1 /* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. 7 * 8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 9 * trademarks of NVIDIA Corporation in the United States and other 10 * countries. 11 * 12 * Copyright (C) 2003,4,5 Manfred Spraul 13 * Copyright (C) 2004 Andrew de Quincey (wol support) 14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 15 * IRQ rate fixes, bigendian fixes, cleanups, verification) 16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * (at your option) any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 31 * 32 * Known bugs: 33 * We suspect that on some hardware no TX done interrupts are generated. 34 * This means recovery from netif_stop_queue only happens if the hw timer 35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 37 * If your hardware reliably generates tx done interrupts, then you can remove 38 * DEV_NEED_TIMERIRQ from the driver_data flags. 39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 40 * superfluous timer interrupts from the nic. 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #define FORCEDETH_VERSION "0.64" 46 #define DRV_NAME "forcedeth" 47 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/pci.h> 51 #include <linux/interrupt.h> 52 #include <linux/netdevice.h> 53 #include <linux/etherdevice.h> 54 #include <linux/delay.h> 55 #include <linux/sched.h> 56 #include <linux/spinlock.h> 57 #include <linux/ethtool.h> 58 #include <linux/timer.h> 59 #include <linux/skbuff.h> 60 #include <linux/mii.h> 61 #include <linux/random.h> 62 #include <linux/init.h> 63 #include <linux/if_vlan.h> 64 #include <linux/dma-mapping.h> 65 #include <linux/slab.h> 66 #include <linux/uaccess.h> 67 #include <linux/prefetch.h> 68 #include <linux/u64_stats_sync.h> 69 #include <linux/io.h> 70 71 #include <asm/irq.h> 72 73 #define TX_WORK_PER_LOOP 64 74 #define RX_WORK_PER_LOOP 64 75 76 /* 77 * Hardware access: 78 */ 79 80 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 81 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 82 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 83 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 84 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 85 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 86 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 87 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 88 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 89 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 90 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 91 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 92 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 93 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 94 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 95 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 96 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 97 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 98 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 99 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 100 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 101 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 102 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 103 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 104 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 105 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 106 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 107 108 enum { 109 NvRegIrqStatus = 0x000, 110 #define NVREG_IRQSTAT_MIIEVENT 0x040 111 #define NVREG_IRQSTAT_MASK 0x83ff 112 NvRegIrqMask = 0x004, 113 #define NVREG_IRQ_RX_ERROR 0x0001 114 #define NVREG_IRQ_RX 0x0002 115 #define NVREG_IRQ_RX_NOBUF 0x0004 116 #define NVREG_IRQ_TX_ERR 0x0008 117 #define NVREG_IRQ_TX_OK 0x0010 118 #define NVREG_IRQ_TIMER 0x0020 119 #define NVREG_IRQ_LINK 0x0040 120 #define NVREG_IRQ_RX_FORCED 0x0080 121 #define NVREG_IRQ_TX_FORCED 0x0100 122 #define NVREG_IRQ_RECOVER_ERROR 0x8200 123 #define NVREG_IRQMASK_THROUGHPUT 0x00df 124 #define NVREG_IRQMASK_CPU 0x0060 125 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 126 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 127 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 128 129 NvRegUnknownSetupReg6 = 0x008, 130 #define NVREG_UNKSETUP6_VAL 3 131 132 /* 133 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 134 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 135 */ 136 NvRegPollingInterval = 0x00c, 137 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 138 #define NVREG_POLL_DEFAULT_CPU 13 139 NvRegMSIMap0 = 0x020, 140 NvRegMSIMap1 = 0x024, 141 NvRegMSIIrqMask = 0x030, 142 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 143 NvRegMisc1 = 0x080, 144 #define NVREG_MISC1_PAUSE_TX 0x01 145 #define NVREG_MISC1_HD 0x02 146 #define NVREG_MISC1_FORCE 0x3b0f3c 147 148 NvRegMacReset = 0x34, 149 #define NVREG_MAC_RESET_ASSERT 0x0F3 150 NvRegTransmitterControl = 0x084, 151 #define NVREG_XMITCTL_START 0x01 152 #define NVREG_XMITCTL_MGMT_ST 0x40000000 153 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 154 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 155 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 156 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 157 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 158 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 159 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 160 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 161 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 162 #define NVREG_XMITCTL_DATA_START 0x00100000 163 #define NVREG_XMITCTL_DATA_READY 0x00010000 164 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 165 NvRegTransmitterStatus = 0x088, 166 #define NVREG_XMITSTAT_BUSY 0x01 167 168 NvRegPacketFilterFlags = 0x8c, 169 #define NVREG_PFF_PAUSE_RX 0x08 170 #define NVREG_PFF_ALWAYS 0x7F0000 171 #define NVREG_PFF_PROMISC 0x80 172 #define NVREG_PFF_MYADDR 0x20 173 #define NVREG_PFF_LOOPBACK 0x10 174 175 NvRegOffloadConfig = 0x90, 176 #define NVREG_OFFLOAD_HOMEPHY 0x601 177 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 178 NvRegReceiverControl = 0x094, 179 #define NVREG_RCVCTL_START 0x01 180 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 181 NvRegReceiverStatus = 0x98, 182 #define NVREG_RCVSTAT_BUSY 0x01 183 184 NvRegSlotTime = 0x9c, 185 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 186 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 187 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 188 #define NVREG_SLOTTIME_HALF 0x0000ff00 189 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 190 #define NVREG_SLOTTIME_MASK 0x000000ff 191 192 NvRegTxDeferral = 0xA0, 193 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 194 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 195 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 196 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 197 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 198 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 199 NvRegRxDeferral = 0xA4, 200 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 201 NvRegMacAddrA = 0xA8, 202 NvRegMacAddrB = 0xAC, 203 NvRegMulticastAddrA = 0xB0, 204 #define NVREG_MCASTADDRA_FORCE 0x01 205 NvRegMulticastAddrB = 0xB4, 206 NvRegMulticastMaskA = 0xB8, 207 #define NVREG_MCASTMASKA_NONE 0xffffffff 208 NvRegMulticastMaskB = 0xBC, 209 #define NVREG_MCASTMASKB_NONE 0xffff 210 211 NvRegPhyInterface = 0xC0, 212 #define PHY_RGMII 0x10000000 213 NvRegBackOffControl = 0xC4, 214 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 215 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 216 #define NVREG_BKOFFCTRL_SELECT 24 217 #define NVREG_BKOFFCTRL_GEAR 12 218 219 NvRegTxRingPhysAddr = 0x100, 220 NvRegRxRingPhysAddr = 0x104, 221 NvRegRingSizes = 0x108, 222 #define NVREG_RINGSZ_TXSHIFT 0 223 #define NVREG_RINGSZ_RXSHIFT 16 224 NvRegTransmitPoll = 0x10c, 225 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 226 NvRegLinkSpeed = 0x110, 227 #define NVREG_LINKSPEED_FORCE 0x10000 228 #define NVREG_LINKSPEED_10 1000 229 #define NVREG_LINKSPEED_100 100 230 #define NVREG_LINKSPEED_1000 50 231 #define NVREG_LINKSPEED_MASK (0xFFF) 232 NvRegUnknownSetupReg5 = 0x130, 233 #define NVREG_UNKSETUP5_BIT31 (1<<31) 234 NvRegTxWatermark = 0x13c, 235 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 236 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 237 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 238 NvRegTxRxControl = 0x144, 239 #define NVREG_TXRXCTL_KICK 0x0001 240 #define NVREG_TXRXCTL_BIT1 0x0002 241 #define NVREG_TXRXCTL_BIT2 0x0004 242 #define NVREG_TXRXCTL_IDLE 0x0008 243 #define NVREG_TXRXCTL_RESET 0x0010 244 #define NVREG_TXRXCTL_RXCHECK 0x0400 245 #define NVREG_TXRXCTL_DESC_1 0 246 #define NVREG_TXRXCTL_DESC_2 0x002100 247 #define NVREG_TXRXCTL_DESC_3 0xc02200 248 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 249 #define NVREG_TXRXCTL_VLANINS 0x00080 250 NvRegTxRingPhysAddrHigh = 0x148, 251 NvRegRxRingPhysAddrHigh = 0x14C, 252 NvRegTxPauseFrame = 0x170, 253 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 254 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 255 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 256 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 257 NvRegTxPauseFrameLimit = 0x174, 258 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 259 NvRegMIIStatus = 0x180, 260 #define NVREG_MIISTAT_ERROR 0x0001 261 #define NVREG_MIISTAT_LINKCHANGE 0x0008 262 #define NVREG_MIISTAT_MASK_RW 0x0007 263 #define NVREG_MIISTAT_MASK_ALL 0x000f 264 NvRegMIIMask = 0x184, 265 #define NVREG_MII_LINKCHANGE 0x0008 266 267 NvRegAdapterControl = 0x188, 268 #define NVREG_ADAPTCTL_START 0x02 269 #define NVREG_ADAPTCTL_LINKUP 0x04 270 #define NVREG_ADAPTCTL_PHYVALID 0x40000 271 #define NVREG_ADAPTCTL_RUNNING 0x100000 272 #define NVREG_ADAPTCTL_PHYSHIFT 24 273 NvRegMIISpeed = 0x18c, 274 #define NVREG_MIISPEED_BIT8 (1<<8) 275 #define NVREG_MIIDELAY 5 276 NvRegMIIControl = 0x190, 277 #define NVREG_MIICTL_INUSE 0x08000 278 #define NVREG_MIICTL_WRITE 0x00400 279 #define NVREG_MIICTL_ADDRSHIFT 5 280 NvRegMIIData = 0x194, 281 NvRegTxUnicast = 0x1a0, 282 NvRegTxMulticast = 0x1a4, 283 NvRegTxBroadcast = 0x1a8, 284 NvRegWakeUpFlags = 0x200, 285 #define NVREG_WAKEUPFLAGS_VAL 0x7770 286 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 287 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 288 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 289 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 290 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 291 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 292 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 293 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 294 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 295 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 296 297 NvRegMgmtUnitGetVersion = 0x204, 298 #define NVREG_MGMTUNITGETVERSION 0x01 299 NvRegMgmtUnitVersion = 0x208, 300 #define NVREG_MGMTUNITVERSION 0x08 301 NvRegPowerCap = 0x268, 302 #define NVREG_POWERCAP_D3SUPP (1<<30) 303 #define NVREG_POWERCAP_D2SUPP (1<<26) 304 #define NVREG_POWERCAP_D1SUPP (1<<25) 305 NvRegPowerState = 0x26c, 306 #define NVREG_POWERSTATE_POWEREDUP 0x8000 307 #define NVREG_POWERSTATE_VALID 0x0100 308 #define NVREG_POWERSTATE_MASK 0x0003 309 #define NVREG_POWERSTATE_D0 0x0000 310 #define NVREG_POWERSTATE_D1 0x0001 311 #define NVREG_POWERSTATE_D2 0x0002 312 #define NVREG_POWERSTATE_D3 0x0003 313 NvRegMgmtUnitControl = 0x278, 314 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 315 NvRegTxCnt = 0x280, 316 NvRegTxZeroReXmt = 0x284, 317 NvRegTxOneReXmt = 0x288, 318 NvRegTxManyReXmt = 0x28c, 319 NvRegTxLateCol = 0x290, 320 NvRegTxUnderflow = 0x294, 321 NvRegTxLossCarrier = 0x298, 322 NvRegTxExcessDef = 0x29c, 323 NvRegTxRetryErr = 0x2a0, 324 NvRegRxFrameErr = 0x2a4, 325 NvRegRxExtraByte = 0x2a8, 326 NvRegRxLateCol = 0x2ac, 327 NvRegRxRunt = 0x2b0, 328 NvRegRxFrameTooLong = 0x2b4, 329 NvRegRxOverflow = 0x2b8, 330 NvRegRxFCSErr = 0x2bc, 331 NvRegRxFrameAlignErr = 0x2c0, 332 NvRegRxLenErr = 0x2c4, 333 NvRegRxUnicast = 0x2c8, 334 NvRegRxMulticast = 0x2cc, 335 NvRegRxBroadcast = 0x2d0, 336 NvRegTxDef = 0x2d4, 337 NvRegTxFrame = 0x2d8, 338 NvRegRxCnt = 0x2dc, 339 NvRegTxPause = 0x2e0, 340 NvRegRxPause = 0x2e4, 341 NvRegRxDropFrame = 0x2e8, 342 NvRegVlanControl = 0x300, 343 #define NVREG_VLANCONTROL_ENABLE 0x2000 344 NvRegMSIXMap0 = 0x3e0, 345 NvRegMSIXMap1 = 0x3e4, 346 NvRegMSIXIrqStatus = 0x3f0, 347 348 NvRegPowerState2 = 0x600, 349 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 350 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 351 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 352 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 353 }; 354 355 /* Big endian: should work, but is untested */ 356 struct ring_desc { 357 __le32 buf; 358 __le32 flaglen; 359 }; 360 361 struct ring_desc_ex { 362 __le32 bufhigh; 363 __le32 buflow; 364 __le32 txvlan; 365 __le32 flaglen; 366 }; 367 368 union ring_type { 369 struct ring_desc *orig; 370 struct ring_desc_ex *ex; 371 }; 372 373 #define FLAG_MASK_V1 0xffff0000 374 #define FLAG_MASK_V2 0xffffc000 375 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 376 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 377 378 #define NV_TX_LASTPACKET (1<<16) 379 #define NV_TX_RETRYERROR (1<<19) 380 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 381 #define NV_TX_FORCED_INTERRUPT (1<<24) 382 #define NV_TX_DEFERRED (1<<26) 383 #define NV_TX_CARRIERLOST (1<<27) 384 #define NV_TX_LATECOLLISION (1<<28) 385 #define NV_TX_UNDERFLOW (1<<29) 386 #define NV_TX_ERROR (1<<30) 387 #define NV_TX_VALID (1<<31) 388 389 #define NV_TX2_LASTPACKET (1<<29) 390 #define NV_TX2_RETRYERROR (1<<18) 391 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 392 #define NV_TX2_FORCED_INTERRUPT (1<<30) 393 #define NV_TX2_DEFERRED (1<<25) 394 #define NV_TX2_CARRIERLOST (1<<26) 395 #define NV_TX2_LATECOLLISION (1<<27) 396 #define NV_TX2_UNDERFLOW (1<<28) 397 /* error and valid are the same for both */ 398 #define NV_TX2_ERROR (1<<30) 399 #define NV_TX2_VALID (1<<31) 400 #define NV_TX2_TSO (1<<28) 401 #define NV_TX2_TSO_SHIFT 14 402 #define NV_TX2_TSO_MAX_SHIFT 14 403 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 404 #define NV_TX2_CHECKSUM_L3 (1<<27) 405 #define NV_TX2_CHECKSUM_L4 (1<<26) 406 407 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 408 409 #define NV_RX_DESCRIPTORVALID (1<<16) 410 #define NV_RX_MISSEDFRAME (1<<17) 411 #define NV_RX_SUBSTRACT1 (1<<18) 412 #define NV_RX_ERROR1 (1<<23) 413 #define NV_RX_ERROR2 (1<<24) 414 #define NV_RX_ERROR3 (1<<25) 415 #define NV_RX_ERROR4 (1<<26) 416 #define NV_RX_CRCERR (1<<27) 417 #define NV_RX_OVERFLOW (1<<28) 418 #define NV_RX_FRAMINGERR (1<<29) 419 #define NV_RX_ERROR (1<<30) 420 #define NV_RX_AVAIL (1<<31) 421 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 422 423 #define NV_RX2_CHECKSUMMASK (0x1C000000) 424 #define NV_RX2_CHECKSUM_IP (0x10000000) 425 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 426 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 427 #define NV_RX2_DESCRIPTORVALID (1<<29) 428 #define NV_RX2_SUBSTRACT1 (1<<25) 429 #define NV_RX2_ERROR1 (1<<18) 430 #define NV_RX2_ERROR2 (1<<19) 431 #define NV_RX2_ERROR3 (1<<20) 432 #define NV_RX2_ERROR4 (1<<21) 433 #define NV_RX2_CRCERR (1<<22) 434 #define NV_RX2_OVERFLOW (1<<23) 435 #define NV_RX2_FRAMINGERR (1<<24) 436 /* error and avail are the same for both */ 437 #define NV_RX2_ERROR (1<<30) 438 #define NV_RX2_AVAIL (1<<31) 439 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 440 441 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 442 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 443 444 /* Miscellaneous hardware related defines: */ 445 #define NV_PCI_REGSZ_VER1 0x270 446 #define NV_PCI_REGSZ_VER2 0x2d4 447 #define NV_PCI_REGSZ_VER3 0x604 448 #define NV_PCI_REGSZ_MAX 0x604 449 450 /* various timeout delays: all in usec */ 451 #define NV_TXRX_RESET_DELAY 4 452 #define NV_TXSTOP_DELAY1 10 453 #define NV_TXSTOP_DELAY1MAX 500000 454 #define NV_TXSTOP_DELAY2 100 455 #define NV_RXSTOP_DELAY1 10 456 #define NV_RXSTOP_DELAY1MAX 500000 457 #define NV_RXSTOP_DELAY2 100 458 #define NV_SETUP5_DELAY 5 459 #define NV_SETUP5_DELAYMAX 50000 460 #define NV_POWERUP_DELAY 5 461 #define NV_POWERUP_DELAYMAX 5000 462 #define NV_MIIBUSY_DELAY 50 463 #define NV_MIIPHY_DELAY 10 464 #define NV_MIIPHY_DELAYMAX 10000 465 #define NV_MAC_RESET_DELAY 64 466 467 #define NV_WAKEUPPATTERNS 5 468 #define NV_WAKEUPMASKENTRIES 4 469 470 /* General driver defaults */ 471 #define NV_WATCHDOG_TIMEO (5*HZ) 472 473 #define RX_RING_DEFAULT 512 474 #define TX_RING_DEFAULT 256 475 #define RX_RING_MIN 128 476 #define TX_RING_MIN 64 477 #define RING_MAX_DESC_VER_1 1024 478 #define RING_MAX_DESC_VER_2_3 16384 479 480 /* rx/tx mac addr + type + vlan + align + slack*/ 481 #define NV_RX_HEADERS (64) 482 /* even more slack. */ 483 #define NV_RX_ALLOC_PAD (64) 484 485 /* maximum mtu size */ 486 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 487 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 488 489 #define OOM_REFILL (1+HZ/20) 490 #define POLL_WAIT (1+HZ/100) 491 #define LINK_TIMEOUT (3*HZ) 492 #define STATS_INTERVAL (10*HZ) 493 494 /* 495 * desc_ver values: 496 * The nic supports three different descriptor types: 497 * - DESC_VER_1: Original 498 * - DESC_VER_2: support for jumbo frames. 499 * - DESC_VER_3: 64-bit format. 500 */ 501 #define DESC_VER_1 1 502 #define DESC_VER_2 2 503 #define DESC_VER_3 3 504 505 /* PHY defines */ 506 #define PHY_OUI_MARVELL 0x5043 507 #define PHY_OUI_CICADA 0x03f1 508 #define PHY_OUI_VITESSE 0x01c1 509 #define PHY_OUI_REALTEK 0x0732 510 #define PHY_OUI_REALTEK2 0x0020 511 #define PHYID1_OUI_MASK 0x03ff 512 #define PHYID1_OUI_SHFT 6 513 #define PHYID2_OUI_MASK 0xfc00 514 #define PHYID2_OUI_SHFT 10 515 #define PHYID2_MODEL_MASK 0x03f0 516 #define PHY_MODEL_REALTEK_8211 0x0110 517 #define PHY_REV_MASK 0x0001 518 #define PHY_REV_REALTEK_8211B 0x0000 519 #define PHY_REV_REALTEK_8211C 0x0001 520 #define PHY_MODEL_REALTEK_8201 0x0200 521 #define PHY_MODEL_MARVELL_E3016 0x0220 522 #define PHY_MARVELL_E3016_INITMASK 0x0300 523 #define PHY_CICADA_INIT1 0x0f000 524 #define PHY_CICADA_INIT2 0x0e00 525 #define PHY_CICADA_INIT3 0x01000 526 #define PHY_CICADA_INIT4 0x0200 527 #define PHY_CICADA_INIT5 0x0004 528 #define PHY_CICADA_INIT6 0x02000 529 #define PHY_VITESSE_INIT_REG1 0x1f 530 #define PHY_VITESSE_INIT_REG2 0x10 531 #define PHY_VITESSE_INIT_REG3 0x11 532 #define PHY_VITESSE_INIT_REG4 0x12 533 #define PHY_VITESSE_INIT_MSK1 0xc 534 #define PHY_VITESSE_INIT_MSK2 0x0180 535 #define PHY_VITESSE_INIT1 0x52b5 536 #define PHY_VITESSE_INIT2 0xaf8a 537 #define PHY_VITESSE_INIT3 0x8 538 #define PHY_VITESSE_INIT4 0x8f8a 539 #define PHY_VITESSE_INIT5 0xaf86 540 #define PHY_VITESSE_INIT6 0x8f86 541 #define PHY_VITESSE_INIT7 0xaf82 542 #define PHY_VITESSE_INIT8 0x0100 543 #define PHY_VITESSE_INIT9 0x8f82 544 #define PHY_VITESSE_INIT10 0x0 545 #define PHY_REALTEK_INIT_REG1 0x1f 546 #define PHY_REALTEK_INIT_REG2 0x19 547 #define PHY_REALTEK_INIT_REG3 0x13 548 #define PHY_REALTEK_INIT_REG4 0x14 549 #define PHY_REALTEK_INIT_REG5 0x18 550 #define PHY_REALTEK_INIT_REG6 0x11 551 #define PHY_REALTEK_INIT_REG7 0x01 552 #define PHY_REALTEK_INIT1 0x0000 553 #define PHY_REALTEK_INIT2 0x8e00 554 #define PHY_REALTEK_INIT3 0x0001 555 #define PHY_REALTEK_INIT4 0xad17 556 #define PHY_REALTEK_INIT5 0xfb54 557 #define PHY_REALTEK_INIT6 0xf5c7 558 #define PHY_REALTEK_INIT7 0x1000 559 #define PHY_REALTEK_INIT8 0x0003 560 #define PHY_REALTEK_INIT9 0x0008 561 #define PHY_REALTEK_INIT10 0x0005 562 #define PHY_REALTEK_INIT11 0x0200 563 #define PHY_REALTEK_INIT_MSK1 0x0003 564 565 #define PHY_GIGABIT 0x0100 566 567 #define PHY_TIMEOUT 0x1 568 #define PHY_ERROR 0x2 569 570 #define PHY_100 0x1 571 #define PHY_1000 0x2 572 #define PHY_HALF 0x100 573 574 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 575 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 576 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 577 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 578 #define NV_PAUSEFRAME_RX_REQ 0x0010 579 #define NV_PAUSEFRAME_TX_REQ 0x0020 580 #define NV_PAUSEFRAME_AUTONEG 0x0040 581 582 /* MSI/MSI-X defines */ 583 #define NV_MSI_X_MAX_VECTORS 8 584 #define NV_MSI_X_VECTORS_MASK 0x000f 585 #define NV_MSI_CAPABLE 0x0010 586 #define NV_MSI_X_CAPABLE 0x0020 587 #define NV_MSI_ENABLED 0x0040 588 #define NV_MSI_X_ENABLED 0x0080 589 590 #define NV_MSI_X_VECTOR_ALL 0x0 591 #define NV_MSI_X_VECTOR_RX 0x0 592 #define NV_MSI_X_VECTOR_TX 0x1 593 #define NV_MSI_X_VECTOR_OTHER 0x2 594 595 #define NV_MSI_PRIV_OFFSET 0x68 596 #define NV_MSI_PRIV_VALUE 0xffffffff 597 598 #define NV_RESTART_TX 0x1 599 #define NV_RESTART_RX 0x2 600 601 #define NV_TX_LIMIT_COUNT 16 602 603 #define NV_DYNAMIC_THRESHOLD 4 604 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 605 606 /* statistics */ 607 struct nv_ethtool_str { 608 char name[ETH_GSTRING_LEN]; 609 }; 610 611 static const struct nv_ethtool_str nv_estats_str[] = { 612 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 613 { "tx_zero_rexmt" }, 614 { "tx_one_rexmt" }, 615 { "tx_many_rexmt" }, 616 { "tx_late_collision" }, 617 { "tx_fifo_errors" }, 618 { "tx_carrier_errors" }, 619 { "tx_excess_deferral" }, 620 { "tx_retry_error" }, 621 { "rx_frame_error" }, 622 { "rx_extra_byte" }, 623 { "rx_late_collision" }, 624 { "rx_runt" }, 625 { "rx_frame_too_long" }, 626 { "rx_over_errors" }, 627 { "rx_crc_errors" }, 628 { "rx_frame_align_error" }, 629 { "rx_length_error" }, 630 { "rx_unicast" }, 631 { "rx_multicast" }, 632 { "rx_broadcast" }, 633 { "rx_packets" }, 634 { "rx_errors_total" }, 635 { "tx_errors_total" }, 636 637 /* version 2 stats */ 638 { "tx_deferral" }, 639 { "tx_packets" }, 640 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 641 { "tx_pause" }, 642 { "rx_pause" }, 643 { "rx_drop_frame" }, 644 645 /* version 3 stats */ 646 { "tx_unicast" }, 647 { "tx_multicast" }, 648 { "tx_broadcast" } 649 }; 650 651 struct nv_ethtool_stats { 652 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 653 u64 tx_zero_rexmt; 654 u64 tx_one_rexmt; 655 u64 tx_many_rexmt; 656 u64 tx_late_collision; 657 u64 tx_fifo_errors; 658 u64 tx_carrier_errors; 659 u64 tx_excess_deferral; 660 u64 tx_retry_error; 661 u64 rx_frame_error; 662 u64 rx_extra_byte; 663 u64 rx_late_collision; 664 u64 rx_runt; 665 u64 rx_frame_too_long; 666 u64 rx_over_errors; 667 u64 rx_crc_errors; 668 u64 rx_frame_align_error; 669 u64 rx_length_error; 670 u64 rx_unicast; 671 u64 rx_multicast; 672 u64 rx_broadcast; 673 u64 rx_packets; /* should be ifconfig->rx_packets */ 674 u64 rx_errors_total; 675 u64 tx_errors_total; 676 677 /* version 2 stats */ 678 u64 tx_deferral; 679 u64 tx_packets; /* should be ifconfig->tx_packets */ 680 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 681 u64 tx_pause; 682 u64 rx_pause; 683 u64 rx_drop_frame; 684 685 /* version 3 stats */ 686 u64 tx_unicast; 687 u64 tx_multicast; 688 u64 tx_broadcast; 689 }; 690 691 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 692 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 693 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 694 695 /* diagnostics */ 696 #define NV_TEST_COUNT_BASE 3 697 #define NV_TEST_COUNT_EXTENDED 4 698 699 static const struct nv_ethtool_str nv_etests_str[] = { 700 { "link (online/offline)" }, 701 { "register (offline) " }, 702 { "interrupt (offline) " }, 703 { "loopback (offline) " } 704 }; 705 706 struct register_test { 707 __u32 reg; 708 __u32 mask; 709 }; 710 711 static const struct register_test nv_registers_test[] = { 712 { NvRegUnknownSetupReg6, 0x01 }, 713 { NvRegMisc1, 0x03c }, 714 { NvRegOffloadConfig, 0x03ff }, 715 { NvRegMulticastAddrA, 0xffffffff }, 716 { NvRegTxWatermark, 0x0ff }, 717 { NvRegWakeUpFlags, 0x07777 }, 718 { 0, 0 } 719 }; 720 721 struct nv_skb_map { 722 struct sk_buff *skb; 723 dma_addr_t dma; 724 unsigned int dma_len:31; 725 unsigned int dma_single:1; 726 struct ring_desc_ex *first_tx_desc; 727 struct nv_skb_map *next_tx_ctx; 728 }; 729 730 /* 731 * SMP locking: 732 * All hardware access under netdev_priv(dev)->lock, except the performance 733 * critical parts: 734 * - rx is (pseudo-) lockless: it relies on the single-threading provided 735 * by the arch code for interrupts. 736 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 737 * needs netdev_priv(dev)->lock :-( 738 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 739 * 740 * Hardware stats updates are protected by hwstats_lock: 741 * - updated by nv_do_stats_poll (timer). This is meant to avoid 742 * integer wraparound in the NIC stats registers, at low frequency 743 * (0.1 Hz) 744 * - updated by nv_get_ethtool_stats + nv_get_stats64 745 * 746 * Software stats are accessed only through 64b synchronization points 747 * and are not subject to other synchronization techniques (single 748 * update thread on the TX or RX paths). 