1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 4 * 5 * Note: This driver is a cleanroom reimplementation based on reverse 6 * engineered documentation written by Carl-Daniel Hailfinger 7 * and Andrew de Quincey. 8 * 9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 10 * trademarks of NVIDIA Corporation in the United States and other 11 * countries. 12 * 13 * Copyright (C) 2003,4,5 Manfred Spraul 14 * Copyright (C) 2004 Andrew de Quincey (wol support) 15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 16 * IRQ rate fixes, bigendian fixes, cleanups, verification) 17 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 18 * 19 * Known bugs: 20 * We suspect that on some hardware no TX done interrupts are generated. 21 * This means recovery from netif_stop_queue only happens if the hw timer 22 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 23 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 24 * If your hardware reliably generates tx done interrupts, then you can remove 25 * DEV_NEED_TIMERIRQ from the driver_data flags. 26 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 27 * superfluous timer interrupts from the nic. 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #define FORCEDETH_VERSION "0.64" 33 #define DRV_NAME "forcedeth" 34 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/interrupt.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/delay.h> 42 #include <linux/sched.h> 43 #include <linux/spinlock.h> 44 #include <linux/ethtool.h> 45 #include <linux/timer.h> 46 #include <linux/skbuff.h> 47 #include <linux/mii.h> 48 #include <linux/random.h> 49 #include <linux/if_vlan.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/slab.h> 52 #include <linux/uaccess.h> 53 #include <linux/prefetch.h> 54 #include <linux/u64_stats_sync.h> 55 #include <linux/io.h> 56 57 #include <asm/irq.h> 58 59 #define TX_WORK_PER_LOOP 64 60 #define RX_WORK_PER_LOOP 64 61 62 /* 63 * Hardware access: 64 */ 65 66 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 67 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 68 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 69 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 70 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 71 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 72 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 73 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 74 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 75 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 76 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 77 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 78 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 79 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 80 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 81 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 82 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 83 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 84 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 85 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 86 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 87 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 88 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 89 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 90 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 91 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 92 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 93 94 enum { 95 NvRegIrqStatus = 0x000, 96 #define NVREG_IRQSTAT_MIIEVENT 0x040 97 #define NVREG_IRQSTAT_MASK 0x83ff 98 NvRegIrqMask = 0x004, 99 #define NVREG_IRQ_RX_ERROR 0x0001 100 #define NVREG_IRQ_RX 0x0002 101 #define NVREG_IRQ_RX_NOBUF 0x0004 102 #define NVREG_IRQ_TX_ERR 0x0008 103 #define NVREG_IRQ_TX_OK 0x0010 104 #define NVREG_IRQ_TIMER 0x0020 105 #define NVREG_IRQ_LINK 0x0040 106 #define NVREG_IRQ_RX_FORCED 0x0080 107 #define NVREG_IRQ_TX_FORCED 0x0100 108 #define NVREG_IRQ_RECOVER_ERROR 0x8200 109 #define NVREG_IRQMASK_THROUGHPUT 0x00df 110 #define NVREG_IRQMASK_CPU 0x0060 111 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 112 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 113 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 114 115 NvRegUnknownSetupReg6 = 0x008, 116 #define NVREG_UNKSETUP6_VAL 3 117 118 /* 119 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 120 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 121 */ 122 NvRegPollingInterval = 0x00c, 123 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 124 #define NVREG_POLL_DEFAULT_CPU 13 125 NvRegMSIMap0 = 0x020, 126 NvRegMSIMap1 = 0x024, 127 NvRegMSIIrqMask = 0x030, 128 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 129 NvRegMisc1 = 0x080, 130 #define NVREG_MISC1_PAUSE_TX 0x01 131 #define NVREG_MISC1_HD 0x02 132 #define NVREG_MISC1_FORCE 0x3b0f3c 133 134 NvRegMacReset = 0x34, 135 #define NVREG_MAC_RESET_ASSERT 0x0F3 136 NvRegTransmitterControl = 0x084, 137 #define NVREG_XMITCTL_START 0x01 138 #define NVREG_XMITCTL_MGMT_ST 0x40000000 139 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 140 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 141 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 142 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 143 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 144 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 145 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 146 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 147 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 148 #define NVREG_XMITCTL_DATA_START 0x00100000 149 #define NVREG_XMITCTL_DATA_READY 0x00010000 150 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 151 NvRegTransmitterStatus = 0x088, 152 #define NVREG_XMITSTAT_BUSY 0x01 153 154 NvRegPacketFilterFlags = 0x8c, 155 #define NVREG_PFF_PAUSE_RX 0x08 156 #define NVREG_PFF_ALWAYS 0x7F0000 157 #define NVREG_PFF_PROMISC 0x80 158 #define NVREG_PFF_MYADDR 0x20 159 #define NVREG_PFF_LOOPBACK 0x10 160 161 NvRegOffloadConfig = 0x90, 162 #define NVREG_OFFLOAD_HOMEPHY 0x601 163 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 164 NvRegReceiverControl = 0x094, 165 #define NVREG_RCVCTL_START 0x01 166 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 167 NvRegReceiverStatus = 0x98, 168 #define NVREG_RCVSTAT_BUSY 0x01 169 170 NvRegSlotTime = 0x9c, 171 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 172 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 173 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 174 #define NVREG_SLOTTIME_HALF 0x0000ff00 175 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 176 #define NVREG_SLOTTIME_MASK 0x000000ff 177 178 NvRegTxDeferral = 0xA0, 179 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 180 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 181 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 182 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 183 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 184 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 185 NvRegRxDeferral = 0xA4, 186 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 187 NvRegMacAddrA = 0xA8, 188 NvRegMacAddrB = 0xAC, 189 NvRegMulticastAddrA = 0xB0, 190 #define NVREG_MCASTADDRA_FORCE 0x01 191 NvRegMulticastAddrB = 0xB4, 192 NvRegMulticastMaskA = 0xB8, 193 #define NVREG_MCASTMASKA_NONE 0xffffffff 194 NvRegMulticastMaskB = 0xBC, 195 #define NVREG_MCASTMASKB_NONE 0xffff 196 197 NvRegPhyInterface = 0xC0, 198 #define PHY_RGMII 0x10000000 199 NvRegBackOffControl = 0xC4, 200 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 201 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 202 #define NVREG_BKOFFCTRL_SELECT 24 203 #define NVREG_BKOFFCTRL_GEAR 12 204 205 NvRegTxRingPhysAddr = 0x100, 206 NvRegRxRingPhysAddr = 0x104, 207 NvRegRingSizes = 0x108, 208 #define NVREG_RINGSZ_TXSHIFT 0 209 #define NVREG_RINGSZ_RXSHIFT 16 210 NvRegTransmitPoll = 0x10c, 211 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 212 NvRegLinkSpeed = 0x110, 213 #define NVREG_LINKSPEED_FORCE 0x10000 214 #define NVREG_LINKSPEED_10 1000 215 #define NVREG_LINKSPEED_100 100 216 #define NVREG_LINKSPEED_1000 50 217 #define NVREG_LINKSPEED_MASK (0xFFF) 218 NvRegUnknownSetupReg5 = 0x130, 219 #define NVREG_UNKSETUP5_BIT31 (1<<31) 220 NvRegTxWatermark = 0x13c, 221 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 222 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 223 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 224 NvRegTxRxControl = 0x144, 225 #define NVREG_TXRXCTL_KICK 0x0001 226 #define NVREG_TXRXCTL_BIT1 0x0002 227 #define NVREG_TXRXCTL_BIT2 0x0004 228 #define NVREG_TXRXCTL_IDLE 0x0008 229 #define NVREG_TXRXCTL_RESET 0x0010 230 #define NVREG_TXRXCTL_RXCHECK 0x0400 231 #define NVREG_TXRXCTL_DESC_1 0 232 #define NVREG_TXRXCTL_DESC_2 0x002100 233 #define NVREG_TXRXCTL_DESC_3 0xc02200 234 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 235 #define NVREG_TXRXCTL_VLANINS 0x00080 236 NvRegTxRingPhysAddrHigh = 0x148, 237 NvRegRxRingPhysAddrHigh = 0x14C, 238 NvRegTxPauseFrame = 0x170, 239 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 240 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 241 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 242 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 243 NvRegTxPauseFrameLimit = 0x174, 244 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 245 NvRegMIIStatus = 0x180, 246 #define NVREG_MIISTAT_ERROR 0x0001 247 #define NVREG_MIISTAT_LINKCHANGE 0x0008 248 #define NVREG_MIISTAT_MASK_RW 0x0007 249 #define NVREG_MIISTAT_MASK_ALL 0x000f 250 NvRegMIIMask = 0x184, 251 #define NVREG_MII_LINKCHANGE 0x0008 252 253 NvRegAdapterControl = 0x188, 254 #define NVREG_ADAPTCTL_START 0x02 255 #define NVREG_ADAPTCTL_LINKUP 0x04 256 #define NVREG_ADAPTCTL_PHYVALID 0x40000 257 #define NVREG_ADAPTCTL_RUNNING 0x100000 258 #define NVREG_ADAPTCTL_PHYSHIFT 24 259 NvRegMIISpeed = 0x18c, 260 #define NVREG_MIISPEED_BIT8 (1<<8) 261 #define NVREG_MIIDELAY 5 262 NvRegMIIControl = 0x190, 263 #define NVREG_MIICTL_INUSE 0x08000 264 #define NVREG_MIICTL_WRITE 0x00400 265 #define NVREG_MIICTL_ADDRSHIFT 5 266 NvRegMIIData = 0x194, 267 NvRegTxUnicast = 0x1a0, 268 NvRegTxMulticast = 0x1a4, 269 NvRegTxBroadcast = 0x1a8, 270 NvRegWakeUpFlags = 0x200, 271 #define NVREG_WAKEUPFLAGS_VAL 0x7770 272 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 273 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 274 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 275 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 276 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 277 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 278 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 279 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 280 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 281 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 282 283 NvRegMgmtUnitGetVersion = 0x204, 284 #define NVREG_MGMTUNITGETVERSION 0x01 285 NvRegMgmtUnitVersion = 0x208, 286 #define NVREG_MGMTUNITVERSION 0x08 287 NvRegPowerCap = 0x268, 288 #define NVREG_POWERCAP_D3SUPP (1<<30) 289 #define NVREG_POWERCAP_D2SUPP (1<<26) 290 #define NVREG_POWERCAP_D1SUPP (1<<25) 291 NvRegPowerState = 0x26c, 292 #define NVREG_POWERSTATE_POWEREDUP 0x8000 293 #define NVREG_POWERSTATE_VALID 0x0100 294 #define NVREG_POWERSTATE_MASK 0x0003 295 #define NVREG_POWERSTATE_D0 0x0000 296 #define NVREG_POWERSTATE_D1 0x0001 297 #define NVREG_POWERSTATE_D2 0x0002 298 #define NVREG_POWERSTATE_D3 0x0003 299 NvRegMgmtUnitControl = 0x278, 300 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 301 NvRegTxCnt = 0x280, 302 NvRegTxZeroReXmt = 0x284, 303 NvRegTxOneReXmt = 0x288, 304 NvRegTxManyReXmt = 0x28c, 305 NvRegTxLateCol = 0x290, 306 NvRegTxUnderflow = 0x294, 307 NvRegTxLossCarrier = 0x298, 308 NvRegTxExcessDef = 0x29c, 309 NvRegTxRetryErr = 0x2a0, 310 NvRegRxFrameErr = 0x2a4, 311 NvRegRxExtraByte = 0x2a8, 312 NvRegRxLateCol = 0x2ac, 313 NvRegRxRunt = 0x2b0, 314 NvRegRxFrameTooLong = 0x2b4, 315 NvRegRxOverflow = 0x2b8, 316 NvRegRxFCSErr = 0x2bc, 317 NvRegRxFrameAlignErr = 0x2c0, 318 NvRegRxLenErr = 0x2c4, 319 NvRegRxUnicast = 0x2c8, 320 NvRegRxMulticast = 0x2cc, 321 NvRegRxBroadcast = 0x2d0, 322 NvRegTxDef = 0x2d4, 323 NvRegTxFrame = 0x2d8, 324 NvRegRxCnt = 0x2dc, 325 NvRegTxPause = 0x2e0, 326 NvRegRxPause = 0x2e4, 327 NvRegRxDropFrame = 0x2e8, 328 NvRegVlanControl = 0x300, 329 #define NVREG_VLANCONTROL_ENABLE 0x2000 330 NvRegMSIXMap0 = 0x3e0, 331 NvRegMSIXMap1 = 0x3e4, 332 NvRegMSIXIrqStatus = 0x3f0, 333 334 NvRegPowerState2 = 0x600, 335 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 336 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 337 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 338 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 339 }; 340 341 /* Big endian: should work, but is untested */ 342 struct ring_desc { 343 __le32 buf; 344 __le32 flaglen; 345 }; 346 347 struct ring_desc_ex { 348 __le32 bufhigh; 349 __le32 buflow; 350 __le32 txvlan; 351 __le32 flaglen; 352 }; 353 354 union ring_type { 355 struct ring_desc *orig; 356 struct ring_desc_ex *ex; 357 }; 358 359 #define FLAG_MASK_V1 0xffff0000 360 #define FLAG_MASK_V2 0xffffc000 361 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 362 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 363 364 #define NV_TX_LASTPACKET (1<<16) 365 #define NV_TX_RETRYERROR (1<<19) 366 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 367 #define NV_TX_FORCED_INTERRUPT (1<<24) 368 #define NV_TX_DEFERRED (1<<26) 369 #define NV_TX_CARRIERLOST (1<<27) 370 #define NV_TX_LATECOLLISION (1<<28) 371 #define NV_TX_UNDERFLOW (1<<29) 372 #define NV_TX_ERROR (1<<30) 373 #define NV_TX_VALID (1<<31) 374 375 #define NV_TX2_LASTPACKET (1<<29) 376 #define NV_TX2_RETRYERROR (1<<18) 377 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 378 #define NV_TX2_FORCED_INTERRUPT (1<<30) 379 #define NV_TX2_DEFERRED (1<<25) 380 #define NV_TX2_CARRIERLOST (1<<26) 381 #define NV_TX2_LATECOLLISION (1<<27) 382 #define NV_TX2_UNDERFLOW (1<<28) 383 /* error and valid are the same for both */ 384 #define NV_TX2_ERROR (1<<30) 385 #define NV_TX2_VALID (1<<31) 386 #define NV_TX2_TSO (1<<28) 387 #define NV_TX2_TSO_SHIFT 14 388 #define NV_TX2_TSO_MAX_SHIFT 14 389 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 390 #define NV_TX2_CHECKSUM_L3 (1<<27) 391 #define NV_TX2_CHECKSUM_L4 (1<<26) 392 393 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 394 395 #define NV_RX_DESCRIPTORVALID (1<<16) 396 #define NV_RX_MISSEDFRAME (1<<17) 397 #define NV_RX_SUBTRACT1 (1<<18) 398 #define NV_RX_ERROR1 (1<<23) 399 #define NV_RX_ERROR2 (1<<24) 400 #define NV_RX_ERROR3 (1<<25) 401 #define NV_RX_ERROR4 (1<<26) 402 #define NV_RX_CRCERR (1<<27) 403 #define NV_RX_OVERFLOW (1<<28) 404 #define NV_RX_FRAMINGERR (1<<29) 405 #define NV_RX_ERROR (1<<30) 406 #define NV_RX_AVAIL (1<<31) 407 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 408 409 #define NV_RX2_CHECKSUMMASK (0x1C000000) 410 #define NV_RX2_CHECKSUM_IP (0x10000000) 411 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 412 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 413 #define NV_RX2_DESCRIPTORVALID (1<<29) 414 #define NV_RX2_SUBTRACT1 (1<<25) 415 #define NV_RX2_ERROR1 (1<<18) 416 #define NV_RX2_ERROR2 (1<<19) 417 #define NV_RX2_ERROR3 (1<<20) 418 #define NV_RX2_ERROR4 (1<<21) 419 #define NV_RX2_CRCERR (1<<22) 420 #define NV_RX2_OVERFLOW (1<<23) 421 #define NV_RX2_FRAMINGERR (1<<24) 422 /* error and avail are the same for both */ 423 #define NV_RX2_ERROR (1<<30) 424 #define NV_RX2_AVAIL (1<<31) 425 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 426 427 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 428 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 429 430 /* Miscellaneous hardware related defines: */ 431 #define NV_PCI_REGSZ_VER1 0x270 432 #define NV_PCI_REGSZ_VER2 0x2d4 433 #define NV_PCI_REGSZ_VER3 0x604 434 #define NV_PCI_REGSZ_MAX 0x604 435 436 /* various timeout delays: all in usec */ 437 #define NV_TXRX_RESET_DELAY 4 438 #define NV_TXSTOP_DELAY1 10 439 #define NV_TXSTOP_DELAY1MAX 500000 440 #define NV_TXSTOP_DELAY2 100 441 #define NV_RXSTOP_DELAY1 10 442 #define NV_RXSTOP_DELAY1MAX 500000 443 #define NV_RXSTOP_DELAY2 100 444 #define NV_SETUP5_DELAY 5 445 #define NV_SETUP5_DELAYMAX 50000 446 #define NV_POWERUP_DELAY 5 447 #define NV_POWERUP_DELAYMAX 5000 448 #define NV_MIIBUSY_DELAY 50 449 #define NV_MIIPHY_DELAY 10 450 #define NV_MIIPHY_DELAYMAX 10000 451 #define NV_MAC_RESET_DELAY 64 452 453 #define NV_WAKEUPPATTERNS 5 454 #define NV_WAKEUPMASKENTRIES 4 455 456 /* General driver defaults */ 457 #define NV_WATCHDOG_TIMEO (5*HZ) 458 459 #define RX_RING_DEFAULT 512 460 #define TX_RING_DEFAULT 256 461 #define RX_RING_MIN 128 462 #define TX_RING_MIN 64 463 #define RING_MAX_DESC_VER_1 1024 464 #define RING_MAX_DESC_VER_2_3 16384 465 466 /* rx/tx mac addr + type + vlan + align + slack*/ 467 #define NV_RX_HEADERS (64) 468 /* even more slack. */ 469 #define NV_RX_ALLOC_PAD (64) 470 471 /* maximum mtu size */ 472 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 473 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 474 475 #define OOM_REFILL (1+HZ/20) 476 #define POLL_WAIT (1+HZ/100) 477 #define LINK_TIMEOUT (3*HZ) 478 #define STATS_INTERVAL (10*HZ) 479 480 /* 481 * desc_ver values: 482 * The nic supports three different descriptor types: 483 * - DESC_VER_1: Original 484 * - DESC_VER_2: support for jumbo frames. 485 * - DESC_VER_3: 64-bit format. 486 */ 487 #define DESC_VER_1 1 488 #define DESC_VER_2 2 489 #define DESC_VER_3 3 490 491 /* PHY defines */ 492 #define PHY_OUI_MARVELL 0x5043 493 #define PHY_OUI_CICADA 0x03f1 494 #define PHY_OUI_VITESSE 0x01c1 495 #define PHY_OUI_REALTEK 0x0732 496 #define PHY_OUI_REALTEK2 0x0020 497 #define PHYID1_OUI_MASK 0x03ff 498 #define PHYID1_OUI_SHFT 6 499 #define PHYID2_OUI_MASK 0xfc00 500 #define PHYID2_OUI_SHFT 10 501 #define PHYID2_MODEL_MASK 0x03f0 502 #define PHY_MODEL_REALTEK_8211 0x0110 503 #define PHY_REV_MASK 0x0001 504 #define PHY_REV_REALTEK_8211B 0x0000 505 #define PHY_REV_REALTEK_8211C 0x0001 506 #define PHY_MODEL_REALTEK_8201 0x0200 507 #define PHY_MODEL_MARVELL_E3016 0x0220 508 #define PHY_MARVELL_E3016_INITMASK 0x0300 509 #define PHY_CICADA_INIT1 0x0f000 510 #define PHY_CICADA_INIT2 0x0e00 511 #define PHY_CICADA_INIT3 0x01000 512 #define PHY_CICADA_INIT4 0x0200 513 #define PHY_CICADA_INIT5 0x0004 514 #define PHY_CICADA_INIT6 0x02000 515 #define PHY_VITESSE_INIT_REG1 0x1f 516 #define PHY_VITESSE_INIT_REG2 0x10 517 #define PHY_VITESSE_INIT_REG3 0x11 518 #define PHY_VITESSE_INIT_REG4 0x12 519 #define PHY_VITESSE_INIT_MSK1 0xc 520 #define PHY_VITESSE_INIT_MSK2 0x0180 521 #define PHY_VITESSE_INIT1 0x52b5 522 #define PHY_VITESSE_INIT2 0xaf8a 523 #define PHY_VITESSE_INIT3 0x8 524 #define PHY_VITESSE_INIT4 0x8f8a 525 #define PHY_VITESSE_INIT5 0xaf86 526 #define PHY_VITESSE_INIT6 0x8f86 527 #define PHY_VITESSE_INIT7 0xaf82 528 #define PHY_VITESSE_INIT8 0x0100 529 #define PHY_VITESSE_INIT9 0x8f82 530 #define PHY_VITESSE_INIT10 0x0 531 #define PHY_REALTEK_INIT_REG1 0x1f 532 #define PHY_REALTEK_INIT_REG2 0x19 533 #define PHY_REALTEK_INIT_REG3 0x13 534 #define PHY_REALTEK_INIT_REG4 0x14 535 #define PHY_REALTEK_INIT_REG5 0x18 536 #define PHY_REALTEK_INIT_REG6 0x11 537 #define PHY_REALTEK_INIT_REG7 0x01 538 #define PHY_REALTEK_INIT1 0x0000 539 #define PHY_REALTEK_INIT2 0x8e00 540 #define PHY_REALTEK_INIT3 0x0001 541 #define PHY_REALTEK_INIT4 0xad17 542 #define PHY_REALTEK_INIT5 0xfb54 543 #define PHY_REALTEK_INIT6 0xf5c7 544 #define PHY_REALTEK_INIT7 0x1000 545 #define PHY_REALTEK_INIT8 0x0003 546 #define PHY_REALTEK_INIT9 0x0008 547 #define PHY_REALTEK_INIT10 0x0005 548 #define PHY_REALTEK_INIT11 0x0200 549 #define PHY_REALTEK_INIT_MSK1 0x0003 550 551 #define PHY_GIGABIT 0x0100 552 553 #define PHY_TIMEOUT 0x1 554 #define PHY_ERROR 0x2 555 556 #define PHY_100 0x1 557 #define PHY_1000 0x2 558 #define PHY_HALF 0x100 559 560 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 561 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 562 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 563 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 564 #define NV_PAUSEFRAME_RX_REQ 0x0010 565 #define NV_PAUSEFRAME_TX_REQ 0x0020 566 #define NV_PAUSEFRAME_AUTONEG 0x0040 567 568 /* MSI/MSI-X defines */ 569 #define NV_MSI_X_MAX_VECTORS 8 570 #define NV_MSI_X_VECTORS_MASK 0x000f 571 #define NV_MSI_CAPABLE 0x0010 572 #define NV_MSI_X_CAPABLE 0x0020 573 #define NV_MSI_ENABLED 0x0040 574 #define NV_MSI_X_ENABLED 0x0080 575 576 #define NV_MSI_X_VECTOR_ALL 0x0 577 #define NV_MSI_X_VECTOR_RX 0x0 578 #define NV_MSI_X_VECTOR_TX 0x1 579 #define NV_MSI_X_VECTOR_OTHER 0x2 580 581 #define NV_MSI_PRIV_OFFSET 0x68 582 #define NV_MSI_PRIV_VALUE 0xffffffff 583 584 #define NV_RESTART_TX 0x1 585 #define NV_RESTART_RX 0x2 586 587 #define NV_TX_LIMIT_COUNT 16 588 589 #define NV_DYNAMIC_THRESHOLD 4 590 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 591 592 /* statistics */ 593 struct nv_ethtool_str { 594 char name[ETH_GSTRING_LEN]; 595 }; 596 597 static const struct nv_ethtool_str nv_estats_str[] = { 598 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 599 { "tx_zero_rexmt" }, 600 { "tx_one_rexmt" }, 601 { "tx_many_rexmt" }, 602 { "tx_late_collision" }, 603 { "tx_fifo_errors" }, 604 { "tx_carrier_errors" }, 605 { "tx_excess_deferral" }, 606 { "tx_retry_error" }, 607 { "rx_frame_error" }, 608 { "rx_extra_byte" }, 609 { "rx_late_collision" }, 610 { "rx_runt" }, 611 { "rx_frame_too_long" }, 612 { "rx_over_errors" }, 613 { "rx_crc_errors" }, 614 { "rx_frame_align_error" }, 615 { "rx_length_error" }, 616 { "rx_unicast" }, 617 { "rx_multicast" }, 618 { "rx_broadcast" }, 619 { "rx_packets" }, 620 { "rx_errors_total" }, 621 { "tx_errors_total" }, 622 623 /* version 2 stats */ 624 { "tx_deferral" }, 625 { "tx_packets" }, 626 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 627 { "tx_pause" }, 628 { "rx_pause" }, 629 { "rx_drop_frame" }, 630 631 /* version 3 stats */ 632 { "tx_unicast" }, 633 { "tx_multicast" }, 634 { "tx_broadcast" } 635 }; 636 637 struct nv_ethtool_stats { 638 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 639 u64 tx_zero_rexmt; 640 u64 tx_one_rexmt; 641 u64 tx_many_rexmt; 642 u64 tx_late_collision; 643 u64 tx_fifo_errors; 644 u64 tx_carrier_errors; 645 u64 tx_excess_deferral; 646 u64 tx_retry_error; 647 u64 rx_frame_error; 648 u64 rx_extra_byte; 649 u64 rx_late_collision; 650 u64 rx_runt; 651 u64 rx_frame_too_long; 652 u64 rx_over_errors; 653 u64 rx_crc_errors; 654 u64 rx_frame_align_error; 655 u64 rx_length_error; 656 u64 rx_unicast; 657 u64 rx_multicast; 658 u64 rx_broadcast; 659 u64 rx_packets; /* should be ifconfig->rx_packets */ 660 u64 rx_errors_total; 661 u64 tx_errors_total; 662 663 /* version 2 stats */ 664 u64 tx_deferral; 665 u64 tx_packets; /* should be ifconfig->tx_packets */ 666 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 667 u64 tx_pause; 668 u64 rx_pause; 669 u64 rx_drop_frame; 670 671 /* version 3 stats */ 672 u64 tx_unicast; 673 u64 tx_multicast; 674 u64 tx_broadcast; 675 }; 676 677 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 678 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 679 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 680 681 /* diagnostics */ 682 #define NV_TEST_COUNT_BASE 3 683 #define NV_TEST_COUNT_EXTENDED 4 684 685 static const struct nv_ethtool_str nv_etests_str[] = { 686 { "link (online/offline)" }, 687 { "register (offline) " }, 688 { "interrupt (offline) " }, 689 { "loopback (offline) " } 690 }; 691 692 struct register_test { 693 __u32 reg; 694 __u32 mask; 695 }; 696 697 static const struct register_test nv_registers_test[] = { 698 { NvRegUnknownSetupReg6, 0x01 }, 699 { NvRegMisc1, 0x03c }, 700 { NvRegOffloadConfig, 0x03ff }, 701 { NvRegMulticastAddrA, 0xffffffff }, 702 { NvRegTxWatermark, 0x0ff }, 703 { NvRegWakeUpFlags, 0x07777 }, 704 { 0, 0 } 705 }; 706 707 struct nv_skb_map { 708 struct sk_buff *skb; 709 dma_addr_t dma; 710 unsigned int dma_len:31; 711 unsigned int dma_single:1; 712 struct ring_desc_ex *first_tx_desc; 713 struct nv_skb_map *next_tx_ctx; 714 }; 715 716 struct nv_txrx_stats { 717 u64 stat_rx_packets; 718 u64 stat_rx_bytes; /* not always available in HW */ 719 u64 stat_rx_missed_errors; 720 u64 stat_rx_dropped; 721 u64 stat_tx_packets; /* not always available in HW */ 722 u64 stat_tx_bytes; 723 u64 stat_tx_dropped; 724 }; 725 726 #define nv_txrx_stats_inc(member) \ 727 __this_cpu_inc(np->txrx_stats->member) 728 #define nv_txrx_stats_add(member, count) \ 729 __this_cpu_add(np->txrx_stats->member, (count)) 730 731 /* 732 * SMP locking: 733 * All hardware access under netdev_priv(dev)->lock, except the performance 734 * critical parts: 735 * - rx is (pseudo-) lockless: it relies on the single-threading provided 736 * by the arch code for interrupts. 737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 738 * needs netdev_priv(dev)->lock :-( 739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 740 * 741 * Hardware stats updates are protected by hwstats_lock: 742 * - updated by nv_do_stats_poll (timer). This is meant to avoid 743 * integer wraparound in the NIC stats registers, at low frequency 744 * (0.1 Hz) 745 * - updated by nv_get_ethtool_stats + nv_get_stats64 746 * 747 * Software stats are accessed only through 64b synchronization points 748 * and are not subject to other synchronization techniques (single 749 * update thread on the TX or RX paths). 