1 /* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. 7 * 8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 9 * trademarks of NVIDIA Corporation in the United States and other 10 * countries. 11 * 12 * Copyright (C) 2003,4,5 Manfred Spraul 13 * Copyright (C) 2004 Andrew de Quincey (wol support) 14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 15 * IRQ rate fixes, bigendian fixes, cleanups, verification) 16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * (at your option) any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, see <http://www.gnu.org/licenses/>. 30 * 31 * Known bugs: 32 * We suspect that on some hardware no TX done interrupts are generated. 33 * This means recovery from netif_stop_queue only happens if the hw timer 34 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 35 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 36 * If your hardware reliably generates tx done interrupts, then you can remove 37 * DEV_NEED_TIMERIRQ from the driver_data flags. 38 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 39 * superfluous timer interrupts from the nic. 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #define FORCEDETH_VERSION "0.64" 45 #define DRV_NAME "forcedeth" 46 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/pci.h> 50 #include <linux/interrupt.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/delay.h> 54 #include <linux/sched.h> 55 #include <linux/spinlock.h> 56 #include <linux/ethtool.h> 57 #include <linux/timer.h> 58 #include <linux/skbuff.h> 59 #include <linux/mii.h> 60 #include <linux/random.h> 61 #include <linux/if_vlan.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/slab.h> 64 #include <linux/uaccess.h> 65 #include <linux/prefetch.h> 66 #include <linux/u64_stats_sync.h> 67 #include <linux/io.h> 68 69 #include <asm/irq.h> 70 71 #define TX_WORK_PER_LOOP 64 72 #define RX_WORK_PER_LOOP 64 73 74 /* 75 * Hardware access: 76 */ 77 78 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 79 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 80 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 81 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 82 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 83 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 84 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 85 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 86 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 87 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 88 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 89 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 90 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 91 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 92 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 93 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 94 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 95 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 99 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 100 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 101 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 102 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 103 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 104 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 105 106 enum { 107 NvRegIrqStatus = 0x000, 108 #define NVREG_IRQSTAT_MIIEVENT 0x040 109 #define NVREG_IRQSTAT_MASK 0x83ff 110 NvRegIrqMask = 0x004, 111 #define NVREG_IRQ_RX_ERROR 0x0001 112 #define NVREG_IRQ_RX 0x0002 113 #define NVREG_IRQ_RX_NOBUF 0x0004 114 #define NVREG_IRQ_TX_ERR 0x0008 115 #define NVREG_IRQ_TX_OK 0x0010 116 #define NVREG_IRQ_TIMER 0x0020 117 #define NVREG_IRQ_LINK 0x0040 118 #define NVREG_IRQ_RX_FORCED 0x0080 119 #define NVREG_IRQ_TX_FORCED 0x0100 120 #define NVREG_IRQ_RECOVER_ERROR 0x8200 121 #define NVREG_IRQMASK_THROUGHPUT 0x00df 122 #define NVREG_IRQMASK_CPU 0x0060 123 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 124 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 125 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 126 127 NvRegUnknownSetupReg6 = 0x008, 128 #define NVREG_UNKSETUP6_VAL 3 129 130 /* 131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 133 */ 134 NvRegPollingInterval = 0x00c, 135 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 136 #define NVREG_POLL_DEFAULT_CPU 13 137 NvRegMSIMap0 = 0x020, 138 NvRegMSIMap1 = 0x024, 139 NvRegMSIIrqMask = 0x030, 140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 141 NvRegMisc1 = 0x080, 142 #define NVREG_MISC1_PAUSE_TX 0x01 143 #define NVREG_MISC1_HD 0x02 144 #define NVREG_MISC1_FORCE 0x3b0f3c 145 146 NvRegMacReset = 0x34, 147 #define NVREG_MAC_RESET_ASSERT 0x0F3 148 NvRegTransmitterControl = 0x084, 149 #define NVREG_XMITCTL_START 0x01 150 #define NVREG_XMITCTL_MGMT_ST 0x40000000 151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 160 #define NVREG_XMITCTL_DATA_START 0x00100000 161 #define NVREG_XMITCTL_DATA_READY 0x00010000 162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 163 NvRegTransmitterStatus = 0x088, 164 #define NVREG_XMITSTAT_BUSY 0x01 165 166 NvRegPacketFilterFlags = 0x8c, 167 #define NVREG_PFF_PAUSE_RX 0x08 168 #define NVREG_PFF_ALWAYS 0x7F0000 169 #define NVREG_PFF_PROMISC 0x80 170 #define NVREG_PFF_MYADDR 0x20 171 #define NVREG_PFF_LOOPBACK 0x10 172 173 NvRegOffloadConfig = 0x90, 174 #define NVREG_OFFLOAD_HOMEPHY 0x601 175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 176 NvRegReceiverControl = 0x094, 177 #define NVREG_RCVCTL_START 0x01 178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 179 NvRegReceiverStatus = 0x98, 180 #define NVREG_RCVSTAT_BUSY 0x01 181 182 NvRegSlotTime = 0x9c, 183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 186 #define NVREG_SLOTTIME_HALF 0x0000ff00 187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 188 #define NVREG_SLOTTIME_MASK 0x000000ff 189 190 NvRegTxDeferral = 0xA0, 191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 197 NvRegRxDeferral = 0xA4, 198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 199 NvRegMacAddrA = 0xA8, 200 NvRegMacAddrB = 