749 */ 750 751 /* in dev: base, irq */ 752 struct fe_priv { 753 spinlock_t lock; 754 755 struct net_device *dev; 756 struct napi_struct napi; 757 758 /* hardware stats are updated in syscall and timer */ 759 spinlock_t hwstats_lock; 760 struct nv_ethtool_stats estats; 761 762 int in_shutdown; 763 u32 linkspeed; 764 int duplex; 765 int autoneg; 766 int fixed_mode; 767 int phyaddr; 768 int wolenabled; 769 unsigned int phy_oui; 770 unsigned int phy_model; 771 unsigned int phy_rev; 772 u16 gigabit; 773 int intr_test; 774 int recover_error; 775 int quiet_count; 776 777 /* General data: RO fields */ 778 dma_addr_t ring_addr; 779 struct pci_dev *pci_dev; 780 u32 orig_mac[2]; 781 u32 events; 782 u32 irqmask; 783 u32 desc_ver; 784 u32 txrxctl_bits; 785 u32 vlanctl_bits; 786 u32 driver_data; 787 u32 device_id; 788 u32 register_size; 789 u32 mac_in_use; 790 int mgmt_version; 791 int mgmt_sema; 792 793 void __iomem *base; 794 795 /* rx specific fields. 796 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 797 */ 798 union ring_type get_rx, put_rx, first_rx, last_rx; 799 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 800 struct nv_skb_map *first_rx_ctx, *last_rx_ctx; 801 struct nv_skb_map *rx_skb; 802 803 union ring_type rx_ring; 804 unsigned int rx_buf_sz; 805 unsigned int pkt_limit; 806 struct timer_list oom_kick; 807 struct timer_list nic_poll; 808 struct timer_list stats_poll; 809 u32 nic_poll_irq; 810 int rx_ring_size; 811 812 /* RX software stats */ 813 struct u64_stats_sync swstats_rx_syncp; 814 u64 stat_rx_packets; 815 u64 stat_rx_bytes; /* not always available in HW */ 816 u64 stat_rx_missed_errors; 817 u64 stat_rx_dropped; 818 819 /* media detection workaround. 820 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 821 */ 822 int need_linktimer; 823 unsigned long link_timeout; 824 /* 825 * tx specific fields. 826 */ 827 union ring_type get_tx, put_tx, first_tx, last_tx; 828 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 829 struct nv_skb_map *first_tx_ctx, *last_tx_ctx; 830 struct nv_skb_map *tx_skb; 831 832 union ring_type tx_ring; 833 u32 tx_flags; 834 int tx_ring_size; 835 int tx_limit; 836 u32 tx_pkts_in_progress; 837 struct nv_skb_map *tx_change_owner; 838 struct nv_skb_map *tx_end_flip; 839 int tx_stop; 840 841 /* TX software stats */ 842 struct u64_stats_sync swstats_tx_syncp; 843 u64 stat_tx_packets; /* not always available in HW */ 844 u64 stat_tx_bytes; 845 u64 stat_tx_dropped; 846 847 /* msi/msi-x fields */ 848 u32 msi_flags; 849 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 850 851 /* flow control */ 852 u32 pause_flags; 853 854 /* power saved state */ 855 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 856 857 /* for different msi-x irq type */ 858 char name_rx[IFNAMSIZ + 3]; /* -rx */ 859 char name_tx[IFNAMSIZ + 3]; /* -tx */ 860 char name_other[IFNAMSIZ + 6]; /* -other */ 861 }; 862 863 /* 864 * Maximum number of loops until we assume that a bit in the irq mask 865 * is stuck. Overridable with module param. 866 */ 867 static int max_interrupt_work = 4; 868 869 /* 870 * Optimization can be either throuput mode or cpu mode 871 * 872 * Throughput Mode: Every tx and rx packet will generate an interrupt. 873 * CPU Mode: Interrupts are controlled by a timer. 874 */ 875 enum { 876 NV_OPTIMIZATION_MODE_THROUGHPUT, 877 NV_OPTIMIZATION_MODE_CPU, 878 NV_OPTIMIZATION_MODE_DYNAMIC 879 }; 880 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 881 882 /* 883 * Poll interval for timer irq 884 * 885 * This interval determines how frequent an interrupt is generated. 886 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 887 * Min = 0, and Max = 65535 888 */ 889 static int poll_interval = -1; 890 891 /* 892 * MSI interrupts 893 */ 894 enum { 895 NV_MSI_INT_DISABLED, 896 NV_MSI_INT_ENABLED 897 }; 898 static int msi = NV_MSI_INT_ENABLED; 899 900 /* 901 * MSIX interrupts 902 */ 903 enum { 904 NV_MSIX_INT_DISABLED, 905 NV_MSIX_INT_ENABLED 906 }; 907 static int msix = NV_MSIX_INT_ENABLED; 908 909 /* 910 * DMA 64bit 911 */ 912 enum { 913 NV_DMA_64BIT_DISABLED, 914 NV_DMA_64BIT_ENABLED 915 }; 916 static int dma_64bit = NV_DMA_64BIT_ENABLED; 917 918 /* 919 * Debug output control for tx_timeout 920 */ 921 static bool debug_tx_timeout = false; 922 923 /* 924 * Crossover Detection 925 * Realtek 8201 phy + some OEM boards do not work properly. 926 */ 927 enum { 928 NV_CROSSOVER_DETECTION_DISABLED, 929 NV_CROSSOVER_DETECTION_ENABLED 930 }; 931 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 932 933 /* 934 * Power down phy when interface is down (persists through reboot; 935 * older Linux and other OSes may not power it up again) 936 */ 937 static int phy_power_down; 938 939 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 940 { 941 return netdev_priv(dev); 942 } 943 944 static inline u8 __iomem *get_hwbase(struct net_device *dev) 945 { 946 return ((struct fe_priv *)netdev_priv(dev))->base; 947 } 948 949 static inline void pci_push(u8 __iomem *base) 950 { 951 /* force out pending posted writes */ 952 readl(base); 953 } 954 955 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 956 { 957 return le32_to_cpu(prd->flaglen) 958 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 959 } 960 961 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 962 { 963 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 964 } 965 966 static bool nv_optimized(struct fe_priv *np) 967 { 968 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 969 return false; 970 return true; 971 } 972 973 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 974 int delay, int delaymax) 975 { 976 u8 __iomem *base = get_hwbase(dev); 977 978 pci_push(base); 979 do { 980 udelay(delay); 981 delaymax -= delay; 982 if (delaymax < 0) 983 return 1; 984 } while ((readl(base + offset) & mask) != target); 985 return 0; 986 } 987 988 #define NV_SETUP_RX_RING 0x01 989 #define NV_SETUP_TX_RING 0x02 990 991 static inline u32 dma_low(dma_addr_t addr) 992 { 993 return addr; 994 } 995 996 static inline u32 dma_high(dma_addr_t addr) 997 { 998 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 999 } 1000 1001 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 1002 { 1003 struct fe_priv *np = get_nvpriv(dev); 1004 u8 __iomem *base = get_hwbase(dev); 1005 1006 if (!nv_optimized(np)) { 1007 if (rxtx_flags & NV_SETUP_RX_RING) 1008 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1009 if (rxtx_flags & NV_SETUP_TX_RING) 1010 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1011 } else { 1012 if (rxtx_flags & NV_SETUP_RX_RING) { 1013 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1014 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1015 } 1016 if (rxtx_flags & NV_SETUP_TX_RING) { 1017 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1018 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1019 } 1020 } 1021 } 1022 1023 static void free_rings(struct net_device *dev) 1024 { 1025 struct fe_priv *np = get_nvpriv(dev); 1026 1027 if (!nv_optimized(np)) { 1028 if (np->rx_ring.orig) 1029 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 1030 np->rx_ring.orig, np->ring_addr); 1031 } else { 1032 if (np->rx_ring.ex) 1033 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 1034 np->rx_ring.ex, np->ring_addr); 1035 } 1036 kfree(np->rx_skb); 1037 kfree(np->tx_skb); 1038 } 1039 1040 static int using_multi_irqs(struct net_device *dev) 1041 { 1042 struct fe_priv *np = get_nvpriv(dev); 1043 1044 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1045 ((np->msi_flags & NV_MSI_X_ENABLED) && 1046 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1047 return 0; 1048 else 1049 return 1; 1050 } 1051 1052 static void nv_txrx_gate(struct net_device *dev, bool gate) 1053 { 1054 struct fe_priv *np = get_nvpriv(dev); 1055 u8 __iomem *base = get_hwbase(dev); 1056 u32 powerstate; 1057 1058 if (!np->mac_in_use && 1059 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1060 powerstate = readl(base + NvRegPowerState2); 1061 if (gate) 1062 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1063 else 1064 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1065 writel(powerstate, base + NvRegPowerState2); 1066 } 1067 } 1068 1069 static void nv_enable_irq(struct net_device *dev) 1070 { 1071 struct fe_priv *np = get_nvpriv(dev); 1072 1073 if (!using_multi_irqs(dev)) { 1074 if (np->msi_flags & NV_MSI_X_ENABLED) 1075 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1076 else 1077 enable_irq(np->pci_dev->irq); 1078 } else { 1079 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1082 } 1083 } 1084 1085 static void nv_disable_irq(struct net_device *dev) 1086 { 1087 struct fe_priv *np = get_nvpriv(dev); 1088 1089 if (!using_multi_irqs(dev)) { 1090 if (np->msi_flags & NV_MSI_X_ENABLED) 1091 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1092 else 1093 disable_irq(np->pci_dev->irq); 1094 } else { 1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1098 } 1099 } 1100 1101 /* In MSIX mode, a write to irqmask behaves as XOR */ 1102 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1103 { 1104 u8 __iomem *base = get_hwbase(dev); 1105 1106 writel(mask, base + NvRegIrqMask); 1107 } 1108 1109 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1110 { 1111 struct fe_priv *np = get_nvpriv(dev); 1112 u8 __iomem *base = get_hwbase(dev); 1113 1114 if (np->msi_flags & NV_MSI_X_ENABLED) { 1115 writel(mask, base + NvRegIrqMask); 1116 } else { 1117 if (np->msi_flags & NV_MSI_ENABLED) 1118 writel(0, base + NvRegMSIIrqMask); 1119 writel(0, base + NvRegIrqMask); 1120 } 1121 } 1122 1123 static void nv_napi_enable(struct net_device *dev) 1124 { 1125 struct fe_priv *np = get_nvpriv(dev); 1126 1127 napi_enable(&np->napi); 1128 } 1129 1130 static void nv_napi_disable(struct net_device *dev) 1131 { 1132 struct fe_priv *np = get_nvpriv(dev); 1133 1134 napi_disable(&np->napi); 1135 } 1136 1137 #define MII_READ (-1) 1138 /* mii_rw: read/write a register on the PHY. 1139 * 1140 * Caller must guarantee serialization 1141 */ 1142 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1143 { 1144 u8 __iomem *base = get_hwbase(dev); 1145 u32 reg; 1146 int retval; 1147 1148 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1149 1150 reg = readl(base + NvRegMIIControl); 1151 if (reg & NVREG_MIICTL_INUSE) { 1152 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1153 udelay(NV_MIIBUSY_DELAY); 1154 } 1155 1156 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1157 if (value != MII_READ) { 1158 writel(value, base + NvRegMIIData); 1159 reg |= NVREG_MIICTL_WRITE; 1160 } 1161 writel(reg, base + NvRegMIIControl); 1162 1163 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1164 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1165 retval = -1; 1166 } else if (value != MII_READ) { 1167 /* it was a write operation - fewer failures are detectable */ 1168 retval = 0; 1169 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1170 retval = -1; 1171 } else { 1172 retval = readl(base + NvRegMIIData); 1173 } 1174 1175 return retval; 1176 } 1177 1178 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1179 { 1180 struct fe_priv *np = netdev_priv(dev); 1181 u32 miicontrol; 1182 unsigned int tries = 0; 1183 1184 miicontrol = BMCR_RESET | bmcr_setup; 1185 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1186 return -1; 1187 1188 /* wait for 500ms */ 1189 msleep(500); 1190 1191 /* must wait till reset is deasserted */ 1192 while (miicontrol & BMCR_RESET) { 1193 usleep_range(10000, 20000); 1194 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1195 /* FIXME: 100 tries seem excessive */ 1196 if (tries++ > 100) 1197 return -1; 1198 } 1199 return 0; 1200 } 1201 1202 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1203 { 1204 static const struct { 1205 int reg; 1206 int init; 1207 } ri[] = { 1208 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1209 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1210 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1211 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1212 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1213 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1214 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1215 }; 1216 int i; 1217 1218 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1219 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1220 return PHY_ERROR; 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1227 { 1228 u32 reg; 1229 u8 __iomem *base = get_hwbase(dev); 1230 u32 powerstate = readl(base + NvRegPowerState2); 1231 1232 /* need to perform hw phy reset */ 1233 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1234 writel(powerstate, base + NvRegPowerState2); 1235 msleep(25); 1236 1237 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1238 writel(powerstate, base + NvRegPowerState2); 1239 msleep(25); 1240 1241 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1242 reg |= PHY_REALTEK_INIT9; 1243 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1244 return PHY_ERROR; 1245 if (mii_rw(dev, np->phyaddr, 1246 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1247 return PHY_ERROR; 1248 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1249 if (!(reg & PHY_REALTEK_INIT11)) { 1250 reg |= PHY_REALTEK_INIT11; 1251 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1252 return PHY_ERROR; 1253 } 1254 if (mii_rw(dev, np->phyaddr, 1255 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1256 return PHY_ERROR; 1257 1258 return 0; 1259 } 1260 1261 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1262 { 1263 u32 phy_reserved; 1264 1265 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1266 phy_reserved = mii_rw(dev, np->phyaddr, 1267 PHY_REALTEK_INIT_REG6, MII_READ); 1268 phy_reserved |= PHY_REALTEK_INIT7; 1269 if (mii_rw(dev, np->phyaddr, 1270 PHY_REALTEK_INIT_REG6, phy_reserved)) 1271 return PHY_ERROR; 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1278 { 1279 u32 phy_reserved; 1280 1281 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1282 if (mii_rw(dev, np->phyaddr, 1283 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1284 return PHY_ERROR; 1285 phy_reserved = mii_rw(dev, np->phyaddr, 1286 PHY_REALTEK_INIT_REG2, MII_READ); 1287 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1288 phy_reserved |= PHY_REALTEK_INIT3; 1289 if (mii_rw(dev, np->phyaddr, 1290 PHY_REALTEK_INIT_REG2, phy_reserved)) 1291 return PHY_ERROR; 1292 if (mii_rw(dev, np->phyaddr, 1293 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1294 return PHY_ERROR; 1295 } 1296 1297 return 0; 1298 } 1299 1300 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1301 u32 phyinterface) 1302 { 1303 u32 phy_reserved; 1304 1305 if (phyinterface & PHY_RGMII) { 1306 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1307 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1308 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1309 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1310 return PHY_ERROR; 1311 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1312 phy_reserved |= PHY_CICADA_INIT5; 1313 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1314 return PHY_ERROR; 1315 } 1316 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1317 phy_reserved |= PHY_CICADA_INIT6; 1318 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1319 return PHY_ERROR; 1320 1321 return 0; 1322 } 1323 1324 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1325 { 1326 u32 phy_reserved; 1327 1328 if (mii_rw(dev, np->phyaddr, 1329 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1330 return PHY_ERROR; 1331 if (mii_rw(dev, np->phyaddr, 1332 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1333 return PHY_ERROR; 1334 phy_reserved = mii_rw(dev, np->phyaddr, 1335 PHY_VITESSE_INIT_REG4, MII_READ); 1336 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1337 return PHY_ERROR; 1338 phy_reserved = mii_rw(dev, np->phyaddr, 1339 PHY_VITESSE_INIT_REG3, MII_READ); 1340 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1341 phy_reserved |= PHY_VITESSE_INIT3; 1342 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1343 return PHY_ERROR; 1344 if (mii_rw(dev, np->phyaddr, 1345 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1346 return PHY_ERROR; 1347 if (mii_rw(dev, np->phyaddr, 1348 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1349 return PHY_ERROR; 1350 phy_reserved = mii_rw(dev, np->phyaddr, 1351 PHY_VITESSE_INIT_REG4, MII_READ); 1352 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1353 phy_reserved |= PHY_VITESSE_INIT3; 1354 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1355 return PHY_ERROR; 1356 phy_reserved = mii_rw(dev, np->phyaddr, 1357 PHY_VITESSE_INIT_REG3, MII_READ); 1358 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1359 return PHY_ERROR; 1360 if (mii_rw(dev, np->phyaddr, 1361 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1362 return PHY_ERROR; 1363 if (mii_rw(dev, np->phyaddr, 1364 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1365 return PHY_ERROR; 1366 phy_reserved = mii_rw(dev, np->phyaddr, 1367 PHY_VITESSE_INIT_REG4, MII_READ); 1368 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1369 return PHY_ERROR; 1370 phy_reserved = mii_rw(dev, np->phyaddr, 1371 PHY_VITESSE_INIT_REG3, MII_READ); 1372 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1373 phy_reserved |= PHY_VITESSE_INIT8; 1374 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1375 return PHY_ERROR; 1376 if (mii_rw(dev, np->phyaddr, 1377 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1378 return PHY_ERROR; 1379 if (mii_rw(dev, np->phyaddr, 1380 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1381 return PHY_ERROR; 1382 1383 return 0; 1384 } 1385 1386 static int phy_init(struct net_device *dev) 1387 { 1388 struct fe_priv *np = get_nvpriv(dev); 1389 u8 __iomem *base = get_hwbase(dev); 1390 u32 phyinterface; 1391 u32 mii_status, mii_control, mii_control_1000, reg; 1392 1393 /* phy errata for E3016 phy */ 1394 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1395 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1396 reg &= ~PHY_MARVELL_E3016_INITMASK; 1397 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1398 netdev_info(dev, "%s: phy write to errata reg failed\n", 1399 pci_name(np->pci_dev)); 1400 return PHY_ERROR; 1401 } 1402 } 1403 if (np->phy_oui == PHY_OUI_REALTEK) { 1404 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1405 np->phy_rev == PHY_REV_REALTEK_8211B) { 1406 if (init_realtek_8211b(dev, np)) { 1407 netdev_info(dev, "%s: phy init failed\n", 1408 pci_name(np->pci_dev)); 1409 return PHY_ERROR; 1410 } 1411 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1412 np->phy_rev == PHY_REV_REALTEK_8211C) { 1413 if (init_realtek_8211c(dev, np)) { 1414 netdev_info(dev, "%s: phy init failed\n", 1415 pci_name(np->pci_dev)); 1416 return PHY_ERROR; 1417 } 1418 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1419 if (init_realtek_8201(dev, np)) { 1420 netdev_info(dev, "%s: phy init failed\n", 1421 pci_name(np->pci_dev)); 1422 return PHY_ERROR; 1423 } 1424 } 1425 } 1426 1427 /* set advertise register */ 1428 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1429 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1430 ADVERTISE_100HALF | ADVERTISE_100FULL | 1431 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1432 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1433 netdev_info(dev, "%s: phy write to advertise failed\n", 1434 pci_name(np->pci_dev)); 1435 return PHY_ERROR; 1436 } 1437 1438 /* get phy interface type */ 1439 phyinterface = readl(base + NvRegPhyInterface); 1440 1441 /* see if gigabit phy */ 1442 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1443 if (mii_status & PHY_GIGABIT) { 1444 np->gigabit = PHY_GIGABIT; 1445 mii_control_1000 = mii_rw(dev, np->phyaddr, 1446 MII_CTRL1000, MII_READ); 1447 mii_control_1000 &= ~ADVERTISE_1000HALF; 1448 if (phyinterface & PHY_RGMII) 1449 mii_control_1000 |= ADVERTISE_1000FULL; 1450 else 1451 mii_control_1000 &= ~ADVERTISE_1000FULL; 1452 1453 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1454 netdev_info(dev, "%s: phy init failed\n", 1455 pci_name(np->pci_dev)); 1456 return PHY_ERROR; 1457 } 1458 } else 1459 np->gigabit = 0; 1460 1461 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1462 mii_control |= BMCR_ANENABLE; 1463 1464 if (np->phy_oui == PHY_OUI_REALTEK && 1465 np->phy_model == PHY_MODEL_REALTEK_8211 && 1466 np->phy_rev == PHY_REV_REALTEK_8211C) { 1467 /* start autoneg since we already performed hw reset above */ 1468 mii_control |= BMCR_ANRESTART; 1469 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1470 netdev_info(dev, "%s: phy init failed\n", 1471 pci_name(np->pci_dev)); 1472 return PHY_ERROR; 1473 } 1474 } else { 1475 /* reset the phy 1476 * (certain phys need bmcr to be setup with reset) 1477 */ 1478 if (phy_reset(dev, mii_control)) { 1479 netdev_info(dev, "%s: phy reset failed\n", 1480 pci_name(np->pci_dev)); 1481 return PHY_ERROR; 1482 } 1483 } 1484 1485 /* phy vendor specific configuration */ 1486 if ((np->phy_oui == PHY_OUI_CICADA)) { 1487 if (init_cicada(dev, np, phyinterface)) { 1488 netdev_info(dev, "%s: phy init failed\n", 1489 pci_name(np->pci_dev)); 1490 return PHY_ERROR; 1491 } 1492 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1493 if (init_vitesse(dev, np)) { 1494 netdev_info(dev, "%s: phy init failed\n", 1495 pci_name(np->pci_dev)); 1496 return PHY_ERROR; 1497 } 1498 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1499 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1500 np->phy_rev == PHY_REV_REALTEK_8211B) { 1501 /* reset could have cleared these out, set them back */ 1502 if (init_realtek_8211b(dev, np)) { 1503 netdev_info(dev, "%s: phy init failed\n", 1504 pci_name(np->pci_dev)); 1505 return PHY_ERROR; 1506 } 1507 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1508 if (init_realtek_8201(dev, np) || 1509 init_realtek_8201_cross(dev, np)) { 1510 netdev_info(dev, "%s: phy init failed\n", 1511 pci_name(np->pci_dev)); 1512 return PHY_ERROR; 1513 } 1514 } 1515 } 1516 1517 /* some phys clear out pause advertisement on reset, set it back */ 1518 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1519 1520 /* restart auto negotiation, power down phy */ 1521 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1522 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1523 if (phy_power_down) 1524 mii_control |= BMCR_PDOWN; 1525 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1526 return PHY_ERROR; 1527 1528 return 0; 1529 } 1530 1531 static void nv_start_rx(struct net_device *dev) 1532 { 1533 struct fe_priv *np = netdev_priv(dev); 1534 u8 __iomem *base = get_hwbase(dev); 1535 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1536 1537 /* Already running? Stop it. */ 1538 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1539 rx_ctrl &= ~NVREG_RCVCTL_START; 1540 writel(rx_ctrl, base + NvRegReceiverControl); 1541 pci_push(base); 1542 } 1543 writel(np->linkspeed, base + NvRegLinkSpeed); 1544 pci_push(base); 1545 rx_ctrl |= NVREG_RCVCTL_START; 1546 if (np->mac_in_use) 1547 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1548 writel(rx_ctrl, base + NvRegReceiverControl); 1549 pci_push(base); 1550 } 1551 1552 static void nv_stop_rx(struct net_device *dev) 1553 { 1554 struct fe_priv *np = netdev_priv(dev); 1555 u8 __iomem *base = get_hwbase(dev); 1556 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1557 1558 if (!np->mac_in_use) 1559 rx_ctrl &= ~NVREG_RCVCTL_START; 1560 else 1561 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1562 writel(rx_ctrl, base + NvRegReceiverControl); 1563 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1564 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1565 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1566 __func__); 1567 1568 udelay(NV_RXSTOP_DELAY2); 1569 if (!np->mac_in_use) 1570 writel(0, base + NvRegLinkSpeed); 1571 } 1572 1573 static void nv_start_tx(struct net_device *dev) 1574 { 1575 struct fe_priv *np = netdev_priv(dev); 1576 u8 __iomem *base = get_hwbase(dev); 1577 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1578 1579 tx_ctrl |= NVREG_XMITCTL_START; 1580 if (np->mac_in_use) 1581 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1582 writel(tx_ctrl, base + NvRegTransmitterControl); 1583 pci_push(base); 1584 } 1585 1586 static void nv_stop_tx(struct net_device *dev) 1587 { 1588 struct fe_priv *np = netdev_priv(dev); 1589 u8 __iomem *base = get_hwbase(dev); 1590 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1591 1592 if (!np->mac_in_use) 1593 tx_ctrl &= ~NVREG_XMITCTL_START; 1594 else 1595 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1596 writel(tx_ctrl, base + NvRegTransmitterControl); 1597 