1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 Updates 2000 by Keith Underwood. 5 6 This software may be used and distributed according to the terms of 7 the GNU General Public License (GPL), incorporated herein by reference. 8 Drivers based on or derived from this code fall under the GPL and must 9 retain the authorship, copyright and license notice. This file is not 10 a complete program and may only be used when the entire operating 11 system is licensed under the GPL. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet 19 adapter. 20 21 Support and updates available at 22 http://www.scyld.com/network/hamachi.html 23 [link no longer provides useful info -jgarzik] 24 or 25 http://www.parl.clemson.edu/~keithu/hamachi.html 26 27 */ 28 29 #define DRV_NAME "hamachi" 30 #define DRV_VERSION "2.1" 31 #define DRV_RELDATE "Sept 11, 2006" 32 33 34 /* A few user-configurable values. */ 35 36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 37 #define final_version 38 #define hamachi_debug debug 39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 40 static int max_interrupt_work = 40; 41 static int mtu; 42 /* Default values selected by testing on a dual processor PIII-450 */ 43 /* These six interrupt control parameters may be set directly when loading the 44 * module, or through the rx_params and tx_params variables 45 */ 46 static int max_rx_latency = 0x11; 47 static int max_rx_gap = 0x05; 48 static int min_rx_pkt = 0x18; 49 static int max_tx_latency = 0x00; 50 static int max_tx_gap = 0x00; 51 static int min_tx_pkt = 0x30; 52 53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 54 -Setting to > 1518 causes all frames to be copied 55 -Setting to 0 disables copies 56 */ 57 static int rx_copybreak; 58 59 /* An override for the hardware detection of bus width. 60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit. 61 Add 2 to disable parity detection. 62 */ 63 static int force32; 64 65 66 /* Used to pass the media type, etc. 67 These exist for driver interoperability. 68 No media types are currently defined. 69 - The lower 4 bits are reserved for the media type. 70 - The next three bits may be set to one of the following: 71 0x00000000 : Autodetect PCI bus 72 0x00000010 : Force 32 bit PCI bus 73 0x00000020 : Disable parity detection 74 0x00000040 : Force 64 bit PCI bus 75 Default is autodetect 76 - The next bit can be used to force half-duplex. This is a bad 77 idea since no known implementations implement half-duplex, and, 78 in general, half-duplex for gigabit ethernet is a bad idea. 79 0x00000080 : Force half-duplex 80 Default is full-duplex. 81 - In the original driver, the ninth bit could be used to force 82 full-duplex. Maintain that for compatibility 83 0x00000200 : Force full-duplex 84 */ 85 #define MAX_UNITS 8 /* More are supported, limit only on options */ 86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx 89 * interruput management. Parameters will be loaded as specified into 90 * the TxIntControl and RxIntControl registers. 91 * 92 * The registers are arranged as follows: 93 * 23 - 16 15 - 8 7 - 0 94 * _________________________________ 95 * | min_pkt | max_gap | max_latency | 96 * --------------------------------- 97 * min_pkt : The minimum number of packets processed between 98 * interrupts. 99 * max_gap : The maximum inter-packet gap in units of 8.192 us 100 * max_latency : The absolute time between interrupts in units of 8.192 us 101 * 102 */ 103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 105 106 /* Operational parameters that are set at compile time. */ 107 108 /* Keep the ring sizes a power of two for compile efficiency. 109 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 110 Making the Tx ring too large decreases the effectiveness of channel 111 bonding and packet priority. 112 There are no ill effects from too-large receive rings, except for 113 excessive memory usage */ 114 /* Empirically it appears that the Tx ring needs to be a little bigger 115 for these Gbit adapters or you get into an overrun condition really 116 easily. Also, things appear to work a bit better in back-to-back 117 configurations if the Rx ring is 8 times the size of the Tx ring 118 */ 119 #define TX_RING_SIZE 64 120 #define RX_RING_SIZE 512 121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc) 122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc) 123 124 /* 125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment. 126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov> 127 */ 128 129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */ 130 /* #define ADDRLEN 64 */ 131 132 /* 133 * RX_CHECKSUM turns on card-generated receive checksum generation for 134 * TCP and UDP packets. Otherwise the upper layers do the calculation. 135 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov> 136 */ 137 #define RX_CHECKSUM 138 139 /* Operational parameters that usually are not changed. */ 140 /* Time in jiffies before concluding the transmitter is hung. */ 141 #define TX_TIMEOUT (5*HZ) 142 143 #include <linux/capability.h> 144 #include <linux/module.h> 145 #include <linux/kernel.h> 146 #include <linux/string.h> 147 #include <linux/timer.h> 148 #include <linux/time.h> 149 #include <linux/errno.h> 150 #include <linux/ioport.h> 151 #include <linux/interrupt.h> 152 #include <linux/pci.h> 153 #include <linux/init.h> 154 #include <linux/ethtool.h> 155 #include <linux/mii.h> 156 #include <linux/netdevice.h> 157 #include <linux/etherdevice.h> 158 #include <linux/skbuff.h> 159 #include <linux/ip.h> 160 #include <linux/delay.h> 161 #include <linux/bitops.h> 162 163 #include <linux/uaccess.h> 164 #include <asm/processor.h> /* Processor type for cache alignment. */ 165 #include <asm/io.h> 166 #include <asm/unaligned.h> 167 #include <asm/cache.h> 168 169 static const char version[] = 170 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n" 171 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n" 172 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n"; 173 174 175 /* IP_MF appears to be only defined in <netinet/ip.h>, however, 176 we need it for hardware checksumming support. FYI... some of 177 the definitions in <netinet/ip.h> conflict/duplicate those in 178 other linux headers causing many compiler warnings. 179 */ 180 #ifndef IP_MF 181 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */ 182 #endif 183 184 /* Define IP_OFFSET to be IPOPT_OFFSET */ 185 #ifndef IP_OFFSET 186 #ifdef IPOPT_OFFSET 187 #define IP_OFFSET IPOPT_OFFSET 188 #else 189 #define IP_OFFSET 2 190 #endif 191 #endif 192 193 #define RUN_AT(x) (jiffies + (x)) 194 195 #ifndef ADDRLEN 196 #define ADDRLEN 32 197 #endif 198 199 /* Condensed bus+endian portability operations. */ 200 #if ADDRLEN == 64 201 #define cpu_to_leXX(addr) cpu_to_le64(addr) 202 #define leXX_to_cpu(addr) le64_to_cpu(addr) 203 #else 204 #define cpu_to_leXX(addr) cpu_to_le32(addr) 205 #define leXX_to_cpu(addr) le32_to_cpu(addr) 206 #endif 207 208 209 /* 210 Theory of Operation 211 212 I. Board Compatibility 213 214 This device driver is designed for the Packet Engines "Hamachi" 215 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit 216 66Mhz PCI card. 217 218 II. Board-specific settings 219 220 No jumpers exist on the board. The chip supports software correction of 221 various motherboard wiring errors, however this driver does not support 222 that feature. 223 224 III. Driver operation 225 226 IIIa. Ring buffers 227 228 The Hamachi uses a typical descriptor based bus-master architecture. 229 The descriptor list is similar to that used by the Digital Tulip. 230 This driver uses two statically allocated fixed-size descriptor lists 231 formed into rings by a branch from the final descriptor to the beginning of 232 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 233 234 This driver uses a zero-copy receive and transmit scheme similar my other 235 network drivers. 236 The driver allocates full frame size skbuffs for the Rx ring buffers at 237 open() time and passes the skb->data field to the Hamachi as receive data 238 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 239 a fresh skbuff is allocated and the frame is copied to the new skbuff. 240 When the incoming frame is larger, the skbuff is passed directly up the 241 protocol stack and replaced by a newly allocated skbuff. 