1 /* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. 7 * 8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 9 * trademarks of NVIDIA Corporation in the United States and other 10 * countries. 11 * 12 * Copyright (C) 2003,4,5 Manfred Spraul 13 * Copyright (C) 2004 Andrew de Quincey (wol support) 14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 15 * IRQ rate fixes, bigendian fixes, cleanups, verification) 16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * (at your option) any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, see <http://www.gnu.org/licenses/>. 30 * 31 * Known bugs: 32 * We suspect that on some hardware no TX done interrupts are generated. 33 * This means recovery from netif_stop_queue only happens if the hw timer 34 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 35 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 36 * If your hardware reliably generates tx done interrupts, then you can remove 37 * DEV_NEED_TIMERIRQ from the driver_data flags. 38 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 39 * superfluous timer interrupts from the nic. 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #define FORCEDETH_VERSION "0.64" 45 #define DRV_NAME "forcedeth" 46 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/pci.h> 50 #include <linux/interrupt.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/delay.h> 54 #include <linux/sched.h> 55 #include <linux/spinlock.h> 56 #include <linux/ethtool.h> 57 #include <linux/timer.h> 58 #include <linux/skbuff.h> 59 #include <linux/mii.h> 60 #include <linux/random.h> 61 #include <linux/if_vlan.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/slab.h> 64 #include <linux/uaccess.h> 65 #include <linux/prefetch.h> 66 #include <linux/u64_stats_sync.h> 67 #include <linux/io.h> 68 69 #include <asm/irq.h> 70 71 #define TX_WORK_PER_LOOP 64 72 #define RX_WORK_PER_LOOP 64 73 74 /* 75 * Hardware access: 76 */ 77 78 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 79 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 80 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 81 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 82 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 83 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 84 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 85 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 86 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 87 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 88 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 89 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 90 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 91 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 92 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 93 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 94 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 95 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 99 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 100 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 101 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 102 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 103 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 104 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 105 106 enum { 107 NvRegIrqStatus = 0x000, 108 #define NVREG_IRQSTAT_MIIEVENT 0x040 109 #define NVREG_IRQSTAT_MASK 0x83ff 110 NvRegIrqMask = 0x004, 111 #define NVREG_IRQ_RX_ERROR 0x0001 112 #define NVREG_IRQ_RX 0x0002 113 #define NVREG_IRQ_RX_NOBUF 0x0004 114 #define NVREG_IRQ_TX_ERR 0x0008 115 #define NVREG_IRQ_TX_OK 0x0010 116 #define NVREG_IRQ_TIMER 0x0020 117 #define NVREG_IRQ_LINK 0x0040 118 #define NVREG_IRQ_RX_FORCED 0x0080 119 #define NVREG_IRQ_TX_FORCED 0x0100 120 #define NVREG_IRQ_RECOVER_ERROR 0x8200 121 #define NVREG_IRQMASK_THROUGHPUT 0x00df 122 #define NVREG_IRQMASK_CPU 0x0060 123 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 124 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 125 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 126 127 NvRegUnknownSetupReg6 = 0x008, 128 #define NVREG_UNKSETUP6_VAL 3 129 130 /* 131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 133 */ 134 NvRegPollingInterval = 0x00c, 135 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 136 #define NVREG_POLL_DEFAULT_CPU 13 137 NvRegMSIMap0 = 0x020, 138 NvRegMSIMap1 = 0x024, 139 NvRegMSIIrqMask = 0x030, 140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 141 NvRegMisc1 = 0x080, 142 #define NVREG_MISC1_PAUSE_TX 0x01 143 #define NVREG_MISC1_HD 0x02 144 #define NVREG_MISC1_FORCE 0x3b0f3c 145 146 NvRegMacReset = 0x34, 147 #define NVREG_MAC_RESET_ASSERT 0x0F3 148 NvRegTransmitterControl = 0x084, 149 #define NVREG_XMITCTL_START 0x01 150 #define NVREG_XMITCTL_MGMT_ST 0x40000000 151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 160 #define NVREG_XMITCTL_DATA_START 0x00100000 161 #define NVREG_XMITCTL_DATA_READY 0x00010000 162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 163 NvRegTransmitterStatus = 0x088, 164 #define NVREG_XMITSTAT_BUSY 0x01 165 166 NvRegPacketFilterFlags = 0x8c, 167 #define NVREG_PFF_PAUSE_RX 0x08 168 #define NVREG_PFF_ALWAYS 0x7F0000 169 #define NVREG_PFF_PROMISC 0x80 170 #define NVREG_PFF_MYADDR 0x20 171 #define NVREG_PFF_LOOPBACK 0x10 172 173 NvRegOffloadConfig = 0x90, 174 #define NVREG_OFFLOAD_HOMEPHY 0x601 175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 176 NvRegReceiverControl = 0x094, 177 #define NVREG_RCVCTL_START 0x01 178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 179 NvRegReceiverStatus = 0x98, 180 #define NVREG_RCVSTAT_BUSY 0x01 181 182 NvRegSlotTime = 0x9c, 183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 186 #define NVREG_SLOTTIME_HALF 0x0000ff00 187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 188 #define NVREG_SLOTTIME_MASK 0x000000ff 189 190 NvRegTxDeferral = 0xA0, 191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 197 NvRegRxDeferral = 0xA4, 198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 199 NvRegMacAddrA = 0xA8, 200 NvRegMacAddrB = 0xAC, 201 NvRegMulticastAddrA = 0xB0, 202 #define NVREG_MCASTADDRA_FORCE 0x01 203 NvRegMulticastAddrB = 0xB4, 204 NvRegMulticastMaskA = 0xB8, 205 #define NVREG_MCASTMASKA_NONE 0xffffffff 206 NvRegMulticastMaskB = 0xBC, 207 #define NVREG_MCASTMASKB_NONE 0xffff 208 209 NvRegPhyInterface = 0xC0, 210 #define PHY_RGMII 0x10000000 211 NvRegBackOffControl = 0xC4, 212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 214 #define NVREG_BKOFFCTRL_SELECT 24 215 #define NVREG_BKOFFCTRL_GEAR 12 216 217 NvRegTxRingPhysAddr = 0x100, 218 NvRegRxRingPhysAddr = 0x104, 219 NvRegRingSizes = 0x108, 220 #define NVREG_RINGSZ_TXSHIFT 0 221 #define NVREG_RINGSZ_RXSHIFT 16 222 NvRegTransmitPoll = 0x10c, 223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 224 NvRegLinkSpeed = 0x110, 225 #define NVREG_LINKSPEED_FORCE 0x10000 226 #define NVREG_LINKSPEED_10 1000 227 #define NVREG_LINKSPEED_100 100 228 #define NVREG_LINKSPEED_1000 50 229 #define NVREG_LINKSPEED_MASK (0xFFF) 230 NvRegUnknownSetupReg5 = 0x130, 231 #define NVREG_UNKSETUP5_BIT31 (1<<31) 232 NvRegTxWatermark = 0x13c, 233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 236 NvRegTxRxControl = 0x144, 237 #define NVREG_TXRXCTL_KICK 0x0001 238 #define NVREG_TXRXCTL_BIT1 0x0002 239 #define NVREG_TXRXCTL_BIT2 0x0004 240 #define NVREG_TXRXCTL_IDLE 0x0008 241 #define NVREG_TXRXCTL_RESET 0x0010 242 #define NVREG_TXRXCTL_RXCHECK 0x0400 243 #define NVREG_TXRXCTL_DESC_1 0 244 #define NVREG_TXRXCTL_DESC_2 0x002100 245 #define NVREG_TXRXCTL_DESC_3 0xc02200 246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 247 #define NVREG_TXRXCTL_VLANINS 0x00080 248 NvRegTxRingPhysAddrHigh = 0x148, 249 NvRegRxRingPhysAddrHigh = 0x14C, 250 NvRegTxPauseFrame = 0x170, 251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 255 NvRegTxPauseFrameLimit = 0x174, 256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 257 NvRegMIIStatus = 0x180, 258 #define NVREG_MIISTAT_ERROR 0x0001 259 #define NVREG_MIISTAT_LINKCHANGE 0x0008 260 #define NVREG_MIISTAT_MASK_RW 0x0007 261 #define NVREG_MIISTAT_MASK_ALL 0x000f 262 NvRegMIIMask = 0x184, 263 #define NVREG_MII_LINKCHANGE 0x0008 264 265 NvRegAdapterControl = 0x188, 266 #define NVREG_ADAPTCTL_START 0x02 267 #define NVREG_ADAPTCTL_LINKUP 0x04 268 #define NVREG_ADAPTCTL_PHYVALID 0x40000 269 #define NVREG_ADAPTCTL_RUNNING 0x100000 270 #define NVREG_ADAPTCTL_PHYSHIFT 24 271 NvRegMIISpeed = 0x18c, 272 #define NVREG_MIISPEED_BIT8 (1<<8) 273 #define NVREG_MIIDELAY 5 274 NvRegMIIControl = 0x190, 275 #define NVREG_MIICTL_INUSE 0x08000 276 #define NVREG_MIICTL_WRITE 0x00400 277 #define NVREG_MIICTL_ADDRSHIFT 5 278 NvRegMIIData = 0x194, 279 NvRegTxUnicast = 0x1a0, 280 NvRegTxMulticast = 0x1a4, 281 NvRegTxBroadcast = 0x1a8, 282 NvRegWakeUpFlags = 0x200, 283 #define NVREG_WAKEUPFLAGS_VAL 0x7770 284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 294 295 NvRegMgmtUnitGetVersion = 0x204, 296 #define NVREG_MGMTUNITGETVERSION 0x01 297 NvRegMgmtUnitVersion = 0x208, 298 #define NVREG_MGMTUNITVERSION 0x08 299 NvRegPowerCap = 0x268, 300 #define NVREG_POWERCAP_D3SUPP (1<<30) 301 #define NVREG_POWERCAP_D2SUPP (1<<26) 302 #define NVREG_POWERCAP_D1SUPP (1<<25) 303 NvRegPowerState = 0x26c, 304 #define NVREG_POWERSTATE_POWEREDUP 0x8000 305 #define NVREG_POWERSTATE_VALID 0x0100 306 #define NVREG_POWERSTATE_MASK 0x0003 307 #define NVREG_POWERSTATE_D0 0x0000 308 #define NVREG_POWERSTATE_D1 0x0001 309 #define NVREG_POWERSTATE_D2 0x0002 310 #define NVREG_POWERSTATE_D3 0x0003 311 NvRegMgmtUnitControl = 0x278, 312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 313 NvRegTxCnt = 0x280, 314 NvRegTxZeroReXmt = 0x284, 315 NvRegTxOneReXmt = 0x288, 316 NvRegTxManyReXmt = 0x28c, 317 NvRegTxLateCol = 0x290, 318 NvRegTxUnderflow = 0x294, 319 NvRegTxLossCarrier = 0x298, 320 NvRegTxExcessDef = 0x29c, 321 NvRegTxRetryErr = 0x2a0, 322 NvRegRxFrameErr = 0x2a4, 323 NvRegRxExtraByte = 0x2a8, 324 NvRegRxLateCol = 0x2ac, 325 NvRegRxRunt = 0x2b0, 326 NvRegRxFrameTooLong = 0x2b4, 327 NvRegRxOverflow = 0x2b8, 328 NvRegRxFCSErr = 0x2bc, 329 NvRegRxFrameAlignErr = 0x2c0, 330 NvRegRxLenErr = 0x2c4, 331 NvRegRxUnicast = 0x2c8, 332 NvRegRxMulticast = 0x2cc, 333 NvRegRxBroadcast = 0x2d0, 334 NvRegTxDef = 0x2d4, 335 NvRegTxFrame = 0x2d8, 336 NvRegRxCnt = 0x2dc, 337 NvRegTxPause = 0x2e0, 338 NvRegRxPause = 0x2e4, 339 NvRegRxDropFrame = 0x2e8, 340 NvRegVlanControl = 0x300, 341 #define NVREG_VLANCONTROL_ENABLE 0x2000 342 NvRegMSIXMap0 = 0x3e0, 343 NvRegMSIXMap1 = 0x3e4, 344 NvRegMSIXIrqStatus = 0x3f0, 345 346 NvRegPowerState2 = 0x600, 347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 350 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 351 }; 352 353 /* Big endian: should work, but is untested */ 354 struct ring_desc { 355 __le32 buf; 356 __le32 flaglen; 357 }; 358 359 struct ring_desc_ex { 360 __le32 bufhigh; 361 __le32 buflow; 362 __le32 txvlan; 363 __le32 flaglen; 364 }; 365 366 union ring_type { 367 struct ring_desc *orig; 368 struct ring_desc_ex *ex; 369 }; 370 371 #define FLAG_MASK_V1 0xffff0000 372 #define FLAG_MASK_V2 0xffffc000 373 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 374 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 375 376 #define NV_TX_LASTPACKET (1<<16) 377 #define NV_TX_RETRYERROR (1<<19) 378 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 379 #define NV_TX_FORCED_INTERRUPT (1<<24) 380 #define NV_TX_DEFERRED (1<<26) 381 #define NV_TX_CARRIERLOST (1<<27) 382 #define NV_TX_LATECOLLISION (1<<28) 383 #define NV_TX_UNDERFLOW (1<<29) 384 #define NV_TX_ERROR (1<<30) 385 #define NV_TX_VALID (1<<31) 386 387 #define NV_TX2_LASTPACKET (1<<29) 388 #define NV_TX2_RETRYERROR (1<<18) 389 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 390 #define NV_TX2_FORCED_INTERRUPT (1<<30) 391 #define NV_TX2_DEFERRED (1<<25) 392 #define NV_TX2_CARRIERLOST (1<<26) 393 #define NV_TX2_LATECOLLISION (1<<27) 394 #define NV_TX2_UNDERFLOW (1<<28) 395 /* error and valid are the same for both */ 396 #define NV_TX2_ERROR (1<<30) 397 #define NV_TX2_VALID (1<<31) 398 #define NV_TX2_TSO (1<<28) 399 #define NV_TX2_TSO_SHIFT 14 400 #define NV_TX2_TSO_MAX_SHIFT 14 401 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 402 #define NV_TX2_CHECKSUM_L3 (1<<27) 403 #define NV_TX2_CHECKSUM_L4 (1<<26) 404 405 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 406 407 #define NV_RX_DESCRIPTORVALID (1<<16) 408 #define NV_RX_MISSEDFRAME (1<<17) 409 #define NV_RX_SUBTRACT1 (1<<18) 410 #define NV_RX_ERROR1 (1<<23) 411 #define NV_RX_ERROR2 (1<<24) 412 #define NV_RX_ERROR3 (1<<25) 413 #define NV_RX_ERROR4 (1<<26) 414 #define NV_RX_CRCERR (1<<27) 415 #define NV_RX_OVERFLOW (1<<28) 416 #define NV_RX_FRAMINGERR (1<<29) 417 #define NV_RX_ERROR (1<<30) 418 #define NV_RX_AVAIL (1<<31) 419 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 420 421 #define NV_RX2_CHECKSUMMASK (0x1C000000) 422 #define NV_RX2_CHECKSUM_IP (0x10000000) 423 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 424 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 425 #define NV_RX2_DESCRIPTORVALID (1<<29) 426 #define NV_RX2_SUBTRACT1 (1<<25) 427 #define NV_RX2_ERROR1 (1<<18) 428 #define NV_RX2_ERROR2 (1<<19) 429 #define NV_RX2_ERROR3 (1<<20) 430 #define NV_RX2_ERROR4 (1<<21) 431 #define NV_RX2_CRCERR (1<<22) 432 #define NV_RX2_OVERFLOW (1<<23) 433 #define NV_RX2_FRAMINGERR (1<<24) 434 /* error and avail are the same for both */ 435 #define NV_RX2_ERROR (1<<30) 436 #define NV_RX2_AVAIL (1<<31) 437 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 438 439 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 440 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 441 442 /* Miscellaneous hardware related defines: */ 443 #define NV_PCI_REGSZ_VER1 0x270 444 #define NV_PCI_REGSZ_VER2 0x2d4 445 #define NV_PCI_REGSZ_VER3 0x604 446 #define NV_PCI_REGSZ_MAX 0x604 447 448 /* various timeout delays: all in usec */ 449 #define NV_TXRX_RESET_DELAY 4 450 #define NV_TXSTOP_DELAY1 10 451 #define NV_TXSTOP_DELAY1MAX 500000 452 #define NV_TXSTOP_DELAY2 100 453 #define NV_RXSTOP_DELAY1 10 454 #define NV_RXSTOP_DELAY1MAX 500000 455 #define NV_RXSTOP_DELAY2 100 456 #define NV_SETUP5_DELAY 5 457 #define NV_SETUP5_DELAYMAX 50000 458 #define NV_POWERUP_DELAY 5 459 #define NV_POWERUP_DELAYMAX 5000 460 #define NV_MIIBUSY_DELAY 50 461 #define NV_MIIPHY_DELAY 10 462 #define NV_MIIPHY_DELAYMAX 10000 463 #define NV_MAC_RESET_DELAY 64 464 465 #define NV_WAKEUPPATTERNS 5 466 #define NV_WAKEUPMASKENTRIES 4 467 468 /* General driver defaults */ 469 #define NV_WATCHDOG_TIMEO (5*HZ) 470 471 #define RX_RING_DEFAULT 512 472 #define TX_RING_DEFAULT 256 473 #define RX_RING_MIN 128 474 #define TX_RING_MIN 64 475 #define RING_MAX_DESC_VER_1 1024 476 #define RING_MAX_DESC_VER_2_3 16384 477 478 /* rx/tx mac addr + type + vlan + align + slack*/ 479 #define NV_RX_HEADERS (64) 480 /* even more slack. */ 481 #define NV_RX_ALLOC_PAD (64) 482 483 /* maximum mtu size */ 484 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 485 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 486 487 #define OOM_REFILL (1+HZ/20) 488 #define POLL_WAIT (1+HZ/100) 489 #define LINK_TIMEOUT (3*HZ) 490 #define STATS_INTERVAL (10*HZ) 491 492 /* 493 * desc_ver values: 494 * The nic supports three different descriptor types: 495 * - DESC_VER_1: Original 496 * - DESC_VER_2: support for jumbo frames. 497 * - DESC_VER_3: 64-bit format. 498 */ 499 #define DESC_VER_1 1 500 #define DESC_VER_2 2 501 #define DESC_VER_3 3 502 503 /* PHY defines */ 504 #define PHY_OUI_MARVELL 0x5043 505 #define PHY_OUI_CICADA 0x03f1 506 #define PHY_OUI_VITESSE 0x01c1 507 #define PHY_OUI_REALTEK 0x0732 508 #define PHY_OUI_REALTEK2 0x0020 509 #define PHYID1_OUI_MASK 0x03ff 510 #define PHYID1_OUI_SHFT 6 511 #define PHYID2_OUI_MASK 0xfc00 512 #define PHYID2_OUI_SHFT 10 513 #define PHYID2_MODEL_MASK 0x03f0 514 #define PHY_MODEL_REALTEK_8211 0x0110 515 #define PHY_REV_MASK 0x0001 516 #define PHY_REV_REALTEK_8211B 0x0000 517 #define PHY_REV_REALTEK_8211C 0x0001 518 #define PHY_MODEL_REALTEK_8201 0x0200 519 #define PHY_MODEL_MARVELL_E3016 0x0220 520 #define PHY_MARVELL_E3016_INITMASK 0x0300 521 #define PHY_CICADA_INIT1 0x0f000 522 #define PHY_CICADA_INIT2 0x0e00 523 #define PHY_CICADA_INIT3 0x01000 524 #define PHY_CICADA_INIT4 0x0200 525 #define PHY_CICADA_INIT5 0x0004 526 #define PHY_CICADA_INIT6 0x02000 527 #define PHY_VITESSE_INIT_REG1 0x1f 528 #define PHY_VITESSE_INIT_REG2 0x10 529 #define PHY_VITESSE_INIT_REG3 0x11 530 #define PHY_VITESSE_INIT_REG4 0x12 531 #define PHY_VITESSE_INIT_MSK1 0xc 532 #define PHY_VITESSE_INIT_MSK2 0x0180 533 #define PHY_VITESSE_INIT1 0x52b5 534 #define PHY_VITESSE_INIT2 0xaf8a 535 #define PHY_VITESSE_INIT3 0x8 536 #define PHY_VITESSE_INIT4 0x8f8a 537 #define PHY_VITESSE_INIT5 0xaf86 538 #define PHY_VITESSE_INIT6 0x8f86 539 #define PHY_VITESSE_INIT7 0xaf82 540 #define PHY_VITESSE_INIT8 0x0100 541 #define PHY_VITESSE_INIT9 0x8f82 542 #define PHY_VITESSE_INIT10 0x0 543 #define PHY_REALTEK_INIT_REG1 0x1f 544 #define PHY_REALTEK_INIT_REG2 0x19 545 #define PHY_REALTEK_INIT_REG3 0x13 546 #define PHY_REALTEK_INIT_REG4 0x14 547 #define PHY_REALTEK_INIT_REG5 0x18 548 #define PHY_REALTEK_INIT_REG6 0x11 549 #define PHY_REALTEK_INIT_REG7 0x01 550 #define PHY_REALTEK_INIT1 0x0000 551 #define PHY_REALTEK_INIT2 0x8e00 552 #define PHY_REALTEK_INIT3 0x0001 553 #define PHY_REALTEK_INIT4 0xad17 554 #define PHY_REALTEK_INIT5 0xfb54 555 #define PHY_REALTEK_INIT6 0xf5c7 556 #define PHY_REALTEK_INIT7 0x1000 557 #define PHY_REALTEK_INIT8 0x0003 558 #define PHY_REALTEK_INIT9 0x0008 559 #define PHY_REALTEK_INIT10 0x0005 560 #define PHY_REALTEK_INIT11 0x0200 561 #define PHY_REALTEK_INIT_MSK1 0x0003 562 563 #define PHY_GIGABIT 0x0100 564 565 #define PHY_TIMEOUT 0x1 566 #define PHY_ERROR 0x2 567 568 #define PHY_100 0x1 569 #define PHY_1000 0x2 570 #define PHY_HALF 0x100 571 572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 574 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 575 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 576 #define NV_PAUSEFRAME_RX_REQ 0x0010 577 #define NV_PAUSEFRAME_TX_REQ 0x0020 578 #define NV_PAUSEFRAME_AUTONEG 0x0040 579 580 /* MSI/MSI-X defines */ 581 #define NV_MSI_X_MAX_VECTORS 8 582 #define NV_MSI_X_VECTORS_MASK 0x000f 583 #define NV_MSI_CAPABLE 0x0010 584 #define NV_MSI_X_CAPABLE 0x0020 585 #define NV_MSI_ENABLED 0x0040 586 #define NV_MSI_X_ENABLED 0x0080 587 588 #define NV_MSI_X_VECTOR_ALL 0x0 589 #define NV_MSI_X_VECTOR_RX 0x0 590 #define NV_MSI_X_VECTOR_TX 0x1 591 #define NV_MSI_X_VECTOR_OTHER 0x2 592 593 #define NV_MSI_PRIV_OFFSET 0x68 594 #define NV_MSI_PRIV_VALUE 0xffffffff 595 596 #define NV_RESTART_TX 0x1 597 #define NV_RESTART_RX 0x2 598 599 #define NV_TX_LIMIT_COUNT 16 600 601 #define NV_DYNAMIC_THRESHOLD 4 602 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 603 604 /* statistics */ 605 struct nv_ethtool_str { 606 char name[ETH_GSTRING_LEN]; 607 }; 608 609 static const struct nv_ethtool_str nv_estats_str[] = { 610 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 611 { "tx_zero_rexmt" }, 612 { "tx_one_rexmt" }, 613 { "tx_many_rexmt" }, 614 { "tx_late_collision" }, 615 { "tx_fifo_errors" }, 616 { "tx_carrier_errors" }, 617 { "tx_excess_deferral" }, 618 { "tx_retry_error" }, 619 { "rx_frame_error" }, 620 { "rx_extra_byte" }, 621 { "rx_late_collision" }, 622 { "rx_runt" }, 623 { "rx_frame_too_long" }, 624 { "rx_over_errors" }, 625 { "rx_crc_errors" }, 626 { "rx_frame_align_error" }, 627 { "rx_length_error" }, 628 { "rx_unicast" }, 629 { "rx_multicast" }, 630 { "rx_broadcast" }, 631 { "rx_packets" }, 632 { "rx_errors_total" }, 633 { "tx_errors_total" }, 634 635 /* version 2 stats */ 636 { "tx_deferral" }, 637 { "tx_packets" }, 638 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 639 { "tx_pause" }, 640 { "rx_pause" }, 641 { "rx_drop_frame" }, 642 643 /* version 3 stats */ 644 { "tx_unicast" }, 645 { "tx_multicast" }, 646 { "tx_broadcast" } 647 }; 648 649 struct nv_ethtool_stats { 650 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 651 u64 tx_zero_rexmt; 652 u64 tx_one_rexmt; 653 u64 tx_many_rexmt; 654 u64 tx_late_collision; 655 u64 tx_fifo_errors; 656 u64 tx_carrier_errors; 657 u64 tx_excess_deferral; 658 u64 tx_retry_error; 659 u64 rx_frame_error; 660 u64 rx_extra_byte; 661 u64 rx_late_collision; 662 u64 rx_runt; 663 u64 rx_frame_too_long; 664 u64 rx_over_errors; 665 u64 rx_crc_errors; 666 u64 rx_frame_align_error; 667 u64 rx_length_error; 668 u64 rx_unicast; 669 u64 rx_multicast; 670 u64 rx_broadcast; 671 u64 rx_packets; /* should be ifconfig->rx_packets */ 672 u64 rx_errors_total; 673 u64 tx_errors_total; 674 675 /* version 2 stats */ 676 u64 tx_deferral; 677 u64 tx_packets; /* should be ifconfig->tx_packets */ 678 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 679 u64 tx_pause; 680 u64 rx_pause; 681 u64 rx_drop_frame; 682 683 /* version 3 stats */ 684 u64 tx_unicast; 685 u64 tx_multicast; 686 u64 tx_broadcast; 687 }; 688 689 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 690 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 691 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 692 693 /* diagnostics */ 694 #define NV_TEST_COUNT_BASE 3 695 #define NV_TEST_COUNT_EXTENDED 4 696 697 static const struct nv_ethtool_str nv_etests_str[] = { 698 { "link (online/offline)" }, 699 { "register (offline) " }, 700 { "interrupt (offline) " }, 701 { "loopback (offline) " } 702 }; 703 704 struct register_test { 705 __u32 reg; 706 __u32 mask; 707 }; 708 709 static const struct register_test nv_registers_test[] = { 710 { NvRegUnknownSetupReg6, 0x01 }, 711 { NvRegMisc1, 0x03c }, 712 { NvRegOffloadConfig, 0x03ff }, 713 { NvRegMulticastAddrA, 0xffffffff }, 714 { NvRegTxWatermark, 0x0ff }, 715 { NvRegWakeUpFlags, 0x07777 }, 716 { 0, 0 } 717 }; 718 719 struct nv_skb_map { 720 struct sk_buff *skb; 721 dma_addr_t dma; 722 unsigned int dma_len:31; 723 unsigned int dma_single:1; 724 struct ring_desc_ex *first_tx_desc; 725 struct nv_skb_map *next_tx_ctx; 726 }; 727 728 /* 729 * SMP locking: 730 * All hardware access under netdev_priv(dev)->lock, except the performance 731 * critical parts: 732 * - rx is (pseudo-) lockless: it relies on the single-threading provided 733 * by the arch code for interrupts. 734 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 735 * needs netdev_priv(dev)->lock :-( 736 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 737 * 738 * Hardware stats updates are protected by hwstats_lock: 739 * - updated by nv_do_stats_poll (timer). This is meant to avoid 740 * integer wraparound in the NIC stats registers, at low frequency 741 * (0.1 Hz) 742 * - updated by nv_get_ethtool_stats + nv_get_stats64 743 * 744 * Software stats are accessed only through 64b synchronization points 745 * and are not subject to other synchronization techniques (single 746 * update thread on the TX or RX paths). 747 */ 748 749 /* in dev: base, irq */ 750 struct fe_priv { 751 spinlock_t lock; 752 753 struct net_device *dev; 754 struct napi_struct napi; 755 756 /* hardware stats are updated in syscall and timer */ 757 spinlock_t hwstats_lock; 758 struct nv_ethtool_stats estats; 759 760 int in_shutdown; 761 u32 linkspeed; 762 int duplex; 763 int autoneg; 764 int fixed_mode; 765 int phyaddr; 766 int wolenabled; 767 unsigned int phy_oui; 768 unsigned int phy_model; 769 unsigned int phy_rev; 770 u16 gigabit; 771 int intr_test; 772 int recover_error; 773 int quiet_count; 774 775 /* General data: RO fields */ 776 dma_addr_t ring_addr; 777 struct pci_dev *pci_dev; 778 u32 orig_mac[2]; 779 u32 events; 780 u32 irqmask; 781 u32 desc_ver; 782 u32 txrxctl_bits; 783 u32 vlanctl_bits; 784 u32 driver_data; 785 u32 device_id; 786 u32 register_size; 787 u32 mac_in_use; 788 int mgmt_version; 789 int mgmt_sema; 790 791 void __iomem *base; 792 793 /* rx specific fields. 794 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 795 */ 796 union ring_type get_rx, put_rx, first_rx, last_rx; 797 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 798 struct nv_skb_map *first_rx_ctx, *last_rx_ctx; 799 struct nv_skb_map *rx_skb; 800 801 union ring_type rx_ring; 802 unsigned int rx_buf_sz; 803 unsigned int pkt_limit; 804 struct timer_list oom_kick; 805 struct timer_list nic_poll; 806 struct timer_list stats_poll; 807 u32 nic_poll_irq; 808 int rx_ring_size; 809 810 /* RX software stats */ 811 struct u64_stats_sync swstats_rx_syncp; 812 u64 stat_rx_packets; 813 u64 stat_rx_bytes; /* not always available in HW */ 814 u64 stat_rx_missed_errors; 815 u64 stat_rx_dropped; 816 817 /* media detection workaround. 818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 819 */ 820 int need_linktimer; 821 unsigned long link_timeout; 822 /* 823 * tx specific fields. 