750 */ 751 752 /* in dev: base, irq */ 753 struct fe_priv { 754 spinlock_t lock; 755 756 struct net_device *dev; 757 struct napi_struct napi; 758 759 /* hardware stats are updated in syscall and timer */ 760 spinlock_t hwstats_lock; 761 struct nv_ethtool_stats estats; 762 763 int in_shutdown; 764 u32 linkspeed; 765 int duplex; 766 int autoneg; 767 int fixed_mode; 768 int phyaddr; 769 int wolenabled; 770 unsigned int phy_oui; 771 unsigned int phy_model; 772 unsigned int phy_rev; 773 u16 gigabit; 774 int intr_test; 775 int recover_error; 776 int quiet_count; 777 778 /* General data: RO fields */ 779 dma_addr_t ring_addr; 780 struct pci_dev *pci_dev; 781 u32 orig_mac[2]; 782 u32 events; 783 u32 irqmask; 784 u32 desc_ver; 785 u32 txrxctl_bits; 786 u32 vlanctl_bits; 787 u32 driver_data; 788 u32 device_id; 789 u32 register_size; 790 u32 mac_in_use; 791 int mgmt_version; 792 int mgmt_sema; 793 794 void __iomem *base; 795 796 /* rx specific fields. 797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 798 */ 799 union ring_type get_rx, put_rx, last_rx; 800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 801 struct nv_skb_map *last_rx_ctx; 802 struct nv_skb_map *rx_skb; 803 804 union ring_type rx_ring; 805 unsigned int rx_buf_sz; 806 unsigned int pkt_limit; 807 struct timer_list oom_kick; 808 struct timer_list nic_poll; 809 struct timer_list stats_poll; 810 u32 nic_poll_irq; 811 int rx_ring_size; 812 813 /* RX software stats */ 814 struct u64_stats_sync swstats_rx_syncp; 815 struct nv_txrx_stats __percpu *txrx_stats; 816 817 /* media detection workaround. 818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 819 */ 820 int need_linktimer; 821 unsigned long link_timeout; 822 /* 823 * tx specific fields. 824 */ 825 union ring_type get_tx, put_tx, last_tx; 826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 827 struct nv_skb_map *last_tx_ctx; 828 struct nv_skb_map *tx_skb; 829 830 union ring_type tx_ring; 831 u32 tx_flags; 832 int tx_ring_size; 833 int tx_limit; 834 u32 tx_pkts_in_progress; 835 struct nv_skb_map *tx_change_owner; 836 struct nv_skb_map *tx_end_flip; 837 int tx_stop; 838 839 /* TX software stats */ 840 struct u64_stats_sync swstats_tx_syncp; 841 842 /* msi/msi-x fields */ 843 u32 msi_flags; 844 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 845 846 /* flow control */ 847 u32 pause_flags; 848 849 /* power saved state */ 850 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 851 852 /* for different msi-x irq type */ 853 char name_rx[IFNAMSIZ + 3]; /* -rx */ 854 char name_tx[IFNAMSIZ + 3]; /* -tx */ 855 char name_other[IFNAMSIZ + 6]; /* -other */ 856 }; 857 858 /* 859 * Maximum number of loops until we assume that a bit in the irq mask 860 * is stuck. Overridable with module param. 861 */ 862 static int max_interrupt_work = 4; 863 864 /* 865 * Optimization can be either throuput mode or cpu mode 866 * 867 * Throughput Mode: Every tx and rx packet will generate an interrupt. 868 * CPU Mode: Interrupts are controlled by a timer. 869 */ 870 enum { 871 NV_OPTIMIZATION_MODE_THROUGHPUT, 872 NV_OPTIMIZATION_MODE_CPU, 873 NV_OPTIMIZATION_MODE_DYNAMIC 874 }; 875 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 876 877 /* 878 * Poll interval for timer irq 879 * 880 * This interval determines how frequent an interrupt is generated. 881 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 882 * Min = 0, and Max = 65535 883 */ 884 static int poll_interval = -1; 885 886 /* 887 * MSI interrupts 888 */ 889 enum { 890 NV_MSI_INT_DISABLED, 891 NV_MSI_INT_ENABLED 892 }; 893 static int msi = NV_MSI_INT_ENABLED; 894 895 /* 896 * MSIX interrupts 897 */ 898 enum { 899 NV_MSIX_INT_DISABLED, 900 NV_MSIX_INT_ENABLED 901 }; 902 static int msix = NV_MSIX_INT_ENABLED; 903 904 /* 905 * DMA 64bit 906 */ 907 enum { 908 NV_DMA_64BIT_DISABLED, 909 NV_DMA_64BIT_ENABLED 910 }; 911 static int dma_64bit = NV_DMA_64BIT_ENABLED; 912 913 /* 914 * Debug output control for tx_timeout 915 */ 916 static bool debug_tx_timeout = false; 917 918 /* 919 * Crossover Detection 920 * Realtek 8201 phy + some OEM boards do not work properly. 921 */ 922 enum { 923 NV_CROSSOVER_DETECTION_DISABLED, 924 NV_CROSSOVER_DETECTION_ENABLED 925 }; 926 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 927 928 /* 929 * Power down phy when interface is down (persists through reboot; 930 * older Linux and other OSes may not power it up again) 931 */ 932 static int phy_power_down; 933 934 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 935 { 936 return netdev_priv(dev); 937 } 938 939 static inline u8 __iomem *get_hwbase(struct net_device *dev) 940 { 941 return ((struct fe_priv *)netdev_priv(dev))->base; 942 } 943 944 static inline void pci_push(u8 __iomem *base) 945 { 946 /* force out pending posted writes */ 947 readl(base); 948 } 949 950 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 951 { 952 return le32_to_cpu(prd->flaglen) 953 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 954 } 955 956 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 957 { 958 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 959 } 960 961 static bool nv_optimized(struct fe_priv *np) 962 { 963 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 964 return false; 965 return true; 966 } 967 968 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 969 int delay, int delaymax) 970 { 971 u8 __iomem *base = get_hwbase(dev); 972 973 pci_push(base); 974 do { 975 udelay(delay); 976 delaymax -= delay; 977 if (delaymax < 0) 978 return 1; 979 } while ((readl(base + offset) & mask) != target); 980 return 0; 981 } 982 983 #define NV_SETUP_RX_RING 0x01 984 #define NV_SETUP_TX_RING 0x02 985 986 static inline u32 dma_low(dma_addr_t addr) 987 { 988 return addr; 989 } 990 991 static inline u32 dma_high(dma_addr_t addr) 992 { 993 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 994 } 995 996 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 997 { 998 struct fe_priv *np = get_nvpriv(dev); 999 u8 __iomem *base = get_hwbase(dev); 1000 1001 if (!nv_optimized(np)) { 1002 if (rxtx_flags & NV_SETUP_RX_RING) 1003 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1004 if (rxtx_flags & NV_SETUP_TX_RING) 1005 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1006 } else { 1007 if (rxtx_flags & NV_SETUP_RX_RING) { 1008 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1009 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1010 } 1011 if (rxtx_flags & NV_SETUP_TX_RING) { 1012 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1013 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1014 } 1015 } 1016 } 1017 1018 static void free_rings(struct net_device *dev) 1019 { 1020 struct fe_priv *np = get_nvpriv(dev); 1021 1022 if (!nv_optimized(np)) { 1023 if (np->rx_ring.orig) 1024 dma_free_coherent(&np->pci_dev->dev, 1025 sizeof(struct ring_desc) * 1026 (np->rx_ring_size + 1027 np->tx_ring_size), 1028 np->rx_ring.orig, np->ring_addr); 1029 } else { 1030 if (np->rx_ring.ex) 1031 dma_free_coherent(&np->pci_dev->dev, 1032 sizeof(struct ring_desc_ex) * 1033 (np->rx_ring_size + 1034 np->tx_ring_size), 1035 np->rx_ring.ex, np->ring_addr); 1036 } 1037 kfree(np->rx_skb); 1038 kfree(np->tx_skb); 1039 } 1040 1041 static int using_multi_irqs(struct net_device *dev) 1042 { 1043 struct fe_priv *np = get_nvpriv(dev); 1044 1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1046 ((np->msi_flags & NV_MSI_X_ENABLED) && 1047 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1048 return 0; 1049 else 1050 return 1; 1051 } 1052 1053 static void nv_txrx_gate(struct net_device *dev, bool gate) 1054 { 1055 struct fe_priv *np = get_nvpriv(dev); 1056 u8 __iomem *base = get_hwbase(dev); 1057 u32 powerstate; 1058 1059 if (!np->mac_in_use && 1060 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1061 powerstate = readl(base + NvRegPowerState2); 1062 if (gate) 1063 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1064 else 1065 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1066 writel(powerstate, base + NvRegPowerState2); 1067 } 1068 } 1069 1070 static void nv_enable_irq(struct net_device *dev) 1071 { 1072 struct fe_priv *np = get_nvpriv(dev); 1073 1074 if (!using_multi_irqs(dev)) { 1075 if (np->msi_flags & NV_MSI_X_ENABLED) 1076 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1077 else 1078 enable_irq(np->pci_dev->irq); 1079 } else { 1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1082 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1083 } 1084 } 1085 1086 static void nv_disable_irq(struct net_device *dev) 1087 { 1088 struct fe_priv *np = get_nvpriv(dev); 1089 1090 if (!using_multi_irqs(dev)) { 1091 if (np->msi_flags & NV_MSI_X_ENABLED) 1092 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1093 else 1094 disable_irq(np->pci_dev->irq); 1095 } else { 1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1098 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1099 } 1100 } 1101 1102 /* In MSIX mode, a write to irqmask behaves as XOR */ 1103 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1104 { 1105 u8 __iomem *base = get_hwbase(dev); 1106 1107 writel(mask, base + NvRegIrqMask); 1108 } 1109 1110 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1111 { 1112 struct fe_priv *np = get_nvpriv(dev); 1113 u8 __iomem *base = get_hwbase(dev); 1114 1115 if (np->msi_flags & NV_MSI_X_ENABLED) { 1116 writel(mask, base + NvRegIrqMask); 1117 } else { 1118 if (np->msi_flags & NV_MSI_ENABLED) 1119 writel(0, base + NvRegMSIIrqMask); 1120 writel(0, base + NvRegIrqMask); 1121 } 1122 } 1123 1124 static void nv_napi_enable(struct net_device *dev) 1125 { 1126 struct fe_priv *np = get_nvpriv(dev); 1127 1128 napi_enable(&np->napi); 1129 } 1130 1131 static void nv_napi_disable(struct net_device *dev) 1132 { 1133 struct fe_priv *np = get_nvpriv(dev); 1134 1135 napi_disable(&np->napi); 1136 } 1137 1138 #define MII_READ (-1) 1139 /* mii_rw: read/write a register on the PHY. 1140 * 1141 * Caller must guarantee serialization 1142 */ 1143 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1144 { 1145 u8 __iomem *base = get_hwbase(dev); 1146 u32 reg; 1147 int retval; 1148 1149 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1150 1151 reg = readl(base + NvRegMIIControl); 1152 if (reg & NVREG_MIICTL_INUSE) { 1153 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1154 udelay(NV_MIIBUSY_DELAY); 1155 } 1156 1157 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1158 if (value != MII_READ) { 1159 writel(value, base + NvRegMIIData); 1160 reg |= NVREG_MIICTL_WRITE; 1161 } 1162 writel(reg, base + NvRegMIIControl); 1163 1164 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1165 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1166 retval = -1; 1167 } else if (value != MII_READ) { 1168 /* it was a write operation - fewer failures are detectable */ 1169 retval = 0; 1170 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1171 retval = -1; 1172 } else { 1173 retval = readl(base + NvRegMIIData); 1174 } 1175 1176 return retval; 1177 } 1178 1179 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1180 { 1181 struct fe_priv *np = netdev_priv(dev); 1182 u32 miicontrol; 1183 unsigned int tries = 0; 1184 1185 miicontrol = BMCR_RESET | bmcr_setup; 1186 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1187 return -1; 1188 1189 /* wait for 500ms */ 1190 msleep(500); 1191 1192 /* must wait till reset is deasserted */ 1193 while (miicontrol & BMCR_RESET) { 1194 usleep_range(10000, 20000); 1195 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1196 /* FIXME: 100 tries seem excessive */ 1197 if (tries++ > 100) 1198 return -1; 1199 } 1200 return 0; 1201 } 1202 1203 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1204 { 1205 static const struct { 1206 int reg; 1207 int init; 1208 } ri[] = { 1209 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1210 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1211 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1212 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1213 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1214 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1215 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1216 }; 1217 int i; 1218 1219 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1220 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1221 return PHY_ERROR; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1228 { 1229 u32 reg; 1230 u8 __iomem *base = get_hwbase(dev); 1231 u32 powerstate = readl(base + NvRegPowerState2); 1232 1233 /* need to perform hw phy reset */ 1234 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1235 writel(powerstate, base + NvRegPowerState2); 1236 msleep(25); 1237 1238 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1239 writel(powerstate, base + NvRegPowerState2); 1240 msleep(25); 1241 1242 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1243 reg |= PHY_REALTEK_INIT9; 1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1245 return PHY_ERROR; 1246 if (mii_rw(dev, np->phyaddr, 1247 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1248 return PHY_ERROR; 1249 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1250 if (!(reg & PHY_REALTEK_INIT11)) { 1251 reg |= PHY_REALTEK_INIT11; 1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1253 return PHY_ERROR; 1254 } 1255 if (mii_rw(dev, np->phyaddr, 1256 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1257 return PHY_ERROR; 1258 1259 return 0; 1260 } 1261 1262 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1263 { 1264 u32 phy_reserved; 1265 1266 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1267 phy_reserved = mii_rw(dev, np->phyaddr, 1268 PHY_REALTEK_INIT_REG6, MII_READ); 1269 phy_reserved |= PHY_REALTEK_INIT7; 1270 if (mii_rw(dev, np->phyaddr, 1271 PHY_REALTEK_INIT_REG6, phy_reserved)) 1272 return PHY_ERROR; 1273 } 1274 1275 return 0; 1276 } 1277 1278 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1279 { 1280 u32 phy_reserved; 1281 1282 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1283 if (mii_rw(dev, np->phyaddr, 1284 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1285 return PHY_ERROR; 1286 phy_reserved = mii_rw(dev, np->phyaddr, 1287 PHY_REALTEK_INIT_REG2, MII_READ); 1288 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1289 phy_reserved |= PHY_REALTEK_INIT3; 1290 if (mii_rw(dev, np->phyaddr, 1291 PHY_REALTEK_INIT_REG2, phy_reserved)) 1292 return PHY_ERROR; 1293 if (mii_rw(dev, np->phyaddr, 1294 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1295 return PHY_ERROR; 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1302 u32 phyinterface) 1303 { 1304 u32 phy_reserved; 1305 1306 if (phyinterface & PHY_RGMII) { 1307 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1308 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1309 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1310 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1311 return PHY_ERROR; 1312 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1313 phy_reserved |= PHY_CICADA_INIT5; 1314 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1315 return PHY_ERROR; 1316 } 1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1318 phy_reserved |= PHY_CICADA_INIT6; 1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1320 return PHY_ERROR; 1321 1322 return 0; 1323 } 1324 1325 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1326 { 1327 u32 phy_reserved; 1328 1329 if (mii_rw(dev, np->phyaddr, 1330 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1331 return PHY_ERROR; 1332 if (mii_rw(dev, np->phyaddr, 1333 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1334 return PHY_ERROR; 1335 phy_reserved = mii_rw(dev, np->phyaddr, 1336 PHY_VITESSE_INIT_REG4, MII_READ); 1337 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1338 return PHY_ERROR; 1339 phy_reserved = mii_rw(dev, np->phyaddr, 1340 PHY_VITESSE_INIT_REG3, MII_READ); 1341 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1342 phy_reserved |= PHY_VITESSE_INIT3; 1343 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1344 return PHY_ERROR; 1345 if (mii_rw(dev, np->phyaddr, 1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1347 return PHY_ERROR; 1348 if (mii_rw(dev, np->phyaddr, 1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1350 return PHY_ERROR; 1351 phy_reserved = mii_rw(dev, np->phyaddr, 1352 PHY_VITESSE_INIT_REG4, MII_READ); 1353 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1354 phy_reserved |= PHY_VITESSE_INIT3; 1355 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1356 return PHY_ERROR; 1357 phy_reserved = mii_rw(dev, np->phyaddr, 1358 PHY_VITESSE_INIT_REG3, MII_READ); 1359 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1360 return PHY_ERROR; 1361 if (mii_rw(dev, np->phyaddr, 1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1363 return PHY_ERROR; 1364 if (mii_rw(dev, np->phyaddr, 1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1366 return PHY_ERROR; 1367 phy_reserved = mii_rw(dev, np->phyaddr, 1368 PHY_VITESSE_INIT_REG4, MII_READ); 1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1370 return PHY_ERROR; 1371 phy_reserved = mii_rw(dev, np->phyaddr, 1372 PHY_VITESSE_INIT_REG3, MII_READ); 1373 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1374 phy_reserved |= PHY_VITESSE_INIT8; 1375 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1376 return PHY_ERROR; 1377 if (mii_rw(dev, np->phyaddr, 1378 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1379 return PHY_ERROR; 1380 if (mii_rw(dev, np->phyaddr, 1381 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1382 return PHY_ERROR; 1383 1384 return 0; 1385 } 1386 1387 static int phy_init(struct net_device *dev) 1388 { 1389 struct fe_priv *np = get_nvpriv(dev); 1390 u8 __iomem *base = get_hwbase(dev); 1391 u32 phyinterface; 1392 u32 mii_status, mii_control, mii_control_1000, reg; 1393 1394 /* phy errata for E3016 phy */ 1395 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1396 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1397 reg &= ~PHY_MARVELL_E3016_INITMASK; 1398 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1399 netdev_info(dev, "%s: phy write to errata reg failed\n", 1400 pci_name(np->pci_dev)); 1401 return PHY_ERROR; 1402 } 1403 } 1404 if (np->phy_oui == PHY_OUI_REALTEK) { 1405 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1406 np->phy_rev == PHY_REV_REALTEK_8211B) { 1407 if (init_realtek_8211b(dev, np)) { 1408 netdev_info(dev, "%s: phy init failed\n", 1409 pci_name(np->pci_dev)); 1410 return PHY_ERROR; 1411 } 1412 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1413 np->phy_rev == PHY_REV_REALTEK_8211C) { 1414 if (init_realtek_8211c(dev, np)) { 1415 netdev_info(dev, "%s: phy init failed\n", 1416 pci_name(np->pci_dev)); 1417 return PHY_ERROR; 1418 } 1419 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1420 if (init_realtek_8201(dev, np)) { 1421 netdev_info(dev, "%s: phy init failed\n", 1422 pci_name(np->pci_dev)); 1423 return PHY_ERROR; 1424 } 1425 } 1426 } 1427 1428 /* set advertise register */ 1429 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1430 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1431 ADVERTISE_100HALF | ADVERTISE_100FULL | 1432 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1433 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1434 netdev_info(dev, "%s: phy write to advertise failed\n", 1435 pci_name(np->pci_dev)); 1436 return PHY_ERROR; 1437 } 1438 1439 /* get phy interface type */ 1440 phyinterface = readl(base + NvRegPhyInterface); 1441 1442 /* see if gigabit phy */ 1443 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1444 if (mii_status & PHY_GIGABIT) { 1445 np->gigabit = PHY_GIGABIT; 1446 mii_control_1000 = mii_rw(dev, np->phyaddr, 1447 MII_CTRL1000, MII_READ); 1448 mii_control_1000 &= ~ADVERTISE_1000HALF; 1449 if (phyinterface & PHY_RGMII) 1450 mii_control_1000 |= ADVERTISE_1000FULL; 1451 else 1452 mii_control_1000 &= ~ADVERTISE_1000FULL; 1453 1454 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1455 netdev_info(dev, "%s: phy init failed\n", 1456 pci_name(np->pci_dev)); 1457 return PHY_ERROR; 1458 } 1459 } else 1460 np->gigabit = 0; 1461 1462 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1463 mii_control |= BMCR_ANENABLE; 1464 1465 if (np->phy_oui == PHY_OUI_REALTEK && 1466 np->phy_model == PHY_MODEL_REALTEK_8211 && 1467 np->phy_rev == PHY_REV_REALTEK_8211C) { 1468 /* start autoneg since we already performed hw reset above */ 1469 mii_control |= BMCR_ANRESTART; 1470 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1471 netdev_info(dev, "%s: phy init failed\n", 1472 pci_name(np->pci_dev)); 1473 return PHY_ERROR; 1474 } 1475 } else { 1476 /* reset the phy 1477 * (certain phys need bmcr to be setup with reset) 1478 */ 1479 if (phy_reset(dev, mii_control)) { 1480 netdev_info(dev, "%s: phy reset failed\n", 1481 pci_name(np->pci_dev)); 1482 return PHY_ERROR; 1483 } 1484 } 1485 1486 /* phy vendor specific configuration */ 1487 if (np->phy_oui == PHY_OUI_CICADA) { 1488 if (init_cicada(dev, np, phyinterface)) { 1489 netdev_info(dev, "%s: phy init failed\n", 1490 pci_name(np->pci_dev)); 1491 return PHY_ERROR; 1492 } 1493 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1494 if (init_vitesse(dev, np)) { 1495 netdev_info(dev, "%s: phy init failed\n", 1496 pci_name(np->pci_dev)); 1497 return PHY_ERROR; 1498 } 1499 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1500 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1501 np->phy_rev == PHY_REV_REALTEK_8211B) { 1502 /* reset could have cleared these out, set them back */ 1503 if (init_realtek_8211b(dev, np)) { 1504 netdev_info(dev, "%s: phy init failed\n", 1505 pci_name(np->pci_dev)); 1506 return PHY_ERROR; 1507 } 1508 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1509 if (init_realtek_8201(dev, np) || 1510 init_realtek_8201_cross(dev, np)) { 1511 netdev_info(dev, "%s: phy init failed\n", 1512 pci_name(np->pci_dev)); 1513 return PHY_ERROR; 1514 } 1515 } 1516 } 1517 1518 /* some phys clear out pause advertisement on reset, set it back */ 1519 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1520 1521 /* restart auto negotiation, power down phy */ 1522 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1523 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1524 if (phy_power_down) 1525 mii_control |= BMCR_PDOWN; 1526 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1527 return PHY_ERROR; 1528 1529 return 0; 1530 } 1531 1532 static void nv_start_rx(struct net_device *dev) 1533 { 1534 struct fe_priv *np = netdev_priv(dev); 1535 u8 __iomem *base = get_hwbase(dev); 1536 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1537 1538 /* Already running? Stop it. */ 1539 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1540 rx_ctrl &= ~NVREG_RCVCTL_START; 1541 writel(rx_ctrl, base + NvRegReceiverControl); 1542 pci_push(base); 1543 } 1544 writel(np->linkspeed, base + NvRegLinkSpeed); 1545 pci_push(base); 1546 rx_ctrl |= NVREG_RCVCTL_START; 1547 if (np->mac_in_use) 1548 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1549 writel(rx_ctrl, base + NvRegReceiverControl); 1550 pci_push(base); 1551 } 1552 1553 static void nv_stop_rx(struct net_device *dev) 1554 { 1555 struct fe_priv *np = netdev_priv(dev); 1556 u8 __iomem *base = get_hwbase(dev); 1557 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1558 1559 if (!np->mac_in_use) 1560 rx_ctrl &= ~NVREG_RCVCTL_START; 1561 else 1562 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1563 writel(rx_ctrl, base + NvRegReceiverControl); 1564 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1565 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1566 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1567 __func__); 1568 1569 udelay(NV_RXSTOP_DELAY2); 1570 if (!np->mac_in_use) 1571 writel(0, base + NvRegLinkSpeed); 1572 } 1573 1574 static void nv_start_tx(struct net_device *dev) 1575 { 1576 struct fe_priv *np = netdev_priv(dev); 1577 u8 __iomem *base = get_hwbase(dev); 1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1579 1580 tx_ctrl |= NVREG_XMITCTL_START; 1581 if (np->mac_in_use) 1582 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1583 writel(tx_ctrl, base + NvRegTransmitterControl); 1584 pci_push(base); 1585 } 1586 1587 static void nv_stop_tx(struct net_device *dev) 1588 { 1589 struct fe_priv *np = netdev_priv(dev); 1590 u8 __iomem *base = get_hwbase(dev); 1591 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1592 1593 if (!np->mac_in_use) 1594 tx_ctrl &= ~NVREG_XMITCTL_START; 1595 else 1596 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1597 writel(tx_ctrl, base + NvRegTransmitterControl); 1598 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1599 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1600 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1601 __func__); 1602 1603 udelay(NV_TXSTOP_DELAY2); 1604 if (!np->mac_in_use) 1605 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1606 base + NvRegTransmitPoll); 1607 } 1608 1609 static void nv_start_rxtx(struct net_device *dev) 1610 { 1611 nv_start_rx(dev); 1612 nv_start_tx(dev); 1613 } 1614 1615 static void nv_stop_rxtx(struct net_device *dev) 1616 { 1617 nv_stop_rx(dev); 1618 nv_stop_tx(dev); 1619 } 1620 1621 static void nv_txrx_reset(struct net_device *dev) 1622 { 1623 struct fe_priv *np = netdev_priv(dev); 1624 u8 __iomem *base = get_hwbase(dev); 