int, 0); 516 module_param(debug, int, 0); 517 module_param(min_rx_pkt, int, 0); 518 module_param(max_rx_gap, int, 0); 519 module_param(max_rx_latency, int, 0); 520 module_param(min_tx_pkt, int, 0); 521 module_param(max_tx_gap, int, 0); 522 module_param(max_tx_latency, int, 0); 523 module_param(rx_copybreak, int, 0); 524 module_param_array(rx_params, int, NULL, 0); 525 module_param_array(tx_params, int, NULL, 0); 526 module_param_array(options, int, NULL, 0); 527 module_param_array(full_duplex, int, NULL, 0); 528 module_param(force32, int, 0); 529 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt"); 530 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)"); 531 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)"); 532 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts"); 533 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units"); 534 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units"); 535 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts"); 536 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units"); 537 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units"); 538 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames"); 539 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency"); 540 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency"); 541 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex"); 542 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)"); 543 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)"); 544 545 static int read_eeprom(void __iomem *ioaddr, int location); 546 static int mdio_read(struct net_device *dev, int phy_id, int location); 547 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 548 static int hamachi_open(struct net_device *dev); 549 static int hamachi_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 550 static int hamachi_siocdevprivate(struct net_device *dev, struct ifreq *rq, 551 void __user *data, int cmd); 552 static void hamachi_timer(struct timer_list *t); 553 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue); 554 static void hamachi_init_ring(struct net_device *dev); 555 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb, 556 struct net_device *dev); 557 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance); 558 static int hamachi_rx(struct net_device *dev); 559 static inline int hamachi_tx(struct net_device *dev); 560 static void hamachi_error(struct net_device *dev, int intr_status); 561 static int hamachi_close(struct net_device *dev); 562 static struct net_device_stats *hamachi_get_stats(struct net_device *dev); 563 static void set_rx_mode(struct net_device *dev); 564 static const struct ethtool_ops ethtool_ops; 565 static const struct ethtool_ops ethtool_ops_no_mii; 566 567 static const struct net_device_ops hamachi_netdev_ops = { 568 .ndo_open = hamachi_open, 569 .ndo_stop = hamachi_close, 570 .ndo_start_xmit = hamachi_start_xmit, 571 .ndo_get_stats = hamachi_get_stats, 572 .ndo_set_rx_mode = set_rx_mode, 573 .ndo_validate_addr = eth_validate_addr, 574 .ndo_set_mac_address = eth_mac_addr, 575 .ndo_tx_timeout = hamachi_tx_timeout, 576 .ndo_eth_ioctl = hamachi_ioctl, 577 .ndo_siocdevprivate = hamachi_siocdevprivate, 578 }; 579 580 581 static int hamachi_init_one(struct pci_dev *pdev, 582 const struct pci_device_id *ent) 583 { 584 struct hamachi_private *hmp; 585 int option, i, rx_int_var, tx_int_var, boguscnt; 586 int chip_id = ent->driver_data; 587 int irq; 588 void __iomem *ioaddr; 589 unsigned long base; 590 static int card_idx; 591 struct net_device *dev; 592 void *ring_space; 593 dma_addr_t ring_dma; 594 int ret = -ENOMEM; 595 596 /* when built into the kernel, we only print version if device is found */ 597 #ifndef MODULE 598 static int printed_version; 599 if (!printed_version++) 600 printk(version); 601 #endif 602 603 if (pci_enable_device(pdev)) { 604 ret = -EIO; 605 goto err_out; 606 } 607 608 base = pci_resource_start(pdev, 0); 609 #ifdef __alpha__ /* Really "64 bit addrs" */ 610 base |= (pci_resource_start(pdev, 1) << 32); 611 #endif 612 613 pci_set_master(pdev); 614 615 i = pci_request_regions(pdev, DRV_NAME); 616 if (i) 617 return i; 618 619 irq = pdev->irq; 620 ioaddr = ioremap(base, 0x400); 621 if (!ioaddr) 622 goto err_out_release; 623 624 dev = alloc_etherdev(sizeof(struct hamachi_private)); 625 if (!dev) 626 goto err_out_iounmap; 627 628 SET_NETDEV_DEV(dev, &pdev->dev); 629 630 for (i = 0; i < 6; i++) 631 dev->dev_addr[i] = 1 ? read_eeprom(ioaddr, 4 + i) 632 : readb(ioaddr + StationAddr + i); 633 634 #if ! defined(final_version) 635 if (hamachi_debug > 4) 636 for (i = 0; i < 0x10; i++) 637 printk("%2.2x%s", 638 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n"); 639 #endif 640 641 hmp = netdev_priv(dev); 642 spin_lock_init(&hmp->lock); 643 644 hmp->mii_if.dev = dev; 645 hmp->mii_if.mdio_read = mdio_read; 646 hmp->mii_if.mdio_write = mdio_write; 647 hmp->mii_if.phy_id_mask = 0x1f; 648 hmp->mii_if.reg_num_mask = 0x1f; 649 650 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 651 GFP_KERNEL); 652 if (!ring_space) 653 goto err_out_cleardev; 654 hmp->tx_ring = ring_space; 655 hmp->tx_ring_dma = ring_dma; 656 657 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 658 GFP_KERNEL); 659 if (!ring_space) 660 goto err_out_unmap_tx; 661 hmp->rx_ring = ring_space; 662 hmp->rx_ring_dma = ring_dma; 663 664 /* Check for options being passed in */ 665 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 666 if (dev->mem_start) 667 option = dev->mem_start; 668 669 /* If the bus size is misidentified, do the following. */ 670 force32 = force32 ? force32 : 671 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 ); 672 if (force32) 673 writeb(force32, ioaddr + VirtualJumpers); 674 675 /* Hmmm, do we really need to reset the chip???. */ 676 writeb(0x01, ioaddr + ChipReset); 677 678 /* After a reset, the clock speed measurement of the PCI bus will not 679 * be valid for a moment. Wait for a