0xAC, 201 NvRegMulticastAddrA = 0xB0, 202 #define NVREG_MCASTADDRA_FORCE 0x01 203 NvRegMulticastAddrB = 0xB4, 204 NvRegMulticastMaskA = 0xB8, 205 #define NVREG_MCASTMASKA_NONE 0xffffffff 206 NvRegMulticastMaskB = 0xBC, 207 #define NVREG_MCASTMASKB_NONE 0xffff 208 209 NvRegPhyInterface = 0xC0, 210 #define PHY_RGMII 0x10000000 211 NvRegBackOffControl = 0xC4, 212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 214 #define NVREG_BKOFFCTRL_SELECT 24 215 #define NVREG_BKOFFCTRL_GEAR 12 216 217 NvRegTxRingPhysAddr = 0x100, 218 NvRegRxRingPhysAddr = 0x104, 219 NvRegRingSizes = 0x108, 220 #define NVREG_RINGSZ_TXSHIFT 0 221 #define NVREG_RINGSZ_RXSHIFT 16 222 NvRegTransmitPoll = 0x10c, 223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 224 NvRegLinkSpeed = 0x110, 225 #define NVREG_LINKSPEED_FORCE 0x10000 226 #define NVREG_LINKSPEED_10 1000 227 #define NVREG_LINKSPEED_100 100 228 #define NVREG_LINKSPEED_1000 50 229 #define NVREG_LINKSPEED_MASK (0xFFF) 230 NvRegUnknownSetupReg5 = 0x130, 231 #define NVREG_UNKSETUP5_BIT31 (1<<31) 232 NvRegTxWatermark = 0x13c, 233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 236 NvRegTxRxControl = 0x144, 237 #define NVREG_TXRXCTL_KICK 0x0001 238 #define NVREG_TXRXCTL_BIT1 0x0002 239 #define NVREG_TXRXCTL_BIT2 0x0004 240 #define NVREG_TXRXCTL_IDLE 0x0008 241 #define NVREG_TXRXCTL_RESET 0x0010 242 #define NVREG_TXRXCTL_RXCHECK 0x0400 243 #define NVREG_TXRXCTL_DESC_1 0 244 #define NVREG_TXRXCTL_DESC_2 0x002100 245 #define NVREG_TXRXCTL_DESC_3 0xc02200 246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 247 #define NVREG_TXRXCTL_VLANINS 0x00080 248 NvRegTxRingPhysAddrHigh = 0x148, 249 NvRegRxRingPhysAddrHigh = 0x14C, 250 NvRegTxPauseFrame = 0x170, 251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 255 NvRegTxPauseFrameLimit = 0x174, 256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 257 NvRegMIIStatus = 0x180, 258 #define NVREG_MIISTAT_ERROR 0x0001 259 #define NVREG_MIISTAT_LINKCHANGE 0x0008 260 #define NVREG_MIISTAT_MASK_RW 0x0007 261 #define NVREG_MIISTAT_MASK_ALL 0x000f 262 NvRegMIIMask = 0x184, 263 #define NVREG_MII_LINKCHANGE 0x0008 264 265 NvRegAdapterControl = 0x188, 266 #define NVREG_ADAPTCTL_START 0x02 267 #define NVREG_ADAPTCTL_LINKUP 0x04 268 #define NVREG_ADAPTCTL_PHYVALID 0x40000 269 #define NVREG_ADAPTCTL_RUNNING 0x100000 270 #define NVREG_ADAPTCTL_PHYSHIFT 24 271 NvRegMIISpeed = 0x18c, 272 #define NVREG_MIISPEED_BIT8 (1<<8) 273 #define NVREG_MIIDELAY 5 274 NvRegMIIControl = 0x190, 275 #define NVREG_MIICTL_INUSE 0x08000 276 #define NVREG_MIICTL_WRITE 0x00400 277 #define NVREG_MIICTL_ADDRSHIFT 5 278 NvRegMIIData = 0x194, 279 NvRegTxUnicast = 0x1a0, 280 NvRegTxMulticast = 0x1a4, 281 NvRegTxBroadcast = 0x1a8, 282 NvRegWakeUpFlags = 0x200, 283 #define NVREG_WAKEUPFLAGS_VAL 0x7770 284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 294 295 NvRegMgmtUnitGetVersion = 0x204, 296 #define NVREG_MGMTUNITGETVERSION 0x01 297 NvRegMgmtUnitVersion = 0x208, 298 #define NVREG_MGMTUNITVERSION 0x08 299 NvRegPowerCap = 0x268, 300 #define NVREG_POWERCAP_D3SUPP (1<<30) 301 #define NVREG_POWERCAP_D2SUPP (1<<26) 302 #define NVREG_POWERCAP_D1SUPP (1<<25) 303 NvRegPowerState = 0x26c, 304 #define NVREG_POWERSTATE_POWEREDUP 0x8000 305 #define NVREG_POWERSTATE_VALID 0x0100 306 #define NVREG_POWERSTATE_MASK 0x0003 307 #define NVREG_POWERSTATE_D0 0x0000 308 #define NVREG_POWERSTATE_D1 0x0001 309 #define NVREG_POWERSTATE_D2 0x0002 310 #define NVREG_POWERSTATE_D3 0x0003 311 NvRegMgmtUnitControl = 0x278, 312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 313 NvRegTxCnt = 0x280, 314 NvRegTxZeroReXmt = 0x284, 315 NvRegTxOneReXmt = 0x288, 316 NvRegTxManyReXmt = 0x28c, 317 NvRegTxLateCol = 0x290, 318 NvRegTxUnderflow = 0x294, 319 NvRegTxLossCarrier = 0x298, 320 NvRegTxExcessDef = 0x29c, 321 NvRegTxRetryErr = 0x2a0, 322 NvRegRxFrameErr = 0x2a4, 323 NvRegRxExtraByte = 0x2a8, 324 NvRegRxLateCol = 0x2ac, 325 NvRegRxRunt = 0x2b0, 326 NvRegRxFrameTooLong = 0x2b4, 327 NvRegRxOverflow = 0x2b8, 328 NvRegRxFCSErr = 0x2bc, 329 NvRegRxFrameAlignErr = 0x2c0, 330 NvRegRxLenErr = 0x2c4, 331 NvRegRxUnicast = 0x2c8, 332 NvRegRxMulticast = 0x2cc, 333 NvRegRxBroadcast = 0x2d0, 334 NvRegTxDef = 0x2d4, 335 NvRegTxFrame = 0x2d8, 336 NvRegRxCnt = 0x2dc, 337 NvRegTxPause = 0x2e0, 338 NvRegRxPause = 0x2e4, 339 NvRegRxDropFrame = 0x2e8, 340 NvRegVlanControl = 0x300, 341 #define NVREG_VLANCONTROL_ENABLE 0x2000 342 NvRegMSIXMap0 = 0x3e0, 343 NvRegMSIXMap1 = 0x3e4, 344 NvRegMSIXIrqStatus = 0x3f0, 345 346 NvRegPowerState2 = 0x600, 347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 350 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 351 }; 352 353 /* Big endian: should work, but is untested */ 354 struct ring_desc { 355 __le32 buf; 356 __le32 flaglen; 357 }; 358 359 struct ring_desc_ex { 360 __le32 bufhigh; 361 __le32 buflow; 362 __le32 txvlan; 363 __le32 flaglen; 364 }; 365 366 union ring_type { 367 struct ring_desc *orig; 368 struct ring_desc_ex *ex; 369 }; 370 371 #define FLAG_MASK_V1 0xffff0000 372 #define FLAG_MASK_V2 0xffffc000 373 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 374 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 375 376 #define NV_TX_LASTPACKET (1<<16) 377 #define NV_TX_RETRYERROR (1<<19) 378 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 379 #define NV_TX_FORCED_INTERRUPT (1<<24) 380 #define NV_TX_DEFERRED (1<<26) 381 #define NV_TX_CARRIERLOST (1<<27) 382 #define NV_TX_LATECOLLISION (1<<28) 383 #define NV_TX_UNDERFLOW (1<<29) 384 #define NV_TX_ERROR (1<<30) 385 #define NV_TX_VALID (1<<31) 386 387 #define NV_TX2_LASTPACKET (1<<29) 388 #define NV_TX2_RETRYERROR (1<<18) 389 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 390 #define NV_TX2_FORCED_INTERRUPT (1<<30) 391 #define NV_TX2_DEFERRED (1<<25) 392 #define NV_TX2_CARRIERLOST (1<<26) 393 #define NV_TX2_LATECOLLISION (1<<27) 394 #define NV_TX2_UNDERFLOW (1<<28) 395 /* error and valid are the same for both */ 396 #define NV_TX2_ERROR (1<<30) 397 #define NV_TX2_VALID (1<<31) 398 #define NV_TX2_TSO (1<<28) 399 #define NV_TX2_TSO_SHIFT 14 400 #define NV_TX2_TSO_MAX_SHIFT 