824 */ 825 union ring_type get_tx, put_tx, first_tx, last_tx; 826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 827 struct nv_skb_map *first_tx_ctx, *last_tx_ctx; 828 struct nv_skb_map *tx_skb; 829 830 union ring_type tx_ring; 831 u32 tx_flags; 832 int tx_ring_size; 833 int tx_limit; 834 u32 tx_pkts_in_progress; 835 struct nv_skb_map *tx_change_owner; 836 struct nv_skb_map *tx_end_flip; 837 int tx_stop; 838 839 /* TX software stats */ 840 struct u64_stats_sync swstats_tx_syncp; 841 u64 stat_tx_packets; /* not always available in HW */ 842 u64 stat_tx_bytes; 843 u64 stat_tx_dropped; 844 845 /* msi/msi-x fields */ 846 u32 msi_flags; 847 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 848 849 /* flow control */ 850 u32 pause_flags; 851 852 /* power saved state */ 853 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 854 855 /* for different msi-x irq type */ 856 char name_rx[IFNAMSIZ + 3]; /* -rx */ 857 char name_tx[IFNAMSIZ + 3]; /* -tx */ 858 char name_other[IFNAMSIZ + 6]; /* -other */ 859 }; 860 861 /* 862 * Maximum number of loops until we assume that a bit in the irq mask 863 * is stuck. Overridable with module param. 864 */ 865 static int max_interrupt_work = 4; 866 867 /* 868 * Optimization can be either throuput mode or cpu mode 869 * 870 * Throughput Mode: Every tx and rx packet will generate an interrupt. 871 * CPU Mode: Interrupts are controlled by a timer. 872 */ 873 enum { 874 NV_OPTIMIZATION_MODE_THROUGHPUT, 875 NV_OPTIMIZATION_MODE_CPU, 876 NV_OPTIMIZATION_MODE_DYNAMIC 877 }; 878 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 879 880 /* 881 * Poll interval for timer irq 882 * 883 * This interval determines how frequent an interrupt is generated. 884 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 885 * Min = 0, and Max = 65535 886 */ 887 static int poll_interval = -1; 888 889 /* 890 * MSI interrupts 891 */ 892 enum { 893 NV_MSI_INT_DISABLED, 894 NV_MSI_INT_ENABLED 895 }; 896 static int msi = NV_MSI_INT_ENABLED; 897 898 /* 899 * MSIX interrupts 900 */ 901 enum { 902 NV_MSIX_INT_DISABLED, 903 NV_MSIX_INT_ENABLED 904 }; 905 static int msix = NV_MSIX_INT_ENABLED; 906 907 /* 908 * DMA 64bit 909 */ 910 enum { 911 NV_DMA_64BIT_DISABLED, 912 NV_DMA_64BIT_ENABLED 913 }; 914 static int dma_64bit = NV_DMA_64BIT_ENABLED; 915 916 /* 917 * Debug output control for tx_timeout 918 */ 919 static bool debug_tx_timeout = false; 920 921 /* 922 * Crossover Detection 923 * Realtek 8201 phy + some OEM boards do not work properly. 924 */ 925 enum { 926 NV_CROSSOVER_DETECTION_DISABLED, 927 NV_CROSSOVER_DETECTION_ENABLED 928 }; 929 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 930 931 /* 932 * Power down phy when interface is down (persists through reboot; 933 * older Linux and other OSes may not power it up again) 934 */ 935 static int phy_power_down; 936 937 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 938 { 939 return netdev_priv(dev); 940 } 941 942 static inline u8 __iomem *get_hwbase(struct net_device *dev) 943 { 944 return ((struct fe_priv *)netdev_priv(dev))->base; 945 } 946 947 static inline void pci_push(u8 __iomem *base) 948 { 949 /* force out pending posted writes */ 950 readl(base); 951 } 952 953 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 954 { 955 return le32_to_cpu(prd->flaglen) 956 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 957 } 958 959 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 960 { 961 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 962 } 963 964 static bool nv_optimized(struct fe_priv *np) 965 { 966 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 967 return false; 968 return true; 969 } 970 971 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 972 int delay, int delaymax) 973 { 974 u8 __iomem *base = get_hwbase(dev); 975 976 pci_push(base); 977 do { 978 udelay(delay); 979 delaymax -= delay; 980 if (delaymax < 0) 981 return 1; 982 } while ((readl(base + offset) & mask) != target); 983 return 0; 984 } 985 986 #define NV_SETUP_RX_RING 0x01 987 #define NV_SETUP_TX_RING 0x02 988 989 static inline u32 dma_low(dma_addr_t addr) 990 { 991 return addr; 992 } 993 994 static inline u32 dma_high(dma_addr_t addr) 995 { 996 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 997 } 998 999 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 1000 { 1001 struct fe_priv *np = get_nvpriv(dev); 1002 u8 __iomem *base = get_hwbase(dev); 1003 1004 if (!nv_optimized(np)) { 1005 if (rxtx_flags & NV_SETUP_RX_RING) 1006 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1007 if (rxtx_flags & NV_SETUP_TX_RING) 1008 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1009 } else { 1010 if (rxtx_flags & NV_SETUP_RX_RING) { 1011 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1012 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1013 } 1014 if (rxtx_flags & NV_SETUP_TX_RING) { 1015 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1016 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1017 } 1018 } 1019 } 1020 1021 static void free_rings(struct net_device *dev) 1022 { 1023 struct fe_priv *np = get_nvpriv(dev); 1024 1025 if (!nv_optimized(np)) { 1026 if (np->rx_ring.orig) 1027 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 1028 np->rx_ring.orig, np->ring_addr); 1029 } else { 1030 if (np->rx_ring.ex) 1031 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 1032 np->rx_ring.ex, np->ring_addr); 1033 } 1034 kfree(np->rx_skb); 1035 kfree(np->tx_skb); 1036 } 1037 1038 static int using_multi_irqs(struct net_device *dev) 1039 { 1040 struct fe_priv *np = get_nvpriv(dev); 1041 1042 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1043 ((np->msi_flags & NV_MSI_X_ENABLED) && 1044 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1045 return 0; 1046 else 1047 return 1; 1048 } 1049 1050 static void nv_txrx_gate(struct net_device *dev, bool gate) 1051 { 1052 struct fe_priv *np = get_nvpriv(dev); 1053 u8 __iomem *base = get_hwbase(dev); 1054 u32 powerstate; 1055 1056 if (!np->mac_in_use && 1057 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1058 powerstate = readl(base + NvRegPowerState2); 1059 if (gate) 1060 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1061 else 1062 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1063 writel(powerstate, base + NvRegPowerState2); 1064 } 1065 } 1066 1067 static void nv_enable_irq(struct net_device *dev) 1068 { 1069 struct fe_priv *np = get_nvpriv(dev); 1070 1071 if (!using_multi_irqs(dev)) { 1072 if (np->msi_flags & NV_MSI_X_ENABLED) 1073 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1074 else 1075 enable_irq(np->pci_dev->irq); 1076 } else { 1077 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1078 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1079 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1080 } 1081 } 1082 1083 static void nv_disable_irq(struct net_device *dev) 1084 { 1085 struct fe_priv *np = get_nvpriv(dev); 1086 1087 if (!using_multi_irqs(dev)) { 1088 if (np->msi_flags & NV_MSI_X_ENABLED) 1089 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1090 else 1091 disable_irq(np->pci_dev->irq); 1092 } else { 1093 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1094 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1096 } 1097 } 1098 1099 /* In MSIX mode, a write to irqmask behaves as XOR */ 1100 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1101 { 1102 u8 __iomem *base = get_hwbase(dev); 1103 1104 writel(mask, base + NvRegIrqMask); 1105 } 1106 1107 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1108 { 1109 struct fe_priv *np = get_nvpriv(dev); 1110 u8 __iomem *base = get_hwbase(dev); 1111 1112 if (np->msi_flags & NV_MSI_X_ENABLED) { 1113 writel(mask, base + NvRegIrqMask); 1114 } else { 1115 if (np->msi_flags & NV_MSI_ENABLED) 1116 writel(0, base + NvRegMSIIrqMask); 1117 writel(0, base + NvRegIrqMask); 1118 } 1119 } 1120 1121 static void nv_napi_enable(struct net_device *dev) 1122 { 1123 struct fe_priv *np = get_nvpriv(dev); 1124 1125 napi_enable(&np->napi); 1126 } 1127 1128 static void nv_napi_disable(struct net_device *dev) 1129 { 1130 struct fe_priv *np = get_nvpriv(dev); 1131 1132 napi_disable(&np->napi); 1133 } 1134 1135 #define MII_READ (-1) 1136 /* mii_rw: read/write a register on the PHY. 1137 * 1138 * Caller must guarantee serialization 1139 */ 1140 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1141 { 1142 u8 __iomem *base = get_hwbase(dev); 1143 u32 reg; 1144 int retval; 1145 1146 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1147 1148 reg = readl(base + NvRegMIIControl); 1149 if (reg & NVREG_MIICTL_INUSE) { 1150 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1151 udelay(NV_MIIBUSY_DELAY); 1152 } 1153 1154 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1155 if (value != MII_READ) { 1156 writel(value, base + NvRegMIIData); 1157 reg |= NVREG_MIICTL_WRITE; 1158 } 1159 writel(reg, base + NvRegMIIControl); 1160 1161 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1162 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1163 retval = -1; 1164 } else if (value != MII_READ) { 1165 /* it was a write operation - fewer failures are detectable */ 1166 retval = 0; 1167 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1168 retval = -1; 1169 } else { 1170 retval = readl(base + NvRegMIIData); 1171 } 1172 1173 return retval; 1174 } 1175 1176 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1177 { 1178 struct fe_priv *np = netdev_priv(dev); 1179 u32 miicontrol; 1180 unsigned int tries = 0; 1181 1182 miicontrol = BMCR_RESET | bmcr_setup; 1183 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1184 return -1; 1185 1186 /* wait for 500ms */ 1187 msleep(500); 1188 1189 /* must wait till reset is deasserted */ 1190 while (miicontrol & BMCR_RESET) { 1191 usleep_range(10000, 20000); 1192 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1193 /* FIXME: 100 tries seem excessive */ 1194 if (tries++ > 100) 1195 return -1; 1196 } 1197 return 0; 1198 } 1199 1200 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1201 { 1202 static const struct { 1203 int reg; 1204 int init; 1205 } ri[] = { 1206 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1207 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1208 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1209 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1210 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1211 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1212 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1213 }; 1214 int i; 1215 1216 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1217 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1218 return PHY_ERROR; 1219 } 1220 1221 return 0; 1222 } 1223 1224 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1225 { 1226 u32 reg; 1227 u8 __iomem *base = get_hwbase(dev); 1228 u32 powerstate = readl(base + NvRegPowerState2); 1229 1230 /* need to perform hw phy reset */ 1231 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1232 writel(powerstate, base + NvRegPowerState2); 1233 msleep(25); 1234 1235 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1236 writel(powerstate, base + NvRegPowerState2); 1237 msleep(25); 1238 1239 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1240 reg |= PHY_REALTEK_INIT9; 1241 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1242 return PHY_ERROR; 1243 if (mii_rw(dev, np->phyaddr, 1244 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1245 return PHY_ERROR; 1246 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1247 if (!(reg & PHY_REALTEK_INIT11)) { 1248 reg |= PHY_REALTEK_INIT11; 1249 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1250 return PHY_ERROR; 1251 } 1252 if (mii_rw(dev, np->phyaddr, 1253 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1254 return PHY_ERROR; 1255 1256 return 0; 1257 } 1258 1259 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1260 { 1261 u32 phy_reserved; 1262 1263 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1264 phy_reserved = mii_rw(dev, np->phyaddr, 1265 PHY_REALTEK_INIT_REG6, MII_READ); 1266 phy_reserved |= PHY_REALTEK_INIT7; 1267 if (mii_rw(dev, np->phyaddr, 1268 PHY_REALTEK_INIT_REG6, phy_reserved)) 1269 return PHY_ERROR; 1270 } 1271 1272 return 0; 1273 } 1274 1275 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1276 { 1277 u32 phy_reserved; 1278 1279 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1280 if (mii_rw(dev, np->phyaddr, 1281 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1282 return PHY_ERROR; 1283 phy_reserved = mii_rw(dev, np->phyaddr, 1284 PHY_REALTEK_INIT_REG2, MII_READ); 1285 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1286 phy_reserved |= PHY_REALTEK_INIT3; 1287 if (mii_rw(dev, np->phyaddr, 1288 PHY_REALTEK_INIT_REG2, phy_reserved)) 1289 return PHY_ERROR; 1290 if (mii_rw(dev, np->phyaddr, 1291 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1292 return PHY_ERROR; 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1299 u32 phyinterface) 1300 { 1301 u32 phy_reserved; 1302 1303 if (phyinterface & PHY_RGMII) { 1304 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1305 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1306 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1307 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1308 return PHY_ERROR; 1309 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1310 phy_reserved |= PHY_CICADA_INIT5; 1311 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1312 return PHY_ERROR; 1313 } 1314 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1315 phy_reserved |= PHY_CICADA_INIT6; 1316 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1317 return PHY_ERROR; 1318 1319 return 0; 1320 } 1321 1322 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1323 { 1324 u32 phy_reserved; 1325 1326 if (mii_rw(dev, np->phyaddr, 1327 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1328 return PHY_ERROR; 1329 if (mii_rw(dev, np->phyaddr, 1330 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1331 return PHY_ERROR; 1332 phy_reserved = mii_rw(dev, np->phyaddr, 1333 PHY_VITESSE_INIT_REG4, MII_READ); 1334 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1335 return PHY_ERROR; 1336 phy_reserved = mii_rw(dev, np->phyaddr, 1337 PHY_VITESSE_INIT_REG3, MII_READ); 1338 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1339 phy_reserved |= PHY_VITESSE_INIT3; 1340 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1341 return PHY_ERROR; 1342 if (mii_rw(dev, np->phyaddr, 1343 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1344 return PHY_ERROR; 1345 if (mii_rw(dev, np->phyaddr, 1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1347 return PHY_ERROR; 1348 phy_reserved = mii_rw(dev, np->phyaddr, 1349 PHY_VITESSE_INIT_REG4, MII_READ); 1350 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1351 phy_reserved |= PHY_VITESSE_INIT3; 1352 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1353 return PHY_ERROR; 1354 phy_reserved = mii_rw(dev, np->phyaddr, 1355 PHY_VITESSE_INIT_REG3, MII_READ); 1356 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1357 return PHY_ERROR; 1358 if (mii_rw(dev, np->phyaddr, 1359 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1360 return PHY_ERROR; 1361 if (mii_rw(dev, np->phyaddr, 1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1363 return PHY_ERROR; 1364 phy_reserved = mii_rw(dev, np->phyaddr, 1365 PHY_VITESSE_INIT_REG4, MII_READ); 1366 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1367 return PHY_ERROR; 1368 phy_reserved = mii_rw(dev, np->phyaddr, 1369 PHY_VITESSE_INIT_REG3, MII_READ); 1370 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1371 phy_reserved |= PHY_VITESSE_INIT8; 1372 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1373 return PHY_ERROR; 1374 if (mii_rw(dev, np->phyaddr, 1375 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1376 return PHY_ERROR; 1377 if (mii_rw(dev, np->phyaddr, 1378 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1379 return PHY_ERROR; 1380 1381 return 0; 1382 } 1383 1384 static int phy_init(struct net_device *dev) 1385 { 1386 struct fe_priv *np = get_nvpriv(dev); 1387 u8 __iomem *base = get_hwbase(dev); 1388 u32 phyinterface; 1389 u32 mii_status, mii_control, mii_control_1000, reg; 1390 1391 /* phy errata for E3016 phy */ 1392 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1393 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1394 reg &= ~PHY_MARVELL_E3016_INITMASK; 1395 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1396 netdev_info(dev, "%s: phy write to errata reg failed\n", 1397 pci_name(np->pci_dev)); 1398 return PHY_ERROR; 1399 } 1400 } 1401 if (np->phy_oui == PHY_OUI_REALTEK) { 1402 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1403 np->phy_rev == PHY_REV_REALTEK_8211B) { 1404 if (init_realtek_8211b(dev, np)) { 1405 netdev_info(dev, "%s: phy init failed\n", 1406 pci_name(np->pci_dev)); 1407 return PHY_ERROR; 1408 } 1409 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1410 np->phy_rev == PHY_REV_REALTEK_8211C) { 1411 if (init_realtek_8211c(dev, np)) { 1412 netdev_info(dev, "%s: phy init failed\n", 1413 pci_name(np->pci_dev)); 1414 return PHY_ERROR; 1415 } 1416 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1417 if (init_realtek_8201(dev, np)) { 1418 netdev_info(dev, "%s: phy init failed\n", 1419 pci_name(np->pci_dev)); 1420 return PHY_ERROR; 1421 } 1422 } 1423 } 1424 1425 /* set advertise register */ 1426 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1427 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1428 ADVERTISE_100HALF | ADVERTISE_100FULL | 1429 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1430 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1431 netdev_info(dev, "%s: phy write to advertise failed\n", 1432 pci_name(np->pci_dev)); 1433 return PHY_ERROR; 1434 } 1435 1436 /* get phy interface type */ 1437 phyinterface = readl(base + NvRegPhyInterface); 1438 1439 /* see if gigabit phy */ 1440 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1441 if (mii_status & PHY_GIGABIT) { 1442 np->gigabit = PHY_GIGABIT; 1443 mii_control_1000 = mii_rw(dev, np->phyaddr, 1444 MII_CTRL1000, MII_READ); 1445 mii_control_1000 &= ~ADVERTISE_1000HALF; 1446 if (phyinterface & PHY_RGMII) 1447 mii_control_1000 |= ADVERTISE_1000FULL; 1448 else 1449 mii_control_1000 &= ~ADVERTISE_1000FULL; 1450 1451 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1452 netdev_info(dev, "%s: phy init failed\n", 1453 pci_name(np->pci_dev)); 1454 return PHY_ERROR; 1455 } 1456 } else 1457 np->gigabit = 0; 1458 1459 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1460 mii_control |= BMCR_ANENABLE; 1461 1462 if (np->phy_oui == PHY_OUI_REALTEK && 1463 np->phy_model == PHY_MODEL_REALTEK_8211 && 1464 np->phy_rev == PHY_REV_REALTEK_8211C) { 1465 /* start autoneg since we already performed hw reset above */ 1466 mii_control |= BMCR_ANRESTART; 1467 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1468 netdev_info(dev, "%s: phy init failed\n", 1469 pci_name(np->pci_dev)); 1470 return PHY_ERROR; 1471 } 1472 } else { 1473 /* reset the phy 1474 * (certain phys need bmcr to be setup with reset) 1475 */ 1476 if (phy_reset(dev, mii_control)) { 1477 netdev_info(dev, "%s: phy reset failed\n", 1478 pci_name(np->pci_dev)); 1479 return PHY_ERROR; 1480 } 1481 } 1482 1483 /* phy vendor specific configuration */ 1484 if (np->phy_oui == PHY_OUI_CICADA) { 1485 if (init_cicada(dev, np, phyinterface)) { 1486 netdev_info(dev, "%s: phy init failed\n", 1487 pci_name(np->pci_dev)); 1488 return PHY_ERROR; 1489 } 1490 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1491 if (init_vitesse(dev, np)) { 1492 netdev_info(dev, "%s: phy init failed\n", 1493 pci_name(np->pci_dev)); 1494 return PHY_ERROR; 1495 } 1496 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1497 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1498 np->phy_rev == PHY_REV_REALTEK_8211B) { 1499 /* reset could have cleared these out, set them back */ 1500 if (init_realtek_8211b(dev, np)) { 1501 netdev_info(dev, "%s: phy init failed\n", 1502 pci_name(np->pci_dev)); 1503 return PHY_ERROR; 1504 } 1505 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1506 if (init_realtek_8201(dev, np) || 1507 init_realtek_8201_cross(dev, np)) { 1508 netdev_info(dev, "%s: phy init failed\n", 1509 pci_name(np->pci_dev)); 1510 return PHY_ERROR; 1511 } 1512 } 1513 } 1514 1515 /* some phys clear out pause advertisement on reset, set it back */ 1516 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1517 1518 /* restart auto negotiation, power down phy */ 1519 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1520 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1521 if (phy_power_down) 1522 mii_control |= BMCR_PDOWN; 1523 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1524 return PHY_ERROR; 1525 1526 return 0; 1527 } 1528 1529 static void nv_start_rx(struct net_device *dev) 1530 { 1531 struct fe_priv *np = netdev_priv(dev); 1532 u8 __iomem *base = get_hwbase(dev); 1533 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1534 1535 /* Already running? Stop it. */ 1536 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1537 rx_ctrl &= ~NVREG_RCVCTL_START; 1538 writel(rx_ctrl, base + NvRegReceiverControl); 1539 pci_push(base); 1540 } 1541 writel(np->linkspeed, base + NvRegLinkSpeed); 1542 pci_push(base); 1543 rx_ctrl |= NVREG_RCVCTL_START; 1544 if (np->mac_in_use) 1545 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1546 writel(rx_ctrl, base + NvRegReceiverControl); 1547 pci_push(base); 1548 } 1549 1550 static void nv_stop_rx(struct net_device *dev) 1551 { 1552 struct fe_priv *np = netdev_priv(dev); 1553 u8 __iomem *base = get_hwbase(dev); 1554 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1555 1556 if (!np->mac_in_use) 1557 rx_ctrl &= ~NVREG_RCVCTL_START; 1558 else 1559 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1560 writel(rx_ctrl, base + NvRegReceiverControl); 1561 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1562 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1563 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1564 __func__); 1565 1566 udelay(NV_RXSTOP_DELAY2); 1567 if (!np->mac_in_use) 1568 writel(0, base + NvRegLinkSpeed); 1569 } 1570 1571 static void nv_start_tx(struct net_device *dev) 1572 { 1573 struct fe_priv *np = netdev_priv(dev); 1574 u8 __iomem *base = get_hwbase(dev); 1575 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1576 1577 tx_ctrl |= NVREG_XMITCTL_START; 1578 if (np->mac_in_use) 1579 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1580 writel(tx_ctrl, base + NvRegTransmitterControl); 1581 pci_push(base); 1582 } 1583 1584 static void nv_stop_tx(struct net_device *dev) 1585 { 1586 struct fe_priv *np = netdev_priv(dev); 1587 u8 __iomem *base = get_hwbase(dev); 1588 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1589 1590 if (!np->mac_in_use) 1591 tx_ctrl &= ~NVREG_XMITCTL_START; 1592 else 1593 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1594 writel(tx_ctrl, base + NvRegTransmitterControl); 1595 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1596 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1597 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1598 __func__); 1599 1600 udelay(NV_TXSTOP_DELAY2); 1601 if (!np->mac_in_use) 1602 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1603 base + NvRegTransmitPoll); 1604 } 1605 1606 static void nv_start_rxtx(struct net_device *dev) 1607 { 1608 nv_start_rx(dev); 1609 nv_start_tx(dev); 1610 } 1611 1612 static void nv_stop_rxtx(struct net_device *dev) 1613 { 1614 nv_stop_rx(dev); 1615 nv_stop_tx(dev); 1616 } 1617 1618 static void nv_txrx_reset(struct net_device *dev) 1619 { 1620 struct fe_priv *np = netdev_priv(dev); 1621 u8 __iomem *base = get_hwbase(dev); 1622 1623 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1624 pci_push(base); 1625 udelay(NV_TXRX_RESET_DELAY); 1626 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1627 pci_push(base); 1628 } 1629 1630 static void nv_mac_reset(struct net_device *dev) 1631 { 1632 struct fe_priv *np = netdev_priv(dev); 1633 u8 __iomem *base = get_hwbase(dev); 1634 u32 temp1, temp2, temp3; 1635 1636 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1637 pci_push(base); 1638 1639 /* save registers since they will be cleared on reset */ 1640 temp1 = readl(base + NvRegMacAddrA); 1641 temp2 = readl(base + NvRegMacAddrB); 1642 temp3 = readl(base + NvRegTransmitPoll); 1643 1644 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1645 pci_push(base); 1646 udelay(NV_MAC_RESET_DELAY); 1647 writel(0, base + NvRegMacReset); 1648 pci_push(base); 1649 udelay(NV_MAC_RESET_DELAY); 1650 1651 /* restore saved registers */ 1652 writel(temp1, base + NvRegMacAddrA); 1653 writel(temp2, base + NvRegMacAddrB); 1654 writel(temp3, base + NvRegTransmitPoll); 1655 1656 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1657 pci_push(base); 1658 } 1659 1660 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1661 static void nv_update_stats(struct net_device *dev) 1662 { 1663 struct fe_priv *np = netdev_priv(dev); 1664 u8 __iomem *base = get_hwbase(dev); 1665 1666 /* If it happens that this is run in top-half context, then 1667 * replace the spin_lock of hwstats_lock with 1668 * spin_lock_irqsave() in calling functions. */ 1669 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1670 assert_spin_locked(&np->hwstats_lock); 1671 1672 /* query hardware */ 1673 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1674 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1675 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1676 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1677 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1678 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1679 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1680 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1681 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1682 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1683 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1684 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1685 np->estats.rx_runt += readl(base + NvRegRxRunt); 1686 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1687 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1688 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1689 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1690 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1691 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1692 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1693 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1694 np->estats.rx_packets = 1695 np->estats.rx_unicast + 1696 np->estats.rx_multicast + 1697 np->estats.rx_broadcast; 1698 np->estats.rx_errors_total = 1699 np->estats.rx_crc_errors + 1700 np->estats.rx_over_errors + 1701 np->estats.rx_frame_error + 1702 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1703 np->estats.rx_late_collision + 1704 np->estats.rx_runt + 1705 np->estats.rx_frame_too_long; 1706 np->estats.tx_errors_total = 1707 np->estats.tx_late_collision + 1708 np->estats.tx_fifo_errors + 1709 np->estats.tx_carrier_errors + 1710 np->estats.tx_excess_deferral + 1711 np->estats.tx_retry_error; 1712 1713 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1714 np->estats.tx_deferral += readl(base + NvRegTxDef); 1715 np->estats.tx_packets += readl(base + NvRegTxFrame); 1716 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1717 np->estats.tx_pause += readl(base + NvRegTxPause); 1718 np->estats.rx_pause += readl(base + NvRegRxPause); 1719 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1720 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1721 } 1722 1723 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1724 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1725 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1726 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1727 } 1728 } 1729 1730 /* 1731 * nv_get_stats64: dev->ndo_get_stats64 function 1732 * Get latest stats value from the nic. 1733 * Called with read_lock(&dev_base_lock) held for read - 1734 * only synchronized against unregister_netdevice. 