little while until it is. If 680 * it takes more than 10ms, forget it. 681 */ 682 udelay(10); 683 i = readb(ioaddr + PCIClkMeas); 684 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){ 685 udelay(10); 686 i = readb(ioaddr + PCIClkMeas); 687 } 688 689 hmp->base = ioaddr; 690 pci_set_drvdata(pdev, dev); 691 692 hmp->chip_id = chip_id; 693 hmp->pci_dev = pdev; 694 695 /* The lower four bits are the media type. */ 696 if (option > 0) { 697 hmp->option = option; 698 if (option & 0x200) 699 hmp->mii_if.full_duplex = 1; 700 else if (option & 0x080) 701 hmp->mii_if.full_duplex = 0; 702 hmp->default_port = option & 15; 703 if (hmp->default_port) 704 hmp->mii_if.force_media = 1; 705 } 706 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 707 hmp->mii_if.full_duplex = 1; 708 709 /* lock the duplex mode if someone specified a value */ 710 if (hmp->mii_if.full_duplex || (option & 0x080)) 711 hmp->duplex_lock = 1; 712 713 /* Set interrupt tuning parameters */ 714 max_rx_latency = max_rx_latency & 0x00ff; 715 max_rx_gap = max_rx_gap & 0x00ff; 716 min_rx_pkt = min_rx_pkt & 0x00ff; 717 max_tx_latency = max_tx_latency & 0x00ff; 718 max_tx_gap = max_tx_gap & 0x00ff; 719 min_tx_pkt = min_tx_pkt & 0x00ff; 720 721 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1; 722 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1; 723 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var : 724 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency); 725 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var : 726 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency); 727 728 729 /* The Hamachi-specific entries in the device structure. */ 730 dev->netdev_ops = &hamachi_netdev_ops; 731 dev->ethtool_ops = (chip_tbl[hmp->chip_id].flags & CanHaveMII) ? 732 ðtool_ops : ðtool_ops_no_mii; 733 dev->watchdog_timeo = TX_TIMEOUT; 734 if (mtu) 735 dev->mtu = mtu; 736 737 i = register_netdev(dev); 738 if (i) { 739 ret = i; 740 goto err_out_unmap_rx; 741 } 742 743 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n", 744 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev), 745 ioaddr, dev->dev_addr, irq); 746 i = readb(ioaddr + PCIClkMeas); 747 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers " 748 "%2.2x, LPA %4.4x.\n", 749 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32, 750 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers), 751 readw(ioaddr + ANLinkPartnerAbility)); 752 753 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) { 754 int phy, phy_idx = 0; 755 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) { 756 int mii_status = mdio_read(dev, phy, MII_BMSR); 757 if (mii_status != 0xffff && 758 mii_status != 0x0000) { 759 hmp->phys[phy_idx++] = phy; 760 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 761 printk(KERN_INFO "%s: MII PHY found at address %d, status " 762 "0x%4.4x advertising %4.4x.\n", 763 dev->name, phy, mii_status, hmp->mii_if.advertising); 764 } 765 } 766 hmp->mii_cnt = phy_idx; 767 if (hmp->mii_cnt > 0) 768 hmp->mii_if.phy_id = hmp->phys[0]; 769 else 770 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if)); 771 } 772 /* Configure gigabit autonegotiation. */ 773 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */ 774 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */ 775 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */ 776 777 card_idx++; 778 return 0; 779 780 err_out_unmap_rx: 781 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring, 782 hmp->rx_ring_dma); 783 err_out_unmap_tx: 784 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring, 785 hmp->tx_ring_dma); 786 err_out_cleardev: 787 free_netdev (dev); 788 err_out_iounmap: 789 iounmap(ioaddr); 790 err_out_release: 791 pci_release_regions(pdev); 792 err_out: 793 return ret; 794 } 795 796 static int read_eeprom(void __iomem *ioaddr, int location) 797 { 798 int bogus_cnt = 1000; 799 800 /* We should check busy first - per docs -KDU */ 801 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0); 802 writew(location, ioaddr + EEAddr); 803 writeb(0x02, ioaddr + EECmdStatus); 804 bogus_cnt = 1000; 805 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0); 806 if (hamachi_debug > 5) 807 printk(" EEPROM status is %2.2x after %d ticks.\n", 808 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt); 809 return readb(ioaddr + EEData); 810 } 811 812 /* MII Managemen Data I/O accesses. 813 These routines assume the MDIO controller is idle, and do not exit until 814 the command is finished. */ 815 816 static int mdio_read(struct net_device *dev, int phy_id, int location) 817 { 818 struct hamachi_private *hmp = netdev_priv(dev); 819 void __iomem *ioaddr = hmp->base; 820 int i; 821 822 /* We should check busy first - per docs -KDU */ 823 for (i = 10000; i >= 0; i--) 824 if ((readw(ioaddr + MII_Status) & 1) == 0) 825 break; 826 writew((phy_id<<8) + location, ioaddr + MII_Addr); 827 writew(0x0001, ioaddr + MII_Cmd); 828 for (i = 10000; i >= 0; i--) 829 if ((readw(ioaddr + MII_Status) & 1) == 0) 830 break; 831 return readw(ioaddr + MII_Rd_Data); 832 } 833 834 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 835 { 836 struct hamachi_private *hmp = netdev_priv(dev); 837 void __iomem *ioaddr = hmp->base; 838 int i; 839 840 /* We should check busy first - per docs -KDU */ 841 for (i = 10000; i >= 0; i--) 842 if ((readw(ioaddr + MII_Status) & 1) == 0) 843 break; 844 writew((phy_id<<8) + location, ioaddr + MII_Addr); 845 writew(value, ioaddr + MII_Wr_Data); 846 847 /* Wait for the command to finish. */ 848 for (i = 10000; i >= 0; i--) 849 if ((readw(ioaddr + MII_Status) & 1) == 0) 850 break; 851 } 852 853 854 static int hamachi_open(struct net_device *dev) 855 { 856 struct hamachi_private *hmp = netdev_priv(dev); 857 void __iomem *ioaddr = hmp->base; 858 int i; 859 u32 rx_int_var, tx_int_var; 860 u16 fifo_info; 861 862 i = request_irq(hmp->pci_dev->irq, hamachi_interrupt, IRQF_SHARED, 863 dev->name, dev); 864 if (i) 865 return