14 401 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 402 #define NV_TX2_CHECKSUM_L3 (1<<27) 403 #define NV_TX2_CHECKSUM_L4 (1<<26) 404 405 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 406 407 #define NV_RX_DESCRIPTORVALID (1<<16) 408 #define NV_RX_MISSEDFRAME (1<<17) 409 #define NV_RX_SUBTRACT1 (1<<18) 410 #define NV_RX_ERROR1 (1<<23) 411 #define NV_RX_ERROR2 (1<<24) 412 #define NV_RX_ERROR3 (1<<25) 413 #define NV_RX_ERROR4 (1<<26) 414 #define NV_RX_CRCERR (1<<27) 415 #define NV_RX_OVERFLOW (1<<28) 416 #define NV_RX_FRAMINGERR (1<<29) 417 #define NV_RX_ERROR (1<<30) 418 #define NV_RX_AVAIL (1<<31) 419 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 420 421 #define NV_RX2_CHECKSUMMASK (0x1C000000) 422 #define NV_RX2_CHECKSUM_IP (0x10000000) 423 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 424 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 425 #define NV_RX2_DESCRIPTORVALID (1<<29) 426 #define NV_RX2_SUBTRACT1 (1<<25) 427 #define NV_RX2_ERROR1 (1<<18) 428 #define NV_RX2_ERROR2 (1<<19) 429 #define NV_RX2_ERROR3 (1<<20) 430 #define NV_RX2_ERROR4 (1<<21) 431 #define NV_RX2_CRCERR (1<<22) 432 #define NV_RX2_OVERFLOW (1<<23) 433 #define NV_RX2_FRAMINGERR (1<<24) 434 /* error and avail are the same for both */ 435 #define NV_RX2_ERROR (1<<30) 436 #define NV_RX2_AVAIL (1<<31) 437 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 438 439 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 440 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 441 442 /* Miscellaneous hardware related defines: */ 443 #define NV_PCI_REGSZ_VER1 0x270 444 #define NV_PCI_REGSZ_VER2 0x2d4 445 #define NV_PCI_REGSZ_VER3 0x604 446 #define NV_PCI_REGSZ_MAX 0x604 447 448 /* various timeout delays: all in usec */ 449 #define NV_TXRX_RESET_DELAY 4 450 #define NV_TXSTOP_DELAY1 10 451 #define NV_TXSTOP_DELAY1MAX 500000 452 #define NV_TXSTOP_DELAY2 100 453 #define NV_RXSTOP_DELAY1 10 454 #define NV_RXSTOP_DELAY1MAX 500000 455 #define NV_RXSTOP_DELAY2 100 456 #define NV_SETUP5_DELAY 5 457 #define NV_SETUP5_DELAYMAX 50000 458 #define NV_POWERUP_DELAY 5 459 #define NV_POWERUP_DELAYMAX 5000 460 #define NV_MIIBUSY_DELAY 50 461 #define NV_MIIPHY_DELAY 10 462 #define NV_MIIPHY_DELAYMAX 10000 463 #define NV_MAC_RESET_DELAY 64 464 465 #define NV_WAKEUPPATTERNS 5 466 #define NV_WAKEUPMASKENTRIES 4 467 468 /* General driver defaults */ 469 #define NV_WATCHDOG_TIMEO (5*HZ) 470 471 #define RX_RING_DEFAULT 512 472 #define TX_RING_DEFAULT 256 473 #define RX_RING_MIN 128 474 #define TX_RING_MIN 64 475 #define RING_MAX_DESC_VER_1 1024 476 #define RING_MAX_DESC_VER_2_3 16384 477 478 /* rx/tx mac addr + type + vlan + align + slack*/ 479 #define NV_RX_HEADERS (64) 480 /* even more slack. */ 481 #define NV_RX_ALLOC_PAD (64) 482 483 /* maximum mtu size */ 484 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 485 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 486 487 #define OOM_REFILL (1+HZ/20) 488 #define POLL_WAIT (1+HZ/100) 489 #define LINK_TIMEOUT (3*HZ) 490 #define STATS_INTERVAL (10*HZ) 491 492 /* 493 * desc_ver values: 494 * The nic supports three different descriptor types: 495 * - DESC_VER_1: Original 496 * - DESC_VER_2: support for jumbo frames. 497 * - DESC_VER_3: 64-bit format. 498 */ 499 #define DESC_VER_1 1 500 #define DESC_VER_2 2 501 #define DESC_VER_3 3 502 503 /* PHY defines */ 504 #define PHY_OUI_MARVELL 0x5043 505 #define PHY_OUI_CICADA 0x03f1 506 #define PHY_OUI_VITESSE 0x01c1 507 #define PHY_OUI_REALTEK 0x0732 508 #define PHY_OUI_REALTEK2 0x0020 509 #define PHYID1_OUI_MASK 0x03ff 510 #define PHYID1_OUI_SHFT 6 511 #define PHYID2_OUI_MASK 0xfc00 512 #define PHYID2_OUI_SHFT 10 513 #define PHYID2_MODEL_MASK 0x03f0 514 #define PHY_MODEL_REALTEK_8211 0x0110 515 #define PHY_REV_MASK 0x0001 516 #define PHY_REV_REALTEK_8211B 0x0000 517 #define PHY_REV_REALTEK_8211C 0x0001 518 #define PHY_MODEL_REALTEK_8201 0x0200 519 #define PHY_MODEL_MARVELL_E3016 0x0220 520 #define PHY_MARVELL_E3016_INITMASK 0x0300 521 #define PHY_CICADA_INIT1 0x0f000 522 #define PHY_CICADA_INIT2 0x0e00 523 #define PHY_CICADA_INIT3 0x01000 524 #define PHY_CICADA_INIT4 0x0200 525 #define PHY_CICADA_INIT5 0x0004 526 #define PHY_CICADA_INIT6 0x02000 527 #define PHY_VITESSE_INIT_REG1 0x1f 528 #define PHY_VITESSE_INIT_REG2 0x10 529 #define PHY_VITESSE_INIT_REG3 0x11 530 #define PHY_VITESSE_INIT_REG4 0x12 531 #define PHY_VITESSE_INIT_MSK1 0xc 532 #define PHY_VITESSE_INIT_MSK2 0x0180 533 #define PHY_VITESSE_INIT1 0x52b5 534 #define PHY_VITESSE_INIT2 0xaf8a 535 #define PHY_VITESSE_INIT3 0x8 536 #define PHY_VITESSE_INIT4 0x8f8a 537 #define PHY_VITESSE_INIT5 0xaf86 538 #define PHY_VITESSE_INIT6 0x8f86 539 #define PHY_VITESSE_INIT7 0xaf82 540 #define PHY_VITESSE_INIT8 0x0100 541 #define PHY_VITESSE_INIT9 0x8f82 542 #define PHY_VITESSE_INIT10 0x0 543 #define PHY_REALTEK_INIT_REG1 0x1f 544 #define PHY_REALTEK_INIT_REG2 0x19 545 #define PHY_REALTEK_INIT_REG3 0x13 546 #define PHY_REALTEK_INIT_REG4 0x14 547 #define PHY_REALTEK_INIT_REG5 0x18 548 #define PHY_REALTEK_INIT_REG6 0x11 549 #define PHY_REALTEK_INIT_REG7 0x01 550 #define PHY_REALTEK_INIT1 0x0000 551 #define PHY_REALTEK_INIT2 0x8e00 552 #define PHY_REALTEK_INIT3 0x0001 553 #define PHY_REALTEK_INIT4 0xad17 554 #define PHY_REALTEK_INIT5 0xfb54 555 #define PHY_REALTEK_INIT6 0xf5c7 556 #define PHY_REALTEK_INIT7 0x1000 557 #define PHY_REALTEK_INIT8 0x0003 558 #define PHY_REALTEK_INIT9 0x0008 559 #define PHY_REALTEK_INIT10 0x0005 560 #define PHY_REALTEK_INIT11 0x0200 561 #define PHY_REALTEK_INIT_MSK1 0x0003 562 563 #define PHY_GIGABIT 0x0100 564 565 #define PHY_TIMEOUT 0x1 566 #define PHY_ERROR 0x2 567 568 #define PHY_100 0x1 569 #define PHY_1000 0x2 570 #define PHY_HALF 0x100 571 572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 574 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 575 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 576 #define NV_PAUSEFRAME_RX_REQ 0x0010 577 #define NV_PAUSEFRAME_TX_REQ 0x0020 578 #define NV_PAUSEFRAME_AUTONEG 0x0040 579 580 /* MSI/MSI-X defines */ 581 #define NV_MSI_X_MAX_VECTORS 8 582 #define NV_MSI_X_VECTORS_MASK 0x000f 