1625 1626 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1627 pci_push(base); 1628 udelay(NV_TXRX_RESET_DELAY); 1629 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1630 pci_push(base); 1631 } 1632 1633 static void nv_mac_reset(struct net_device *dev) 1634 { 1635 struct fe_priv *np = netdev_priv(dev); 1636 u8 __iomem *base = get_hwbase(dev); 1637 u32 temp1, temp2, temp3; 1638 1639 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1640 pci_push(base); 1641 1642 /* save registers since they will be cleared on reset */ 1643 temp1 = readl(base + NvRegMacAddrA); 1644 temp2 = readl(base + NvRegMacAddrB); 1645 temp3 = readl(base + NvRegTransmitPoll); 1646 1647 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1648 pci_push(base); 1649 udelay(NV_MAC_RESET_DELAY); 1650 writel(0, base + NvRegMacReset); 1651 pci_push(base); 1652 udelay(NV_MAC_RESET_DELAY); 1653 1654 /* restore saved registers */ 1655 writel(temp1, base + NvRegMacAddrA); 1656 writel(temp2, base + NvRegMacAddrB); 1657 writel(temp3, base + NvRegTransmitPoll); 1658 1659 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1660 pci_push(base); 1661 } 1662 1663 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1664 static void nv_update_stats(struct net_device *dev) 1665 { 1666 struct fe_priv *np = netdev_priv(dev); 1667 u8 __iomem *base = get_hwbase(dev); 1668 1669 /* If it happens that this is run in top-half context, then 1670 * replace the spin_lock of hwstats_lock with 1671 * spin_lock_irqsave() in calling functions. */ 1672 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1673 assert_spin_locked(&np->hwstats_lock); 1674 1675 /* query hardware */ 1676 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1677 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1678 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1679 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1680 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1681 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1682 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1683 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1684 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1685 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1686 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1687 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1688 np->estats.rx_runt += readl(base + NvRegRxRunt); 1689 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1690 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1691 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1692 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1693 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1694 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1695 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1696 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1697 np->estats.rx_packets = 1698 np->estats.rx_unicast + 1699 np->estats.rx_multicast + 1700 np->estats.rx_broadcast; 1701 np->estats.rx_errors_total = 1702 np->estats.rx_crc_errors + 1703 np->estats.rx_over_errors + 1704 np->estats.rx_frame_error + 1705 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1706 np->estats.rx_late_collision + 1707 np->estats.rx_runt + 1708 np->estats.rx_frame_too_long; 1709 np->estats.tx_errors_total = 1710 np->estats.tx_late_collision + 1711 np->estats.tx_fifo_errors + 1712 np->estats.tx_carrier_errors + 1713 np->estats.tx_excess_deferral + 1714 np->estats.tx_retry_error; 1715 1716 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1717 np->estats.tx_deferral += readl(base + NvRegTxDef); 1718 np->estats.tx_packets += readl(base + NvRegTxFrame); 1719 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1720 np->estats.tx_pause += readl(base + NvRegTxPause); 1721 np->estats.rx_pause += readl(base + NvRegRxPause); 1722 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1723 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1724 } 1725 1726 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1727 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1728 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1729 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1730 } 1731 } 1732 1733 static void nv_get_stats(int cpu, struct fe_priv *np, 1734 struct rtnl_link_stats64 *storage) 1735 { 1736 struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu); 1737 unsigned int syncp_start; 1738 u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors; 1739 u64 tx_packets, tx_bytes, tx_dropped; 1740 1741 do { 1742 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp); 1743 rx_packets = src->stat_rx_packets; 1744 rx_bytes = src->stat_rx_bytes; 1745 rx_dropped = src->stat_rx_dropped; 1746 rx_missed_errors = src->stat_rx_missed_errors; 1747 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start)); 1748 1749 storage->rx_packets += rx_packets; 1750 storage->rx_bytes += rx_bytes; 1751 storage->rx_dropped += rx_dropped; 1752 storage->rx_missed_errors += rx_missed_errors; 1753 1754 do { 1755 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp); 1756 tx_packets = src->stat_tx_packets; 1757 tx_bytes = src->stat_tx_bytes; 1758 tx_dropped = src->stat_tx_dropped; 1759 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start)); 1760 1761 storage->tx_packets += tx_packets; 1762 storage->tx_bytes += tx_bytes; 1763 storage->tx_dropped += tx_dropped; 1764 } 1765 1766 /* 1767 * nv_get_stats64: dev->ndo_get_stats64 function 1768 * Get latest stats value from the nic. 1769 * Called with read_lock(&dev_base_lock) held for read - 1770 * only synchronized against unregister_netdevice. 1771 */ 1772 static void 1773 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1774 __acquires(&netdev_priv(dev)->hwstats_lock) 1775 __releases(&netdev_priv(dev)->hwstats_lock) 1776 { 1777 struct fe_priv *np = netdev_priv(dev); 1778 int cpu; 1779 1780 /* 1781 * Note: because HW stats are not always available and for 1782 * consistency reasons, the following ifconfig stats are 1783 * managed by software: rx_bytes, tx_bytes, rx_packets and 1784 * tx_packets. The related hardware stats reported by ethtool 1785 * should be equivalent to these ifconfig stats, with 4 1786 * additional bytes per packet (Ethernet FCS CRC), except for 1787 * tx_packets when TSO kicks in. 1788 */ 1789 1790 /* software stats */ 1791 for_each_online_cpu(cpu) 1792 nv_get_stats(cpu, np, storage); 1793 1794 /* If the nic supports hw counters then retrieve latest values */ 1795 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1796 spin_lock_bh(&np->hwstats_lock); 1797 1798 nv_update_stats(dev); 1799 1800 /* generic stats */ 1801 storage->rx_errors = np->estats.rx_errors_total; 1802 storage->tx_errors = np->estats.tx_errors_total; 1803 1804 /* meaningful only when NIC supports stats v3 */ 1805 storage->multicast = np->estats.rx_multicast; 1806 1807 /* detailed rx_errors */ 1808 storage->rx_length_errors = np->estats.rx_length_error; 1809 storage->rx_over_errors = np->estats.rx_over_errors; 1810 storage->rx_crc_errors = np->estats.rx_crc_errors; 1811 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1812 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1813 1814 /* detailed tx_errors */ 1815 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1816 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1817 1818 spin_unlock_bh(&np->hwstats_lock); 1819 } 1820 } 1821 1822 /* 1823 * nv_alloc_rx: fill rx ring entries. 1824 * Return 1 if the allocations for the skbs failed and the 1825 * rx engine is without Available descriptors 1826 */ 1827 static int nv_alloc_rx(struct net_device *dev) 1828 { 1829 struct fe_priv *np = netdev_priv(dev); 1830 struct ring_desc *less_rx; 1831 1832 less_rx = np->get_rx.orig; 1833 if (less_rx-- == np->rx_ring.orig) 1834 less_rx = np->last_rx.orig; 1835 1836 while (np->put_rx.orig != less_rx) { 1837 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1838 if (likely(skb)) { 1839 np->put_rx_ctx->skb = skb; 1840 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1841 skb->data, 1842 skb_tailroom(skb), 1843 DMA_FROM_DEVICE); 1844 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1845 np->put_rx_ctx->dma))) { 1846 kfree_skb(skb); 1847 goto packet_dropped; 1848 } 1849 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1850 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1851 wmb(); 1852 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1853 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1854 np->put_rx.orig = np->rx_ring.orig; 1855 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1856 np->put_rx_ctx = np->rx_skb; 1857 } else { 1858 packet_dropped: 1859 u64_stats_update_begin(&np->swstats_rx_syncp); 1860 nv_txrx_stats_inc(stat_rx_dropped); 1861 u64_stats_update_end(&np->swstats_rx_syncp); 1862 return 1; 1863 } 1864 } 1865 return 0; 1866 } 1867 1868 static int nv_alloc_rx_optimized(struct net_device *dev) 1869 { 1870 struct fe_priv *np = netdev_priv(dev); 1871 struct ring_desc_ex *less_rx; 1872 1873 less_rx = np->get_rx.ex; 1874 if (less_rx-- == np->rx_ring.ex) 1875 less_rx = np->last_rx.ex; 1876 1877 while (np->put_rx.ex != less_rx) { 1878 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1879 if (likely(skb)) { 1880 np->put_rx_ctx->skb = skb; 1881 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1882 skb->data, 1883 skb_tailroom(skb), 1884 DMA_FROM_DEVICE); 1885 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1886 np->put_rx_ctx->dma))) { 1887 kfree_skb(skb); 1888 goto packet_dropped; 1889 } 1890 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1891 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1892 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1893 wmb(); 1894 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1895 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1896 np->put_rx.ex = np->rx_ring.ex; 1897 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1898 np->put_rx_ctx = np->rx_skb; 1899 } else { 1900 packet_dropped: 1901 u64_stats_update_begin(&np->swstats_rx_syncp); 1902 nv_txrx_stats_inc(stat_rx_dropped); 1903 u64_stats_update_end(&np->swstats_rx_syncp); 1904 return 1; 1905 } 1906 } 1907 return 0; 1908 } 1909 1910 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1911 static void nv_do_rx_refill(struct timer_list *t) 1912 { 1913 struct fe_priv *np = from_timer(np, t, oom_kick); 1914 1915 /* Just reschedule NAPI rx processing */ 1916 napi_schedule(&np->napi); 1917 } 1918 1919 static void nv_init_rx(struct net_device *dev) 1920 { 1921 struct fe_priv *np = netdev_priv(dev); 1922 int i; 1923 1924 np->get_rx = np->rx_ring; 1925 np->put_rx = np->rx_ring; 1926 1927 if (!nv_optimized(np)) 1928 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1929 else 1930 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1931 np->get_rx_ctx = np->rx_skb; 1932 np->put_rx_ctx = np->rx_skb; 1933 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1934 1935 for (i = 0; i < np->rx_ring_size; i++) { 1936 if (!nv_optimized(np)) { 1937 np->rx_ring.orig[i].flaglen = 0; 1938 np->rx_ring.orig[i].buf = 0; 1939 } else { 1940 np->rx_ring.ex[i].flaglen = 0; 1941 np->rx_ring.ex[i].txvlan = 0; 1942 np->rx_ring.ex[i].bufhigh = 0; 1943 np->rx_ring.ex[i].buflow = 0; 1944 } 1945 np->rx_skb[i].skb = NULL; 1946 np->rx_skb[i].dma = 0; 1947 } 1948 } 1949 1950 static void nv_init_tx(struct net_device *dev) 1951 { 1952 struct fe_priv *np = netdev_priv(dev); 1953 int i; 1954 1955 np->get_tx = np->tx_ring; 1956 np->put_tx = np->tx_ring; 1957 1958 if (!nv_optimized(np)) 1959 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1960 else 1961 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1962 np->get_tx_ctx = np->tx_skb; 1963 np->put_tx_ctx = np->tx_skb; 1964 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1965 netdev_reset_queue(np->dev); 1966 np->tx_pkts_in_progress = 0; 1967 np->tx_change_owner = NULL; 1968 np->tx_end_flip = NULL; 1969 np->tx_stop = 0; 1970 1971 for (i = 0; i < np->tx_ring_size; i++) { 1972 if (!nv_optimized(np)) { 1973 np->tx_ring.orig[i].flaglen = 0; 1974 np->tx_ring.orig[i].buf = 0; 1975 } else { 1976 np->tx_ring.ex[i].flaglen = 0; 1977 np->tx_ring.ex[i].txvlan = 0; 1978 np->tx_ring.ex[i].bufhigh = 0; 1979 np->tx_ring.ex[i].buflow = 0; 1980 } 1981 np->tx_skb[i].skb = NULL; 1982 np->tx_skb[i].dma = 0; 1983 np->tx_skb[i].dma_len = 0; 1984 np->tx_skb[i].dma_single = 0; 1985 np->tx_skb[i].first_tx_desc = NULL; 1986 np->tx_skb[i].next_tx_ctx = NULL; 1987 } 1988 } 1989 1990 static int nv_init_ring(struct net_device *dev) 1991 { 1992 struct fe_priv *np = netdev_priv(dev); 1993 1994 nv_init_tx(dev); 1995 nv_init_rx(dev); 1996 1997 if (!nv_optimized(np)) 1998 return nv_alloc_rx(dev); 1999 else 2000 return nv_alloc_rx_optimized(dev); 2001 } 2002 2003 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 2004 { 2005 if (tx_skb->dma) { 2006 if (tx_skb->dma_single) 2007 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma, 2008 tx_skb->dma_len, 2009 DMA_TO_DEVICE); 2010 else 2011 dma_unmap_page(&np->pci_dev->dev, tx_skb->dma, 2012 tx_skb->dma_len, 2013 DMA_TO_DEVICE); 2014 tx_skb->dma = 0; 2015 } 2016 } 2017 2018 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 2019 { 2020 nv_unmap_txskb(np, tx_skb); 2021 if (tx_skb->skb) { 2022 dev_kfree_skb_any(tx_skb->skb); 2023 tx_skb->skb = NULL; 2024 return 1; 2025 } 2026 return 0; 2027 } 2028 2029 static void nv_drain_tx(struct net_device *dev) 2030 { 2031 struct fe_priv *np = netdev_priv(dev); 2032 unsigned int i; 2033 2034 for (i = 0; i < np->tx_ring_size; i++) { 2035 if (!nv_optimized(np)) { 2036 np->tx_ring.orig[i].flaglen = 0; 2037 np->tx_ring.orig[i].buf = 0; 2038 } else { 2039 np->tx_ring.ex[i].flaglen = 0; 2040 np->tx_ring.ex[i].txvlan = 0; 2041 np->tx_ring.ex[i].bufhigh = 0; 2042 np->tx_ring.ex[i].buflow = 0; 2043 } 2044 if (nv_release_txskb(np, &np->tx_skb[i])) { 2045 u64_stats_update_begin(&np->swstats_tx_syncp); 2046 nv_txrx_stats_inc(stat_tx_dropped); 2047 u64_stats_update_end(&np->swstats_tx_syncp); 2048 } 2049 np->tx_skb[i].dma = 0; 2050 np->tx_skb[i].dma_len = 0; 2051 np->tx_skb[i].dma_single = 0; 2052 np->tx_skb[i].first_tx_desc = NULL; 2053 np->tx_skb[i].next_tx_ctx = NULL; 2054 } 2055 np->tx_pkts_in_progress = 0; 2056 np->tx_change_owner = NULL; 2057 np->tx_end_flip = NULL; 2058 } 2059 2060 static void nv_drain_rx(struct net_device *dev) 2061 { 2062 struct fe_priv *np = netdev_priv(dev); 2063 int i; 2064 2065 for (i = 0; i < np->rx_ring_size; i++) { 2066 if (!nv_optimized(np)) { 2067 np->rx_ring.orig[i].flaglen = 0; 2068 np->rx_ring.orig[i].buf = 0; 2069 } else { 2070 np->rx_ring.ex[i].flaglen = 0; 2071 np->rx_ring.ex[i].txvlan = 0; 2072 np->rx_ring.ex[i].bufhigh = 0; 2073 np->rx_ring.ex[i].buflow = 0; 2074 } 2075 wmb(); 2076 if (np->rx_skb[i].skb) { 2077 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma, 2078 (skb_end_pointer(np->rx_skb[i].skb) - 2079 np->rx_skb[i].skb->data), 2080 DMA_FROM_DEVICE); 2081 dev_kfree_skb(np->rx_skb[i].skb); 2082 np->rx_skb[i].skb = NULL; 2083 } 2084 } 2085 } 2086 2087 static void nv_drain_rxtx(struct net_device *dev) 2088 { 2089 nv_drain_tx(dev); 2090 nv_drain_rx(dev); 2091 } 2092 2093 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2094 { 2095 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2096 } 2097 2098 static void nv_legacybackoff_reseed(struct net_device *dev) 2099 { 2100 u8 __iomem *base = get_hwbase(dev); 2101 u32 reg; 2102 u32 low; 2103 int tx_status = 0; 2104 2105 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2106 get_random_bytes(&low, sizeof(low)); 2107 reg |= low & NVREG_SLOTTIME_MASK; 2108 2109 /* Need to stop tx before change takes effect. 2110 * Caller has already gained np->lock. 2111 */ 2112 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2113 if (tx_status) 2114 nv_stop_tx(dev); 2115 nv_stop_rx(dev); 2116 writel(reg, base + NvRegSlotTime); 2117 if (tx_status) 2118 nv_start_tx(dev); 2119 nv_start_rx(dev); 2120 } 2121 2122 /* Gear Backoff Seeds */ 2123 #define BACKOFF_SEEDSET_ROWS 8 2124 #define BACKOFF_SEEDSET_LFSRS 15 2125 2126 /* Known Good seed sets */ 2127 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2128 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2129 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2130 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2131 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2132 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2133 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2134 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2135 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2136 2137 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2138 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2139 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2140 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2141 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2142 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2143 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2144 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2145 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2146 2147 static void nv_gear_backoff_reseed(struct net_device *dev) 2148 { 2149 u8 __iomem *base = get_hwbase(dev); 2150 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2151 u32 temp, seedset, combinedSeed; 2152 int i; 2153 2154 /* Setup seed for free running LFSR */ 2155 /* We are going to read the time stamp counter 3 times 2156 and swizzle bits around to increase randomness */ 2157 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2158 miniseed1 &= 0x0fff; 2159 if (miniseed1 == 0) 2160 miniseed1 = 0xabc; 2161 2162 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2163 miniseed2 &= 0x0fff; 2164 if (miniseed2 == 0) 2165 miniseed2 = 0xabc; 2166 miniseed2_reversed = 2167 ((miniseed2 & 0xF00) >> 8) | 2168 (miniseed2 & 0x0F0) | 2169 ((miniseed2 & 0x00F) << 8); 2170 2171 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2172 miniseed3 &= 0x0fff; 2173 if (miniseed3 == 0) 2174 miniseed3 = 0xabc; 2175 miniseed3_reversed = 2176 ((miniseed3 & 0xF00) >> 8) | 2177 (miniseed3 & 0x0F0) | 2178 ((miniseed3 & 0x00F) << 8); 2179 2180 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2181 (miniseed2 ^ miniseed3_reversed); 2182 2183 /* Seeds can not be zero */ 2184 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2185 combinedSeed |= 0x08; 2186 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2187 combinedSeed |= 0x8000; 2188 2189 /* No need to disable tx here */ 2190 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2191 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2192 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2193 writel(temp, base + NvRegBackOffControl); 2194 2195 /* Setup seeds for all gear LFSRs. */ 2196 get_random_bytes(&seedset, sizeof(seedset)); 2197 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2198 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2199 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2200 temp |= main_seedset[seedset][i-1] & 0x3ff; 2201 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2202 writel(temp, base + NvRegBackOffControl); 2203 } 2204 } 2205 2206 /* 2207 * nv_start_xmit: dev->hard_start_xmit function 2208 * Called with netif_tx_lock held. 2209 */ 2210 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2211 { 2212 struct fe_priv *np = netdev_priv(dev); 2213 u32 tx_flags = 0; 2214 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2215 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2216 unsigned int i; 2217 u32 offset = 0; 2218 u32 bcnt; 2219 u32 size = skb_headlen(skb); 2220 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2221 u32 empty_slots; 2222 struct ring_desc *put_tx; 2223 struct ring_desc *start_tx; 2224 struct ring_desc *prev_tx; 2225 struct nv_skb_map *prev_tx_ctx; 2226 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL; 2227 unsigned long flags; 2228 netdev_tx_t ret = NETDEV_TX_OK; 2229 2230 /* add fragments to entries count */ 2231 for (i = 0; i < fragments; i++) { 2232 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2233 2234 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2235 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2236 } 2237 2238 spin_lock_irqsave(&np->lock, flags); 2239 empty_slots = nv_get_empty_tx_slots(np); 2240 if (unlikely(empty_slots <= entries)) { 2241 netif_stop_queue(dev); 2242 np->tx_stop = 1; 2243 spin_unlock_irqrestore(&np->lock, flags); 2244 2245 /* When normal packets and/or xmit_more packets fill up 2246 * tx_desc, it is necessary to trigger NIC tx reg. 2247 */ 2248 ret = NETDEV_TX_BUSY; 2249 goto txkick; 2250 } 2251 spin_unlock_irqrestore(&np->lock, flags); 2252 2253 start_tx = put_tx = np->put_tx.orig; 2254 2255 /* setup the header buffer */ 2256 do { 2257 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2258 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2259 skb->data + offset, bcnt, 2260 DMA_TO_DEVICE); 2261 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2262 np->put_tx_ctx->dma))) { 2263 /* on DMA mapping error - drop the packet */ 2264 dev_kfree_skb_any(skb); 2265 u64_stats_update_begin(&np->swstats_tx_syncp); 2266 nv_txrx_stats_inc(stat_tx_dropped); 2267 u64_stats_update_end(&np->swstats_tx_syncp); 2268 2269 ret = NETDEV_TX_OK; 2270 2271 goto dma_error; 2272 } 2273 np->put_tx_ctx->dma_len = bcnt; 2274 np->put_tx_ctx->dma_single = 1; 2275 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2276 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2277 2278 tx_flags = np->tx_flags; 2279 offset += bcnt; 2280 size -= bcnt; 2281 if (unlikely(put_tx++ == np->last_tx.orig)) 2282 put_tx = np->tx_ring.orig; 2283 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2284 np->put_tx_ctx = np->tx_skb; 2285 } while (size); 2286 2287 /* setup the fragments */ 2288 for (i = 0; i < fragments; i++) { 2289 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2290 u32 frag_size = skb_frag_size(frag); 2291 offset = 0; 2292 2293 do { 2294 if (!start_tx_ctx) 2295 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2296 2297 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2298 np->put_tx_ctx->dma = skb_frag_dma_map( 2299 &np->pci_dev->dev, 2300 frag, offset, 2301 bcnt, 2302 DMA_TO_DEVICE); 2303 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2304 np->put_tx_ctx->dma))) { 2305 2306 /* Unwind the mapped fragments */ 2307 do { 2308 nv_unmap_txskb(np, start_tx_ctx); 2309 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2310 tmp_tx_ctx = np->tx_skb; 2311 } while (tmp_tx_ctx != np->put_tx_ctx); 2312 dev_kfree_skb_any(skb); 2313 np->put_tx_ctx = start_tx_ctx; 2314 u64_stats_update_begin(&np->swstats_tx_syncp); 2315 nv_txrx_stats_inc(stat_tx_dropped); 2316 u64_stats_update_end(&np->swstats_tx_syncp); 2317 2318 ret = NETDEV_TX_OK; 2319 2320 goto dma_error; 2321 } 2322 2323 np->put_tx_ctx->dma_len = bcnt; 2324 np->put_tx_ctx->dma_single = 0; 2325 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2326 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2327 2328 offset += bcnt; 2329 frag_size -= bcnt; 2330 if (unlikely(put_tx++ == np->last_tx.orig)) 2331 put_tx = np->tx_ring.orig; 2332 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2333 np->put_tx_ctx = np->tx_skb; 2334 } while (frag_size); 2335 } 2336 2337 if (unlikely(put_tx == np->tx_ring.orig)) 2338 prev_tx = np->last_tx.orig; 2339 else 2340 prev_tx = put_tx - 1; 2341 2342 if (unlikely(np->put_tx_ctx == np->tx_skb)) 2343 prev_tx_ctx = np->last_tx_ctx; 2344 else 2345 prev_tx_ctx = np->put_tx_ctx - 1; 2346 2347 /* set last fragment flag */ 2348 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2349 2350 /* save skb in this slot's context area */ 2351 prev_tx_ctx->skb = skb; 2352 2353 if (skb_is_gso(skb)) 2354 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2355 else 2356 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2357 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2358 2359 spin_lock_irqsave(&np->lock, flags); 2360 2361 /* set tx flags */ 2362 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2363 2364 netdev_sent_queue(np->dev, skb->len); 2365 2366 skb_tx_timestamp(skb); 2367 2368 np->put_tx.orig = put_tx; 2369 2370 spin_unlock_irqrestore(&np->lock, flags); 2371 2372 txkick: 2373 if (netif_queue_stopped(dev) || !netdev_xmit_more()) { 2374 u32 txrxctl_kick; 2375 dma_error: 2376 txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits; 2377 writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl); 2378 } 2379 2380 return ret; 2381 } 2382 2383 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2384 struct net_device *dev) 2385 { 2386 struct fe_priv *np = netdev_priv(dev); 2387 u32 tx_flags = 0; 2388 u32 tx_flags_extra; 2389 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2390 unsigned int i; 2391 u32 offset = 0; 2392 u32 bcnt; 2393 u32 size = skb_headlen(skb); 2394 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2395 u32 empty_slots; 2396 struct ring_desc_ex *put_tx; 2397 struct ring_desc_ex *start_tx; 2398 struct ring_desc_ex *prev_tx; 2399 struct nv_skb_map *prev_tx_ctx; 2400 struct nv_skb_map *start_tx_ctx = NULL; 2401 struct nv_skb_map *tmp_tx_ctx = NULL; 2402 unsigned long flags; 2403 netdev_tx_t ret = NETDEV_TX_OK; 2404 2405 /* add fragments to entries count */ 2406 for (i = 0; i < fragments; i++) { 2407 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2408 2409 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2410 