i; 866 867 hamachi_init_ring(dev); 868 869 #if ADDRLEN == 64 870 /* writellll anyone ? */ 871 writel(hmp->rx_ring_dma, ioaddr + RxPtr); 872 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4); 873 writel(hmp->tx_ring_dma, ioaddr + TxPtr); 874 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4); 875 #else 876 writel(hmp->rx_ring_dma, ioaddr + RxPtr); 877 writel(hmp->tx_ring_dma, ioaddr + TxPtr); 878 #endif 879 880 /* TODO: It would make sense to organize this as words since the card 881 * documentation does. -KDU 882 */ 883 for (i = 0; i < 6; i++) 884 writeb(dev->dev_addr[i], ioaddr + StationAddr + i); 885 886 /* Initialize other registers: with so many this eventually this will 887 converted to an offset/value list. */ 888 889 /* Configure the FIFO */ 890 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6; 891 switch (fifo_info){ 892 case 0 : 893 /* No FIFO */ 894 writew(0x0000, ioaddr + FIFOcfg); 895 break; 896 case 1 : 897 /* Configure the FIFO for 512K external, 16K used for Tx. */ 898 writew(0x0028, ioaddr + FIFOcfg); 899 break; 900 case 2 : 901 /* Configure the FIFO for 1024 external, 32K used for Tx. */ 902 writew(0x004C, ioaddr + FIFOcfg); 903 break; 904 case 3 : 905 /* Configure the FIFO for 2048 external, 32K used for Tx. */ 906 writew(0x006C, ioaddr + FIFOcfg); 907 break; 908 default : 909 printk(KERN_WARNING "%s: Unsupported external memory config!\n", 910 dev->name); 911 /* Default to no FIFO */ 912 writew(0x0000, ioaddr + FIFOcfg); 913 break; 914 } 915 916 if (dev->if_port == 0) 917 dev->if_port = hmp->default_port; 918 919 920 /* Setting the Rx mode will start the Rx process. */ 921 /* If someone didn't choose a duplex, default to full-duplex */ 922 if (hmp->duplex_lock != 1) 923 hmp->mii_if.full_duplex = 1; 924 925 /* always 1, takes no more time to do it */ 926 writew(0x0001, ioaddr + RxChecksum); 927 writew(0x0000, ioaddr + TxChecksum); 928 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */ 929 writew(0x215F, ioaddr + MACCnfg); 930 writew(0x000C, ioaddr + FrameGap0); 931 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */ 932 writew(0x1018, ioaddr + FrameGap1); 933 /* Why do we enable receives/transmits here? -KDU */ 934 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */ 935 /* Enable automatic generation of flow control frames, period 0xffff. */ 936 writel(0x0030FFFF, ioaddr + FlowCtrl); 937 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */ 938 939 /* Enable legacy links. */ 940 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */ 941 /* Initial Link LED to blinking red. */ 942 writeb(0x03, ioaddr + LEDCtrl); 943 944 /* Configure interrupt mitigation. This has a great effect on 945 performance, so systems tuning should start here!. */ 946 947 rx_int_var = hmp->rx_int_var; 948 tx_int_var = hmp->tx_int_var; 949 950 if (hamachi_debug > 1) { 951 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n", 952 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8, 953 (tx_int_var & 0x00ff0000) >> 16); 954 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n", 955 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8, 956 (rx_int_var & 0x00ff0000) >> 16); 957 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var); 958 } 959 960 writel(tx_int_var, ioaddr + TxIntrCtrl); 961 writel(rx_int_var, ioaddr + RxIntrCtrl); 962 963 set_rx_mode(dev); 964 965 netif_start_queue(dev); 966 967 /* Enable interrupts by setting the interrupt mask. */ 968 writel(0x80878787, ioaddr + InterruptEnable); 969 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */ 970 971 /* Configure and start the DMA channels. */ 972 /* Burst sizes are in the low three bits: size = 4<<(val&7) */ 973 #if ADDRLEN == 64 974 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */ 975 writew(0x005D, ioaddr + TxDMACtrl); 976 #else 977 writew(0x001D, ioaddr + RxDMACtrl); 978 writew(0x001D, ioaddr + TxDMACtrl); 979 #endif 980 writew(0x0001, ioaddr + RxCmd); 981 982 if (hamachi_debug > 2) { 983 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n", 984 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus)); 985 } 986 /* Set the timer to check for link beat. */ 987 timer_setup(&hmp->timer, hamachi_timer, 0); 988 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ 989 add_timer(&hmp->timer); 990 991 return 0; 992 } 993 994 static inline int hamachi_tx(struct net_device *dev) 995 { 996 struct hamachi_private *hmp = netdev_priv(dev); 997 998 /* Update the dirty pointer until we find an entry that is 999 still owned by the card */ 1000 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) { 1001 int entry = hmp->dirty_tx % TX_RING_SIZE; 1002 struct sk_buff *skb; 1003 1004 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn)) 1005 break; 1006 /* Free the original skb. */ 1007 skb = hmp->tx_skbuff[entry]; 1008 if (skb) { 1009 dma_unmap_single(&hmp->pci_dev->dev, 1010 leXX_to_cpu(hmp->tx_ring[entry].addr), 1011 skb->len, DMA_TO_DEVICE); 1012 dev_kfree_skb(skb); 1013 hmp->tx_skbuff[entry] = NULL; 1014 } 1015 hmp->tx_ring[entry].status_n_length = 0; 1016 if (entry >= TX_RING_SIZE-1) 1017 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= 1018 cpu_to_le32(DescEndRing); 1019 dev->stats.tx_packets++; 1020 } 1021 1022 return 0; 1023 } 1024 1025 static void hamachi_timer(struct timer_list *t) 1026 { 1027 struct hamachi_private *hmp = from_timer(hmp, t, timer); 1028 struct net_device *dev = hmp->mii_if.dev; 1029 void __iomem *ioaddr = hmp->base; 1030 int next_tick = 10*HZ; 1031 1032 if (hamachi_debug > 2) { 1033 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA " 1034 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus), 1035 readw(ioaddr + ANLinkPartnerAbility)); 1036 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x " 1037 "%4.4x %4.4x %4.4x.