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1598 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1599 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1600 __func__); 1601 1602 udelay(NV_TXSTOP_DELAY2); 1603 if (!np->mac_in_use) 1604 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1605 base + NvRegTransmitPoll); 1606 } 1607 1608 static void nv_start_rxtx(struct net_device *dev) 1609 { 1610 nv_start_rx(dev); 1611 nv_start_tx(dev); 1612 } 1613 1614 static void nv_stop_rxtx(struct net_device *dev) 1615 { 1616 nv_stop_rx(dev); 1617 nv_stop_tx(dev); 1618 } 1619 1620 static void nv_txrx_reset(struct net_device *dev) 1621 { 1622 struct fe_priv *np = netdev_priv(dev); 1623 u8 __iomem *base = get_hwbase(dev); 1624 1625 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1626 pci_push(base); 1627 udelay(NV_TXRX_RESET_DELAY); 1628 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1629 pci_push(base); 1630 } 1631 1632 static void nv_mac_reset(struct net_device *dev) 1633 { 1634 struct fe_priv *np = netdev_priv(dev); 1635 u8 __iomem *base = get_hwbase(dev); 1636 u32 temp1, temp2, temp3; 1637 1638 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1639 pci_push(base); 1640 1641 /* save registers since they will be cleared on reset */ 1642 temp1 = readl(base + NvRegMacAddrA); 1643 temp2 = readl(base + NvRegMacAddrB); 1644 temp3 = readl(base + NvRegTransmitPoll); 1645 1646 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1647 pci_push(base); 1648 udelay(NV_MAC_RESET_DELAY); 1649 writel(0, base + NvRegMacReset); 1650 pci_push(base); 1651 udelay(NV_MAC_RESET_DELAY); 1652 1653 /* restore saved registers */ 1654 writel(temp1, base + NvRegMacAddrA); 1655 writel(temp2, base + NvRegMacAddrB); 1656 writel(temp3, base + NvRegTransmitPoll); 1657 1658 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1659 pci_push(base); 1660 } 1661 1662 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1663 static void nv_update_stats(struct net_device *dev) 1664 { 1665 struct fe_priv *np = netdev_priv(dev); 1666 u8 __iomem *base = get_hwbase(dev); 1667 1668 /* If it happens that this is run in top-half context, then 1669 * replace the spin_lock of hwstats_lock with 1670 * spin_lock_irqsave() in calling functions. */ 1671 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1672 assert_spin_locked(&np->hwstats_lock); 1673 1674 /* query hardware */ 1675 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1676 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1677 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1678 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1679 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1680 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1681 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1682 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1683 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1684 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1685 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1686 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1687 np->estats.rx_runt += readl(base + NvRegRxRunt); 1688 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1689 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1690 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1691 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1692 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1693 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1694 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1695 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1696 np->estats.rx_packets = 1697 np->estats.rx_unicast + 1698 np->estats.rx_multicast + 1699 np->estats.rx_broadcast; 1700 np->estats.rx_errors_total = 1701 np->estats.rx_crc_errors + 1702 np->estats.rx_over_errors + 1703 np->estats.rx_frame_error + 1704 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1705 np->estats.rx_late_collision + 1706 np->estats.rx_runt + 1707 np->estats.rx_frame_too_long; 1708 np->estats.tx_errors_total = 1709 np->estats.tx_late_collision + 1710 np->estats.tx_fifo_errors + 1711 np->estats.tx_carrier_errors + 1712 np->estats.tx_excess_deferral + 1713 np->estats.tx_retry_error; 1714 1715 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1716 np->estats.tx_deferral += readl(base + NvRegTxDef); 1717 np->estats.tx_packets += readl(base + NvRegTxFrame); 1718 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1719 np->estats.tx_pause += readl(base + NvRegTxPause); 1720 np->estats.rx_pause += readl(base + NvRegRxPause); 1721 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1722 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1723 } 1724 1725 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1726 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1727 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1728 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1729 } 1730 } 1731 1732 /* 1733 * nv_get_stats64: dev->ndo_get_stats64 function 1734 * Get latest stats value from the nic. 1735 * Called with read_lock(&dev_base_lock) held for read - 1736 * only synchronized against unregister_netdevice. 1737 */ 1738 static struct rtnl_link_stats64* 1739 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1740 __acquires(&netdev_priv(dev)->hwstats_lock) 1741 __releases(&netdev_priv(dev)->hwstats_lock) 1742 { 1743 struct fe_priv *np = netdev_priv(dev); 1744 unsigned int syncp_start; 1745 1746 /* 1747 * Note: because HW stats are not always available and for 1748 * consistency reasons, the following ifconfig stats are 1749 * managed by software: rx_bytes, tx_bytes, rx_packets and 1750 * tx_packets. The related hardware stats reported by ethtool 1751 * should be equivalent to these ifconfig stats, with 4 1752 * additional bytes per packet (Ethernet FCS CRC), except for 1753 * tx_packets when TSO kicks in. 1754 */ 1755 1756 /* software stats */ 1757 do { 1758 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp); 1759 storage->rx_packets = np->stat_rx_packets; 1760 storage->rx_bytes = np->stat_rx_bytes; 1761 storage->rx_dropped = np->stat_rx_dropped; 1762 storage->rx_missed_errors = np->stat_rx_missed_errors; 1763 } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start)); 1764 1765 do { 1766 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp); 1767 storage->tx_packets = np->stat_tx_packets; 1768 storage->tx_bytes = np->stat_tx_bytes; 1769 storage->tx_dropped = np->stat_tx_dropped; 1770 } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start)); 1771 1772 /* If the nic supports hw counters then retrieve latest values */ 1773 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1774 spin_lock_bh(&np->hwstats_lock); 1775 1776 nv_update_stats(dev); 1777 1778 /* generic stats */ 1779 storage->rx_errors = np->estats.rx_errors_total; 1780 storage->tx_errors = np->estats.tx_errors_total; 1781 1782 /* meaningful only when NIC supports stats v3 */ 1783 storage->multicast = np->estats.rx_multicast; 1784 1785 /* detailed rx_errors */ 1786 storage->rx_length_errors = np->estats.rx_length_error; 1787 storage->rx_over_errors = np->estats.rx_over_errors; 1788 storage->rx_crc_errors = np->estats.rx_crc_errors; 1789 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1790 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1791 1792 /* detailed tx_errors */ 1793 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1794 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1795 1796 spin_unlock_bh(&np->hwstats_lock); 1797 } 1798 1799 return storage; 1800 } 1801 1802 /* 1803 * nv_alloc_rx: fill rx ring entries. 1804 * Return 1 if the allocations for the skbs failed and the 1805 * rx engine is without Available descriptors 1806 */ 1807 static int nv_alloc_rx(struct net_device *dev) 1808 { 1809 struct fe_priv *np = netdev_priv(dev); 1810 struct ring_desc *less_rx; 1811 1812 less_rx = np->get_rx.orig; 1813 if (less_rx-- == np->first_rx.orig) 1814 less_rx = np->last_rx.orig; 1815 1816 while (np->put_rx.orig != less_rx) { 1817 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1818 if (skb) { 1819 np->put_rx_ctx->skb = skb; 1820 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1821 skb->data, 1822 skb_tailroom(skb), 1823 PCI_DMA_FROMDEVICE); 1824 if (pci_dma_mapping_error(np->pci_dev, 1825 np->put_rx_ctx->dma)) { 1826 kfree_skb(skb); 1827 goto packet_dropped; 1828 } 1829 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1830 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1831 wmb(); 1832 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1833 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1834 np->put_rx.orig = np->first_rx.orig; 1835 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1836 np->put_rx_ctx = np->first_rx_ctx; 1837 } else { 1838 packet_dropped: 1839 u64_stats_update_begin(&np->swstats_rx_syncp); 1840 np->stat_rx_dropped++; 1841 u64_stats_update_end(&np->swstats_rx_syncp); 1842 return 1; 1843 } 1844 } 1845 return 0; 1846 } 1847 1848 static int nv_alloc_rx_optimized(struct net_device *dev) 1849 { 1850 struct fe_priv *np = netdev_priv(dev); 1851 struct ring_desc_ex *less_rx; 1852 1853 less_rx = np->get_rx.ex; 1854 if (less_rx-- == np->first_rx.ex) 1855 less_rx = np->last_rx.ex; 1856 1857 while (np->put_rx.ex != less_rx) { 1858 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1859 if (skb) { 1860 np->put_rx_ctx->skb = skb; 1861 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1862 skb->data, 1863 skb_tailroom(skb), 1864 PCI_DMA_FROMDEVICE); 1865 if (pci_dma_mapping_error(np->pci_dev, 1866 np->put_rx_ctx->dma)) { 1867 kfree_skb(skb); 1868 goto packet_dropped; 1869 } 1870 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1871 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1872 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1873 wmb(); 1874 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1875 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1876 np->put_rx.ex = np->first_rx.ex; 1877 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1878 np->put_rx_ctx = np->first_rx_ctx; 1879 } else { 1880 packet_dropped: 1881 u64_stats_update_begin(&np->swstats_rx_syncp); 1882 np->stat_rx_dropped++; 1883 u64_stats_update_end(&np->swstats_rx_syncp); 1884 return 1; 1885 } 1886 } 1887 return 0; 1888 } 1889 1890 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1891 static void nv_do_rx_refill(unsigned long data) 1892 { 1893 struct net_device *dev = (struct net_device *) data; 1894 struct fe_priv *np = netdev_priv(dev); 1895 1896 /* Just reschedule NAPI rx processing */ 1897 napi_schedule(&np->napi); 1898 } 1899 1900 static void nv_init_rx(struct net_device *dev) 1901 { 1902 struct fe_priv *np = netdev_priv(dev); 1903 int i; 1904 1905 np->get_rx = np->put_rx = np->first_rx = np->rx_ring; 1906 1907 if (!nv_optimized(np)) 1908 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1909 else 1910 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1911 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb; 1912 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1913 1914 for (i = 0; i < np->rx_ring_size; i++) { 1915 if (!nv_optimized(np)) { 1916 np->rx_ring.orig[i].flaglen = 0; 1917 np->rx_ring.orig[i].buf = 0; 1918 } else { 1919 np->rx_ring.ex[i].flaglen = 0; 1920 np->rx_ring.ex[i].txvlan = 0; 1921 np->rx_ring.ex[i].bufhigh = 0; 1922 np->rx_ring.ex[i].buflow = 0; 1923 } 1924 np->rx_skb[i].skb = NULL; 1925 np->rx_skb[i].dma = 0; 1926 } 1927 } 1928 1929 static void nv_init_tx(struct net_device *dev) 1930 { 1931 struct fe_priv *np = netdev_priv(dev); 1932 int i; 1933 1934 np->get_tx = np->put_tx = np->first_tx = np->tx_ring; 1935 1936 if (!nv_optimized(np)) 1937 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1938 else 1939 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1940 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb; 1941 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1942 netdev_reset_queue(np->dev); 1943 np->tx_pkts_in_progress = 0; 1944 np->tx_change_owner = NULL; 1945 np->tx_end_flip = NULL; 1946 np->tx_stop = 0; 1947 1948 for (i = 0; i < np->tx_ring_size; i++) { 1949 if (!nv_optimized(np)) { 1950 np->tx_ring.orig[i].flaglen = 0; 1951 np->tx_ring.orig[i].buf = 0; 1952 } else { 1953 np->tx_ring.ex[i].flaglen = 0; 1954 np->tx_ring.ex[i].txvlan = 0; 1955 np->tx_ring.ex[i].bufhigh = 0; 1956 np->tx_ring.ex[i].buflow = 0; 1957 } 1958 np->tx_skb[i].skb = NULL; 1959 np->tx_skb[i].dma = 0; 1960 np->tx_skb[i].dma_len = 0; 1961 np->tx_skb[i].dma_single = 0; 1962 np->tx_skb[i].first_tx_desc = NULL; 1963 np->tx_skb[i].next_tx_ctx = NULL; 1964 } 1965 } 1966 1967 static int nv_init_ring(struct net_device *dev) 1968 { 1969 struct fe_priv *np = netdev_priv(dev); 1970 1971 nv_init_tx(dev); 1972 nv_init_rx(dev); 1973 1974 if (!nv_optimized(np)) 1975 return nv_alloc_rx(dev); 1976 else 1977 return nv_alloc_rx_optimized(dev); 1978 } 1979 1980 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1981 { 1982 if (tx_skb->dma) { 1983 if (tx_skb->dma_single) 1984 pci_unmap_single(np->pci_dev, tx_skb->dma, 1985 tx_skb->dma_len, 1986 PCI_DMA_TODEVICE); 1987 else 1988 pci_unmap_page(np->pci_dev, tx_skb->dma, 1989 tx_skb->dma_len, 1990 PCI_DMA_TODEVICE); 1991 tx_skb->dma = 0; 1992 } 1993 } 1994 1995 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1996 { 1997 nv_unmap_txskb(np, tx_skb); 1998 if (tx_skb->skb) { 1999 dev_kfree_skb_any(tx_skb->skb); 2000 tx_skb->skb = NULL; 2001 return 1; 2002 } 2003 return 0; 2004 } 2005 2006 static void nv_drain_tx(struct net_device *dev) 2007 { 2008 struct fe_priv *np = netdev_priv(dev); 2009 unsigned int i; 2010 2011 for (i = 0; i < np->tx_ring_size; i++) { 2012 if (!nv_optimized(np)) { 2013 np->tx_ring.orig[i].flaglen = 0; 2014 np->tx_ring.orig[i].buf = 0; 2015 } else { 2016 np->tx_ring.ex[i].flaglen = 0; 2017 np->tx_ring.ex[i].txvlan = 0; 2018 np->tx_ring.ex[i].bufhigh = 0; 2019 np->tx_ring.ex[i].buflow = 0; 2020 } 2021 if (nv_release_txskb(np, &np->tx_skb[i])) { 2022 u64_stats_update_begin(&np->swstats_tx_syncp); 2023 np->stat_tx_dropped++; 2024 u64_stats_update_end(&np->swstats_tx_syncp); 2025 } 2026 np->tx_skb[i].dma = 0; 2027 np->tx_skb[i].dma_len = 0; 2028 np->tx_skb[i].dma_single = 0; 2029 np->tx_skb[i].first_tx_desc = NULL; 2030 np->tx_skb[i].next_tx_ctx = NULL; 2031 } 2032 np->tx_pkts_in_progress = 0; 2033 np->tx_change_owner = NULL; 2034 np->tx_end_flip = NULL; 2035 } 2036 2037 static void nv_drain_rx(struct net_device *dev) 2038 { 2039 struct fe_priv *np = netdev_priv(dev); 2040 int i; 2041 2042 for (i = 0; i < np->rx_ring_size; i++) { 2043 if (!nv_optimized(np)) { 2044 np->rx_ring.orig[i].flaglen = 0; 2045 np->rx_ring.orig[i].buf = 0; 2046 } else { 2047 np->rx_ring.ex[i].flaglen = 0; 2048 np->rx_ring.ex[i].txvlan = 0; 2049 np->rx_ring.ex[i].bufhigh = 0; 2050 np->rx_ring.ex[i].buflow = 0; 2051 } 2052 wmb(); 2053 if (np->rx_skb[i].skb) { 2054 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma, 2055 (skb_end_pointer(np->rx_skb[i].skb) - 2056 np->rx_skb[i].skb->data), 2057 PCI_DMA_FROMDEVICE); 2058 dev_kfree_skb(np->rx_skb[i].skb); 2059 np->rx_skb[i].skb = NULL; 2060 } 2061 } 2062 } 2063 2064 static void nv_drain_rxtx(struct net_device *dev) 2065 { 2066 nv_drain_tx(dev); 2067 nv_drain_rx(dev); 2068 } 2069 2070 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2071 { 2072 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2073 } 2074 2075 static void nv_legacybackoff_reseed(struct net_device *dev) 2076 { 2077 u8 __iomem *base = get_hwbase(dev); 2078 u32 reg; 2079 u32 low; 2080 int tx_status = 0; 2081 2082 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2083 get_random_bytes(&low, sizeof(low)); 2084 reg |= low & NVREG_SLOTTIME_MASK; 2085 2086 /* Need to stop tx before change takes effect. 2087 * Caller has already gained np->lock. 2088 */ 2089 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2090 if (tx_status) 2091 nv_stop_tx(dev); 2092 nv_stop_rx(dev); 2093 writel(reg, base + NvRegSlotTime); 2094 if (tx_status) 2095 nv_start_tx(dev); 2096 nv_start_rx(dev); 2097 } 2098 2099 /* Gear Backoff Seeds */ 2100 #define BACKOFF_SEEDSET_ROWS 8 2101 #define BACKOFF_SEEDSET_LFSRS 15 2102 2103 /* Known Good seed sets */ 2104 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2105 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2106 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2107 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2108 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2109 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2110 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2111 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2112 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2113 2114 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2115 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2116 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2117 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2118 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2119 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2120 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2121 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2122 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2123 2124 static void nv_gear_backoff_reseed(struct net_device *dev) 2125 { 2126 u8 __iomem *base = get_hwbase(dev); 2127 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2128 u32 temp, seedset, combinedSeed; 2129 int i; 2130 2131 /* Setup seed for free running LFSR */ 2132 /* We are going to read the time stamp counter 3 times 2133 and swizzle bits around to increase randomness */ 2134 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2135 miniseed1 &= 0x0fff; 2136 if (miniseed1 == 0) 2137 miniseed1 = 0xabc; 2138 2139 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2140 miniseed2 &= 0x0fff; 2141 if (miniseed2 == 0) 2142 miniseed2 = 0xabc; 2143 miniseed2_reversed = 2144 ((miniseed2 & 0xF00) >> 8) | 2145 (miniseed2 & 0x0F0) | 2146 ((miniseed2 & 0x00F) << 8); 2147 2148 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2149 miniseed3 &= 0x0fff; 2150 if (miniseed3 == 0) 2151 miniseed3 = 0xabc; 2152 miniseed3_reversed = 2153 ((miniseed3 & 0xF00) >> 8) | 2154 (miniseed3 & 0x0F0) | 2155 ((miniseed3 & 0x00F) << 8); 2156 2157 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2158 (miniseed2 ^ miniseed3_reversed); 2159 2160 /* Seeds can not be zero */ 2161 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2162 combinedSeed |= 0x08; 2163 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2164 combinedSeed |= 0x8000; 2165 2166 /* No need to disable tx here */ 2167 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2168 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2169 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2170 writel(temp, base + NvRegBackOffControl); 2171 2172 /* Setup seeds for all gear LFSRs. */ 2173 get_random_bytes(&seedset, sizeof(seedset)); 2174 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2175 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2176 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2177 temp |= main_seedset[seedset][i-1] & 0x3ff; 2178 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2179 writel(temp, base + NvRegBackOffControl); 2180 } 2181 } 2182 2183 /* 2184 * nv_start_xmit: dev->hard_start_xmit function 2185 * Called with netif_tx_lock held. 2186 */ 2187 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2188 { 2189 struct fe_priv *np = netdev_priv(dev); 2190 u32 tx_flags = 0; 2191 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2192 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2193 unsigned int i; 2194 u32 offset = 0; 2195 u32 bcnt; 2196 u32 size = skb_headlen(skb); 2197 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2198 u32 empty_slots; 2199 struct ring_desc *put_tx; 2200 struct ring_desc *start_tx; 2201 struct ring_desc *prev_tx; 2202 struct nv_skb_map *prev_tx_ctx; 2203 unsigned long flags; 2204 2205 /* add fragments to entries count */ 2206 for (i = 0; i < fragments; i++) { 2207 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2208 2209 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2210 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2211 } 2212 2213 spin_lock_irqsave(&np->lock, flags); 2214 empty_slots = nv_get_empty_tx_slots(np); 2215 if (unlikely(empty_slots <= entries)) { 2216 netif_stop_queue(dev); 2217 np->tx_stop = 1; 2218 spin_unlock_irqrestore(&np->lock, flags); 2219 return NETDEV_TX_BUSY; 2220 } 2221 spin_unlock_irqrestore(&np->lock, flags); 2222 2223 start_tx = put_tx = np->put_tx.orig; 2224 2225 /* setup the header buffer */ 2226 do { 2227 prev_tx = put_tx; 2228 prev_tx_ctx = np->put_tx_ctx; 2229 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2230 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2231 PCI_DMA_TODEVICE); 2232 if (pci_dma_mapping_error(np->pci_dev, 2233 np->put_tx_ctx->dma)) { 2234 /* on DMA mapping error - drop the packet */ 2235 kfree_skb(skb); 2236 u64_stats_update_begin(&np->swstats_tx_syncp); 2237 np->stat_tx_dropped++; 2238 u64_stats_update_end(&np->swstats_tx_syncp); 2239 return NETDEV_TX_OK; 2240 } 2241 np->put_tx_ctx->dma_len = bcnt; 2242 np->put_tx_ctx->dma_single = 1; 2243 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2244 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2245 2246 tx_flags = np->tx_flags; 2247 offset += bcnt; 2248 size -= bcnt; 2249 if (unlikely(put_tx++ == np->last_tx.orig)) 2250 put_tx = np->first_tx.orig; 2251 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2252 np->put_tx_ctx = np->first_tx_ctx; 2253 } while (size); 2254 2255 /* setup the fragments */ 2256 for (i = 0; i < fragments; i++) { 2257 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2258 u32 frag_size = skb_frag_size(frag); 2259 offset = 0; 2260 2261 do { 2262 prev_tx = put_tx; 2263 prev_tx_ctx = np->put_tx_ctx; 2264 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2265 np->put_tx_ctx->dma = skb_frag_dma_map( 2266 &np->pci_dev->dev, 2267 frag, offset, 2268 bcnt, 2269 DMA_TO_DEVICE); 2270 np->put_tx_ctx->dma_len = bcnt; 2271 np->put_tx_ctx->dma_single = 0; 2272 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2273 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2274 2275 offset += bcnt; 2276 frag_size -= bcnt; 2277 if (unlikely(put_tx++ == np->last_tx.orig)) 2278 put_tx = np->first_tx.orig; 2279 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2280 np->put_tx_ctx = np->first_tx_ctx; 2281 } while (frag_size); 2282 } 2283 2284 /* set last fragment flag */ 2285 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2286 2287 /* save skb in this slot's context area */ 2288 prev_tx_ctx->skb = skb; 2289 2290 if (skb_is_gso(skb)) 2291 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2292 else 2293 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2294 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2295 2296 spin_lock_irqsave(&np->lock, flags); 2297 2298 /* set tx flags */ 2299 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2300 2301 netdev_sent_queue(np->dev, skb->len); 2302 2303 skb_tx_timestamp(skb); 2304 2305 np->put_tx.orig = put_tx; 2306 2307 spin_unlock_irqrestore(&np->lock, flags); 2308 2309 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2310 return NETDEV_TX_OK; 2311 } 2312 2313 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2314 struct net_device *dev) 2315 { 2316 struct fe_priv *np = netdev_priv(dev); 2317 u32 tx_flags = 0; 2318 u32 tx_flags_extra; 2319 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2320 unsigned int i; 2321 u32 offset = 0; 2322 u32 bcnt; 2323 u32 size = skb_headlen(skb); 2324 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2325 u32 empty_slots; 2326 struct ring_desc_ex *put_tx; 2327 struct ring_desc_ex *start_tx; 2328 struct ring_desc_ex *prev_tx; 2329 struct nv_skb_map *prev_tx_ctx; 2330 struct nv_skb_map *start_tx_ctx; 2331 unsigned long flags; 2332 2333 /* add fragments to entries count */ 2334 for (i = 0; i < fragments; i++) { 2335 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2336 2337 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2338 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2339 } 2340 2341 spin_lock_irqsave(&np->lock, flags); 2342 empty_slots = nv_get_empty_tx_slots(np); 2343 if (unlikely(empty_slots <= entries)) { 2344 netif_stop_queue(dev); 2345 np->tx_stop = 1; 2346 spin_unlock_irqrestore(&np->lock, flags); 2347 return NETDEV_TX_BUSY; 2348 } 2349 spin_unlock_irqrestore(&np->lock, flags); 2350 2351 start_tx = put_tx = np->put_tx.ex; 2352 start_tx_ctx = np->put_tx_ctx; 2353 2354 /* setup the header buffer */ 2355 do { 2356 prev_tx = put_tx; 2357 prev_tx_ctx = np->put_tx_ctx; 2358 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2359 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2360 PCI_DMA_TODEVICE); 2361 if (pci_dma_mapping_error(np->pci_dev, 2362 np->put_tx_ctx->dma)) { 2363 /* on DMA mapping error - drop the packet */ 2364 kfree_skb(skb); 2365 u64_stats_update_begin(&np->swstats_tx_syncp); 2366 np->stat_tx_dropped++; 2367 u64_stats_update_end(&np->swstats_tx_syncp); 2368 return NETDEV_TX_OK; 2369 } 2370 np->put_tx_ctx->dma_len = bcnt; 2371 np->put_tx_ctx->dma_single = 1; 2372 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2373 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2374 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2375 2376 tx_flags = NV_TX2_VALID; 2377 offset += bcnt; 2378 size -= bcnt; 2379 if (unlikely(put_tx++ == np->last_tx.ex)) 2380 put_tx = np->first_tx.ex; 2381 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2382 np->put_tx_ctx = np->first_tx_ctx; 2383 } while (size); 2384 2385 /* setup the fragments */ 2386 for (i = 0; i < fragments; i++) { 2387 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2388 u32 frag_size = skb_frag_size(frag); 2389 offset = 0; 2390 2391 do { 2392 prev_tx = put_tx; 2393 prev_tx_ctx = np->put_tx_ctx; 2394 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2395 np->put_tx_ctx->dma = skb_frag_dma_map( 2396 &np->pci_dev->dev, 2397 frag, offset, 2398 bcnt, 2399 DMA_TO_DEVICE); 2400 np->put_tx_ctx->dma_len = bcnt; 2401 np->put_tx_ctx->dma_single = 0; 2402 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2403 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2404 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2405 2406 offset += bcnt; 2407 frag_size -= bcnt; 2408 if (unlikely(put_tx++ == np->last_tx.ex)) 2409 put_tx = np->first_tx.ex; 2410 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2411 np->put_tx_ctx = np->first_tx_ctx; 2412 } while (frag_size); 2413 } 2414 2415 /* set last fragment flag */ 2416 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2417 2418 /* save skb in this slot's context area */ 2419 prev_tx_ctx->skb = skb; 2420 2421 if (skb_is_gso(skb)) 2422 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2423 else 2424 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2425 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2426 2427 /* vlan tag */ 2428 if (vlan_tx_tag_present(skb)) 2429 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2430 vlan_tx_tag_get(skb)); 2431 else 2432 start_tx->txvlan = 0; 2433 2434 spin_lock_irqsave(&np->lock, flags); 2435 2436 if (np->tx_limit) { 2437 /* Limit the number of outstanding tx. Setup all fragments, but 2438 * do not set the VALID bit on the first descriptor. Save a pointer 2439 * to that descriptor and also for next skb_map element. 