242 243 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 244 using a full-sized skbuff for small frames vs. the copying costs of larger 245 frames. Gigabit cards are typically used on generously configured machines 246 and the underfilled buffers have negligible impact compared to the benefit of 247 a single allocation size, so the default value of zero results in never 248 copying packets. 249 250 IIIb/c. Transmit/Receive Structure 251 252 The Rx and Tx descriptor structure are straight-forward, with no historical 253 baggage that must be explained. Unlike the awkward DBDMA structure, there 254 are no unused fields or option bits that had only one allowable setting. 255 256 Two details should be noted about the descriptors: The chip supports both 32 257 bit and 64 bit address structures, and the length field is overwritten on 258 the receive descriptors. The descriptor length is set in the control word 259 for each channel. The development driver uses 32 bit addresses only, however 260 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha. 261 262 IIId. Synchronization 263 264 This driver is very similar to my other network drivers. 265 The driver runs as two independent, single-threaded flows of control. One 266 is the send-packet routine, which enforces single-threaded use by the 267 dev->tbusy flag. The other thread is the interrupt handler, which is single 268 threaded by the hardware and other software. 269 270 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 271 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 272 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 273 the 'hmp->tx_full' flag. 274 275 The interrupt handler has exclusive control over the Rx ring and records stats 276 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 277 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it 278 clears both the tx_full and tbusy flags. 279 280 IV. Notes 281 282 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards. 283 284 IVb. References 285 286 Hamachi Engineering Design Specification, 5/15/97 287 (Note: This version was marked "Confidential".) 288 289 IVc. Errata 290 291 None noted. 292 293 V. Recent Changes 294 295 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears 296 to help avoid some stall conditions -- this needs further research. 297 298 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans 299 the Tx ring and is called from hamachi_start_xmit (this used to be 300 called from hamachi_interrupt but it tends to delay execution of the 301 interrupt handler and thus reduce bandwidth by reducing the latency 302 between hamachi_rx()'s). Notably, some modification has been made so 303 that the cleaning loop checks only to make sure that the DescOwn bit 304 isn't set in the status flag since the card is not required 305 to set the entire flag to zero after processing. 306 307 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is 308 checked before attempting to add a buffer to the ring. If the ring is full 309 an attempt is made to free any dirty buffers and thus find space for 310 the new buffer or the function returns non-zero which should case the 311 scheduler to reschedule the buffer later. 312 313 01/15/1999 EPK Some adjustments were made to the chip initialization. 314 End-to-end flow control should now be fully active and the interrupt 315 algorithm vars have been changed. These could probably use further tuning. 316 317 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to 318 set the rx and tx latencies for the Hamachi interrupts. If you're having 319 problems with network stalls, try setting these to higher values. 320 Valid values are 0x00 through 0xff. 321 322 01/15/1999 EPK In general, the overall bandwidth has increased and 323 latencies are better (sometimes by a factor of 2). Stalls are rare at 324 this point, however there still appears to be a bug somewhere between the 325 hardware and driver. TCP checksum errors under load also appear to be 326 eliminated at this point. 327 328 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the 329 Rx and Tx rings. This appears to have been affecting whether a particular 330 peer-to-peer connection would hang under high load. I believe the Rx 331 rings was typically getting set correctly, but the Tx ring wasn't getting 332 the DescEndRing bit set during initialization. ??? Does this mean the 333 hamachi card is using the DescEndRing in processing even if a particular 334 slot isn't in use -- hypothetically, the card might be searching the 335 entire Tx ring for slots with the DescOwn bit set and then processing 336 them. If the DescEndRing bit isn't set, then it might just wander off 337 through memory until it hits a chunk of data with that bit set 338 and then looping back. 339 340 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout 341 problem (TxCmd and RxCmd need only to be set when idle or stopped. 342 343 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt. 344 (Michel Mueller pointed out the ``permanently busy'' potential 345 problem here). 346 347 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies. 348 349 02/23/1999 EPK Verified that the interrupt status field bits for Tx were 350 incorrectly defined and corrected (as per Michel Mueller). 351 352 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots 353 were available before resetting the tbusy and tx_full flags 354 (as per Michel Mueller). 355 356 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support. 357 358 12/31/1999 KDU Cleaned up assorted things and added Don's code to force 359 32 bit. 360 361 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the 362 hamachi_start_xmit() and hamachi_interrupt() code. There is still some 363 re-structuring I would like to do. 364 365 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation 366 parameters on a dual P3-450 setup yielded the new default interrupt 367 mitigation parameters. Tx should interrupt VERY infrequently due to 368 Eric's scheme. Rx should be more often... 369 370 03/13/2000 KDU Added a patch to make the Rx Checksum code interact 371 nicely with non-linux machines. 372 373 03/13/2000 KDU Experimented with some of the configuration values: 374 375 -It seems that enabling PCI performance commands for descriptors 376 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal 377 performance impact for any of my tests. (ttcp, netpipe, netperf) I will 378 leave them that way until I hear further feedback. 379 380 -Increasing the PCI_LATENCY_TIMER to 130 381 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly 382 degrade performance. Leaving default at 64 pending further information. 383 384 03/14/2000 KDU Further tuning: 385 386 -adjusted boguscnt in hamachi_rx() to depend on interrupt 387 mitigation parameters chosen. 388 389 -Selected a set of interrupt parameters based on some extensive testing. 390 These may change with more testing. 391 392 TO DO: 393 394 -Consider borrowing from the acenic driver code to check PCI_COMMAND for 395 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in 396 that case. 397 398 -fix the reset procedure. It doesn't quite work. 399 */ 400 401 /* A few values that may be tweaked. */ 402 /* Size of each temporary Rx buffer, calculated as: 403 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for 404 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum 405 */ 406 #define PKT_BUF_SZ 1536 407 408 /* For now, this is going to be set to the maximum size of an ethernet 409 * packet. Eventually, we may want to make it a variable that is 410 * related to the MTU 411 */ 412 #define MAX_FRAME_SIZE 1518 413 414 /* The rest of these values should never change. */ 415 416 static void hamachi_timer(struct timer_list *t); 417 418 enum capability_flags {CanHaveMII=1, }; 419 static const struct chip_info { 420 u16 vendor_id, device_id, device_id_mask, pad; 421 const char *name; 422 void (*media_timer)(struct timer_list *t); 423 int flags; 424 } chip_tbl[] = { 425 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0}, 426 {0,}, 427 }; 428 429 /* Offsets to the Hamachi registers. Various sizes. */ 430 enum hamachi_offsets { 431 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10, 432 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30, 433 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B, 434 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E, 435 TxChecksum=0x074, RxChecksum=0x076, 436 TxIntrCtrl=0x078, RxIntrCtrl=0x07C, 437 