1735 */ 1736 static struct rtnl_link_stats64* 1737 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1738 __acquires(&netdev_priv(dev)->hwstats_lock) 1739 __releases(&netdev_priv(dev)->hwstats_lock) 1740 { 1741 struct fe_priv *np = netdev_priv(dev); 1742 unsigned int syncp_start; 1743 1744 /* 1745 * Note: because HW stats are not always available and for 1746 * consistency reasons, the following ifconfig stats are 1747 * managed by software: rx_bytes, tx_bytes, rx_packets and 1748 * tx_packets. The related hardware stats reported by ethtool 1749 * should be equivalent to these ifconfig stats, with 4 1750 * additional bytes per packet (Ethernet FCS CRC), except for 1751 * tx_packets when TSO kicks in. 1752 */ 1753 1754 /* software stats */ 1755 do { 1756 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp); 1757 storage->rx_packets = np->stat_rx_packets; 1758 storage->rx_bytes = np->stat_rx_bytes; 1759 storage->rx_dropped = np->stat_rx_dropped; 1760 storage->rx_missed_errors = np->stat_rx_missed_errors; 1761 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start)); 1762 1763 do { 1764 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp); 1765 storage->tx_packets = np->stat_tx_packets; 1766 storage->tx_bytes = np->stat_tx_bytes; 1767 storage->tx_dropped = np->stat_tx_dropped; 1768 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start)); 1769 1770 /* If the nic supports hw counters then retrieve latest values */ 1771 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1772 spin_lock_bh(&np->hwstats_lock); 1773 1774 nv_update_stats(dev); 1775 1776 /* generic stats */ 1777 storage->rx_errors = np->estats.rx_errors_total; 1778 storage->tx_errors = np->estats.tx_errors_total; 1779 1780 /* meaningful only when NIC supports stats v3 */ 1781 storage->multicast = np->estats.rx_multicast; 1782 1783 /* detailed rx_errors */ 1784 storage->rx_length_errors = np->estats.rx_length_error; 1785 storage->rx_over_errors = np->estats.rx_over_errors; 1786 storage->rx_crc_errors = np->estats.rx_crc_errors; 1787 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1788 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1789 1790 /* detailed tx_errors */ 1791 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1792 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1793 1794 spin_unlock_bh(&np->hwstats_lock); 1795 } 1796 1797 return storage; 1798 } 1799 1800 /* 1801 * nv_alloc_rx: fill rx ring entries. 1802 * Return 1 if the allocations for the skbs failed and the 1803 * rx engine is without Available descriptors 1804 */ 1805 static int nv_alloc_rx(struct net_device *dev) 1806 { 1807 struct fe_priv *np = netdev_priv(dev); 1808 struct ring_desc *less_rx; 1809 1810 less_rx = np->get_rx.orig; 1811 if (less_rx-- == np->first_rx.orig) 1812 less_rx = np->last_rx.orig; 1813 1814 while (np->put_rx.orig != less_rx) { 1815 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1816 if (skb) { 1817 np->put_rx_ctx->skb = skb; 1818 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1819 skb->data, 1820 skb_tailroom(skb), 1821 PCI_DMA_FROMDEVICE); 1822 if (pci_dma_mapping_error(np->pci_dev, 1823 np->put_rx_ctx->dma)) { 1824 kfree_skb(skb); 1825 goto packet_dropped; 1826 } 1827 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1828 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1829 wmb(); 1830 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1831 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1832 np->put_rx.orig = np->first_rx.orig; 1833 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1834 np->put_rx_ctx = np->first_rx_ctx; 1835 } else { 1836 packet_dropped: 1837 u64_stats_update_begin(&np->swstats_rx_syncp); 1838 np->stat_rx_dropped++; 1839 u64_stats_update_end(&np->swstats_rx_syncp); 1840 return 1; 1841 } 1842 } 1843 return 0; 1844 } 1845 1846 static int nv_alloc_rx_optimized(struct net_device *dev) 1847 { 1848 struct fe_priv *np = netdev_priv(dev); 1849 struct ring_desc_ex *less_rx; 1850 1851 less_rx = np->get_rx.ex; 1852 if (less_rx-- == np->first_rx.ex) 1853 less_rx = np->last_rx.ex; 1854 1855 while (np->put_rx.ex != less_rx) { 1856 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1857 if (skb) { 1858 np->put_rx_ctx->skb = skb; 1859 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1860 skb->data, 1861 skb_tailroom(skb), 1862 PCI_DMA_FROMDEVICE); 1863 if (pci_dma_mapping_error(np->pci_dev, 1864 np->put_rx_ctx->dma)) { 1865 kfree_skb(skb); 1866 goto packet_dropped; 1867 } 1868 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1869 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1870 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1871 wmb(); 1872 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1873 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1874 np->put_rx.ex = np->first_rx.ex; 1875 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1876 np->put_rx_ctx = np->first_rx_ctx; 1877 } else { 1878 packet_dropped: 1879 u64_stats_update_begin(&np->swstats_rx_syncp); 1880 np->stat_rx_dropped++; 1881 u64_stats_update_end(&np->swstats_rx_syncp); 1882 return 1; 1883 } 1884 } 1885 return 0; 1886 } 1887 1888 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1889 static void nv_do_rx_refill(unsigned long data) 1890 { 1891 struct net_device *dev = (struct net_device *) data; 1892 struct fe_priv *np = netdev_priv(dev); 1893 1894 /* Just reschedule NAPI rx processing */ 1895 napi_schedule(&np->napi); 1896 } 1897 1898 static void nv_init_rx(struct net_device *dev) 1899 { 1900 struct fe_priv *np = netdev_priv(dev); 1901 int i; 1902 1903 np->get_rx = np->put_rx = np->first_rx = np->rx_ring; 1904 1905 if (!nv_optimized(np)) 1906 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1907 else 1908 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1909 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb; 1910 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1911 1912 for (i = 0; i < np->rx_ring_size; i++) { 1913 if (!nv_optimized(np)) { 1914 np->rx_ring.orig[i].flaglen = 0; 1915 np->rx_ring.orig[i].buf = 0; 1916 } else { 1917 np->rx_ring.ex[i].flaglen = 0; 1918 np->rx_ring.ex[i].txvlan = 0; 1919 np->rx_ring.ex[i].bufhigh = 0; 1920 np->rx_ring.ex[i].buflow = 0; 1921 } 1922 np->rx_skb[i].skb = NULL; 1923 np->rx_skb[i].dma = 0; 1924 } 1925 } 1926 1927 static void nv_init_tx(struct net_device *dev) 1928 { 1929 struct fe_priv *np = netdev_priv(dev); 1930 int i; 1931 1932 np->get_tx = np->put_tx = np->first_tx = np->tx_ring; 1933 1934 if (!nv_optimized(np)) 1935 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1936 else 1937 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1938 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb; 1939 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1940 netdev_reset_queue(np->dev); 1941 np->tx_pkts_in_progress = 0; 1942 np->tx_change_owner = NULL; 1943 np->tx_end_flip = NULL; 1944 np->tx_stop = 0; 1945 1946 for (i = 0; i < np->tx_ring_size; i++) { 1947 if (!nv_optimized(np)) { 1948 np->tx_ring.orig[i].flaglen = 0; 1949 np->tx_ring.orig[i].buf = 0; 1950 } else { 1951 np->tx_ring.ex[i].flaglen = 0; 1952 np->tx_ring.ex[i].txvlan = 0; 1953 np->tx_ring.ex[i].bufhigh = 0; 1954 np->tx_ring.ex[i].buflow = 0; 1955 } 1956 np->tx_skb[i].skb = NULL; 1957 np->tx_skb[i].dma = 0; 1958 np->tx_skb[i].dma_len = 0; 1959 np->tx_skb[i].dma_single = 0; 1960 np->tx_skb[i].first_tx_desc = NULL; 1961 np->tx_skb[i].next_tx_ctx = NULL; 1962 } 1963 } 1964 1965 static int nv_init_ring(struct net_device *dev) 1966 { 1967 struct fe_priv *np = netdev_priv(dev); 1968 1969 nv_init_tx(dev); 1970 nv_init_rx(dev); 1971 1972 if (!nv_optimized(np)) 1973 return nv_alloc_rx(dev); 1974 else 1975 return nv_alloc_rx_optimized(dev); 1976 } 1977 1978 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1979 { 1980 if (tx_skb->dma) { 1981 if (tx_skb->dma_single) 1982 pci_unmap_single(np->pci_dev, tx_skb->dma, 1983 tx_skb->dma_len, 1984 PCI_DMA_TODEVICE); 1985 else 1986 pci_unmap_page(np->pci_dev, tx_skb->dma, 1987 tx_skb->dma_len, 1988 PCI_DMA_TODEVICE); 1989 tx_skb->dma = 0; 1990 } 1991 } 1992 1993 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1994 { 1995 nv_unmap_txskb(np, tx_skb); 1996 if (tx_skb->skb) { 1997 dev_kfree_skb_any(tx_skb->skb); 1998 tx_skb->skb = NULL; 1999 return 1; 2000 } 2001 return 0; 2002 } 2003 2004 static void nv_drain_tx(struct net_device *dev) 2005 { 2006 struct fe_priv *np = netdev_priv(dev); 2007 unsigned int i; 2008 2009 for (i = 0; i < np->tx_ring_size; i++) { 2010 if (!nv_optimized(np)) { 2011 np->tx_ring.orig[i].flaglen = 0; 2012 np->tx_ring.orig[i].buf = 0; 2013 } else { 2014 np->tx_ring.ex[i].flaglen = 0; 2015 np->tx_ring.ex[i].txvlan = 0; 2016 np->tx_ring.ex[i].bufhigh = 0; 2017 np->tx_ring.ex[i].buflow = 0; 2018 } 2019 if (nv_release_txskb(np, &np->tx_skb[i])) { 2020 u64_stats_update_begin(&np->swstats_tx_syncp); 2021 np->stat_tx_dropped++; 2022 u64_stats_update_end(&np->swstats_tx_syncp); 2023 } 2024 np->tx_skb[i].dma = 0; 2025 np->tx_skb[i].dma_len = 0; 2026 np->tx_skb[i].dma_single = 0; 2027 np->tx_skb[i].first_tx_desc = NULL; 2028 np->tx_skb[i].next_tx_ctx = NULL; 2029 } 2030 np->tx_pkts_in_progress = 0; 2031 np->tx_change_owner = NULL; 2032 np->tx_end_flip = NULL; 2033 } 2034 2035 static void nv_drain_rx(struct net_device *dev) 2036 { 2037 struct fe_priv *np = netdev_priv(dev); 2038 int i; 2039 2040 for (i = 0; i < np->rx_ring_size; i++) { 2041 if (!nv_optimized(np)) { 2042 np->rx_ring.orig[i].flaglen = 0; 2043 np->rx_ring.orig[i].buf = 0; 2044 } else { 2045 np->rx_ring.ex[i].flaglen = 0; 2046 np->rx_ring.ex[i].txvlan = 0; 2047 np->rx_ring.ex[i].bufhigh = 0; 2048 np->rx_ring.ex[i].buflow = 0; 2049 } 2050 wmb(); 2051 if (np->rx_skb[i].skb) { 2052 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma, 2053 (skb_end_pointer(np->rx_skb[i].skb) - 2054 np->rx_skb[i].skb->data), 2055 PCI_DMA_FROMDEVICE); 2056 dev_kfree_skb(np->rx_skb[i].skb); 2057 np->rx_skb[i].skb = NULL; 2058 } 2059 } 2060 } 2061 2062 static void nv_drain_rxtx(struct net_device *dev) 2063 { 2064 nv_drain_tx(dev); 2065 nv_drain_rx(dev); 2066 } 2067 2068 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2069 { 2070 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2071 } 2072 2073 static void nv_legacybackoff_reseed(struct net_device *dev) 2074 { 2075 u8 __iomem *base = get_hwbase(dev); 2076 u32 reg; 2077 u32 low; 2078 int tx_status = 0; 2079 2080 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2081 get_random_bytes(&low, sizeof(low)); 2082 reg |= low & NVREG_SLOTTIME_MASK; 2083 2084 /* Need to stop tx before change takes effect. 2085 * Caller has already gained np->lock. 2086 */ 2087 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2088 if (tx_status) 2089 nv_stop_tx(dev); 2090 nv_stop_rx(dev); 2091 writel(reg, base + NvRegSlotTime); 2092 if (tx_status) 2093 nv_start_tx(dev); 2094 nv_start_rx(dev); 2095 } 2096 2097 /* Gear Backoff Seeds */ 2098 #define BACKOFF_SEEDSET_ROWS 8 2099 #define BACKOFF_SEEDSET_LFSRS 15 2100 2101 /* Known Good seed sets */ 2102 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2103 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2104 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2105 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2106 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2107 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2108 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2109 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2110 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2111 2112 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2113 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2114 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2115 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2116 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2117 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2118 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2119 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2120 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2121 2122 static void nv_gear_backoff_reseed(struct net_device *dev) 2123 { 2124 u8 __iomem *base = get_hwbase(dev); 2125 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2126 u32 temp, seedset, combinedSeed; 2127 int i; 2128 2129 /* Setup seed for free running LFSR */ 2130 /* We are going to read the time stamp counter 3 times 2131 and swizzle bits around to increase randomness */ 2132 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2133 miniseed1 &= 0x0fff; 2134 if (miniseed1 == 0) 2135 miniseed1 = 0xabc; 2136 2137 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2138 miniseed2 &= 0x0fff; 2139 if (miniseed2 == 0) 2140 miniseed2 = 0xabc; 2141 miniseed2_reversed = 2142 ((miniseed2 & 0xF00) >> 8) | 2143 (miniseed2 & 0x0F0) | 2144 ((miniseed2 & 0x00F) << 8); 2145 2146 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2147 miniseed3 &= 0x0fff; 2148 if (miniseed3 == 0) 2149 miniseed3 = 0xabc; 2150 miniseed3_reversed = 2151 ((miniseed3 & 0xF00) >> 8) | 2152 (miniseed3 & 0x0F0) | 2153 ((miniseed3 & 0x00F) << 8); 2154 2155 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2156 (miniseed2 ^ miniseed3_reversed); 2157 2158 /* Seeds can not be zero */ 2159 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2160 combinedSeed |= 0x08; 2161 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2162 combinedSeed |= 0x8000; 2163 2164 /* No need to disable tx here */ 2165 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2166 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2167 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2168 writel(temp, base + NvRegBackOffControl); 2169 2170 /* Setup seeds for all gear LFSRs. */ 2171 get_random_bytes(&seedset, sizeof(seedset)); 2172 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2173 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2174 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2175 temp |= main_seedset[seedset][i-1] & 0x3ff; 2176 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2177 writel(temp, base + NvRegBackOffControl); 2178 } 2179 } 2180 2181 /* 2182 * nv_start_xmit: dev->hard_start_xmit function 2183 * Called with netif_tx_lock held. 2184 */ 2185 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2186 { 2187 struct fe_priv *np = netdev_priv(dev); 2188 u32 tx_flags = 0; 2189 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2190 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2191 unsigned int i; 2192 u32 offset = 0; 2193 u32 bcnt; 2194 u32 size = skb_headlen(skb); 2195 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2196 u32 empty_slots; 2197 struct ring_desc *put_tx; 2198 struct ring_desc *start_tx; 2199 struct ring_desc *prev_tx; 2200 struct nv_skb_map *prev_tx_ctx; 2201 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL; 2202 unsigned long flags; 2203 2204 /* add fragments to entries count */ 2205 for (i = 0; i < fragments; i++) { 2206 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2207 2208 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2209 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2210 } 2211 2212 spin_lock_irqsave(&np->lock, flags); 2213 empty_slots = nv_get_empty_tx_slots(np); 2214 if (unlikely(empty_slots <= entries)) { 2215 netif_stop_queue(dev); 2216 np->tx_stop = 1; 2217 spin_unlock_irqrestore(&np->lock, flags); 2218 return NETDEV_TX_BUSY; 2219 } 2220 spin_unlock_irqrestore(&np->lock, flags); 2221 2222 start_tx = put_tx = np->put_tx.orig; 2223 2224 /* setup the header buffer */ 2225 do { 2226 prev_tx = put_tx; 2227 prev_tx_ctx = np->put_tx_ctx; 2228 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2229 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2230 PCI_DMA_TODEVICE); 2231 if (pci_dma_mapping_error(np->pci_dev, 2232 np->put_tx_ctx->dma)) { 2233 /* on DMA mapping error - drop the packet */ 2234 dev_kfree_skb_any(skb); 2235 u64_stats_update_begin(&np->swstats_tx_syncp); 2236 np->stat_tx_dropped++; 2237 u64_stats_update_end(&np->swstats_tx_syncp); 2238 return NETDEV_TX_OK; 2239 } 2240 np->put_tx_ctx->dma_len = bcnt; 2241 np->put_tx_ctx->dma_single = 1; 2242 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2243 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2244 2245 tx_flags = np->tx_flags; 2246 offset += bcnt; 2247 size -= bcnt; 2248 if (unlikely(put_tx++ == np->last_tx.orig)) 2249 put_tx = np->first_tx.orig; 2250 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2251 np->put_tx_ctx = np->first_tx_ctx; 2252 } while (size); 2253 2254 /* setup the fragments */ 2255 for (i = 0; i < fragments; i++) { 2256 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2257 u32 frag_size = skb_frag_size(frag); 2258 offset = 0; 2259 2260 do { 2261 prev_tx = put_tx; 2262 prev_tx_ctx = np->put_tx_ctx; 2263 if (!start_tx_ctx) 2264 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2265 2266 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2267 np->put_tx_ctx->dma = skb_frag_dma_map( 2268 &np->pci_dev->dev, 2269 frag, offset, 2270 bcnt, 2271 DMA_TO_DEVICE); 2272 if (dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma)) { 2273 2274 /* Unwind the mapped fragments */ 2275 do { 2276 nv_unmap_txskb(np, start_tx_ctx); 2277 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2278 tmp_tx_ctx = np->first_tx_ctx; 2279 } while (tmp_tx_ctx != np->put_tx_ctx); 2280 dev_kfree_skb_any(skb); 2281 np->put_tx_ctx = start_tx_ctx; 2282 u64_stats_update_begin(&np->swstats_tx_syncp); 2283 np->stat_tx_dropped++; 2284 u64_stats_update_end(&np->swstats_tx_syncp); 2285 return NETDEV_TX_OK; 2286 } 2287 2288 np->put_tx_ctx->dma_len = bcnt; 2289 np->put_tx_ctx->dma_single = 0; 2290 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2291 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2292 2293 offset += bcnt; 2294 frag_size -= bcnt; 2295 if (unlikely(put_tx++ == np->last_tx.orig)) 2296 put_tx = np->first_tx.orig; 2297 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2298 np->put_tx_ctx = np->first_tx_ctx; 2299 } while (frag_size); 2300 } 2301 2302 /* set last fragment flag */ 2303 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2304 2305 /* save skb in this slot's context area */ 2306 prev_tx_ctx->skb = skb; 2307 2308 if (skb_is_gso(skb)) 2309 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2310 else 2311 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2312 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2313 2314 spin_lock_irqsave(&np->lock, flags); 2315 2316 /* set tx flags */ 2317 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2318 2319 netdev_sent_queue(np->dev, skb->len); 2320 2321 skb_tx_timestamp(skb); 2322 2323 np->put_tx.orig = put_tx; 2324 2325 spin_unlock_irqrestore(&np->lock, flags); 2326 2327 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2328 return NETDEV_TX_OK; 2329 } 2330 2331 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2332 struct net_device *dev) 2333 { 2334 struct fe_priv *np = netdev_priv(dev); 2335 u32 tx_flags = 0; 2336 u32 tx_flags_extra; 2337 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2338 unsigned int i; 2339 u32 offset = 0; 2340 u32 bcnt; 2341 u32 size = skb_headlen(skb); 2342 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2343 u32 empty_slots; 2344 struct ring_desc_ex *put_tx; 2345 struct ring_desc_ex *start_tx; 2346 struct ring_desc_ex *prev_tx; 2347 struct nv_skb_map *prev_tx_ctx; 2348 struct nv_skb_map *start_tx_ctx = NULL; 2349 struct nv_skb_map *tmp_tx_ctx = NULL; 2350 unsigned long flags; 2351 2352 /* add fragments to entries count */ 2353 for (i = 0; i < fragments; i++) { 2354 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2355 2356 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2357 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2358 } 2359 2360 spin_lock_irqsave(&np->lock, flags); 2361 empty_slots = nv_get_empty_tx_slots(np); 2362 if (unlikely(empty_slots <= entries)) { 2363 netif_stop_queue(dev); 2364 np->tx_stop = 1; 2365 spin_unlock_irqrestore(&np->lock, flags); 2366 return NETDEV_TX_BUSY; 2367 } 2368 spin_unlock_irqrestore(&np->lock, flags); 2369 2370 start_tx = put_tx = np->put_tx.ex; 2371 start_tx_ctx = np->put_tx_ctx; 2372 2373 /* setup the header buffer */ 2374 do { 2375 prev_tx = put_tx; 2376 prev_tx_ctx = np->put_tx_ctx; 2377 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2378 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2379 PCI_DMA_TODEVICE); 2380 if (pci_dma_mapping_error(np->pci_dev, 2381 np->put_tx_ctx->dma)) { 2382 /* on DMA mapping error - drop the packet */ 2383 dev_kfree_skb_any(skb); 2384 u64_stats_update_begin(&np->swstats_tx_syncp); 2385 np->stat_tx_dropped++; 2386 u64_stats_update_end(&np->swstats_tx_syncp); 2387 return NETDEV_TX_OK; 2388 } 2389 np->put_tx_ctx->dma_len = bcnt; 2390 np->put_tx_ctx->dma_single = 1; 2391 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2392 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2393 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2394 2395 tx_flags = NV_TX2_VALID; 2396 offset += bcnt; 2397 size -= bcnt; 2398 if (unlikely(put_tx++ == np->last_tx.ex)) 2399 put_tx = np->first_tx.ex; 2400 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2401 np->put_tx_ctx = np->first_tx_ctx; 2402 } while (size); 2403 2404 /* setup the fragments */ 2405 for (i = 0; i < fragments; i++) { 2406 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2407 u32 frag_size = skb_frag_size(frag); 2408 offset = 0; 2409 2410 do { 2411 prev_tx = put_tx; 2412 prev_tx_ctx = np->put_tx_ctx; 2413 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2414 if (!start_tx_ctx) 2415 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2416 np->put_tx_ctx->dma = skb_frag_dma_map( 2417 &np->pci_dev->dev, 2418 frag, offset, 2419 bcnt, 2420 DMA_TO_DEVICE); 2421 2422 if (dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma)) { 2423 2424 /* Unwind the mapped fragments */ 2425 do { 2426 nv_unmap_txskb(np, start_tx_ctx); 2427 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2428 tmp_tx_ctx = np->first_tx_ctx; 2429 } while (tmp_tx_ctx != np->put_tx_ctx); 2430 dev_kfree_skb_any(skb); 2431 np->put_tx_ctx = start_tx_ctx; 2432 u64_stats_update_begin(&np->swstats_tx_syncp); 2433 np->stat_tx_dropped++; 2434 u64_stats_update_end(&np->swstats_tx_syncp); 2435 return NETDEV_TX_OK; 2436 } 2437 np->put_tx_ctx->dma_len = bcnt; 2438 np->put_tx_ctx->dma_single = 0; 2439 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2440 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2441 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2442 2443 offset += bcnt; 2444 frag_size -= bcnt; 2445 if (unlikely(put_tx++ == np->last_tx.ex)) 2446 put_tx = np->first_tx.ex; 2447 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2448 np->put_tx_ctx = np->first_tx_ctx; 2449 } while (frag_size); 2450 } 2451 2452 /* set last fragment flag */ 2453 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2454 2455 /* save skb in this slot's context area */ 2456 prev_tx_ctx->skb = skb; 2457 2458 if (skb_is_gso(skb)) 2459 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2460 else 2461 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2462 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2463 2464 /* vlan tag */ 2465 if (skb_vlan_tag_present(skb)) 2466 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2467 skb_vlan_tag_get(skb)); 2468 else 2469 start_tx->txvlan = 0; 2470 2471 spin_lock_irqsave(&np->lock, flags); 2472 2473 if (np->tx_limit) { 2474 /* Limit the number of outstanding tx. Setup all fragments, but 2475 * do not set the VALID bit on the first descriptor. Save a pointer 2476 * to that descriptor and also for next skb_map element. 