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2411 } 2412 2413 spin_lock_irqsave(&np->lock, flags); 2414 empty_slots = nv_get_empty_tx_slots(np); 2415 if (unlikely(empty_slots <= entries)) { 2416 netif_stop_queue(dev); 2417 np->tx_stop = 1; 2418 spin_unlock_irqrestore(&np->lock, flags); 2419 2420 /* When normal packets and/or xmit_more packets fill up 2421 * tx_desc, it is necessary to trigger NIC tx reg. 2422 */ 2423 ret = NETDEV_TX_BUSY; 2424 2425 goto txkick; 2426 } 2427 spin_unlock_irqrestore(&np->lock, flags); 2428 2429 start_tx = put_tx = np->put_tx.ex; 2430 start_tx_ctx = np->put_tx_ctx; 2431 2432 /* setup the header buffer */ 2433 do { 2434 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2435 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2436 skb->data + offset, bcnt, 2437 DMA_TO_DEVICE); 2438 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2439 np->put_tx_ctx->dma))) { 2440 /* on DMA mapping error - drop the packet */ 2441 dev_kfree_skb_any(skb); 2442 u64_stats_update_begin(&np->swstats_tx_syncp); 2443 nv_txrx_stats_inc(stat_tx_dropped); 2444 u64_stats_update_end(&np->swstats_tx_syncp); 2445 2446 ret = NETDEV_TX_OK; 2447 2448 goto dma_error; 2449 } 2450 np->put_tx_ctx->dma_len = bcnt; 2451 np->put_tx_ctx->dma_single = 1; 2452 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2453 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2454 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2455 2456 tx_flags = NV_TX2_VALID; 2457 offset += bcnt; 2458 size -= bcnt; 2459 if (unlikely(put_tx++ == np->last_tx.ex)) 2460 put_tx = np->tx_ring.ex; 2461 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2462 np->put_tx_ctx = np->tx_skb; 2463 } while (size); 2464 2465 /* setup the fragments */ 2466 for (i = 0; i < fragments; i++) { 2467 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2468 u32 frag_size = skb_frag_size(frag); 2469 offset = 0; 2470 2471 do { 2472 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2473 if (!start_tx_ctx) 2474 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2475 np->put_tx_ctx->dma = skb_frag_dma_map( 2476 &np->pci_dev->dev, 2477 frag, offset, 2478 bcnt, 2479 DMA_TO_DEVICE); 2480 2481 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2482 np->put_tx_ctx->dma))) { 2483 2484 /* Unwind the mapped fragments */ 2485 do { 2486 nv_unmap_txskb(np, start_tx_ctx); 2487 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2488 tmp_tx_ctx = np->tx_skb; 2489 } while (tmp_tx_ctx != np->put_tx_ctx); 2490 dev_kfree_skb_any(skb); 2491 np->put_tx_ctx = start_tx_ctx; 2492 u64_stats_update_begin(&np->swstats_tx_syncp); 2493 nv_txrx_stats_inc(stat_tx_dropped); 2494 u64_stats_update_end(&np->swstats_tx_syncp); 2495 2496 ret = NETDEV_TX_OK; 2497 2498 goto dma_error; 2499 } 2500 np->put_tx_ctx->dma_len = bcnt; 2501 np->put_tx_ctx->dma_single = 0; 2502 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2503 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2504 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2505 2506 offset += bcnt; 2507 frag_size -= bcnt; 2508 if (unlikely(put_tx++ == np->last_tx.ex)) 2509 put_tx = np->tx_ring.ex; 2510 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2511 np->put_tx_ctx = np->tx_skb; 2512 } while (frag_size); 2513 } 2514 2515 if (unlikely(put_tx == np->tx_ring.ex)) 2516 prev_tx = np->last_tx.ex; 2517 else 2518 prev_tx = put_tx - 1; 2519 2520 if (unlikely(np->put_tx_ctx == np->tx_skb)) 2521 prev_tx_ctx = np->last_tx_ctx; 2522 else 2523 prev_tx_ctx = np->put_tx_ctx - 1; 2524 2525 /* set last fragment flag */ 2526 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2527 2528 /* save skb in this slot's context area */ 2529 prev_tx_ctx->skb = skb; 2530 2531 if (skb_is_gso(skb)) 2532 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2533 else 2534 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2535 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2536 2537 /* vlan tag */ 2538 if (skb_vlan_tag_present(skb)) 2539 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2540 skb_vlan_tag_get(skb)); 2541 else 2542 start_tx->txvlan = 0; 2543 2544 spin_lock_irqsave(&np->lock, flags); 2545 2546 if (np->tx_limit) { 2547 /* Limit the number of outstanding tx. Setup all fragments, but 2548 * do not set the VALID bit on the first descriptor. Save a pointer 2549 * to that descriptor and also for next skb_map element. 2550 */ 2551 2552 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2553 if (!np->tx_change_owner) 2554 np->tx_change_owner = start_tx_ctx; 2555 2556 /* remove VALID bit */ 2557 tx_flags &= ~NV_TX2_VALID; 2558 start_tx_ctx->first_tx_desc = start_tx; 2559 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2560 np->tx_end_flip = np->put_tx_ctx; 2561 } else { 2562 np->tx_pkts_in_progress++; 2563 } 2564 } 2565 2566 /* set tx flags */ 2567 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2568 2569 netdev_sent_queue(np->dev, skb->len); 2570 2571 skb_tx_timestamp(skb); 2572 2573 np->put_tx.ex = put_tx; 2574 2575 spin_unlock_irqrestore(&np->lock, flags); 2576 2577 txkick: 2578 if (netif_queue_stopped(dev) || !netdev_xmit_more()) { 2579 u32 txrxctl_kick; 2580 dma_error: 2581 txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits; 2582 writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl); 2583 } 2584 2585 return ret; 2586 } 2587 2588 static inline void nv_tx_flip_ownership(struct net_device *dev) 2589 { 2590 struct fe_priv *np = netdev_priv(dev); 2591 2592 np->tx_pkts_in_progress--; 2593 if (np->tx_change_owner) { 2594 np->tx_change_owner->first_tx_desc->flaglen |= 2595 cpu_to_le32(NV_TX2_VALID); 2596 np->tx_pkts_in_progress++; 2597 2598 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2599 if (np->tx_change_owner == np->tx_end_flip) 2600 np->tx_change_owner = NULL; 2601 2602 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2603 } 2604 } 2605 2606 /* 2607 * nv_tx_done: check for completed packets, release the skbs. 2608 * 2609 * Caller must own np->lock. 2610 */ 2611 static int nv_tx_done(struct net_device *dev, int limit) 2612 { 2613 struct fe_priv *np = netdev_priv(dev); 2614 u32 flags; 2615 int tx_work = 0; 2616 struct ring_desc *orig_get_tx = np->get_tx.orig; 2617 unsigned int bytes_compl = 0; 2618 2619 while ((np->get_tx.orig != np->put_tx.orig) && 2620 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2621 (tx_work < limit)) { 2622 2623 nv_unmap_txskb(np, np->get_tx_ctx); 2624 2625 if (np->desc_ver == DESC_VER_1) { 2626 if (flags & NV_TX_LASTPACKET) { 2627 if (unlikely(flags & NV_TX_ERROR)) { 2628 if ((flags & NV_TX_RETRYERROR) 2629 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2630 nv_legacybackoff_reseed(dev); 2631 } else { 2632 unsigned int len; 2633 2634 u64_stats_update_begin(&np->swstats_tx_syncp); 2635 nv_txrx_stats_inc(stat_tx_packets); 2636 len = np->get_tx_ctx->skb->len; 2637 nv_txrx_stats_add(stat_tx_bytes, len); 2638 u64_stats_update_end(&np->swstats_tx_syncp); 2639 } 2640 bytes_compl += np->get_tx_ctx->skb->len; 2641 dev_kfree_skb_any(np->get_tx_ctx->skb); 2642 np->get_tx_ctx->skb = NULL; 2643 tx_work++; 2644 } 2645 } else { 2646 if (flags & NV_TX2_LASTPACKET) { 2647 if (unlikely(flags & NV_TX2_ERROR)) { 2648 if ((flags & NV_TX2_RETRYERROR) 2649 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2650 nv_legacybackoff_reseed(dev); 2651 } else { 2652 unsigned int len; 2653 2654 u64_stats_update_begin(&np->swstats_tx_syncp); 2655 nv_txrx_stats_inc(stat_tx_packets); 2656 len = np->get_tx_ctx->skb->len; 2657 nv_txrx_stats_add(stat_tx_bytes, len); 2658 u64_stats_update_end(&np->swstats_tx_syncp); 2659 } 2660 bytes_compl += np->get_tx_ctx->skb->len; 2661 dev_kfree_skb_any(np->get_tx_ctx->skb); 2662 np->get_tx_ctx->skb = NULL; 2663 tx_work++; 2664 } 2665 } 2666 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2667 np->get_tx.orig = np->tx_ring.orig; 2668 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2669 np->get_tx_ctx = np->tx_skb; 2670 } 2671 2672 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2673 2674 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2675 np->tx_stop = 0; 2676 netif_wake_queue(dev); 2677 } 2678 return tx_work; 2679 } 2680 2681 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2682 { 2683 struct fe_priv *np = netdev_priv(dev); 2684 u32 flags; 2685 int tx_work = 0; 2686 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2687 unsigned long bytes_cleaned = 0; 2688 2689 while ((np->get_tx.ex != np->put_tx.ex) && 2690 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2691 (tx_work < limit)) { 2692 2693 nv_unmap_txskb(np, np->get_tx_ctx); 2694 2695 if (flags & NV_TX2_LASTPACKET) { 2696 if (unlikely(flags & NV_TX2_ERROR)) { 2697 if ((flags & NV_TX2_RETRYERROR) 2698 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2699 if (np->driver_data & DEV_HAS_GEAR_MODE) 2700 nv_gear_backoff_reseed(dev); 2701 else 2702 nv_legacybackoff_reseed(dev); 2703 } 2704 } else { 2705 unsigned int len; 2706 2707 u64_stats_update_begin(&np->swstats_tx_syncp); 2708 nv_txrx_stats_inc(stat_tx_packets); 2709 len = np->get_tx_ctx->skb->len; 2710 nv_txrx_stats_add(stat_tx_bytes, len); 2711 u64_stats_update_end(&np->swstats_tx_syncp); 2712 } 2713 2714 bytes_cleaned += np->get_tx_ctx->skb->len; 2715 dev_kfree_skb_any(np->get_tx_ctx->skb); 2716 np->get_tx_ctx->skb = NULL; 2717 tx_work++; 2718 2719 if (np->tx_limit) 2720 nv_tx_flip_ownership(dev); 2721 } 2722 2723 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2724 np->get_tx.ex = np->tx_ring.ex; 2725 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2726 np->get_tx_ctx = np->tx_skb; 2727 } 2728 2729 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2730 2731 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2732 np->tx_stop = 0; 2733 netif_wake_queue(dev); 2734 } 2735 return tx_work; 2736 } 2737 2738 /* 2739 * nv_tx_timeout: dev->tx_timeout function 2740 * Called with netif_tx_lock held. 2741 */ 2742 static void nv_tx_timeout(struct net_device *dev) 2743 { 2744 struct fe_priv *np = netdev_priv(dev); 2745 u8 __iomem *base = get_hwbase(dev); 2746 u32 status; 2747 union ring_type put_tx; 2748 int saved_tx_limit; 2749 2750 if (np->msi_flags & NV_MSI_X_ENABLED) 2751 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2752 else 2753 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2754 2755 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2756 2757 if (unlikely(debug_tx_timeout)) { 2758 int i; 2759 2760 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2761 netdev_info(dev, "Dumping tx registers\n"); 2762 for (i = 0; i <= np->register_size; i += 32) { 2763 netdev_info(dev, 2764 "%3x: %08x %08x %08x %08x " 2765 "%08x %08x %08x %08x\n", 2766 i, 2767 readl(base + i + 0), readl(base + i + 4), 2768 readl(base + i + 8), readl(base + i + 12), 2769 readl(base + i + 16), readl(base + i + 20), 2770 readl(base + i + 24), readl(base + i + 28)); 2771 } 2772 netdev_info(dev, "Dumping tx ring\n"); 2773 for (i = 0; i < np->tx_ring_size; i += 4) { 2774 if (!nv_optimized(np)) { 2775 netdev_info(dev, 2776 "%03x: %08x %08x // %08x %08x " 2777 "// %08x %08x // %08x %08x\n", 2778 i, 2779 le32_to_cpu(np->tx_ring.orig[i].buf), 2780 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2781 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2782 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2783 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2784 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2785 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2786 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2787 } else { 2788 netdev_info(dev, 2789 "%03x: %08x %08x %08x " 2790 "// %08x %08x %08x " 2791 "// %08x %08x %08x " 2792 "// %08x %08x %08x\n", 2793 i, 2794 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2795 le32_to_cpu(np->tx_ring.ex[i].buflow), 2796 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2797 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2798 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2799 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2800 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2801 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2802 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2803 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2804 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2805 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2806 } 2807 } 2808 } 2809 2810 spin_lock_irq(&np->lock); 2811 2812 /* 1) stop tx engine */ 2813 nv_stop_tx(dev); 2814 2815 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2816 saved_tx_limit = np->tx_limit; 2817 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2818 np->tx_stop = 0; /* prevent waking tx queue */ 2819 if (!nv_optimized(np)) 2820 nv_tx_done(dev, np->tx_ring_size); 2821 else 2822 nv_tx_done_optimized(dev, np->tx_ring_size); 2823 2824 /* save current HW position */ 2825 if (np->tx_change_owner) 2826 put_tx.ex = np->tx_change_owner->first_tx_desc; 2827 else 2828 put_tx = np->put_tx; 2829 2830 /* 3) clear all tx state */ 2831 nv_drain_tx(dev); 2832 nv_init_tx(dev); 2833 2834 /* 4) restore state to current HW position */ 2835 np->get_tx = np->put_tx = put_tx; 2836 np->tx_limit = saved_tx_limit; 2837 2838 /* 5) restart tx engine */ 2839 nv_start_tx(dev); 2840 netif_wake_queue(dev); 2841 spin_unlock_irq(&np->lock); 2842 } 2843 2844 /* 2845 * Called when the nic notices a mismatch between the actual data len on the 2846 * wire and the len indicated in the 802 header 2847 */ 2848 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2849 { 2850 int hdrlen; /* length of the 802 header */ 2851 int protolen; /* length as stored in the proto field */ 2852 2853 /* 1) calculate len according to header */ 2854 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2855 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2856 hdrlen = VLAN_HLEN; 2857 } else { 2858 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2859 hdrlen = ETH_HLEN; 2860 } 2861 if (protolen > ETH_DATA_LEN) 2862 return datalen; /* Value in proto field not a len, no checks possible */ 2863 2864 protolen += hdrlen; 2865 /* consistency checks: */ 2866 if (datalen > ETH_ZLEN) { 2867 if (datalen >= protolen) { 2868 /* more data on wire than in 802 header, trim of 2869 * additional data. 2870 */ 2871 return protolen; 2872 } else { 2873 /* less data on wire than mentioned in header. 2874 * Discard the packet. 2875 */ 2876 return -1; 2877 } 2878 } else { 2879 /* short packet. Accept only if 802 values are also short */ 2880 if (protolen > ETH_ZLEN) { 2881 return -1; 2882 } 2883 return datalen; 2884 } 2885 } 2886 2887 static void rx_missing_handler(u32 flags, struct fe_priv *np) 2888 { 2889 if (flags & NV_RX_MISSEDFRAME) { 2890 u64_stats_update_begin(&np->swstats_rx_syncp); 2891 nv_txrx_stats_inc(stat_rx_missed_errors); 2892 u64_stats_update_end(&np->swstats_rx_syncp); 2893 } 2894 } 2895 2896 static int nv_rx_process(struct net_device *dev, int limit) 2897 { 2898 struct fe_priv *np = netdev_priv(dev); 2899 u32 flags; 2900 int rx_work = 0; 2901 struct sk_buff *skb; 2902 int len; 2903 2904 while ((np->get_rx.orig != np->put_rx.orig) && 2905 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2906 (rx_work < limit)) { 2907 2908 /* 2909 * the packet is for us - immediately tear down the pci mapping. 2910 * TODO: check if a prefetch of the first cacheline improves 2911 * the performance. 2912 */ 2913 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 2914 np->get_rx_ctx->dma_len, 2915 DMA_FROM_DEVICE); 2916 skb = np->get_rx_ctx->skb; 2917 np->get_rx_ctx->skb = NULL; 2918 2919 /* look at what we actually got: */ 2920 if (np->desc_ver == DESC_VER_1) { 2921 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2922 len = flags & LEN_MASK_V1; 2923 if (unlikely(flags & NV_RX_ERROR)) { 2924 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2925 len = nv_getlen(dev, skb->data, len); 2926 if (len < 0) { 2927 dev_kfree_skb(skb); 2928 goto next_pkt; 2929 } 2930 } 2931 /* framing errors are soft errors */ 2932 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2933 if (flags & NV_RX_SUBTRACT1) 2934 len--; 2935 } 2936 /* the rest are hard errors */ 2937 else { 2938 rx_missing_handler(flags, np); 2939 dev_kfree_skb(skb); 2940 goto next_pkt; 2941 } 2942 } 2943 } else { 2944 dev_kfree_skb(skb); 2945 goto next_pkt; 2946 } 2947 } else { 2948 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2949 len = flags & LEN_MASK_V2; 2950 if (unlikely(flags & NV_RX2_ERROR)) { 2951 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2952 len = nv_getlen(dev, skb->data, len); 2953 if (len < 0) { 2954 dev_kfree_skb(skb); 2955 goto next_pkt; 2956 } 2957 } 2958 /* framing errors are soft errors */ 2959 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2960 if (flags & NV_RX2_SUBTRACT1) 2961 len--; 2962 } 2963 /* the rest are hard errors */ 2964 else { 2965 dev_kfree_skb(skb); 2966 goto next_pkt; 2967 } 2968 } 2969 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2970 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2971 skb->ip_summed = CHECKSUM_UNNECESSARY; 2972 } else { 2973 dev_kfree_skb(skb); 2974 goto next_pkt; 2975 } 2976 } 2977 /* got a valid packet - forward it to the network core */ 2978 skb_put(skb, len); 2979 skb->protocol = eth_type_trans(skb, dev); 2980 napi_gro_receive(&np->napi, skb); 2981 u64_stats_update_begin(&np->swstats_rx_syncp); 2982 nv_txrx_stats_inc(stat_rx_packets); 2983 nv_txrx_stats_add(stat_rx_bytes, len); 2984 u64_stats_update_end(&np->swstats_rx_syncp); 2985 next_pkt: 2986 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2987 np->get_rx.orig = np->rx_ring.orig; 2988 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2989 np->get_rx_ctx = np->rx_skb; 2990 2991 rx_work++; 2992 } 2993 2994 return rx_work; 2995 } 2996 2997 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2998 { 2999 struct fe_priv *np = netdev_priv(dev); 3000 u32 flags; 3001 u32 vlanflags = 0; 3002 int rx_work = 0; 3003 struct sk_buff *skb; 3004 int len; 3005 3006 while ((np->get_rx.ex != np->put_rx.ex) && 3007 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 3008 (rx_work < limit)) { 3009 3010 /* 3011 * the packet is for us - immediately tear down the pci mapping. 3012 * TODO: check if a prefetch of the first cacheline improves 3013 * the performance. 3014 */ 3015 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 3016 np->get_rx_ctx->dma_len, 3017 DMA_FROM_DEVICE); 3018 skb = np->get_rx_ctx->skb; 3019 np->get_rx_ctx->skb = NULL; 3020 3021 /* look at what we actually got: */ 3022 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 3023 len = flags & LEN_MASK_V2; 3024 if (unlikely(flags & NV_RX2_ERROR)) { 3025 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 3026 len = nv_getlen(dev, skb->data, len); 3027 if (len < 0) { 3028 dev_kfree_skb(skb); 3029 goto next_pkt; 3030 } 3031 } 3032 /* framing errors are soft errors */ 3033 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 3034 if (flags & NV_RX2_SUBTRACT1) 3035 len--; 3036 } 3037 /* the rest are hard errors */ 3038 else { 3039 dev_kfree_skb(skb); 3040 goto next_pkt; 3041 } 3042 } 3043 3044 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 3045 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 3046 skb->ip_summed = CHECKSUM_UNNECESSARY; 3047 3048 /* got a valid packet - forward it to the network core */ 3049 skb_put(skb, len); 3050 skb->protocol = eth_type_trans(skb, dev); 3051 prefetch(skb->data); 3052 3053 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 3054 3055 /* 3056 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX 3057 * here. Even if vlan rx accel is disabled, 3058 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 3059 */ 3060 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 3061 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 3062 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 3063 3064 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3065 } 3066 napi_gro_receive(&np->napi, skb); 3067 u64_stats_update_begin(&np->swstats_rx_syncp); 3068 nv_txrx_stats_inc(stat_rx_packets); 3069 nv_txrx_stats_add(stat_rx_bytes, len); 3070 u64_stats_update_end(&np->swstats_rx_syncp); 3071 } else { 3072 dev_kfree_skb(skb); 3073 } 3074 next_pkt: 3075 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 3076 np->get_rx.ex = np->rx_ring.ex; 3077 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 3078 np->get_rx_ctx = np->rx_skb; 3079 3080 rx_work++; 3081 } 3082 3083 return rx_work; 3084 } 3085 3086 static void set_bufsize(struct net_device *dev) 3087 { 3088 struct fe_priv *np = netdev_priv(dev); 3089 3090 if (dev->mtu <= ETH_DATA_LEN) 3091 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 3092 else 3093 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 3094 } 3095 3096 /* 3097 * nv_change_mtu: dev->change_mtu function 3098 * Called with dev_base_lock held for read. 3099 */ 3100 static int nv_change_mtu(struct net_device *dev, int new_mtu) 3101 { 3102 struct fe_priv *np = netdev_priv(dev); 3103 int old_mtu; 3104 3105 old_mtu = dev->mtu; 3106 dev->mtu = new_mtu; 3107 3108 /* return early if the buffer sizes will not change */ 3109 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 3110 return 0; 3111 3112 /* synchronized against open : rtnl_lock() held by caller */ 3113 if (netif_running(dev)) { 3114 u8 __iomem *base = get_hwbase(dev); 3115 /* 3116 * It seems that the nic preloads valid ring entries into an 3117 * internal buffer. The procedure for flushing everything is 3118 * guessed, there is probably a simpler approach. 3119 * Changing the MTU is a rare event, it shouldn't matter. 3120 */ 3121 nv_disable_irq(dev); 3122 nv_napi_disable(dev); 3123 netif_tx_lock_bh(dev); 3124 netif_addr_lock(dev); 3125 spin_lock(&np->lock); 3126 /* stop engines */ 3127 nv_stop_rxtx(dev); 3128 nv_txrx_reset(dev); 3129 /* drain rx queue */ 3130 nv_drain_rxtx(dev); 3131 /* reinit driver view of the rx queue */ 3132 set_bufsize(dev); 3133 if (nv_init_ring(dev)) { 3134 if (!np->in_shutdown) 3135 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3136 } 3137 /* reinit nic view of the rx queue */ 3138 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 3139 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 3140 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 3141 base + NvRegRingSizes); 3142 pci_push(base); 3143 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 3144 pci_push(base); 3145 3146 /* restart rx engine */ 3147 nv_start_rxtx(dev); 3148 spin_unlock(&np->lock); 3149 netif_addr_unlock(dev); 3150 netif_tx_unlock_bh(dev); 3151 nv_napi_enable(dev); 3152 nv_enable_irq(dev); 3153 } 3154 return 0; 3155 } 3156 3157 static void nv_copy_mac_to_hw(struct net_device *dev) 3158 { 3159 u8 __iomem *base = get_hwbase(dev); 3160 u32 mac[2]; 3161 3162 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3163 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3164 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3165 3166 writel(mac[0], base + NvRegMacAddrA); 3167 writel(mac[1], base + NvRegMacAddrB); 3168 } 3169 3170 /* 3171 * nv_set_mac_address: dev->set_mac_address function 3172 * Called with rtnl_lock() held. 3173 */ 3174 static int nv_set_mac_address(struct net_device *dev, void *addr) 3175 { 3176 struct fe_priv *np = netdev_priv(dev); 3177 struct sockaddr *macaddr = (struct sockaddr *)addr; 3178 3179 if (!is_valid_ether_addr(macaddr->sa_data)) 3180 return -EADDRNOTAVAIL; 3181 3182 /* synchronized against open : rtnl_lock() held by caller */ 3183 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3184 3185 if (netif_running(dev)) { 3186 netif_tx_lock_bh(dev); 3187 netif_addr_lock(dev); 3188 spin_lock_irq(&np->lock); 3189 3190 /* stop rx engine */ 3191 nv_stop_rx(dev); 3192 3193 /* set mac address */ 3194 nv_copy_mac_to_hw(dev); 3195 3196 /* restart rx engine */ 3197 nv_start_rx(dev); 3198 spin_unlock_irq(&np->lock); 3199 netif_addr_unlock(dev); 3200 netif_tx_unlock_bh(dev); 3201 } else { 3202 nv_copy_mac_to_hw(dev); 3203 } 3204 return 0; 3205 } 3206 3207 /* 3208 * nv_set_multicast: dev->set_multicast function 3209 * Called with netif_tx_lock held. 3210 */ 3211 static void nv_set_multicast(struct net_device *dev) 3212 { 3213 struct fe_priv *np = netdev_priv(dev); 3214 u8 __iomem *base = get_hwbase(dev); 3215 u32 addr[2]; 3216 u32 mask[2]; 3217 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3218 3219 memset(addr, 0, sizeof(addr)); 3220 memset(mask, 0, sizeof(mask)); 3221 3222 if (dev->flags & IFF_PROMISC) { 3223 pff |= NVREG_PFF_PROMISC; 3224 } else { 3225 pff |= NVREG_PFF_MYADDR; 3226 3227 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3228 u32 alwaysOff[2]; 3229 u32 alwaysOn[2]; 3230 3231 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3232 if (dev->flags & IFF_ALLMULTI) { 3233 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3234 } else { 3235 struct netdev_hw_addr *ha; 3236 3237 netdev_for_each_mc_addr(ha, dev) { 3238 unsigned char *hw_addr = ha->addr; 3239 u32 a, b; 3240 3241 a = le32_to_cpu(*(__le32 *) hw_addr); 3242 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3243 alwaysOn[0] &= a; 3244 alwaysOff[0] &= ~a; 3245 alwaysOn[1] &= b; 3246 alwaysOff[1] &= ~b; 3247 } 3248 } 3249 addr[0] = alwaysOn[0]; 3250 addr[1] = alwaysOn[1]; 3251 mask[0] = alwaysOn[0] | alwaysOff[0]; 3252 mask[1] = alwaysOn[1] | alwaysOff[1]; 3253 } else { 3254 mask[0] = NVREG_MCASTMASKA_NONE; 3255 mask[1] = NVREG_MCASTMASKB_NONE; 3256 } 3257 } 3258 