2440 */ 2441 2442 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2443 if (!np->tx_change_owner) 2444 np->tx_change_owner = start_tx_ctx; 2445 2446 /* remove VALID bit */ 2447 tx_flags &= ~NV_TX2_VALID; 2448 start_tx_ctx->first_tx_desc = start_tx; 2449 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2450 np->tx_end_flip = np->put_tx_ctx; 2451 } else { 2452 np->tx_pkts_in_progress++; 2453 } 2454 } 2455 2456 /* set tx flags */ 2457 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2458 2459 netdev_sent_queue(np->dev, skb->len); 2460 2461 skb_tx_timestamp(skb); 2462 2463 np->put_tx.ex = put_tx; 2464 2465 spin_unlock_irqrestore(&np->lock, flags); 2466 2467 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2468 return NETDEV_TX_OK; 2469 } 2470 2471 static inline void nv_tx_flip_ownership(struct net_device *dev) 2472 { 2473 struct fe_priv *np = netdev_priv(dev); 2474 2475 np->tx_pkts_in_progress--; 2476 if (np->tx_change_owner) { 2477 np->tx_change_owner->first_tx_desc->flaglen |= 2478 cpu_to_le32(NV_TX2_VALID); 2479 np->tx_pkts_in_progress++; 2480 2481 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2482 if (np->tx_change_owner == np->tx_end_flip) 2483 np->tx_change_owner = NULL; 2484 2485 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2486 } 2487 } 2488 2489 /* 2490 * nv_tx_done: check for completed packets, release the skbs. 2491 * 2492 * Caller must own np->lock. 2493 */ 2494 static int nv_tx_done(struct net_device *dev, int limit) 2495 { 2496 struct fe_priv *np = netdev_priv(dev); 2497 u32 flags; 2498 int tx_work = 0; 2499 struct ring_desc *orig_get_tx = np->get_tx.orig; 2500 unsigned int bytes_compl = 0; 2501 2502 while ((np->get_tx.orig != np->put_tx.orig) && 2503 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2504 (tx_work < limit)) { 2505 2506 nv_unmap_txskb(np, np->get_tx_ctx); 2507 2508 if (np->desc_ver == DESC_VER_1) { 2509 if (flags & NV_TX_LASTPACKET) { 2510 if (flags & NV_TX_ERROR) { 2511 if ((flags & NV_TX_RETRYERROR) 2512 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2513 nv_legacybackoff_reseed(dev); 2514 } else { 2515 u64_stats_update_begin(&np->swstats_tx_syncp); 2516 np->stat_tx_packets++; 2517 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2518 u64_stats_update_end(&np->swstats_tx_syncp); 2519 } 2520 bytes_compl += np->get_tx_ctx->skb->len; 2521 dev_kfree_skb_any(np->get_tx_ctx->skb); 2522 np->get_tx_ctx->skb = NULL; 2523 tx_work++; 2524 } 2525 } else { 2526 if (flags & NV_TX2_LASTPACKET) { 2527 if (flags & NV_TX2_ERROR) { 2528 if ((flags & NV_TX2_RETRYERROR) 2529 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2530 nv_legacybackoff_reseed(dev); 2531 } else { 2532 u64_stats_update_begin(&np->swstats_tx_syncp); 2533 np->stat_tx_packets++; 2534 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2535 u64_stats_update_end(&np->swstats_tx_syncp); 2536 } 2537 bytes_compl += np->get_tx_ctx->skb->len; 2538 dev_kfree_skb_any(np->get_tx_ctx->skb); 2539 np->get_tx_ctx->skb = NULL; 2540 tx_work++; 2541 } 2542 } 2543 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2544 np->get_tx.orig = np->first_tx.orig; 2545 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2546 np->get_tx_ctx = np->first_tx_ctx; 2547 } 2548 2549 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2550 2551 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2552 np->tx_stop = 0; 2553 netif_wake_queue(dev); 2554 } 2555 return tx_work; 2556 } 2557 2558 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2559 { 2560 struct fe_priv *np = netdev_priv(dev); 2561 u32 flags; 2562 int tx_work = 0; 2563 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2564 unsigned long bytes_cleaned = 0; 2565 2566 while ((np->get_tx.ex != np->put_tx.ex) && 2567 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2568 (tx_work < limit)) { 2569 2570 nv_unmap_txskb(np, np->get_tx_ctx); 2571 2572 if (flags & NV_TX2_LASTPACKET) { 2573 if (flags & NV_TX2_ERROR) { 2574 if ((flags & NV_TX2_RETRYERROR) 2575 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2576 if (np->driver_data & DEV_HAS_GEAR_MODE) 2577 nv_gear_backoff_reseed(dev); 2578 else 2579 nv_legacybackoff_reseed(dev); 2580 } 2581 } else { 2582 u64_stats_update_begin(&np->swstats_tx_syncp); 2583 np->stat_tx_packets++; 2584 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2585 u64_stats_update_end(&np->swstats_tx_syncp); 2586 } 2587 2588 bytes_cleaned += np->get_tx_ctx->skb->len; 2589 dev_kfree_skb_any(np->get_tx_ctx->skb); 2590 np->get_tx_ctx->skb = NULL; 2591 tx_work++; 2592 2593 if (np->tx_limit) 2594 nv_tx_flip_ownership(dev); 2595 } 2596 2597 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2598 np->get_tx.ex = np->first_tx.ex; 2599 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2600 np->get_tx_ctx = np->first_tx_ctx; 2601 } 2602 2603 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2604 2605 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2606 np->tx_stop = 0; 2607 netif_wake_queue(dev); 2608 } 2609 return tx_work; 2610 } 2611 2612 /* 2613 * nv_tx_timeout: dev->tx_timeout function 2614 * Called with netif_tx_lock held. 2615 */ 2616 static void nv_tx_timeout(struct net_device *dev) 2617 { 2618 struct fe_priv *np = netdev_priv(dev); 2619 u8 __iomem *base = get_hwbase(dev); 2620 u32 status; 2621 union ring_type put_tx; 2622 int saved_tx_limit; 2623 2624 if (np->msi_flags & NV_MSI_X_ENABLED) 2625 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2626 else 2627 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2628 2629 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2630 2631 if (unlikely(debug_tx_timeout)) { 2632 int i; 2633 2634 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2635 netdev_info(dev, "Dumping tx registers\n"); 2636 for (i = 0; i <= np->register_size; i += 32) { 2637 netdev_info(dev, 2638 "%3x: %08x %08x %08x %08x " 2639 "%08x %08x %08x %08x\n", 2640 i, 2641 readl(base + i + 0), readl(base + i + 4), 2642 readl(base + i + 8), readl(base + i + 12), 2643 readl(base + i + 16), readl(base + i + 20), 2644 readl(base + i + 24), readl(base + i + 28)); 2645 } 2646 netdev_info(dev, "Dumping tx ring\n"); 2647 for (i = 0; i < np->tx_ring_size; i += 4) { 2648 if (!nv_optimized(np)) { 2649 netdev_info(dev, 2650 "%03x: %08x %08x // %08x %08x " 2651 "// %08x %08x // %08x %08x\n", 2652 i, 2653 le32_to_cpu(np->tx_ring.orig[i].buf), 2654 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2655 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2656 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2657 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2658 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2659 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2660 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2661 } else { 2662 netdev_info(dev, 2663 "%03x: %08x %08x %08x " 2664 "// %08x %08x %08x " 2665 "// %08x %08x %08x " 2666 "// %08x %08x %08x\n", 2667 i, 2668 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2669 le32_to_cpu(np->tx_ring.ex[i].buflow), 2670 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2671 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2672 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2673 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2674 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2675 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2676 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2677 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2678 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2679 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2680 } 2681 } 2682 } 2683 2684 spin_lock_irq(&np->lock); 2685 2686 /* 1) stop tx engine */ 2687 nv_stop_tx(dev); 2688 2689 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2690 saved_tx_limit = np->tx_limit; 2691 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2692 np->tx_stop = 0; /* prevent waking tx queue */ 2693 if (!nv_optimized(np)) 2694 nv_tx_done(dev, np->tx_ring_size); 2695 else 2696 nv_tx_done_optimized(dev, np->tx_ring_size); 2697 2698 /* save current HW position */ 2699 if (np->tx_change_owner) 2700 put_tx.ex = np->tx_change_owner->first_tx_desc; 2701 else 2702 put_tx = np->put_tx; 2703 2704 /* 3) clear all tx state */ 2705 nv_drain_tx(dev); 2706 nv_init_tx(dev); 2707 2708 /* 4) restore state to current HW position */ 2709 np->get_tx = np->put_tx = put_tx; 2710 np->tx_limit = saved_tx_limit; 2711 2712 /* 5) restart tx engine */ 2713 nv_start_tx(dev); 2714 netif_wake_queue(dev); 2715 spin_unlock_irq(&np->lock); 2716 } 2717 2718 /* 2719 * Called when the nic notices a mismatch between the actual data len on the 2720 * wire and the len indicated in the 802 header 2721 */ 2722 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2723 { 2724 int hdrlen; /* length of the 802 header */ 2725 int protolen; /* length as stored in the proto field */ 2726 2727 /* 1) calculate len according to header */ 2728 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2729 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2730 hdrlen = VLAN_HLEN; 2731 } else { 2732 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2733 hdrlen = ETH_HLEN; 2734 } 2735 if (protolen > ETH_DATA_LEN) 2736 return datalen; /* Value in proto field not a len, no checks possible */ 2737 2738 protolen += hdrlen; 2739 /* consistency checks: */ 2740 if (datalen > ETH_ZLEN) { 2741 if (datalen >= protolen) { 2742 /* more data on wire than in 802 header, trim of 2743 * additional data. 2744 */ 2745 return protolen; 2746 } else { 2747 /* less data on wire than mentioned in header. 2748 * Discard the packet. 2749 */ 2750 return -1; 2751 } 2752 } else { 2753 /* short packet. Accept only if 802 values are also short */ 2754 if (protolen > ETH_ZLEN) { 2755 return -1; 2756 } 2757 return datalen; 2758 } 2759 } 2760 2761 static int nv_rx_process(struct net_device *dev, int limit) 2762 { 2763 struct fe_priv *np = netdev_priv(dev); 2764 u32 flags; 2765 int rx_work = 0; 2766 struct sk_buff *skb; 2767 int len; 2768 2769 while ((np->get_rx.orig != np->put_rx.orig) && 2770 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2771 (rx_work < limit)) { 2772 2773 /* 2774 * the packet is for us - immediately tear down the pci mapping. 2775 * TODO: check if a prefetch of the first cacheline improves 2776 * the performance. 2777 */ 2778 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2779 np->get_rx_ctx->dma_len, 2780 PCI_DMA_FROMDEVICE); 2781 skb = np->get_rx_ctx->skb; 2782 np->get_rx_ctx->skb = NULL; 2783 2784 /* look at what we actually got: */ 2785 if (np->desc_ver == DESC_VER_1) { 2786 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2787 len = flags & LEN_MASK_V1; 2788 if (unlikely(flags & NV_RX_ERROR)) { 2789 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2790 len = nv_getlen(dev, skb->data, len); 2791 if (len < 0) { 2792 dev_kfree_skb(skb); 2793 goto next_pkt; 2794 } 2795 } 2796 /* framing errors are soft errors */ 2797 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2798 if (flags & NV_RX_SUBSTRACT1) 2799 len--; 2800 } 2801 /* the rest are hard errors */ 2802 else { 2803 if (flags & NV_RX_MISSEDFRAME) { 2804 u64_stats_update_begin(&np->swstats_rx_syncp); 2805 np->stat_rx_missed_errors++; 2806 u64_stats_update_end(&np->swstats_rx_syncp); 2807 } 2808 dev_kfree_skb(skb); 2809 goto next_pkt; 2810 } 2811 } 2812 } else { 2813 dev_kfree_skb(skb); 2814 goto next_pkt; 2815 } 2816 } else { 2817 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2818 len = flags & LEN_MASK_V2; 2819 if (unlikely(flags & NV_RX2_ERROR)) { 2820 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2821 len = nv_getlen(dev, skb->data, len); 2822 if (len < 0) { 2823 dev_kfree_skb(skb); 2824 goto next_pkt; 2825 } 2826 } 2827 /* framing errors are soft errors */ 2828 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2829 if (flags & NV_RX2_SUBSTRACT1) 2830 len--; 2831 } 2832 /* the rest are hard errors */ 2833 else { 2834 dev_kfree_skb(skb); 2835 goto next_pkt; 2836 } 2837 } 2838 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2839 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2840 skb->ip_summed = CHECKSUM_UNNECESSARY; 2841 } else { 2842 dev_kfree_skb(skb); 2843 goto next_pkt; 2844 } 2845 } 2846 /* got a valid packet - forward it to the network core */ 2847 skb_put(skb, len); 2848 skb->protocol = eth_type_trans(skb, dev); 2849 napi_gro_receive(&np->napi, skb); 2850 u64_stats_update_begin(&np->swstats_rx_syncp); 2851 np->stat_rx_packets++; 2852 np->stat_rx_bytes += len; 2853 u64_stats_update_end(&np->swstats_rx_syncp); 2854 next_pkt: 2855 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2856 np->get_rx.orig = np->first_rx.orig; 2857 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2858 np->get_rx_ctx = np->first_rx_ctx; 2859 2860 rx_work++; 2861 } 2862 2863 return rx_work; 2864 } 2865 2866 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2867 { 2868 struct fe_priv *np = netdev_priv(dev); 2869 u32 flags; 2870 u32 vlanflags = 0; 2871 int rx_work = 0; 2872 struct sk_buff *skb; 2873 int len; 2874 2875 while ((np->get_rx.ex != np->put_rx.ex) && 2876 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 2877 (rx_work < limit)) { 2878 2879 /* 2880 * the packet is for us - immediately tear down the pci mapping. 2881 * TODO: check if a prefetch of the first cacheline improves 2882 * the performance. 2883 */ 2884 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2885 np->get_rx_ctx->dma_len, 2886 PCI_DMA_FROMDEVICE); 2887 skb = np->get_rx_ctx->skb; 2888 np->get_rx_ctx->skb = NULL; 2889 2890 /* look at what we actually got: */ 2891 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2892 len = flags & LEN_MASK_V2; 2893 if (unlikely(flags & NV_RX2_ERROR)) { 2894 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2895 len = nv_getlen(dev, skb->data, len); 2896 if (len < 0) { 2897 dev_kfree_skb(skb); 2898 goto next_pkt; 2899 } 2900 } 2901 /* framing errors are soft errors */ 2902 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2903 if (flags & NV_RX2_SUBSTRACT1) 2904 len--; 2905 } 2906 /* the rest are hard errors */ 2907 else { 2908 dev_kfree_skb(skb); 2909 goto next_pkt; 2910 } 2911 } 2912 2913 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2914 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2915 skb->ip_summed = CHECKSUM_UNNECESSARY; 2916 2917 /* got a valid packet - forward it to the network core */ 2918 skb_put(skb, len); 2919 skb->protocol = eth_type_trans(skb, dev); 2920 prefetch(skb->data); 2921 2922 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 2923 2924 /* 2925 * There's need to check for NETIF_F_HW_VLAN_RX here. 2926 * Even if vlan rx accel is disabled, 2927 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 2928 */ 2929 if (dev->features & NETIF_F_HW_VLAN_RX && 2930 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 2931 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 2932 2933 __vlan_hwaccel_put_tag(skb, vid); 2934 } 2935 napi_gro_receive(&np->napi, skb); 2936 u64_stats_update_begin(&np->swstats_rx_syncp); 2937 np->stat_rx_packets++; 2938 np->stat_rx_bytes += len; 2939 u64_stats_update_end(&np->swstats_rx_syncp); 2940 } else { 2941 dev_kfree_skb(skb); 2942 } 2943 next_pkt: 2944 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 2945 np->get_rx.ex = np->first_rx.ex; 2946 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2947 np->get_rx_ctx = np->first_rx_ctx; 2948 2949 rx_work++; 2950 } 2951 2952 return rx_work; 2953 } 2954 2955 static void set_bufsize(struct net_device *dev) 2956 { 2957 struct fe_priv *np = netdev_priv(dev); 2958 2959 if (dev->mtu <= ETH_DATA_LEN) 2960 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 2961 else 2962 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 2963 } 2964 2965 /* 2966 * nv_change_mtu: dev->change_mtu function 2967 * Called with dev_base_lock held for read. 2968 */ 2969 static int nv_change_mtu(struct net_device *dev, int new_mtu) 2970 { 2971 struct fe_priv *np = netdev_priv(dev); 2972 int old_mtu; 2973 2974 if (new_mtu < 64 || new_mtu > np->pkt_limit) 2975 return -EINVAL; 2976 2977 old_mtu = dev->mtu; 2978 dev->mtu = new_mtu; 2979 2980 /* return early if the buffer sizes will not change */ 2981 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 2982 return 0; 2983 if (old_mtu == new_mtu) 2984 return 0; 2985 2986 /* synchronized against open : rtnl_lock() held by caller */ 2987 if (netif_running(dev)) { 2988 u8 __iomem *base = get_hwbase(dev); 2989 /* 2990 * It seems that the nic preloads valid ring entries into an 2991 * internal buffer. The procedure for flushing everything is 2992 * guessed, there is probably a simpler approach. 2993 * Changing the MTU is a rare event, it shouldn't matter. 2994 */ 2995 nv_disable_irq(dev); 2996 nv_napi_disable(dev); 2997 netif_tx_lock_bh(dev); 2998 netif_addr_lock(dev); 2999 spin_lock(&np->lock); 3000 /* stop engines */ 3001 nv_stop_rxtx(dev); 3002 nv_txrx_reset(dev); 3003 /* drain rx queue */ 3004 nv_drain_rxtx(dev); 3005 /* reinit driver view of the rx queue */ 3006 set_bufsize(dev); 3007 if (nv_init_ring(dev)) { 3008 if (!np->in_shutdown) 3009 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3010 } 3011 /* reinit nic view of the rx queue */ 3012 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 3013 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 3014 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 3015 base + NvRegRingSizes); 3016 pci_push(base); 3017 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 3018 pci_push(base); 3019 3020 /* restart rx engine */ 3021 nv_start_rxtx(dev); 3022 spin_unlock(&np->lock); 3023 netif_addr_unlock(dev); 3024 netif_tx_unlock_bh(dev); 3025 nv_napi_enable(dev); 3026 nv_enable_irq(dev); 3027 } 3028 return 0; 3029 } 3030 3031 static void nv_copy_mac_to_hw(struct net_device *dev) 3032 { 3033 u8 __iomem *base = get_hwbase(dev); 3034 u32 mac[2]; 3035 3036 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3037 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3038 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3039 3040 writel(mac[0], base + NvRegMacAddrA); 3041 writel(mac[1], base + NvRegMacAddrB); 3042 } 3043 3044 /* 3045 * nv_set_mac_address: dev->set_mac_address function 3046 * Called with rtnl_lock() held. 3047 */ 3048 static int nv_set_mac_address(struct net_device *dev, void *addr) 3049 { 3050 struct fe_priv *np = netdev_priv(dev); 3051 struct sockaddr *macaddr = (struct sockaddr *)addr; 3052 3053 if (!is_valid_ether_addr(macaddr->sa_data)) 3054 return -EADDRNOTAVAIL; 3055 3056 /* synchronized against open : rtnl_lock() held by caller */ 3057 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3058 3059 if (netif_running(dev)) { 3060 netif_tx_lock_bh(dev); 3061 netif_addr_lock(dev); 3062 spin_lock_irq(&np->lock); 3063 3064 /* stop rx engine */ 3065 nv_stop_rx(dev); 3066 3067 /* set mac address */ 3068 nv_copy_mac_to_hw(dev); 3069 3070 /* restart rx engine */ 3071 nv_start_rx(dev); 3072 spin_unlock_irq(&np->lock); 3073 netif_addr_unlock(dev); 3074 netif_tx_unlock_bh(dev); 3075 } else { 3076 nv_copy_mac_to_hw(dev); 3077 } 3078 return 0; 3079 } 3080 3081 /* 3082 * nv_set_multicast: dev->set_multicast function 3083 * Called with netif_tx_lock held. 3084 */ 3085 static void nv_set_multicast(struct net_device *dev) 3086 { 3087 struct fe_priv *np = netdev_priv(dev); 3088 u8 __iomem *base = get_hwbase(dev); 3089 u32 addr[2]; 3090 u32 mask[2]; 3091 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3092 3093 memset(addr, 0, sizeof(addr)); 3094 memset(mask, 0, sizeof(mask)); 3095 3096 if (dev->flags & IFF_PROMISC) { 3097 pff |= NVREG_PFF_PROMISC; 3098 } else { 3099 pff |= NVREG_PFF_MYADDR; 3100 3101 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3102 u32 alwaysOff[2]; 3103 u32 alwaysOn[2]; 3104 3105 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3106 if (dev->flags & IFF_ALLMULTI) { 3107 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3108 } else { 3109 struct netdev_hw_addr *ha; 3110 3111 netdev_for_each_mc_addr(ha, dev) { 3112 unsigned char *hw_addr = ha->addr; 3113 u32 a, b; 3114 3115 a = le32_to_cpu(*(__le32 *) hw_addr); 3116 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3117 alwaysOn[0] &= a; 3118 alwaysOff[0] &= ~a; 3119 alwaysOn[1] &= b; 3120 alwaysOff[1] &= ~b; 3121 } 3122 } 3123 addr[0] = alwaysOn[0]; 3124 addr[1] = alwaysOn[1]; 3125 mask[0] = alwaysOn[0] | alwaysOff[0]; 3126 mask[1] = alwaysOn[1] | alwaysOff[1]; 3127 } else { 3128 mask[0] = NVREG_MCASTMASKA_NONE; 3129 mask[1] = NVREG_MCASTMASKB_NONE; 3130 } 3131 } 3132 addr[0] |= NVREG_MCASTADDRA_FORCE; 3133 pff |= NVREG_PFF_ALWAYS; 3134 spin_lock_irq(&np->lock); 3135 nv_stop_rx(dev); 3136 writel(addr[0], base + NvRegMulticastAddrA); 3137 writel(addr[1], base + NvRegMulticastAddrB); 3138 writel(mask[0], base + NvRegMulticastMaskA); 3139 writel(mask[1], base + NvRegMulticastMaskB); 3140 writel(pff, base + NvRegPacketFilterFlags); 3141 nv_start_rx(dev); 3142 spin_unlock_irq(&np->lock); 3143 } 3144 3145 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3146 { 3147 struct fe_priv *np = netdev_priv(dev); 3148 u8 __iomem *base = get_hwbase(dev); 3149 3150 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3151 3152 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3153 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3154 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3155 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3156 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3157 } else { 3158 writel(pff, base + NvRegPacketFilterFlags); 3159 } 3160 } 3161 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3162 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3163 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3164 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3165 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3166 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3167 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3168 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3169 /* limit the number of tx pause frames to a default of 8 */ 3170 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3171 } 3172 writel(pause_enable, base + NvRegTxPauseFrame); 3173 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3174 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3175 } else { 3176 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3177 writel(regmisc, base + NvRegMisc1); 3178 } 3179 } 3180 } 3181 3182 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3183 { 3184 struct fe_priv *np = netdev_priv(dev); 3185 u8 __iomem *base = get_hwbase(dev); 3186 u32 phyreg, txreg; 3187 int mii_status; 3188 3189 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3190 np->duplex = duplex; 3191 3192 /* see if gigabit phy */ 3193 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3194 if (mii_status & PHY_GIGABIT) { 3195 np->gigabit = PHY_GIGABIT; 3196 phyreg = readl(base + NvRegSlotTime); 3197 phyreg &= ~(0x3FF00); 3198 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3199 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3200 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3201 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3202 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3203 phyreg |= NVREG_SLOTTIME_1000_FULL; 3204 writel(phyreg, base + NvRegSlotTime); 3205 } 3206 3207 phyreg = readl(base + NvRegPhyInterface); 3208 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3209 if (np->duplex == 0) 3210 phyreg |= PHY_HALF; 3211 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3212 phyreg |= PHY_100; 3213 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3214 NVREG_LINKSPEED_1000) 3215 phyreg |= PHY_1000; 3216 writel(phyreg, base + NvRegPhyInterface); 3217 3218 if (phyreg & PHY_RGMII) { 3219 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3220 NVREG_LINKSPEED_1000) 3221 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3222 else 3223 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3224 } else { 3225 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3226 } 3227 writel(txreg, base + NvRegTxDeferral); 3228 3229 if (np->desc_ver == DESC_VER_1) { 3230 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3231 } else { 3232 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3233 NVREG_LINKSPEED_1000) 3234 txreg = NVREG_TX_WM_DESC2_3_1000; 3235 else 3236 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3237 } 3238 writel(txreg, base + NvRegTxWatermark); 3239 3240 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3241 base + NvRegMisc1); 3242 pci_push(base); 3243 writel(np->linkspeed, base + NvRegLinkSpeed); 3244 pci_push(base); 3245 3246 return; 3247 } 3248 3249 /** 3250 * nv_update_linkspeed - Setup the MAC according to the link partner 3251 * @dev: Network device to be configured 3252 * 3253 * The function queries the PHY and checks if there is a link partner. 