2477 */ 2478 2479 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2480 if (!np->tx_change_owner) 2481 np->tx_change_owner = start_tx_ctx; 2482 2483 /* remove VALID bit */ 2484 tx_flags &= ~NV_TX2_VALID; 2485 start_tx_ctx->first_tx_desc = start_tx; 2486 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2487 np->tx_end_flip = np->put_tx_ctx; 2488 } else { 2489 np->tx_pkts_in_progress++; 2490 } 2491 } 2492 2493 /* set tx flags */ 2494 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2495 2496 netdev_sent_queue(np->dev, skb->len); 2497 2498 skb_tx_timestamp(skb); 2499 2500 np->put_tx.ex = put_tx; 2501 2502 spin_unlock_irqrestore(&np->lock, flags); 2503 2504 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2505 return NETDEV_TX_OK; 2506 } 2507 2508 static inline void nv_tx_flip_ownership(struct net_device *dev) 2509 { 2510 struct fe_priv *np = netdev_priv(dev); 2511 2512 np->tx_pkts_in_progress--; 2513 if (np->tx_change_owner) { 2514 np->tx_change_owner->first_tx_desc->flaglen |= 2515 cpu_to_le32(NV_TX2_VALID); 2516 np->tx_pkts_in_progress++; 2517 2518 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2519 if (np->tx_change_owner == np->tx_end_flip) 2520 np->tx_change_owner = NULL; 2521 2522 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2523 } 2524 } 2525 2526 /* 2527 * nv_tx_done: check for completed packets, release the skbs. 2528 * 2529 * Caller must own np->lock. 2530 */ 2531 static int nv_tx_done(struct net_device *dev, int limit) 2532 { 2533 struct fe_priv *np = netdev_priv(dev); 2534 u32 flags; 2535 int tx_work = 0; 2536 struct ring_desc *orig_get_tx = np->get_tx.orig; 2537 unsigned int bytes_compl = 0; 2538 2539 while ((np->get_tx.orig != np->put_tx.orig) && 2540 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2541 (tx_work < limit)) { 2542 2543 nv_unmap_txskb(np, np->get_tx_ctx); 2544 2545 if (np->desc_ver == DESC_VER_1) { 2546 if (flags & NV_TX_LASTPACKET) { 2547 if (flags & NV_TX_ERROR) { 2548 if ((flags & NV_TX_RETRYERROR) 2549 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2550 nv_legacybackoff_reseed(dev); 2551 } else { 2552 u64_stats_update_begin(&np->swstats_tx_syncp); 2553 np->stat_tx_packets++; 2554 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2555 u64_stats_update_end(&np->swstats_tx_syncp); 2556 } 2557 bytes_compl += np->get_tx_ctx->skb->len; 2558 dev_kfree_skb_any(np->get_tx_ctx->skb); 2559 np->get_tx_ctx->skb = NULL; 2560 tx_work++; 2561 } 2562 } else { 2563 if (flags & NV_TX2_LASTPACKET) { 2564 if (flags & NV_TX2_ERROR) { 2565 if ((flags & NV_TX2_RETRYERROR) 2566 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2567 nv_legacybackoff_reseed(dev); 2568 } else { 2569 u64_stats_update_begin(&np->swstats_tx_syncp); 2570 np->stat_tx_packets++; 2571 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2572 u64_stats_update_end(&np->swstats_tx_syncp); 2573 } 2574 bytes_compl += np->get_tx_ctx->skb->len; 2575 dev_kfree_skb_any(np->get_tx_ctx->skb); 2576 np->get_tx_ctx->skb = NULL; 2577 tx_work++; 2578 } 2579 } 2580 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2581 np->get_tx.orig = np->first_tx.orig; 2582 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2583 np->get_tx_ctx = np->first_tx_ctx; 2584 } 2585 2586 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2587 2588 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2589 np->tx_stop = 0; 2590 netif_wake_queue(dev); 2591 } 2592 return tx_work; 2593 } 2594 2595 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2596 { 2597 struct fe_priv *np = netdev_priv(dev); 2598 u32 flags; 2599 int tx_work = 0; 2600 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2601 unsigned long bytes_cleaned = 0; 2602 2603 while ((np->get_tx.ex != np->put_tx.ex) && 2604 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2605 (tx_work < limit)) { 2606 2607 nv_unmap_txskb(np, np->get_tx_ctx); 2608 2609 if (flags & NV_TX2_LASTPACKET) { 2610 if (flags & NV_TX2_ERROR) { 2611 if ((flags & NV_TX2_RETRYERROR) 2612 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2613 if (np->driver_data & DEV_HAS_GEAR_MODE) 2614 nv_gear_backoff_reseed(dev); 2615 else 2616 nv_legacybackoff_reseed(dev); 2617 } 2618 } else { 2619 u64_stats_update_begin(&np->swstats_tx_syncp); 2620 np->stat_tx_packets++; 2621 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2622 u64_stats_update_end(&np->swstats_tx_syncp); 2623 } 2624 2625 bytes_cleaned += np->get_tx_ctx->skb->len; 2626 dev_kfree_skb_any(np->get_tx_ctx->skb); 2627 np->get_tx_ctx->skb = NULL; 2628 tx_work++; 2629 2630 if (np->tx_limit) 2631 nv_tx_flip_ownership(dev); 2632 } 2633 2634 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2635 np->get_tx.ex = np->first_tx.ex; 2636 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2637 np->get_tx_ctx = np->first_tx_ctx; 2638 } 2639 2640 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2641 2642 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2643 np->tx_stop = 0; 2644 netif_wake_queue(dev); 2645 } 2646 return tx_work; 2647 } 2648 2649 /* 2650 * nv_tx_timeout: dev->tx_timeout function 2651 * Called with netif_tx_lock held. 2652 */ 2653 static void nv_tx_timeout(struct net_device *dev) 2654 { 2655 struct fe_priv *np = netdev_priv(dev); 2656 u8 __iomem *base = get_hwbase(dev); 2657 u32 status; 2658 union ring_type put_tx; 2659 int saved_tx_limit; 2660 2661 if (np->msi_flags & NV_MSI_X_ENABLED) 2662 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2663 else 2664 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2665 2666 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2667 2668 if (unlikely(debug_tx_timeout)) { 2669 int i; 2670 2671 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2672 netdev_info(dev, "Dumping tx registers\n"); 2673 for (i = 0; i <= np->register_size; i += 32) { 2674 netdev_info(dev, 2675 "%3x: %08x %08x %08x %08x " 2676 "%08x %08x %08x %08x\n", 2677 i, 2678 readl(base + i + 0), readl(base + i + 4), 2679 readl(base + i + 8), readl(base + i + 12), 2680 readl(base + i + 16), readl(base + i + 20), 2681 readl(base + i + 24), readl(base + i + 28)); 2682 } 2683 netdev_info(dev, "Dumping tx ring\n"); 2684 for (i = 0; i < np->tx_ring_size; i += 4) { 2685 if (!nv_optimized(np)) { 2686 netdev_info(dev, 2687 "%03x: %08x %08x // %08x %08x " 2688 "// %08x %08x // %08x %08x\n", 2689 i, 2690 le32_to_cpu(np->tx_ring.orig[i].buf), 2691 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2692 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2693 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2694 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2695 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2696 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2697 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2698 } else { 2699 netdev_info(dev, 2700 "%03x: %08x %08x %08x " 2701 "// %08x %08x %08x " 2702 "// %08x %08x %08x " 2703 "// %08x %08x %08x\n", 2704 i, 2705 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2706 le32_to_cpu(np->tx_ring.ex[i].buflow), 2707 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2708 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2709 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2710 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2711 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2712 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2713 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2714 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2715 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2716 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2717 } 2718 } 2719 } 2720 2721 spin_lock_irq(&np->lock); 2722 2723 /* 1) stop tx engine */ 2724 nv_stop_tx(dev); 2725 2726 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2727 saved_tx_limit = np->tx_limit; 2728 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2729 np->tx_stop = 0; /* prevent waking tx queue */ 2730 if (!nv_optimized(np)) 2731 nv_tx_done(dev, np->tx_ring_size); 2732 else 2733 nv_tx_done_optimized(dev, np->tx_ring_size); 2734 2735 /* save current HW position */ 2736 if (np->tx_change_owner) 2737 put_tx.ex = np->tx_change_owner->first_tx_desc; 2738 else 2739 put_tx = np->put_tx; 2740 2741 /* 3) clear all tx state */ 2742 nv_drain_tx(dev); 2743 nv_init_tx(dev); 2744 2745 /* 4) restore state to current HW position */ 2746 np->get_tx = np->put_tx = put_tx; 2747 np->tx_limit = saved_tx_limit; 2748 2749 /* 5) restart tx engine */ 2750 nv_start_tx(dev); 2751 netif_wake_queue(dev); 2752 spin_unlock_irq(&np->lock); 2753 } 2754 2755 /* 2756 * Called when the nic notices a mismatch between the actual data len on the 2757 * wire and the len indicated in the 802 header 2758 */ 2759 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2760 { 2761 int hdrlen; /* length of the 802 header */ 2762 int protolen; /* length as stored in the proto field */ 2763 2764 /* 1) calculate len according to header */ 2765 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2766 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2767 hdrlen = VLAN_HLEN; 2768 } else { 2769 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2770 hdrlen = ETH_HLEN; 2771 } 2772 if (protolen > ETH_DATA_LEN) 2773 return datalen; /* Value in proto field not a len, no checks possible */ 2774 2775 protolen += hdrlen; 2776 /* consistency checks: */ 2777 if (datalen > ETH_ZLEN) { 2778 if (datalen >= protolen) { 2779 /* more data on wire than in 802 header, trim of 2780 * additional data. 2781 */ 2782 return protolen; 2783 } else { 2784 /* less data on wire than mentioned in header. 2785 * Discard the packet. 2786 */ 2787 return -1; 2788 } 2789 } else { 2790 /* short packet. Accept only if 802 values are also short */ 2791 if (protolen > ETH_ZLEN) { 2792 return -1; 2793 } 2794 return datalen; 2795 } 2796 } 2797 2798 static int nv_rx_process(struct net_device *dev, int limit) 2799 { 2800 struct fe_priv *np = netdev_priv(dev); 2801 u32 flags; 2802 int rx_work = 0; 2803 struct sk_buff *skb; 2804 int len; 2805 2806 while ((np->get_rx.orig != np->put_rx.orig) && 2807 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2808 (rx_work < limit)) { 2809 2810 /* 2811 * the packet is for us - immediately tear down the pci mapping. 2812 * TODO: check if a prefetch of the first cacheline improves 2813 * the performance. 2814 */ 2815 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2816 np->get_rx_ctx->dma_len, 2817 PCI_DMA_FROMDEVICE); 2818 skb = np->get_rx_ctx->skb; 2819 np->get_rx_ctx->skb = NULL; 2820 2821 /* look at what we actually got: */ 2822 if (np->desc_ver == DESC_VER_1) { 2823 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2824 len = flags & LEN_MASK_V1; 2825 if (unlikely(flags & NV_RX_ERROR)) { 2826 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2827 len = nv_getlen(dev, skb->data, len); 2828 if (len < 0) { 2829 dev_kfree_skb(skb); 2830 goto next_pkt; 2831 } 2832 } 2833 /* framing errors are soft errors */ 2834 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2835 if (flags & NV_RX_SUBTRACT1) 2836 len--; 2837 } 2838 /* the rest are hard errors */ 2839 else { 2840 if (flags & NV_RX_MISSEDFRAME) { 2841 u64_stats_update_begin(&np->swstats_rx_syncp); 2842 np->stat_rx_missed_errors++; 2843 u64_stats_update_end(&np->swstats_rx_syncp); 2844 } 2845 dev_kfree_skb(skb); 2846 goto next_pkt; 2847 } 2848 } 2849 } else { 2850 dev_kfree_skb(skb); 2851 goto next_pkt; 2852 } 2853 } else { 2854 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2855 len = flags & LEN_MASK_V2; 2856 if (unlikely(flags & NV_RX2_ERROR)) { 2857 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2858 len = nv_getlen(dev, skb->data, len); 2859 if (len < 0) { 2860 dev_kfree_skb(skb); 2861 goto next_pkt; 2862 } 2863 } 2864 /* framing errors are soft errors */ 2865 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2866 if (flags & NV_RX2_SUBTRACT1) 2867 len--; 2868 } 2869 /* the rest are hard errors */ 2870 else { 2871 dev_kfree_skb(skb); 2872 goto next_pkt; 2873 } 2874 } 2875 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2876 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2877 skb->ip_summed = CHECKSUM_UNNECESSARY; 2878 } else { 2879 dev_kfree_skb(skb); 2880 goto next_pkt; 2881 } 2882 } 2883 /* got a valid packet - forward it to the network core */ 2884 skb_put(skb, len); 2885 skb->protocol = eth_type_trans(skb, dev); 2886 napi_gro_receive(&np->napi, skb); 2887 u64_stats_update_begin(&np->swstats_rx_syncp); 2888 np->stat_rx_packets++; 2889 np->stat_rx_bytes += len; 2890 u64_stats_update_end(&np->swstats_rx_syncp); 2891 next_pkt: 2892 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2893 np->get_rx.orig = np->first_rx.orig; 2894 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2895 np->get_rx_ctx = np->first_rx_ctx; 2896 2897 rx_work++; 2898 } 2899 2900 return rx_work; 2901 } 2902 2903 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2904 { 2905 struct fe_priv *np = netdev_priv(dev); 2906 u32 flags; 2907 u32 vlanflags = 0; 2908 int rx_work = 0; 2909 struct sk_buff *skb; 2910 int len; 2911 2912 while ((np->get_rx.ex != np->put_rx.ex) && 2913 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 2914 (rx_work < limit)) { 2915 2916 /* 2917 * the packet is for us - immediately tear down the pci mapping. 2918 * TODO: check if a prefetch of the first cacheline improves 2919 * the performance. 2920 */ 2921 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2922 np->get_rx_ctx->dma_len, 2923 PCI_DMA_FROMDEVICE); 2924 skb = np->get_rx_ctx->skb; 2925 np->get_rx_ctx->skb = NULL; 2926 2927 /* look at what we actually got: */ 2928 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2929 len = flags & LEN_MASK_V2; 2930 if (unlikely(flags & NV_RX2_ERROR)) { 2931 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2932 len = nv_getlen(dev, skb->data, len); 2933 if (len < 0) { 2934 dev_kfree_skb(skb); 2935 goto next_pkt; 2936 } 2937 } 2938 /* framing errors are soft errors */ 2939 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2940 if (flags & NV_RX2_SUBTRACT1) 2941 len--; 2942 } 2943 /* the rest are hard errors */ 2944 else { 2945 dev_kfree_skb(skb); 2946 goto next_pkt; 2947 } 2948 } 2949 2950 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2951 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2952 skb->ip_summed = CHECKSUM_UNNECESSARY; 2953 2954 /* got a valid packet - forward it to the network core */ 2955 skb_put(skb, len); 2956 skb->protocol = eth_type_trans(skb, dev); 2957 prefetch(skb->data); 2958 2959 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 2960 2961 /* 2962 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX 2963 * here. Even if vlan rx accel is disabled, 2964 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 2965 */ 2966 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2967 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 2968 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 2969 2970 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2971 } 2972 napi_gro_receive(&np->napi, skb); 2973 u64_stats_update_begin(&np->swstats_rx_syncp); 2974 np->stat_rx_packets++; 2975 np->stat_rx_bytes += len; 2976 u64_stats_update_end(&np->swstats_rx_syncp); 2977 } else { 2978 dev_kfree_skb(skb); 2979 } 2980 next_pkt: 2981 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 2982 np->get_rx.ex = np->first_rx.ex; 2983 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2984 np->get_rx_ctx = np->first_rx_ctx; 2985 2986 rx_work++; 2987 } 2988 2989 return rx_work; 2990 } 2991 2992 static void set_bufsize(struct net_device *dev) 2993 { 2994 struct fe_priv *np = netdev_priv(dev); 2995 2996 if (dev->mtu <= ETH_DATA_LEN) 2997 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 2998 else 2999 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 3000 } 3001 3002 /* 3003 * nv_change_mtu: dev->change_mtu function 3004 * Called with dev_base_lock held for read. 3005 */ 3006 static int nv_change_mtu(struct net_device *dev, int new_mtu) 3007 { 3008 struct fe_priv *np = netdev_priv(dev); 3009 int old_mtu; 3010 3011 if (new_mtu < 64 || new_mtu > np->pkt_limit) 3012 return -EINVAL; 3013 3014 old_mtu = dev->mtu; 3015 dev->mtu = new_mtu; 3016 3017 /* return early if the buffer sizes will not change */ 3018 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 3019 return 0; 3020 if (old_mtu == new_mtu) 3021 return 0; 3022 3023 /* synchronized against open : rtnl_lock() held by caller */ 3024 if (netif_running(dev)) { 3025 u8 __iomem *base = get_hwbase(dev); 3026 /* 3027 * It seems that the nic preloads valid ring entries into an 3028 * internal buffer. The procedure for flushing everything is 3029 * guessed, there is probably a simpler approach. 3030 * Changing the MTU is a rare event, it shouldn't matter. 3031 */ 3032 nv_disable_irq(dev); 3033 nv_napi_disable(dev); 3034 netif_tx_lock_bh(dev); 3035 netif_addr_lock(dev); 3036 spin_lock(&np->lock); 3037 /* stop engines */ 3038 nv_stop_rxtx(dev); 3039 nv_txrx_reset(dev); 3040 /* drain rx queue */ 3041 nv_drain_rxtx(dev); 3042 /* reinit driver view of the rx queue */ 3043 set_bufsize(dev); 3044 if (nv_init_ring(dev)) { 3045 if (!np->in_shutdown) 3046 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3047 } 3048 /* reinit nic view of the rx queue */ 3049 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 3050 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 3051 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 3052 base + NvRegRingSizes); 3053 pci_push(base); 3054 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 3055 pci_push(base); 3056 3057 /* restart rx engine */ 3058 nv_start_rxtx(dev); 3059 spin_unlock(&np->lock); 3060 netif_addr_unlock(dev); 3061 netif_tx_unlock_bh(dev); 3062 nv_napi_enable(dev); 3063 nv_enable_irq(dev); 3064 } 3065 return 0; 3066 } 3067 3068 static void nv_copy_mac_to_hw(struct net_device *dev) 3069 { 3070 u8 __iomem *base = get_hwbase(dev); 3071 u32 mac[2]; 3072 3073 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3074 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3075 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3076 3077 writel(mac[0], base + NvRegMacAddrA); 3078 writel(mac[1], base + NvRegMacAddrB); 3079 } 3080 3081 /* 3082 * nv_set_mac_address: dev->set_mac_address function 3083 * Called with rtnl_lock() held. 3084 */ 3085 static int nv_set_mac_address(struct net_device *dev, void *addr) 3086 { 3087 struct fe_priv *np = netdev_priv(dev); 3088 struct sockaddr *macaddr = (struct sockaddr *)addr; 3089 3090 if (!is_valid_ether_addr(macaddr->sa_data)) 3091 return -EADDRNOTAVAIL; 3092 3093 /* synchronized against open : rtnl_lock() held by caller */ 3094 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3095 3096 if (netif_running(dev)) { 3097 netif_tx_lock_bh(dev); 3098 netif_addr_lock(dev); 3099 spin_lock_irq(&np->lock); 3100 3101 /* stop rx engine */ 3102 nv_stop_rx(dev); 3103 3104 /* set mac address */ 3105 nv_copy_mac_to_hw(dev); 3106 3107 /* restart rx engine */ 3108 nv_start_rx(dev); 3109 spin_unlock_irq(&np->lock); 3110 netif_addr_unlock(dev); 3111 netif_tx_unlock_bh(dev); 3112 } else { 3113 nv_copy_mac_to_hw(dev); 3114 } 3115 return 0; 3116 } 3117 3118 /* 3119 * nv_set_multicast: dev->set_multicast function 3120 * Called with netif_tx_lock held. 3121 */ 3122 static void nv_set_multicast(struct net_device *dev) 3123 { 3124 struct fe_priv *np = netdev_priv(dev); 3125 u8 __iomem *base = get_hwbase(dev); 3126 u32 addr[2]; 3127 u32 mask[2]; 3128 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3129 3130 memset(addr, 0, sizeof(addr)); 3131 memset(mask, 0, sizeof(mask)); 3132 3133 if (dev->flags & IFF_PROMISC) { 3134 pff |= NVREG_PFF_PROMISC; 3135 } else { 3136 pff |= NVREG_PFF_MYADDR; 3137 3138 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3139 u32 alwaysOff[2]; 3140 u32 alwaysOn[2]; 3141 3142 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3143 if (dev->flags & IFF_ALLMULTI) { 3144 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3145 } else { 3146 struct netdev_hw_addr *ha; 3147 3148 netdev_for_each_mc_addr(ha, dev) { 3149 unsigned char *hw_addr = ha->addr; 3150 u32 a, b; 3151 3152 a = le32_to_cpu(*(__le32 *) hw_addr); 3153 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3154 alwaysOn[0] &= a; 3155 alwaysOff[0] &= ~a; 3156 alwaysOn[1] &= b; 3157 alwaysOff[1] &= ~b; 3158 } 3159 } 3160 addr[0] = alwaysOn[0]; 3161 addr[1] = alwaysOn[1]; 3162 mask[0] = alwaysOn[0] | alwaysOff[0]; 3163 mask[1] = alwaysOn[1] | alwaysOff[1]; 3164 } else { 3165 mask[0] = NVREG_MCASTMASKA_NONE; 3166 mask[1] = NVREG_MCASTMASKB_NONE; 3167 } 3168 } 3169 addr[0] |= NVREG_MCASTADDRA_FORCE; 3170 pff |= NVREG_PFF_ALWAYS; 3171 spin_lock_irq(&np->lock); 3172 nv_stop_rx(dev); 3173 writel(addr[0], base + NvRegMulticastAddrA); 3174 writel(addr[1], base + NvRegMulticastAddrB); 3175 writel(mask[0], base + NvRegMulticastMaskA); 3176 writel(mask[1], base + NvRegMulticastMaskB); 3177 writel(pff, base + NvRegPacketFilterFlags); 3178 nv_start_rx(dev); 3179 spin_unlock_irq(&np->lock); 3180 } 3181 3182 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3183 { 3184 struct fe_priv *np = netdev_priv(dev); 3185 u8 __iomem *base = get_hwbase(dev); 3186 3187 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3188 3189 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3190 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3191 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3192 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3193 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3194 } else { 3195 writel(pff, base + NvRegPacketFilterFlags); 3196 } 3197 } 3198 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3199 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3200 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3201 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3202 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3203 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3204 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3205 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3206 /* limit the number of tx pause frames to a default of 8 */ 3207 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3208 } 3209 writel(pause_enable, base + NvRegTxPauseFrame); 3210 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3211 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3212 } else { 3213 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3214 writel(regmisc, base + NvRegMisc1); 3215 } 3216 } 3217 } 3218 3219 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3220 { 3221 struct fe_priv *np = netdev_priv(dev); 3222 u8 __iomem *base = get_hwbase(dev); 3223 u32 phyreg, txreg; 3224 int mii_status; 3225 3226 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3227 np->duplex = duplex; 3228 3229 /* see if gigabit phy */ 3230 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3231 if (mii_status & PHY_GIGABIT) { 3232 np->gigabit = PHY_GIGABIT; 3233 phyreg = readl(base + NvRegSlotTime); 3234 phyreg &= ~(0x3FF00); 3235 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3236 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3237 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3238 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3239 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3240 phyreg |= NVREG_SLOTTIME_1000_FULL; 3241 writel(phyreg, base + NvRegSlotTime); 3242 } 3243 3244 phyreg = readl(base + NvRegPhyInterface); 3245 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3246 if (np->duplex == 0) 3247 phyreg |= PHY_HALF; 3248 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3249 phyreg |= PHY_100; 3250 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3251 NVREG_LINKSPEED_1000) 3252 phyreg |= PHY_1000; 3253 writel(phyreg, base + NvRegPhyInterface); 3254 3255 if (phyreg & PHY_RGMII) { 3256 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3257 NVREG_LINKSPEED_1000) 3258 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3259 else 3260 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3261 } else { 3262 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3263 } 3264 writel(txreg, base + NvRegTxDeferral); 3265 3266 if (np->desc_ver == DESC_VER_1) { 3267 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3268 } else { 3269 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3270 NVREG_LINKSPEED_1000) 3271 txreg = NVREG_TX_WM_DESC2_3_1000; 3272 else 3273 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3274 } 3275 writel(txreg, base + NvRegTxWatermark); 3276 3277 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3278 base + NvRegMisc1); 3279 pci_push(base); 3280 writel(np->linkspeed, base + NvRegLinkSpeed); 3281 pci_push(base); 3282 3283 return; 3284 } 3285 3286 /** 3287 * nv_update_linkspeed - Setup the MAC according to the link partner 3288 * @dev: Network device to be configured 3289 * 3290 * The function queries the PHY and checks if there is a link partner. 