addr[0] |= NVREG_MCASTADDRA_FORCE; 3259 pff |= NVREG_PFF_ALWAYS; 3260 spin_lock_irq(&np->lock); 3261 nv_stop_rx(dev); 3262 writel(addr[0], base + NvRegMulticastAddrA); 3263 writel(addr[1], base + NvRegMulticastAddrB); 3264 writel(mask[0], base + NvRegMulticastMaskA); 3265 writel(mask[1], base + NvRegMulticastMaskB); 3266 writel(pff, base + NvRegPacketFilterFlags); 3267 nv_start_rx(dev); 3268 spin_unlock_irq(&np->lock); 3269 } 3270 3271 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3272 { 3273 struct fe_priv *np = netdev_priv(dev); 3274 u8 __iomem *base = get_hwbase(dev); 3275 3276 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3277 3278 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3279 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3280 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3281 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3282 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3283 } else { 3284 writel(pff, base + NvRegPacketFilterFlags); 3285 } 3286 } 3287 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3288 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3289 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3290 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3291 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3292 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3293 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3294 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3295 /* limit the number of tx pause frames to a default of 8 */ 3296 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3297 } 3298 writel(pause_enable, base + NvRegTxPauseFrame); 3299 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3300 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3301 } else { 3302 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3303 writel(regmisc, base + NvRegMisc1); 3304 } 3305 } 3306 } 3307 3308 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3309 { 3310 struct fe_priv *np = netdev_priv(dev); 3311 u8 __iomem *base = get_hwbase(dev); 3312 u32 phyreg, txreg; 3313 int mii_status; 3314 3315 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3316 np->duplex = duplex; 3317 3318 /* see if gigabit phy */ 3319 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3320 if (mii_status & PHY_GIGABIT) { 3321 np->gigabit = PHY_GIGABIT; 3322 phyreg = readl(base + NvRegSlotTime); 3323 phyreg &= ~(0x3FF00); 3324 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3325 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3326 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3327 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3328 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3329 phyreg |= NVREG_SLOTTIME_1000_FULL; 3330 writel(phyreg, base + NvRegSlotTime); 3331 } 3332 3333 phyreg = readl(base + NvRegPhyInterface); 3334 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3335 if (np->duplex == 0) 3336 phyreg |= PHY_HALF; 3337 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3338 phyreg |= PHY_100; 3339 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3340 NVREG_LINKSPEED_1000) 3341 phyreg |= PHY_1000; 3342 writel(phyreg, base + NvRegPhyInterface); 3343 3344 if (phyreg & PHY_RGMII) { 3345 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3346 NVREG_LINKSPEED_1000) 3347 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3348 else 3349 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3350 } else { 3351 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3352 } 3353 writel(txreg, base + NvRegTxDeferral); 3354 3355 if (np->desc_ver == DESC_VER_1) { 3356 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3357 } else { 3358 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3359 NVREG_LINKSPEED_1000) 3360 txreg = NVREG_TX_WM_DESC2_3_1000; 3361 else 3362 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3363 } 3364 writel(txreg, base + NvRegTxWatermark); 3365 3366 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3367 base + NvRegMisc1); 3368 pci_push(base); 3369 writel(np->linkspeed, base + NvRegLinkSpeed); 3370 pci_push(base); 3371 } 3372 3373 /** 3374 * nv_update_linkspeed - Setup the MAC according to the link partner 3375 * @dev: Network device to be configured 3376 * 3377 * The function queries the PHY and checks if there is a link partner. 3378 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3379 * set to 10 MBit HD. 3380 * 3381 * The function returns 0 if there is no link partner and 1 if there is 3382 * a good link partner. 3383 */ 3384 static int nv_update_linkspeed(struct net_device *dev) 3385 { 3386 struct fe_priv *np = netdev_priv(dev); 3387 u8 __iomem *base = get_hwbase(dev); 3388 int adv = 0; 3389 int lpa = 0; 3390 int adv_lpa, adv_pause, lpa_pause; 3391 int newls = np->linkspeed; 3392 int newdup = np->duplex; 3393 int mii_status; 3394 u32 bmcr; 3395 int retval = 0; 3396 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3397 u32 txrxFlags = 0; 3398 u32 phy_exp; 3399 3400 /* If device loopback is enabled, set carrier on and enable max link 3401 * speed. 3402 */ 3403 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3404 if (bmcr & BMCR_LOOPBACK) { 3405 if (netif_running(dev)) { 3406 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3407 if (!netif_carrier_ok(dev)) 3408 netif_carrier_on(dev); 3409 } 3410 return 1; 3411 } 3412 3413 /* BMSR_LSTATUS is latched, read it twice: 3414 * we want the current value. 3415 */ 3416 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3417 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3418 3419 if (!(mii_status & BMSR_LSTATUS)) { 3420 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3421 newdup = 0; 3422 retval = 0; 3423 goto set_speed; 3424 } 3425 3426 if (np->autoneg == 0) { 3427 if (np->fixed_mode & LPA_100FULL) { 3428 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3429 newdup = 1; 3430 } else if (np->fixed_mode & LPA_100HALF) { 3431 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3432 newdup = 0; 3433 } else if (np->fixed_mode & LPA_10FULL) { 3434 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3435 newdup = 1; 3436 } else { 3437 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3438 newdup = 0; 3439 } 3440 retval = 1; 3441 goto set_speed; 3442 } 3443 /* check auto negotiation is complete */ 3444 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3445 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3446 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3447 newdup = 0; 3448 retval = 0; 3449 goto set_speed; 3450 } 3451 3452 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3453 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3454 3455 retval = 1; 3456 if (np->gigabit == PHY_GIGABIT) { 3457 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3458 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3459 3460 if ((control_1000 & ADVERTISE_1000FULL) && 3461 (status_1000 & LPA_1000FULL)) { 3462 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3463 newdup = 1; 3464 goto set_speed; 3465 } 3466 } 3467 3468 /* FIXME: handle parallel detection properly */ 3469 adv_lpa = lpa & adv; 3470 if (adv_lpa & LPA_100FULL) { 3471 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3472 newdup = 1; 3473 } else if (adv_lpa & LPA_100HALF) { 3474 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3475 newdup = 0; 3476 } else if (adv_lpa & LPA_10FULL) { 3477 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3478 newdup = 1; 3479 } else if (adv_lpa & LPA_10HALF) { 3480 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3481 newdup = 0; 3482 } else { 3483 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3484 newdup = 0; 3485 } 3486 3487 set_speed: 3488 if (np->duplex == newdup && np->linkspeed == newls) 3489 return retval; 3490 3491 np->duplex = newdup; 3492 np->linkspeed = newls; 3493 3494 /* The transmitter and receiver must be restarted for safe update */ 3495 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3496 txrxFlags |= NV_RESTART_TX; 3497 nv_stop_tx(dev); 3498 } 3499 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3500 txrxFlags |= NV_RESTART_RX; 3501 nv_stop_rx(dev); 3502 } 3503 3504 if (np->gigabit == PHY_GIGABIT) { 3505 phyreg = readl(base + NvRegSlotTime); 3506 phyreg &= ~(0x3FF00); 3507 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3508 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3509 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3510 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3511 phyreg |= NVREG_SLOTTIME_1000_FULL; 3512 writel(phyreg, base + NvRegSlotTime); 3513 } 3514 3515 phyreg = readl(base + NvRegPhyInterface); 3516 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3517 if (np->duplex == 0) 3518 phyreg |= PHY_HALF; 3519 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3520 phyreg |= PHY_100; 3521 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3522 phyreg |= PHY_1000; 3523 writel(phyreg, base + NvRegPhyInterface); 3524 3525 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3526 if (phyreg & PHY_RGMII) { 3527 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3528 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3529 } else { 3530 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3531 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3532 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3533 else 3534 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3535 } else { 3536 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3537 } 3538 } 3539 } else { 3540 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3541 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3542 else 3543 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3544 } 3545 writel(txreg, base + NvRegTxDeferral); 3546 3547 if (np->desc_ver == DESC_VER_1) { 3548 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3549 } else { 3550 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3551 txreg = NVREG_TX_WM_DESC2_3_1000; 3552 else 3553 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3554 } 3555 writel(txreg, base + NvRegTxWatermark); 3556 3557 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3558 base + NvRegMisc1); 3559 pci_push(base); 3560 writel(np->linkspeed, base + NvRegLinkSpeed); 3561 pci_push(base); 3562 3563 pause_flags = 0; 3564 /* setup pause frame */ 3565 if (netif_running(dev) && (np->duplex != 0)) { 3566 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3567 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3568 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3569 3570 switch (adv_pause) { 3571 case ADVERTISE_PAUSE_CAP: 3572 if (lpa_pause & LPA_PAUSE_CAP) { 3573 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3574 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3575 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3576 } 3577 break; 3578 case ADVERTISE_PAUSE_ASYM: 3579 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3580 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3581 break; 3582 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3583 if (lpa_pause & LPA_PAUSE_CAP) { 3584 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3585 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3586 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3587 } 3588 if (lpa_pause == LPA_PAUSE_ASYM) 3589 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3590 break; 3591 } 3592 } else { 3593 pause_flags = np->pause_flags; 3594 } 3595 } 3596 nv_update_pause(dev, pause_flags); 3597 3598 if (txrxFlags & NV_RESTART_TX) 3599 nv_start_tx(dev); 3600 if (txrxFlags & NV_RESTART_RX) 3601 nv_start_rx(dev); 3602 3603 return retval; 3604 } 3605 3606 static void nv_linkchange(struct net_device *dev) 3607 { 3608 if (nv_update_linkspeed(dev)) { 3609 if (!netif_carrier_ok(dev)) { 3610 netif_carrier_on(dev); 3611 netdev_info(dev, "link up\n"); 3612 nv_txrx_gate(dev, false); 3613 nv_start_rx(dev); 3614 } 3615 } else { 3616 if (netif_carrier_ok(dev)) { 3617 netif_carrier_off(dev); 3618 netdev_info(dev, "link down\n"); 3619 nv_txrx_gate(dev, true); 3620 nv_stop_rx(dev); 3621 } 3622 } 3623 } 3624 3625 static void nv_link_irq(struct net_device *dev) 3626 { 3627 u8 __iomem *base = get_hwbase(dev); 3628 u32 miistat; 3629 3630 miistat = readl(base + NvRegMIIStatus); 3631 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3632 3633 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3634 nv_linkchange(dev); 3635 } 3636 3637 static void nv_msi_workaround(struct fe_priv *np) 3638 { 3639 3640 /* Need to toggle the msi irq mask within the ethernet device, 3641 * otherwise, future interrupts will not be detected. 3642 */ 3643 if (np->msi_flags & NV_MSI_ENABLED) { 3644 u8 __iomem *base = np->base; 3645 3646 writel(0, base + NvRegMSIIrqMask); 3647 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3648 } 3649 } 3650 3651 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3652 { 3653 struct fe_priv *np = netdev_priv(dev); 3654 3655 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3656 if (total_work > NV_DYNAMIC_THRESHOLD) { 3657 /* transition to poll based interrupts */ 3658 np->quiet_count = 0; 3659 if (np->irqmask != NVREG_IRQMASK_CPU) { 3660 np->irqmask = NVREG_IRQMASK_CPU; 3661 return 1; 3662 } 3663 } else { 3664 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3665 np->quiet_count++; 3666 } else { 3667 /* reached a period of low activity, switch 3668 to per tx/rx packet interrupts */ 3669 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3670 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3671 return 1; 3672 } 3673 } 3674 } 3675 } 3676 return 0; 3677 } 3678 3679 static irqreturn_t nv_nic_irq(int foo, void *data) 3680 { 3681 struct net_device *dev = (struct net_device *) data; 3682 struct fe_priv *np = netdev_priv(dev); 3683 u8 __iomem *base = get_hwbase(dev); 3684 3685 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3686 np->events = readl(base + NvRegIrqStatus); 3687 writel(np->events, base + NvRegIrqStatus); 3688 } else { 3689 np->events = readl(base + NvRegMSIXIrqStatus); 3690 writel(np->events, base + NvRegMSIXIrqStatus); 3691 } 3692 if (!(np->events & np->irqmask)) 3693 return IRQ_NONE; 3694 3695 nv_msi_workaround(np); 3696 3697 if (napi_schedule_prep(&np->napi)) { 3698 /* 3699 * Disable further irq's (msix not enabled with napi) 3700 */ 3701 writel(0, base + NvRegIrqMask); 3702 __napi_schedule(&np->napi); 3703 } 3704 3705 return IRQ_HANDLED; 3706 } 3707 3708 /* All _optimized functions are used to help increase performance 3709 * (reduce CPU and increase throughput). They use descripter version 3, 3710 * compiler directives, and reduce memory accesses. 3711 */ 3712 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3713 { 3714 struct net_device *dev = (struct net_device *) data; 3715 struct fe_priv *np = netdev_priv(dev); 3716 u8 __iomem *base = get_hwbase(dev); 3717 3718 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3719 np->events = readl(base + NvRegIrqStatus); 3720 writel(np->events, base + NvRegIrqStatus); 3721 } else { 3722 np->events = readl(base + NvRegMSIXIrqStatus); 3723 writel(np->events, base + NvRegMSIXIrqStatus); 3724 } 3725 if (!(np->events & np->irqmask)) 3726 return IRQ_NONE; 3727 3728 nv_msi_workaround(np); 3729 3730 if (napi_schedule_prep(&np->napi)) { 3731 /* 3732 * Disable further irq's (msix not enabled with napi) 3733 */ 3734 writel(0, base + NvRegIrqMask); 3735 __napi_schedule(&np->napi); 3736 } 3737 3738 return IRQ_HANDLED; 3739 } 3740 3741 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3742 { 3743 struct net_device *dev = (struct net_device *) data; 3744 struct fe_priv *np = netdev_priv(dev); 3745 u8 __iomem *base = get_hwbase(dev); 3746 u32 events; 3747 int i; 3748 unsigned long flags; 3749 3750 for (i = 0;; i++) { 3751 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3752 writel(events, base + NvRegMSIXIrqStatus); 3753 netdev_dbg(dev, "tx irq events: %08x\n", events); 3754 if (!(events & np->irqmask)) 3755 break; 3756 3757 spin_lock_irqsave(&np->lock, flags); 3758 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3759 spin_unlock_irqrestore(&np->lock, flags); 3760 3761 if (unlikely(i > max_interrupt_work)) { 3762 spin_lock_irqsave(&np->lock, flags); 3763 /* disable interrupts on the nic */ 3764 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3765 pci_push(base); 3766 3767 if (!np->in_shutdown) { 3768 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3769 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3770 } 3771 spin_unlock_irqrestore(&np->lock, flags); 3772 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3773 __func__, i); 3774 break; 3775 } 3776 3777 } 3778 3779 return IRQ_RETVAL(i); 3780 } 3781 3782 static int nv_napi_poll(struct napi_struct *napi, int budget) 3783 { 3784 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3785 struct net_device *dev = np->dev; 3786 u8 __iomem *base = get_hwbase(dev); 3787 unsigned long flags; 3788 int retcode; 3789 int rx_count, tx_work = 0, rx_work = 0; 3790 3791 do { 3792 if (!nv_optimized(np)) { 3793 spin_lock_irqsave(&np->lock, flags); 3794 tx_work += nv_tx_done(dev, np->tx_ring_size); 3795 spin_unlock_irqrestore(&np->lock, flags); 3796 3797 rx_count = nv_rx_process(dev, budget - rx_work); 3798 retcode = nv_alloc_rx(dev); 3799 } else { 3800 spin_lock_irqsave(&np->lock, flags); 3801 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3802 spin_unlock_irqrestore(&np->lock, flags); 3803 3804 rx_count = nv_rx_process_optimized(dev, 3805 budget - rx_work); 3806 retcode = nv_alloc_rx_optimized(dev); 3807 } 3808 } while (retcode == 0 && 3809 rx_count > 0 && (rx_work += rx_count) < budget); 3810 3811 if (retcode) { 3812 spin_lock_irqsave(&np->lock, flags); 3813 if (!np->in_shutdown) 3814 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3815 spin_unlock_irqrestore(&np->lock, flags); 3816 } 3817 3818 nv_change_interrupt_mode(dev, tx_work + rx_work); 3819 3820 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3821 spin_lock_irqsave(&np->lock, flags); 3822 nv_link_irq(dev); 3823 spin_unlock_irqrestore(&np->lock, flags); 3824 } 3825 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3826 spin_lock_irqsave(&np->lock, flags); 3827 nv_linkchange(dev); 3828 spin_unlock_irqrestore(&np->lock, flags); 3829 np->link_timeout = jiffies + LINK_TIMEOUT; 3830 } 3831 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3832 spin_lock_irqsave(&np->lock, flags); 3833 if (!np->in_shutdown) { 3834 np->nic_poll_irq = np->irqmask; 3835 np->recover_error = 1; 3836 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3837 } 3838 spin_unlock_irqrestore(&np->lock, flags); 3839 napi_complete(napi); 3840 return rx_work; 3841 } 3842 3843 if (rx_work < budget) { 3844 /* re-enable interrupts 3845 (msix not enabled in napi) */ 3846 napi_complete_done(napi, rx_work); 3847 3848 writel(np->irqmask, base + NvRegIrqMask); 3849 } 3850 return rx_work; 3851 } 3852 3853 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3854 { 3855 struct net_device *dev = (struct net_device *) data; 3856 struct fe_priv *np = netdev_priv(dev); 3857 u8 __iomem *base = get_hwbase(dev); 3858 u32 events; 3859 int i; 3860 unsigned long flags; 3861 3862 for (i = 0;; i++) { 3863 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3864 writel(events, base + NvRegMSIXIrqStatus); 3865 netdev_dbg(dev, "rx irq events: %08x\n", events); 3866 if (!(events & np->irqmask)) 3867 break; 3868 3869 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3870 if (unlikely(nv_alloc_rx_optimized(dev))) { 3871 spin_lock_irqsave(&np->lock, flags); 3872 if (!np->in_shutdown) 3873 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3874 spin_unlock_irqrestore(&np->lock, flags); 3875 } 3876 } 3877 3878 if (unlikely(i > max_interrupt_work)) { 3879 spin_lock_irqsave(&np->lock, flags); 3880 /* disable interrupts on the nic */ 3881 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3882 pci_push(base); 3883 3884 if (!np->in_shutdown) { 3885 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3886 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3887 } 3888 spin_unlock_irqrestore(&np->lock, flags); 3889 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3890 __func__, i); 3891 break; 3892 } 3893 } 3894 3895 return IRQ_RETVAL(i); 3896 } 3897 3898 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3899 { 3900 struct net_device *dev = (struct net_device *) data; 3901 struct fe_priv *np = netdev_priv(dev); 3902 u8 __iomem *base = get_hwbase(dev); 3903 u32 events; 3904 int i; 3905 unsigned long flags; 3906 3907 for (i = 0;; i++) { 3908 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3909 writel(events, base + NvRegMSIXIrqStatus); 3910 netdev_dbg(dev, "irq events: %08x\n", events); 3911 if (!(events & np->irqmask)) 3912 break; 3913 3914 /* check tx in case we reached max loop limit in tx isr */ 3915 spin_lock_irqsave(&np->lock, flags); 3916 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3917 spin_unlock_irqrestore(&np->lock, flags); 3918 3919 if (events & NVREG_IRQ_LINK) { 3920 spin_lock_irqsave(&np->lock, flags); 3921 nv_link_irq(dev); 3922 spin_unlock_irqrestore(&np->lock, flags); 3923 } 3924 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3925 spin_lock_irqsave(&np->lock, flags); 3926 nv_linkchange(dev); 3927 spin_unlock_irqrestore(&np->lock, flags); 3928 np->link_timeout = jiffies + LINK_TIMEOUT; 3929 } 3930 if (events & NVREG_IRQ_RECOVER_ERROR) { 3931 spin_lock_irqsave(&np->lock, flags); 3932 /* disable interrupts on the nic */ 3933 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3934 pci_push(base); 3935 3936 if (!np->in_shutdown) { 3937 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3938 np->recover_error = 1; 3939 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3940 } 3941 spin_unlock_irqrestore(&np->lock, flags); 3942 break; 3943 } 3944 if (unlikely(i > max_interrupt_work)) { 3945 spin_lock_irqsave(&np->lock, flags); 3946 /* disable interrupts on the nic */ 3947 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3948 pci_push(base); 3949 3950 if (!np->in_shutdown) { 3951 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3952 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3953 } 3954 spin_unlock_irqrestore(&np->lock, flags); 3955 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3956 __func__, i); 3957 break; 3958 } 3959 3960 } 3961 3962 return IRQ_RETVAL(i); 3963 } 3964 3965 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3966 { 3967 struct net_device *dev = (struct net_device *) data; 3968 struct fe_priv *np = netdev_priv(dev); 3969 u8 __iomem *base = get_hwbase(dev); 3970 u32 events; 3971 3972 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3973 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3974 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3975 } else { 3976 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3977 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3978 } 3979 pci_push(base); 3980 if (!(events & NVREG_IRQ_TIMER)) 3981 return IRQ_RETVAL(0); 3982 3983 nv_msi_workaround(np); 3984 3985 spin_lock(&np->lock); 3986 np->intr_test = 1; 3987 spin_unlock(&np->lock); 3988 3989 return IRQ_RETVAL(1); 3990 } 3991 3992 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3993 { 3994 u8 __iomem *base = get_hwbase(dev); 3995 int i; 3996 u32 msixmap = 0; 3997 3998 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3999 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 4000 * the remaining 8 interrupts. 