3254 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3255 * set to 10 MBit HD. 3256 * 3257 * The function returns 0 if there is no link partner and 1 if there is 3258 * a good link partner. 3259 */ 3260 static int nv_update_linkspeed(struct net_device *dev) 3261 { 3262 struct fe_priv *np = netdev_priv(dev); 3263 u8 __iomem *base = get_hwbase(dev); 3264 int adv = 0; 3265 int lpa = 0; 3266 int adv_lpa, adv_pause, lpa_pause; 3267 int newls = np->linkspeed; 3268 int newdup = np->duplex; 3269 int mii_status; 3270 u32 bmcr; 3271 int retval = 0; 3272 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3273 u32 txrxFlags = 0; 3274 u32 phy_exp; 3275 3276 /* If device loopback is enabled, set carrier on and enable max link 3277 * speed. 3278 */ 3279 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3280 if (bmcr & BMCR_LOOPBACK) { 3281 if (netif_running(dev)) { 3282 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3283 if (!netif_carrier_ok(dev)) 3284 netif_carrier_on(dev); 3285 } 3286 return 1; 3287 } 3288 3289 /* BMSR_LSTATUS is latched, read it twice: 3290 * we want the current value. 3291 */ 3292 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3293 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3294 3295 if (!(mii_status & BMSR_LSTATUS)) { 3296 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3297 newdup = 0; 3298 retval = 0; 3299 goto set_speed; 3300 } 3301 3302 if (np->autoneg == 0) { 3303 if (np->fixed_mode & LPA_100FULL) { 3304 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3305 newdup = 1; 3306 } else if (np->fixed_mode & LPA_100HALF) { 3307 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3308 newdup = 0; 3309 } else if (np->fixed_mode & LPA_10FULL) { 3310 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3311 newdup = 1; 3312 } else { 3313 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3314 newdup = 0; 3315 } 3316 retval = 1; 3317 goto set_speed; 3318 } 3319 /* check auto negotiation is complete */ 3320 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3321 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3322 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3323 newdup = 0; 3324 retval = 0; 3325 goto set_speed; 3326 } 3327 3328 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3329 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3330 3331 retval = 1; 3332 if (np->gigabit == PHY_GIGABIT) { 3333 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3334 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3335 3336 if ((control_1000 & ADVERTISE_1000FULL) && 3337 (status_1000 & LPA_1000FULL)) { 3338 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3339 newdup = 1; 3340 goto set_speed; 3341 } 3342 } 3343 3344 /* FIXME: handle parallel detection properly */ 3345 adv_lpa = lpa & adv; 3346 if (adv_lpa & LPA_100FULL) { 3347 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3348 newdup = 1; 3349 } else if (adv_lpa & LPA_100HALF) { 3350 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3351 newdup = 0; 3352 } else if (adv_lpa & LPA_10FULL) { 3353 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3354 newdup = 1; 3355 } else if (adv_lpa & LPA_10HALF) { 3356 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3357 newdup = 0; 3358 } else { 3359 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3360 newdup = 0; 3361 } 3362 3363 set_speed: 3364 if (np->duplex == newdup && np->linkspeed == newls) 3365 return retval; 3366 3367 np->duplex = newdup; 3368 np->linkspeed = newls; 3369 3370 /* The transmitter and receiver must be restarted for safe update */ 3371 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3372 txrxFlags |= NV_RESTART_TX; 3373 nv_stop_tx(dev); 3374 } 3375 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3376 txrxFlags |= NV_RESTART_RX; 3377 nv_stop_rx(dev); 3378 } 3379 3380 if (np->gigabit == PHY_GIGABIT) { 3381 phyreg = readl(base + NvRegSlotTime); 3382 phyreg &= ~(0x3FF00); 3383 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3384 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3385 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3386 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3387 phyreg |= NVREG_SLOTTIME_1000_FULL; 3388 writel(phyreg, base + NvRegSlotTime); 3389 } 3390 3391 phyreg = readl(base + NvRegPhyInterface); 3392 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3393 if (np->duplex == 0) 3394 phyreg |= PHY_HALF; 3395 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3396 phyreg |= PHY_100; 3397 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3398 phyreg |= PHY_1000; 3399 writel(phyreg, base + NvRegPhyInterface); 3400 3401 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3402 if (phyreg & PHY_RGMII) { 3403 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3404 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3405 } else { 3406 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3407 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3408 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3409 else 3410 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3411 } else { 3412 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3413 } 3414 } 3415 } else { 3416 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3417 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3418 else 3419 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3420 } 3421 writel(txreg, base + NvRegTxDeferral); 3422 3423 if (np->desc_ver == DESC_VER_1) { 3424 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3425 } else { 3426 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3427 txreg = NVREG_TX_WM_DESC2_3_1000; 3428 else 3429 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3430 } 3431 writel(txreg, base + NvRegTxWatermark); 3432 3433 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3434 base + NvRegMisc1); 3435 pci_push(base); 3436 writel(np->linkspeed, base + NvRegLinkSpeed); 3437 pci_push(base); 3438 3439 pause_flags = 0; 3440 /* setup pause frame */ 3441 if (netif_running(dev) && (np->duplex != 0)) { 3442 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3443 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3444 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3445 3446 switch (adv_pause) { 3447 case ADVERTISE_PAUSE_CAP: 3448 if (lpa_pause & LPA_PAUSE_CAP) { 3449 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3450 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3451 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3452 } 3453 break; 3454 case ADVERTISE_PAUSE_ASYM: 3455 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3456 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3457 break; 3458 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3459 if (lpa_pause & LPA_PAUSE_CAP) { 3460 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3461 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3462 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3463 } 3464 if (lpa_pause == LPA_PAUSE_ASYM) 3465 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3466 break; 3467 } 3468 } else { 3469 pause_flags = np->pause_flags; 3470 } 3471 } 3472 nv_update_pause(dev, pause_flags); 3473 3474 if (txrxFlags & NV_RESTART_TX) 3475 nv_start_tx(dev); 3476 if (txrxFlags & NV_RESTART_RX) 3477 nv_start_rx(dev); 3478 3479 return retval; 3480 } 3481 3482 static void nv_linkchange(struct net_device *dev) 3483 { 3484 if (nv_update_linkspeed(dev)) { 3485 if (!netif_carrier_ok(dev)) { 3486 netif_carrier_on(dev); 3487 netdev_info(dev, "link up\n"); 3488 nv_txrx_gate(dev, false); 3489 nv_start_rx(dev); 3490 } 3491 } else { 3492 if (netif_carrier_ok(dev)) { 3493 netif_carrier_off(dev); 3494 netdev_info(dev, "link down\n"); 3495 nv_txrx_gate(dev, true); 3496 nv_stop_rx(dev); 3497 } 3498 } 3499 } 3500 3501 static void nv_link_irq(struct net_device *dev) 3502 { 3503 u8 __iomem *base = get_hwbase(dev); 3504 u32 miistat; 3505 3506 miistat = readl(base + NvRegMIIStatus); 3507 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3508 3509 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3510 nv_linkchange(dev); 3511 } 3512 3513 static void nv_msi_workaround(struct fe_priv *np) 3514 { 3515 3516 /* Need to toggle the msi irq mask within the ethernet device, 3517 * otherwise, future interrupts will not be detected. 3518 */ 3519 if (np->msi_flags & NV_MSI_ENABLED) { 3520 u8 __iomem *base = np->base; 3521 3522 writel(0, base + NvRegMSIIrqMask); 3523 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3524 } 3525 } 3526 3527 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3528 { 3529 struct fe_priv *np = netdev_priv(dev); 3530 3531 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3532 if (total_work > NV_DYNAMIC_THRESHOLD) { 3533 /* transition to poll based interrupts */ 3534 np->quiet_count = 0; 3535 if (np->irqmask != NVREG_IRQMASK_CPU) { 3536 np->irqmask = NVREG_IRQMASK_CPU; 3537 return 1; 3538 } 3539 } else { 3540 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3541 np->quiet_count++; 3542 } else { 3543 /* reached a period of low activity, switch 3544 to per tx/rx packet interrupts */ 3545 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3546 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3547 return 1; 3548 } 3549 } 3550 } 3551 } 3552 return 0; 3553 } 3554 3555 static irqreturn_t nv_nic_irq(int foo, void *data) 3556 { 3557 struct net_device *dev = (struct net_device *) data; 3558 struct fe_priv *np = netdev_priv(dev); 3559 u8 __iomem *base = get_hwbase(dev); 3560 3561 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3562 np->events = readl(base + NvRegIrqStatus); 3563 writel(np->events, base + NvRegIrqStatus); 3564 } else { 3565 np->events = readl(base + NvRegMSIXIrqStatus); 3566 writel(np->events, base + NvRegMSIXIrqStatus); 3567 } 3568 if (!(np->events & np->irqmask)) 3569 return IRQ_NONE; 3570 3571 nv_msi_workaround(np); 3572 3573 if (napi_schedule_prep(&np->napi)) { 3574 /* 3575 * Disable further irq's (msix not enabled with napi) 3576 */ 3577 writel(0, base + NvRegIrqMask); 3578 __napi_schedule(&np->napi); 3579 } 3580 3581 return IRQ_HANDLED; 3582 } 3583 3584 /* All _optimized functions are used to help increase performance 3585 * (reduce CPU and increase throughput). They use descripter version 3, 3586 * compiler directives, and reduce memory accesses. 3587 */ 3588 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3589 { 3590 struct net_device *dev = (struct net_device *) data; 3591 struct fe_priv *np = netdev_priv(dev); 3592 u8 __iomem *base = get_hwbase(dev); 3593 3594 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3595 np->events = readl(base + NvRegIrqStatus); 3596 writel(np->events, base + NvRegIrqStatus); 3597 } else { 3598 np->events = readl(base + NvRegMSIXIrqStatus); 3599 writel(np->events, base + NvRegMSIXIrqStatus); 3600 } 3601 if (!(np->events & np->irqmask)) 3602 return IRQ_NONE; 3603 3604 nv_msi_workaround(np); 3605 3606 if (napi_schedule_prep(&np->napi)) { 3607 /* 3608 * Disable further irq's (msix not enabled with napi) 3609 */ 3610 writel(0, base + NvRegIrqMask); 3611 __napi_schedule(&np->napi); 3612 } 3613 3614 return IRQ_HANDLED; 3615 } 3616 3617 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3618 { 3619 struct net_device *dev = (struct net_device *) data; 3620 struct fe_priv *np = netdev_priv(dev); 3621 u8 __iomem *base = get_hwbase(dev); 3622 u32 events; 3623 int i; 3624 unsigned long flags; 3625 3626 for (i = 0;; i++) { 3627 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3628 writel(events, base + NvRegMSIXIrqStatus); 3629 netdev_dbg(dev, "tx irq events: %08x\n", events); 3630 if (!(events & np->irqmask)) 3631 break; 3632 3633 spin_lock_irqsave(&np->lock, flags); 3634 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3635 spin_unlock_irqrestore(&np->lock, flags); 3636 3637 if (unlikely(i > max_interrupt_work)) { 3638 spin_lock_irqsave(&np->lock, flags); 3639 /* disable interrupts on the nic */ 3640 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3641 pci_push(base); 3642 3643 if (!np->in_shutdown) { 3644 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3645 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3646 } 3647 spin_unlock_irqrestore(&np->lock, flags); 3648 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3649 __func__, i); 3650 break; 3651 } 3652 3653 } 3654 3655 return IRQ_RETVAL(i); 3656 } 3657 3658 static int nv_napi_poll(struct napi_struct *napi, int budget) 3659 { 3660 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3661 struct net_device *dev = np->dev; 3662 u8 __iomem *base = get_hwbase(dev); 3663 unsigned long flags; 3664 int retcode; 3665 int rx_count, tx_work = 0, rx_work = 0; 3666 3667 do { 3668 if (!nv_optimized(np)) { 3669 spin_lock_irqsave(&np->lock, flags); 3670 tx_work += nv_tx_done(dev, np->tx_ring_size); 3671 spin_unlock_irqrestore(&np->lock, flags); 3672 3673 rx_count = nv_rx_process(dev, budget - rx_work); 3674 retcode = nv_alloc_rx(dev); 3675 } else { 3676 spin_lock_irqsave(&np->lock, flags); 3677 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3678 spin_unlock_irqrestore(&np->lock, flags); 3679 3680 rx_count = nv_rx_process_optimized(dev, 3681 budget - rx_work); 3682 retcode = nv_alloc_rx_optimized(dev); 3683 } 3684 } while (retcode == 0 && 3685 rx_count > 0 && (rx_work += rx_count) < budget); 3686 3687 if (retcode) { 3688 spin_lock_irqsave(&np->lock, flags); 3689 if (!np->in_shutdown) 3690 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3691 spin_unlock_irqrestore(&np->lock, flags); 3692 } 3693 3694 nv_change_interrupt_mode(dev, tx_work + rx_work); 3695 3696 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3697 spin_lock_irqsave(&np->lock, flags); 3698 nv_link_irq(dev); 3699 spin_unlock_irqrestore(&np->lock, flags); 3700 } 3701 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3702 spin_lock_irqsave(&np->lock, flags); 3703 nv_linkchange(dev); 3704 spin_unlock_irqrestore(&np->lock, flags); 3705 np->link_timeout = jiffies + LINK_TIMEOUT; 3706 } 3707 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3708 spin_lock_irqsave(&np->lock, flags); 3709 if (!np->in_shutdown) { 3710 np->nic_poll_irq = np->irqmask; 3711 np->recover_error = 1; 3712 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3713 } 3714 spin_unlock_irqrestore(&np->lock, flags); 3715 napi_complete(napi); 3716 return rx_work; 3717 } 3718 3719 if (rx_work < budget) { 3720 /* re-enable interrupts 3721 (msix not enabled in napi) */ 3722 napi_complete(napi); 3723 3724 writel(np->irqmask, base + NvRegIrqMask); 3725 } 3726 return rx_work; 3727 } 3728 3729 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3730 { 3731 struct net_device *dev = (struct net_device *) data; 3732 struct fe_priv *np = netdev_priv(dev); 3733 u8 __iomem *base = get_hwbase(dev); 3734 u32 events; 3735 int i; 3736 unsigned long flags; 3737 3738 for (i = 0;; i++) { 3739 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3740 writel(events, base + NvRegMSIXIrqStatus); 3741 netdev_dbg(dev, "rx irq events: %08x\n", events); 3742 if (!(events & np->irqmask)) 3743 break; 3744 3745 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3746 if (unlikely(nv_alloc_rx_optimized(dev))) { 3747 spin_lock_irqsave(&np->lock, flags); 3748 if (!np->in_shutdown) 3749 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3750 spin_unlock_irqrestore(&np->lock, flags); 3751 } 3752 } 3753 3754 if (unlikely(i > max_interrupt_work)) { 3755 spin_lock_irqsave(&np->lock, flags); 3756 /* disable interrupts on the nic */ 3757 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3758 pci_push(base); 3759 3760 if (!np->in_shutdown) { 3761 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3762 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3763 } 3764 spin_unlock_irqrestore(&np->lock, flags); 3765 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3766 __func__, i); 3767 break; 3768 } 3769 } 3770 3771 return IRQ_RETVAL(i); 3772 } 3773 3774 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3775 { 3776 struct net_device *dev = (struct net_device *) data; 3777 struct fe_priv *np = netdev_priv(dev); 3778 u8 __iomem *base = get_hwbase(dev); 3779 u32 events; 3780 int i; 3781 unsigned long flags; 3782 3783 for (i = 0;; i++) { 3784 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3785 writel(events, base + NvRegMSIXIrqStatus); 3786 netdev_dbg(dev, "irq events: %08x\n", events); 3787 if (!(events & np->irqmask)) 3788 break; 3789 3790 /* check tx in case we reached max loop limit in tx isr */ 3791 spin_lock_irqsave(&np->lock, flags); 3792 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3793 spin_unlock_irqrestore(&np->lock, flags); 3794 3795 if (events & NVREG_IRQ_LINK) { 3796 spin_lock_irqsave(&np->lock, flags); 3797 nv_link_irq(dev); 3798 spin_unlock_irqrestore(&np->lock, flags); 3799 } 3800 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3801 spin_lock_irqsave(&np->lock, flags); 3802 nv_linkchange(dev); 3803 spin_unlock_irqrestore(&np->lock, flags); 3804 np->link_timeout = jiffies + LINK_TIMEOUT; 3805 } 3806 if (events & NVREG_IRQ_RECOVER_ERROR) { 3807 spin_lock_irqsave(&np->lock, flags); 3808 /* disable interrupts on the nic */ 3809 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3810 pci_push(base); 3811 3812 if (!np->in_shutdown) { 3813 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3814 np->recover_error = 1; 3815 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3816 } 3817 spin_unlock_irqrestore(&np->lock, flags); 3818 break; 3819 } 3820 if (unlikely(i > max_interrupt_work)) { 3821 spin_lock_irqsave(&np->lock, flags); 3822 /* disable interrupts on the nic */ 3823 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3824 pci_push(base); 3825 3826 if (!np->in_shutdown) { 3827 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3828 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3829 } 3830 spin_unlock_irqrestore(&np->lock, flags); 3831 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3832 __func__, i); 3833 break; 3834 } 3835 3836 } 3837 3838 return IRQ_RETVAL(i); 3839 } 3840 3841 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3842 { 3843 struct net_device *dev = (struct net_device *) data; 3844 struct fe_priv *np = netdev_priv(dev); 3845 u8 __iomem *base = get_hwbase(dev); 3846 u32 events; 3847 3848 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3849 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3850 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3851 } else { 3852 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3853 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3854 } 3855 pci_push(base); 3856 if (!(events & NVREG_IRQ_TIMER)) 3857 return IRQ_RETVAL(0); 3858 3859 nv_msi_workaround(np); 3860 3861 spin_lock(&np->lock); 3862 np->intr_test = 1; 3863 spin_unlock(&np->lock); 3864 3865 return IRQ_RETVAL(1); 3866 } 3867 3868 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3869 { 3870 u8 __iomem *base = get_hwbase(dev); 3871 int i; 3872 u32 msixmap = 0; 3873 3874 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3875 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 3876 * the remaining 8 interrupts. 