3291 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3292 * set to 10 MBit HD. 3293 * 3294 * The function returns 0 if there is no link partner and 1 if there is 3295 * a good link partner. 3296 */ 3297 static int nv_update_linkspeed(struct net_device *dev) 3298 { 3299 struct fe_priv *np = netdev_priv(dev); 3300 u8 __iomem *base = get_hwbase(dev); 3301 int adv = 0; 3302 int lpa = 0; 3303 int adv_lpa, adv_pause, lpa_pause; 3304 int newls = np->linkspeed; 3305 int newdup = np->duplex; 3306 int mii_status; 3307 u32 bmcr; 3308 int retval = 0; 3309 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3310 u32 txrxFlags = 0; 3311 u32 phy_exp; 3312 3313 /* If device loopback is enabled, set carrier on and enable max link 3314 * speed. 3315 */ 3316 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3317 if (bmcr & BMCR_LOOPBACK) { 3318 if (netif_running(dev)) { 3319 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3320 if (!netif_carrier_ok(dev)) 3321 netif_carrier_on(dev); 3322 } 3323 return 1; 3324 } 3325 3326 /* BMSR_LSTATUS is latched, read it twice: 3327 * we want the current value. 3328 */ 3329 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3330 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3331 3332 if (!(mii_status & BMSR_LSTATUS)) { 3333 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3334 newdup = 0; 3335 retval = 0; 3336 goto set_speed; 3337 } 3338 3339 if (np->autoneg == 0) { 3340 if (np->fixed_mode & LPA_100FULL) { 3341 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3342 newdup = 1; 3343 } else if (np->fixed_mode & LPA_100HALF) { 3344 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3345 newdup = 0; 3346 } else if (np->fixed_mode & LPA_10FULL) { 3347 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3348 newdup = 1; 3349 } else { 3350 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3351 newdup = 0; 3352 } 3353 retval = 1; 3354 goto set_speed; 3355 } 3356 /* check auto negotiation is complete */ 3357 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3358 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3359 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3360 newdup = 0; 3361 retval = 0; 3362 goto set_speed; 3363 } 3364 3365 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3366 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3367 3368 retval = 1; 3369 if (np->gigabit == PHY_GIGABIT) { 3370 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3371 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3372 3373 if ((control_1000 & ADVERTISE_1000FULL) && 3374 (status_1000 & LPA_1000FULL)) { 3375 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3376 newdup = 1; 3377 goto set_speed; 3378 } 3379 } 3380 3381 /* FIXME: handle parallel detection properly */ 3382 adv_lpa = lpa & adv; 3383 if (adv_lpa & LPA_100FULL) { 3384 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3385 newdup = 1; 3386 } else if (adv_lpa & LPA_100HALF) { 3387 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3388 newdup = 0; 3389 } else if (adv_lpa & LPA_10FULL) { 3390 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3391 newdup = 1; 3392 } else if (adv_lpa & LPA_10HALF) { 3393 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3394 newdup = 0; 3395 } else { 3396 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3397 newdup = 0; 3398 } 3399 3400 set_speed: 3401 if (np->duplex == newdup && np->linkspeed == newls) 3402 return retval; 3403 3404 np->duplex = newdup; 3405 np->linkspeed = newls; 3406 3407 /* The transmitter and receiver must be restarted for safe update */ 3408 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3409 txrxFlags |= NV_RESTART_TX; 3410 nv_stop_tx(dev); 3411 } 3412 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3413 txrxFlags |= NV_RESTART_RX; 3414 nv_stop_rx(dev); 3415 } 3416 3417 if (np->gigabit == PHY_GIGABIT) { 3418 phyreg = readl(base + NvRegSlotTime); 3419 phyreg &= ~(0x3FF00); 3420 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3421 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3422 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3423 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3424 phyreg |= NVREG_SLOTTIME_1000_FULL; 3425 writel(phyreg, base + NvRegSlotTime); 3426 } 3427 3428 phyreg = readl(base + NvRegPhyInterface); 3429 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3430 if (np->duplex == 0) 3431 phyreg |= PHY_HALF; 3432 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3433 phyreg |= PHY_100; 3434 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3435 phyreg |= PHY_1000; 3436 writel(phyreg, base + NvRegPhyInterface); 3437 3438 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3439 if (phyreg & PHY_RGMII) { 3440 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3441 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3442 } else { 3443 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3444 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3445 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3446 else 3447 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3448 } else { 3449 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3450 } 3451 } 3452 } else { 3453 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3454 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3455 else 3456 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3457 } 3458 writel(txreg, base + NvRegTxDeferral); 3459 3460 if (np->desc_ver == DESC_VER_1) { 3461 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3462 } else { 3463 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3464 txreg = NVREG_TX_WM_DESC2_3_1000; 3465 else 3466 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3467 } 3468 writel(txreg, base + NvRegTxWatermark); 3469 3470 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3471 base + NvRegMisc1); 3472 pci_push(base); 3473 writel(np->linkspeed, base + NvRegLinkSpeed); 3474 pci_push(base); 3475 3476 pause_flags = 0; 3477 /* setup pause frame */ 3478 if (netif_running(dev) && (np->duplex != 0)) { 3479 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3480 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3481 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3482 3483 switch (adv_pause) { 3484 case ADVERTISE_PAUSE_CAP: 3485 if (lpa_pause & LPA_PAUSE_CAP) { 3486 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3487 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3488 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3489 } 3490 break; 3491 case ADVERTISE_PAUSE_ASYM: 3492 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3493 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3494 break; 3495 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3496 if (lpa_pause & LPA_PAUSE_CAP) { 3497 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3498 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3499 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3500 } 3501 if (lpa_pause == LPA_PAUSE_ASYM) 3502 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3503 break; 3504 } 3505 } else { 3506 pause_flags = np->pause_flags; 3507 } 3508 } 3509 nv_update_pause(dev, pause_flags); 3510 3511 if (txrxFlags & NV_RESTART_TX) 3512 nv_start_tx(dev); 3513 if (txrxFlags & NV_RESTART_RX) 3514 nv_start_rx(dev); 3515 3516 return retval; 3517 } 3518 3519 static void nv_linkchange(struct net_device *dev) 3520 { 3521 if (nv_update_linkspeed(dev)) { 3522 if (!netif_carrier_ok(dev)) { 3523 netif_carrier_on(dev); 3524 netdev_info(dev, "link up\n"); 3525 nv_txrx_gate(dev, false); 3526 nv_start_rx(dev); 3527 } 3528 } else { 3529 if (netif_carrier_ok(dev)) { 3530 netif_carrier_off(dev); 3531 netdev_info(dev, "link down\n"); 3532 nv_txrx_gate(dev, true); 3533 nv_stop_rx(dev); 3534 } 3535 } 3536 } 3537 3538 static void nv_link_irq(struct net_device *dev) 3539 { 3540 u8 __iomem *base = get_hwbase(dev); 3541 u32 miistat; 3542 3543 miistat = readl(base + NvRegMIIStatus); 3544 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3545 3546 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3547 nv_linkchange(dev); 3548 } 3549 3550 static void nv_msi_workaround(struct fe_priv *np) 3551 { 3552 3553 /* Need to toggle the msi irq mask within the ethernet device, 3554 * otherwise, future interrupts will not be detected. 3555 */ 3556 if (np->msi_flags & NV_MSI_ENABLED) { 3557 u8 __iomem *base = np->base; 3558 3559 writel(0, base + NvRegMSIIrqMask); 3560 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3561 } 3562 } 3563 3564 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3565 { 3566 struct fe_priv *np = netdev_priv(dev); 3567 3568 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3569 if (total_work > NV_DYNAMIC_THRESHOLD) { 3570 /* transition to poll based interrupts */ 3571 np->quiet_count = 0; 3572 if (np->irqmask != NVREG_IRQMASK_CPU) { 3573 np->irqmask = NVREG_IRQMASK_CPU; 3574 return 1; 3575 } 3576 } else { 3577 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3578 np->quiet_count++; 3579 } else { 3580 /* reached a period of low activity, switch 3581 to per tx/rx packet interrupts */ 3582 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3583 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3584 return 1; 3585 } 3586 } 3587 } 3588 } 3589 return 0; 3590 } 3591 3592 static irqreturn_t nv_nic_irq(int foo, void *data) 3593 { 3594 struct net_device *dev = (struct net_device *) data; 3595 struct fe_priv *np = netdev_priv(dev); 3596 u8 __iomem *base = get_hwbase(dev); 3597 3598 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3599 np->events = readl(base + NvRegIrqStatus); 3600 writel(np->events, base + NvRegIrqStatus); 3601 } else { 3602 np->events = readl(base + NvRegMSIXIrqStatus); 3603 writel(np->events, base + NvRegMSIXIrqStatus); 3604 } 3605 if (!(np->events & np->irqmask)) 3606 return IRQ_NONE; 3607 3608 nv_msi_workaround(np); 3609 3610 if (napi_schedule_prep(&np->napi)) { 3611 /* 3612 * Disable further irq's (msix not enabled with napi) 3613 */ 3614 writel(0, base + NvRegIrqMask); 3615 __napi_schedule(&np->napi); 3616 } 3617 3618 return IRQ_HANDLED; 3619 } 3620 3621 /* All _optimized functions are used to help increase performance 3622 * (reduce CPU and increase throughput). They use descripter version 3, 3623 * compiler directives, and reduce memory accesses. 3624 */ 3625 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3626 { 3627 struct net_device *dev = (struct net_device *) data; 3628 struct fe_priv *np = netdev_priv(dev); 3629 u8 __iomem *base = get_hwbase(dev); 3630 3631 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3632 np->events = readl(base + NvRegIrqStatus); 3633 writel(np->events, base + NvRegIrqStatus); 3634 } else { 3635 np->events = readl(base + NvRegMSIXIrqStatus); 3636 writel(np->events, base + NvRegMSIXIrqStatus); 3637 } 3638 if (!(np->events & np->irqmask)) 3639 return IRQ_NONE; 3640 3641 nv_msi_workaround(np); 3642 3643 if (napi_schedule_prep(&np->napi)) { 3644 /* 3645 * Disable further irq's (msix not enabled with napi) 3646 */ 3647 writel(0, base + NvRegIrqMask); 3648 __napi_schedule(&np->napi); 3649 } 3650 3651 return IRQ_HANDLED; 3652 } 3653 3654 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3655 { 3656 struct net_device *dev = (struct net_device *) data; 3657 struct fe_priv *np = netdev_priv(dev); 3658 u8 __iomem *base = get_hwbase(dev); 3659 u32 events; 3660 int i; 3661 unsigned long flags; 3662 3663 for (i = 0;; i++) { 3664 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3665 writel(events, base + NvRegMSIXIrqStatus); 3666 netdev_dbg(dev, "tx irq events: %08x\n", events); 3667 if (!(events & np->irqmask)) 3668 break; 3669 3670 spin_lock_irqsave(&np->lock, flags); 3671 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3672 spin_unlock_irqrestore(&np->lock, flags); 3673 3674 if (unlikely(i > max_interrupt_work)) { 3675 spin_lock_irqsave(&np->lock, flags); 3676 /* disable interrupts on the nic */ 3677 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3678 pci_push(base); 3679 3680 if (!np->in_shutdown) { 3681 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3682 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3683 } 3684 spin_unlock_irqrestore(&np->lock, flags); 3685 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3686 __func__, i); 3687 break; 3688 } 3689 3690 } 3691 3692 return IRQ_RETVAL(i); 3693 } 3694 3695 static int nv_napi_poll(struct napi_struct *napi, int budget) 3696 { 3697 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3698 struct net_device *dev = np->dev; 3699 u8 __iomem *base = get_hwbase(dev); 3700 unsigned long flags; 3701 int retcode; 3702 int rx_count, tx_work = 0, rx_work = 0; 3703 3704 do { 3705 if (!nv_optimized(np)) { 3706 spin_lock_irqsave(&np->lock, flags); 3707 tx_work += nv_tx_done(dev, np->tx_ring_size); 3708 spin_unlock_irqrestore(&np->lock, flags); 3709 3710 rx_count = nv_rx_process(dev, budget - rx_work); 3711 retcode = nv_alloc_rx(dev); 3712 } else { 3713 spin_lock_irqsave(&np->lock, flags); 3714 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3715 spin_unlock_irqrestore(&np->lock, flags); 3716 3717 rx_count = nv_rx_process_optimized(dev, 3718 budget - rx_work); 3719 retcode = nv_alloc_rx_optimized(dev); 3720 } 3721 } while (retcode == 0 && 3722 rx_count > 0 && (rx_work += rx_count) < budget); 3723 3724 if (retcode) { 3725 spin_lock_irqsave(&np->lock, flags); 3726 if (!np->in_shutdown) 3727 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3728 spin_unlock_irqrestore(&np->lock, flags); 3729 } 3730 3731 nv_change_interrupt_mode(dev, tx_work + rx_work); 3732 3733 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3734 spin_lock_irqsave(&np->lock, flags); 3735 nv_link_irq(dev); 3736 spin_unlock_irqrestore(&np->lock, flags); 3737 } 3738 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3739 spin_lock_irqsave(&np->lock, flags); 3740 nv_linkchange(dev); 3741 spin_unlock_irqrestore(&np->lock, flags); 3742 np->link_timeout = jiffies + LINK_TIMEOUT; 3743 } 3744 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3745 spin_lock_irqsave(&np->lock, flags); 3746 if (!np->in_shutdown) { 3747 np->nic_poll_irq = np->irqmask; 3748 np->recover_error = 1; 3749 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3750 } 3751 spin_unlock_irqrestore(&np->lock, flags); 3752 napi_complete(napi); 3753 return rx_work; 3754 } 3755 3756 if (rx_work < budget) { 3757 /* re-enable interrupts 3758 (msix not enabled in napi) */ 3759 napi_complete(napi); 3760 3761 writel(np->irqmask, base + NvRegIrqMask); 3762 } 3763 return rx_work; 3764 } 3765 3766 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3767 { 3768 struct net_device *dev = (struct net_device *) data; 3769 struct fe_priv *np = netdev_priv(dev); 3770 u8 __iomem *base = get_hwbase(dev); 3771 u32 events; 3772 int i; 3773 unsigned long flags; 3774 3775 for (i = 0;; i++) { 3776 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3777 writel(events, base + NvRegMSIXIrqStatus); 3778 netdev_dbg(dev, "rx irq events: %08x\n", events); 3779 if (!(events & np->irqmask)) 3780 break; 3781 3782 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3783 if (unlikely(nv_alloc_rx_optimized(dev))) { 3784 spin_lock_irqsave(&np->lock, flags); 3785 if (!np->in_shutdown) 3786 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3787 spin_unlock_irqrestore(&np->lock, flags); 3788 } 3789 } 3790 3791 if (unlikely(i > max_interrupt_work)) { 3792 spin_lock_irqsave(&np->lock, flags); 3793 /* disable interrupts on the nic */ 3794 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3795 pci_push(base); 3796 3797 if (!np->in_shutdown) { 3798 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3799 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3800 } 3801 spin_unlock_irqrestore(&np->lock, flags); 3802 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3803 __func__, i); 3804 break; 3805 } 3806 } 3807 3808 return IRQ_RETVAL(i); 3809 } 3810 3811 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3812 { 3813 struct net_device *dev = (struct net_device *) data; 3814 struct fe_priv *np = netdev_priv(dev); 3815 u8 __iomem *base = get_hwbase(dev); 3816 u32 events; 3817 int i; 3818 unsigned long flags; 3819 3820 for (i = 0;; i++) { 3821 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3822 writel(events, base + NvRegMSIXIrqStatus); 3823 netdev_dbg(dev, "irq events: %08x\n", events); 3824 if (!(events & np->irqmask)) 3825 break; 3826 3827 /* check tx in case we reached max loop limit in tx isr */ 3828 spin_lock_irqsave(&np->lock, flags); 3829 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3830 spin_unlock_irqrestore(&np->lock, flags); 3831 3832 if (events & NVREG_IRQ_LINK) { 3833 spin_lock_irqsave(&np->lock, flags); 3834 nv_link_irq(dev); 3835 spin_unlock_irqrestore(&np->lock, flags); 3836 } 3837 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3838 spin_lock_irqsave(&np->lock, flags); 3839 nv_linkchange(dev); 3840 spin_unlock_irqrestore(&np->lock, flags); 3841 np->link_timeout = jiffies + LINK_TIMEOUT; 3842 } 3843 if (events & NVREG_IRQ_RECOVER_ERROR) { 3844 spin_lock_irqsave(&np->lock, flags); 3845 /* disable interrupts on the nic */ 3846 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3847 pci_push(base); 3848 3849 if (!np->in_shutdown) { 3850 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3851 np->recover_error = 1; 3852 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3853 } 3854 spin_unlock_irqrestore(&np->lock, flags); 3855 break; 3856 } 3857 if (unlikely(i > max_interrupt_work)) { 3858 spin_lock_irqsave(&np->lock, flags); 3859 /* disable interrupts on the nic */ 3860 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3861 pci_push(base); 3862 3863 if (!np->in_shutdown) { 3864 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3865 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3866 } 3867 spin_unlock_irqrestore(&np->lock, flags); 3868 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3869 __func__, i); 3870 break; 3871 } 3872 3873 } 3874 3875 return IRQ_RETVAL(i); 3876 } 3877 3878 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3879 { 3880 struct net_device *dev = (struct net_device *) data; 3881 struct fe_priv *np = netdev_priv(dev); 3882 u8 __iomem *base = get_hwbase(dev); 3883 u32 events; 3884 3885 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3886 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3887 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3888 } else { 3889 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3890 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3891 } 3892 pci_push(base); 3893 if (!(events & NVREG_IRQ_TIMER)) 3894 return IRQ_RETVAL(0); 3895 3896 nv_msi_workaround(np); 3897 3898 spin_lock(&np->lock); 3899 np->intr_test = 1; 3900 spin_unlock(&np->lock); 3901 3902 return IRQ_RETVAL(1); 3903 } 3904 3905 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3906 { 3907 u8 __iomem *base = get_hwbase(dev); 3908 int i; 3909 u32 msixmap = 0; 3910 3911 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3912 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 3913 * the remaining 8 interrupts. 