4001 */ 4002 for (i = 0; i < 8; i++) { 4003 if ((irqmask >> i) & 0x1) 4004 msixmap |= vector << (i << 2); 4005 } 4006 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 4007 4008 msixmap = 0; 4009 for (i = 0; i < 8; i++) { 4010 if ((irqmask >> (i + 8)) & 0x1) 4011 msixmap |= vector << (i << 2); 4012 } 4013 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 4014 } 4015 4016 static int nv_request_irq(struct net_device *dev, int intr_test) 4017 { 4018 struct fe_priv *np = get_nvpriv(dev); 4019 u8 __iomem *base = get_hwbase(dev); 4020 int ret; 4021 int i; 4022 irqreturn_t (*handler)(int foo, void *data); 4023 4024 if (intr_test) { 4025 handler = nv_nic_irq_test; 4026 } else { 4027 if (nv_optimized(np)) 4028 handler = nv_nic_irq_optimized; 4029 else 4030 handler = nv_nic_irq; 4031 } 4032 4033 if (np->msi_flags & NV_MSI_X_CAPABLE) { 4034 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4035 np->msi_x_entry[i].entry = i; 4036 ret = pci_enable_msix_range(np->pci_dev, 4037 np->msi_x_entry, 4038 np->msi_flags & NV_MSI_X_VECTORS_MASK, 4039 np->msi_flags & NV_MSI_X_VECTORS_MASK); 4040 if (ret > 0) { 4041 np->msi_flags |= NV_MSI_X_ENABLED; 4042 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 4043 /* Request irq for rx handling */ 4044 sprintf(np->name_rx, "%s-rx", dev->name); 4045 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 4046 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev); 4047 if (ret) { 4048 netdev_info(dev, 4049 "request_irq failed for rx %d\n", 4050 ret); 4051 pci_disable_msix(np->pci_dev); 4052 np->msi_flags &= ~NV_MSI_X_ENABLED; 4053 goto out_err; 4054 } 4055 /* Request irq for tx handling */ 4056 sprintf(np->name_tx, "%s-tx", dev->name); 4057 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 4058 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev); 4059 if (ret) { 4060 netdev_info(dev, 4061 "request_irq failed for tx %d\n", 4062 ret); 4063 pci_disable_msix(np->pci_dev); 4064 np->msi_flags &= ~NV_MSI_X_ENABLED; 4065 goto out_free_rx; 4066 } 4067 /* Request irq for link and timer handling */ 4068 sprintf(np->name_other, "%s-other", dev->name); 4069 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 4070 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev); 4071 if (ret) { 4072 netdev_info(dev, 4073 "request_irq failed for link %d\n", 4074 ret); 4075 pci_disable_msix(np->pci_dev); 4076 np->msi_flags &= ~NV_MSI_X_ENABLED; 4077 goto out_free_tx; 4078 } 4079 /* map interrupts to their respective vector */ 4080 writel(0, base + NvRegMSIXMap0); 4081 writel(0, base + NvRegMSIXMap1); 4082 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 4083 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 4084 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 4085 } else { 4086 /* Request irq for all interrupts */ 4087 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, 4088 handler, IRQF_SHARED, dev->name, dev); 4089 if (ret) { 4090 netdev_info(dev, 4091 "request_irq failed %d\n", 4092 ret); 4093 pci_disable_msix(np->pci_dev); 4094 np->msi_flags &= ~NV_MSI_X_ENABLED; 4095 goto out_err; 4096 } 4097 4098 /* map interrupts to vector 0 */ 4099 writel(0, base + NvRegMSIXMap0); 4100 writel(0, base + NvRegMSIXMap1); 4101 } 4102 netdev_info(dev, "MSI-X enabled\n"); 4103 return 0; 4104 } 4105 } 4106 if (np->msi_flags & NV_MSI_CAPABLE) { 4107 ret = pci_enable_msi(np->pci_dev); 4108 if (ret == 0) { 4109 np->msi_flags |= NV_MSI_ENABLED; 4110 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev); 4111 if (ret) { 4112 netdev_info(dev, "request_irq failed %d\n", 4113 ret); 4114 pci_disable_msi(np->pci_dev); 4115 np->msi_flags &= ~NV_MSI_ENABLED; 4116 goto out_err; 4117 } 4118 4119 /* map interrupts to vector 0 */ 4120 writel(0, base + NvRegMSIMap0); 4121 writel(0, base + NvRegMSIMap1); 4122 /* enable msi vector 0 */ 4123 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 4124 netdev_info(dev, "MSI enabled\n"); 4125 return 0; 4126 } 4127 } 4128 4129 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 4130 goto out_err; 4131 4132 return 0; 4133 out_free_tx: 4134 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 4135 out_free_rx: 4136 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 4137 out_err: 4138 return 1; 4139 } 4140 4141 static void nv_free_irq(struct net_device *dev) 4142 { 4143 struct fe_priv *np = get_nvpriv(dev); 4144 int i; 4145 4146 if (np->msi_flags & NV_MSI_X_ENABLED) { 4147 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4148 free_irq(np->msi_x_entry[i].vector, dev); 4149 pci_disable_msix(np->pci_dev); 4150 np->msi_flags &= ~NV_MSI_X_ENABLED; 4151 } else { 4152 free_irq(np->pci_dev->irq, dev); 4153 if (np->msi_flags & NV_MSI_ENABLED) { 4154 pci_disable_msi(np->pci_dev); 4155 np->msi_flags &= ~NV_MSI_ENABLED; 4156 } 4157 } 4158 } 4159 4160 static void nv_do_nic_poll(struct timer_list *t) 4161 { 4162 struct fe_priv *np = from_timer(np, t, nic_poll); 4163 struct net_device *dev = np->dev; 4164 u8 __iomem *base = get_hwbase(dev); 4165 u32 mask = 0; 4166 unsigned long flags; 4167 unsigned int irq = 0; 4168 4169 /* 4170 * First disable irq(s) and then 4171 * reenable interrupts on the nic, we have to do this before calling 4172 * nv_nic_irq because that may decide to do otherwise 4173 */ 4174 4175 if (!using_multi_irqs(dev)) { 4176 if (np->msi_flags & NV_MSI_X_ENABLED) 4177 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector; 4178 else 4179 irq = np->pci_dev->irq; 4180 mask = np->irqmask; 4181 } else { 4182 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4183 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector; 4184 mask |= NVREG_IRQ_RX_ALL; 4185 } 4186 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4187 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector; 4188 mask |= NVREG_IRQ_TX_ALL; 4189 } 4190 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4191 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector; 4192 mask |= NVREG_IRQ_OTHER; 4193 } 4194 } 4195 4196 disable_irq_nosync_lockdep_irqsave(irq, &flags); 4197 synchronize_irq(irq); 4198 4199 if (np->recover_error) { 4200 np->recover_error = 0; 4201 netdev_info(dev, "MAC in recoverable error state\n"); 4202 if (netif_running(dev)) { 4203 netif_tx_lock_bh(dev); 4204 netif_addr_lock(dev); 4205 spin_lock(&np->lock); 4206 /* stop engines */ 4207 nv_stop_rxtx(dev); 4208 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4209 nv_mac_reset(dev); 4210 nv_txrx_reset(dev); 4211 /* drain rx queue */ 4212 nv_drain_rxtx(dev); 4213 /* reinit driver view of the rx queue */ 4214 set_bufsize(dev); 4215 if (nv_init_ring(dev)) { 4216 if (!np->in_shutdown) 4217 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4218 } 4219 /* reinit nic view of the rx queue */ 4220 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4221 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4222 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4223 base + NvRegRingSizes); 4224 pci_push(base); 4225 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4226 pci_push(base); 4227 /* clear interrupts */ 4228 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4229 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4230 else 4231 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4232 4233 /* restart rx engine */ 4234 nv_start_rxtx(dev); 4235 spin_unlock(&np->lock); 4236 netif_addr_unlock(dev); 4237 netif_tx_unlock_bh(dev); 4238 } 4239 } 4240 4241 writel(mask, base + NvRegIrqMask); 4242 pci_push(base); 4243 4244 if (!using_multi_irqs(dev)) { 4245 np->nic_poll_irq = 0; 4246 if (nv_optimized(np)) 4247 nv_nic_irq_optimized(0, dev); 4248 else 4249 nv_nic_irq(0, dev); 4250 } else { 4251 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4252 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4253 nv_nic_irq_rx(0, dev); 4254 } 4255 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4256 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4257 nv_nic_irq_tx(0, dev); 4258 } 4259 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4260 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4261 nv_nic_irq_other(0, dev); 4262 } 4263 } 4264 4265 enable_irq_lockdep_irqrestore(irq, &flags); 4266 } 4267 4268 #ifdef CONFIG_NET_POLL_CONTROLLER 4269 static void nv_poll_controller(struct net_device *dev) 4270 { 4271 struct fe_priv *np = netdev_priv(dev); 4272 4273 nv_do_nic_poll(&np->nic_poll); 4274 } 4275 #endif 4276 4277 static void nv_do_stats_poll(struct timer_list *t) 4278 __acquires(&netdev_priv(dev)->hwstats_lock) 4279 __releases(&netdev_priv(dev)->hwstats_lock) 4280 { 4281 struct fe_priv *np = from_timer(np, t, stats_poll); 4282 struct net_device *dev = np->dev; 4283 4284 /* If lock is currently taken, the stats are being refreshed 4285 * and hence fresh enough */ 4286 if (spin_trylock(&np->hwstats_lock)) { 4287 nv_update_stats(dev); 4288 spin_unlock(&np->hwstats_lock); 4289 } 4290 4291 if (!np->in_shutdown) 4292 mod_timer(&np->stats_poll, 4293 round_jiffies(jiffies + STATS_INTERVAL)); 4294 } 4295 4296 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4297 { 4298 struct fe_priv *np = netdev_priv(dev); 4299 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4300 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4301 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4302 } 4303 4304 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4305 { 4306 struct fe_priv *np = netdev_priv(dev); 4307 wolinfo->supported = WAKE_MAGIC; 4308 4309 spin_lock_irq(&np->lock); 4310 if (np->wolenabled) 4311 wolinfo->wolopts = WAKE_MAGIC; 4312 spin_unlock_irq(&np->lock); 4313 } 4314 4315 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4316 { 4317 struct fe_priv *np = netdev_priv(dev); 4318 u8 __iomem *base = get_hwbase(dev); 4319 u32 flags = 0; 4320 4321 if (wolinfo->wolopts == 0) { 4322 np->wolenabled = 0; 4323 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4324 np->wolenabled = 1; 4325 flags = NVREG_WAKEUPFLAGS_ENABLE; 4326 } 4327 if (netif_running(dev)) { 4328 spin_lock_irq(&np->lock); 4329 writel(flags, base + NvRegWakeUpFlags); 4330 spin_unlock_irq(&np->lock); 4331 } 4332 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4333 return 0; 4334 } 4335 4336 static int nv_get_link_ksettings(struct net_device *dev, 4337 struct ethtool_link_ksettings *cmd) 4338 { 4339 struct fe_priv *np = netdev_priv(dev); 4340 u32 speed, supported, advertising; 4341 int adv; 4342 4343 spin_lock_irq(&np->lock); 4344 cmd->base.port = PORT_MII; 4345 if (!netif_running(dev)) { 4346 /* We do not track link speed / duplex setting if the 4347 * interface is disabled. Force a link check */ 4348 if (nv_update_linkspeed(dev)) { 4349 netif_carrier_on(dev); 4350 } else { 4351 netif_carrier_off(dev); 4352 } 4353 } 4354 4355 if (netif_carrier_ok(dev)) { 4356 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4357 case NVREG_LINKSPEED_10: 4358 speed = SPEED_10; 4359 break; 4360 case NVREG_LINKSPEED_100: 4361 speed = SPEED_100; 4362 break; 4363 case NVREG_LINKSPEED_1000: 4364 speed = SPEED_1000; 4365 break; 4366 default: 4367 speed = -1; 4368 break; 4369 } 4370 cmd->base.duplex = DUPLEX_HALF; 4371 if (np->duplex) 4372 cmd->base.duplex = DUPLEX_FULL; 4373 } else { 4374 speed = SPEED_UNKNOWN; 4375 cmd->base.duplex = DUPLEX_UNKNOWN; 4376 } 4377 cmd->base.speed = speed; 4378 cmd->base.autoneg = np->autoneg; 4379 4380 advertising = ADVERTISED_MII; 4381 if (np->autoneg) { 4382 advertising |= ADVERTISED_Autoneg; 4383 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4384 if (adv & ADVERTISE_10HALF) 4385 advertising |= ADVERTISED_10baseT_Half; 4386 if (adv & ADVERTISE_10FULL) 4387 advertising |= ADVERTISED_10baseT_Full; 4388 if (adv & ADVERTISE_100HALF) 4389 advertising |= ADVERTISED_100baseT_Half; 4390 if (adv & ADVERTISE_100FULL) 4391 advertising |= ADVERTISED_100baseT_Full; 4392 if (np->gigabit == PHY_GIGABIT) { 4393 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4394 if (adv & ADVERTISE_1000FULL) 4395 advertising |= ADVERTISED_1000baseT_Full; 4396 } 4397 } 4398 supported = (SUPPORTED_Autoneg | 4399 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4400 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4401 SUPPORTED_MII); 4402 if (np->gigabit == PHY_GIGABIT) 4403 supported |= SUPPORTED_1000baseT_Full; 4404 4405 cmd->base.phy_address = np->phyaddr; 4406 4407 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4408 supported); 4409 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4410 advertising); 4411 4412 /* ignore maxtxpkt, maxrxpkt for now */ 4413 spin_unlock_irq(&np->lock); 4414 return 0; 4415 } 4416 4417 static int nv_set_link_ksettings(struct net_device *dev, 4418 const struct ethtool_link_ksettings *cmd) 4419 { 4420 struct fe_priv *np = netdev_priv(dev); 4421 u32 speed = cmd->base.speed; 4422 u32 advertising; 4423 4424 ethtool_convert_link_mode_to_legacy_u32(&advertising, 4425 cmd->link_modes.advertising); 4426 4427 if (cmd->base.port != PORT_MII) 4428 return -EINVAL; 4429 if (cmd->base.phy_address != np->phyaddr) { 4430 /* TODO: support switching between multiple phys. Should be 4431 * trivial, but not enabled due to lack of test hardware. */ 4432 return -EINVAL; 4433 } 4434 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4435 u32 mask; 4436 4437 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4438 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4439 if (np->gigabit == PHY_GIGABIT) 4440 mask |= ADVERTISED_1000baseT_Full; 4441 4442 if ((advertising & mask) == 0) 4443 return -EINVAL; 4444 4445 } else if (cmd->base.autoneg == AUTONEG_DISABLE) { 4446 /* Note: autonegotiation disable, speed 1000 intentionally 4447 * forbidden - no one should need that. */ 4448 4449 if (speed != SPEED_10 && speed != SPEED_100) 4450 return -EINVAL; 4451 if (cmd->base.duplex != DUPLEX_HALF && 4452 cmd->base.duplex != DUPLEX_FULL) 4453 return -EINVAL; 4454 } else { 4455 return -EINVAL; 4456 } 4457 4458 netif_carrier_off(dev); 4459 if (netif_running(dev)) { 4460 unsigned long flags; 4461 4462 nv_disable_irq(dev); 4463 netif_tx_lock_bh(dev); 4464 netif_addr_lock(dev); 4465 /* with plain spinlock lockdep complains */ 4466 spin_lock_irqsave(&np->lock, flags); 4467 /* stop engines */ 4468 /* FIXME: 4469 * this can take some time, and interrupts are disabled 4470 * due to spin_lock_irqsave, but let's hope no daemon 4471 * is going to change the settings very often... 4472 * Worst case: 4473 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4474 * + some minor delays, which is up to a second approximately 4475 */ 4476 nv_stop_rxtx(dev); 4477 spin_unlock_irqrestore(&np->lock, flags); 4478 netif_addr_unlock(dev); 4479 netif_tx_unlock_bh(dev); 4480 } 4481 4482 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4483 int adv, bmcr; 4484 4485 np->autoneg = 1; 4486 4487 /* advertise only what has been requested */ 4488 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4489 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4490 if (advertising & ADVERTISED_10baseT_Half) 4491 adv |= ADVERTISE_10HALF; 4492 if (advertising & ADVERTISED_10baseT_Full) 4493 adv |= ADVERTISE_10FULL; 4494 if (advertising & ADVERTISED_100baseT_Half) 4495 adv |= ADVERTISE_100HALF; 4496 if (advertising & ADVERTISED_100baseT_Full) 4497 adv |= ADVERTISE_100FULL; 4498 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4499 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4500 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4501 adv |= ADVERTISE_PAUSE_ASYM; 4502 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4503 4504 if (np->gigabit == PHY_GIGABIT) { 4505 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4506 adv &= ~ADVERTISE_1000FULL; 4507 if (advertising & ADVERTISED_1000baseT_Full) 4508 adv |= ADVERTISE_1000FULL; 4509 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4510 } 4511 4512 if (netif_running(dev)) 4513 netdev_info(dev, "link down\n"); 4514 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4515 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4516 bmcr |= BMCR_ANENABLE; 4517 /* reset the phy in order for settings to stick, 4518 * and cause autoneg to start */ 4519 if (phy_reset(dev, bmcr)) { 4520 netdev_info(dev, "phy reset failed\n"); 4521 return -EINVAL; 4522 } 4523 } else { 4524 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4525 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4526 } 4527 } else { 4528 int adv, bmcr; 4529 4530 np->autoneg = 0; 4531 4532 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4533 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4534 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF) 4535 adv |= ADVERTISE_10HALF; 4536 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL) 4537 adv |= ADVERTISE_10FULL; 4538 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF) 4539 adv |= ADVERTISE_100HALF; 4540 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL) 4541 adv |= ADVERTISE_100FULL; 4542 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4543 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4544 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4545 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4546 } 4547 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4548 adv |= ADVERTISE_PAUSE_ASYM; 4549 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4550 } 4551 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4552 np->fixed_mode = adv; 4553 4554 if (np->gigabit == PHY_GIGABIT) { 4555 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4556 adv &= ~ADVERTISE_1000FULL; 4557 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4558 } 4559 4560 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4561 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4562 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4563 bmcr |= BMCR_FULLDPLX; 4564 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4565 bmcr |= BMCR_SPEED100; 4566 if (np->phy_oui == PHY_OUI_MARVELL) { 4567 /* reset the phy in order for forced mode settings to stick */ 4568 if (phy_reset(dev, bmcr)) { 4569 netdev_info(dev, "phy reset failed\n"); 4570 return -EINVAL; 4571 } 4572 } else { 4573 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4574 if (netif_running(dev)) { 4575 /* Wait a bit and then reconfigure the nic. */ 4576 udelay(10); 4577 nv_linkchange(dev); 4578 } 4579 } 4580 } 4581 4582 if (netif_running(dev)) { 4583 nv_start_rxtx(dev); 4584 nv_enable_irq(dev); 4585 } 4586 4587 return 0; 4588 } 4589 4590 #define FORCEDETH_REGS_VER 1 4591 4592 static int nv_get_regs_len(struct net_device *dev) 4593 { 4594 struct fe_priv *np = netdev_priv(dev); 4595 return np->register_size; 4596 } 4597 4598 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4599 { 4600 struct fe_priv *np = netdev_priv(dev); 4601 u8 __iomem *base = get_hwbase(dev); 4602 u32 *rbuf = buf; 4603 int i; 4604 4605 regs->version = FORCEDETH_REGS_VER; 4606 spin_lock_irq(&np->lock); 4607 for (i = 0; i < np->register_size/sizeof(u32); i++) 4608 rbuf[i] = readl(base + i*sizeof(u32)); 4609 spin_unlock_irq(&np->lock); 4610 } 4611 4612 static int nv_nway_reset(struct net_device *dev) 4613 { 4614 struct fe_priv *np = netdev_priv(dev); 4615 int ret; 4616 4617 if (np->autoneg) { 4618 int bmcr; 4619 4620 netif_carrier_off(dev); 4621 if (netif_running(dev)) { 4622 nv_disable_irq(dev); 4623 netif_tx_lock_bh(dev); 4624 netif_addr_lock(dev); 4625 spin_lock(&np->lock); 4626 /* stop engines */ 4627 nv_stop_rxtx(dev); 4628 spin_unlock(&np->lock); 4629 netif_addr_unlock(dev); 4630 netif_tx_unlock_bh(dev); 4631 netdev_info(dev, "link down\n"); 4632 } 4633 4634 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4635 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4636 bmcr |= BMCR_ANENABLE; 4637 /* reset the phy in order for settings to stick*/ 4638 if (phy_reset(dev, bmcr)) { 4639 netdev_info(dev, "phy reset failed\n"); 4640 return -EINVAL; 4641 } 4642 } else { 4643 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4644 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4645 } 4646 4647 if (netif_running(dev)) { 4648 nv_start_rxtx(dev); 4649 nv_enable_irq(dev); 4650 } 4651 ret = 0; 4652 } else { 4653 ret = -EINVAL; 4654 } 4655 4656 return ret; 4657 } 4658 4659 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4660 { 4661 struct fe_priv *np = netdev_priv(dev); 4662 4663 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4664 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4665 4666 ring->rx_pending = np->rx_ring_size; 4667 ring->tx_pending = np->tx_ring_size; 4668 } 4669 4670 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4671 { 4672 struct fe_priv *np = netdev_priv(dev); 4673 u8 __iomem *base = get_hwbase(dev); 4674 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4675 dma_addr_t ring_addr; 4676 4677 if (ring->rx_pending < RX_RING_MIN || 4678 ring->tx_pending < TX_RING_MIN || 4679 ring->rx_mini_pending != 0 || 4680 ring->rx_jumbo_pending != 0 || 4681 (np->desc_ver == DESC_VER_1 && 4682 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4683 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4684 (np->desc_ver != DESC_VER_1 && 4685 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4686 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4687 return -EINVAL; 4688 } 4689 4690 /* allocate new rings */ 4691 if (!nv_optimized(np)) { 4692 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4693 sizeof(struct ring_desc) * 4694 (ring->rx_pending + 4695 ring->tx_pending), 4696 &ring_addr, GFP_ATOMIC); 4697 } else { 4698 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4699 sizeof(struct ring_desc_ex) * 4700 (ring->rx_pending + 4701 ring->tx_pending), 4702 &ring_addr, GFP_ATOMIC); 4703 } 4704 rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map), 4705 GFP_KERNEL); 4706 tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map), 4707 GFP_KERNEL); 4708 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4709 /* fall back to old rings */ 4710 if (!nv_optimized(np)) { 4711 if (rxtx_ring) 4712 dma_free_coherent(&np->pci_dev->dev, 4713 sizeof(struct ring_desc) * 4714 (ring->rx_pending + 4715 ring->tx_pending), 4716 rxtx_ring, ring_addr); 4717 } else { 4718 if (rxtx_ring) 4719 dma_free_coherent(&np->pci_dev->dev, 4720 sizeof(struct ring_desc_ex) * 4721 (ring->rx_pending + 4722 ring->tx_pending), 4723 rxtx_ring, ring_addr); 4724 } 4725 4726 kfree(rx_skbuff); 4727 kfree(tx_skbuff); 4728 goto exit; 4729 } 4730 4731 if (netif_running(dev)) { 4732 nv_disable_irq(dev); 4733 nv_napi_disable(dev); 4734 netif_tx_lock_bh(dev); 4735 netif_addr_lock(dev); 4736 spin_lock(&np->lock); 4737 /* stop engines */ 4738 nv_stop_rxtx(dev); 4739 nv_txrx_reset(dev); 4740 /* drain queues */ 4741 nv_drain_rxtx(dev); 4742 /* delete queues */ 4743 free_rings(dev); 4744 } 4745 4746 /* set new values */ 4747 np->rx_ring_size = ring->rx_pending; 4748 np->tx_ring_size = ring->tx_pending; 4749 4750 if (!nv_optimized(np)) { 4751 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4752 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4753 } else { 4754 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4755 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4756 } 4757 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4758 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4759 np->ring_addr = ring_addr; 4760 4761 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4762 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4763 4764 if (netif_running(dev)) { 4765 /* reinit driver view of the queues */ 4766 set_bufsize(dev); 4767 if (nv_init_ring(dev)) { 4768 if (!np->in_shutdown) 4769 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4770 } 4771 4772 /* reinit nic view of the queues */ 4773 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4774 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4775 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4776 base + NvRegRingSizes); 4777 pci_push(base); 4778 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4779 pci_push(base); 4780 4781 /* restart engines */ 4782 nv_start_rxtx(dev); 4783 spin_unlock(&np->lock); 4784 netif_addr_unlock(dev); 4785 netif_tx_unlock_bh(dev); 4786 nv_napi_enable(dev); 4787 nv_enable_irq(dev); 4788 } 4789 return 0; 4790 exit: 4791 return -ENOMEM; 4792 } 4793 4794 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4795 { 4796 struct fe_priv *np = netdev_priv(dev); 4797 4798 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4799 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4800 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4801 } 4802 4803 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4804 { 4805 struct fe_priv *np = netdev_priv(dev); 4806 int adv, bmcr; 4807 4808 if ((!np->autoneg && np->duplex == 0) || 4809 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4810 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4811 return -EINVAL; 4812 } 4813 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4814 netdev_info(dev, "hardware does not support tx pause frames\n"); 4815 return -EINVAL; 4816 } 4817 4818 netif_carrier_off(dev); 4819 if (netif_running(dev)) { 4820 nv_disable_irq(dev); 4821 netif_tx_lock_bh(dev); 4822 netif_addr_lock(dev); 4823 spin_lock(&np->lock); 4824 /* stop engines */ 4825 nv_stop_rxtx(dev); 4826 spin_unlock(&np->lock); 4827 netif_addr_unlock(dev); 4828 netif_tx_unlock_bh(dev); 4829 } 4830 4831 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4832 if (pause->rx_pause) 4833 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4834 if (pause->tx_pause) 4835 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4836 4837 if (np->autoneg && pause->autoneg) { 4838 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4839 4840 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4841 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4842 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4843 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4844 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4845 adv |= ADVERTISE_PAUSE_ASYM; 4846 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4847 4848 if (netif_running(dev)) 4849 netdev_info(dev, "link down\n"); 4850 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4851 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4852 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4853 } else { 4854 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4855 if (pause->rx_pause) 4856 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4857 if (pause->tx_pause) 4858 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4859 4860 if (!netif_running(dev)) 4861 nv_update_linkspeed(dev); 4862 else 4863 nv_update_pause(dev, np->pause_flags); 4864 } 4865 4866 if (netif_running(dev)) { 4867 nv_start_rxtx(dev); 4868 nv_enable_irq(dev); 4869 } 4870 return 0; 4871 } 4872 4873 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4874 { 4875 struct fe_priv *np = netdev_priv(dev); 4876 unsigned long flags; 4877 u32 miicontrol; 4878 int err, retval = 0; 4879 4880 spin_lock_irqsave(&np->lock, flags); 4881 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4882 if (features & NETIF_F_LOOPBACK) { 4883 if (miicontrol & BMCR_LOOPBACK) { 4884 spin_unlock_irqrestore(&np->lock, flags); 4885 netdev_info(dev, "Loopback already enabled\n"); 4886 return 0; 4887 } 4888 nv_disable_irq(dev); 4889 /* Turn on loopback mode */ 4890 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4891 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4892 if (err) { 4893 retval = PHY_ERROR; 4894 spin_unlock_irqrestore(&np->lock, flags); 4895 phy_init(dev); 4896 } else { 4897 if (netif_running(dev)) { 4898 /* Force 1000 Mbps full-duplex */ 4899 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4900 1); 4901 /* Force link up */ 4902 netif_carrier_on(dev); 4903 } 4904 spin_unlock_irqrestore(&np->lock, flags); 4905 netdev_info(dev, 4906 "Internal PHY loopback mode enabled.