583 #define NV_MSI_CAPABLE 0x0010 584 #define NV_MSI_X_CAPABLE 0x0020 585 #define NV_MSI_ENABLED 0x0040 586 #define NV_MSI_X_ENABLED 0x0080 587 588 #define NV_MSI_X_VECTOR_ALL 0x0 589 #define NV_MSI_X_VECTOR_RX 0x0 590 #define NV_MSI_X_VECTOR_TX 0x1 591 #define NV_MSI_X_VECTOR_OTHER 0x2 592 593 #define NV_MSI_PRIV_OFFSET 0x68 594 #define NV_MSI_PRIV_VALUE 0xffffffff 595 596 #define NV_RESTART_TX 0x1 597 #define NV_RESTART_RX 0x2 598 599 #define NV_TX_LIMIT_COUNT 16 600 601 #define NV_DYNAMIC_THRESHOLD 4 602 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 603 604 /* statistics */ 605 struct nv_ethtool_str { 606 char name[ETH_GSTRING_LEN]; 607 }; 608 609 static const struct nv_ethtool_str nv_estats_str[] = { 610 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 611 { "tx_zero_rexmt" }, 612 { "tx_one_rexmt" }, 613 { "tx_many_rexmt" }, 614 { "tx_late_collision" }, 615 { "tx_fifo_errors" }, 616 { "tx_carrier_errors" }, 617 { "tx_excess_deferral" }, 618 { "tx_retry_error" }, 619 { "rx_frame_error" }, 620 { "rx_extra_byte" }, 621 { "rx_late_collision" }, 622 { "rx_runt" }, 623 { "rx_frame_too_long" }, 624 { "rx_over_errors" }, 625 { "rx_crc_errors" }, 626 { "rx_frame_align_error" }, 627 { "rx_length_error" }, 628 { "rx_unicast" }, 629 { "rx_multicast" }, 630 { "rx_broadcast" }, 631 { "rx_packets" }, 632 { "rx_errors_total" }, 633 { "tx_errors_total" }, 634 635 /* version 2 stats */ 636 { "tx_deferral" }, 637 { "tx_packets" }, 638 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 639 { "tx_pause" }, 640 { "rx_pause" }, 641 { "rx_drop_frame" }, 642 643 /* version 3 stats */ 644 { "tx_unicast" }, 645 { "tx_multicast" }, 646 { "tx_broadcast" } 647 }; 648 649 struct nv_ethtool_stats { 650 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 651 u64 tx_zero_rexmt; 652 u64 tx_one_rexmt; 653 u64 tx_many_rexmt; 654 u64 tx_late_collision; 655 u64 tx_fifo_errors; 656 u64 tx_carrier_errors; 657 u64 tx_excess_deferral; 658 u64 tx_retry_error; 659 u64 rx_frame_error; 660 u64 rx_extra_byte; 661 u64 rx_late_collision; 662 u64 rx_runt; 663 u64 rx_frame_too_long; 664 u64 rx_over_errors; 665 u64 rx_crc_errors; 666 u64 rx_frame_align_error; 667 u64 rx_length_error; 668 u64 rx_unicast; 669 u64 rx_multicast; 670 u64 rx_broadcast; 671 u64 rx_packets; /* should be ifconfig->rx_packets */ 672 u64 rx_errors_total; 673 u64 tx_errors_total; 674 675 /* version 2 stats */ 676 u64 tx_deferral; 677 u64 tx_packets; /* should be ifconfig->tx_packets */ 678 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 679 u64 tx_pause; 680 u64 rx_pause; 681 u64 rx_drop_frame; 682 683 /* version 3 stats */ 684 u64 tx_unicast; 685 u64 tx_multicast; 686 u64 tx_broadcast; 687 }; 688 689 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 690 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 691 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 692 693 /* diagnostics */ 694 #define NV_TEST_COUNT_BASE 3 695 #define NV_TEST_COUNT_EXTENDED 4 696 697 static const struct nv_ethtool_str nv_etests_str[] = { 698 { "link (online/offline)" }, 699 { "register (offline) " }, 700 { "interrupt (offline) " }, 701 { "loopback (offline) " } 702 }; 703 704 struct register_test { 705 __u32 reg; 706 __u32 mask; 707 }; 708 709 static const struct register_test nv_registers_test[] = { 710 { NvRegUnknownSetupReg6, 0x01 }, 711 { NvRegMisc1, 0x03c }, 712 { NvRegOffloadConfig, 0x03ff }, 713 { NvRegMulticastAddrA, 0xffffffff }, 714 { NvRegTxWatermark, 0x0ff }, 715 { NvRegWakeUpFlags, 0x07777 }, 716 { 0, 0 } 717 }; 718 719 struct nv_skb_map { 720 struct sk_buff *skb; 721 dma_addr_t dma; 722 unsigned int dma_len:31; 723 unsigned int dma_single:1; 724 struct ring_desc_ex *first_tx_desc; 725 struct nv_skb_map *next_tx_ctx; 726 }; 727 728 /* 729 * SMP locking: 730 * All hardware access under netdev_priv(dev)->lock, except the performance 731 * critical parts: 732 * - rx is (pseudo-) lockless: it relies on the single-threading provided 733 * by the arch code for interrupts. 734 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 735 * needs netdev_priv(dev)->lock :-( 736 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 737 * 738 * Hardware stats updates are protected by hwstats_lock: 739 * - updated by nv_do_stats_poll (timer). This is meant to avoid 740 * integer wraparound in the NIC stats registers, at low frequency 741 * (0.1 Hz) 742 * - updated by nv_get_ethtool_stats + nv_get_stats64 743 * 744 * Software stats are accessed only through 64b synchronization points 745 * and are not subject to other synchronization techniques (single 746 * update thread on the TX or RX paths). 747 */ 748 749 /* in dev: base, irq */ 750 struct fe_priv { 751 spinlock_t lock; 752 753 struct net_device *dev; 754 struct napi_struct napi; 755 756 /* hardware stats are updated in syscall and timer */ 757 spinlock_t hwstats_lock; 758 struct nv_ethtool_stats estats; 759 760 int in_shutdown; 761 u32 linkspeed; 762 int duplex; 763 int autoneg; 764 int fixed_mode; 765 int phyaddr; 766 int wolenabled; 767 unsigned int phy_oui; 768 unsigned int phy_model; 769 unsigned int phy_rev; 770 u16 gigabit; 771 int intr_test; 772 int recover_error; 773 int quiet_count; 774 775 /* General data: RO fields */ 776 dma_addr_t ring_addr; 777 struct pci_dev *pci_dev; 778 u32 orig_mac[2]; 779 u32 events; 780 u32 irqmask; 781 u32 desc_ver; 782 u32 txrxctl_bits; 783 u32 vlanctl_bits; 784 u32 driver_data; 785 u32 device_id; 786 u32 register_size; 787 u32 mac_in_use; 788 int mgmt_version; 789 int mgmt_sema; 790 791 void __iomem *base; 792 793 /* rx specific fields. 794 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 795 */ 796 union ring_type get_rx, put_rx, first_rx, last_rx; 797 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 798 struct nv_skb_map *first_rx_ctx, *last_rx_ctx; 799 struct nv_skb_map *rx_skb; 800 801 union ring_type rx_ring; 802 unsigned int rx_buf_sz; 803 unsigned int pkt_limit; 804 struct timer_list oom_kick; 805 struct timer_list nic_poll; 806 struct timer_list stats_poll; 807 u32 nic_poll_irq; 808 int rx_ring_size; 809 810 /* RX software stats */ 811 struct u64_stats_sync swstats_rx_syncp; 812 u64 stat_rx_packets; 813 u64 stat_rx_bytes; /* not always available in HW */ 814 u64 stat_rx_missed_errors; 815 u64 stat_rx_dropped; 816 817 /* media detection workaround. 