3877 */ 3878 for (i = 0; i < 8; i++) { 3879 if ((irqmask >> i) & 0x1) 3880 msixmap |= vector << (i << 2); 3881 } 3882 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 3883 3884 msixmap = 0; 3885 for (i = 0; i < 8; i++) { 3886 if ((irqmask >> (i + 8)) & 0x1) 3887 msixmap |= vector << (i << 2); 3888 } 3889 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 3890 } 3891 3892 static int nv_request_irq(struct net_device *dev, int intr_test) 3893 { 3894 struct fe_priv *np = get_nvpriv(dev); 3895 u8 __iomem *base = get_hwbase(dev); 3896 int ret = 1; 3897 int i; 3898 irqreturn_t (*handler)(int foo, void *data); 3899 3900 if (intr_test) { 3901 handler = nv_nic_irq_test; 3902 } else { 3903 if (nv_optimized(np)) 3904 handler = nv_nic_irq_optimized; 3905 else 3906 handler = nv_nic_irq; 3907 } 3908 3909 if (np->msi_flags & NV_MSI_X_CAPABLE) { 3910 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3911 np->msi_x_entry[i].entry = i; 3912 ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK)); 3913 if (ret == 0) { 3914 np->msi_flags |= NV_MSI_X_ENABLED; 3915 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 3916 /* Request irq for rx handling */ 3917 sprintf(np->name_rx, "%s-rx", dev->name); 3918 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 3919 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) { 3920 netdev_info(dev, 3921 "request_irq failed for rx %d\n", 3922 ret); 3923 pci_disable_msix(np->pci_dev); 3924 np->msi_flags &= ~NV_MSI_X_ENABLED; 3925 goto out_err; 3926 } 3927 /* Request irq for tx handling */ 3928 sprintf(np->name_tx, "%s-tx", dev->name); 3929 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 3930 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) { 3931 netdev_info(dev, 3932 "request_irq failed for tx %d\n", 3933 ret); 3934 pci_disable_msix(np->pci_dev); 3935 np->msi_flags &= ~NV_MSI_X_ENABLED; 3936 goto out_free_rx; 3937 } 3938 /* Request irq for link and timer handling */ 3939 sprintf(np->name_other, "%s-other", dev->name); 3940 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 3941 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) { 3942 netdev_info(dev, 3943 "request_irq failed for link %d\n", 3944 ret); 3945 pci_disable_msix(np->pci_dev); 3946 np->msi_flags &= ~NV_MSI_X_ENABLED; 3947 goto out_free_tx; 3948 } 3949 /* map interrupts to their respective vector */ 3950 writel(0, base + NvRegMSIXMap0); 3951 writel(0, base + NvRegMSIXMap1); 3952 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 3953 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 3954 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 3955 } else { 3956 /* Request irq for all interrupts */ 3957 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) { 3958 netdev_info(dev, 3959 "request_irq failed %d\n", 3960 ret); 3961 pci_disable_msix(np->pci_dev); 3962 np->msi_flags &= ~NV_MSI_X_ENABLED; 3963 goto out_err; 3964 } 3965 3966 /* map interrupts to vector 0 */ 3967 writel(0, base + NvRegMSIXMap0); 3968 writel(0, base + NvRegMSIXMap1); 3969 } 3970 netdev_info(dev, "MSI-X enabled\n"); 3971 } 3972 } 3973 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) { 3974 ret = pci_enable_msi(np->pci_dev); 3975 if (ret == 0) { 3976 np->msi_flags |= NV_MSI_ENABLED; 3977 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) { 3978 netdev_info(dev, "request_irq failed %d\n", 3979 ret); 3980 pci_disable_msi(np->pci_dev); 3981 np->msi_flags &= ~NV_MSI_ENABLED; 3982 goto out_err; 3983 } 3984 3985 /* map interrupts to vector 0 */ 3986 writel(0, base + NvRegMSIMap0); 3987 writel(0, base + NvRegMSIMap1); 3988 /* enable msi vector 0 */ 3989 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3990 netdev_info(dev, "MSI enabled\n"); 3991 } 3992 } 3993 if (ret != 0) { 3994 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 3995 goto out_err; 3996 3997 } 3998 3999 return 0; 4000 out_free_tx: 4001 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 4002 out_free_rx: 4003 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 4004 out_err: 4005 return 1; 4006 } 4007 4008 static void nv_free_irq(struct net_device *dev) 4009 { 4010 struct fe_priv *np = get_nvpriv(dev); 4011 int i; 4012 4013 if (np->msi_flags & NV_MSI_X_ENABLED) { 4014 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4015 free_irq(np->msi_x_entry[i].vector, dev); 4016 pci_disable_msix(np->pci_dev); 4017 np->msi_flags &= ~NV_MSI_X_ENABLED; 4018 } else { 4019 free_irq(np->pci_dev->irq, dev); 4020 if (np->msi_flags & NV_MSI_ENABLED) { 4021 pci_disable_msi(np->pci_dev); 4022 np->msi_flags &= ~NV_MSI_ENABLED; 4023 } 4024 } 4025 } 4026 4027 static void nv_do_nic_poll(unsigned long data) 4028 { 4029 struct net_device *dev = (struct net_device *) data; 4030 struct fe_priv *np = netdev_priv(dev); 4031 u8 __iomem *base = get_hwbase(dev); 4032 u32 mask = 0; 4033 4034 /* 4035 * First disable irq(s) and then 4036 * reenable interrupts on the nic, we have to do this before calling 4037 * nv_nic_irq because that may decide to do otherwise 4038 */ 4039 4040 if (!using_multi_irqs(dev)) { 4041 if (np->msi_flags & NV_MSI_X_ENABLED) 4042 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 4043 else 4044 disable_irq_lockdep(np->pci_dev->irq); 4045 mask = np->irqmask; 4046 } else { 4047 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4048 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 4049 mask |= NVREG_IRQ_RX_ALL; 4050 } 4051 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4052 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 4053 mask |= NVREG_IRQ_TX_ALL; 4054 } 4055 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4056 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 4057 mask |= NVREG_IRQ_OTHER; 4058 } 4059 } 4060 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */ 4061 4062 if (np->recover_error) { 4063 np->recover_error = 0; 4064 netdev_info(dev, "MAC in recoverable error state\n"); 4065 if (netif_running(dev)) { 4066 netif_tx_lock_bh(dev); 4067 netif_addr_lock(dev); 4068 spin_lock(&np->lock); 4069 /* stop engines */ 4070 nv_stop_rxtx(dev); 4071 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4072 nv_mac_reset(dev); 4073 nv_txrx_reset(dev); 4074 /* drain rx queue */ 4075 nv_drain_rxtx(dev); 4076 /* reinit driver view of the rx queue */ 4077 set_bufsize(dev); 4078 if (nv_init_ring(dev)) { 4079 if (!np->in_shutdown) 4080 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4081 } 4082 /* reinit nic view of the rx queue */ 4083 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4084 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4085 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4086 base + NvRegRingSizes); 4087 pci_push(base); 4088 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4089 pci_push(base); 4090 /* clear interrupts */ 4091 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4092 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4093 else 4094 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4095 4096 /* restart rx engine */ 4097 nv_start_rxtx(dev); 4098 spin_unlock(&np->lock); 4099 netif_addr_unlock(dev); 4100 netif_tx_unlock_bh(dev); 4101 } 4102 } 4103 4104 writel(mask, base + NvRegIrqMask); 4105 pci_push(base); 4106 4107 if (!using_multi_irqs(dev)) { 4108 np->nic_poll_irq = 0; 4109 if (nv_optimized(np)) 4110 nv_nic_irq_optimized(0, dev); 4111 else 4112 nv_nic_irq(0, dev); 4113 if (np->msi_flags & NV_MSI_X_ENABLED) 4114 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 4115 else 4116 enable_irq_lockdep(np->pci_dev->irq); 4117 } else { 4118 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4119 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4120 nv_nic_irq_rx(0, dev); 4121 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 4122 } 4123 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4124 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4125 nv_nic_irq_tx(0, dev); 4126 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 4127 } 4128 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4129 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4130 nv_nic_irq_other(0, dev); 4131 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 4132 } 4133 } 4134 4135 } 4136 4137 #ifdef CONFIG_NET_POLL_CONTROLLER 4138 static void nv_poll_controller(struct net_device *dev) 4139 { 4140 nv_do_nic_poll((unsigned long) dev); 4141 } 4142 #endif 4143 4144 static void nv_do_stats_poll(unsigned long data) 4145 __acquires(&netdev_priv(dev)->hwstats_lock) 4146 __releases(&netdev_priv(dev)->hwstats_lock) 4147 { 4148 struct net_device *dev = (struct net_device *) data; 4149 struct fe_priv *np = netdev_priv(dev); 4150 4151 /* If lock is currently taken, the stats are being refreshed 4152 * and hence fresh enough */ 4153 if (spin_trylock(&np->hwstats_lock)) { 4154 nv_update_stats(dev); 4155 spin_unlock(&np->hwstats_lock); 4156 } 4157 4158 if (!np->in_shutdown) 4159 mod_timer(&np->stats_poll, 4160 round_jiffies(jiffies + STATS_INTERVAL)); 4161 } 4162 4163 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4164 { 4165 struct fe_priv *np = netdev_priv(dev); 4166 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4167 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4168 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4169 } 4170 4171 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4172 { 4173 struct fe_priv *np = netdev_priv(dev); 4174 wolinfo->supported = WAKE_MAGIC; 4175 4176 spin_lock_irq(&np->lock); 4177 if (np->wolenabled) 4178 wolinfo->wolopts = WAKE_MAGIC; 4179 spin_unlock_irq(&np->lock); 4180 } 4181 4182 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4183 { 4184 struct fe_priv *np = netdev_priv(dev); 4185 u8 __iomem *base = get_hwbase(dev); 4186 u32 flags = 0; 4187 4188 if (wolinfo->wolopts == 0) { 4189 np->wolenabled = 0; 4190 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4191 np->wolenabled = 1; 4192 flags = NVREG_WAKEUPFLAGS_ENABLE; 4193 } 4194 if (netif_running(dev)) { 4195 spin_lock_irq(&np->lock); 4196 writel(flags, base + NvRegWakeUpFlags); 4197 spin_unlock_irq(&np->lock); 4198 } 4199 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4200 return 0; 4201 } 4202 4203 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4204 { 4205 struct fe_priv *np = netdev_priv(dev); 4206 u32 speed; 4207 int adv; 4208 4209 spin_lock_irq(&np->lock); 4210 ecmd->port = PORT_MII; 4211 if (!netif_running(dev)) { 4212 /* We do not track link speed / duplex setting if the 4213 * interface is disabled. Force a link check */ 4214 if (nv_update_linkspeed(dev)) { 4215 if (!netif_carrier_ok(dev)) 4216 netif_carrier_on(dev); 4217 } else { 4218 if (netif_carrier_ok(dev)) 4219 netif_carrier_off(dev); 4220 } 4221 } 4222 4223 if (netif_carrier_ok(dev)) { 4224 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4225 case NVREG_LINKSPEED_10: 4226 speed = SPEED_10; 4227 break; 4228 case NVREG_LINKSPEED_100: 4229 speed = SPEED_100; 4230 break; 4231 case NVREG_LINKSPEED_1000: 4232 speed = SPEED_1000; 4233 break; 4234 default: 4235 speed = -1; 4236 break; 4237 } 4238 ecmd->duplex = DUPLEX_HALF; 4239 if (np->duplex) 4240 ecmd->duplex = DUPLEX_FULL; 4241 } else { 4242 speed = -1; 4243 ecmd->duplex = -1; 4244 } 4245 ethtool_cmd_speed_set(ecmd, speed); 4246 ecmd->autoneg = np->autoneg; 4247 4248 ecmd->advertising = ADVERTISED_MII; 4249 if (np->autoneg) { 4250 ecmd->advertising |= ADVERTISED_Autoneg; 4251 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4252 if (adv & ADVERTISE_10HALF) 4253 ecmd->advertising |= ADVERTISED_10baseT_Half; 4254 if (adv & ADVERTISE_10FULL) 4255 ecmd->advertising |= ADVERTISED_10baseT_Full; 4256 if (adv & ADVERTISE_100HALF) 4257 ecmd->advertising |= ADVERTISED_100baseT_Half; 4258 if (adv & ADVERTISE_100FULL) 4259 ecmd->advertising |= ADVERTISED_100baseT_Full; 4260 if (np->gigabit == PHY_GIGABIT) { 4261 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4262 if (adv & ADVERTISE_1000FULL) 4263 ecmd->advertising |= ADVERTISED_1000baseT_Full; 4264 } 4265 } 4266 ecmd->supported = (SUPPORTED_Autoneg | 4267 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4268 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4269 SUPPORTED_MII); 4270 if (np->gigabit == PHY_GIGABIT) 4271 ecmd->supported |= SUPPORTED_1000baseT_Full; 4272 4273 ecmd->phy_address = np->phyaddr; 4274 ecmd->transceiver = XCVR_EXTERNAL; 4275 4276 /* ignore maxtxpkt, maxrxpkt for now */ 4277 spin_unlock_irq(&np->lock); 4278 return 0; 4279 } 4280 4281 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4282 { 4283 struct fe_priv *np = netdev_priv(dev); 4284 u32 speed = ethtool_cmd_speed(ecmd); 4285 4286 if (ecmd->port != PORT_MII) 4287 return -EINVAL; 4288 if (ecmd->transceiver != XCVR_EXTERNAL) 4289 return -EINVAL; 4290 if (ecmd->phy_address != np->phyaddr) { 4291 /* TODO: support switching between multiple phys. Should be 4292 * trivial, but not enabled due to lack of test hardware. */ 4293 return -EINVAL; 4294 } 4295 if (ecmd->autoneg == AUTONEG_ENABLE) { 4296 u32 mask; 4297 4298 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4299 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4300 if (np->gigabit == PHY_GIGABIT) 4301 mask |= ADVERTISED_1000baseT_Full; 4302 4303 if ((ecmd->advertising & mask) == 0) 4304 return -EINVAL; 4305 4306 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 4307 /* Note: autonegotiation disable, speed 1000 intentionally 4308 * forbidden - no one should need that. */ 4309 4310 if (speed != SPEED_10 && speed != SPEED_100) 4311 return -EINVAL; 4312 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 4313 return -EINVAL; 4314 } else { 4315 return -EINVAL; 4316 } 4317 4318 netif_carrier_off(dev); 4319 if (netif_running(dev)) { 4320 unsigned long flags; 4321 4322 nv_disable_irq(dev); 4323 netif_tx_lock_bh(dev); 4324 netif_addr_lock(dev); 4325 /* with plain spinlock lockdep complains */ 4326 spin_lock_irqsave(&np->lock, flags); 4327 /* stop engines */ 4328 /* FIXME: 4329 * this can take some time, and interrupts are disabled 4330 * due to spin_lock_irqsave, but let's hope no daemon 4331 * is going to change the settings very often... 4332 * Worst case: 4333 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4334 * + some minor delays, which is up to a second approximately 4335 */ 4336 nv_stop_rxtx(dev); 4337 spin_unlock_irqrestore(&np->lock, flags); 4338 netif_addr_unlock(dev); 4339 netif_tx_unlock_bh(dev); 4340 } 4341 4342 if (ecmd->autoneg == AUTONEG_ENABLE) { 4343 int adv, bmcr; 4344 4345 np->autoneg = 1; 4346 4347 /* advertise only what has been requested */ 4348 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4349 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4350 if (ecmd->advertising & ADVERTISED_10baseT_Half) 4351 adv |= ADVERTISE_10HALF; 4352 if (ecmd->advertising & ADVERTISED_10baseT_Full) 4353 adv |= ADVERTISE_10FULL; 4354 if (ecmd->advertising & ADVERTISED_100baseT_Half) 4355 adv |= ADVERTISE_100HALF; 4356 if (ecmd->advertising & ADVERTISED_100baseT_Full) 4357 adv |= ADVERTISE_100FULL; 4358 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4359 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4360 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4361 adv |= ADVERTISE_PAUSE_ASYM; 4362 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4363 4364 if (np->gigabit == PHY_GIGABIT) { 4365 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4366 adv &= ~ADVERTISE_1000FULL; 4367 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 4368 adv |= ADVERTISE_1000FULL; 4369 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4370 } 4371 4372 if (netif_running(dev)) 4373 netdev_info(dev, "link down\n"); 4374 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4375 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4376 bmcr |= BMCR_ANENABLE; 4377 /* reset the phy in order for settings to stick, 4378 * and cause autoneg to start */ 4379 if (phy_reset(dev, bmcr)) { 4380 netdev_info(dev, "phy reset failed\n"); 4381 return -EINVAL; 4382 } 4383 } else { 4384 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4385 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4386 } 4387 } else { 4388 int adv, bmcr; 4389 4390 np->autoneg = 0; 4391 4392 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4393 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4394 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 4395 adv |= ADVERTISE_10HALF; 4396 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 4397 adv |= ADVERTISE_10FULL; 4398 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 4399 adv |= ADVERTISE_100HALF; 4400 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 4401 adv |= ADVERTISE_100FULL; 4402 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4403 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4404 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4405 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4406 } 4407 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4408 adv |= ADVERTISE_PAUSE_ASYM; 4409 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4410 } 4411 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4412 np->fixed_mode = adv; 4413 4414 if (np->gigabit == PHY_GIGABIT) { 4415 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4416 adv &= ~ADVERTISE_1000FULL; 4417 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4418 } 4419 4420 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4421 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4422 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4423 bmcr |= BMCR_FULLDPLX; 4424 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4425 bmcr |= BMCR_SPEED100; 4426 if (np->phy_oui == PHY_OUI_MARVELL) { 4427 /* reset the phy in order for forced mode settings to stick */ 4428 if (phy_reset(dev, bmcr)) { 4429 netdev_info(dev, "phy reset failed\n"); 4430 return -EINVAL; 4431 } 4432 } else { 4433 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4434 if (netif_running(dev)) { 4435 /* Wait a bit and then reconfigure the nic. */ 4436 udelay(10); 4437 nv_linkchange(dev); 4438 } 4439 } 4440 } 4441 4442 if (netif_running(dev)) { 4443 nv_start_rxtx(dev); 4444 nv_enable_irq(dev); 4445 } 4446 4447 return 0; 4448 } 4449 4450 #define FORCEDETH_REGS_VER 1 4451 4452 static int nv_get_regs_len(struct net_device *dev) 4453 { 4454 struct fe_priv *np = netdev_priv(dev); 4455 return np->register_size; 4456 } 4457 4458 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4459 { 4460 struct fe_priv *np = netdev_priv(dev); 4461 u8 __iomem *base = get_hwbase(dev); 4462 u32 *rbuf = buf; 4463 int i; 4464 4465 regs->version = FORCEDETH_REGS_VER; 4466 spin_lock_irq(&np->lock); 4467 for (i = 0; i < np->register_size/sizeof(u32); i++) 4468 rbuf[i] = readl(base + i*sizeof(u32)); 4469 spin_unlock_irq(&np->lock); 4470 } 4471 4472 static int nv_nway_reset(struct net_device *dev) 4473 { 4474 struct fe_priv *np = netdev_priv(dev); 4475 int ret; 4476 4477 if (np->autoneg) { 4478 int bmcr; 4479 4480 netif_carrier_off(dev); 4481 if (netif_running(dev)) { 4482 nv_disable_irq(dev); 4483 netif_tx_lock_bh(dev); 4484 netif_addr_lock(dev); 4485 spin_lock(&np->lock); 4486 /* stop engines */ 4487 nv_stop_rxtx(dev); 4488 spin_unlock(&np->lock); 4489 netif_addr_unlock(dev); 4490 netif_tx_unlock_bh(dev); 4491 netdev_info(dev, "link down\n"); 4492 } 4493 4494 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4495 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4496 bmcr |= BMCR_ANENABLE; 4497 /* reset the phy in order for settings to stick*/ 4498 if (phy_reset(dev, bmcr)) { 4499 netdev_info(dev, "phy reset failed\n"); 4500 return -EINVAL; 4501 } 4502 } else { 4503 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4504 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4505 } 4506 4507 if (netif_running(dev)) { 4508 nv_start_rxtx(dev); 4509 nv_enable_irq(dev); 4510 } 4511 ret = 0; 4512 } else { 4513 ret = -EINVAL; 4514 } 4515 4516 return ret; 4517 } 4518 4519 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4520 { 4521 struct fe_priv *np = netdev_priv(dev); 4522 4523 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4524 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4525 4526 ring->rx_pending = np->rx_ring_size; 4527 ring->tx_pending = np->tx_ring_size; 4528 } 4529 4530 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4531 { 4532 struct fe_priv *np = netdev_priv(dev); 4533 u8 __iomem *base = get_hwbase(dev); 4534 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4535 dma_addr_t ring_addr; 4536 4537 if (ring->rx_pending < RX_RING_MIN || 4538 ring->tx_pending < TX_RING_MIN || 4539 ring->rx_mini_pending != 0 || 4540 ring->rx_jumbo_pending != 0 || 4541 (np->desc_ver == DESC_VER_1 && 4542 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4543 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4544 (np->desc_ver != DESC_VER_1 && 4545 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4546 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4547 return -EINVAL; 4548 } 4549 4550 /* allocate new rings */ 4551 if (!nv_optimized(np)) { 4552 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4553 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4554 &ring_addr); 4555 } else { 4556 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4557 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4558 &ring_addr); 4559 } 4560 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL); 4561 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL); 4562 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4563 /* fall back to old rings */ 4564 if (!nv_optimized(np)) { 4565 if (rxtx_ring) 4566 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4567 rxtx_ring, ring_addr); 4568 } else { 4569 if (rxtx_ring) 4570 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4571 rxtx_ring, ring_addr); 4572 } 4573 4574 kfree(rx_skbuff); 4575 kfree(tx_skbuff); 4576 goto exit; 4577 } 4578 4579 if (netif_running(dev)) { 4580 nv_disable_irq(dev); 4581 nv_napi_disable(dev); 4582 netif_tx_lock_bh(dev); 4583 netif_addr_lock(dev); 4584 spin_lock(&np->lock); 4585 /* stop engines */ 4586 nv_stop_rxtx(dev); 4587 nv_txrx_reset(dev); 4588 /* drain queues */ 4589 nv_drain_rxtx(dev); 4590 /* delete queues */ 4591 free_rings(dev); 4592 } 4593 4594 /* set new values */ 4595 np->rx_ring_size = ring->rx_pending; 4596 np->tx_ring_size = ring->tx_pending; 4597 4598 if (!nv_optimized(np)) { 4599 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4600 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4601 } else { 4602 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4603 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4604 } 4605 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4606 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4607 np->ring_addr = ring_addr; 4608 4609 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4610 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4611 4612 if (netif_running(dev)) { 4613 /* reinit driver view of the queues */ 4614 set_bufsize(dev); 4615 if (nv_init_ring(dev)) { 4616 if (!np->in_shutdown) 4617 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4618 } 4619 4620 /* reinit nic view of the queues */ 4621 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4622 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4623 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4624 base + NvRegRingSizes); 4625 pci_push(base); 4626 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4627 pci_push(base); 4628 4629 /* restart engines */ 4630 nv_start_rxtx(dev); 4631 spin_unlock(&np->lock); 4632 netif_addr_unlock(dev); 4633 netif_tx_unlock_bh(dev); 4634 nv_napi_enable(dev); 4635 nv_enable_irq(dev); 4636 } 4637 return 0; 4638 exit: 4639 return -ENOMEM; 4640 } 4641 4642 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4643 { 4644 struct fe_priv *np = netdev_priv(dev); 4645 4646 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4647 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4648 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4649 } 4650 4651 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4652 { 4653 struct fe_priv *np = netdev_priv(dev); 4654 int adv, bmcr; 4655 4656 if ((!np->autoneg && np->duplex == 0) || 4657 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4658 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4659 return -EINVAL; 4660 } 4661 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4662 netdev_info(dev, "hardware does not support tx pause frames\n"); 4663 return -EINVAL; 4664 } 4665 4666 netif_carrier_off(dev); 4667 if (netif_running(dev)) { 4668 nv_disable_irq(dev); 4669 netif_tx_lock_bh(dev); 4670 netif_addr_lock(dev); 4671 spin_lock(&np->lock); 4672 /* stop engines */ 4673 nv_stop_rxtx(dev); 4674 spin_unlock(&np->lock); 4675 netif_addr_unlock(dev); 4676 netif_tx_unlock_bh(dev); 4677 } 4678 4679 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4680 if (pause->rx_pause) 4681 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4682 if (pause->tx_pause) 4683 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4684 4685 if (np->autoneg && pause->autoneg) { 4686 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4687 4688 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4689 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4690 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4691 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4692 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4693 adv |= ADVERTISE_PAUSE_ASYM; 4694 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4695 4696 if (netif_running(dev)) 4697 netdev_info(dev, "link down\n"); 4698 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4699 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4700 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4701 } else { 4702 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4703 if (pause->rx_pause) 4704 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4705 if (pause->tx_pause) 4706 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4707 4708 if (!netif_running(dev)) 4709 nv_update_linkspeed(dev); 4710 else 4711 nv_update_pause(dev, np->pause_flags); 4712 } 4713 4714 if (netif_running(dev)) { 4715 nv_start_rxtx(dev); 4716 nv_enable_irq(dev); 4717 } 4718 return 0; 4719 } 4720 4721 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4722 { 4723 struct fe_priv *np = netdev_priv(dev); 4724 unsigned long flags; 4725 u32 miicontrol; 4726 int err, retval = 0; 4727 4728 spin_lock_irqsave(&np->lock, flags); 4729 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4730 if (features & NETIF_F_LOOPBACK) { 4731 if (miicontrol & BMCR_LOOPBACK) { 4732 spin_unlock_irqrestore(&np->lock, flags); 4733 netdev_info(dev, "Loopback already enabled\n"); 4734 return 0; 4735 } 4736 nv_disable_irq(dev); 4737 /* Turn on loopback mode */ 4738 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4739 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4740 if (err) { 4741 retval = PHY_ERROR; 4742 spin_unlock_irqrestore(&np->lock, flags); 4743 phy_init(dev); 4744 } else { 4745 if (netif_running(dev)) { 4746 /* Force 1000 Mbps full-duplex */ 4747 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4748 1); 4749 /* Force link up */ 4750 netif_carrier_on(dev); 4751 } 4752 spin_unlock_irqrestore(&np->lock, flags); 4753 netdev_info(dev, 4754 "Internal PHY loopback mode enabled.\n"); 4755 } 4756 } else { 4757 if (!