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088, 438 EventStatus=0x08C, 439 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4, 440 /* See enum MII_offsets below. */ 441 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE, 442 AddrMode=0x0D0, StationAddr=0x0D2, 443 /* Gigabit AutoNegotiation. */ 444 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8, 445 ANLinkPartnerAbility=0x0EA, 446 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2, 447 FIFOcfg=0x0F8, 448 }; 449 450 /* Offsets to the MII-mode registers. */ 451 enum MII_offsets { 452 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC, 453 MII_Status=0xAE, 454 }; 455 456 /* Bits in the interrupt status/mask registers. */ 457 enum intr_status_bits { 458 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04, 459 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400, 460 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, }; 461 462 /* The Hamachi Rx and Tx buffer descriptors. */ 463 struct hamachi_desc { 464 __le32 status_n_length; 465 #if ADDRLEN == 64 466 u32 pad; 467 __le64 addr; 468 #else 469 __le32 addr; 470 #endif 471 }; 472 473 /* Bits in hamachi_desc.status_n_length */ 474 enum desc_status_bits { 475 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000, 476 DescIntr=0x10000000, 477 }; 478 479 #define PRIV_ALIGN 15 /* Required alignment mask */ 480 #define MII_CNT 4 481 struct hamachi_private { 482 /* Descriptor rings first for alignment. Tx requires a second descriptor 483 for status. */ 484 struct hamachi_desc *rx_ring; 485 struct hamachi_desc *tx_ring; 486 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 487 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 488 dma_addr_t tx_ring_dma; 489 dma_addr_t rx_ring_dma; 490 struct timer_list timer; /* Media selection timer. */ 491 /* Frequently used and paired value: keep adjacent for cache effect. */ 492 spinlock_t lock; 493 int chip_id; 494 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 495 unsigned int cur_tx, dirty_tx; 496 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 497 unsigned int tx_full:1; /* The Tx queue is full. */ 498 unsigned int duplex_lock:1; 499 unsigned int default_port:4; /* Last dev->if_port value. */ 500 /* MII transceiver section. */ 501 int mii_cnt; /* MII device addresses. */ 502 struct mii_if_info mii_if; /* MII lib hooks/info */ 503 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ 504 u32 rx_int_var, tx_int_var; /* interrupt control variables */ 505 u32 option; /* Hold on to a copy of the options */ 506 struct pci_dev *pci_dev; 507 void __iomem *base; 508 }; 509 510 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>"); 511 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver"); 512 MODULE_LICENSE("GPL"); 513 514 module_param(max_interrupt_work, int, 0); 515 module_param(mtu, int, 0); 516 module_param(debug, int, 0); 517 module_param(min_rx_pkt, int, 0); 518 module_param(max_rx_gap, int, 0); 519 module_param(max_rx_latency, int, 0); 520 module_param(min_tx_pkt, int, 0); 521 module_param(max_tx_gap, int, 0); 522 module_param(max_tx_latency, int, 0); 523 module_param(rx_copybreak, int, 0); 524 module_param_array(rx_params, int, NULL, 0); 525 module_param_array(tx_params, int, NULL, 0); 526 module_param_array(options, int, NULL, 0); 527 module_param_array(full_duplex, int, NULL, 0); 528 module_param(force32, int, 0); 529 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt"); 530 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)"); 531 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)"); 532 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts"); 533 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units"); 534 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units"); 535 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts"); 536 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units"); 537 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units"); 538 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames"); 539 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency"); 540 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency"); 541 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex"); 542 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)"); 543 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)"); 544 545 static int read_eeprom(void __iomem *ioaddr, int location); 546 static int mdio_read(struct net_device *dev, int phy_id, int location); 547 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 548 static int hamachi_open(struct net_device *dev); 549 static int hamachi_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 550 static int hamachi_siocdevprivate(struct net_device *dev, struct ifreq *rq, 551 void __user *data, int cmd); 552 static void hamachi_timer(struct timer_list *t); 553 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue); 554 static void hamachi_init_ring(struct net_device *dev); 555 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb, 556 struct net_device *dev); 557 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance); 558 static int hamachi_rx(struct net_device *dev); 559 static inline int hamachi_tx(struct net_device *dev); 560 static void hamachi_error(struct net_device *dev, int intr_status); 561 static int hamachi_close(struct net_device *dev); 562 static struct net_device_stats *hamachi_get_stats(struct net_device *dev); 563 static void set_rx_mode(struct net_device *dev); 564 static const struct ethtool_ops ethtool_ops; 565 static const struct ethtool_ops ethtool_ops_no_mii; 566 567 static const struct net_device_ops hamachi_netdev_ops = { 568 .ndo_open = hamachi_open, 569 .ndo_stop = hamachi_close, 570 .ndo_start_xmit = hamachi_start_xmit, 571 .ndo_get_stats = hamachi_get_stats, 572 .ndo_set_rx_mode = set_rx_mode, 573 .ndo_validate_addr = eth_validate_addr, 574 .ndo_set_mac_address = eth_mac_addr, 575 .ndo_tx_timeout = hamachi_tx_timeout, 576 .ndo_eth_ioctl = hamachi_ioctl, 577 .ndo_siocdevprivate = hamachi_siocdevprivate, 578 }; 579 580 581 static int hamachi_init_one(struct pci_dev *pdev, 582 const struct pci_device_id *ent) 583 { 584 struct hamachi_private *hmp; 585 int option, i, rx_int_var, tx_int_var, boguscnt; 586 int chip_id = ent->driver_data; 587 int irq; 588 void __iomem *ioaddr; 589 unsigned long base; 590 static int card_idx; 591 struct net_device *dev; 592 void *ring_space; 593 dma_addr_t ring_dma; 594 int ret = -ENOMEM; 595 u8 addr[ETH_ALEN]; 596 597 /* when built into the kernel, we only print version if device is found */ 598 #ifndef MODULE 599 static int printed_version; 600 if (!printed_version++) 601 printk(version); 602 #endif 603 604 if (pci_enable_device(pdev)) { 605 ret = -EIO; 606 goto err_out; 607 } 608 609 base = pci_resource_start(pdev, 0); 610 #ifdef __alpha__ /* Really "64 bit addrs" */ 611 base |= (pci_resource_start(pdev, 1) << 32); 612 #endif 613 614 pci_set_master(pdev); 615 616 i = pci_request_regions(pdev, DRV_NAME); 617 if (i) 618 return i; 619 620 irq = pdev->irq; 621 ioaddr = ioremap(base, 0x400); 622 if (!ioaddr) 623 goto err_out_release; 624 625 dev = alloc_etherdev(sizeof(struct hamachi_private)); 626 if (!dev) 627 goto err_out_iounmap; 628 629 SET_NETDEV_DEV(dev, &pdev->dev); 630 631 for (i = 0; i < 6; i++) 632 addr[i] = read_eeprom(ioaddr, 4 + i); 633 eth_hw_addr_set(dev, addr); 634 635 #if ! defined(final_version) 636 if (hamachi_debug > 4) 637 for (i = 0; i < 0x10; i++) 638 printk("%2.2x%s", 639 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n"); 640 #endif 641 642 hmp = netdev_priv(dev); 643 spin_lock_init(&hmp->lock); 644 645 hmp->mii_if.dev = dev; 646 hmp->mii_if.mdio_read = mdio_read; 647 hmp->mii_if.mdio_write = mdio_write; 648 hmp->mii_if.phy_id_mask = 0x1f; 649 hmp->mii_if.reg_num_mask = 0x1f; 650 651 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 652 GFP_KERNEL); 653 if (!ring_space) 654 goto err_out_cleardev; 655 hmp->tx_ring = ring_space; 656 hmp->tx_ring_dma = ring_dma; 657 658 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 659 GFP_KERNEL); 660 if (!ring_space) 661 goto err_out_unmap_tx; 662 hmp->rx_ring = ring_space; 663 hmp->rx_ring_dma = ring_dma; 664 665 /* Check for options being passed in */ 666 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 667 if (dev->mem_start) 668 option = dev->mem_start; 669 670 /* If the bus size is misidentified, do the following. */ 671 force32 = force32 ? force32 : 672 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 ); 673 if (force32) 674 writeb(force32, ioaddr + VirtualJumpers); 675 676 /* Hmmm, do we really need to reset the chip???. */ 677 writeb(0x01, ioaddr + ChipReset); 678 679 /* After a reset, the clock speed measurement of the PCI bus will not 680 * be valid for a moment. Wait for a little while until it is. If 681 * it takes more than 10ms, forget it. 682 */ 683 udelay(10); 684 i = readb(ioaddr + PCIClkMeas); 685 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){ 686 udelay(10); 687 i = readb(ioaddr + PCIClkMeas); 688 } 689 690 hmp->base = ioaddr; 691 pci_set_drvdata(pdev, dev); 692 693 hmp->chip_id = chip_id; 694 hmp->pci_dev = pdev; 695 696 /* The lower four bits are the media type. */ 697 if (option > 0) { 698 hmp->option = option; 699 if (option & 0x200) 700 hmp->mii_if.full_duplex = 1; 701 else if (option & 0x080) 702 hmp->mii_if.full_duplex = 0; 703 hmp->default_port = option & 15; 704 if (hmp->default_port) 705 hmp->mii_if.force_media = 1; 706 } 707 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 708 hmp->mii_if.full_duplex = 1; 709 710 /* lock the duplex mode if someone specified a value */ 711 if (hmp->mii_if.full_duplex || (option & 0x080)) 712 hmp->duplex_lock = 1; 713 714 /* Set interrupt tuning parameters */ 715 max_rx_latency = max_rx_latency & 0x00ff; 716 max_rx_gap = max_rx_gap & 0x00ff; 717 min_rx_pkt = min_rx_pkt & 0x00ff; 718 max_tx_latency = max_tx_latency & 0x00ff; 719 max_tx_gap = max_tx_gap & 0x00ff; 720 min_tx_pkt = min_tx_pkt & 0x00ff; 721 722 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1; 723 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1; 724 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var : 725 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency); 726 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var : 727 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency); 728 729 730 /* The Hamachi-specific entries in the device structure. */ 731 dev->netdev_ops = &hamachi_netdev_ops; 732 dev->ethtool_ops = (chip_tbl[hmp->chip_id].flags & CanHaveMII) ? 733 ðtool_ops : ðtool_ops_no_mii; 734 dev->watchdog_timeo = TX_TIMEOUT; 735 if (mtu) 736 dev->mtu = mtu; 737 738 i = register_netdev(dev); 739 if (i) { 740 ret = i; 741 goto err_out_unmap_rx; 742 } 743 744 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n", 745 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev), 746 ioaddr, dev->dev_addr, irq); 747 i = readb(ioaddr + PCIClkMeas); 748 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers " 749 "%2.2x, LPA %4.4x.\n", 750 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32, 751 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers), 752 readw(ioaddr + ANLinkPartnerAbility)); 753 754 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) { 755 int phy, phy_idx = 0; 756 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) { 757 int mii_status = mdio_read(dev, phy, MII_BMSR); 758 if (mii_status != 0xffff && 759 mii_status != 0x0000) { 760 hmp->phys[phy_idx++] = phy; 761 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 762 printk(KERN_INFO "%s: MII PHY found at address %d, status " 763 "0x%4.4x advertising %4.4x.\n", 764 dev->name, phy, mii_status, hmp->mii_if.advertising); 765 } 766 } 767 hmp->mii_cnt = phy_idx; 768 if (hmp->mii_cnt > 0) 769 hmp->mii_if.phy_id = hmp->phys[0]; 770 else 771 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if)); 772 } 773 /* Configure gigabit autonegotiation. */ 774 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */ 775 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */ 776 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */ 777 778 card_idx++; 779 return 0; 780 781 err_out_unmap_rx: 782 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring, 783 hmp->rx_ring_dma); 784 err_out_unmap_tx: 785 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring, 786 hmp->tx_ring_dma); 787 err_out_cleardev: 788 free_netdev (dev); 789 err_out_iounmap: 790 iounmap(ioaddr); 791 err_out_release: 792 pci_release_regions(pdev); 793 err_out: 794 return ret; 795 } 796 797 static int read_eeprom(void __iomem *ioaddr, int location) 798 { 799 int bogus_cnt = 1000; 800 801 /* We should check busy first - per docs -KDU */ 802 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0); 803 writew(location, ioaddr + EEAddr); 804 writeb(0x02, ioaddr + EECmdStatus); 805 bogus_cnt = 1000; 806 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0); 807 if (hamachi_debug > 5) 808 printk(" EEPROM status is %2.2x after %d ticks.\n", 809 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt); 810 return readb(ioaddr + EEData); 811 } 812 813 /* MII Managemen Data I/O accesses. 814 These routines assume the MDIO controller is idle, and do not exit until 815 the command is finished. */ 816 817 static int mdio_read(struct net_device *dev, int phy_id, int location) 818 { 819 struct hamachi_private *hmp = netdev_priv(dev); 820 void __iomem *ioaddr = hmp->base; 821 int i; 822 823 /* We should check busy first - per docs -KDU */ 824 for (i = 10000; i >= 0; i--) 825 if ((readw(ioaddr + MII_Status) & 1) == 0) 826 break; 827 writew((phy_id<<8) + location, ioaddr + MII_Addr); 828 writew(0x0001, ioaddr + MII_Cmd); 829 for (i = 10000; i >= 0; i--) 830 if ((readw(ioaddr + MII_Status) & 1) == 0) 831 break; 832 return readw(ioaddr + MII_Rd_Data); 833 } 834 835 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 836 { 837 struct hamachi_private *hmp = netdev_priv(dev); 838 void __iomem *ioaddr = hmp->base; 839 int i; 840 841 /* We should check busy first - per docs -KDU */ 842 for (i = 10000; i >= 0; i--) 843 if ((readw(ioaddr + MII_Status) & 1) == 0) 844 break; 845 writew((phy_id<<8) + location, ioaddr + MII_Addr); 846 writew(value, ioaddr + MII_Wr_Data); 847 848 /* Wait for the command to finish. */ 849 for (i = 10000; i >= 0; i--) 850 if ((readw(ioaddr + MII_Status) & 1) == 0) 851 break; 852 } 853 854 855 static int hamachi_open(struct net_device *dev) 856 { 857 struct hamachi_private *hmp = netdev_priv(dev); 858 void __iomem *ioaddr = hmp->base; 859 int i; 860 u32 rx_int_var, tx_int_var; 861 u16 fifo_info; 862 863 i = request_irq(hmp->pci_dev->irq, hamachi_interrupt, IRQF_SHARED, 864 dev->name, dev); 865 if (i) 866 return i; 867 868 hamachi_init_ring(dev); 869 870 #if ADDRLEN == 64 871 /* writellll anyone ? */ 872 writel(hmp->rx_ring_dma, ioaddr + RxPtr); 873 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4); 874 writel(hmp->tx_ring_dma, ioaddr + TxPtr); 875 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4); 876 #else 877 writel(hmp->rx_ring_dma, ioaddr + RxPtr); 878 writel(hmp->tx_ring_dma, ioaddr + TxPtr); 879 #endif 880 881 /* TODO: It would make sense to organize this as words since the card 882 * documentation does. -KDU 883 */ 884 for (i = 0; i < 6; i++) 885 writeb(dev->dev_addr[i], ioaddr + StationAddr + i); 886 887 /* Initialize other registers: with so many this eventually this will 888 converted to an offset/value list. */ 889 890 /* Configure the FIFO */ 891 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6; 892 switch (fifo_info){ 893 case 0 : 894 /* No FIFO */ 895 writew(0x0000, ioaddr + FIFOcfg); 896 break; 897 case 1 : 898 /* Configure the FIFO for 512K external, 16K used for Tx. */ 899 writew(0x0028, ioaddr + FIFOcfg); 900 break; 901 case 2 : 902 /* Configure the FIFO for 1024 external, 32K used for Tx. */ 903 writew(0x004C, ioaddr + FIFOcfg); 904 break; 905 case 3 : 906 /* Configure the FIFO for 2048 external, 32K used for Tx. */ 907 writew(0x006C, ioaddr + FIFOcfg); 908 break; 909 default : 910 printk(KERN_WARNING "%s: Unsupported external memory config!