\n", dev->name, 1038 readw(ioaddr + 0x0e0), 1039 readw(ioaddr + 0x0e2), 1040 readw(ioaddr + 0x0e4), 1041 readw(ioaddr + 0x0e6), 1042 readw(ioaddr + 0x0e8), 1043 readw(ioaddr + 0x0eA)); 1044 } 1045 /* We could do something here... nah. */ 1046 hmp->timer.expires = RUN_AT(next_tick); 1047 add_timer(&hmp->timer); 1048 } 1049 1050 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue) 1051 { 1052 int i; 1053 struct hamachi_private *hmp = netdev_priv(dev); 1054 void __iomem *ioaddr = hmp->base; 1055 1056 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x," 1057 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus)); 1058 1059 { 1060 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring); 1061 for (i = 0; i < RX_RING_SIZE; i++) 1062 printk(KERN_CONT " %8.8x", 1063 le32_to_cpu(hmp->rx_ring[i].status_n_length)); 1064 printk(KERN_CONT "\n"); 1065 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring); 1066 for (i = 0; i < TX_RING_SIZE; i++) 1067 printk(KERN_CONT " %4.4x", 1068 le32_to_cpu(hmp->tx_ring[i].status_n_length)); 1069 printk(KERN_CONT "\n"); 1070 } 1071 1072 /* Reinit the hardware and make sure the Rx and Tx processes 1073 are up and running. 1074 */ 1075 dev->if_port = 0; 1076 /* The right way to do Reset. -KDU 1077 * -Clear OWN bit in all Rx/Tx descriptors 1078 * -Wait 50 uS for channels to go idle 1079 * -Turn off MAC receiver 1080 * -Issue Reset 1081 */ 1082 1083 for (i = 0; i < RX_RING_SIZE; i++) 1084 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn); 1085 1086 /* Presume that all packets in the Tx queue are gone if we have to 1087 * re-init the hardware. 1088 */ 1089 for (i = 0; i < TX_RING_SIZE; i++){ 1090 struct sk_buff *skb; 1091 1092 if (i >= TX_RING_SIZE - 1) 1093 hmp->tx_ring[i].status_n_length = 1094 cpu_to_le32(DescEndRing) | 1095 (hmp->tx_ring[i].status_n_length & 1096 cpu_to_le32(0x0000ffff)); 1097 else 1098 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff); 1099 skb = hmp->tx_skbuff[i]; 1100 if (skb){ 1101 dma_unmap_single(&hmp->pci_dev->dev, 1102 leXX_to_cpu(hmp->tx_ring[i].addr), 1103 skb->len, DMA_TO_DEVICE); 1104 dev_kfree_skb(skb); 1105 hmp->tx_skbuff[i] = NULL; 1106 } 1107 } 1108 1109 udelay(60); /* Sleep 60 us just for safety sake */ 1110 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */ 1111 1112 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */ 1113 1114 hmp->tx_full = 0; 1115 hmp->cur_rx = hmp->cur_tx = 0; 1116 hmp->dirty_rx = hmp->dirty_tx = 0; 1117 /* Rx packets are also presumed lost; however, we need to make sure a 1118 * ring of buffers is in tact. -KDU 1119 */ 1120 for (i = 0; i < RX_RING_SIZE; i++){ 1121 struct sk_buff *skb = hmp->rx_skbuff[i]; 1122 1123 if (skb){ 1124 dma_unmap_single(&hmp->pci_dev->dev, 1125 leXX_to_cpu(hmp->rx_ring[i].addr), 1126 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1127 dev_kfree_skb(skb); 1128 hmp->rx_skbuff[i] = NULL; 1129 } 1130 } 1131 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1132 for (i = 0; i < RX_RING_SIZE; i++) { 1133 struct sk_buff *skb; 1134 1135 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz); 1136 hmp->rx_skbuff[i] = skb; 1137 if (skb == NULL) 1138 break; 1139 1140 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1141 skb->data, 1142 hmp->rx_buf_sz, 1143 DMA_FROM_DEVICE)); 1144 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn | 1145 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2)); 1146 } 1147 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1148 /* Mark the last entry as wrapping the ring. */ 1149 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1150 1151 /* Trigger an immediate transmit demand. */ 1152 netif_trans_update(dev); /* prevent tx timeout */ 1153 dev->stats.tx_errors++; 1154 1155 /* Restart the chip's Tx/Rx processes . */ 1156 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */ 1157 writew(0x0001, ioaddr + TxCmd); /* START Tx */ 1158 writew(0x0001, ioaddr + RxCmd); /* START Rx */ 1159 1160 netif_wake_queue(dev); 1161 } 1162 1163 1164 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1165 static void hamachi_init_ring(struct net_device *dev) 1166 { 1167 struct hamachi_private *hmp = netdev_priv(dev); 1168 int i; 1169 1170 hmp->tx_full = 0; 1171 hmp->cur_rx = hmp->cur_tx = 0; 1172 hmp->dirty_rx = hmp->dirty_tx = 0; 1173 1174 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1175 * card needs room to do 8 byte alignment, +2 so we can reserve 1176 * the first 2 bytes, and +16 gets room for the status word from the 1177 * card. -KDU 1178 */ 1179 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ : 1180 (((dev->mtu+26+7) & ~7) + 16)); 1181 1182 /* Initialize all Rx descriptors. */ 1183 for (i = 0; i < RX_RING_SIZE; i++) { 1184 hmp->rx_ring[i].status_n_length = 0; 1185 hmp->rx_skbuff[i] = NULL; 1186 } 1187 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1188 for (i = 0; i < RX_RING_SIZE; i++) { 1189 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2); 1190 hmp->rx_skbuff[i] = skb; 1191 if (skb == NULL) 1192 break; 1193 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1194 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1195 skb->data, 1196 hmp->rx_buf_sz, 1197 DMA_FROM_DEVICE)); 1198 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */ 1199 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn | 1200 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2)); 1201 } 1202 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1203 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1204 1205 for (i = 0; i < TX_RING_SIZE; i++) { 1206 hmp->tx_skbuff[i] = NULL; 1207 hmp->tx_ring[i].status_n_length = 0; 1208 } 1209 /* Mark the last entry of the ring */ 1210 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1211 } 1212 1213 1214 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb, 1215 struct net_device *dev) 1216 { 1217 struct hamachi_private *hmp = netdev_priv(dev); 1218 unsigned entry; 1219 u16 status; 1220 1221 /* Ok, now make sure that the queue has space before trying to 1222 add another skbuff. if we return non-zero the scheduler 1223 should interpret this as a queue full and requeue the buffer 1224 for later. 