3914 */ 3915 for (i = 0; i < 8; i++) { 3916 if ((irqmask >> i) & 0x1) 3917 msixmap |= vector << (i << 2); 3918 } 3919 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 3920 3921 msixmap = 0; 3922 for (i = 0; i < 8; i++) { 3923 if ((irqmask >> (i + 8)) & 0x1) 3924 msixmap |= vector << (i << 2); 3925 } 3926 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 3927 } 3928 3929 static int nv_request_irq(struct net_device *dev, int intr_test) 3930 { 3931 struct fe_priv *np = get_nvpriv(dev); 3932 u8 __iomem *base = get_hwbase(dev); 3933 int ret; 3934 int i; 3935 irqreturn_t (*handler)(int foo, void *data); 3936 3937 if (intr_test) { 3938 handler = nv_nic_irq_test; 3939 } else { 3940 if (nv_optimized(np)) 3941 handler = nv_nic_irq_optimized; 3942 else 3943 handler = nv_nic_irq; 3944 } 3945 3946 if (np->msi_flags & NV_MSI_X_CAPABLE) { 3947 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3948 np->msi_x_entry[i].entry = i; 3949 ret = pci_enable_msix_range(np->pci_dev, 3950 np->msi_x_entry, 3951 np->msi_flags & NV_MSI_X_VECTORS_MASK, 3952 np->msi_flags & NV_MSI_X_VECTORS_MASK); 3953 if (ret > 0) { 3954 np->msi_flags |= NV_MSI_X_ENABLED; 3955 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 3956 /* Request irq for rx handling */ 3957 sprintf(np->name_rx, "%s-rx", dev->name); 3958 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 3959 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev); 3960 if (ret) { 3961 netdev_info(dev, 3962 "request_irq failed for rx %d\n", 3963 ret); 3964 pci_disable_msix(np->pci_dev); 3965 np->msi_flags &= ~NV_MSI_X_ENABLED; 3966 goto out_err; 3967 } 3968 /* Request irq for tx handling */ 3969 sprintf(np->name_tx, "%s-tx", dev->name); 3970 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 3971 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev); 3972 if (ret) { 3973 netdev_info(dev, 3974 "request_irq failed for tx %d\n", 3975 ret); 3976 pci_disable_msix(np->pci_dev); 3977 np->msi_flags &= ~NV_MSI_X_ENABLED; 3978 goto out_free_rx; 3979 } 3980 /* Request irq for link and timer handling */ 3981 sprintf(np->name_other, "%s-other", dev->name); 3982 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 3983 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev); 3984 if (ret) { 3985 netdev_info(dev, 3986 "request_irq failed for link %d\n", 3987 ret); 3988 pci_disable_msix(np->pci_dev); 3989 np->msi_flags &= ~NV_MSI_X_ENABLED; 3990 goto out_free_tx; 3991 } 3992 /* map interrupts to their respective vector */ 3993 writel(0, base + NvRegMSIXMap0); 3994 writel(0, base + NvRegMSIXMap1); 3995 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 3996 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 3997 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 3998 } else { 3999 /* Request irq for all interrupts */ 4000 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, 4001 handler, IRQF_SHARED, dev->name, dev); 4002 if (ret) { 4003 netdev_info(dev, 4004 "request_irq failed %d\n", 4005 ret); 4006 pci_disable_msix(np->pci_dev); 4007 np->msi_flags &= ~NV_MSI_X_ENABLED; 4008 goto out_err; 4009 } 4010 4011 /* map interrupts to vector 0 */ 4012 writel(0, base + NvRegMSIXMap0); 4013 writel(0, base + NvRegMSIXMap1); 4014 } 4015 netdev_info(dev, "MSI-X enabled\n"); 4016 return 0; 4017 } 4018 } 4019 if (np->msi_flags & NV_MSI_CAPABLE) { 4020 ret = pci_enable_msi(np->pci_dev); 4021 if (ret == 0) { 4022 np->msi_flags |= NV_MSI_ENABLED; 4023 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev); 4024 if (ret) { 4025 netdev_info(dev, "request_irq failed %d\n", 4026 ret); 4027 pci_disable_msi(np->pci_dev); 4028 np->msi_flags &= ~NV_MSI_ENABLED; 4029 goto out_err; 4030 } 4031 4032 /* map interrupts to vector 0 */ 4033 writel(0, base + NvRegMSIMap0); 4034 writel(0, base + NvRegMSIMap1); 4035 /* enable msi vector 0 */ 4036 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 4037 netdev_info(dev, "MSI enabled\n"); 4038 return 0; 4039 } 4040 } 4041 4042 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 4043 goto out_err; 4044 4045 return 0; 4046 out_free_tx: 4047 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 4048 out_free_rx: 4049 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 4050 out_err: 4051 return 1; 4052 } 4053 4054 static void nv_free_irq(struct net_device *dev) 4055 { 4056 struct fe_priv *np = get_nvpriv(dev); 4057 int i; 4058 4059 if (np->msi_flags & NV_MSI_X_ENABLED) { 4060 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4061 free_irq(np->msi_x_entry[i].vector, dev); 4062 pci_disable_msix(np->pci_dev); 4063 np->msi_flags &= ~NV_MSI_X_ENABLED; 4064 } else { 4065 free_irq(np->pci_dev->irq, dev); 4066 if (np->msi_flags & NV_MSI_ENABLED) { 4067 pci_disable_msi(np->pci_dev); 4068 np->msi_flags &= ~NV_MSI_ENABLED; 4069 } 4070 } 4071 } 4072 4073 static void nv_do_nic_poll(unsigned long data) 4074 { 4075 struct net_device *dev = (struct net_device *) data; 4076 struct fe_priv *np = netdev_priv(dev); 4077 u8 __iomem *base = get_hwbase(dev); 4078 u32 mask = 0; 4079 unsigned long flags; 4080 unsigned int irq = 0; 4081 4082 /* 4083 * First disable irq(s) and then 4084 * reenable interrupts on the nic, we have to do this before calling 4085 * nv_nic_irq because that may decide to do otherwise 4086 */ 4087 4088 if (!using_multi_irqs(dev)) { 4089 if (np->msi_flags & NV_MSI_X_ENABLED) 4090 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector; 4091 else 4092 irq = np->pci_dev->irq; 4093 mask = np->irqmask; 4094 } else { 4095 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4096 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector; 4097 mask |= NVREG_IRQ_RX_ALL; 4098 } 4099 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4100 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector; 4101 mask |= NVREG_IRQ_TX_ALL; 4102 } 4103 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4104 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector; 4105 mask |= NVREG_IRQ_OTHER; 4106 } 4107 } 4108 4109 disable_irq_nosync_lockdep_irqsave(irq, &flags); 4110 synchronize_irq(irq); 4111 4112 if (np->recover_error) { 4113 np->recover_error = 0; 4114 netdev_info(dev, "MAC in recoverable error state\n"); 4115 if (netif_running(dev)) { 4116 netif_tx_lock_bh(dev); 4117 netif_addr_lock(dev); 4118 spin_lock(&np->lock); 4119 /* stop engines */ 4120 nv_stop_rxtx(dev); 4121 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4122 nv_mac_reset(dev); 4123 nv_txrx_reset(dev); 4124 /* drain rx queue */ 4125 nv_drain_rxtx(dev); 4126 /* reinit driver view of the rx queue */ 4127 set_bufsize(dev); 4128 if (nv_init_ring(dev)) { 4129 if (!np->in_shutdown) 4130 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4131 } 4132 /* reinit nic view of the rx queue */ 4133 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4134 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4135 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4136 base + NvRegRingSizes); 4137 pci_push(base); 4138 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4139 pci_push(base); 4140 /* clear interrupts */ 4141 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4142 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4143 else 4144 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4145 4146 /* restart rx engine */ 4147 nv_start_rxtx(dev); 4148 spin_unlock(&np->lock); 4149 netif_addr_unlock(dev); 4150 netif_tx_unlock_bh(dev); 4151 } 4152 } 4153 4154 writel(mask, base + NvRegIrqMask); 4155 pci_push(base); 4156 4157 if (!using_multi_irqs(dev)) { 4158 np->nic_poll_irq = 0; 4159 if (nv_optimized(np)) 4160 nv_nic_irq_optimized(0, dev); 4161 else 4162 nv_nic_irq(0, dev); 4163 } else { 4164 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4165 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4166 nv_nic_irq_rx(0, dev); 4167 } 4168 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4169 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4170 nv_nic_irq_tx(0, dev); 4171 } 4172 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4173 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4174 nv_nic_irq_other(0, dev); 4175 } 4176 } 4177 4178 enable_irq_lockdep_irqrestore(irq, &flags); 4179 } 4180 4181 #ifdef CONFIG_NET_POLL_CONTROLLER 4182 static void nv_poll_controller(struct net_device *dev) 4183 { 4184 nv_do_nic_poll((unsigned long) dev); 4185 } 4186 #endif 4187 4188 static void nv_do_stats_poll(unsigned long data) 4189 __acquires(&netdev_priv(dev)->hwstats_lock) 4190 __releases(&netdev_priv(dev)->hwstats_lock) 4191 { 4192 struct net_device *dev = (struct net_device *) data; 4193 struct fe_priv *np = netdev_priv(dev); 4194 4195 /* If lock is currently taken, the stats are being refreshed 4196 * and hence fresh enough */ 4197 if (spin_trylock(&np->hwstats_lock)) { 4198 nv_update_stats(dev); 4199 spin_unlock(&np->hwstats_lock); 4200 } 4201 4202 if (!np->in_shutdown) 4203 mod_timer(&np->stats_poll, 4204 round_jiffies(jiffies + STATS_INTERVAL)); 4205 } 4206 4207 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4208 { 4209 struct fe_priv *np = netdev_priv(dev); 4210 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4211 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4212 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4213 } 4214 4215 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4216 { 4217 struct fe_priv *np = netdev_priv(dev); 4218 wolinfo->supported = WAKE_MAGIC; 4219 4220 spin_lock_irq(&np->lock); 4221 if (np->wolenabled) 4222 wolinfo->wolopts = WAKE_MAGIC; 4223 spin_unlock_irq(&np->lock); 4224 } 4225 4226 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4227 { 4228 struct fe_priv *np = netdev_priv(dev); 4229 u8 __iomem *base = get_hwbase(dev); 4230 u32 flags = 0; 4231 4232 if (wolinfo->wolopts == 0) { 4233 np->wolenabled = 0; 4234 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4235 np->wolenabled = 1; 4236 flags = NVREG_WAKEUPFLAGS_ENABLE; 4237 } 4238 if (netif_running(dev)) { 4239 spin_lock_irq(&np->lock); 4240 writel(flags, base + NvRegWakeUpFlags); 4241 spin_unlock_irq(&np->lock); 4242 } 4243 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4244 return 0; 4245 } 4246 4247 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4248 { 4249 struct fe_priv *np = netdev_priv(dev); 4250 u32 speed; 4251 int adv; 4252 4253 spin_lock_irq(&np->lock); 4254 ecmd->port = PORT_MII; 4255 if (!netif_running(dev)) { 4256 /* We do not track link speed / duplex setting if the 4257 * interface is disabled. Force a link check */ 4258 if (nv_update_linkspeed(dev)) { 4259 if (!netif_carrier_ok(dev)) 4260 netif_carrier_on(dev); 4261 } else { 4262 if (netif_carrier_ok(dev)) 4263 netif_carrier_off(dev); 4264 } 4265 } 4266 4267 if (netif_carrier_ok(dev)) { 4268 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4269 case NVREG_LINKSPEED_10: 4270 speed = SPEED_10; 4271 break; 4272 case NVREG_LINKSPEED_100: 4273 speed = SPEED_100; 4274 break; 4275 case NVREG_LINKSPEED_1000: 4276 speed = SPEED_1000; 4277 break; 4278 default: 4279 speed = -1; 4280 break; 4281 } 4282 ecmd->duplex = DUPLEX_HALF; 4283 if (np->duplex) 4284 ecmd->duplex = DUPLEX_FULL; 4285 } else { 4286 speed = SPEED_UNKNOWN; 4287 ecmd->duplex = DUPLEX_UNKNOWN; 4288 } 4289 ethtool_cmd_speed_set(ecmd, speed); 4290 ecmd->autoneg = np->autoneg; 4291 4292 ecmd->advertising = ADVERTISED_MII; 4293 if (np->autoneg) { 4294 ecmd->advertising |= ADVERTISED_Autoneg; 4295 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4296 if (adv & ADVERTISE_10HALF) 4297 ecmd->advertising |= ADVERTISED_10baseT_Half; 4298 if (adv & ADVERTISE_10FULL) 4299 ecmd->advertising |= ADVERTISED_10baseT_Full; 4300 if (adv & ADVERTISE_100HALF) 4301 ecmd->advertising |= ADVERTISED_100baseT_Half; 4302 if (adv & ADVERTISE_100FULL) 4303 ecmd->advertising |= ADVERTISED_100baseT_Full; 4304 if (np->gigabit == PHY_GIGABIT) { 4305 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4306 if (adv & ADVERTISE_1000FULL) 4307 ecmd->advertising |= ADVERTISED_1000baseT_Full; 4308 } 4309 } 4310 ecmd->supported = (SUPPORTED_Autoneg | 4311 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4312 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4313 SUPPORTED_MII); 4314 if (np->gigabit == PHY_GIGABIT) 4315 ecmd->supported |= SUPPORTED_1000baseT_Full; 4316 4317 ecmd->phy_address = np->phyaddr; 4318 ecmd->transceiver = XCVR_EXTERNAL; 4319 4320 /* ignore maxtxpkt, maxrxpkt for now */ 4321 spin_unlock_irq(&np->lock); 4322 return 0; 4323 } 4324 4325 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4326 { 4327 struct fe_priv *np = netdev_priv(dev); 4328 u32 speed = ethtool_cmd_speed(ecmd); 4329 4330 if (ecmd->port != PORT_MII) 4331 return -EINVAL; 4332 if (ecmd->transceiver != XCVR_EXTERNAL) 4333 return -EINVAL; 4334 if (ecmd->phy_address != np->phyaddr) { 4335 /* TODO: support switching between multiple phys. Should be 4336 * trivial, but not enabled due to lack of test hardware. */ 4337 return -EINVAL; 4338 } 4339 if (ecmd->autoneg == AUTONEG_ENABLE) { 4340 u32 mask; 4341 4342 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4343 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4344 if (np->gigabit == PHY_GIGABIT) 4345 mask |= ADVERTISED_1000baseT_Full; 4346 4347 if ((ecmd->advertising & mask) == 0) 4348 return -EINVAL; 4349 4350 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 4351 /* Note: autonegotiation disable, speed 1000 intentionally 4352 * forbidden - no one should need that. */ 4353 4354 if (speed != SPEED_10 && speed != SPEED_100) 4355 return -EINVAL; 4356 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 4357 return -EINVAL; 4358 } else { 4359 return -EINVAL; 4360 } 4361 4362 netif_carrier_off(dev); 4363 if (netif_running(dev)) { 4364 unsigned long flags; 4365 4366 nv_disable_irq(dev); 4367 netif_tx_lock_bh(dev); 4368 netif_addr_lock(dev); 4369 /* with plain spinlock lockdep complains */ 4370 spin_lock_irqsave(&np->lock, flags); 4371 /* stop engines */ 4372 /* FIXME: 4373 * this can take some time, and interrupts are disabled 4374 * due to spin_lock_irqsave, but let's hope no daemon 4375 * is going to change the settings very often... 4376 * Worst case: 4377 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4378 * + some minor delays, which is up to a second approximately 4379 */ 4380 nv_stop_rxtx(dev); 4381 spin_unlock_irqrestore(&np->lock, flags); 4382 netif_addr_unlock(dev); 4383 netif_tx_unlock_bh(dev); 4384 } 4385 4386 if (ecmd->autoneg == AUTONEG_ENABLE) { 4387 int adv, bmcr; 4388 4389 np->autoneg = 1; 4390 4391 /* advertise only what has been requested */ 4392 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4393 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4394 if (ecmd->advertising & ADVERTISED_10baseT_Half) 4395 adv |= ADVERTISE_10HALF; 4396 if (ecmd->advertising & ADVERTISED_10baseT_Full) 4397 adv |= ADVERTISE_10FULL; 4398 if (ecmd->advertising & ADVERTISED_100baseT_Half) 4399 adv |= ADVERTISE_100HALF; 4400 if (ecmd->advertising & ADVERTISED_100baseT_Full) 4401 adv |= ADVERTISE_100FULL; 4402 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4403 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4404 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4405 adv |= ADVERTISE_PAUSE_ASYM; 4406 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4407 4408 if (np->gigabit == PHY_GIGABIT) { 4409 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4410 adv &= ~ADVERTISE_1000FULL; 4411 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 4412 adv |= ADVERTISE_1000FULL; 4413 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4414 } 4415 4416 if (netif_running(dev)) 4417 netdev_info(dev, "link down\n"); 4418 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4419 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4420 bmcr |= BMCR_ANENABLE; 4421 /* reset the phy in order for settings to stick, 4422 * and cause autoneg to start */ 4423 if (phy_reset(dev, bmcr)) { 4424 netdev_info(dev, "phy reset failed\n"); 4425 return -EINVAL; 4426 } 4427 } else { 4428 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4429 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4430 } 4431 } else { 4432 int adv, bmcr; 4433 4434 np->autoneg = 0; 4435 4436 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4437 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4438 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 4439 adv |= ADVERTISE_10HALF; 4440 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 4441 adv |= ADVERTISE_10FULL; 4442 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 4443 adv |= ADVERTISE_100HALF; 4444 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 4445 adv |= ADVERTISE_100FULL; 4446 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4447 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4448 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4449 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4450 } 4451 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4452 adv |= ADVERTISE_PAUSE_ASYM; 4453 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4454 } 4455 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4456 np->fixed_mode = adv; 4457 4458 if (np->gigabit == PHY_GIGABIT) { 4459 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4460 adv &= ~ADVERTISE_1000FULL; 4461 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4462 } 4463 4464 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4465 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4466 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4467 bmcr |= BMCR_FULLDPLX; 4468 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4469 bmcr |= BMCR_SPEED100; 4470 if (np->phy_oui == PHY_OUI_MARVELL) { 4471 /* reset the phy in order for forced mode settings to stick */ 4472 if (phy_reset(dev, bmcr)) { 4473 netdev_info(dev, "phy reset failed\n"); 4474 return -EINVAL; 4475 } 4476 } else { 4477 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4478 if (netif_running(dev)) { 4479 /* Wait a bit and then reconfigure the nic. */ 4480 udelay(10); 4481 nv_linkchange(dev); 4482 } 4483 } 4484 } 4485 4486 if (netif_running(dev)) { 4487 nv_start_rxtx(dev); 4488 nv_enable_irq(dev); 4489 } 4490 4491 return 0; 4492 } 4493 4494 #define FORCEDETH_REGS_VER 1 4495 4496 static int nv_get_regs_len(struct net_device *dev) 4497 { 4498 struct fe_priv *np = netdev_priv(dev); 4499 return np->register_size; 4500 } 4501 4502 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4503 { 4504 struct fe_priv *np = netdev_priv(dev); 4505 u8 __iomem *base = get_hwbase(dev); 4506 u32 *rbuf = buf; 4507 int i; 4508 4509 regs->version = FORCEDETH_REGS_VER; 4510 spin_lock_irq(&np->lock); 4511 for (i = 0; i < np->register_size/sizeof(u32); i++) 4512 rbuf[i] = readl(base + i*sizeof(u32)); 4513 spin_unlock_irq(&np->lock); 4514 } 4515 4516 static int nv_nway_reset(struct net_device *dev) 4517 { 4518 struct fe_priv *np = netdev_priv(dev); 4519 int ret; 4520 4521 if (np->autoneg) { 4522 int bmcr; 4523 4524 netif_carrier_off(dev); 4525 if (netif_running(dev)) { 4526 nv_disable_irq(dev); 4527 netif_tx_lock_bh(dev); 4528 netif_addr_lock(dev); 4529 spin_lock(&np->lock); 4530 /* stop engines */ 4531 nv_stop_rxtx(dev); 4532 spin_unlock(&np->lock); 4533 netif_addr_unlock(dev); 4534 netif_tx_unlock_bh(dev); 4535 netdev_info(dev, "link down\n"); 4536 } 4537 4538 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4539 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4540 bmcr |= BMCR_ANENABLE; 4541 /* reset the phy in order for settings to stick*/ 4542 if (phy_reset(dev, bmcr)) { 4543 netdev_info(dev, "phy reset failed\n"); 4544 return -EINVAL; 4545 } 4546 } else { 4547 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4548 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4549 } 4550 4551 if (netif_running(dev)) { 4552 nv_start_rxtx(dev); 4553 nv_enable_irq(dev); 4554 } 4555 ret = 0; 4556 } else { 4557 ret = -EINVAL; 4558 } 4559 4560 return ret; 4561 } 4562 4563 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4564 { 4565 struct fe_priv *np = netdev_priv(dev); 4566 4567 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4568 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4569 4570 ring->rx_pending = np->rx_ring_size; 4571 ring->tx_pending = np->tx_ring_size; 4572 } 4573 4574 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4575 { 4576 struct fe_priv *np = netdev_priv(dev); 4577 u8 __iomem *base = get_hwbase(dev); 4578 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4579 dma_addr_t ring_addr; 4580 4581 if (ring->rx_pending < RX_RING_MIN || 4582 ring->tx_pending < TX_RING_MIN || 4583 ring->rx_mini_pending != 0 || 4584 ring->rx_jumbo_pending != 0 || 4585 (np->desc_ver == DESC_VER_1 && 4586 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4587 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4588 (np->desc_ver != DESC_VER_1 && 4589 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4590 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4591 return -EINVAL; 4592 } 4593 4594 /* allocate new rings */ 4595 if (!nv_optimized(np)) { 4596 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4597 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4598 &ring_addr); 4599 } else { 4600 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4601 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4602 &ring_addr); 4603 } 4604 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL); 4605 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL); 4606 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4607 /* fall back to old rings */ 4608 if (!nv_optimized(np)) { 4609 if (rxtx_ring) 4610 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4611 rxtx_ring, ring_addr); 4612 } else { 4613 if (rxtx_ring) 4614 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4615 rxtx_ring, ring_addr); 4616 } 4617 4618 kfree(rx_skbuff); 4619 kfree(tx_skbuff); 4620 goto exit; 4621 } 4622 4623 if (netif_running(dev)) { 4624 nv_disable_irq(dev); 4625 nv_napi_disable(dev); 4626 netif_tx_lock_bh(dev); 4627 netif_addr_lock(dev); 4628 spin_lock(&np->lock); 4629 /* stop engines */ 4630 nv_stop_rxtx(dev); 4631 nv_txrx_reset(dev); 4632 /* drain queues */ 4633 nv_drain_rxtx(dev); 4634 /* delete queues */ 4635 free_rings(dev); 4636 } 4637 4638 /* set new values */ 4639 np->rx_ring_size = ring->rx_pending; 4640 np->tx_ring_size = ring->tx_pending; 4641 4642 if (!nv_optimized(np)) { 4643 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4644 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4645 } else { 4646 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4647 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4648 } 4649 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4650 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4651 np->ring_addr = ring_addr; 4652 4653 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4654 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4655 4656 if (netif_running(dev)) { 4657 /* reinit driver view of the queues */ 4658 set_bufsize(dev); 4659 if (nv_init_ring(dev)) { 4660 if (!np->in_shutdown) 4661 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4662 } 4663 4664 /* reinit nic view of the queues */ 4665 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4666 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4667 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4668 base + NvRegRingSizes); 4669 pci_push(base); 4670 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4671 pci_push(base); 4672 4673 /* restart engines */ 4674 nv_start_rxtx(dev); 4675 spin_unlock(&np->lock); 4676 netif_addr_unlock(dev); 4677 netif_tx_unlock_bh(dev); 4678 nv_napi_enable(dev); 4679 nv_enable_irq(dev); 4680 } 4681 return 0; 4682 exit: 4683 return -ENOMEM; 4684 } 4685 4686 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4687 { 4688 struct fe_priv *np = netdev_priv(dev); 4689 4690 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4691 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4692 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4693 } 4694 4695 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4696 { 4697 struct fe_priv *np = netdev_priv(dev); 4698 int adv, bmcr; 4699 4700 if ((!np->autoneg && np->duplex == 0) || 4701 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4702 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4703 return -EINVAL; 4704 } 4705 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4706 netdev_info(dev, "hardware does not support tx pause frames\n"); 4707 return -EINVAL; 4708 } 4709 4710 netif_carrier_off(dev); 4711 if (netif_running(dev)) { 4712 nv_disable_irq(dev); 4713 netif_tx_lock_bh(dev); 4714 netif_addr_lock(dev); 4715 spin_lock(&np->lock); 4716 /* stop engines */ 4717 nv_stop_rxtx(dev); 4718 spin_unlock(&np->lock); 4719 netif_addr_unlock(dev); 4720 netif_tx_unlock_bh(dev); 4721 } 4722 4723 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4724 if (pause->rx_pause) 4725 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4726 if (pause->tx_pause) 4727 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4728 4729 if (np->autoneg && pause->autoneg) { 4730 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4731 4732 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4733 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4734 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4735 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4736 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4737 adv |= ADVERTISE_PAUSE_ASYM; 4738 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4739 4740 if (netif_running(dev)) 4741 netdev_info(dev, "link down\n"); 4742 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4743 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4744 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4745 } else { 4746 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4747 if (pause->rx_pause) 4748 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4749 if (pause->tx_pause) 4750 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4751 4752 if (!netif_running(dev)) 4753 nv_update_linkspeed(dev); 4754 else 4755 nv_update_pause(dev, np->pause_flags); 4756 } 4757 4758 if (netif_running(dev)) { 4759 nv_start_rxtx(dev); 4760 nv_enable_irq(dev); 4761 } 4762 return 0; 4763 } 4764 4765 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4766 { 4767 struct fe_priv *np = netdev_priv(dev); 4768 unsigned long flags; 4769 u32 miicontrol; 4770 int err, retval = 0; 4771 4772 spin_lock_irqsave(&np->lock, flags); 4773 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4774 if (features & NETIF_F_LOOPBACK) { 4775 if (miicontrol & BMCR_LOOPBACK) { 4776 spin_unlock_irqrestore(&np->lock, flags); 4777 netdev_info(dev, "Loopback already enabled\n"); 4778 return 0; 4779 } 4780 nv_disable_irq(dev); 4781 /* Turn on loopback mode */ 4782 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4783 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4784 if (err) { 4785 retval = PHY_ERROR; 4786 spin_unlock_irqrestore(&np->lock, flags); 4787 phy_init(dev); 4788 } else { 4789 if (netif_running(dev)) { 4790 /* Force 1000 Mbps full-duplex */ 4791 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4792 1); 4793 /* Force link up */ 4794 netif_carrier_on(dev); 4795 } 4796 spin_unlock_irqrestore(&np->lock, flags); 4797 netdev_info(dev, 4798 "Internal PHY loopback mode enabled.\n"); 4799 } 4800 } else { 4801 if (!