(miicontrol & BMCR_LOOPBACK)) { 4758 spin_unlock_irqrestore(&np->lock, flags); 4759 netdev_info(dev, "Loopback already disabled\n"); 4760 return 0; 4761 } 4762 nv_disable_irq(dev); 4763 /* Turn off loopback */ 4764 spin_unlock_irqrestore(&np->lock, flags); 4765 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4766 phy_init(dev); 4767 } 4768 msleep(500); 4769 spin_lock_irqsave(&np->lock, flags); 4770 nv_enable_irq(dev); 4771 spin_unlock_irqrestore(&np->lock, flags); 4772 4773 return retval; 4774 } 4775 4776 static netdev_features_t nv_fix_features(struct net_device *dev, 4777 netdev_features_t features) 4778 { 4779 /* vlan is dependent on rx checksum offload */ 4780 if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX)) 4781 features |= NETIF_F_RXCSUM; 4782 4783 return features; 4784 } 4785 4786 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4787 { 4788 struct fe_priv *np = get_nvpriv(dev); 4789 4790 spin_lock_irq(&np->lock); 4791 4792 if (features & NETIF_F_HW_VLAN_RX) 4793 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4794 else 4795 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4796 4797 if (features & NETIF_F_HW_VLAN_TX) 4798 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4799 else 4800 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4801 4802 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4803 4804 spin_unlock_irq(&np->lock); 4805 } 4806 4807 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4808 { 4809 struct fe_priv *np = netdev_priv(dev); 4810 u8 __iomem *base = get_hwbase(dev); 4811 netdev_features_t changed = dev->features ^ features; 4812 int retval; 4813 4814 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4815 retval = nv_set_loopback(dev, features); 4816 if (retval != 0) 4817 return retval; 4818 } 4819 4820 if (changed & NETIF_F_RXCSUM) { 4821 spin_lock_irq(&np->lock); 4822 4823 if (features & NETIF_F_RXCSUM) 4824 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4825 else 4826 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4827 4828 if (netif_running(dev)) 4829 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4830 4831 spin_unlock_irq(&np->lock); 4832 } 4833 4834 if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX)) 4835 nv_vlan_mode(dev, features); 4836 4837 return 0; 4838 } 4839 4840 static int nv_get_sset_count(struct net_device *dev, int sset) 4841 { 4842 struct fe_priv *np = netdev_priv(dev); 4843 4844 switch (sset) { 4845 case ETH_SS_TEST: 4846 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4847 return NV_TEST_COUNT_EXTENDED; 4848 else 4849 return NV_TEST_COUNT_BASE; 4850 case ETH_SS_STATS: 4851 if (np->driver_data & DEV_HAS_STATISTICS_V3) 4852 return NV_DEV_STATISTICS_V3_COUNT; 4853 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 4854 return NV_DEV_STATISTICS_V2_COUNT; 4855 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 4856 return NV_DEV_STATISTICS_V1_COUNT; 4857 else 4858 return 0; 4859 default: 4860 return -EOPNOTSUPP; 4861 } 4862 } 4863 4864 static void nv_get_ethtool_stats(struct net_device *dev, 4865 struct ethtool_stats *estats, u64 *buffer) 4866 __acquires(&netdev_priv(dev)->hwstats_lock) 4867 __releases(&netdev_priv(dev)->hwstats_lock) 4868 { 4869 struct fe_priv *np = netdev_priv(dev); 4870 4871 spin_lock_bh(&np->hwstats_lock); 4872 nv_update_stats(dev); 4873 memcpy(buffer, &np->estats, 4874 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 4875 spin_unlock_bh(&np->hwstats_lock); 4876 } 4877 4878 static int nv_link_test(struct net_device *dev) 4879 { 4880 struct fe_priv *np = netdev_priv(dev); 4881 int mii_status; 4882 4883 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4884 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4885 4886 /* check phy link status */ 4887 if (!(mii_status & BMSR_LSTATUS)) 4888 return 0; 4889 else 4890 return 1; 4891 } 4892 4893 static int nv_register_test(struct net_device *dev) 4894 { 4895 u8 __iomem *base = get_hwbase(dev); 4896 int i = 0; 4897 u32 orig_read, new_read; 4898 4899 do { 4900 orig_read = readl(base + nv_registers_test[i].reg); 4901 4902 /* xor with mask to toggle bits */ 4903 orig_read ^= nv_registers_test[i].mask; 4904 4905 writel(orig_read, base + nv_registers_test[i].reg); 4906 4907 new_read = readl(base + nv_registers_test[i].reg); 4908 4909 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 4910 return 0; 4911 4912 /* restore original value */ 4913 orig_read ^= nv_registers_test[i].mask; 4914 writel(orig_read, base + nv_registers_test[i].reg); 4915 4916 } while (nv_registers_test[++i].reg != 0); 4917 4918 return 1; 4919 } 4920 4921 static int nv_interrupt_test(struct net_device *dev) 4922 { 4923 struct fe_priv *np = netdev_priv(dev); 4924 u8 __iomem *base = get_hwbase(dev); 4925 int ret = 1; 4926 int testcnt; 4927 u32 save_msi_flags, save_poll_interval = 0; 4928 4929 if (netif_running(dev)) { 4930 /* free current irq */ 4931 nv_free_irq(dev); 4932 save_poll_interval = readl(base+NvRegPollingInterval); 4933 } 4934 4935 /* flag to test interrupt handler */ 4936 np->intr_test = 0; 4937 4938 /* setup test irq */ 4939 save_msi_flags = np->msi_flags; 4940 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 4941 np->msi_flags |= 0x001; /* setup 1 vector */ 4942 if (nv_request_irq(dev, 1)) 4943 return 0; 4944 4945 /* setup timer interrupt */ 4946 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 4947 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 4948 4949 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 4950 4951 /* wait for at least one interrupt */ 4952 msleep(100); 4953 4954 spin_lock_irq(&np->lock); 4955 4956 /* flag should be set within ISR */ 4957 testcnt = np->intr_test; 4958 if (!testcnt) 4959 ret = 2; 4960 4961 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 4962 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4963 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4964 else 4965 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4966 4967 spin_unlock_irq(&np->lock); 4968 4969 nv_free_irq(dev); 4970 4971 np->msi_flags = save_msi_flags; 4972 4973 if (netif_running(dev)) { 4974 writel(save_poll_interval, base + NvRegPollingInterval); 4975 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 4976 /* restore original irq */ 4977 if (nv_request_irq(dev, 0)) 4978 return 0; 4979 } 4980 4981 return ret; 4982 } 4983 4984 static int nv_loopback_test(struct net_device *dev) 4985 { 4986 struct fe_priv *np = netdev_priv(dev); 4987 u8 __iomem *base = get_hwbase(dev); 4988 struct sk_buff *tx_skb, *rx_skb; 4989 dma_addr_t test_dma_addr; 4990 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 4991 u32 flags; 4992 int len, i, pkt_len; 4993 u8 *pkt_data; 4994 u32 filter_flags = 0; 4995 u32 misc1_flags = 0; 4996 int ret = 1; 4997 4998 if (netif_running(dev)) { 4999 nv_disable_irq(dev); 5000 filter_flags = readl(base + NvRegPacketFilterFlags); 5001 misc1_flags = readl(base + NvRegMisc1); 5002 } else { 5003 nv_txrx_reset(dev); 5004 } 5005 5006 /* reinit driver view of the rx queue */ 5007 set_bufsize(dev); 5008 nv_init_ring(dev); 5009 5010 /* setup hardware for loopback */ 5011 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 5012 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 5013 5014 /* reinit nic view of the rx queue */ 5015 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5016 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5017 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5018 base + NvRegRingSizes); 5019 pci_push(base); 5020 5021 /* restart rx engine */ 5022 nv_start_rxtx(dev); 5023 5024 /* setup packet for tx */ 5025 pkt_len = ETH_DATA_LEN; 5026 tx_skb = netdev_alloc_skb(dev, pkt_len); 5027 if (!tx_skb) { 5028 netdev_err(dev, "netdev_alloc_skb() failed during loopback test\n"); 5029 ret = 0; 5030 goto out; 5031 } 5032 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data, 5033 skb_tailroom(tx_skb), 5034 PCI_DMA_FROMDEVICE); 5035 if (pci_dma_mapping_error(np->pci_dev, 5036 test_dma_addr)) { 5037 dev_kfree_skb_any(tx_skb); 5038 goto out; 5039 } 5040 pkt_data = skb_put(tx_skb, pkt_len); 5041 for (i = 0; i < pkt_len; i++) 5042 pkt_data[i] = (u8)(i & 0xff); 5043 5044 if (!nv_optimized(np)) { 5045 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5046 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5047 } else { 5048 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5049 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5050 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5051 } 5052 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5053 pci_push(get_hwbase(dev)); 5054 5055 msleep(500); 5056 5057 /* check for rx of the packet */ 5058 if (!nv_optimized(np)) { 5059 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5060 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5061 5062 } else { 5063 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5064 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5065 } 5066 5067 if (flags & NV_RX_AVAIL) { 5068 ret = 0; 5069 } else if (np->desc_ver == DESC_VER_1) { 5070 if (flags & NV_RX_ERROR) 5071 ret = 0; 5072 } else { 5073 if (flags & NV_RX2_ERROR) 5074 ret = 0; 5075 } 5076 5077 if (ret) { 5078 if (len != pkt_len) { 5079 ret = 0; 5080 } else { 5081 rx_skb = np->rx_skb[0].skb; 5082 for (i = 0; i < pkt_len; i++) { 5083 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5084 ret = 0; 5085 break; 5086 } 5087 } 5088 } 5089 } 5090 5091 pci_unmap_single(np->pci_dev, test_dma_addr, 5092 (skb_end_pointer(tx_skb) - tx_skb->data), 5093 PCI_DMA_TODEVICE); 5094 dev_kfree_skb_any(tx_skb); 5095 out: 5096 /* stop engines */ 5097 nv_stop_rxtx(dev); 5098 nv_txrx_reset(dev); 5099 /* drain rx queue */ 5100 nv_drain_rxtx(dev); 5101 5102 if (netif_running(dev)) { 5103 writel(misc1_flags, base + NvRegMisc1); 5104 writel(filter_flags, base + NvRegPacketFilterFlags); 5105 nv_enable_irq(dev); 5106 } 5107 5108 return ret; 5109 } 5110 5111 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5112 { 5113 struct fe_priv *np = netdev_priv(dev); 5114 u8 __iomem *base = get_hwbase(dev); 5115 int result; 5116 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64)); 5117 5118 if (!nv_link_test(dev)) { 5119 test->flags |= ETH_TEST_FL_FAILED; 5120 buffer[0] = 1; 5121 } 5122 5123 if (test->flags & ETH_TEST_FL_OFFLINE) { 5124 if (netif_running(dev)) { 5125 netif_stop_queue(dev); 5126 nv_napi_disable(dev); 5127 netif_tx_lock_bh(dev); 5128 netif_addr_lock(dev); 5129 spin_lock_irq(&np->lock); 5130 nv_disable_hw_interrupts(dev, np->irqmask); 5131 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5132 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5133 else 5134 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5135 /* stop engines */ 5136 nv_stop_rxtx(dev); 5137 nv_txrx_reset(dev); 5138 /* drain rx queue */ 5139 nv_drain_rxtx(dev); 5140 spin_unlock_irq(&np->lock); 5141 netif_addr_unlock(dev); 5142 netif_tx_unlock_bh(dev); 5143 } 5144 5145 if (!nv_register_test(dev)) { 5146 test->flags |= ETH_TEST_FL_FAILED; 5147 buffer[1] = 1; 5148 } 5149 5150 result = nv_interrupt_test(dev); 5151 if (result != 1) { 5152 test->flags |= ETH_TEST_FL_FAILED; 5153 buffer[2] = 1; 5154 } 5155 if (result == 0) { 5156 /* bail out */ 5157 return; 5158 } 5159 5160 if (!nv_loopback_test(dev)) { 5161 test->flags |= ETH_TEST_FL_FAILED; 5162 buffer[3] = 1; 5163 } 5164 5165 if (netif_running(dev)) { 5166 /* reinit driver view of the rx queue */ 5167 set_bufsize(dev); 5168 if (nv_init_ring(dev)) { 5169 if (!np->in_shutdown) 5170 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5171 } 5172 /* reinit nic view of the rx queue */ 5173 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5174 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5175 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5176 base + NvRegRingSizes); 5177 pci_push(base); 5178 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5179 pci_push(base); 5180 /* restart rx engine */ 5181 nv_start_rxtx(dev); 5182 netif_start_queue(dev); 5183 nv_napi_enable(dev); 5184 nv_enable_hw_interrupts(dev, np->irqmask); 5185 } 5186 } 5187 } 5188 5189 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5190 { 5191 switch (stringset) { 5192 case ETH_SS_STATS: 5193 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5194 break; 5195 case ETH_SS_TEST: 5196 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5197 break; 5198 } 5199 } 5200 5201 static const struct ethtool_ops ops = { 5202 .get_drvinfo = nv_get_drvinfo, 5203 .get_link = ethtool_op_get_link, 5204 .get_wol = nv_get_wol, 5205 .set_wol = nv_set_wol, 5206 .get_settings = nv_get_settings, 5207 .set_settings = nv_set_settings, 5208 .get_regs_len = nv_get_regs_len, 5209 .get_regs = nv_get_regs, 5210 .nway_reset = nv_nway_reset, 5211 .get_ringparam = nv_get_ringparam, 5212 .set_ringparam = nv_set_ringparam, 5213 .get_pauseparam = nv_get_pauseparam, 5214 .set_pauseparam = nv_set_pauseparam, 5215 .get_strings = nv_get_strings, 5216 .get_ethtool_stats = nv_get_ethtool_stats, 5217 .get_sset_count = nv_get_sset_count, 5218 .self_test = nv_self_test, 5219 .get_ts_info = ethtool_op_get_ts_info, 5220 }; 5221 5222 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5223 static int nv_mgmt_acquire_sema(struct net_device *dev) 5224 { 5225 struct fe_priv *np = netdev_priv(dev); 5226 u8 __iomem *base = get_hwbase(dev); 5227 int i; 5228 u32 tx_ctrl, mgmt_sema; 5229 5230 for (i = 0; i < 10; i++) { 5231 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5232 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5233 break; 5234 msleep(500); 5235 } 5236 5237 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5238 return 0; 5239 5240 for (i = 0; i < 2; i++) { 5241 tx_ctrl = readl(base + NvRegTransmitterControl); 5242 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5243 writel(tx_ctrl, base + NvRegTransmitterControl); 5244 5245 /* verify that semaphore was acquired */ 5246 tx_ctrl = readl(base + NvRegTransmitterControl); 5247 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5248 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5249 np->mgmt_sema = 1; 5250 return 1; 5251 } else 5252 udelay(50); 5253 } 5254 5255 return 0; 5256 } 5257 5258 static void nv_mgmt_release_sema(struct net_device *dev) 5259 { 5260 struct fe_priv *np = netdev_priv(dev); 5261 u8 __iomem *base = get_hwbase(dev); 5262 u32 tx_ctrl; 5263 5264 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5265 if (np->mgmt_sema) { 5266 tx_ctrl = readl(base + NvRegTransmitterControl); 5267 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5268 writel(tx_ctrl, base + NvRegTransmitterControl); 5269 } 5270 } 5271 } 5272 5273 5274 static int nv_mgmt_get_version(struct net_device *dev) 5275 { 5276 struct fe_priv *np = netdev_priv(dev); 5277 u8 __iomem *base = get_hwbase(dev); 5278 u32 data_ready = readl(base + NvRegTransmitterControl); 5279 u32 data_ready2 = 0; 5280 unsigned long start; 5281 int ready = 0; 5282 5283 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5284 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5285 start = jiffies; 5286 while (time_before(jiffies, start + 5*HZ)) { 5287 data_ready2 = readl(base + NvRegTransmitterControl); 5288 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5289 ready = 1; 5290 break; 5291 } 5292 schedule_timeout_uninterruptible(1); 5293 } 5294 5295 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5296 return 0; 5297 5298 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5299 5300 return 1; 5301 } 5302 5303 static int nv_open(struct net_device *dev) 5304 { 5305 struct fe_priv *np = netdev_priv(dev); 5306 u8 __iomem *base = get_hwbase(dev); 5307 int ret = 1; 5308 int oom, i; 5309 u32 low; 5310 5311 /* power up phy */ 5312 mii_rw(dev, np->phyaddr, MII_BMCR, 5313 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5314 5315 nv_txrx_gate(dev, false); 5316 /* erase previous misconfiguration */ 5317 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5318 nv_mac_reset(dev); 5319 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5320 writel(0, base + NvRegMulticastAddrB); 5321 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5322 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5323 writel(0, base + NvRegPacketFilterFlags); 5324 5325 writel(0, base + NvRegTransmitterControl); 5326 writel(0, base + NvRegReceiverControl); 5327 5328 writel(0, base + NvRegAdapterControl); 5329 5330 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5331 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5332 5333 /* initialize descriptor rings */ 5334 set_bufsize(dev); 5335 oom = nv_init_ring(dev); 5336 5337 writel(0, base + NvRegLinkSpeed); 5338 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5339 nv_txrx_reset(dev); 5340 writel(0, base + NvRegUnknownSetupReg6); 5341 5342 np->in_shutdown = 0; 5343 5344 /* give hw rings */ 5345 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5346 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5347 base + NvRegRingSizes); 5348 5349 writel(np->linkspeed, base + NvRegLinkSpeed); 5350 if (np->desc_ver == DESC_VER_1) 5351 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5352 else 5353 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5354 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5355 writel(np->vlanctl_bits, base + NvRegVlanControl); 5356 pci_push(base); 5357 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5358 if (reg_delay(dev, NvRegUnknownSetupReg5, 5359 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5360 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5361 netdev_info(dev, 5362 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5363 5364 writel(0, base + NvRegMIIMask); 5365 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5366 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5367 5368 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5369 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5370 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5371 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5372 5373 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5374 5375 get_random_bytes(&low, sizeof(low)); 5376 low &= NVREG_SLOTTIME_MASK; 5377 if (np->desc_ver == DESC_VER_1) { 5378 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5379 } else { 5380 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5381 /* setup legacy backoff */ 5382 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5383 } else { 5384 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5385 nv_gear_backoff_reseed(dev); 5386 } 5387 } 5388 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5389 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5390 if (poll_interval == -1) { 5391 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5392 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5393 else 5394 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5395 } else 5396 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5397 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5398 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5399 base + NvRegAdapterControl); 5400 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5401 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5402 if (np->wolenabled) 5403 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5404 5405 i = readl(base + NvRegPowerState); 5406 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5407 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5408 5409 pci_push(base); 5410 udelay(10); 5411 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5412 5413 nv_disable_hw_interrupts(dev, np->irqmask); 5414 pci_push(base); 5415 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5416 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5417 pci_push(base); 5418 5419 if (nv_request_irq(dev, 0)) 5420 goto out_drain; 5421 5422 /* ask for interrupts */ 5423 nv_enable_hw_interrupts(dev, np->irqmask); 5424 5425 spin_lock_irq(&np->lock); 5426 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5427 writel(0, base + NvRegMulticastAddrB); 5428 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5429 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5430 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5431 /* One manual link speed update: Interrupts are enabled, future link 5432 * speed changes cause interrupts and are handled by nv_link_irq(). 5433 */ 5434 { 5435 u32 miistat; 5436 miistat = readl(base + NvRegMIIStatus); 5437 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5438 } 5439 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5440 * to init hw */ 5441 np->linkspeed = 0; 5442 ret = nv_update_linkspeed(dev); 5443 nv_start_rxtx(dev); 5444 netif_start_queue(dev); 5445 nv_napi_enable(dev); 5446 5447 if (ret) { 5448 netif_carrier_on(dev); 5449 } else { 5450 netdev_info(dev, "no link during initialization\n"); 5451 netif_carrier_off(dev); 5452 } 5453 if (oom) 5454 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5455 5456 /* start statistics timer */ 5457 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5458 mod_timer(&np->stats_poll, 5459 round_jiffies(jiffies + STATS_INTERVAL)); 5460 5461 spin_unlock_irq(&np->lock); 5462 5463 /* If the loopback feature was set while the device was down, make sure 5464 * that it's set correctly now. 5465 */ 5466 if (dev->features & NETIF_F_LOOPBACK) 5467 nv_set_loopback(dev, dev->features); 5468 5469 return 0; 5470 out_drain: 5471 nv_drain_rxtx(dev); 5472 return ret; 5473 } 5474 5475 static int nv_close(struct net_device *dev) 5476 { 5477 struct fe_priv *np = netdev_priv(dev); 5478 u8 __iomem *base; 5479 5480 spin_lock_irq(&np->lock); 5481 np->in_shutdown = 1; 5482 spin_unlock_irq(&np->lock); 5483 nv_napi_disable(dev); 5484 synchronize_irq(np->pci_dev->irq); 5485 5486 del_timer_sync(&np->oom_kick); 5487 del_timer_sync(&np->nic_poll); 5488 del_timer_sync(&np->stats_poll); 5489 5490 netif_stop_queue(dev); 5491 spin_lock_irq(&np->lock); 5492 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ 5493 nv_stop_rxtx(dev); 5494 nv_txrx_reset(dev); 5495 5496 /* disable interrupts on the nic or we will lock up */ 5497 base = get_hwbase(dev); 5498 nv_disable_hw_interrupts(dev, np->irqmask); 5499 pci_push(base); 5500 5501 spin_unlock_irq(&np->lock); 5502 5503 nv_free_irq(dev); 5504 5505 nv_drain_rxtx(dev); 5506 5507 if (np->wolenabled || !phy_power_down) { 5508 nv_txrx_gate(dev, false); 5509 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5510 nv_start_rx(dev); 5511 } else { 5512 /* power down phy */ 5513 mii_rw(dev, np->phyaddr, MII_BMCR, 5514 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5515 nv_txrx_gate(dev, true); 5516 } 5517 5518 /* FIXME: power down nic */ 5519 5520 return 0; 5521 } 5522 5523 static const struct net_device_ops nv_netdev_ops = { 5524 .ndo_open = nv_open, 5525 .ndo_stop = nv_close, 5526 .ndo_get_stats64 = nv_get_stats64, 5527 .ndo_start_xmit = nv_start_xmit, 5528 .ndo_tx_timeout = nv_tx_timeout, 5529 .ndo_change_mtu = nv_change_mtu, 5530 .ndo_fix_features = nv_fix_features, 5531 .ndo_set_features = nv_set_features, 5532 .ndo_validate_addr = eth_validate_addr, 5533 .ndo_set_mac_address = nv_set_mac_address, 5534 .ndo_set_rx_mode = nv_set_multicast, 5535 #ifdef CONFIG_NET_POLL_CONTROLLER 5536 .ndo_poll_controller = nv_poll_controller, 5537 #endif 5538 }; 5539 5540 static const struct net_device_ops nv_netdev_ops_optimized = { 5541 .ndo_open = nv_open, 5542 .ndo_stop = nv_close, 5543 .ndo_get_stats64 = nv_get_stats64, 5544 .ndo_start_xmit = nv_start_xmit_optimized, 5545 .ndo_tx_timeout = nv_tx_timeout, 5546 .ndo_change_mtu = nv_change_mtu, 5547 .ndo_fix_features = nv_fix_features, 5548 .ndo_set_features = nv_set_features, 5549 .ndo_validate_addr = eth_validate_addr, 5550 .ndo_set_mac_address = nv_set_mac_address, 5551 .ndo_set_rx_mode = nv_set_multicast, 5552 #ifdef CONFIG_NET_POLL_CONTROLLER 5553 .ndo_poll_controller = nv_poll_controller, 5554 #endif 5555 }; 5556 5557 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5558 { 5559 struct net_device *dev; 5560 struct fe_priv *np; 5561 unsigned long addr; 5562 u8 __iomem *base; 5563 int err, i; 5564 u32 powerstate, txreg; 5565 u32 phystate_orig = 0, phystate; 5566 int phyinitialized = 0; 5567 static int printed_version; 5568 5569 if (!printed_version++) 5570 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5571 FORCEDETH_VERSION); 5572 5573 dev = alloc_etherdev(sizeof(struct fe_priv)); 5574 err = -ENOMEM; 5575 if (!dev) 5576 goto out; 5577 5578 np = netdev_priv(dev); 5579 np->dev = dev; 5580 np->pci_dev = pci_dev; 5581 spin_lock_init(&np->lock); 5582 spin_lock_init(&np->hwstats_lock); 5583 SET_NETDEV_DEV(dev, &pci_dev->dev); 5584 5585 init_timer(&np->oom_kick); 5586 np->oom_kick.data = (unsigned long) dev; 5587 np->oom_kick.function = nv_do_rx_refill; /* timer handler */ 5588 init_timer(&np->nic_poll); 5589 np->nic_poll.data = (unsigned long) dev; 5590 np->nic_poll.function = nv_do_nic_poll; /* timer handler */ 5591 init_timer_deferrable(&np->stats_poll); 5592 np->stats_poll.data = (unsigned long) dev; 5593 np->stats_poll.function = nv_do_stats_poll; /* timer handler */ 5594 5595 err = pci_enable_device(pci_dev); 5596 if (err) 5597 goto out_free; 5598 5599 pci_set_master(pci_dev); 5600 5601 err = pci_request_regions(pci_dev, DRV_NAME); 5602 if (err < 0) 5603 goto out_disable; 5604 5605 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5606 np->register_size = NV_PCI_REGSZ_VER3; 5607 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5608 