818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 819 */ 820 int need_linktimer; 821 unsigned long link_timeout; 822 /* 823 * tx specific fields. 824 */ 825 union ring_type get_tx, put_tx, first_tx, last_tx; 826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 827 struct nv_skb_map *first_tx_ctx, *last_tx_ctx; 828 struct nv_skb_map *tx_skb; 829 830 union ring_type tx_ring; 831 u32 tx_flags; 832 int tx_ring_size; 833 int tx_limit; 834 u32 tx_pkts_in_progress; 835 struct nv_skb_map *tx_change_owner; 836 struct nv_skb_map *tx_end_flip; 837 int tx_stop; 838 839 /* TX software stats */ 840 struct u64_stats_sync swstats_tx_syncp; 841 u64 stat_tx_packets; /* not always available in HW */ 842 u64 stat_tx_bytes; 843 u64 stat_tx_dropped; 844 845 /* msi/msi-x fields */ 846 u32 msi_flags; 847 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 848 849 /* flow control */ 850 u32 pause_flags; 851 852 /* power saved state */ 853 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 854 855 /* for different msi-x irq type */ 856 char name_rx[IFNAMSIZ + 3]; /* -rx */ 857 char name_tx[IFNAMSIZ + 3]; /* -tx */ 858 char name_other[IFNAMSIZ + 6]; /* -other */ 859 }; 860 861 /* 862 * Maximum number of loops until we assume that a bit in the irq mask 863 * is stuck. Overridable with module param. 864 */ 865 static int max_interrupt_work = 4; 866 867 /* 868 * Optimization can be either throuput mode or cpu mode 869 * 870 * Throughput Mode: Every tx and rx packet will generate an interrupt. 871 * CPU Mode: Interrupts are controlled by a timer. 872 */ 873 enum { 874 NV_OPTIMIZATION_MODE_THROUGHPUT, 875 NV_OPTIMIZATION_MODE_CPU, 876 NV_OPTIMIZATION_MODE_DYNAMIC 877 }; 878 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 879 880 /* 881 * Poll interval for timer irq 882 * 883 * This interval determines how frequent an interrupt is generated. 884 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 885 * Min = 0, and Max = 65535 886 */ 887 static int poll_interval = -1; 888 889 /* 890 * MSI interrupts 891 */ 892 enum { 893 NV_MSI_INT_DISABLED, 894 NV_MSI_INT_ENABLED 895 }; 896 static int msi = NV_MSI_INT_ENABLED; 897 898 /* 899 * MSIX interrupts 900 */ 901 enum { 902 NV_MSIX_INT_DISABLED, 903 NV_MSIX_INT_ENABLED 904 }; 905 static int msix = NV_MSIX_INT_ENABLED; 906 907 /* 908 * DMA 64bit 909 */ 910 enum { 911 NV_DMA_64BIT_DISABLED, 912 NV_DMA_64BIT_ENABLED 913 }; 914 static int dma_64bit = NV_DMA_64BIT_ENABLED; 915 916 /* 917 * Debug output control for tx_timeout 918 */ 919 static bool debug_tx_timeout = false; 920 921 /* 922 * Crossover Detection 923 * Realtek 8201 phy + some OEM boards do not work properly. 924 */ 925 enum { 926 NV_CROSSOVER_DETECTION_DISABLED, 927 NV_CROSSOVER_DETECTION_ENABLED 928 }; 929 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 930 931 /* 932 * Power down phy when interface is down (persists through reboot; 933 * older Linux and other OSes may not power it up again) 934 */ 935 static int phy_power_down; 936 937 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 938 { 939 return netdev_priv(dev); 940 } 941 942 static inline u8 __iomem *get_hwbase(struct net_device *dev) 943 { 944 return ((struct fe_priv *)netdev_priv(dev))->base; 945 } 946 947 static inline void pci_push(u8 __iomem *base) 948 { 949 /* force out pending posted writes */ 950 readl(base); 951 } 952 953 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 954 { 955 return le32_to_cpu(prd->flaglen) 956 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 957 } 958 959 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 960 { 961 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 962 } 963 964 static bool nv_optimized(struct fe_priv *np) 965 { 966 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 967 return false; 968 return true; 969 } 970 971 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 972 int delay, int delaymax) 973 { 974 u8 __iomem *base = get_hwbase(dev); 975 976 pci_push(base); 977 do { 978 udelay(delay); 979 delaymax -= delay; 980 if (delaymax < 0) 981 return 1; 982 } while ((readl(base + offset) & mask) != target); 983 return 0; 984 } 985 986 #define NV_SETUP_RX_RING 0x01 987 #define NV_SETUP_TX_RING 0x02 988 989 static inline u32 dma_low(dma_addr_t addr) 990 { 991 return addr; 992 } 993 994 static inline u32 dma_high(dma_addr_t addr) 995 { 996 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 997 } 998 999 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 1000 { 1001 struct fe_priv *np = get_nvpriv(dev); 1002 u8 __iomem *base = get_hwbase(dev); 1003 1004 if (!nv_optimized(np)) { 1005 if (rxtx_flags & NV_SETUP_RX_RING) 1006 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1007 if (rxtx_flags & NV_SETUP_TX_RING) 1008 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1009 } else { 1010 if (rxtx_flags & NV_SETUP_RX_RING) { 1011 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1012 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1013 } 1014 if (rxtx_flags & NV_SETUP_TX_RING) { 1015 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1016 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1017 } 1018 } 1019 } 1020 1021 static void free_rings(struct net_device *dev) 1022 { 1023 struct fe_priv *np = get_nvpriv(dev); 1024 1025 if (!nv_optimized(np)) { 1026 if (np->rx_ring.orig) 1027 dma_free_coherent(&np->pci_dev->dev, 1028 sizeof(struct ring_desc) * 1029 (np->rx_ring_size + 1030 np->tx_ring_size), 1031 np->rx_ring.orig, np->ring_addr); 1032 } else { 1033 if (np->rx_ring.ex) 1034 dma_free_coherent(&np->pci_dev->dev, 1035 sizeof(struct ring_desc_ex) * 1036 (np->rx_ring_size + 1037 np->tx_ring_size), 1038 np->rx_ring.ex, np->ring_addr); 1039 } 1040 kfree(np->rx_skb); 1041 kfree(np->tx_skb); 1042 } 1043 1044 static int using_multi_irqs(struct net_device *dev) 1045 { 1046 struct fe_priv *np = get_nvpriv(dev); 1047 1048 