\n", 911 dev->name); 912 /* Default to no FIFO */ 913 writew(0x0000, ioaddr + FIFOcfg); 914 break; 915 } 916 917 if (dev->if_port == 0) 918 dev->if_port = hmp->default_port; 919 920 921 /* Setting the Rx mode will start the Rx process. */ 922 /* If someone didn't choose a duplex, default to full-duplex */ 923 if (hmp->duplex_lock != 1) 924 hmp->mii_if.full_duplex = 1; 925 926 /* always 1, takes no more time to do it */ 927 writew(0x0001, ioaddr + RxChecksum); 928 writew(0x0000, ioaddr + TxChecksum); 929 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */ 930 writew(0x215F, ioaddr + MACCnfg); 931 writew(0x000C, ioaddr + FrameGap0); 932 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */ 933 writew(0x1018, ioaddr + FrameGap1); 934 /* Why do we enable receives/transmits here? -KDU */ 935 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */ 936 /* Enable automatic generation of flow control frames, period 0xffff. */ 937 writel(0x0030FFFF, ioaddr + FlowCtrl); 938 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */ 939 940 /* Enable legacy links. */ 941 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */ 942 /* Initial Link LED to blinking red. */ 943 writeb(0x03, ioaddr + LEDCtrl); 944 945 /* Configure interrupt mitigation. This has a great effect on 946 performance, so systems tuning should start here!. */ 947 948 rx_int_var = hmp->rx_int_var; 949 tx_int_var = hmp->tx_int_var; 950 951 if (hamachi_debug > 1) { 952 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n", 953 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8, 954 (tx_int_var & 0x00ff0000) >> 16); 955 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n", 956 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8, 957 (rx_int_var & 0x00ff0000) >> 16); 958 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var); 959 } 960 961 writel(tx_int_var, ioaddr + TxIntrCtrl); 962 writel(rx_int_var, ioaddr + RxIntrCtrl); 963 964 set_rx_mode(dev); 965 966 netif_start_queue(dev); 967 968 /* Enable interrupts by setting the interrupt mask. */ 969 writel(0x80878787, ioaddr + InterruptEnable); 970 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */ 971 972 /* Configure and start the DMA channels. */ 973 /* Burst sizes are in the low three bits: size = 4<<(val&7) */ 974 #if ADDRLEN == 64 975 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */ 976 writew(0x005D, ioaddr + TxDMACtrl); 977 #else 978 writew(0x001D, ioaddr + RxDMACtrl); 979 writew(0x001D, ioaddr + TxDMACtrl); 980 #endif 981 writew(0x0001, ioaddr + RxCmd); 982 983 if (hamachi_debug > 2) { 984 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n", 985 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus)); 986 } 987 /* Set the timer to check for link beat. */ 988 timer_setup(&hmp->timer, hamachi_timer, 0); 989 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ 990 add_timer(&hmp->timer); 991 992 return 0; 993 } 994 995 static inline int hamachi_tx(struct net_device *dev) 996 { 997 struct hamachi_private *hmp = netdev_priv(dev); 998 999 /* Update the dirty pointer until we find an entry that is 1000 still owned by the card */ 1001 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) { 1002 int entry = hmp->dirty_tx % TX_RING_SIZE; 1003 struct sk_buff *skb; 1004 1005 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn)) 1006 break; 1007 /* Free the original skb. */ 1008 skb = hmp->tx_skbuff[entry]; 1009 if (skb) { 1010 dma_unmap_single(&hmp->pci_dev->dev, 1011 leXX_to_cpu(hmp->tx_ring[entry].addr), 1012 skb->len, DMA_TO_DEVICE); 1013 dev_kfree_skb(skb); 1014 hmp->tx_skbuff[entry] = NULL; 1015 } 1016 hmp->tx_ring[entry].status_n_length = 0; 1017 if (entry >= TX_RING_SIZE-1) 1018 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= 1019 cpu_to_le32(DescEndRing); 1020 dev->stats.tx_packets++; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static void hamachi_timer(struct timer_list *t) 1027 { 1028 struct hamachi_private *hmp = from_timer(hmp, t, timer); 1029 struct net_device *dev = hmp->mii_if.dev; 1030 void __iomem *ioaddr = hmp->base; 1031 int next_tick = 10*HZ; 1032 1033 if (hamachi_debug > 2) { 1034 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA " 1035 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus), 1036 readw(ioaddr + ANLinkPartnerAbility)); 1037 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x " 1038 "%4.4x %4.4x %4.4x.\n", dev->name, 1039 readw(ioaddr + 0x0e0), 1040 readw(ioaddr + 0x0e2), 1041 readw(ioaddr + 0x0e4), 1042 readw(ioaddr + 0x0e6), 1043 readw(ioaddr + 0x0e8), 1044 readw(ioaddr + 0x0eA)); 1045 } 1046 /* We could do something here... nah. */ 1047 hmp->timer.expires = RUN_AT(next_tick); 1048 add_timer(&hmp->timer); 1049 } 1050 1051 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue) 1052 { 1053 int i; 1054 struct hamachi_private *hmp = netdev_priv(dev); 1055 void __iomem *ioaddr = hmp->base; 1056 1057 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x," 1058 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus)); 1059 1060 { 1061 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring); 1062 for (i = 0; i < RX_RING_SIZE; i++) 1063 printk(KERN_CONT " %8.8x", 1064 le32_to_cpu(hmp->rx_ring[i].status_n_length)); 1065 printk(KERN_CONT "\n"); 1066 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring); 1067 for (i = 0; i < TX_RING_SIZE; i++) 1068 printk(KERN_CONT " %4.4x", 1069 le32_to_cpu(hmp->tx_ring[i].status_n_length)); 1070 printk(KERN_CONT "\n"); 1071 } 1072 1073 /* Reinit the hardware and make sure the Rx and Tx processes 1074 are up and running. 1075 */ 1076 dev->if_port = 0; 1077 /* The right way to do Reset. -KDU 1078 * -Clear OWN bit in all Rx/Tx descriptors 1079 * -Wait 50 uS for channels to go idle 1080 * -Turn off MAC receiver 1081 * -Issue Reset 1082 */ 1083 1084 for (i = 0; i < RX_RING_SIZE; i++) 1085 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn); 1086 1087 /* Presume that all packets in the Tx queue are gone if we have to 1088 * re-init the hardware. 1089 */ 1090 for (i = 0; i < TX_RING_SIZE; i++){ 1091 struct sk_buff *skb; 1092 1093 if (i >= TX_RING_SIZE - 1) 1094 hmp->tx_ring[i].status_n_length = 1095 cpu_to_le32(DescEndRing) | 1096 (hmp->tx_ring[i].status_n_length & 1097 cpu_to_le32(0x0000ffff)); 1098 else 1099 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff); 1100 skb = hmp->tx_skbuff[i]; 1101 if (skb){ 1102 dma_unmap_single(&hmp->pci_dev->dev, 1103 leXX_to_cpu(hmp->tx_ring[i].addr), 1104 skb->len, DMA_TO_DEVICE); 1105 dev_kfree_skb(skb); 1106 hmp->tx_skbuff[i] = NULL; 1107 } 1108 } 1109 1110 udelay(60); /* Sleep 60 us just for safety sake */ 1111 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */ 1112 1113 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */ 1114 1115 hmp->tx_full = 0; 1116 hmp->cur_rx = hmp->cur_tx = 0; 1117 hmp->dirty_rx = hmp->dirty_tx = 0; 1118 /* Rx packets are also presumed lost; however, we need to make sure a 1119 * ring of buffers is in tact. -KDU 1120 */ 1121 for (i = 0; i < RX_RING_SIZE; i++){ 1122 struct sk_buff *skb = hmp->rx_skbuff[i]; 1123 1124 if (skb){ 1125 dma_unmap_single(&hmp->pci_dev->dev, 1126 leXX_to_cpu(hmp->rx_ring[i].addr), 1127 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1128 dev_kfree_skb(skb); 1129 hmp->rx_skbuff[i] = NULL; 1130 } 1131 } 1132 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1133 for (i = 0; i < RX_RING_SIZE; i++) { 1134 struct sk_buff *skb; 1135 1136 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz); 1137 hmp->rx_skbuff[i] = skb; 1138 if (skb == NULL) 1139 break; 1140 1141 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1142 skb->data, 1143 hmp->rx_buf_sz, 1144 DMA_FROM_DEVICE)); 1145 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn | 1146 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2)); 1147 } 1148 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1149 /* Mark the last entry as wrapping the ring. */ 1150 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1151 1152 /* Trigger an immediate transmit demand. */ 1153 netif_trans_update(dev); /* prevent tx timeout */ 1154 dev->stats.tx_errors++; 1155 1156 /* Restart the chip's Tx/Rx processes . */ 1157 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */ 1158 writew(0x0001, ioaddr + TxCmd); /* START Tx */ 1159 writew(0x0001, ioaddr + RxCmd); /* START Rx */ 1160 1161 netif_wake_queue(dev); 1162 } 1163 1164 1165 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1166 static void hamachi_init_ring(struct net_device *dev) 1167 { 1168 struct hamachi_private *hmp = netdev_priv(dev); 1169 int i; 1170 1171 hmp->tx_full = 0; 1172 hmp->cur_rx = hmp->cur_tx = 0; 1173 hmp->dirty_rx = hmp->dirty_tx = 0; 1174 1175 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1176 * card needs room to do 8 byte alignment, +2 so we can reserve 1177 * the first 2 bytes, and +16 gets room for the status word from the 1178 * card. -KDU 1179 */ 1180 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ : 1181 (((dev->mtu+26+7) & ~7) + 16)); 1182 1183 /* Initialize all Rx descriptors. */ 1184 for (i = 0; i < RX_RING_SIZE; i++) { 1185 