1225 */ 1226 if (hmp->tx_full) { 1227 /* We should NEVER reach this point -KDU */ 1228 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx); 1229 1230 /* Wake the potentially-idle transmit channel. */ 1231 /* If we don't need to read status, DON'T -KDU */ 1232 status=readw(hmp->base + TxStatus); 1233 if( !(status & 0x0001) || (status & 0x0002)) 1234 writew(0x0001, hmp->base + TxCmd); 1235 return NETDEV_TX_BUSY; 1236 } 1237 1238 /* Caution: the write order is important here, set the field 1239 with the "ownership" bits last. */ 1240 1241 /* Calculate the next Tx descriptor entry. */ 1242 entry = hmp->cur_tx % TX_RING_SIZE; 1243 1244 hmp->tx_skbuff[entry] = skb; 1245 1246 hmp->tx_ring[entry].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1247 skb->data, 1248 skb->len, 1249 DMA_TO_DEVICE)); 1250 1251 /* Hmmmm, could probably put a DescIntr on these, but the way 1252 the driver is currently coded makes Tx interrupts unnecessary 1253 since the clearing of the Tx ring is handled by the start_xmit 1254 routine. This organization helps mitigate the interrupts a 1255 bit and probably renders the max_tx_latency param useless. 1256 1257 Update: Putting a DescIntr bit on all of the descriptors and 1258 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU 1259 */ 1260 if (entry >= TX_RING_SIZE-1) /* Wrap ring */ 1261 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn | 1262 DescEndPacket | DescEndRing | DescIntr | skb->len); 1263 else 1264 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn | 1265 DescEndPacket | DescIntr | skb->len); 1266 hmp->cur_tx++; 1267 1268 /* Non-x86 Todo: explicitly flush cache lines here. */ 1269 1270 /* Wake the potentially-idle transmit channel. */ 1271 /* If we don't need to read status, DON'T -KDU */ 1272 status=readw(hmp->base + TxStatus); 1273 if( !(status & 0x0001) || (status & 0x0002)) 1274 writew(0x0001, hmp->base + TxCmd); 1275 1276 /* Immediately before returning, let's clear as many entries as we can. */ 1277 hamachi_tx(dev); 1278 1279 /* We should kick the bottom half here, since we are not accepting 1280 * interrupts with every packet. i.e. realize that Gigabit ethernet 1281 * can transmit faster than ordinary machines can load packets; 1282 * hence, any packet that got put off because we were in the transmit 1283 * routine should IMMEDIATELY get a chance to be re-queued. -KDU 1284 */ 1285 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4)) 1286 netif_wake_queue(dev); /* Typical path */ 1287 else { 1288 hmp->tx_full = 1; 1289 netif_stop_queue(dev); 1290 } 1291 1292 if (hamachi_debug > 4) { 1293 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n", 1294 dev->name, hmp->cur_tx, entry); 1295 } 1296 return NETDEV_TX_OK; 1297 } 1298 1299 /* The interrupt handler does all of the Rx thread work and cleans up 1300 after the Tx thread. */ 1301 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance) 1302 { 1303 struct net_device *dev = dev_instance; 1304 struct hamachi_private *hmp = netdev_priv(dev); 1305 void __iomem *ioaddr = hmp->base; 1306 long boguscnt = max_interrupt_work; 1307 int handled = 0; 1308 1309 #ifndef final_version /* Can never occur. */ 1310 if (dev == NULL) { 1311 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq); 1312 return IRQ_NONE; 1313 } 1314 #endif 1315 1316 spin_lock(&hmp->lock); 1317 1318 do { 1319 u32 intr_status = readl(ioaddr + InterruptClear); 1320 1321 if (hamachi_debug > 4) 1322 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n", 1323 dev->name, intr_status); 1324 1325 if (intr_status == 0) 1326 break; 1327 1328 handled = 1; 1329 1330 if (intr_status & IntrRxDone) 1331 hamachi_rx(dev); 1332 1333 if (intr_status & IntrTxDone){ 1334 /* This code should RARELY need to execute. After all, this is 1335 * a gigabit link, it should consume packets as fast as we put 1336 * them in AND we clear the Tx ring in hamachi_start_xmit(). 1337 */ 1338 if (hmp->tx_full){ 1339 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){ 1340 int entry = hmp->dirty_tx % TX_RING_SIZE; 1341 struct sk_buff *skb; 1342 1343 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn)) 1344 break; 1345 skb = hmp->tx_skbuff[entry]; 1346 /* Free the original skb. */ 1347 if (skb){ 1348 dma_unmap_single(&hmp->pci_dev->dev, 1349 leXX_to_cpu(hmp->tx_ring[entry].addr), 1350 skb->len, 1351 DMA_TO_DEVICE); 1352 dev_consume_skb_irq(skb); 1353 hmp->tx_skbuff[entry] = NULL; 1354 } 1355 hmp->tx_ring[entry].status_n_length = 0; 1356 if (entry >= TX_RING_SIZE-1) 1357 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= 1358 cpu_to_le32(DescEndRing); 1359 dev->stats.tx_packets++; 1360 } 1361 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){ 1362 /* The ring is no longer full */ 1363 hmp->tx_full = 0; 1364 netif_wake_queue(dev); 1365 } 1366 } else { 1367 netif_wake_queue(dev); 1368 } 1369 } 1370 1371 1372 /* Abnormal error summary/uncommon events handlers. */ 1373 if (intr_status & 1374 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr | 1375 LinkChange | NegotiationChange | StatsMax)) 1376 hamachi_error(dev, intr_status); 1377 1378 if (--boguscnt < 0) { 1379 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n", 1380 dev->name, intr_status); 1381 break; 1382 } 1383 } while (1); 1384 1385 if (hamachi_debug > 3) 1386 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1387 dev->name, readl(ioaddr + IntrStatus)); 1388 1389 #ifndef final_version 1390 /* Code that should never be run! Perhaps remove after testing.. */ 1391 { 1392 static int stopit = 10; 1393 if (dev->start == 0 && --stopit < 0) { 1394 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n", 1395 dev->name); 1396 free_irq(irq, dev); 1397 } 1398 } 1399 #endif 1400 1401 spin_unlock(&hmp->lock); 1402 return IRQ_RETVAL(handled); 1403 } 1404 1405 /* This routine is logically part of the interrupt handler, but separated 1406 for clarity and better register allocation. */ 1407 static int hamachi_rx(struct net_device *dev) 