(miicontrol & BMCR_LOOPBACK)) { 4802 spin_unlock_irqrestore(&np->lock, flags); 4803 netdev_info(dev, "Loopback already disabled\n"); 4804 return 0; 4805 } 4806 nv_disable_irq(dev); 4807 /* Turn off loopback */ 4808 spin_unlock_irqrestore(&np->lock, flags); 4809 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4810 phy_init(dev); 4811 } 4812 msleep(500); 4813 spin_lock_irqsave(&np->lock, flags); 4814 nv_enable_irq(dev); 4815 spin_unlock_irqrestore(&np->lock, flags); 4816 4817 return retval; 4818 } 4819 4820 static netdev_features_t nv_fix_features(struct net_device *dev, 4821 netdev_features_t features) 4822 { 4823 /* vlan is dependent on rx checksum offload */ 4824 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX)) 4825 features |= NETIF_F_RXCSUM; 4826 4827 return features; 4828 } 4829 4830 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4831 { 4832 struct fe_priv *np = get_nvpriv(dev); 4833 4834 spin_lock_irq(&np->lock); 4835 4836 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4837 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4838 else 4839 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4840 4841 if (features & NETIF_F_HW_VLAN_CTAG_TX) 4842 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4843 else 4844 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4845 4846 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4847 4848 spin_unlock_irq(&np->lock); 4849 } 4850 4851 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4852 { 4853 struct fe_priv *np = netdev_priv(dev); 4854 u8 __iomem *base = get_hwbase(dev); 4855 netdev_features_t changed = dev->features ^ features; 4856 int retval; 4857 4858 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4859 retval = nv_set_loopback(dev, features); 4860 if (retval != 0) 4861 return retval; 4862 } 4863 4864 if (changed & NETIF_F_RXCSUM) { 4865 spin_lock_irq(&np->lock); 4866 4867 if (features & NETIF_F_RXCSUM) 4868 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4869 else 4870 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4871 4872 if (netif_running(dev)) 4873 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4874 4875 spin_unlock_irq(&np->lock); 4876 } 4877 4878 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX)) 4879 nv_vlan_mode(dev, features); 4880 4881 return 0; 4882 } 4883 4884 static int nv_get_sset_count(struct net_device *dev, int sset) 4885 { 4886 struct fe_priv *np = netdev_priv(dev); 4887 4888 switch (sset) { 4889 case ETH_SS_TEST: 4890 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4891 return NV_TEST_COUNT_EXTENDED; 4892 else 4893 return NV_TEST_COUNT_BASE; 4894 case ETH_SS_STATS: 4895 if (np->driver_data & DEV_HAS_STATISTICS_V3) 4896 return NV_DEV_STATISTICS_V3_COUNT; 4897 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 4898 return NV_DEV_STATISTICS_V2_COUNT; 4899 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 4900 return NV_DEV_STATISTICS_V1_COUNT; 4901 else 4902 return 0; 4903 default: 4904 return -EOPNOTSUPP; 4905 } 4906 } 4907 4908 static void nv_get_ethtool_stats(struct net_device *dev, 4909 struct ethtool_stats *estats, u64 *buffer) 4910 __acquires(&netdev_priv(dev)->hwstats_lock) 4911 __releases(&netdev_priv(dev)->hwstats_lock) 4912 { 4913 struct fe_priv *np = netdev_priv(dev); 4914 4915 spin_lock_bh(&np->hwstats_lock); 4916 nv_update_stats(dev); 4917 memcpy(buffer, &np->estats, 4918 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 4919 spin_unlock_bh(&np->hwstats_lock); 4920 } 4921 4922 static int nv_link_test(struct net_device *dev) 4923 { 4924 struct fe_priv *np = netdev_priv(dev); 4925 int mii_status; 4926 4927 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4928 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4929 4930 /* check phy link status */ 4931 if (!(mii_status & BMSR_LSTATUS)) 4932 return 0; 4933 else 4934 return 1; 4935 } 4936 4937 static int nv_register_test(struct net_device *dev) 4938 { 4939 u8 __iomem *base = get_hwbase(dev); 4940 int i = 0; 4941 u32 orig_read, new_read; 4942 4943 do { 4944 orig_read = readl(base + nv_registers_test[i].reg); 4945 4946 /* xor with mask to toggle bits */ 4947 orig_read ^= nv_registers_test[i].mask; 4948 4949 writel(orig_read, base + nv_registers_test[i].reg); 4950 4951 new_read = readl(base + nv_registers_test[i].reg); 4952 4953 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 4954 return 0; 4955 4956 /* restore original value */ 4957 orig_read ^= nv_registers_test[i].mask; 4958 writel(orig_read, base + nv_registers_test[i].reg); 4959 4960 } while (nv_registers_test[++i].reg != 0); 4961 4962 return 1; 4963 } 4964 4965 static int nv_interrupt_test(struct net_device *dev) 4966 { 4967 struct fe_priv *np = netdev_priv(dev); 4968 u8 __iomem *base = get_hwbase(dev); 4969 int ret = 1; 4970 int testcnt; 4971 u32 save_msi_flags, save_poll_interval = 0; 4972 4973 if (netif_running(dev)) { 4974 /* free current irq */ 4975 nv_free_irq(dev); 4976 save_poll_interval = readl(base+NvRegPollingInterval); 4977 } 4978 4979 /* flag to test interrupt handler */ 4980 np->intr_test = 0; 4981 4982 /* setup test irq */ 4983 save_msi_flags = np->msi_flags; 4984 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 4985 np->msi_flags |= 0x001; /* setup 1 vector */ 4986 if (nv_request_irq(dev, 1)) 4987 return 0; 4988 4989 /* setup timer interrupt */ 4990 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 4991 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 4992 4993 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 4994 4995 /* wait for at least one interrupt */ 4996 msleep(100); 4997 4998 spin_lock_irq(&np->lock); 4999 5000 /* flag should be set within ISR */ 5001 testcnt = np->intr_test; 5002 if (!testcnt) 5003 ret = 2; 5004 5005 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5006 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5007 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5008 else 5009 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5010 5011 spin_unlock_irq(&np->lock); 5012 5013 nv_free_irq(dev); 5014 5015 np->msi_flags = save_msi_flags; 5016 5017 if (netif_running(dev)) { 5018 writel(save_poll_interval, base + NvRegPollingInterval); 5019 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5020 /* restore original irq */ 5021 if (nv_request_irq(dev, 0)) 5022 return 0; 5023 } 5024 5025 return ret; 5026 } 5027 5028 static int nv_loopback_test(struct net_device *dev) 5029 { 5030 struct fe_priv *np = netdev_priv(dev); 5031 u8 __iomem *base = get_hwbase(dev); 5032 struct sk_buff *tx_skb, *rx_skb; 5033 dma_addr_t test_dma_addr; 5034 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 5035 u32 flags; 5036 int len, i, pkt_len; 5037 u8 *pkt_data; 5038 u32 filter_flags = 0; 5039 u32 misc1_flags = 0; 5040 int ret = 1; 5041 5042 if (netif_running(dev)) { 5043 nv_disable_irq(dev); 5044 filter_flags = readl(base + NvRegPacketFilterFlags); 5045 misc1_flags = readl(base + NvRegMisc1); 5046 } else { 5047 nv_txrx_reset(dev); 5048 } 5049 5050 /* reinit driver view of the rx queue */ 5051 set_bufsize(dev); 5052 nv_init_ring(dev); 5053 5054 /* setup hardware for loopback */ 5055 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 5056 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 5057 5058 /* reinit nic view of the rx queue */ 5059 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5060 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5061 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5062 base + NvRegRingSizes); 5063 pci_push(base); 5064 5065 /* restart rx engine */ 5066 nv_start_rxtx(dev); 5067 5068 /* setup packet for tx */ 5069 pkt_len = ETH_DATA_LEN; 5070 tx_skb = netdev_alloc_skb(dev, pkt_len); 5071 if (!tx_skb) { 5072 ret = 0; 5073 goto out; 5074 } 5075 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data, 5076 skb_tailroom(tx_skb), 5077 PCI_DMA_FROMDEVICE); 5078 if (pci_dma_mapping_error(np->pci_dev, 5079 test_dma_addr)) { 5080 dev_kfree_skb_any(tx_skb); 5081 goto out; 5082 } 5083 pkt_data = skb_put(tx_skb, pkt_len); 5084 for (i = 0; i < pkt_len; i++) 5085 pkt_data[i] = (u8)(i & 0xff); 5086 5087 if (!nv_optimized(np)) { 5088 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5089 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5090 } else { 5091 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5092 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5093 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5094 } 5095 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5096 pci_push(get_hwbase(dev)); 5097 5098 msleep(500); 5099 5100 /* check for rx of the packet */ 5101 if (!nv_optimized(np)) { 5102 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5103 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5104 5105 } else { 5106 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5107 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5108 } 5109 5110 if (flags & NV_RX_AVAIL) { 5111 ret = 0; 5112 } else if (np->desc_ver == DESC_VER_1) { 5113 if (flags & NV_RX_ERROR) 5114 ret = 0; 5115 } else { 5116 if (flags & NV_RX2_ERROR) 5117 ret = 0; 5118 } 5119 5120 if (ret) { 5121 if (len != pkt_len) { 5122 ret = 0; 5123 } else { 5124 rx_skb = np->rx_skb[0].skb; 5125 for (i = 0; i < pkt_len; i++) { 5126 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5127 ret = 0; 5128 break; 5129 } 5130 } 5131 } 5132 } 5133 5134 pci_unmap_single(np->pci_dev, test_dma_addr, 5135 (skb_end_pointer(tx_skb) - tx_skb->data), 5136 PCI_DMA_TODEVICE); 5137 dev_kfree_skb_any(tx_skb); 5138 out: 5139 /* stop engines */ 5140 nv_stop_rxtx(dev); 5141 nv_txrx_reset(dev); 5142 /* drain rx queue */ 5143 nv_drain_rxtx(dev); 5144 5145 if (netif_running(dev)) { 5146 writel(misc1_flags, base + NvRegMisc1); 5147 writel(filter_flags, base + NvRegPacketFilterFlags); 5148 nv_enable_irq(dev); 5149 } 5150 5151 return ret; 5152 } 5153 5154 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5155 { 5156 struct fe_priv *np = netdev_priv(dev); 5157 u8 __iomem *base = get_hwbase(dev); 5158 int result, count; 5159 5160 count = nv_get_sset_count(dev, ETH_SS_TEST); 5161 memset(buffer, 0, count * sizeof(u64)); 5162 5163 if (!nv_link_test(dev)) { 5164 test->flags |= ETH_TEST_FL_FAILED; 5165 buffer[0] = 1; 5166 } 5167 5168 if (test->flags & ETH_TEST_FL_OFFLINE) { 5169 if (netif_running(dev)) { 5170 netif_stop_queue(dev); 5171 nv_napi_disable(dev); 5172 netif_tx_lock_bh(dev); 5173 netif_addr_lock(dev); 5174 spin_lock_irq(&np->lock); 5175 nv_disable_hw_interrupts(dev, np->irqmask); 5176 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5177 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5178 else 5179 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5180 /* stop engines */ 5181 nv_stop_rxtx(dev); 5182 nv_txrx_reset(dev); 5183 /* drain rx queue */ 5184 nv_drain_rxtx(dev); 5185 spin_unlock_irq(&np->lock); 5186 netif_addr_unlock(dev); 5187 netif_tx_unlock_bh(dev); 5188 } 5189 5190 if (!nv_register_test(dev)) { 5191 test->flags |= ETH_TEST_FL_FAILED; 5192 buffer[1] = 1; 5193 } 5194 5195 result = nv_interrupt_test(dev); 5196 if (result != 1) { 5197 test->flags |= ETH_TEST_FL_FAILED; 5198 buffer[2] = 1; 5199 } 5200 if (result == 0) { 5201 /* bail out */ 5202 return; 5203 } 5204 5205 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) { 5206 test->flags |= ETH_TEST_FL_FAILED; 5207 buffer[3] = 1; 5208 } 5209 5210 if (netif_running(dev)) { 5211 /* reinit driver view of the rx queue */ 5212 set_bufsize(dev); 5213 if (nv_init_ring(dev)) { 5214 if (!np->in_shutdown) 5215 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5216 } 5217 /* reinit nic view of the rx queue */ 5218 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5219 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5220 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5221 base + NvRegRingSizes); 5222 pci_push(base); 5223 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5224 pci_push(base); 5225 /* restart rx engine */ 5226 nv_start_rxtx(dev); 5227 netif_start_queue(dev); 5228 nv_napi_enable(dev); 5229 nv_enable_hw_interrupts(dev, np->irqmask); 5230 } 5231 } 5232 } 5233 5234 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5235 { 5236 switch (stringset) { 5237 case ETH_SS_STATS: 5238 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5239 break; 5240 case ETH_SS_TEST: 5241 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5242 break; 5243 } 5244 } 5245 5246 static const struct ethtool_ops ops = { 5247 .get_drvinfo = nv_get_drvinfo, 5248 .get_link = ethtool_op_get_link, 5249 .get_wol = nv_get_wol, 5250 .set_wol = nv_set_wol, 5251 .get_settings = nv_get_settings, 5252 .set_settings = nv_set_settings, 5253 .get_regs_len = nv_get_regs_len, 5254 .get_regs = nv_get_regs, 5255 .nway_reset = nv_nway_reset, 5256 .get_ringparam = nv_get_ringparam, 5257 .set_ringparam = nv_set_ringparam, 5258 .get_pauseparam = nv_get_pauseparam, 5259 .set_pauseparam = nv_set_pauseparam, 5260 .get_strings = nv_get_strings, 5261 .get_ethtool_stats = nv_get_ethtool_stats, 5262 .get_sset_count = nv_get_sset_count, 5263 .self_test = nv_self_test, 5264 .get_ts_info = ethtool_op_get_ts_info, 5265 }; 5266 5267 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5268 static int nv_mgmt_acquire_sema(struct net_device *dev) 5269 { 5270 struct fe_priv *np = netdev_priv(dev); 5271 u8 __iomem *base = get_hwbase(dev); 5272 int i; 5273 u32 tx_ctrl, mgmt_sema; 5274 5275 for (i = 0; i < 10; i++) { 5276 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5277 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5278 break; 5279 msleep(500); 5280 } 5281 5282 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5283 return 0; 5284 5285 for (i = 0; i < 2; i++) { 5286 tx_ctrl = readl(base + NvRegTransmitterControl); 5287 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5288 writel(tx_ctrl, base + NvRegTransmitterControl); 5289 5290 /* verify that semaphore was acquired */ 5291 tx_ctrl = readl(base + NvRegTransmitterControl); 5292 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5293 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5294 np->mgmt_sema = 1; 5295 return 1; 5296 } else 5297 udelay(50); 5298 } 5299 5300 return 0; 5301 } 5302 5303 static void nv_mgmt_release_sema(struct net_device *dev) 5304 { 5305 struct fe_priv *np = netdev_priv(dev); 5306 u8 __iomem *base = get_hwbase(dev); 5307 u32 tx_ctrl; 5308 5309 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5310 if (np->mgmt_sema) { 5311 tx_ctrl = readl(base + NvRegTransmitterControl); 5312 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5313 writel(tx_ctrl, base + NvRegTransmitterControl); 5314 } 5315 } 5316 } 5317 5318 5319 static int nv_mgmt_get_version(struct net_device *dev) 5320 { 5321 struct fe_priv *np = netdev_priv(dev); 5322 u8 __iomem *base = get_hwbase(dev); 5323 u32 data_ready = readl(base + NvRegTransmitterControl); 5324 u32 data_ready2 = 0; 5325 unsigned long start; 5326 int ready = 0; 5327 5328 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5329 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5330 start = jiffies; 5331 while (time_before(jiffies, start + 5*HZ)) { 5332 data_ready2 = readl(base + NvRegTransmitterControl); 5333 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5334 ready = 1; 5335 break; 5336 } 5337 schedule_timeout_uninterruptible(1); 5338 } 5339 5340 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5341 return 0; 5342 5343 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5344 5345 return 1; 5346 } 5347 5348 static int nv_open(struct net_device *dev) 5349 { 5350 struct fe_priv *np = netdev_priv(dev); 5351 u8 __iomem *base = get_hwbase(dev); 5352 int ret = 1; 5353 int oom, i; 5354 u32 low; 5355 5356 /* power up phy */ 5357 mii_rw(dev, np->phyaddr, MII_BMCR, 5358 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5359 5360 nv_txrx_gate(dev, false); 5361 /* erase previous misconfiguration */ 5362 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5363 nv_mac_reset(dev); 5364 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5365 writel(0, base + NvRegMulticastAddrB); 5366 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5367 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5368 writel(0, base + NvRegPacketFilterFlags); 5369 5370 writel(0, base + NvRegTransmitterControl); 5371 writel(0, base + NvRegReceiverControl); 5372 5373 writel(0, base + NvRegAdapterControl); 5374 5375 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5376 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5377 5378 /* initialize descriptor rings */ 5379 set_bufsize(dev); 5380 oom = nv_init_ring(dev); 5381 5382 writel(0, base + NvRegLinkSpeed); 5383 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5384 nv_txrx_reset(dev); 5385 writel(0, base + NvRegUnknownSetupReg6); 5386 5387 np->in_shutdown = 0; 5388 5389 /* give hw rings */ 5390 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5391 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5392 base + NvRegRingSizes); 5393 5394 writel(np->linkspeed, base + NvRegLinkSpeed); 5395 if (np->desc_ver == DESC_VER_1) 5396 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5397 else 5398 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5399 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5400 writel(np->vlanctl_bits, base + NvRegVlanControl); 5401 pci_push(base); 5402 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5403 if (reg_delay(dev, NvRegUnknownSetupReg5, 5404 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5405 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5406 netdev_info(dev, 5407 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5408 5409 writel(0, base + NvRegMIIMask); 5410 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5411 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5412 5413 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5414 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5415 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5416 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5417 5418 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5419 5420 get_random_bytes(&low, sizeof(low)); 5421 low &= NVREG_SLOTTIME_MASK; 5422 if (np->desc_ver == DESC_VER_1) { 5423 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5424 } else { 5425 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5426 /* setup legacy backoff */ 5427 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5428 } else { 5429 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5430 nv_gear_backoff_reseed(dev); 5431 } 5432 } 5433 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5434 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5435 if (poll_interval == -1) { 5436 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5437 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5438 else 5439 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5440 } else 5441 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5442 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5443 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5444 base + NvRegAdapterControl); 5445 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5446 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5447 if (np->wolenabled) 5448 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5449 5450 i = readl(base + NvRegPowerState); 5451 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5452 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5453 5454 pci_push(base); 5455 udelay(10); 5456 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5457 5458 nv_disable_hw_interrupts(dev, np->irqmask); 5459 pci_push(base); 5460 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5461 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5462 pci_push(base); 5463 5464 if (nv_request_irq(dev, 0)) 5465 goto out_drain; 5466 5467 /* ask for interrupts */ 5468 nv_enable_hw_interrupts(dev, np->irqmask); 5469 5470 spin_lock_irq(&np->lock); 5471 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5472 writel(0, base + NvRegMulticastAddrB); 5473 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5474 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5475 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5476 /* One manual link speed update: Interrupts are enabled, future link 5477 * speed changes cause interrupts and are handled by nv_link_irq(). 5478 */ 5479 { 5480 u32 miistat; 5481 miistat = readl(base + NvRegMIIStatus); 5482 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5483 } 5484 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5485 * to init hw */ 5486 np->linkspeed = 0; 5487 ret = nv_update_linkspeed(dev); 5488 nv_start_rxtx(dev); 5489 netif_start_queue(dev); 5490 nv_napi_enable(dev); 5491 5492 if (ret) { 5493 netif_carrier_on(dev); 5494 } else { 5495 netdev_info(dev, "no link during initialization\n"); 5496 netif_carrier_off(dev); 5497 } 5498 if (oom) 5499 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5500 5501 /* start statistics timer */ 5502 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5503 mod_timer(&np->stats_poll, 5504 round_jiffies(jiffies + STATS_INTERVAL)); 5505 5506 spin_unlock_irq(&np->lock); 5507 5508 /* If the loopback feature was set while the device was down, make sure 5509 * that it's set correctly now. 5510 */ 5511 if (dev->features & NETIF_F_LOOPBACK) 5512 nv_set_loopback(dev, dev->features); 5513 5514 return 0; 5515 out_drain: 5516 nv_drain_rxtx(dev); 5517 return ret; 5518 } 5519 5520 static int nv_close(struct net_device *dev) 5521 { 5522 struct fe_priv *np = netdev_priv(dev); 5523 u8 __iomem *base; 5524 5525 spin_lock_irq(&np->lock); 5526 np->in_shutdown = 1; 5527 spin_unlock_irq(&np->lock); 5528 nv_napi_disable(dev); 5529 synchronize_irq(np->pci_dev->irq); 5530 5531 del_timer_sync(&np->oom_kick); 5532 del_timer_sync(&np->nic_poll); 5533 del_timer_sync(&np->stats_poll); 5534 5535 netif_stop_queue(dev); 5536 spin_lock_irq(&np->lock); 5537 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ 5538 nv_stop_rxtx(dev); 5539 nv_txrx_reset(dev); 5540 5541 /* disable interrupts on the nic or we will lock up */ 5542 base = get_hwbase(dev); 5543 nv_disable_hw_interrupts(dev, np->irqmask); 5544 pci_push(base); 5545 5546 spin_unlock_irq(&np->lock); 5547 5548 nv_free_irq(dev); 5549 5550 nv_drain_rxtx(dev); 5551 5552 if (np->wolenabled || !phy_power_down) { 5553 nv_txrx_gate(dev, false); 5554 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5555 nv_start_rx(dev); 5556 } else { 5557 /* power down phy */ 5558 mii_rw(dev, np->phyaddr, MII_BMCR, 5559 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5560 nv_txrx_gate(dev, true); 5561 } 5562 5563 /* FIXME: power down nic */ 5564 5565 return 0; 5566 } 5567 5568 static const struct net_device_ops nv_netdev_ops = { 5569 .ndo_open = nv_open, 5570 .ndo_stop = nv_close, 5571 .ndo_get_stats64 = nv_get_stats64, 5572 .ndo_start_xmit = nv_start_xmit, 5573 .ndo_tx_timeout = nv_tx_timeout, 5574 .ndo_change_mtu = nv_change_mtu, 5575 .ndo_fix_features = nv_fix_features, 5576 .ndo_set_features = nv_set_features, 5577 .ndo_validate_addr = eth_validate_addr, 5578 .ndo_set_mac_address = nv_set_mac_address, 5579 .ndo_set_rx_mode = nv_set_multicast, 5580 #ifdef CONFIG_NET_POLL_CONTROLLER 5581 .ndo_poll_controller = nv_poll_controller, 5582 #endif 5583 }; 5584 5585 static const struct net_device_ops nv_netdev_ops_optimized = { 5586 .ndo_open = nv_open, 5587 .ndo_stop = nv_close, 5588 .ndo_get_stats64 = nv_get_stats64, 5589 .ndo_start_xmit = nv_start_xmit_optimized, 5590 .ndo_tx_timeout = nv_tx_timeout, 5591 .ndo_change_mtu = nv_change_mtu, 5592 .ndo_fix_features = nv_fix_features, 5593 .ndo_set_features = nv_set_features, 5594 .ndo_validate_addr = eth_validate_addr, 5595 .ndo_set_mac_address = nv_set_mac_address, 5596 .ndo_set_rx_mode = nv_set_multicast, 5597 #ifdef CONFIG_NET_POLL_CONTROLLER 5598 .ndo_poll_controller = nv_poll_controller, 5599 #endif 5600 }; 5601 5602 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5603 { 5604 struct net_device *dev; 5605 struct fe_priv *np; 5606 unsigned long addr; 5607 u8 __iomem *base; 5608 int err, i; 5609 u32 powerstate, txreg; 5610 u32 phystate_orig = 0, phystate; 5611 int phyinitialized = 0; 5612 static int printed_version; 5613 5614 if (!printed_version++) 5615 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5616 FORCEDETH_VERSION); 5617 5618 dev = alloc_etherdev(sizeof(struct fe_priv)); 5619 err = -ENOMEM; 5620 if (!dev) 5621 goto out; 5622 5623 np = netdev_priv(dev); 5624 np->dev = dev; 5625 np->pci_dev = pci_dev; 5626 spin_lock_init(&np->lock); 5627 spin_lock_init(&np->hwstats_lock); 5628 SET_NETDEV_DEV(dev, &pci_dev->dev); 5629 u64_stats_init(&np->swstats_rx_syncp); 5630 u64_stats_init(&np->swstats_tx_syncp); 5631 5632 setup_timer(&np->oom_kick, nv_do_rx_refill, (unsigned long)dev); 5633 setup_timer(&np->nic_poll, nv_do_nic_poll, (unsigned long)dev); 5634 init_timer_deferrable(&np->stats_poll); 5635 np->stats_poll.data = (unsigned long) dev; 5636 np->stats_poll.function = nv_do_stats_poll; /* timer handler */ 5637 5638 err = pci_enable_device(pci_dev); 5639 if (err) 5640 goto out_free; 5641 5642 pci_set_master(pci_dev); 5643 5644 err = pci_request_regions(pci_dev, DRV_NAME); 5645 if (err < 0) 5646 goto out_disable; 5647 5648 