hmp->rx_ring[i].status_n_length = 0; 1186 hmp->rx_skbuff[i] = NULL; 1187 } 1188 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1189 for (i = 0; i < RX_RING_SIZE; i++) { 1190 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2); 1191 hmp->rx_skbuff[i] = skb; 1192 if (skb == NULL) 1193 break; 1194 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1195 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1196 skb->data, 1197 hmp->rx_buf_sz, 1198 DMA_FROM_DEVICE)); 1199 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */ 1200 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn | 1201 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2)); 1202 } 1203 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1204 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1205 1206 for (i = 0; i < TX_RING_SIZE; i++) { 1207 hmp->tx_skbuff[i] = NULL; 1208 hmp->tx_ring[i].status_n_length = 0; 1209 } 1210 /* Mark the last entry of the ring */ 1211 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing); 1212 } 1213 1214 1215 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb, 1216 struct net_device *dev) 1217 { 1218 struct hamachi_private *hmp = netdev_priv(dev); 1219 unsigned entry; 1220 u16 status; 1221 1222 /* Ok, now make sure that the queue has space before trying to 1223 add another skbuff. if we return non-zero the scheduler 1224 should interpret this as a queue full and requeue the buffer 1225 for later. 1226 */ 1227 if (hmp->tx_full) { 1228 /* We should NEVER reach this point -KDU */ 1229 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx); 1230 1231 /* Wake the potentially-idle transmit channel. */ 1232 /* If we don't need to read status, DON'T -KDU */ 1233 status=readw(hmp->base + TxStatus); 1234 if( !(status & 0x0001) || (status & 0x0002)) 1235 writew(0x0001, hmp->base + TxCmd); 1236 return NETDEV_TX_BUSY; 1237 } 1238 1239 /* Caution: the write order is important here, set the field 1240 with the "ownership" bits last. */ 1241 1242 /* Calculate the next Tx descriptor entry. */ 1243 entry = hmp->cur_tx % TX_RING_SIZE; 1244 1245 hmp->tx_skbuff[entry] = skb; 1246 1247 hmp->tx_ring[entry].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1248 skb->data, 1249 skb->len, 1250 DMA_TO_DEVICE)); 1251 1252 /* Hmmmm, could probably put a DescIntr on these, but the way 1253 the driver is currently coded makes Tx interrupts unnecessary 1254 since the clearing of the Tx ring is handled by the start_xmit 1255 routine. This organization helps mitigate the interrupts a 1256 bit and probably renders the max_tx_latency param useless. 1257 1258 Update: Putting a DescIntr bit on all of the descriptors and 1259 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU 1260 */ 1261 if (entry >= TX_RING_SIZE-1) /* Wrap ring */ 1262 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn | 1263 DescEndPacket | DescEndRing | DescIntr | skb->len); 1264 else 1265 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn | 1266 DescEndPacket | DescIntr | skb->len); 1267 hmp->cur_tx++; 1268 1269 /* Non-x86 Todo: explicitly flush cache lines here. */ 1270 1271 /* Wake the potentially-idle transmit channel. */ 1272 /* If we don't need to read status, DON'T -KDU */ 1273 status=readw(hmp->base + TxStatus); 1274 if( !(status & 0x0001) || (status & 0x0002)) 1275 writew(0x0001, hmp->base + TxCmd); 1276 1277 /* Immediately before returning, let's clear as many entries as we can. */ 1278 hamachi_tx(dev); 1279 1280 /* We should kick the bottom half here, since we are not accepting 1281 * interrupts with every packet. i.e. realize that Gigabit ethernet 1282 * can transmit faster than ordinary machines can load packets; 1283 * hence, any packet that got put off because we were in the transmit 1284 * routine should IMMEDIATELY get a chance to be re-queued. -KDU 1285 */ 1286 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4)) 1287 netif_wake_queue(dev); /* Typical path */ 1288 else { 1289 hmp->tx_full = 1; 1290 netif_stop_queue(dev); 1291 } 1292 1293 if (hamachi_debug > 4) { 1294 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n", 1295 dev->name, hmp->cur_tx, entry); 1296 } 1297 return NETDEV_TX_OK; 1298 } 1299 1300 /* The interrupt handler does all of the Rx thread work and cleans up 1301 after the Tx thread. */ 1302 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance) 1303 { 1304 struct net_device *dev = dev_instance; 1305 struct hamachi_private *hmp = netdev_priv(dev); 1306 void __iomem *ioaddr = hmp->base; 1307 long boguscnt = max_interrupt_work; 1308 int handled = 0; 1309 1310 #ifndef final_version /* Can never occur. */ 1311 if (dev == NULL) { 1312 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq); 1313 return IRQ_NONE; 1314 } 1315 #endif 1316 1317 spin_lock(&hmp->lock); 1318 1319 do { 1320 u32 intr_status = readl(ioaddr + InterruptClear); 1321 1322 if (hamachi_debug > 4) 1323 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n", 1324 dev->name, intr_status); 1325 1326 if (intr_status == 0) 1327 break; 1328 1329 handled = 1; 1330 1331 if (intr_status & IntrRxDone) 1332 hamachi_rx(dev); 1333 1334 if (intr_status & IntrTxDone){ 1335 /* This code should RARELY need to execute. After all, this is 1336 * a gigabit link, it should consume packets as fast as we put 1337 * them in AND we clear the Tx ring in hamachi_start_xmit(). 1338 */ 1339 if (hmp->tx_full){ 1340 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){ 1341 int entry = hmp->dirty_tx % TX_RING_SIZE; 1342 struct sk_buff *skb; 1343 1344 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn)) 1345 break; 1346 skb = hmp->tx_skbuff[entry]; 1347 /* Free the original skb. */ 1348 if (skb){ 1349 dma_unmap_single(&hmp->pci_dev->dev, 1350 leXX_to_cpu(hmp->tx_ring[entry].addr), 1351 skb->len, 1352 DMA_TO_DEVICE); 1353 dev_consume_skb_irq(skb); 1354 hmp->tx_skbuff[entry] = NULL; 1355 } 1356 hmp->tx_ring[entry].status_n_length = 0; 1357 if (entry >= TX_RING_SIZE-1) 1358 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= 1359 cpu_to_le32(DescEndRing); 1360 dev->stats.tx_packets++; 1361 } 1362 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){ 1363 /* The ring is no longer full */ 1364 hmp->tx_full = 0; 1365 netif_wake_queue(dev); 1366 } 1367 } else { 1368 netif_wake_queue(dev); 1369 } 1370 } 1371 1372 1373 /* Abnormal error summary/uncommon events handlers. */ 1374 if (intr_status & 1375 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr | 1376 LinkChange | NegotiationChange | StatsMax)) 1377 hamachi_error(dev, intr_status); 1378 1379 if (--boguscnt < 0) { 1380 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n", 1381 dev->name, intr_status); 1382 break; 1383 } 1384 } while (1); 1385 1386 if (hamachi_debug > 3) 1387 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1388 dev->name, readl(ioaddr + IntrStatus)); 1389 1390 #ifndef final_version 1391 /* Code that should never be run! Perhaps remove after testing.. */ 1392 { 1393 static int stopit = 10; 1394 if (dev->start == 0 && --stopit < 0) { 1395 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n", 1396 dev->name); 1397 free_irq(irq, dev); 1398 } 1399 } 1400 #endif 1401 1402 spin_unlock(&hmp->lock); 1403 return IRQ_RETVAL(handled); 1404 } 1405 1406 /* This routine is logically part of the interrupt handler, but separated 1407 for clarity and better register allocation. */ 1408 static int hamachi_rx(struct net_device *dev) 1409 { 1410 struct hamachi_private *hmp = netdev_priv(dev); 1411 int entry = hmp->cur_rx % RX_RING_SIZE; 1412 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx; 1413 1414 if (hamachi_debug > 4) { 1415 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n", 1416 entry, hmp->rx_ring[entry].status_n_length); 1417 } 1418 1419 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1420 while (1) { 1421 struct hamachi_desc *desc = &(hmp->rx_ring[entry]); 1422 u32 desc_status = le32_to_cpu(desc->status_n_length); 1423 u16 data_size = desc_status; /* Implicit truncate */ 1424 u8 *buf_addr; 1425 s32 frame_status; 1426 1427 if (desc_status & DescOwn) 1428 break; 1429 dma_sync_single_for_cpu(&hmp->pci_dev->dev, 1430 leXX_to_cpu(desc->addr), 1431 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1432 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data; 1433 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12])); 1434 if (hamachi_debug > 4) 1435 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n", 1436 frame_status); 1437 if (--boguscnt < 0) 1438 break; 1439 if ( ! (desc_status & DescEndPacket)) { 1440 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " 1441 "multiple buffers, entry %#x length %d status %4.4x!