1408 { 1409 struct hamachi_private *hmp = netdev_priv(dev); 1410 int entry = hmp->cur_rx % RX_RING_SIZE; 1411 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx; 1412 1413 if (hamachi_debug > 4) { 1414 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n", 1415 entry, hmp->rx_ring[entry].status_n_length); 1416 } 1417 1418 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1419 while (1) { 1420 struct hamachi_desc *desc = &(hmp->rx_ring[entry]); 1421 u32 desc_status = le32_to_cpu(desc->status_n_length); 1422 u16 data_size = desc_status; /* Implicit truncate */ 1423 u8 *buf_addr; 1424 s32 frame_status; 1425 1426 if (desc_status & DescOwn) 1427 break; 1428 dma_sync_single_for_cpu(&hmp->pci_dev->dev, 1429 leXX_to_cpu(desc->addr), 1430 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1431 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data; 1432 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12])); 1433 if (hamachi_debug > 4) 1434 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n", 1435 frame_status); 1436 if (--boguscnt < 0) 1437 break; 1438 if ( ! (desc_status & DescEndPacket)) { 1439 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " 1440 "multiple buffers, entry %#x length %d status %4.4x!\n", 1441 dev->name, hmp->cur_rx, data_size, desc_status); 1442 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n", 1443 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]); 1444 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n", 1445 dev->name, 1446 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000, 1447 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff, 1448 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length)); 1449 dev->stats.rx_length_errors++; 1450 } /* else Omit for prototype errata??? */ 1451 if (frame_status & 0x00380000) { 1452 /* There was an error. */ 1453 if (hamachi_debug > 2) 1454 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n", 1455 frame_status); 1456 dev->stats.rx_errors++; 1457 if (frame_status & 0x00600000) 1458 dev->stats.rx_length_errors++; 1459 if (frame_status & 0x00080000) 1460 dev->stats.rx_frame_errors++; 1461 if (frame_status & 0x00100000) 1462 dev->stats.rx_crc_errors++; 1463 if (frame_status < 0) 1464 dev->stats.rx_dropped++; 1465 } else { 1466 struct sk_buff *skb; 1467 /* Omit CRC */ 1468 u16 pkt_len = (frame_status & 0x07ff) - 4; 1469 #ifdef RX_CHECKSUM 1470 u32 pfck = *(u32 *) &buf_addr[data_size - 8]; 1471 #endif 1472 1473 1474 #ifndef final_version 1475 if (hamachi_debug > 4) 1476 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d" 1477 " of %d, bogus_cnt %d.\n", 1478 pkt_len, data_size, boguscnt); 1479 if (hamachi_debug > 5) 1480 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n", 1481 dev->name, 1482 *(s32*)&(buf_addr[data_size - 20]), 1483 *(s32*)&(buf_addr[data_size - 16]), 1484 *(s32*)&(buf_addr[data_size - 12]), 1485 *(s32*)&(buf_addr[data_size - 8]), 1486 *(s32*)&(buf_addr[data_size - 4])); 1487 #endif 1488 /* Check if the packet is long enough to accept without copying 1489 to a minimally-sized skbuff. */ 1490 if (pkt_len < rx_copybreak && 1491 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1492 #ifdef RX_CHECKSUM 1493 printk(KERN_ERR "%s: rx_copybreak non-zero " 1494 "not good with RX_CHECKSUM\n", dev->name); 1495 #endif 1496 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1497 dma_sync_single_for_cpu(&hmp->pci_dev->dev, 1498 leXX_to_cpu(hmp->rx_ring[entry].addr), 1499 hmp->rx_buf_sz, 1500 DMA_FROM_DEVICE); 1501 /* Call copy + cksum if available. */ 1502 #if 1 || USE_IP_COPYSUM 1503 skb_copy_to_linear_data(skb, 1504 hmp->rx_skbuff[entry]->data, pkt_len); 1505 skb_put(skb, pkt_len); 1506 #else 1507 skb_put_data(skb, hmp->rx_ring_dma 1508 + entry*sizeof(*desc), pkt_len); 1509 #endif 1510 dma_sync_single_for_device(&hmp->pci_dev->dev, 1511 leXX_to_cpu(hmp->rx_ring[entry].addr), 1512 hmp->rx_buf_sz, 1513 DMA_FROM_DEVICE); 1514 } else { 1515 dma_unmap_single(&hmp->pci_dev->dev, 1516 leXX_to_cpu(hmp->rx_ring[entry].addr), 1517 hmp->rx_buf_sz, 1518 DMA_FROM_DEVICE); 1519 skb_put(skb = hmp->rx_skbuff[entry], pkt_len); 1520 hmp->rx_skbuff[entry] = NULL; 1521 } 1522 skb->protocol = eth_type_trans(skb, dev); 1523 1524 1525 #ifdef RX_CHECKSUM 1526 /* TCP or UDP on ipv4, DIX encoding */ 1527 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) { 1528 struct iphdr *ih = (struct iphdr *) skb->data; 1529 /* Check that IP packet is at least 46 bytes, otherwise, 1530 * there may be pad bytes included in the hardware checksum. 1531 * This wouldn't happen if everyone padded with 0. 1532 */ 1533 if (ntohs(ih->tot_len) >= 46){ 1534 /* don't worry about frags */ 1535 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) { 1536 u32 inv = *(u32 *) &buf_addr[data_size - 16]; 1537 u32 *p = (u32 *) &buf_addr[data_size - 20]; 1538 register u32 crc, p_r, p_r1; 1539 1540 if (inv & 4) { 1541 inv &= ~4; 1542 --p; 1543 } 1544 p_r = *p; 1545 p_r1 = *(p-1); 1546 switch (inv) { 1547 case 0: 1548 crc = (p_r & 0xffff) + (p_r >> 16); 1549 break; 1550 case 1: 1551 crc = (p_r >> 16) + (p_r & 0xffff) 1552 + (p_r1 >> 16 & 0xff00); 1553 break; 1554 case 2: 1555 crc = p_r + (p_r1 >> 16); 1556 break; 1557 case 3: 1558 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16); 1559 break; 1560 default: /*NOTREACHED*/ crc = 0; 1561 } 1562 if (crc & 0xffff0000) { 1563 crc &= 0xffff; 1564 ++crc; 1565 } 1566 /* tcp/udp will add in pseudo */ 1567 skb->csum = ntohs(pfck & 0xffff); 1568 if (skb->csum > crc) 1569 skb->csum -= crc; 1570 else 1571 skb->csum += (~crc & 0xffff); 1572 /* 1573 * could do the pseudo myself and return 1574 * CHECKSUM_UNNECESSARY 1575 */ 1576 skb->ip_summed = CHECKSUM_COMPLETE; 1577 } 1578 } 1579 } 1580 #endif /* RX_CHECKSUM */ 1581 1582 netif_rx(skb); 1583 dev->stats.rx_packets++; 1584 } 1585 entry = (++hmp->cur_rx) % RX_RING_SIZE; 1586 } 1587 1588 /* Refill the Rx ring buffers. */ 1589 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) { 