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1049 ((np->msi_flags & NV_MSI_X_ENABLED) && 1050 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1051 return 0; 1052 else 1053 return 1; 1054 } 1055 1056 static void nv_txrx_gate(struct net_device *dev, bool gate) 1057 { 1058 struct fe_priv *np = get_nvpriv(dev); 1059 u8 __iomem *base = get_hwbase(dev); 1060 u32 powerstate; 1061 1062 if (!np->mac_in_use && 1063 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1064 powerstate = readl(base + NvRegPowerState2); 1065 if (gate) 1066 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1067 else 1068 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1069 writel(powerstate, base + NvRegPowerState2); 1070 } 1071 } 1072 1073 static void nv_enable_irq(struct net_device *dev) 1074 { 1075 struct fe_priv *np = get_nvpriv(dev); 1076 1077 if (!using_multi_irqs(dev)) { 1078 if (np->msi_flags & NV_MSI_X_ENABLED) 1079 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1080 else 1081 enable_irq(np->pci_dev->irq); 1082 } else { 1083 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1084 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1085 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1086 } 1087 } 1088 1089 static void nv_disable_irq(struct net_device *dev) 1090 { 1091 struct fe_priv *np = get_nvpriv(dev); 1092 1093 if (!using_multi_irqs(dev)) { 1094 if (np->msi_flags & NV_MSI_X_ENABLED) 1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1096 else 1097 disable_irq(np->pci_dev->irq); 1098 } else { 1099 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1100 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1101 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1102 } 1103 } 1104 1105 /* In MSIX mode, a write to irqmask behaves as XOR */ 1106 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1107 { 1108 u8 __iomem *base = get_hwbase(dev); 1109 1110 writel(mask, base + NvRegIrqMask); 1111 } 1112 1113 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1114 { 1115 struct fe_priv *np = get_nvpriv(dev); 1116 u8 __iomem *base = get_hwbase(dev); 1117 1118 if (np->msi_flags & NV_MSI_X_ENABLED) { 1119 writel(mask, base + NvRegIrqMask); 1120 } else { 1121 if (np->msi_flags & NV_MSI_ENABLED) 1122 writel(0, base + NvRegMSIIrqMask); 1123 writel(0, base + NvRegIrqMask); 1124 } 1125 } 1126 1127 static void nv_napi_enable(struct net_device *dev) 1128 { 1129 struct fe_priv *np = get_nvpriv(dev); 1130 1131 napi_enable(&np->napi); 1132 } 1133 1134 static void nv_napi_disable(struct net_device *dev) 1135 { 1136 struct fe_priv *np = get_nvpriv(dev); 1137 1138 napi_disable(&np->napi); 1139 } 1140 1141 #define MII_READ (-1) 1142 /* mii_rw: read/write a register on the PHY. 1143 * 1144 * Caller must guarantee serialization 1145 */ 1146 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1147 { 1148 u8 __iomem *base = get_hwbase(dev); 1149 u32 reg; 1150 int retval; 1151 1152 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1153 1154 reg = readl(base + NvRegMIIControl); 1155 if (reg & NVREG_MIICTL_INUSE) { 1156 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1157 udelay(NV_MIIBUSY_DELAY); 1158 } 1159 1160 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1161 if (value != MII_READ) { 1162 writel(value, base + NvRegMIIData); 1163 reg |= NVREG_MIICTL_WRITE; 1164 } 1165 writel(reg, base + NvRegMIIControl); 1166 1167 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1168 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1169 retval = -1; 1170 } else if (value != MII_READ) { 1171 /* it was a write operation - fewer failures are detectable */ 1172 retval = 0; 1173 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1174 retval = -1; 1175 } else { 1176 retval = readl(base + NvRegMIIData); 1177 } 1178 1179 return retval; 1180 } 1181 1182 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1183 { 1184 struct fe_priv *np = netdev_priv(dev); 1185 u32 miicontrol; 1186 unsigned int tries = 0; 1187 1188 miicontrol = BMCR_RESET | bmcr_setup; 1189 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1190 return -1; 1191 1192 /* wait for 500ms */ 1193 msleep(500); 1194 1195 /* must wait till reset is deasserted */ 1196 while (miicontrol & BMCR_RESET) { 1197 usleep_range(10000, 20000); 1198 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1199 /* FIXME: 100 tries seem excessive */ 1200 if (tries++ > 100) 1201 return -1; 1202 } 1203 return 0; 1204 } 1205 1206 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1207 { 1208 static const struct { 1209 int reg; 1210 int init; 1211 } ri[] = { 1212 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1213 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1214 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1215 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1216 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1217 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1218 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1219 }; 1220 int i; 1221 1222 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1223 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1224 return PHY_ERROR; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1231 { 1232 u32 reg; 1233 u8 __iomem *base = get_hwbase(dev); 1234 u32 powerstate = readl(base + NvRegPowerState2); 1235 1236 /* need to perform hw phy reset */ 1237 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1238 writel(powerstate, base + NvRegPowerState2); 1239 msleep(25); 1240 1241 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1242 writel(powerstate, base + NvRegPowerState2); 1243 msleep(25); 1244 1245 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1246 reg |= PHY_REALTEK_INIT9; 1247 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1248 return PHY_ERROR; 1249 if (mii_rw(dev, np->phyaddr, 1250 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1251 return PHY_ERROR; 1252 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1253 if (!