\n", 1442 dev->name, hmp->cur_rx, data_size, desc_status); 1443 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n", 1444 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]); 1445 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n", 1446 dev->name, 1447 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000, 1448 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff, 1449 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length)); 1450 dev->stats.rx_length_errors++; 1451 } /* else Omit for prototype errata??? */ 1452 if (frame_status & 0x00380000) { 1453 /* There was an error. */ 1454 if (hamachi_debug > 2) 1455 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n", 1456 frame_status); 1457 dev->stats.rx_errors++; 1458 if (frame_status & 0x00600000) 1459 dev->stats.rx_length_errors++; 1460 if (frame_status & 0x00080000) 1461 dev->stats.rx_frame_errors++; 1462 if (frame_status & 0x00100000) 1463 dev->stats.rx_crc_errors++; 1464 if (frame_status < 0) 1465 dev->stats.rx_dropped++; 1466 } else { 1467 struct sk_buff *skb; 1468 /* Omit CRC */ 1469 u16 pkt_len = (frame_status & 0x07ff) - 4; 1470 #ifdef RX_CHECKSUM 1471 u32 pfck = *(u32 *) &buf_addr[data_size - 8]; 1472 #endif 1473 1474 1475 #ifndef final_version 1476 if (hamachi_debug > 4) 1477 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d" 1478 " of %d, bogus_cnt %d.\n", 1479 pkt_len, data_size, boguscnt); 1480 if (hamachi_debug > 5) 1481 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n", 1482 dev->name, 1483 *(s32*)&(buf_addr[data_size - 20]), 1484 *(s32*)&(buf_addr[data_size - 16]), 1485 *(s32*)&(buf_addr[data_size - 12]), 1486 *(s32*)&(buf_addr[data_size - 8]), 1487 *(s32*)&(buf_addr[data_size - 4])); 1488 #endif 1489 /* Check if the packet is long enough to accept without copying 1490 to a minimally-sized skbuff. */ 1491 if (pkt_len < rx_copybreak && 1492 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1493 #ifdef RX_CHECKSUM 1494 printk(KERN_ERR "%s: rx_copybreak non-zero " 1495 "not good with RX_CHECKSUM\n", dev->name); 1496 #endif 1497 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1498 dma_sync_single_for_cpu(&hmp->pci_dev->dev, 1499 leXX_to_cpu(hmp->rx_ring[entry].addr), 1500 hmp->rx_buf_sz, 1501 DMA_FROM_DEVICE); 1502 /* Call copy + cksum if available. */ 1503 #if 1 || USE_IP_COPYSUM 1504 skb_copy_to_linear_data(skb, 1505 hmp->rx_skbuff[entry]->data, pkt_len); 1506 skb_put(skb, pkt_len); 1507 #else 1508 skb_put_data(skb, hmp->rx_ring_dma 1509 + entry*sizeof(*desc), pkt_len); 1510 #endif 1511 dma_sync_single_for_device(&hmp->pci_dev->dev, 1512 leXX_to_cpu(hmp->rx_ring[entry].addr), 1513 hmp->rx_buf_sz, 1514 DMA_FROM_DEVICE); 1515 } else { 1516 dma_unmap_single(&hmp->pci_dev->dev, 1517 leXX_to_cpu(hmp->rx_ring[entry].addr), 1518 hmp->rx_buf_sz, 1519 DMA_FROM_DEVICE); 1520 skb_put(skb = hmp->rx_skbuff[entry], pkt_len); 1521 hmp->rx_skbuff[entry] = NULL; 1522 } 1523 skb->protocol = eth_type_trans(skb, dev); 1524 1525 1526 #ifdef RX_CHECKSUM 1527 /* TCP or UDP on ipv4, DIX encoding */ 1528 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) { 1529 struct iphdr *ih = (struct iphdr *) skb->data; 1530 /* Check that IP packet is at least 46 bytes, otherwise, 1531 * there may be pad bytes included in the hardware checksum. 1532 * This wouldn't happen if everyone padded with 0. 1533 */ 1534 if (ntohs(ih->tot_len) >= 46){ 1535 /* don't worry about frags */ 1536 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) { 1537 u32 inv = *(u32 *) &buf_addr[data_size - 16]; 1538 u32 *p = (u32 *) &buf_addr[data_size - 20]; 1539 register u32 crc, p_r, p_r1; 1540 1541 if (inv & 4) { 1542 inv &= ~4; 1543 --p; 1544 } 1545 p_r = *p; 1546 p_r1 = *(p-1); 1547 switch (inv) { 1548 case 0: 1549 crc = (p_r & 0xffff) + (p_r >> 16); 1550 break; 1551 case 1: 1552 crc = (p_r >> 16) + (p_r & 0xffff) 1553 + (p_r1 >> 16 & 0xff00); 1554 break; 1555 case 2: 1556 crc = p_r + (p_r1 >> 16); 1557 break; 1558 case 3: 1559 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16); 1560 break; 1561 default: /*NOTREACHED*/ crc = 0; 1562 } 1563 if (crc & 0xffff0000) { 1564 crc &= 0xffff; 1565 ++crc; 1566 } 1567 /* tcp/udp will add in pseudo */ 1568 skb->csum = ntohs(pfck & 0xffff); 1569 if (skb->csum > crc) 1570 skb->csum -= crc; 1571 else 1572 skb->csum += (~crc & 0xffff); 1573 /* 1574 * could do the pseudo myself and return 1575 * CHECKSUM_UNNECESSARY 1576 */ 1577 skb->ip_summed = CHECKSUM_COMPLETE; 1578 } 1579 } 1580 } 1581 #endif /* RX_CHECKSUM */ 1582 1583 netif_rx(skb); 1584 dev->stats.rx_packets++; 1585 } 1586 entry = (++hmp->cur_rx) % RX_RING_SIZE; 1587 } 1588 1589 /* Refill the Rx ring buffers. */ 1590 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) { 1591 struct hamachi_desc *desc; 1592 1593 entry = hmp->dirty_rx % RX_RING_SIZE; 1594 desc = &(hmp->rx_ring[entry]); 1595 if (hmp->rx_skbuff[entry] == NULL) { 1596 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2); 1597 1598 hmp->rx_skbuff[entry] = skb; 1599 if (skb == NULL) 1600 break; /* Better luck next round. */ 1601 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1602 desc->addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev, 1603 skb->data, 1604 hmp->rx_buf_sz, 1605 DMA_FROM_DEVICE)); 1606 } 1607 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz); 1608 if (entry >= RX_RING_SIZE-1) 1609 desc->status_n_length |= cpu_to_le32(DescOwn | 1610 DescEndPacket | DescEndRing | DescIntr); 1611 else 1612 desc->status_n_length |= cpu_to_le32(DescOwn | 1613 DescEndPacket | DescIntr); 1614 } 1615 1616 /* Restart Rx engine if stopped. */ 1617 /* If we don't need to check status, don't. -KDU */ 1618 if (readw(hmp->base + RxStatus) & 0x0002) 1619 writew(0x0001, hmp->base + RxCmd); 1620 1621 return 0; 1622 } 1623 1624 /* This is more properly named "uncommon interrupt events", as it covers more 1625 than just errors. */ 1626 static void hamachi_error(struct net_device *dev, int intr_status) 1627 { 1628 struct hamachi_private *hmp = netdev_priv(dev); 1629 void __iomem *ioaddr = hmp->base; 1630 1631 if (intr_status & (LinkChange|NegotiationChange)) { 1632 if (hamachi_debug > 1) 1633 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl" 1634 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n", 1635 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2), 1636 readw(ioaddr + ANLinkPartnerAbility), 1637 readl(ioaddr + IntrStatus)); 1638 if (readw(ioaddr + ANStatus) & 0x20) 1639 writeb(0x01, ioaddr + LEDCtrl); 1640 else 1641 writeb(0x03, ioaddr + LEDCtrl); 1642 } 1643 if (intr_status & StatsMax) { 1644 hamachi_get_stats(dev); 1645 /* Read the overflow bits to clear. */ 1646 readl(ioaddr + 0x370); 1647 readl(ioaddr + 0x3F0); 1648 } 1649 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) && 1650 hamachi_debug) 1651 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", 1652 dev->name, intr_status); 1653 /* Hmmmmm, it's not clear how to recover from PCI faults. */ 1654 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault)) 1655 dev->stats.tx_fifo_errors++; 1656 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault)) 1657 dev->stats.rx_fifo_errors++; 1658 } 1659 1660 static int hamachi_close(struct net_device *dev) 1661 { 1662 struct hamachi_private *hmp = netdev_priv(dev); 1663 void __iomem *ioaddr = hmp->base; 1664 struct sk_buff *skb; 1665 int i; 1666 1667 netif_stop_queue(dev); 1668 1669 if (hamachi_debug > 1) { 1670 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n", 1671 dev->name, readw(ioaddr + TxStatus), 1672 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus)); 1673 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1674 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx); 1675 } 1676 1677 /* Disable interrupts by clearing the interrupt mask. */ 1678 writel(0x0000, ioaddr + InterruptEnable); 1679 1680 /* Stop the chip's Tx and Rx processes. */ 1681 writel(2, ioaddr + RxCmd); 1682 writew(2, ioaddr + TxCmd); 1683 1684 #ifdef __i386__ 1685 if (hamachi_debug > 2) { 1686 printk(KERN_DEBUG " Tx ring at %8.8x:\n", 1687 (int)hmp->tx_ring_dma); 1688 for (i = 0; i < TX_RING_SIZE; i++) 1689 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n", 1690 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ', 