\n"); 4907 } 4908 } else { 4909 if (!(miicontrol & BMCR_LOOPBACK)) { 4910 spin_unlock_irqrestore(&np->lock, flags); 4911 netdev_info(dev, "Loopback already disabled\n"); 4912 return 0; 4913 } 4914 nv_disable_irq(dev); 4915 /* Turn off loopback */ 4916 spin_unlock_irqrestore(&np->lock, flags); 4917 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4918 phy_init(dev); 4919 } 4920 msleep(500); 4921 spin_lock_irqsave(&np->lock, flags); 4922 nv_enable_irq(dev); 4923 spin_unlock_irqrestore(&np->lock, flags); 4924 4925 return retval; 4926 } 4927 4928 static netdev_features_t nv_fix_features(struct net_device *dev, 4929 netdev_features_t features) 4930 { 4931 /* vlan is dependent on rx checksum offload */ 4932 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX)) 4933 features |= NETIF_F_RXCSUM; 4934 4935 return features; 4936 } 4937 4938 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4939 { 4940 struct fe_priv *np = get_nvpriv(dev); 4941 4942 spin_lock_irq(&np->lock); 4943 4944 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4945 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4946 else 4947 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4948 4949 if (features & NETIF_F_HW_VLAN_CTAG_TX) 4950 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4951 else 4952 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4953 4954 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4955 4956 spin_unlock_irq(&np->lock); 4957 } 4958 4959 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4960 { 4961 struct fe_priv *np = netdev_priv(dev); 4962 u8 __iomem *base = get_hwbase(dev); 4963 netdev_features_t changed = dev->features ^ features; 4964 int retval; 4965 4966 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4967 retval = nv_set_loopback(dev, features); 4968 if (retval != 0) 4969 return retval; 4970 } 4971 4972 if (changed & NETIF_F_RXCSUM) { 4973 spin_lock_irq(&np->lock); 4974 4975 if (features & NETIF_F_RXCSUM) 4976 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4977 else 4978 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4979 4980 if (netif_running(dev)) 4981 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4982 4983 spin_unlock_irq(&np->lock); 4984 } 4985 4986 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX)) 4987 nv_vlan_mode(dev, features); 4988 4989 return 0; 4990 } 4991 4992 static int nv_get_sset_count(struct net_device *dev, int sset) 4993 { 4994 struct fe_priv *np = netdev_priv(dev); 4995 4996 switch (sset) { 4997 case ETH_SS_TEST: 4998 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4999 return NV_TEST_COUNT_EXTENDED; 5000 else 5001 return NV_TEST_COUNT_BASE; 5002 case ETH_SS_STATS: 5003 if (np->driver_data & DEV_HAS_STATISTICS_V3) 5004 return NV_DEV_STATISTICS_V3_COUNT; 5005 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 5006 return NV_DEV_STATISTICS_V2_COUNT; 5007 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 5008 return NV_DEV_STATISTICS_V1_COUNT; 5009 else 5010 return 0; 5011 default: 5012 return -EOPNOTSUPP; 5013 } 5014 } 5015 5016 static void nv_get_ethtool_stats(struct net_device *dev, 5017 struct ethtool_stats *estats, u64 *buffer) 5018 __acquires(&netdev_priv(dev)->hwstats_lock) 5019 __releases(&netdev_priv(dev)->hwstats_lock) 5020 { 5021 struct fe_priv *np = netdev_priv(dev); 5022 5023 spin_lock_bh(&np->hwstats_lock); 5024 nv_update_stats(dev); 5025 memcpy(buffer, &np->estats, 5026 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 5027 spin_unlock_bh(&np->hwstats_lock); 5028 } 5029 5030 static int nv_link_test(struct net_device *dev) 5031 { 5032 struct fe_priv *np = netdev_priv(dev); 5033 int mii_status; 5034 5035 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5036 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5037 5038 /* check phy link status */ 5039 if (!(mii_status & BMSR_LSTATUS)) 5040 return 0; 5041 else 5042 return 1; 5043 } 5044 5045 static int nv_register_test(struct net_device *dev) 5046 { 5047 u8 __iomem *base = get_hwbase(dev); 5048 int i = 0; 5049 u32 orig_read, new_read; 5050 5051 do { 5052 orig_read = readl(base + nv_registers_test[i].reg); 5053 5054 /* xor with mask to toggle bits */ 5055 orig_read ^= nv_registers_test[i].mask; 5056 5057 writel(orig_read, base + nv_registers_test[i].reg); 5058 5059 new_read = readl(base + nv_registers_test[i].reg); 5060 5061 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 5062 return 0; 5063 5064 /* restore original value */ 5065 orig_read ^= nv_registers_test[i].mask; 5066 writel(orig_read, base + nv_registers_test[i].reg); 5067 5068 } while (nv_registers_test[++i].reg != 0); 5069 5070 return 1; 5071 } 5072 5073 static int nv_interrupt_test(struct net_device *dev) 5074 { 5075 struct fe_priv *np = netdev_priv(dev); 5076 u8 __iomem *base = get_hwbase(dev); 5077 int ret = 1; 5078 int testcnt; 5079 u32 save_msi_flags, save_poll_interval = 0; 5080 5081 if (netif_running(dev)) { 5082 /* free current irq */ 5083 nv_free_irq(dev); 5084 save_poll_interval = readl(base+NvRegPollingInterval); 5085 } 5086 5087 /* flag to test interrupt handler */ 5088 np->intr_test = 0; 5089 5090 /* setup test irq */ 5091 save_msi_flags = np->msi_flags; 5092 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 5093 np->msi_flags |= 0x001; /* setup 1 vector */ 5094 if (nv_request_irq(dev, 1)) 5095 return 0; 5096 5097 /* setup timer interrupt */ 5098 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5099 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5100 5101 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5102 5103 /* wait for at least one interrupt */ 5104 msleep(100); 5105 5106 spin_lock_irq(&np->lock); 5107 5108 /* flag should be set within ISR */ 5109 testcnt = np->intr_test; 5110 if (!testcnt) 5111 ret = 2; 5112 5113 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5114 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5115 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5116 else 5117 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5118 5119 spin_unlock_irq(&np->lock); 5120 5121 nv_free_irq(dev); 5122 5123 np->msi_flags = save_msi_flags; 5124 5125 if (netif_running(dev)) { 5126 writel(save_poll_interval, base + NvRegPollingInterval); 5127 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5128 /* restore original irq */ 5129 if (nv_request_irq(dev, 0)) 5130 return 0; 5131 } 5132 5133 return ret; 5134 } 5135 5136 static int nv_loopback_test(struct net_device *dev) 5137 { 5138 struct fe_priv *np = netdev_priv(dev); 5139 u8 __iomem *base = get_hwbase(dev); 5140 struct sk_buff *tx_skb, *rx_skb; 5141 dma_addr_t test_dma_addr; 5142 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 5143 u32 flags; 5144 int len, i, pkt_len; 5145 u8 *pkt_data; 5146 u32 filter_flags = 0; 5147 u32 misc1_flags = 0; 5148 int ret = 1; 5149 5150 if (netif_running(dev)) { 5151 nv_disable_irq(dev); 5152 filter_flags = readl(base + NvRegPacketFilterFlags); 5153 misc1_flags = readl(base + NvRegMisc1); 5154 } else { 5155 nv_txrx_reset(dev); 5156 } 5157 5158 /* reinit driver view of the rx queue */ 5159 set_bufsize(dev); 5160 nv_init_ring(dev); 5161 5162 /* setup hardware for loopback */ 5163 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 5164 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 5165 5166 /* reinit nic view of the rx queue */ 5167 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5168 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5169 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5170 base + NvRegRingSizes); 5171 pci_push(base); 5172 5173 /* restart rx engine */ 5174 nv_start_rxtx(dev); 5175 5176 /* setup packet for tx */ 5177 pkt_len = ETH_DATA_LEN; 5178 tx_skb = netdev_alloc_skb(dev, pkt_len); 5179 if (!tx_skb) { 5180 ret = 0; 5181 goto out; 5182 } 5183 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data, 5184 skb_tailroom(tx_skb), 5185 DMA_FROM_DEVICE); 5186 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 5187 test_dma_addr))) { 5188 dev_kfree_skb_any(tx_skb); 5189 goto out; 5190 } 5191 pkt_data = skb_put(tx_skb, pkt_len); 5192 for (i = 0; i < pkt_len; i++) 5193 pkt_data[i] = (u8)(i & 0xff); 5194 5195 if (!nv_optimized(np)) { 5196 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5197 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5198 } else { 5199 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5200 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5201 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5202 } 5203 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5204 pci_push(get_hwbase(dev)); 5205 5206 msleep(500); 5207 5208 /* check for rx of the packet */ 5209 if (!nv_optimized(np)) { 5210 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5211 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5212 5213 } else { 5214 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5215 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5216 } 5217 5218 if (flags & NV_RX_AVAIL) { 5219 ret = 0; 5220 } else if (np->desc_ver == DESC_VER_1) { 5221 if (flags & NV_RX_ERROR) 5222 ret = 0; 5223 } else { 5224 if (flags & NV_RX2_ERROR) 5225 ret = 0; 5226 } 5227 5228 if (ret) { 5229 if (len != pkt_len) { 5230 ret = 0; 5231 } else { 5232 rx_skb = np->rx_skb[0].skb; 5233 for (i = 0; i < pkt_len; i++) { 5234 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5235 ret = 0; 5236 break; 5237 } 5238 } 5239 } 5240 } 5241 5242 dma_unmap_single(&np->pci_dev->dev, test_dma_addr, 5243 (skb_end_pointer(tx_skb) - tx_skb->data), 5244 DMA_TO_DEVICE); 5245 dev_kfree_skb_any(tx_skb); 5246 out: 5247 /* stop engines */ 5248 nv_stop_rxtx(dev); 5249 nv_txrx_reset(dev); 5250 /* drain rx queue */ 5251 nv_drain_rxtx(dev); 5252 5253 if (netif_running(dev)) { 5254 writel(misc1_flags, base + NvRegMisc1); 5255 writel(filter_flags, base + NvRegPacketFilterFlags); 5256 nv_enable_irq(dev); 5257 } 5258 5259 return ret; 5260 } 5261 5262 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5263 { 5264 struct fe_priv *np = netdev_priv(dev); 5265 u8 __iomem *base = get_hwbase(dev); 5266 int result, count; 5267 5268 count = nv_get_sset_count(dev, ETH_SS_TEST); 5269 memset(buffer, 0, count * sizeof(u64)); 5270 5271 if (!nv_link_test(dev)) { 5272 test->flags |= ETH_TEST_FL_FAILED; 5273 buffer[0] = 1; 5274 } 5275 5276 if (test->flags & ETH_TEST_FL_OFFLINE) { 5277 if (netif_running(dev)) { 5278 netif_stop_queue(dev); 5279 nv_napi_disable(dev); 5280 netif_tx_lock_bh(dev); 5281 netif_addr_lock(dev); 5282 spin_lock_irq(&np->lock); 5283 nv_disable_hw_interrupts(dev, np->irqmask); 5284 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5285 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5286 else 5287 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5288 /* stop engines */ 5289 nv_stop_rxtx(dev); 5290 nv_txrx_reset(dev); 5291 /* drain rx queue */ 5292 nv_drain_rxtx(dev); 5293 spin_unlock_irq(&np->lock); 5294 netif_addr_unlock(dev); 5295 netif_tx_unlock_bh(dev); 5296 } 5297 5298 if (!nv_register_test(dev)) { 5299 test->flags |= ETH_TEST_FL_FAILED; 5300 buffer[1] = 1; 5301 } 5302 5303 result = nv_interrupt_test(dev); 5304 if (result != 1) { 5305 test->flags |= ETH_TEST_FL_FAILED; 5306 buffer[2] = 1; 5307 } 5308 if (result == 0) { 5309 /* bail out */ 5310 return; 5311 } 5312 5313 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) { 5314 test->flags |= ETH_TEST_FL_FAILED; 5315 buffer[3] = 1; 5316 } 5317 5318 if (netif_running(dev)) { 5319 /* reinit driver view of the rx queue */ 5320 set_bufsize(dev); 5321 if (nv_init_ring(dev)) { 5322 if (!np->in_shutdown) 5323 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5324 } 5325 /* reinit nic view of the rx queue */ 5326 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5327 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5328 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5329 base + NvRegRingSizes); 5330 pci_push(base); 5331 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5332 pci_push(base); 5333 /* restart rx engine */ 5334 nv_start_rxtx(dev); 5335 netif_start_queue(dev); 5336 nv_napi_enable(dev); 5337 nv_enable_hw_interrupts(dev, np->irqmask); 5338 } 5339 } 5340 } 5341 5342 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5343 { 5344 switch (stringset) { 5345 case ETH_SS_STATS: 5346 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5347 break; 5348 case ETH_SS_TEST: 5349 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5350 break; 5351 } 5352 } 5353 5354 static const struct ethtool_ops ops = { 5355 .get_drvinfo = nv_get_drvinfo, 5356 .get_link = ethtool_op_get_link, 5357 .get_wol = nv_get_wol, 5358 .set_wol = nv_set_wol, 5359 .get_regs_len = nv_get_regs_len, 5360 .get_regs = nv_get_regs, 5361 .nway_reset = nv_nway_reset, 5362 .get_ringparam = nv_get_ringparam, 5363 .set_ringparam = nv_set_ringparam, 5364 .get_pauseparam = nv_get_pauseparam, 5365 .set_pauseparam = nv_set_pauseparam, 5366 .get_strings = nv_get_strings, 5367 .get_ethtool_stats = nv_get_ethtool_stats, 5368 .get_sset_count = nv_get_sset_count, 5369 .self_test = nv_self_test, 5370 .get_ts_info = ethtool_op_get_ts_info, 5371 .get_link_ksettings = nv_get_link_ksettings, 5372 .set_link_ksettings = nv_set_link_ksettings, 5373 }; 5374 5375 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5376 static int nv_mgmt_acquire_sema(struct net_device *dev) 5377 { 5378 struct fe_priv *np = netdev_priv(dev); 5379 u8 __iomem *base = get_hwbase(dev); 5380 int i; 5381 u32 tx_ctrl, mgmt_sema; 5382 5383 for (i = 0; i < 10; i++) { 5384 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5385 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5386 break; 5387 msleep(500); 5388 } 5389 5390 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5391 return 0; 5392 5393 for (i = 0; i < 2; i++) { 5394 tx_ctrl = readl(base + NvRegTransmitterControl); 5395 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5396 writel(tx_ctrl, base + NvRegTransmitterControl); 5397 5398 /* verify that semaphore was acquired */ 5399 tx_ctrl = readl(base + NvRegTransmitterControl); 5400 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5401 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5402 np->mgmt_sema = 1; 5403 return 1; 5404 } else 5405 udelay(50); 5406 } 5407 5408 return 0; 5409 } 5410 5411 static void nv_mgmt_release_sema(struct net_device *dev) 5412 { 5413 struct fe_priv *np = netdev_priv(dev); 5414 u8 __iomem *base = get_hwbase(dev); 5415 u32 tx_ctrl; 5416 5417 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5418 if (np->mgmt_sema) { 5419 tx_ctrl = readl(base + NvRegTransmitterControl); 5420 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5421 writel(tx_ctrl, base + NvRegTransmitterControl); 5422 } 5423 } 5424 } 5425 5426 5427 static int nv_mgmt_get_version(struct net_device *dev) 5428 { 5429 struct fe_priv *np = netdev_priv(dev); 5430 u8 __iomem *base = get_hwbase(dev); 5431 u32 data_ready = readl(base + NvRegTransmitterControl); 5432 u32 data_ready2 = 0; 5433 unsigned long start; 5434 int ready = 0; 5435 5436 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5437 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5438 start = jiffies; 5439 while (time_before(jiffies, start + 5*HZ)) { 5440 data_ready2 = readl(base + NvRegTransmitterControl); 5441 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5442 ready = 1; 5443 break; 5444 } 5445 schedule_timeout_uninterruptible(1); 5446 } 5447 5448 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5449 return 0; 5450 5451 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5452 5453 return 1; 5454 } 5455 5456 static int nv_open(struct net_device *dev) 5457 { 5458 struct fe_priv *np = netdev_priv(dev); 5459 u8 __iomem *base = get_hwbase(dev); 5460 int ret = 1; 5461 int oom, i; 5462 u32 low; 5463 5464 /* power up phy */ 5465 mii_rw(dev, np->phyaddr, MII_BMCR, 5466 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5467 5468 nv_txrx_gate(dev, false); 5469 /* erase previous misconfiguration */ 5470 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5471 nv_mac_reset(dev); 5472 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5473 writel(0, base + NvRegMulticastAddrB); 5474 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5475 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5476 writel(0, base + NvRegPacketFilterFlags); 5477 5478 writel(0, base + NvRegTransmitterControl); 5479 writel(0, base + NvRegReceiverControl); 5480 5481 writel(0, base + NvRegAdapterControl); 5482 5483 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5484 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5485 5486 /* initialize descriptor rings */ 5487 set_bufsize(dev); 5488 oom = nv_init_ring(dev); 5489 5490 writel(0, base + NvRegLinkSpeed); 5491 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5492 nv_txrx_reset(dev); 5493 writel(0, base + NvRegUnknownSetupReg6); 5494 5495 np->in_shutdown = 0; 5496 5497 /* give hw rings */ 5498 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5499 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5500 base + NvRegRingSizes); 5501 5502 writel(np->linkspeed, base + NvRegLinkSpeed); 5503 if (np->desc_ver == DESC_VER_1) 5504 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5505 else 5506 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5507 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5508 writel(np->vlanctl_bits, base + NvRegVlanControl); 5509 pci_push(base); 5510 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5511 if (reg_delay(dev, NvRegUnknownSetupReg5, 5512 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5513 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5514 netdev_info(dev, 5515 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5516 5517 writel(0, base + NvRegMIIMask); 5518 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5519 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5520 5521 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5522 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5523 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5524 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5525 5526 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5527 5528 get_random_bytes(&low, sizeof(low)); 5529 low &= NVREG_SLOTTIME_MASK; 5530 if (np->desc_ver == DESC_VER_1) { 5531 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5532 } else { 5533 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5534 /* setup legacy backoff */ 5535 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5536 } else { 5537 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5538 nv_gear_backoff_reseed(dev); 5539 } 5540 } 5541 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5542 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5543 if (poll_interval == -1) { 5544 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5545 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5546 else 5547 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5548 } else 5549 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5550 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5551 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5552 base + NvRegAdapterControl); 5553 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5554 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5555 if (np->wolenabled) 5556 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5557 5558 i = readl(base + NvRegPowerState); 5559 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5560 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5561 5562 pci_push(base); 5563 udelay(10); 5564 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5565 5566 nv_disable_hw_interrupts(dev, np->irqmask); 5567 pci_push(base); 5568 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5569 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5570 pci_push(base); 5571 5572 if (nv_request_irq(dev, 0)) 5573 goto out_drain; 5574 5575 /* ask for interrupts */ 5576 nv_enable_hw_interrupts(dev, np->irqmask); 5577 5578 spin_lock_irq(&np->lock); 5579 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5580 writel(0, base + NvRegMulticastAddrB); 5581 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5582 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5583 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5584 /* One manual link speed update: Interrupts are enabled, future link 5585 * speed changes cause interrupts and are handled by nv_link_irq(). 5586 */ 5587 readl(base + NvRegMIIStatus); 5588 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5589 5590 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5591 * to init hw */ 5592 np->linkspeed = 0; 5593 ret = nv_update_linkspeed(dev); 5594 nv_start_rxtx(dev); 5595 netif_start_queue(dev); 5596 nv_napi_enable(dev); 5597 5598 if (ret) { 5599 netif_carrier_on(dev); 5600 } else { 5601 netdev_info(dev, "no link during initialization\n"); 5602 netif_carrier_off(dev); 5603 } 5604 if (oom) 5605 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5606 5607 /* start statistics timer */ 5608 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5609 mod_timer(&np->stats_poll, 5610 round_jiffies(jiffies + STATS_INTERVAL)); 5611 5612 spin_unlock_irq(&np->lock); 5613 5614 /* If the loopback feature was set while the device was down, make sure 5615 * that it's set correctly now. 5616 */ 5617 if (dev->features & NETIF_F_LOOPBACK) 5618 nv_set_loopback(dev, dev->features); 5619 5620 return 0; 5621 out_drain: 5622 nv_drain_rxtx(dev); 5623 return ret; 5624 } 5625 5626 static int nv_close(struct net_device *dev) 5627 { 5628 struct fe_priv *np = netdev_priv(dev); 5629 u8 __iomem *base; 5630 5631 spin_lock_irq(&np->lock); 5632 np->in_shutdown = 1; 5633 spin_unlock_irq(&np->lock); 5634 nv_napi_disable(dev); 5635 synchronize_irq(np->pci_dev->irq); 5636 5637 del_timer_sync(&np->oom_kick); 5638 del_timer_sync(&np->nic_poll); 5639 del_timer_sync(&np->stats_poll); 5640 5641 netif_stop_queue(dev); 5642 spin_lock_irq(&np->lock); 5643 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ 5644 nv_stop_rxtx(dev); 5645 nv_txrx_reset(dev); 5646 5647 /* disable interrupts on the nic or we will lock up */ 5648 base = get_hwbase(dev); 5649 nv_disable_hw_interrupts(dev, np->irqmask); 5650 pci_push(base); 5651 5652 spin_unlock_irq(&np->lock); 5653 5654 nv_free_irq(dev); 5655 5656 nv_drain_rxtx(dev); 5657 5658 if (np->wolenabled || !phy_power_down) { 5659 nv_txrx_gate(dev, false); 5660 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5661 nv_start_rx(dev); 5662 } else { 5663 /* power down phy */ 5664 mii_rw(dev, np->phyaddr, MII_BMCR, 5665 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5666 nv_txrx_gate(dev, true); 5667 } 5668 5669 /* FIXME: power down nic */ 5670 5671 return 0; 5672 } 5673 5674 static const struct net_device_ops nv_netdev_ops = { 5675 .ndo_open = nv_open, 5676 .ndo_stop = nv_close, 5677 .ndo_get_stats64 = nv_get_stats64, 5678 .ndo_start_xmit = nv_start_xmit, 5679 .ndo_tx_timeout = nv_tx_timeout, 5680 .ndo_change_mtu = nv_change_mtu, 5681 .ndo_fix_features = nv_fix_features, 5682 .ndo_set_features = nv_set_features, 5683 .ndo_validate_addr = eth_validate_addr, 5684 .ndo_set_mac_address = nv_set_mac_address, 5685 .ndo_set_rx_mode = nv_set_multicast, 5686 #ifdef CONFIG_NET_POLL_CONTROLLER 5687 .ndo_poll_controller = nv_poll_controller, 5688 #endif 5689 }; 5690 5691 static const struct net_device_ops nv_netdev_ops_optimized = { 5692 .ndo_open = nv_open, 5693 .ndo_stop = nv_close, 5694 .ndo_get_stats64 = nv_get_stats64, 5695 .ndo_start_xmit = nv_start_xmit_optimized, 5696 .ndo_tx_timeout = nv_tx_timeout, 5697 .ndo_change_mtu = nv_change_mtu, 5698 .ndo_fix_features = nv_fix_features, 5699 .ndo_set_features = nv_set_features, 5700 .ndo_validate_addr = eth_validate_addr, 5701 .ndo_set_mac_address = nv_set_mac_address, 5702 .ndo_set_rx_mode = nv_set_multicast, 5703 #ifdef CONFIG_NET_POLL_CONTROLLER 5704 .ndo_poll_controller = nv_poll_controller, 5705 #endif 5706 }; 5707 5708 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5709 { 5710 struct net_device *dev; 5711 struct fe_priv *np; 5712 unsigned long addr; 5713 u8 __iomem *base; 5714 int err, i; 5715 u32 powerstate, txreg; 5716 u32 phystate_orig = 0, phystate; 5717 int phyinitialized = 0; 5718 static int printed_version; 5719 5720 if (!printed_version++) 5721 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5722 FORCEDETH_VERSION); 5723 5724 dev = alloc_etherdev(sizeof(struct fe_priv)); 5725 err = -ENOMEM; 5726 if (!dev) 5727 goto out; 5728 5729 np = netdev_priv(dev); 5730 np->dev = dev; 5731 np->pci_dev = pci_dev; 5732 spin_lock_init(&np->lock); 5733 spin_lock_init(&np->hwstats_lock); 5734 SET_NETDEV_DEV(dev, &pci_dev->dev); 5735 u64_stats_init(&np->swstats_rx_syncp); 5736 u64_stats_init(&np->swstats_tx_syncp); 5737 np->txrx_stats = alloc_percpu(struct nv_txrx_stats); 5738 if (!np->txrx_stats) { 5739 pr_err("np->txrx_stats, alloc memory error.