(reg & PHY_REALTEK_INIT11)) { 1254 reg |= PHY_REALTEK_INIT11; 1255 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1256 return PHY_ERROR; 1257 } 1258 if (mii_rw(dev, np->phyaddr, 1259 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1260 return PHY_ERROR; 1261 1262 return 0; 1263 } 1264 1265 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1266 { 1267 u32 phy_reserved; 1268 1269 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1270 phy_reserved = mii_rw(dev, np->phyaddr, 1271 PHY_REALTEK_INIT_REG6, MII_READ); 1272 phy_reserved |= PHY_REALTEK_INIT7; 1273 if (mii_rw(dev, np->phyaddr, 1274 PHY_REALTEK_INIT_REG6, phy_reserved)) 1275 return PHY_ERROR; 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1282 { 1283 u32 phy_reserved; 1284 1285 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1286 if (mii_rw(dev, np->phyaddr, 1287 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1288 return PHY_ERROR; 1289 phy_reserved = mii_rw(dev, np->phyaddr, 1290 PHY_REALTEK_INIT_REG2, MII_READ); 1291 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1292 phy_reserved |= PHY_REALTEK_INIT3; 1293 if (mii_rw(dev, np->phyaddr, 1294 PHY_REALTEK_INIT_REG2, phy_reserved)) 1295 return PHY_ERROR; 1296 if (mii_rw(dev, np->phyaddr, 1297 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1298 return PHY_ERROR; 1299 } 1300 1301 return 0; 1302 } 1303 1304 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1305 u32 phyinterface) 1306 { 1307 u32 phy_reserved; 1308 1309 if (phyinterface & PHY_RGMII) { 1310 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1311 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1312 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1313 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1314 return PHY_ERROR; 1315 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1316 phy_reserved |= PHY_CICADA_INIT5; 1317 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1318 return PHY_ERROR; 1319 } 1320 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1321 phy_reserved |= PHY_CICADA_INIT6; 1322 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1323 return PHY_ERROR; 1324 1325 return 0; 1326 } 1327 1328 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1329 { 1330 u32 phy_reserved; 1331 1332 if (mii_rw(dev, np->phyaddr, 1333 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1334 return PHY_ERROR; 1335 if (mii_rw(dev, np->phyaddr, 1336 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1337 return PHY_ERROR; 1338 phy_reserved = mii_rw(dev, np->phyaddr, 1339 PHY_VITESSE_INIT_REG4, MII_READ); 1340 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1341 return PHY_ERROR; 1342 phy_reserved = mii_rw(dev, np->phyaddr, 1343 PHY_VITESSE_INIT_REG3, MII_READ); 1344 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1345 phy_reserved |= PHY_VITESSE_INIT3; 1346 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1347 return PHY_ERROR; 1348 if (mii_rw(dev, np->phyaddr, 1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1350 return PHY_ERROR; 1351 if (mii_rw(dev, np->phyaddr, 1352 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1353 return PHY_ERROR; 1354 phy_reserved = mii_rw(dev, np->phyaddr, 1355 PHY_VITESSE_INIT_REG4, MII_READ); 1356 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1357 phy_reserved |= PHY_VITESSE_INIT3; 1358 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1359 return PHY_ERROR; 1360 phy_reserved = mii_rw(dev, np->phyaddr, 1361 PHY_VITESSE_INIT_REG3, MII_READ); 1362 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1363 return PHY_ERROR; 1364 if (mii_rw(dev, np->phyaddr, 1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1366 return PHY_ERROR; 1367 if (mii_rw(dev, np->phyaddr, 1368 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1369 return PHY_ERROR; 1370 phy_reserved = mii_rw(dev, np->phyaddr, 1371 PHY_VITESSE_INIT_REG4, MII_READ); 1372 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1373 return PHY_ERROR; 1374 phy_reserved = mii_rw(dev, np->phyaddr, 1375 PHY_VITESSE_INIT_REG3, MII_READ); 1376 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1377 phy_reserved |= PHY_VITESSE_INIT8; 1378 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1379 return PHY_ERROR; 1380 if (mii_rw(dev, np->phyaddr, 1381 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1382 return PHY_ERROR; 1383 if (mii_rw(dev, np->phyaddr, 1384 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1385 return PHY_ERROR; 1386 1387 return 0; 1388 } 1389 1390 static int phy_init(struct net_device *dev) 1391 { 1392 struct fe_priv *np = get_nvpriv(dev); 1393 u8 __iomem *base = get_hwbase(dev); 1394 u32 phyinterface; 1395 u32 mii_status, mii_control, mii_control_1000, reg; 1396 1397 /* phy errata for E3016 phy */ 1398 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1399 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1400 reg &= ~PHY_MARVELL_E3016_INITMASK; 1401 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1402 netdev_info(dev, "%s: phy write to errata reg failed\n", 1403 pci_name(np->pci_dev)); 1404 return PHY_ERROR; 1405 } 1406 } 1407 if (np->phy_oui == PHY_OUI_REALTEK) { 1408 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1409 np->phy_rev == PHY_REV_REALTEK_8211B) { 1410 if (init_realtek_8211b(dev, np)) { 1411 netdev_info(dev, "%s: phy init failed\n", 1412 pci_name(np->pci_dev)); 1413 return PHY_ERROR; 1414 } 1415 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1416 np->phy_rev == PHY_REV_REALTEK_8211C) { 1417 if (init_realtek_8211c(dev, np)) { 1418 netdev_info(dev, "%s: phy init failed\n", 1419 pci_name(np->pci_dev)); 1420 return PHY_ERROR; 1421 } 1422 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1423 if (init_realtek_8201(dev, np)) { 1424 netdev_info(dev, "%s: phy init failed\n", 1425 pci_name(np->pci_dev)); 1426 return PHY_ERROR; 1427 } 1428 } 1429 } 1430 1431 /* set advertise register */ 1432 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1433 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1434 ADVERTISE_100HALF | ADVERTISE_100FULL | 1435 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1436 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1437 netdev_info(dev, "%s: phy write to advertise failed\n", 1438 pci_name(np->pci_dev)); 