1590 struct hamachi_desc *desc; 1591 1592 entry = hmp->dirty_rx % RX_RING_SIZE; 1593 desc = &(hmp->rx_ring[entry]); 1594 if (hmp->rx_skbuff[entry] == NULL) { 1595 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2); 1596 1597 hmp->rx_skbuff[entry] = skb; 1598 if (skb == NULL) 1599 break; /* Better luck next round. */ 1600 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1601 desc->addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1602 skb->data, 1603 hmp->rx_buf_sz, 1604 DMA_FROM_DEVICE)); 1605 } 1606 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz); 1607 if (entry >= RX_RING_SIZE-1) 1608 desc->status_n_length |= cpu_to_le32(DescOwn | 1609 DescEndPacket | DescEndRing | DescIntr); 1610 else 1611 desc->status_n_length |= cpu_to_le32(DescOwn | 1612 DescEndPacket | DescIntr); 1613 } 1614 1615 /* Restart Rx engine if stopped. */ 1616 /* If we don't need to check status, don't. -KDU */ 1617 if (readw(hmp->base + RxStatus) & 0x0002) 1618 writew(0x0001, hmp->base + RxCmd); 1619 1620 return 0; 1621 } 1622 1623 /* This is more properly named "uncommon interrupt events", as it covers more 1624 than just errors. */ 1625 static void hamachi_error(struct net_device *dev, int intr_status) 1626 { 1627 struct hamachi_private *hmp = netdev_priv(dev); 1628 void __iomem *ioaddr = hmp->base; 1629 1630 if (intr_status & (LinkChange|NegotiationChange)) { 1631 if (hamachi_debug > 1) 1632 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl" 1633 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n", 1634 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2), 1635 readw(ioaddr + ANLinkPartnerAbility), 1636 readl(ioaddr + IntrStatus)); 1637 if (readw(ioaddr + ANStatus) & 0x20) 1638 writeb(0x01, ioaddr + LEDCtrl); 1639 else 1640 writeb(0x03, ioaddr + LEDCtrl); 1641 } 1642 if (intr_status & StatsMax) { 1643 hamachi_get_stats(dev); 1644 /* Read the overflow bits to clear. */ 1645 readl(ioaddr + 0x370); 1646 readl(ioaddr + 0x3F0); 1647 } 1648 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) && 1649 hamachi_debug) 1650 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", 1651 dev->name, intr_status); 1652 /* Hmmmmm, it's not clear how to recover from PCI faults. */ 1653 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault)) 1654 dev->stats.tx_fifo_errors++; 1655 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault)) 1656 dev->stats.rx_fifo_errors++; 1657 } 1658 1659 static int hamachi_close(struct net_device *dev) 1660 { 1661 struct hamachi_private *hmp = netdev_priv(dev); 1662 void __iomem *ioaddr = hmp->base; 1663 struct sk_buff *skb; 1664 int i; 1665 1666 netif_stop_queue(dev); 1667 1668 if (hamachi_debug > 1) { 1669 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n", 1670 dev->name, readw(ioaddr + TxStatus), 1671 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus)); 1672 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1673 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx); 1674 } 1675 1676 /* Disable interrupts by clearing the interrupt mask. */ 1677 writel(0x0000, ioaddr + InterruptEnable); 1678 1679 /* Stop the chip's Tx and Rx processes. */ 1680 writel(2, ioaddr + RxCmd); 1681 writew(2, ioaddr + TxCmd); 1682 1683 #ifdef __i386__ 1684 if (hamachi_debug > 2) { 1685 printk(KERN_DEBUG " Tx ring at %8.8x:\n", 1686 (int)hmp->tx_ring_dma); 1687 for (i = 0; i < TX_RING_SIZE; i++) 1688 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n", 1689 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ', 1690 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr); 1691 printk(KERN_DEBUG " Rx ring %8.8x:\n", 1692 (int)hmp->rx_ring_dma); 1693 for (i = 0; i < RX_RING_SIZE; i++) { 1694 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n", 1695 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ', 1696 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr); 1697 if (hamachi_debug > 6) { 1698 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) { 1699 u16 *addr = (u16 *) 1700 hmp->rx_skbuff[i]->data; 1701 int j; 1702 printk(KERN_DEBUG "Addr: "); 1703 for (j = 0; j < 0x50; j++) 1704 printk(" %4.4x", addr[j]); 1705 printk("\n"); 1706 } 1707 } 1708 } 1709 } 1710 #endif /* __i386__ debugging only */ 1711 1712 free_irq(hmp->pci_dev->irq, dev); 1713 1714 del_timer_sync(&hmp->timer); 1715 1716 /* Free all the skbuffs in the Rx queue. */ 1717 for (i = 0; i < RX_RING_SIZE; i++) { 1718 skb = hmp->rx_skbuff[i]; 1719 hmp->rx_ring[i].status_n_length = 0; 1720 if (skb) { 1721 dma_unmap_single(&hmp->pci_dev->dev, 1722 leXX_to_cpu(hmp->rx_ring[i].addr), 1723 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1724 dev_kfree_skb(skb); 1725 hmp->rx_skbuff[i] = NULL; 1726 } 1727 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */ 1728 } 1729 for (i = 0; i < TX_RING_SIZE; i++) { 1730 skb = hmp->tx_skbuff[i]; 1731 if (skb) { 1732 dma_unmap_single(&hmp->pci_dev->dev, 1733 leXX_to_cpu(hmp->tx_ring[i].addr), 1734 skb->len, DMA_TO_DEVICE); 1735 dev_kfree_skb(skb); 1736 hmp->tx_skbuff[i] = NULL; 1737 } 1738 } 1739 1740 writeb(0x00, ioaddr + LEDCtrl); 1741 1742 return 0; 1743 } 1744 1745 static struct net_device_stats *hamachi_get_stats(struct net_device *dev) 1746 { 1747 struct hamachi_private *hmp = netdev_priv(dev); 1748 void __iomem *ioaddr = hmp->base; 1749 1750 /* We should lock this segment of code for SMP eventually, although 1751 the vulnerability window is very small and statistics are 1752 non-critical. */ 1753 /* Ok, what goes here? This appears to be stuck at 21 packets 1754 according to ifconfig. It does get incremented in hamachi_tx(), 1755 so I think I'll comment it out here and see if better things 1756 happen. 