1691 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr); 1692 printk(KERN_DEBUG " Rx ring %8.8x:\n", 1693 (int)hmp->rx_ring_dma); 1694 for (i = 0; i < RX_RING_SIZE; i++) { 1695 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n", 1696 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ', 1697 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr); 1698 if (hamachi_debug > 6) { 1699 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) { 1700 u16 *addr = (u16 *) 1701 hmp->rx_skbuff[i]->data; 1702 int j; 1703 printk(KERN_DEBUG "Addr: "); 1704 for (j = 0; j < 0x50; j++) 1705 printk(" %4.4x", addr[j]); 1706 printk("\n"); 1707 } 1708 } 1709 } 1710 } 1711 #endif /* __i386__ debugging only */ 1712 1713 free_irq(hmp->pci_dev->irq, dev); 1714 1715 del_timer_sync(&hmp->timer); 1716 1717 /* Free all the skbuffs in the Rx queue. */ 1718 for (i = 0; i < RX_RING_SIZE; i++) { 1719 skb = hmp->rx_skbuff[i]; 1720 hmp->rx_ring[i].status_n_length = 0; 1721 if (skb) { 1722 dma_unmap_single(&hmp->pci_dev->dev, 1723 leXX_to_cpu(hmp->rx_ring[i].addr), 1724 hmp->rx_buf_sz, DMA_FROM_DEVICE); 1725 dev_kfree_skb(skb); 1726 hmp->rx_skbuff[i] = NULL; 1727 } 1728 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */ 1729 } 1730 for (i = 0; i < TX_RING_SIZE; i++) { 1731 skb = hmp->tx_skbuff[i]; 1732 if (skb) { 1733 dma_unmap_single(&hmp->pci_dev->dev, 1734 leXX_to_cpu(hmp->tx_ring[i].addr), 1735 skb->len, DMA_TO_DEVICE); 1736 dev_kfree_skb(skb); 1737 hmp->tx_skbuff[i] = NULL; 1738 } 1739 } 1740 1741 writeb(0x00, ioaddr + LEDCtrl); 1742 1743 return 0; 1744 } 1745 1746 static struct net_device_stats *hamachi_get_stats(struct net_device *dev) 1747 { 1748 struct hamachi_private *hmp = netdev_priv(dev); 1749 void __iomem *ioaddr = hmp->base; 1750 1751 /* We should lock this segment of code for SMP eventually, although 1752 the vulnerability window is very small and statistics are 1753 non-critical. */ 1754 /* Ok, what goes here? This appears to be stuck at 21 packets 1755 according to ifconfig. It does get incremented in hamachi_tx(), 1756 so I think I'll comment it out here and see if better things 1757 happen. 1758 */ 1759 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */ 1760 1761 /* Total Uni+Brd+Multi */ 1762 dev->stats.rx_bytes = readl(ioaddr + 0x330); 1763 /* Total Uni+Brd+Multi */ 1764 dev->stats.tx_bytes = readl(ioaddr + 0x3B0); 1765 /* Multicast Rx */ 1766 dev->stats.multicast = readl(ioaddr + 0x320); 1767 1768 /* Over+Undersized */ 1769 dev->stats.rx_length_errors = readl(ioaddr + 0x368); 1770 /* Jabber */ 1771 dev->stats.rx_over_errors = readl(ioaddr + 0x35C); 1772 /* Jabber */ 1773 dev->stats.rx_crc_errors = readl(ioaddr + 0x360); 1774 /* Symbol Errs */ 1775 dev->stats.rx_frame_errors = readl(ioaddr + 0x364); 1776 /* Dropped */ 1777 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C); 1778 1779 return &dev->stats; 1780 } 1781 1782 static void set_rx_mode(struct net_device *dev) 1783 { 1784 struct hamachi_private *hmp = netdev_priv(dev); 1785 void __iomem *ioaddr = hmp->base; 1786 1787 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1788 writew(0x000F, ioaddr + AddrMode); 1789 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) { 1790 /* Too many to match, or accept all multicasts. */ 1791 writew(0x000B, ioaddr + AddrMode); 1792 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */ 1793 struct netdev_hw_addr *ha; 1794 int i = 0; 1795 1796 netdev_for_each_mc_addr(ha, dev) { 1797 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8); 1798 writel(0x20000 | (*(u16 *)&ha->addr[4]), 1799 ioaddr + 0x104 + i*8); 1800 i++; 1801 } 1802 /* Clear remaining entries. */ 1803 for (; i < 64; i++) 1804 writel(0, ioaddr + 0x104 + i*8); 1805 writew(0x0003, ioaddr + AddrMode); 1806 } else { /* Normal, unicast/broadcast-only mode. */ 1807 writew(0x0001, ioaddr + AddrMode); 1808 } 1809 } 1810 1811 static int check_if_running(struct net_device *dev) 1812 { 1813 if (!netif_running(dev)) 1814 return -EINVAL; 1815 return 0; 1816 } 1817 1818 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1819 { 1820 struct hamachi_private *np = netdev_priv(dev); 1821 1822 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1823 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1824 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1825 } 1826 1827 static int hamachi_get_link_ksettings(struct net_device *dev, 1828 struct ethtool_link_ksettings *cmd) 1829 { 1830 struct hamachi_private *np = netdev_priv(dev); 1831 spin_lock_irq(&np->lock); 1832 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1833 spin_unlock_irq(&np->lock); 1834 return 0; 1835 } 1836 1837 static int hamachi_set_link_ksettings(struct net_device *dev, 1838 const struct ethtool_link_ksettings *cmd) 1839 { 1840 struct hamachi_private *np = netdev_priv(dev); 1841 int res; 1842 spin_lock_irq(&np->lock); 1843 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1844 spin_unlock_irq(&np->lock); 1845 return res; 1846 } 1847 1848 static int hamachi_nway_reset(struct net_device *dev) 1849 { 1850 struct hamachi_private *np = netdev_priv(dev); 1851 return mii_nway_restart(&np->mii_if); 1852 } 1853 1854 static u32 hamachi_get_link(struct net_device *dev) 1855 { 1856 struct hamachi_private *np = netdev_priv(dev); 1857 return mii_link_ok(&np->mii_if); 1858 } 1859 1860 static const struct ethtool_ops ethtool_ops = { 1861 .begin = check_if_running, 1862 .get_drvinfo = hamachi_get_drvinfo, 1863 .nway_reset = hamachi_nway_reset, 1864 .get_link = hamachi_get_link, 1865 .get_link_ksettings = hamachi_get_link_ksettings, 1866 .set_link_ksettings = hamachi_set_link_ksettings, 1867 }; 1868 1869 static const struct ethtool_ops ethtool_ops_no_mii = { 1870 .begin = check_if_running, 1871 .get_drvinfo = hamachi_get_drvinfo, 1872 }; 1873 1874 /* private ioctl: set rx,tx intr params */ 1875 static int hamachi_siocdevprivate(struct net_device *dev, struct ifreq *rq, 1876 void __user *data, int cmd) 1877 { 1878 struct hamachi_private *np = netdev_priv(dev); 1879 u32 *d = (u32 *)&rq->ifr_ifru; 1880 1881 if (!netif_running(dev)) 1882 return -EINVAL; 1883 1884 if (cmd != SIOCDEVPRIVATE + 3) 1885 return -EOPNOTSUPP; 1886 1887 /* Should add this check here or an ordinary user can do nasty 1888 * things. -KDU 1889 * 1890 * TODO: Shut down the Rx and Tx engines while doing this. 1891 */ 1892 if (!capable(CAP_NET_ADMIN)) 1893 return -EPERM; 1894 writel(d[0], np->base + TxIntrCtrl); 1895 writel(d[1], np->base + RxIntrCtrl); 1896 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name, 1897 (u32)readl(np->base + TxIntrCtrl), 1898 (u32)readl(np->base + RxIntrCtrl)); 1899 1900 return 0; 1901 } 1902 1903 static int hamachi_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1904 { 1905 struct hamachi_private *np = netdev_priv(dev); 1906 struct mii_ioctl_data *data = if_mii(rq); 1907 int rc; 1908 1909 if (!netif_running(dev)) 1910 return -EINVAL; 1911 1912 spin_lock_irq(&np->lock); 1913 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1914 spin_unlock_irq(&np->lock); 1915 1916 return rc; 1917 } 1918 1919 1920 static void hamachi_remove_one(struct pci_dev *pdev) 1921 { 1922 struct net_device *dev = pci_get_drvdata(pdev); 1923 1924 if (dev) { 1925 struct hamachi_private *hmp = netdev_priv(dev); 1926 1927 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring, 1928 hmp->rx_ring_dma); 1929 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring, 1930 hmp->tx_ring_dma); 1931 unregister_netdev(dev); 1932 iounmap(hmp->base); 1933 free_netdev(dev); 1934 pci_release_regions(pdev); 1935 } 1936 } 1937 1938 static const struct pci_device_id hamachi_pci_tbl[] = { 1939 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, }, 1940 { 0, } 1941 }; 1942 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl); 1943 1944 static struct pci_driver hamachi_driver = { 1945 .name = DRV_NAME, 1946 .id_table = hamachi_pci_tbl, 1947 .probe = hamachi_init_one, 1948 .remove = hamachi_remove_one, 1949 }; 1950 1951 static int __init hamachi_init (void) 1952 { 1953 /* when a module, this is printed whether or not devices are found in probe */ 1954 #ifdef MODULE 1955 printk(version); 1956 #endif 1957 return pci_register_driver(&hamachi_driver); 1958 } 1959 1960 static void __exit hamachi_exit (void) 1961 { 1962 pci_unregister_driver(&hamachi_driver); 1963 } 1964 1965 1966 module_init(hamachi_init); 1967 module_exit(hamachi_exit); 1968