np->register_size = NV_PCI_REGSZ_VER2; 5609 else 5610 np->register_size = NV_PCI_REGSZ_VER1; 5611 5612 err = -EINVAL; 5613 addr = 0; 5614 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5615 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5616 pci_resource_len(pci_dev, i) >= np->register_size) { 5617 addr = pci_resource_start(pci_dev, i); 5618 break; 5619 } 5620 } 5621 if (i == DEVICE_COUNT_RESOURCE) { 5622 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5623 goto out_relreg; 5624 } 5625 5626 /* copy of driver data */ 5627 np->driver_data = id->driver_data; 5628 /* copy of device id */ 5629 np->device_id = id->device; 5630 5631 /* handle different descriptor versions */ 5632 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5633 /* packet format 3: supports 40-bit addressing */ 5634 np->desc_ver = DESC_VER_3; 5635 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5636 if (dma_64bit) { 5637 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5638 dev_info(&pci_dev->dev, 5639 "64-bit DMA failed, using 32-bit addressing\n"); 5640 else 5641 dev->features |= NETIF_F_HIGHDMA; 5642 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5643 dev_info(&pci_dev->dev, 5644 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5645 } 5646 } 5647 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5648 /* packet format 2: supports jumbo frames */ 5649 np->desc_ver = DESC_VER_2; 5650 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5651 } else { 5652 /* original packet format */ 5653 np->desc_ver = DESC_VER_1; 5654 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5655 } 5656 5657 np->pkt_limit = NV_PKTLIMIT_1; 5658 if (id->driver_data & DEV_HAS_LARGEDESC) 5659 np->pkt_limit = NV_PKTLIMIT_2; 5660 5661 if (id->driver_data & DEV_HAS_CHECKSUM) { 5662 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5663 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5664 NETIF_F_TSO | NETIF_F_RXCSUM; 5665 } 5666 5667 np->vlanctl_bits = 0; 5668 if (id->driver_data & DEV_HAS_VLAN) { 5669 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5670 dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX; 5671 } 5672 5673 dev->features |= dev->hw_features; 5674 5675 /* Add loopback capability to the device. */ 5676 dev->hw_features |= NETIF_F_LOOPBACK; 5677 5678 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5679 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5680 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5681 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5682 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5683 } 5684 5685 err = -ENOMEM; 5686 np->base = ioremap(addr, np->register_size); 5687 if (!np->base) 5688 goto out_relreg; 5689 5690 np->rx_ring_size = RX_RING_DEFAULT; 5691 np->tx_ring_size = TX_RING_DEFAULT; 5692 5693 if (!nv_optimized(np)) { 5694 np->rx_ring.orig = pci_alloc_consistent(pci_dev, 5695 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 5696 &np->ring_addr); 5697 if (!np->rx_ring.orig) 5698 goto out_unmap; 5699 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5700 } else { 5701 np->rx_ring.ex = pci_alloc_consistent(pci_dev, 5702 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 5703 &np->ring_addr); 5704 if (!np->rx_ring.ex) 5705 goto out_unmap; 5706 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5707 } 5708 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5709 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5710 if (!np->rx_skb || !np->tx_skb) 5711 goto out_freering; 5712 5713 if (!nv_optimized(np)) 5714 dev->netdev_ops = &nv_netdev_ops; 5715 else 5716 dev->netdev_ops = &nv_netdev_ops_optimized; 5717 5718 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5719 SET_ETHTOOL_OPS(dev, &ops); 5720 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5721 5722 pci_set_drvdata(pci_dev, dev); 5723 5724 /* read the mac address */ 5725 base = get_hwbase(dev); 5726 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5727 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5728 5729 /* check the workaround bit for correct mac address order */ 5730 txreg = readl(base + NvRegTransmitPoll); 5731 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5732 /* mac address is already in correct order */ 5733 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5734 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5735 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5736 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5737 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5738 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5739 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5740 /* mac address is already in correct order */ 5741 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5742 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5743 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5744 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5745 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5746 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5747 /* 5748 * Set orig mac address back to the reversed version. 5749 * This flag will be cleared during low power transition. 5750 * Therefore, we should always put back the reversed address. 5751 */ 5752 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5753 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5754 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5755 } else { 5756 /* need to reverse mac address to correct order */ 5757 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5758 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5759 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5760 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5761 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5762 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5763 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5764 dev_dbg(&pci_dev->dev, 5765 "%s: set workaround bit for reversed mac addr\n", 5766 __func__); 5767 } 5768 5769 if (!is_valid_ether_addr(dev->dev_addr)) { 5770 /* 5771 * Bad mac address. At least one bios sets the mac address 5772 * to 01:23:45:67:89:ab 5773 */ 5774 dev_err(&pci_dev->dev, 5775 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5776 dev->dev_addr); 5777 eth_hw_addr_random(dev); 5778 dev_err(&pci_dev->dev, 5779 "Using random MAC address: %pM\n", dev->dev_addr); 5780 } 5781 5782 /* set mac address */ 5783 nv_copy_mac_to_hw(dev); 5784 5785 /* disable WOL */ 5786 writel(0, base + NvRegWakeUpFlags); 5787 np->wolenabled = 0; 5788 device_set_wakeup_enable(&pci_dev->dev, false); 5789 5790 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5791 5792 /* take phy and nic out of low power mode */ 5793 powerstate = readl(base + NvRegPowerState2); 5794 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5795 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5796 pci_dev->revision >= 0xA3) 5797 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5798 writel(powerstate, base + NvRegPowerState2); 5799 } 5800 5801 if (np->desc_ver == DESC_VER_1) 5802 np->tx_flags = NV_TX_VALID; 5803 else 5804 np->tx_flags = NV_TX2_VALID; 5805 5806 np->msi_flags = 0; 5807 if ((id->driver_data & DEV_HAS_MSI) && msi) 5808 np->msi_flags |= NV_MSI_CAPABLE; 5809 5810 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5811 /* msix has had reported issues when modifying irqmask 5812 as in the case of napi, therefore, disable for now 5813 */ 5814 #if 0 5815 np->msi_flags |= NV_MSI_X_CAPABLE; 5816 #endif 5817 } 5818 5819 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5820 np->irqmask = NVREG_IRQMASK_CPU; 5821 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5822 np->msi_flags |= 0x0001; 5823 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5824 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5825 /* start off in throughput mode */ 5826 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5827 /* remove support for msix mode */ 5828 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5829 } else { 5830 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5831 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5832 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5833 np->msi_flags |= 0x0003; 5834 } 5835 5836 if (id->driver_data & DEV_NEED_TIMERIRQ) 5837 np->irqmask |= NVREG_IRQ_TIMER; 5838 if (id->driver_data & DEV_NEED_LINKTIMER) { 5839 np->need_linktimer = 1; 5840 np->link_timeout = jiffies + LINK_TIMEOUT; 5841 } else { 5842 np->need_linktimer = 0; 5843 } 5844 5845 /* Limit the number of tx's outstanding for hw bug */ 5846 if (id->driver_data & DEV_NEED_TX_LIMIT) { 5847 np->tx_limit = 1; 5848 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 5849 pci_dev->revision >= 0xA2) 5850 np->tx_limit = 0; 5851 } 5852 5853 /* clear phy state and temporarily halt phy interrupts */ 5854 writel(0, base + NvRegMIIMask); 5855 phystate = readl(base + NvRegAdapterControl); 5856 if (phystate & NVREG_ADAPTCTL_RUNNING) { 5857 phystate_orig = 1; 5858 phystate &= ~NVREG_ADAPTCTL_RUNNING; 5859 writel(phystate, base + NvRegAdapterControl); 5860 } 5861 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5862 5863 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 5864 /* management unit running on the mac? */ 5865 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 5866 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 5867 nv_mgmt_acquire_sema(dev) && 5868 nv_mgmt_get_version(dev)) { 5869 np->mac_in_use = 1; 5870 if (np->mgmt_version > 0) 5871 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 5872 /* management unit setup the phy already? */ 5873 if (np->mac_in_use && 5874 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 5875 NVREG_XMITCTL_SYNC_PHY_INIT)) { 5876 /* phy is inited by mgmt unit */ 5877 phyinitialized = 1; 5878 } else { 5879 /* we need to init the phy */ 5880 } 5881 } 5882 } 5883 5884 /* find a suitable phy */ 5885 for (i = 1; i <= 32; i++) { 5886 int id1, id2; 5887 int phyaddr = i & 0x1F; 5888 5889 spin_lock_irq(&np->lock); 5890 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 5891 spin_unlock_irq(&np->lock); 5892 if (id1 < 0 || id1 == 0xffff) 5893 continue; 5894 spin_lock_irq(&np->lock); 5895 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 5896 spin_unlock_irq(&np->lock); 5897 if (id2 < 0 || id2 == 0xffff) 5898 continue; 5899 5900 np->phy_model = id2 & PHYID2_MODEL_MASK; 5901 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 5902 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 5903 np->phyaddr = phyaddr; 5904 np->phy_oui = id1 | id2; 5905 5906 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 5907 if (np->phy_oui == PHY_OUI_REALTEK2) 5908 np->phy_oui = PHY_OUI_REALTEK; 5909 /* Setup phy revision for Realtek */ 5910 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 5911 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 5912 5913 break; 5914 } 5915 if (i == 33) { 5916 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 5917 goto out_error; 5918 } 5919 5920 if (!phyinitialized) { 5921 /* reset it */ 5922 phy_init(dev); 5923 } else { 5924 /* see if it is a gigabit phy */ 5925 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5926 if (mii_status & PHY_GIGABIT) 5927 np->gigabit = PHY_GIGABIT; 5928 } 5929 5930 /* set default link speed settings */ 5931 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 5932 np->duplex = 0; 5933 np->autoneg = 1; 5934 5935 err = register_netdev(dev); 5936 if (err) { 5937 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 5938 goto out_error; 5939 } 5940 5941 netif_carrier_off(dev); 5942 5943 /* Some NICs freeze when TX pause is enabled while NIC is 5944 * down, and this stays across warm reboots. The sequence 5945 * below should be enough to recover from that state. 5946 */ 5947 nv_update_pause(dev, 0); 5948 nv_start_tx(dev); 5949 nv_stop_tx(dev); 5950 5951 if (id->driver_data & DEV_HAS_VLAN) 5952 nv_vlan_mode(dev, dev->features); 5953 5954 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 5955 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 5956 5957 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 5958 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 5959 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 5960 "csum " : "", 5961 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ? 5962 "vlan " : "", 5963 dev->features & (NETIF_F_LOOPBACK) ? 5964 "loopback " : "", 5965 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 5966 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 5967 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 5968 np->gigabit == PHY_GIGABIT ? "gbit " : "", 5969 np->need_linktimer ? "lnktim " : "", 5970 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 5971 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 5972 np->desc_ver); 5973 5974 return 0; 5975 5976 out_error: 5977 if (phystate_orig) 5978 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 5979 pci_set_drvdata(pci_dev, NULL); 5980 out_freering: 5981 free_rings(dev); 5982 out_unmap: 5983 iounmap(get_hwbase(dev)); 5984 out_relreg: 5985 pci_release_regions(pci_dev); 5986 out_disable: 5987 pci_disable_device(pci_dev); 5988 out_free: 5989 free_netdev(dev); 5990 out: 5991 return err; 5992 } 5993 5994 static void nv_restore_phy(struct net_device *dev) 5995 { 5996 struct fe_priv *np = netdev_priv(dev); 5997 u16 phy_reserved, mii_control; 5998 5999 if (np->phy_oui == PHY_OUI_REALTEK && 6000 np->phy_model == PHY_MODEL_REALTEK_8201 && 6001 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 6002 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 6003 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 6004 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 6005 phy_reserved |= PHY_REALTEK_INIT8; 6006 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 6007 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 6008 6009 /* restart auto negotiation */ 6010 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 6011 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 6012 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 6013 } 6014 } 6015 6016 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 6017 { 6018 struct net_device *dev = pci_get_drvdata(pci_dev); 6019 struct fe_priv *np = netdev_priv(dev); 6020 u8 __iomem *base = get_hwbase(dev); 6021 6022 /* special op: write back the misordered MAC address - otherwise 6023 * the next nv_probe would see a wrong address. 6024 */ 6025 writel(np->orig_mac[0], base + NvRegMacAddrA); 6026 writel(np->orig_mac[1], base + NvRegMacAddrB); 6027 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 6028 base + NvRegTransmitPoll); 6029 } 6030 6031 static void nv_remove(struct pci_dev *pci_dev) 6032 { 6033 struct net_device *dev = pci_get_drvdata(pci_dev); 6034 6035 unregister_netdev(dev); 6036 6037 nv_restore_mac_addr(pci_dev); 6038 6039 /* restore any phy related changes */ 6040 nv_restore_phy(dev); 6041 6042 nv_mgmt_release_sema(dev); 6043 6044 /* free all structures */ 6045 free_rings(dev); 6046 iounmap(get_hwbase(dev)); 6047 pci_release_regions(pci_dev); 6048 pci_disable_device(pci_dev); 6049 free_netdev(dev); 6050 pci_set_drvdata(pci_dev, NULL); 6051 } 6052 6053 #ifdef CONFIG_PM_SLEEP 6054 static int nv_suspend(struct device *device) 6055 { 6056 struct pci_dev *pdev = to_pci_dev(device); 6057 struct net_device *dev = pci_get_drvdata(pdev); 6058 struct fe_priv *np = netdev_priv(dev); 6059 u8 __iomem *base = get_hwbase(dev); 6060 int i; 6061 6062 if (netif_running(dev)) { 6063 /* Gross. */ 6064 nv_close(dev); 6065 } 6066 netif_device_detach(dev); 6067 6068 /* save non-pci configuration space */ 6069 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6070 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6071 6072 return 0; 6073 } 6074 6075 static int nv_resume(struct device *device) 6076 { 6077 struct pci_dev *pdev = to_pci_dev(device); 6078 struct net_device *dev = pci_get_drvdata(pdev); 6079 struct fe_priv *np = netdev_priv(dev); 6080 u8 __iomem *base = get_hwbase(dev); 6081 int i, rc = 0; 6082 6083 /* restore non-pci configuration space */ 6084 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6085 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6086 6087 if (np->driver_data & DEV_NEED_MSI_FIX) 6088 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6089 6090 /* restore phy state, including autoneg */ 6091 phy_init(dev); 6092 6093 netif_device_attach(dev); 6094 if (netif_running(dev)) { 6095 rc = nv_open(dev); 6096 nv_set_multicast(dev); 6097 } 6098 return rc; 6099 } 6100 6101 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6102 #define NV_PM_OPS (&nv_pm_ops) 6103 6104 #else 6105 #define NV_PM_OPS NULL 6106 #endif /* CONFIG_PM_SLEEP */ 6107 6108 #ifdef CONFIG_PM 6109 static void nv_shutdown(struct pci_dev *pdev) 6110 { 6111 struct net_device *dev = pci_get_drvdata(pdev); 6112 struct fe_priv *np = netdev_priv(dev); 6113 6114 if (netif_running(dev)) 6115 nv_close(dev); 6116 6117 /* 6118 * Restore the MAC so a kernel started by kexec won't get confused. 6119 * If we really go for poweroff, we must not restore the MAC, 6120 * otherwise the MAC for WOL will be reversed at least on some boards. 6121 */ 6122 if (system_state != SYSTEM_POWER_OFF) 6123 nv_restore_mac_addr(pdev); 6124 6125 pci_disable_device(pdev); 6126 /* 6127 * Apparently it is not possible to reinitialise from D3 hot, 6128 * only put the device into D3 if we really go for poweroff. 6129 */ 6130 if (system_state == SYSTEM_POWER_OFF) { 6131 pci_wake_from_d3(pdev, np->wolenabled); 6132 pci_set_power_state(pdev, PCI_D3hot); 6133 } 6134 } 6135 #else 6136 #define nv_shutdown NULL 6137 #endif /* CONFIG_PM */ 6138 6139 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = { 6140 { /* nForce Ethernet Controller */ 6141 PCI_DEVICE(0x10DE, 0x01C3), 6142 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6143 }, 6144 { /* nForce2 Ethernet Controller */ 6145 PCI_DEVICE(0x10DE, 0x0066), 6146 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6147 }, 6148 { /* nForce3 Ethernet Controller */ 6149 PCI_DEVICE(0x10DE, 0x00D6), 6150 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6151 }, 6152 { /* nForce3 Ethernet Controller */ 6153 PCI_DEVICE(0x10DE, 0x0086), 6154 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6155 }, 6156 { /* nForce3 Ethernet Controller */ 6157 PCI_DEVICE(0x10DE, 0x008C), 6158 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6159 }, 6160 { /* nForce3 Ethernet Controller */ 6161 PCI_DEVICE(0x10DE, 0x00E6), 6162 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6163 }, 6164 { /* nForce3 Ethernet Controller */ 6165 PCI_DEVICE(0x10DE, 0x00DF), 6166 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6167 }, 6168 { /* CK804 Ethernet Controller */ 6169 PCI_DEVICE(0x10DE, 0x0056), 6170 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6171 }, 6172 { /* CK804 Ethernet Controller */ 6173 PCI_DEVICE(0x10DE, 0x0057), 6174 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6175 }, 6176 { /* MCP04 Ethernet Controller */ 6177 PCI_DEVICE(0x10DE, 0x0037), 6178 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6179 }, 6180 { /* MCP04 Ethernet Controller */ 6181 PCI_DEVICE(0x10DE, 0x0038), 6182 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6183 }, 6184 { /* MCP51 Ethernet Controller */ 6185 PCI_DEVICE(0x10DE, 0x0268), 6186 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6187 }, 6188 { /* MCP51 Ethernet Controller */ 6189 PCI_DEVICE(0x10DE, 0x0269), 6190 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6191 }, 6192 { /* MCP55 Ethernet Controller */ 6193 PCI_DEVICE(0x10DE, 0x0372), 6194 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6195 }, 6196 { /* MCP55 Ethernet Controller */ 6197 PCI_DEVICE(0x10DE, 0x0373), 6198 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6199 }, 6200 { /* MCP61 Ethernet Controller */ 6201 PCI_DEVICE(0x10DE, 0x03E5), 6202 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6203 }, 6204 { /* MCP61 Ethernet Controller */ 6205 PCI_DEVICE(0x10DE, 0x03E6), 6206 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6207 }, 6208 { /* MCP61 Ethernet Controller */ 6209 PCI_DEVICE(0x10DE, 0x03EE), 6210 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6211 }, 6212 { /* MCP61 Ethernet Controller */ 6213 PCI_DEVICE(0x10DE, 0x03EF), 6214 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6215 }, 6216 { /* MCP65 Ethernet Controller */ 6217 PCI_DEVICE(0x10DE, 0x0450), 6218 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6219 }, 6220 { /* MCP65 Ethernet Controller */ 6221 PCI_DEVICE(0x10DE, 0x0451), 6222 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6223 }, 6224 { /* MCP65 Ethernet Controller */ 6225 PCI_DEVICE(0x10DE, 0x0452), 6226 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6227 }, 6228 { /* MCP65 Ethernet Controller */ 6229 PCI_DEVICE(0x10DE, 0x0453), 6230 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6231 }, 6232 { /* MCP67 Ethernet Controller */ 6233 PCI_DEVICE(0x10DE, 0x054C), 6234 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6235 }, 6236 { /* MCP67 Ethernet Controller */ 6237 PCI_DEVICE(0x10DE, 0x054D), 6238 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6239 }, 6240 { /* MCP67 Ethernet Controller */ 6241 PCI_DEVICE(0x10DE, 0x054E), 6242 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6243 }, 6244 { /* MCP67 Ethernet Controller */ 6245 PCI_DEVICE(0x10DE, 0x054F), 6246 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6247 }, 6248 { /* MCP73 Ethernet Controller */ 6249 PCI_DEVICE(0x10DE, 0x07DC), 6250 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6251 }, 6252 { /* MCP73 Ethernet Controller */ 6253 PCI_DEVICE(0x10DE, 0x07DD), 6254 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6255 }, 6256 { /* MCP73 Ethernet Controller */ 6257 PCI_DEVICE(0x10DE, 0x07DE), 6258 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6259 }, 6260 { /* MCP73 Ethernet Controller */ 6261 PCI_DEVICE(0x10DE, 0x07DF), 6262 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6263 }, 6264 { /* MCP77 Ethernet Controller */ 6265 PCI_DEVICE(0x10DE, 0x0760), 6266 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6267 }, 6268 { /* MCP77 Ethernet Controller */ 6269 PCI_DEVICE(0x10DE, 0x0761), 6270 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6271 }, 6272 { /* MCP77 Ethernet Controller */ 6273 PCI_DEVICE(0x10DE, 0x0762), 6274 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6275 }, 6276 { /* MCP77 Ethernet Controller */ 6277 PCI_DEVICE(0x10DE, 0x0763), 6278 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6279 }, 6280 { /* MCP79 Ethernet Controller */ 6281 PCI_DEVICE(0x10DE, 0x0AB0), 6282 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6283 }, 6284 { /* MCP79 Ethernet Controller */ 6285 PCI_DEVICE(0x10DE, 0x0AB1), 6286 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6287 }, 6288 { /* MCP79 Ethernet Controller */ 6289 PCI_DEVICE(0x10DE, 0x0AB2), 6290 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6291 }, 6292 { /* MCP79 Ethernet Controller */ 6293 PCI_DEVICE(0x10DE, 0x0AB3), 6294 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6295 }, 6296 { /* MCP89 Ethernet Controller */ 6297 PCI_DEVICE(0x10DE, 0x0D7D), 6298 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6299 }, 6300 {0,}, 6301 }; 6302 6303 static struct pci_driver driver = { 6304 .name = DRV_NAME, 6305 .id_table = pci_tbl, 6306 .probe = nv_probe, 6307 .remove = nv_remove, 6308 .shutdown = nv_shutdown, 6309 .driver.pm = NV_PM_OPS, 6310 }; 6311 6312 static int __init init_nic(void) 6313 { 6314 return pci_register_driver(&driver); 6315 } 6316 6317 static void __exit exit_nic(void) 6318 { 6319 pci_unregister_driver(&driver); 6320 } 6321 6322 module_param(max_interrupt_work, int, 0); 6323 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6324 module_param(optimization_mode, int, 0); 6325 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6326 module_param(poll_interval, int, 0); 6327 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6328 module_param(msi, int, 0); 6329 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6330 module_param(msix, int, 0); 6331 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6332 module_param(dma_64bit, int, 0); 6333 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6334 module_param(phy_cross, int, 0); 6335 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6336 module_param(phy_power_down, int, 0); 6337 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6338 module_param(debug_tx_timeout, bool, 0); 6339 MODULE_PARM_DESC(debug_tx_timeout, 6340 "Dump tx related registers and ring when tx_timeout happens"); 6341 6342 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6343 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6344 MODULE_LICENSE("GPL"); 6345 6346 MODULE_DEVICE_TABLE(pci, pci_tbl); 6347 6348 module_init(init_nic); 6349 module_exit(exit_nic); 6350