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5649 np->register_size = NV_PCI_REGSZ_VER3; 5650 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5651 np->register_size = NV_PCI_REGSZ_VER2; 5652 else 5653 np->register_size = NV_PCI_REGSZ_VER1; 5654 5655 err = -EINVAL; 5656 addr = 0; 5657 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5658 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5659 pci_resource_len(pci_dev, i) >= np->register_size) { 5660 addr = pci_resource_start(pci_dev, i); 5661 break; 5662 } 5663 } 5664 if (i == DEVICE_COUNT_RESOURCE) { 5665 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5666 goto out_relreg; 5667 } 5668 5669 /* copy of driver data */ 5670 np->driver_data = id->driver_data; 5671 /* copy of device id */ 5672 np->device_id = id->device; 5673 5674 /* handle different descriptor versions */ 5675 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5676 /* packet format 3: supports 40-bit addressing */ 5677 np->desc_ver = DESC_VER_3; 5678 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5679 if (dma_64bit) { 5680 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5681 dev_info(&pci_dev->dev, 5682 "64-bit DMA failed, using 32-bit addressing\n"); 5683 else 5684 dev->features |= NETIF_F_HIGHDMA; 5685 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5686 dev_info(&pci_dev->dev, 5687 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5688 } 5689 } 5690 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5691 /* packet format 2: supports jumbo frames */ 5692 np->desc_ver = DESC_VER_2; 5693 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5694 } else { 5695 /* original packet format */ 5696 np->desc_ver = DESC_VER_1; 5697 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5698 } 5699 5700 np->pkt_limit = NV_PKTLIMIT_1; 5701 if (id->driver_data & DEV_HAS_LARGEDESC) 5702 np->pkt_limit = NV_PKTLIMIT_2; 5703 5704 if (id->driver_data & DEV_HAS_CHECKSUM) { 5705 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5706 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5707 NETIF_F_TSO | NETIF_F_RXCSUM; 5708 } 5709 5710 np->vlanctl_bits = 0; 5711 if (id->driver_data & DEV_HAS_VLAN) { 5712 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5713 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | 5714 NETIF_F_HW_VLAN_CTAG_TX; 5715 } 5716 5717 dev->features |= dev->hw_features; 5718 5719 /* Add loopback capability to the device. */ 5720 dev->hw_features |= NETIF_F_LOOPBACK; 5721 5722 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5723 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5724 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5725 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5726 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5727 } 5728 5729 err = -ENOMEM; 5730 np->base = ioremap(addr, np->register_size); 5731 if (!np->base) 5732 goto out_relreg; 5733 5734 np->rx_ring_size = RX_RING_DEFAULT; 5735 np->tx_ring_size = TX_RING_DEFAULT; 5736 5737 if (!nv_optimized(np)) { 5738 np->rx_ring.orig = pci_alloc_consistent(pci_dev, 5739 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 5740 &np->ring_addr); 5741 if (!np->rx_ring.orig) 5742 goto out_unmap; 5743 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5744 } else { 5745 np->rx_ring.ex = pci_alloc_consistent(pci_dev, 5746 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 5747 &np->ring_addr); 5748 if (!np->rx_ring.ex) 5749 goto out_unmap; 5750 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5751 } 5752 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5753 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5754 if (!np->rx_skb || !np->tx_skb) 5755 goto out_freering; 5756 5757 if (!nv_optimized(np)) 5758 dev->netdev_ops = &nv_netdev_ops; 5759 else 5760 dev->netdev_ops = &nv_netdev_ops_optimized; 5761 5762 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5763 dev->ethtool_ops = &ops; 5764 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5765 5766 pci_set_drvdata(pci_dev, dev); 5767 5768 /* read the mac address */ 5769 base = get_hwbase(dev); 5770 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5771 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5772 5773 /* check the workaround bit for correct mac address order */ 5774 txreg = readl(base + NvRegTransmitPoll); 5775 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5776 /* mac address is already in correct order */ 5777 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5778 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5779 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5780 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5781 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5782 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5783 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5784 /* mac address is already in correct order */ 5785 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5786 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5787 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5788 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5789 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5790 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5791 /* 5792 * Set orig mac address back to the reversed version. 5793 * This flag will be cleared during low power transition. 5794 * Therefore, we should always put back the reversed address. 5795 */ 5796 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5797 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5798 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5799 } else { 5800 /* need to reverse mac address to correct order */ 5801 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5802 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5803 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5804 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5805 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5806 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5807 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5808 dev_dbg(&pci_dev->dev, 5809 "%s: set workaround bit for reversed mac addr\n", 5810 __func__); 5811 } 5812 5813 if (!is_valid_ether_addr(dev->dev_addr)) { 5814 /* 5815 * Bad mac address. At least one bios sets the mac address 5816 * to 01:23:45:67:89:ab 5817 */ 5818 dev_err(&pci_dev->dev, 5819 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5820 dev->dev_addr); 5821 eth_hw_addr_random(dev); 5822 dev_err(&pci_dev->dev, 5823 "Using random MAC address: %pM\n", dev->dev_addr); 5824 } 5825 5826 /* set mac address */ 5827 nv_copy_mac_to_hw(dev); 5828 5829 /* disable WOL */ 5830 writel(0, base + NvRegWakeUpFlags); 5831 np->wolenabled = 0; 5832 device_set_wakeup_enable(&pci_dev->dev, false); 5833 5834 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5835 5836 /* take phy and nic out of low power mode */ 5837 powerstate = readl(base + NvRegPowerState2); 5838 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5839 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5840 pci_dev->revision >= 0xA3) 5841 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5842 writel(powerstate, base + NvRegPowerState2); 5843 } 5844 5845 if (np->desc_ver == DESC_VER_1) 5846 np->tx_flags = NV_TX_VALID; 5847 else 5848 np->tx_flags = NV_TX2_VALID; 5849 5850 np->msi_flags = 0; 5851 if ((id->driver_data & DEV_HAS_MSI) && msi) 5852 np->msi_flags |= NV_MSI_CAPABLE; 5853 5854 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5855 /* msix has had reported issues when modifying irqmask 5856 as in the case of napi, therefore, disable for now 5857 */ 5858 #if 0 5859 np->msi_flags |= NV_MSI_X_CAPABLE; 5860 #endif 5861 } 5862 5863 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5864 np->irqmask = NVREG_IRQMASK_CPU; 5865 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5866 np->msi_flags |= 0x0001; 5867 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5868 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5869 /* start off in throughput mode */ 5870 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5871 /* remove support for msix mode */ 5872 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5873 } else { 5874 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5875 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5876 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5877 np->msi_flags |= 0x0003; 5878 } 5879 5880 if (id->driver_data & DEV_NEED_TIMERIRQ) 5881 np->irqmask |= NVREG_IRQ_TIMER; 5882 if (id->driver_data & DEV_NEED_LINKTIMER) { 5883 np->need_linktimer = 1; 5884 np->link_timeout = jiffies + LINK_TIMEOUT; 5885 } else { 5886 np->need_linktimer = 0; 5887 } 5888 5889 /* Limit the number of tx's outstanding for hw bug */ 5890 if (id->driver_data & DEV_NEED_TX_LIMIT) { 5891 np->tx_limit = 1; 5892 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 5893 pci_dev->revision >= 0xA2) 5894 np->tx_limit = 0; 5895 } 5896 5897 /* clear phy state and temporarily halt phy interrupts */ 5898 writel(0, base + NvRegMIIMask); 5899 phystate = readl(base + NvRegAdapterControl); 5900 if (phystate & NVREG_ADAPTCTL_RUNNING) { 5901 phystate_orig = 1; 5902 phystate &= ~NVREG_ADAPTCTL_RUNNING; 5903 writel(phystate, base + NvRegAdapterControl); 5904 } 5905 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5906 5907 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 5908 /* management unit running on the mac? */ 5909 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 5910 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 5911 nv_mgmt_acquire_sema(dev) && 5912 nv_mgmt_get_version(dev)) { 5913 np->mac_in_use = 1; 5914 if (np->mgmt_version > 0) 5915 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 5916 /* management unit setup the phy already? */ 5917 if (np->mac_in_use && 5918 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 5919 NVREG_XMITCTL_SYNC_PHY_INIT)) { 5920 /* phy is inited by mgmt unit */ 5921 phyinitialized = 1; 5922 } else { 5923 /* we need to init the phy */ 5924 } 5925 } 5926 } 5927 5928 /* find a suitable phy */ 5929 for (i = 1; i <= 32; i++) { 5930 int id1, id2; 5931 int phyaddr = i & 0x1F; 5932 5933 spin_lock_irq(&np->lock); 5934 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 5935 spin_unlock_irq(&np->lock); 5936 if (id1 < 0 || id1 == 0xffff) 5937 continue; 5938 spin_lock_irq(&np->lock); 5939 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 5940 spin_unlock_irq(&np->lock); 5941 if (id2 < 0 || id2 == 0xffff) 5942 continue; 5943 5944 np->phy_model = id2 & PHYID2_MODEL_MASK; 5945 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 5946 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 5947 np->phyaddr = phyaddr; 5948 np->phy_oui = id1 | id2; 5949 5950 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 5951 if (np->phy_oui == PHY_OUI_REALTEK2) 5952 np->phy_oui = PHY_OUI_REALTEK; 5953 /* Setup phy revision for Realtek */ 5954 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 5955 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 5956 5957 break; 5958 } 5959 if (i == 33) { 5960 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 5961 goto out_error; 5962 } 5963 5964 if (!phyinitialized) { 5965 /* reset it */ 5966 phy_init(dev); 5967 } else { 5968 /* see if it is a gigabit phy */ 5969 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5970 if (mii_status & PHY_GIGABIT) 5971 np->gigabit = PHY_GIGABIT; 5972 } 5973 5974 /* set default link speed settings */ 5975 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 5976 np->duplex = 0; 5977 np->autoneg = 1; 5978 5979 err = register_netdev(dev); 5980 if (err) { 5981 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 5982 goto out_error; 5983 } 5984 5985 netif_carrier_off(dev); 5986 5987 /* Some NICs freeze when TX pause is enabled while NIC is 5988 * down, and this stays across warm reboots. The sequence 5989 * below should be enough to recover from that state. 5990 */ 5991 nv_update_pause(dev, 0); 5992 nv_start_tx(dev); 5993 nv_stop_tx(dev); 5994 5995 if (id->driver_data & DEV_HAS_VLAN) 5996 nv_vlan_mode(dev, dev->features); 5997 5998 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 5999 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 6000 6001 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 6002 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 6003 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 6004 "csum " : "", 6005 dev->features & (NETIF_F_HW_VLAN_CTAG_RX | 6006 NETIF_F_HW_VLAN_CTAG_TX) ? 6007 "vlan " : "", 6008 dev->features & (NETIF_F_LOOPBACK) ? 6009 "loopback " : "", 6010 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 6011 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 6012 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 6013 np->gigabit == PHY_GIGABIT ? "gbit " : "", 6014 np->need_linktimer ? "lnktim " : "", 6015 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 6016 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 6017 np->desc_ver); 6018 6019 return 0; 6020 6021 out_error: 6022 if (phystate_orig) 6023 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 6024 out_freering: 6025 free_rings(dev); 6026 out_unmap: 6027 iounmap(get_hwbase(dev)); 6028 out_relreg: 6029 pci_release_regions(pci_dev); 6030 out_disable: 6031 pci_disable_device(pci_dev); 6032 out_free: 6033 free_netdev(dev); 6034 out: 6035 return err; 6036 } 6037 6038 static void nv_restore_phy(struct net_device *dev) 6039 { 6040 struct fe_priv *np = netdev_priv(dev); 6041 u16 phy_reserved, mii_control; 6042 6043 if (np->phy_oui == PHY_OUI_REALTEK && 6044 np->phy_model == PHY_MODEL_REALTEK_8201 && 6045 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 6046 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 6047 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 6048 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 6049 phy_reserved |= PHY_REALTEK_INIT8; 6050 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 6051 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 6052 6053 /* restart auto negotiation */ 6054 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 6055 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 6056 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 6057 } 6058 } 6059 6060 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 6061 { 6062 struct net_device *dev = pci_get_drvdata(pci_dev); 6063 struct fe_priv *np = netdev_priv(dev); 6064 u8 __iomem *base = get_hwbase(dev); 6065 6066 /* special op: write back the misordered MAC address - otherwise 6067 * the next nv_probe would see a wrong address. 6068 */ 6069 writel(np->orig_mac[0], base + NvRegMacAddrA); 6070 writel(np->orig_mac[1], base + NvRegMacAddrB); 6071 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 6072 base + NvRegTransmitPoll); 6073 } 6074 6075 static void nv_remove(struct pci_dev *pci_dev) 6076 { 6077 struct net_device *dev = pci_get_drvdata(pci_dev); 6078 6079 unregister_netdev(dev); 6080 6081 nv_restore_mac_addr(pci_dev); 6082 6083 /* restore any phy related changes */ 6084 nv_restore_phy(dev); 6085 6086 nv_mgmt_release_sema(dev); 6087 6088 /* free all structures */ 6089 free_rings(dev); 6090 iounmap(get_hwbase(dev)); 6091 pci_release_regions(pci_dev); 6092 pci_disable_device(pci_dev); 6093 free_netdev(dev); 6094 } 6095 6096 #ifdef CONFIG_PM_SLEEP 6097 static int nv_suspend(struct device *device) 6098 { 6099 struct pci_dev *pdev = to_pci_dev(device); 6100 struct net_device *dev = pci_get_drvdata(pdev); 6101 struct fe_priv *np = netdev_priv(dev); 6102 u8 __iomem *base = get_hwbase(dev); 6103 int i; 6104 6105 if (netif_running(dev)) { 6106 /* Gross. */ 6107 nv_close(dev); 6108 } 6109 netif_device_detach(dev); 6110 6111 /* save non-pci configuration space */ 6112 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6113 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6114 6115 return 0; 6116 } 6117 6118 static int nv_resume(struct device *device) 6119 { 6120 struct pci_dev *pdev = to_pci_dev(device); 6121 struct net_device *dev = pci_get_drvdata(pdev); 6122 struct fe_priv *np = netdev_priv(dev); 6123 u8 __iomem *base = get_hwbase(dev); 6124 int i, rc = 0; 6125 6126 /* restore non-pci configuration space */ 6127 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6128 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6129 6130 if (np->driver_data & DEV_NEED_MSI_FIX) 6131 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6132 6133 /* restore phy state, including autoneg */ 6134 phy_init(dev); 6135 6136 netif_device_attach(dev); 6137 if (netif_running(dev)) { 6138 rc = nv_open(dev); 6139 nv_set_multicast(dev); 6140 } 6141 return rc; 6142 } 6143 6144 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6145 #define NV_PM_OPS (&nv_pm_ops) 6146 6147 #else 6148 #define NV_PM_OPS NULL 6149 #endif /* CONFIG_PM_SLEEP */ 6150 6151 #ifdef CONFIG_PM 6152 static void nv_shutdown(struct pci_dev *pdev) 6153 { 6154 struct net_device *dev = pci_get_drvdata(pdev); 6155 struct fe_priv *np = netdev_priv(dev); 6156 6157 if (netif_running(dev)) 6158 nv_close(dev); 6159 6160 /* 6161 * Restore the MAC so a kernel started by kexec won't get confused. 6162 * If we really go for poweroff, we must not restore the MAC, 6163 * otherwise the MAC for WOL will be reversed at least on some boards. 6164 */ 6165 if (system_state != SYSTEM_POWER_OFF) 6166 nv_restore_mac_addr(pdev); 6167 6168 pci_disable_device(pdev); 6169 /* 6170 * Apparently it is not possible to reinitialise from D3 hot, 6171 * only put the device into D3 if we really go for poweroff. 6172 */ 6173 if (system_state == SYSTEM_POWER_OFF) { 6174 pci_wake_from_d3(pdev, np->wolenabled); 6175 pci_set_power_state(pdev, PCI_D3hot); 6176 } 6177 } 6178 #else 6179 #define nv_shutdown NULL 6180 #endif /* CONFIG_PM */ 6181 6182 static const struct pci_device_id pci_tbl[] = { 6183 { /* nForce Ethernet Controller */ 6184 PCI_DEVICE(0x10DE, 0x01C3), 6185 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6186 }, 6187 { /* nForce2 Ethernet Controller */ 6188 PCI_DEVICE(0x10DE, 0x0066), 6189 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6190 }, 6191 { /* nForce3 Ethernet Controller */ 6192 PCI_DEVICE(0x10DE, 0x00D6), 6193 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6194 }, 6195 { /* nForce3 Ethernet Controller */ 6196 PCI_DEVICE(0x10DE, 0x0086), 6197 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6198 }, 6199 { /* nForce3 Ethernet Controller */ 6200 PCI_DEVICE(0x10DE, 0x008C), 6201 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6202 }, 6203 { /* nForce3 Ethernet Controller */ 6204 PCI_DEVICE(0x10DE, 0x00E6), 6205 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6206 }, 6207 { /* nForce3 Ethernet Controller */ 6208 PCI_DEVICE(0x10DE, 0x00DF), 6209 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6210 }, 6211 { /* CK804 Ethernet Controller */ 6212 PCI_DEVICE(0x10DE, 0x0056), 6213 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6214 }, 6215 { /* CK804 Ethernet Controller */ 6216 PCI_DEVICE(0x10DE, 0x0057), 6217 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6218 }, 6219 { /* MCP04 Ethernet Controller */ 6220 PCI_DEVICE(0x10DE, 0x0037), 6221 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6222 }, 6223 { /* MCP04 Ethernet Controller */ 6224 PCI_DEVICE(0x10DE, 0x0038), 6225 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6226 }, 6227 { /* MCP51 Ethernet Controller */ 6228 PCI_DEVICE(0x10DE, 0x0268), 6229 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6230 }, 6231 { /* MCP51 Ethernet Controller */ 6232 PCI_DEVICE(0x10DE, 0x0269), 6233 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6234 }, 6235 { /* MCP55 Ethernet Controller */ 6236 PCI_DEVICE(0x10DE, 0x0372), 6237 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6238 }, 6239 { /* MCP55 Ethernet Controller */ 6240 PCI_DEVICE(0x10DE, 0x0373), 6241 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6242 }, 6243 { /* MCP61 Ethernet Controller */ 6244 PCI_DEVICE(0x10DE, 0x03E5), 6245 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6246 }, 6247 { /* MCP61 Ethernet Controller */ 6248 PCI_DEVICE(0x10DE, 0x03E6), 6249 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6250 }, 6251 { /* MCP61 Ethernet Controller */ 6252 PCI_DEVICE(0x10DE, 0x03EE), 6253 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6254 }, 6255 { /* MCP61 Ethernet Controller */ 6256 PCI_DEVICE(0x10DE, 0x03EF), 6257 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6258 }, 6259 { /* MCP65 Ethernet Controller */ 6260 PCI_DEVICE(0x10DE, 0x0450), 6261 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6262 }, 6263 { /* MCP65 Ethernet Controller */ 6264 PCI_DEVICE(0x10DE, 0x0451), 6265 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6266 }, 6267 { /* MCP65 Ethernet Controller */ 6268 PCI_DEVICE(0x10DE, 0x0452), 6269 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6270 }, 6271 { /* MCP65 Ethernet Controller */ 6272 PCI_DEVICE(0x10DE, 0x0453), 6273 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6274 }, 6275 { /* MCP67 Ethernet Controller */ 6276 PCI_DEVICE(0x10DE, 0x054C), 6277 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6278 }, 6279 { /* MCP67 Ethernet Controller */ 6280 PCI_DEVICE(0x10DE, 0x054D), 6281 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6282 }, 6283 { /* MCP67 Ethernet Controller */ 6284 PCI_DEVICE(0x10DE, 0x054E), 6285 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6286 }, 6287 { /* MCP67 Ethernet Controller */ 6288 PCI_DEVICE(0x10DE, 0x054F), 6289 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6290 }, 6291 { /* MCP73 Ethernet Controller */ 6292 PCI_DEVICE(0x10DE, 0x07DC), 6293 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6294 }, 6295 { /* MCP73 Ethernet Controller */ 6296 PCI_DEVICE(0x10DE, 0x07DD), 6297 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6298 }, 6299 { /* MCP73 Ethernet Controller */ 6300 PCI_DEVICE(0x10DE, 0x07DE), 6301 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6302 }, 6303 { /* MCP73 Ethernet Controller */ 6304 PCI_DEVICE(0x10DE, 0x07DF), 6305 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6306 }, 6307 { /* MCP77 Ethernet Controller */ 6308 PCI_DEVICE(0x10DE, 0x0760), 6309 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6310 }, 6311 { /* MCP77 Ethernet Controller */ 6312 PCI_DEVICE(0x10DE, 0x0761), 6313 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6314 }, 6315 { /* MCP77 Ethernet Controller */ 6316 PCI_DEVICE(0x10DE, 0x0762), 6317 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6318 }, 6319 { /* MCP77 Ethernet Controller */ 6320 PCI_DEVICE(0x10DE, 0x0763), 6321 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6322 }, 6323 { /* MCP79 Ethernet Controller */ 6324 PCI_DEVICE(0x10DE, 0x0AB0), 6325 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6326 }, 6327 { /* MCP79 Ethernet Controller */ 6328 PCI_DEVICE(0x10DE, 0x0AB1), 6329 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6330 }, 6331 { /* MCP79 Ethernet Controller */ 6332 PCI_DEVICE(0x10DE, 0x0AB2), 6333 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6334 }, 6335 { /* MCP79 Ethernet Controller */ 6336 PCI_DEVICE(0x10DE, 0x0AB3), 6337 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6338 }, 6339 { /* MCP89 Ethernet Controller */ 6340 PCI_DEVICE(0x10DE, 0x0D7D), 6341 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6342 }, 6343 {0,}, 6344 }; 6345 6346 static struct pci_driver forcedeth_pci_driver = { 6347 .name = DRV_NAME, 6348 .id_table = pci_tbl, 6349 .probe = nv_probe, 6350 .remove = nv_remove, 6351 .shutdown = nv_shutdown, 6352 .driver.pm = NV_PM_OPS, 6353 }; 6354 6355 module_param(max_interrupt_work, int, 0); 6356 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6357 module_param(optimization_mode, int, 0); 6358 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6359 module_param(poll_interval, int, 0); 6360 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6361 module_param(msi, int, 0); 6362 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6363 module_param(msix, int, 0); 6364 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6365 module_param(dma_64bit, int, 0); 6366 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6367 module_param(phy_cross, int, 0); 6368 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6369 module_param(phy_power_down, int, 0); 6370 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6371 module_param(debug_tx_timeout, bool, 0); 6372 MODULE_PARM_DESC(debug_tx_timeout, 6373 "Dump tx related registers and ring when tx_timeout happens"); 6374 6375 module_pci_driver(forcedeth_pci_driver); 6376 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6377 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6378 MODULE_LICENSE("GPL"); 6379 MODULE_DEVICE_TABLE(pci, pci_tbl); 6380