1757 */ 1758 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */ 1759 1760 /* Total Uni+Brd+Multi */ 1761 dev->stats.rx_bytes = readl(ioaddr + 0x330); 1762 /* Total Uni+Brd+Multi */ 1763 dev->stats.tx_bytes = readl(ioaddr + 0x3B0); 1764 /* Multicast Rx */ 1765 dev->stats.multicast = readl(ioaddr + 0x320); 1766 1767 /* Over+Undersized */ 1768 dev->stats.rx_length_errors = readl(ioaddr + 0x368); 1769 /* Jabber */ 1770 dev->stats.rx_over_errors = readl(ioaddr + 0x35C); 1771 /* Jabber */ 1772 dev->stats.rx_crc_errors = readl(ioaddr + 0x360); 1773 /* Symbol Errs */ 1774 dev->stats.rx_frame_errors = readl(ioaddr + 0x364); 1775 /* Dropped */ 1776 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C); 1777 1778 return &dev->stats; 1779 } 1780 1781 static void set_rx_mode(struct net_device *dev) 1782 { 1783 struct hamachi_private *hmp = netdev_priv(dev); 1784 void __iomem *ioaddr = hmp->base; 1785 1786 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1787 writew(0x000F, ioaddr + AddrMode); 1788 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) { 1789 /* Too many to match, or accept all multicasts. */ 1790 writew(0x000B, ioaddr + AddrMode); 1791 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */ 1792 struct netdev_hw_addr *ha; 1793 int i = 0; 1794 1795 netdev_for_each_mc_addr(ha, dev) { 1796 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8); 1797 writel(0x20000 | (*(u16 *)&ha->addr[4]), 1798 ioaddr + 0x104 + i*8); 1799 i++; 1800 } 1801 /* Clear remaining entries. */ 1802 for (; i < 64; i++) 1803 writel(0, ioaddr + 0x104 + i*8); 1804 writew(0x0003, ioaddr + AddrMode); 1805 } else { /* Normal, unicast/broadcast-only mode. */ 1806 writew(0x0001, ioaddr + AddrMode); 1807 } 1808 } 1809 1810 static int check_if_running(struct net_device *dev) 1811 { 1812 if (!netif_running(dev)) 1813 return -EINVAL; 1814 return 0; 1815 } 1816 1817 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1818 { 1819 struct hamachi_private *np = netdev_priv(dev); 1820 1821 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1822 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1823 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1824 } 1825 1826 static int hamachi_get_link_ksettings(struct net_device *dev, 1827 struct ethtool_link_ksettings *cmd) 1828 { 1829 struct hamachi_private *np = netdev_priv(dev); 1830 spin_lock_irq(&np->lock); 1831 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1832 spin_unlock_irq(&np->lock); 1833 return 0; 1834 } 1835 1836 static int hamachi_set_link_ksettings(struct net_device *dev, 1837 const struct ethtool_link_ksettings *cmd) 1838 { 1839 struct hamachi_private *np = netdev_priv(dev); 1840 int res; 1841 spin_lock_irq(&np->lock); 1842 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1843 spin_unlock_irq(&np->lock); 1844 return res; 1845 } 1846 1847 static int hamachi_nway_reset(struct net_device *dev) 1848 { 1849 struct hamachi_private *np = netdev_priv(dev); 1850 return mii_nway_restart(&np->mii_if); 1851 } 1852 1853 static u32 hamachi_get_link(struct net_device *dev) 1854 { 1855 struct hamachi_private *np = netdev_priv(dev); 1856 return mii_link_ok(&np->mii_if); 1857 } 1858 1859 static const struct ethtool_ops ethtool_ops = { 1860 .begin = check_if_running, 1861 .get_drvinfo = hamachi_get_drvinfo, 1862 .nway_reset = hamachi_nway_reset, 1863 .get_link = hamachi_get_link, 1864 .get_link_ksettings = hamachi_get_link_ksettings, 1865 .set_link_ksettings = hamachi_set_link_ksettings, 1866 }; 1867 1868 static const struct ethtool_ops ethtool_ops_no_mii = { 1869 .begin = check_if_running, 1870 .get_drvinfo = hamachi_get_drvinfo, 1871 }; 1872 1873 /* private ioctl: set rx,tx intr params */ 1874 static int hamachi_siocdevprivate(struct net_device *dev, struct ifreq *rq, 1875 void __user *data, int cmd) 1876 { 1877 struct hamachi_private *np = netdev_priv(dev); 1878 u32 *d = (u32 *)&rq->ifr_ifru; 1879 1880 if (!netif_running(dev)) 1881 return -EINVAL; 1882 1883 if (cmd != SIOCDEVPRIVATE + 3) 1884 return -EOPNOTSUPP; 1885 1886 /* Should add this check here or an ordinary user can do nasty 1887 * things. -KDU 1888 * 1889 * TODO: Shut down the Rx and Tx engines while doing this. 1890 */ 1891 if (!capable(CAP_NET_ADMIN)) 1892 return -EPERM; 1893 writel(d[0], np->base + TxIntrCtrl); 1894 writel(d[1], np->base + RxIntrCtrl); 1895 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name, 1896 (u32)readl(np->base + TxIntrCtrl), 1897 (u32)readl(np->base + RxIntrCtrl)); 1898 1899 return 0; 1900 } 1901 1902 static int hamachi_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1903 { 1904 struct hamachi_private *np = netdev_priv(dev); 1905 struct mii_ioctl_data *data = if_mii(rq); 1906 int rc; 1907 1908 if (!netif_running(dev)) 1909 return -EINVAL; 1910 1911 spin_lock_irq(&np->lock); 1912 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1913 spin_unlock_irq(&np->lock); 1914 1915 return rc; 1916 } 1917 1918 1919 static void hamachi_remove_one(struct pci_dev *pdev) 1920 { 1921 struct net_device *dev = pci_get_drvdata(pdev); 1922 1923 if (dev) { 1924 struct hamachi_private *hmp = netdev_priv(dev); 1925 1926 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring, 1927 hmp->rx_ring_dma); 1928 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring, 1929 hmp->tx_ring_dma); 1930 unregister_netdev(dev); 1931 iounmap(hmp->base); 1932 free_netdev(dev); 1933 pci_release_regions(pdev); 1934 } 1935 } 1936 1937 static const struct pci_device_id hamachi_pci_tbl[] = { 1938 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, }, 1939 { 0, } 1940 }; 1941 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl); 1942 1943 static struct pci_driver hamachi_driver = { 1944 .name = DRV_NAME, 1945 .id_table = hamachi_pci_tbl, 1946 .probe = hamachi_init_one, 1947 .remove = hamachi_remove_one, 1948 }; 1949 1950 static int __init hamachi_init (void) 1951 { 1952 /* when a module, this is printed whether or not devices are found in probe */ 1953 #ifdef MODULE 1954 printk(version); 1955 #endif 1956 return pci_register_driver(&hamachi_driver); 1957 } 1958 1959 static void __exit hamachi_exit (void) 1960 { 1961 pci_unregister_driver(&hamachi_driver); 1962 } 1963 1964 1965 module_init(hamachi_init); 1966 module_exit(hamachi_exit); 1967