\n"); 5740 err = -ENOMEM; 5741 goto out_alloc_percpu; 5742 } 5743 5744 timer_setup(&np->oom_kick, nv_do_rx_refill, 0); 5745 timer_setup(&np->nic_poll, nv_do_nic_poll, 0); 5746 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE); 5747 5748 err = pci_enable_device(pci_dev); 5749 if (err) 5750 goto out_free; 5751 5752 pci_set_master(pci_dev); 5753 5754 err = pci_request_regions(pci_dev, DRV_NAME); 5755 if (err < 0) 5756 goto out_disable; 5757 5758 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5759 np->register_size = NV_PCI_REGSZ_VER3; 5760 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5761 np->register_size = NV_PCI_REGSZ_VER2; 5762 else 5763 np->register_size = NV_PCI_REGSZ_VER1; 5764 5765 err = -EINVAL; 5766 addr = 0; 5767 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5768 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5769 pci_resource_len(pci_dev, i) >= np->register_size) { 5770 addr = pci_resource_start(pci_dev, i); 5771 break; 5772 } 5773 } 5774 if (i == DEVICE_COUNT_RESOURCE) { 5775 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5776 goto out_relreg; 5777 } 5778 5779 /* copy of driver data */ 5780 np->driver_data = id->driver_data; 5781 /* copy of device id */ 5782 np->device_id = id->device; 5783 5784 /* handle different descriptor versions */ 5785 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5786 /* packet format 3: supports 40-bit addressing */ 5787 np->desc_ver = DESC_VER_3; 5788 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5789 if (dma_64bit) { 5790 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5791 dev_info(&pci_dev->dev, 5792 "64-bit DMA failed, using 32-bit addressing\n"); 5793 else 5794 dev->features |= NETIF_F_HIGHDMA; 5795 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5796 dev_info(&pci_dev->dev, 5797 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5798 } 5799 } 5800 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5801 /* packet format 2: supports jumbo frames */ 5802 np->desc_ver = DESC_VER_2; 5803 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5804 } else { 5805 /* original packet format */ 5806 np->desc_ver = DESC_VER_1; 5807 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5808 } 5809 5810 np->pkt_limit = NV_PKTLIMIT_1; 5811 if (id->driver_data & DEV_HAS_LARGEDESC) 5812 np->pkt_limit = NV_PKTLIMIT_2; 5813 5814 if (id->driver_data & DEV_HAS_CHECKSUM) { 5815 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5816 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5817 NETIF_F_TSO | NETIF_F_RXCSUM; 5818 } 5819 5820 np->vlanctl_bits = 0; 5821 if (id->driver_data & DEV_HAS_VLAN) { 5822 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5823 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | 5824 NETIF_F_HW_VLAN_CTAG_TX; 5825 } 5826 5827 dev->features |= dev->hw_features; 5828 5829 /* Add loopback capability to the device. */ 5830 dev->hw_features |= NETIF_F_LOOPBACK; 5831 5832 /* MTU range: 64 - 1500 or 9100 */ 5833 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 5834 dev->max_mtu = np->pkt_limit; 5835 5836 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5837 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5838 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5839 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5840 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5841 } 5842 5843 err = -ENOMEM; 5844 np->base = ioremap(addr, np->register_size); 5845 if (!np->base) 5846 goto out_relreg; 5847 5848 np->rx_ring_size = RX_RING_DEFAULT; 5849 np->tx_ring_size = TX_RING_DEFAULT; 5850 5851 if (!nv_optimized(np)) { 5852 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev, 5853 sizeof(struct ring_desc) * 5854 (np->rx_ring_size + 5855 np->tx_ring_size), 5856 &np->ring_addr, 5857 GFP_KERNEL); 5858 if (!np->rx_ring.orig) 5859 goto out_unmap; 5860 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5861 } else { 5862 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev, 5863 sizeof(struct ring_desc_ex) * 5864 (np->rx_ring_size + 5865 np->tx_ring_size), 5866 &np->ring_addr, GFP_KERNEL); 5867 if (!np->rx_ring.ex) 5868 goto out_unmap; 5869 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5870 } 5871 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5872 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5873 if (!np->rx_skb || !np->tx_skb) 5874 goto out_freering; 5875 5876 if (!nv_optimized(np)) 5877 dev->netdev_ops = &nv_netdev_ops; 5878 else 5879 dev->netdev_ops = &nv_netdev_ops_optimized; 5880 5881 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5882 dev->ethtool_ops = &ops; 5883 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5884 5885 pci_set_drvdata(pci_dev, dev); 5886 5887 /* read the mac address */ 5888 base = get_hwbase(dev); 5889 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5890 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5891 5892 /* check the workaround bit for correct mac address order */ 5893 txreg = readl(base + NvRegTransmitPoll); 5894 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5895 /* mac address is already in correct order */ 5896 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5897 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5898 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5899 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5900 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5901 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5902 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5903 /* mac address is already in correct order */ 5904 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5905 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5906 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5907 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5908 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5909 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5910 /* 5911 * Set orig mac address back to the reversed version. 5912 * This flag will be cleared during low power transition. 5913 * Therefore, we should always put back the reversed address. 5914 */ 5915 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5916 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5917 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5918 } else { 5919 /* need to reverse mac address to correct order */ 5920 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5921 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5922 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5923 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5924 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5925 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5926 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5927 dev_dbg(&pci_dev->dev, 5928 "%s: set workaround bit for reversed mac addr\n", 5929 __func__); 5930 } 5931 5932 if (!is_valid_ether_addr(dev->dev_addr)) { 5933 /* 5934 * Bad mac address. At least one bios sets the mac address 5935 * to 01:23:45:67:89:ab 5936 */ 5937 dev_err(&pci_dev->dev, 5938 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5939 dev->dev_addr); 5940 eth_hw_addr_random(dev); 5941 dev_err(&pci_dev->dev, 5942 "Using random MAC address: %pM\n", dev->dev_addr); 5943 } 5944 5945 /* set mac address */ 5946 nv_copy_mac_to_hw(dev); 5947 5948 /* disable WOL */ 5949 writel(0, base + NvRegWakeUpFlags); 5950 np->wolenabled = 0; 5951 device_set_wakeup_enable(&pci_dev->dev, false); 5952 5953 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5954 5955 /* take phy and nic out of low power mode */ 5956 powerstate = readl(base + NvRegPowerState2); 5957 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5958 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5959 pci_dev->revision >= 0xA3) 5960 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5961 writel(powerstate, base + NvRegPowerState2); 5962 } 5963 5964 if (np->desc_ver == DESC_VER_1) 5965 np->tx_flags = NV_TX_VALID; 5966 else 5967 np->tx_flags = NV_TX2_VALID; 5968 5969 np->msi_flags = 0; 5970 if ((id->driver_data & DEV_HAS_MSI) && msi) 5971 np->msi_flags |= NV_MSI_CAPABLE; 5972 5973 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5974 /* msix has had reported issues when modifying irqmask 5975 as in the case of napi, therefore, disable for now 5976 */ 5977 #if 0 5978 np->msi_flags |= NV_MSI_X_CAPABLE; 5979 #endif 5980 } 5981 5982 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5983 np->irqmask = NVREG_IRQMASK_CPU; 5984 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5985 np->msi_flags |= 0x0001; 5986 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5987 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5988 /* start off in throughput mode */ 5989 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5990 /* remove support for msix mode */ 5991 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5992 } else { 5993 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5994 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5995 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5996 np->msi_flags |= 0x0003; 5997 } 5998 5999 if (id->driver_data & DEV_NEED_TIMERIRQ) 6000 np->irqmask |= NVREG_IRQ_TIMER; 6001 if (id->driver_data & DEV_NEED_LINKTIMER) { 6002 np->need_linktimer = 1; 6003 np->link_timeout = jiffies + LINK_TIMEOUT; 6004 } else { 6005 np->need_linktimer = 0; 6006 } 6007 6008 /* Limit the number of tx's outstanding for hw bug */ 6009 if (id->driver_data & DEV_NEED_TX_LIMIT) { 6010 np->tx_limit = 1; 6011 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 6012 pci_dev->revision >= 0xA2) 6013 np->tx_limit = 0; 6014 } 6015 6016 /* clear phy state and temporarily halt phy interrupts */ 6017 writel(0, base + NvRegMIIMask); 6018 phystate = readl(base + NvRegAdapterControl); 6019 if (phystate & NVREG_ADAPTCTL_RUNNING) { 6020 phystate_orig = 1; 6021 phystate &= ~NVREG_ADAPTCTL_RUNNING; 6022 writel(phystate, base + NvRegAdapterControl); 6023 } 6024 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 6025 6026 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 6027 /* management unit running on the mac? */ 6028 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 6029 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 6030 nv_mgmt_acquire_sema(dev) && 6031 nv_mgmt_get_version(dev)) { 6032 np->mac_in_use = 1; 6033 if (np->mgmt_version > 0) 6034 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 6035 /* management unit setup the phy already? */ 6036 if (np->mac_in_use && 6037 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 6038 NVREG_XMITCTL_SYNC_PHY_INIT)) { 6039 /* phy is inited by mgmt unit */ 6040 phyinitialized = 1; 6041 } else { 6042 /* we need to init the phy */ 6043 } 6044 } 6045 } 6046 6047 /* find a suitable phy */ 6048 for (i = 1; i <= 32; i++) { 6049 int id1, id2; 6050 int phyaddr = i & 0x1F; 6051 6052 spin_lock_irq(&np->lock); 6053 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 6054 spin_unlock_irq(&np->lock); 6055 if (id1 < 0 || id1 == 0xffff) 6056 continue; 6057 spin_lock_irq(&np->lock); 6058 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 6059 spin_unlock_irq(&np->lock); 6060 if (id2 < 0 || id2 == 0xffff) 6061 continue; 6062 6063 np->phy_model = id2 & PHYID2_MODEL_MASK; 6064 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 6065 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 6066 np->phyaddr = phyaddr; 6067 np->phy_oui = id1 | id2; 6068 6069 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 6070 if (np->phy_oui == PHY_OUI_REALTEK2) 6071 np->phy_oui = PHY_OUI_REALTEK; 6072 /* Setup phy revision for Realtek */ 6073 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 6074 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 6075 6076 break; 6077 } 6078 if (i == 33) { 6079 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 6080 goto out_error; 6081 } 6082 6083 if (!phyinitialized) { 6084 /* reset it */ 6085 phy_init(dev); 6086 } else { 6087 /* see if it is a gigabit phy */ 6088 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 6089 if (mii_status & PHY_GIGABIT) 6090 np->gigabit = PHY_GIGABIT; 6091 } 6092 6093 /* set default link speed settings */ 6094 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 6095 np->duplex = 0; 6096 np->autoneg = 1; 6097 6098 err = register_netdev(dev); 6099 if (err) { 6100 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 6101 goto out_error; 6102 } 6103 6104 netif_carrier_off(dev); 6105 6106 /* Some NICs freeze when TX pause is enabled while NIC is 6107 * down, and this stays across warm reboots. The sequence 6108 * below should be enough to recover from that state. 6109 */ 6110 nv_update_pause(dev, 0); 6111 nv_start_tx(dev); 6112 nv_stop_tx(dev); 6113 6114 if (id->driver_data & DEV_HAS_VLAN) 6115 nv_vlan_mode(dev, dev->features); 6116 6117 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 6118 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 6119 6120 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 6121 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 6122 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 6123 "csum " : "", 6124 dev->features & (NETIF_F_HW_VLAN_CTAG_RX | 6125 NETIF_F_HW_VLAN_CTAG_TX) ? 6126 "vlan " : "", 6127 dev->features & (NETIF_F_LOOPBACK) ? 6128 "loopback " : "", 6129 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 6130 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 6131 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 6132 np->gigabit == PHY_GIGABIT ? "gbit " : "", 6133 np->need_linktimer ? "lnktim " : "", 6134 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 6135 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 6136 np->desc_ver); 6137 6138 return 0; 6139 6140 out_error: 6141 if (phystate_orig) 6142 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 6143 out_freering: 6144 free_rings(dev); 6145 out_unmap: 6146 iounmap(get_hwbase(dev)); 6147 out_relreg: 6148 pci_release_regions(pci_dev); 6149 out_disable: 6150 pci_disable_device(pci_dev); 6151 out_free: 6152 free_percpu(np->txrx_stats); 6153 out_alloc_percpu: 6154 free_netdev(dev); 6155 out: 6156 return err; 6157 } 6158 6159 static void nv_restore_phy(struct net_device *dev) 6160 { 6161 struct fe_priv *np = netdev_priv(dev); 6162 u16 phy_reserved, mii_control; 6163 6164 if (np->phy_oui == PHY_OUI_REALTEK && 6165 np->phy_model == PHY_MODEL_REALTEK_8201 && 6166 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 6167 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 6168 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 6169 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 6170 phy_reserved |= PHY_REALTEK_INIT8; 6171 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 6172 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 6173 6174 /* restart auto negotiation */ 6175 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 6176 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 6177 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 6178 } 6179 } 6180 6181 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 6182 { 6183 struct net_device *dev = pci_get_drvdata(pci_dev); 6184 struct fe_priv *np = netdev_priv(dev); 6185 u8 __iomem *base = get_hwbase(dev); 6186 6187 /* special op: write back the misordered MAC address - otherwise 6188 * the next nv_probe would see a wrong address. 6189 */ 6190 writel(np->orig_mac[0], base + NvRegMacAddrA); 6191 writel(np->orig_mac[1], base + NvRegMacAddrB); 6192 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 6193 base + NvRegTransmitPoll); 6194 } 6195 6196 static void nv_remove(struct pci_dev *pci_dev) 6197 { 6198 struct net_device *dev = pci_get_drvdata(pci_dev); 6199 struct fe_priv *np = netdev_priv(dev); 6200 6201 free_percpu(np->txrx_stats); 6202 6203 unregister_netdev(dev); 6204 6205 nv_restore_mac_addr(pci_dev); 6206 6207 /* restore any phy related changes */ 6208 nv_restore_phy(dev); 6209 6210 nv_mgmt_release_sema(dev); 6211 6212 /* free all structures */ 6213 free_rings(dev); 6214 iounmap(get_hwbase(dev)); 6215 pci_release_regions(pci_dev); 6216 pci_disable_device(pci_dev); 6217 free_netdev(dev); 6218 } 6219 6220 #ifdef CONFIG_PM_SLEEP 6221 static int nv_suspend(struct device *device) 6222 { 6223 struct net_device *dev = dev_get_drvdata(device); 6224 struct fe_priv *np = netdev_priv(dev); 6225 u8 __iomem *base = get_hwbase(dev); 6226 int i; 6227 6228 if (netif_running(dev)) { 6229 /* Gross. */ 6230 nv_close(dev); 6231 } 6232 netif_device_detach(dev); 6233 6234 /* save non-pci configuration space */ 6235 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6236 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6237 6238 return 0; 6239 } 6240 6241 static int nv_resume(struct device *device) 6242 { 6243 struct pci_dev *pdev = to_pci_dev(device); 6244 struct net_device *dev = pci_get_drvdata(pdev); 6245 struct fe_priv *np = netdev_priv(dev); 6246 u8 __iomem *base = get_hwbase(dev); 6247 int i, rc = 0; 6248 6249 /* restore non-pci configuration space */ 6250 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6251 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6252 6253 if (np->driver_data & DEV_NEED_MSI_FIX) 6254 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6255 6256 /* restore phy state, including autoneg */ 6257 phy_init(dev); 6258 6259 netif_device_attach(dev); 6260 if (netif_running(dev)) { 6261 rc = nv_open(dev); 6262 nv_set_multicast(dev); 6263 } 6264 return rc; 6265 } 6266 6267 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6268 #define NV_PM_OPS (&nv_pm_ops) 6269 6270 #else 6271 #define NV_PM_OPS NULL 6272 #endif /* CONFIG_PM_SLEEP */ 6273 6274 #ifdef CONFIG_PM 6275 static void nv_shutdown(struct pci_dev *pdev) 6276 { 6277 struct net_device *dev = pci_get_drvdata(pdev); 6278 struct fe_priv *np = netdev_priv(dev); 6279 6280 if (netif_running(dev)) 6281 nv_close(dev); 6282 6283 /* 6284 * Restore the MAC so a kernel started by kexec won't get confused. 6285 * If we really go for poweroff, we must not restore the MAC, 6286 * otherwise the MAC for WOL will be reversed at least on some boards. 6287 */ 6288 if (system_state != SYSTEM_POWER_OFF) 6289 nv_restore_mac_addr(pdev); 6290 6291 pci_disable_device(pdev); 6292 /* 6293 * Apparently it is not possible to reinitialise from D3 hot, 6294 * only put the device into D3 if we really go for poweroff. 6295 */ 6296 if (system_state == SYSTEM_POWER_OFF) { 6297 pci_wake_from_d3(pdev, np->wolenabled); 6298 pci_set_power_state(pdev, PCI_D3hot); 6299 } 6300 } 6301 #else 6302 #define nv_shutdown NULL 6303 #endif /* CONFIG_PM */ 6304 6305 static const struct pci_device_id pci_tbl[] = { 6306 { /* nForce Ethernet Controller */ 6307 PCI_DEVICE(0x10DE, 0x01C3), 6308 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6309 }, 6310 { /* nForce2 Ethernet Controller */ 6311 PCI_DEVICE(0x10DE, 0x0066), 6312 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6313 }, 6314 { /* nForce3 Ethernet Controller */ 6315 PCI_DEVICE(0x10DE, 0x00D6), 6316 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6317 }, 6318 { /* nForce3 Ethernet Controller */ 6319 PCI_DEVICE(0x10DE, 0x0086), 6320 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6321 }, 6322 { /* nForce3 Ethernet Controller */ 6323 PCI_DEVICE(0x10DE, 0x008C), 6324 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6325 }, 6326 { /* nForce3 Ethernet Controller */ 6327 PCI_DEVICE(0x10DE, 0x00E6), 6328 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6329 }, 6330 { /* nForce3 Ethernet Controller */ 6331 PCI_DEVICE(0x10DE, 0x00DF), 6332 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6333 }, 6334 { /* CK804 Ethernet Controller */ 6335 PCI_DEVICE(0x10DE, 0x0056), 6336 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6337 }, 6338 { /* CK804 Ethernet Controller */ 6339 PCI_DEVICE(0x10DE, 0x0057), 6340 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6341 }, 6342 { /* MCP04 Ethernet Controller */ 6343 PCI_DEVICE(0x10DE, 0x0037), 6344 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6345 }, 6346 { /* MCP04 Ethernet Controller */ 6347 PCI_DEVICE(0x10DE, 0x0038), 6348 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6349 }, 6350 { /* MCP51 Ethernet Controller */ 6351 PCI_DEVICE(0x10DE, 0x0268), 6352 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6353 }, 6354 { /* MCP51 Ethernet Controller */ 6355 PCI_DEVICE(0x10DE, 0x0269), 6356 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6357 }, 6358 { /* MCP55 Ethernet Controller */ 6359 PCI_DEVICE(0x10DE, 0x0372), 6360 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6361 }, 6362 { /* MCP55 Ethernet Controller */ 6363 PCI_DEVICE(0x10DE, 0x0373), 6364 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6365 }, 6366 { /* MCP61 Ethernet Controller */ 6367 PCI_DEVICE(0x10DE, 0x03E5), 6368 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6369 }, 6370 { /* MCP61 Ethernet Controller */ 6371 PCI_DEVICE(0x10DE, 0x03E6), 6372 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6373 }, 6374 { /* MCP61 Ethernet Controller */ 6375 PCI_DEVICE(0x10DE, 0x03EE), 6376 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6377 }, 6378 { /* MCP61 Ethernet Controller */ 6379 PCI_DEVICE(0x10DE, 0x03EF), 6380 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6381 }, 6382 { /* MCP65 Ethernet Controller */ 6383 PCI_DEVICE(0x10DE, 0x0450), 6384 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6385 }, 6386 { /* MCP65 Ethernet Controller */ 6387 PCI_DEVICE(0x10DE, 0x0451), 6388 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6389 }, 6390 { /* MCP65 Ethernet Controller */ 6391 PCI_DEVICE(0x10DE, 0x0452), 6392 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6393 }, 6394 { /* MCP65 Ethernet Controller */ 6395 PCI_DEVICE(0x10DE, 0x0453), 6396 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6397 }, 6398 { /* MCP67 Ethernet Controller */ 6399 PCI_DEVICE(0x10DE, 0x054C), 6400 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6401 }, 6402 { /* MCP67 Ethernet Controller */ 6403 PCI_DEVICE(0x10DE, 0x054D), 6404 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6405 }, 6406 { /* MCP67 Ethernet Controller */ 6407 PCI_DEVICE(0x10DE, 0x054E), 6408 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6409 }, 6410 { /* MCP67 Ethernet Controller */ 6411 PCI_DEVICE(0x10DE, 0x054F), 6412 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6413 }, 6414 { /* MCP73 Ethernet Controller */ 6415 PCI_DEVICE(0x10DE, 0x07DC), 6416 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6417 }, 6418 { /* MCP73 Ethernet Controller */ 6419 PCI_DEVICE(0x10DE, 0x07DD), 6420 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6421 }, 6422 { /* MCP73 Ethernet Controller */ 6423 PCI_DEVICE(0x10DE, 0x07DE), 6424 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6425 }, 6426 { /* MCP73 Ethernet Controller */ 6427 PCI_DEVICE(0x10DE, 0x07DF), 6428 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6429 }, 6430 { /* MCP77 Ethernet Controller */ 6431 PCI_DEVICE(0x10DE, 0x0760), 6432 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6433 }, 6434 { /* MCP77 Ethernet Controller */ 6435 PCI_DEVICE(0x10DE, 0x0761), 6436 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6437 }, 6438 { /* MCP77 Ethernet Controller */ 6439 PCI_DEVICE(0x10DE, 0x0762), 6440 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6441 }, 6442 { /* MCP77 Ethernet Controller */ 6443 PCI_DEVICE(0x10DE, 0x0763), 6444 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6445 }, 6446 { /* MCP79 Ethernet Controller */ 6447 PCI_DEVICE(0x10DE, 0x0AB0), 6448 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6449 }, 6450 { /* MCP79 Ethernet Controller */ 6451 PCI_DEVICE(0x10DE, 0x0AB1), 6452 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6453 }, 6454 { /* MCP79 Ethernet Controller */ 6455 PCI_DEVICE(0x10DE, 0x0AB2), 6456 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6457 }, 6458 { /* MCP79 Ethernet Controller */ 6459 PCI_DEVICE(0x10DE, 0x0AB3), 6460 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6461 }, 6462 { /* MCP89 Ethernet Controller */ 6463 PCI_DEVICE(0x10DE, 0x0D7D), 6464 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6465 }, 6466 {0,}, 6467 }; 6468 6469 static struct pci_driver forcedeth_pci_driver = { 6470 .name = DRV_NAME, 6471 .id_table = pci_tbl, 6472 .probe = nv_probe, 6473 .remove = nv_remove, 6474 .shutdown = nv_shutdown, 6475 .driver.pm = NV_PM_OPS, 6476 }; 6477 6478 module_param(max_interrupt_work, int, 0); 6479 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6480 module_param(optimization_mode, int, 0); 6481 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6482 module_param(poll_interval, int, 0); 6483 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6484 module_param(msi, int, 0); 6485 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6486 module_param(msix, int, 0); 6487 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6488 module_param(dma_64bit, int, 0); 6489 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6490 module_param(phy_cross, int, 0); 6491 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6492 module_param(phy_power_down, int, 0); 6493 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6494 module_param(debug_tx_timeout, bool, 0); 6495 MODULE_PARM_DESC(debug_tx_timeout, 6496 "Dump tx related registers and ring when tx_timeout happens"); 6497 6498 module_pci_driver(forcedeth_pci_driver); 6499 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6500 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6501 MODULE_LICENSE("GPL"); 6502 MODULE_DEVICE_TABLE(pci, pci_tbl); 6503