1439 return PHY_ERROR; 1440 } 1441 1442 /* get phy interface type */ 1443 phyinterface = readl(base + NvRegPhyInterface); 1444 1445 /* see if gigabit phy */ 1446 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1447 if (mii_status & PHY_GIGABIT) { 1448 np->gigabit = PHY_GIGABIT; 1449 mii_control_1000 = mii_rw(dev, np->phyaddr, 1450 MII_CTRL1000, MII_READ); 1451 mii_control_1000 &= ~ADVERTISE_1000HALF; 1452 if (phyinterface & PHY_RGMII) 1453 mii_control_1000 |= ADVERTISE_1000FULL; 1454 else 1455 mii_control_1000 &= ~ADVERTISE_1000FULL; 1456 1457 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1458 netdev_info(dev, "%s: phy init failed\n", 1459 pci_name(np->pci_dev)); 1460 return PHY_ERROR; 1461 } 1462 } else 1463 np->gigabit = 0; 1464 1465 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1466 mii_control |= BMCR_ANENABLE; 1467 1468 if (np->phy_oui == PHY_OUI_REALTEK && 1469 np->phy_model == PHY_MODEL_REALTEK_8211 && 1470 np->phy_rev == PHY_REV_REALTEK_8211C) { 1471 /* start autoneg since we already performed hw reset above */ 1472 mii_control |= BMCR_ANRESTART; 1473 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1474 netdev_info(dev, "%s: phy init failed\n", 1475 pci_name(np->pci_dev)); 1476 return PHY_ERROR; 1477 } 1478 } else { 1479 /* reset the phy 1480 * (certain phys need bmcr to be setup with reset) 1481 */ 1482 if (phy_reset(dev, mii_control)) { 1483 netdev_info(dev, "%s: phy reset failed\n", 1484 pci_name(np->pci_dev)); 1485 return PHY_ERROR; 1486 } 1487 } 1488 1489 /* phy vendor specific configuration */ 1490 if (np->phy_oui == PHY_OUI_CICADA) { 1491 if (init_cicada(dev, np, phyinterface)) { 1492 netdev_info(dev, "%s: phy init failed\n", 1493 pci_name(np->pci_dev)); 1494 return PHY_ERROR; 1495 } 1496 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1497 if (init_vitesse(dev, np)) { 1498 netdev_info(dev, "%s: phy init failed\n", 1499 pci_name(np->pci_dev)); 1500 return PHY_ERROR; 1501 } 1502 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1503 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1504 np->phy_rev == PHY_REV_REALTEK_8211B) { 1505 /* reset could have cleared these out, set them back */ 1506 if (init_realtek_8211b(dev, np)) { 1507 netdev_info(dev, "%s: phy init failed\n", 1508 pci_name(np->pci_dev)); 1509 return PHY_ERROR; 1510 } 1511 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1512 if (init_realtek_8201(dev, np) || 1513 init_realtek_8201_cross(dev, np)) { 1514 netdev_info(dev, "%s: phy init failed\n", 1515 pci_name(np->pci_dev)); 1516 return PHY_ERROR; 1517 } 1518 } 1519 } 1520 1521 /* some phys clear out pause advertisement on reset, set it back */ 1522 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1523 1524 /* restart auto negotiation, power down phy */ 1525 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1526 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1527 if (phy_power_down) 1528 mii_control |= BMCR_PDOWN; 1529 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1530 return PHY_ERROR; 1531 1532 return 0; 1533 } 1534 1535 static void nv_start_rx(struct net_device *dev) 1536 { 1537 struct fe_priv *np = netdev_priv(dev); 1538 u8 __iomem *base = get_hwbase(dev); 1539 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1540 1541 /* Already running? Stop it. */ 1542 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1543 rx_ctrl &= ~NVREG_RCVCTL_START; 1544 writel(rx_ctrl, base + NvRegReceiverControl); 1545 pci_push(base); 1546 } 1547 writel(np->linkspeed, base + NvRegLinkSpeed); 1548 pci_push(base); 1549 rx_ctrl |= NVREG_RCVCTL_START; 1550 if (np->mac_in_use) 1551 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1552 writel(rx_ctrl, base + NvRegReceiverControl); 1553 pci_push(base); 1554 } 1555 1556 static void nv_stop_rx(struct net_device *dev) 1557 { 1558 struct fe_priv *np = netdev_priv(dev); 1559 u8 __iomem *base = get_hwbase(dev); 1560 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1561 1562 if (!np->mac_in_use) 1563 rx_ctrl &= ~NVREG_RCVCTL_START; 1564 else 1565 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1566 writel(rx_ctrl, base + NvRegReceiverControl); 1567 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1568 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1569 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1570 __func__); 1571 1572 udelay(NV_RXSTOP_DELAY2); 1573 if (!np->mac_in_use) 1574 writel(0, base + NvRegLinkSpeed); 1575 } 1576 1577 static void nv_start_tx(struct net_device *dev) 1578 { 1579 struct fe_priv *np = netdev_priv(dev); 1580 u8 __iomem *base = get_hwbase(dev); 1581 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1582 1583 tx_ctrl |= NVREG_XMITCTL_START; 1584 if (np->mac_in_use) 1585 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1586 writel(tx_ctrl, base + NvRegTransmitterControl); 1587 pci_push(base); 1588 } 1589 1590 static void nv_stop_tx(struct net_device *dev) 1591 { 1592 struct fe_priv *np = netdev_priv(dev); 1593 u8 __iomem *base = get_hwbase(dev); 1594 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1595 1596 if (!np->mac_in_use) 1597 tx_ctrl &= ~NVREG_XMITCTL_START; 1598 else 1599 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1600 writel(tx_ctrl, base + NvRegTransmitterControl); 1601 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1602 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1603 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1604 __func__); 1605 1606 udelay(NV_TXSTOP_DELAY2); 1607 if (!np->mac_in_use) 1608 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1609 base + NvRegTransmitPoll); 1610 } 1611 1612 static void nv_start_rxtx(struct net_device *dev) 1613 { 1614 nv_start_rx(dev); 1615 nv_start_tx(dev); 1616 } 1617 1618 static void nv_stop_rxtx(struct net_device *dev) 1619 { 1620 nv_stop_rx(dev); 1621 nv_stop_tx(dev); 1622 } 1623 1624 static void nv_txrx_reset(struct net_device *dev) 1625 { 1626 struct fe_priv *np = netdev_priv(dev); 1627 u8 __iomem *base = get_hwbase(dev); 1628 1629 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1630 pci_push(base); 1631 udelay(NV_TXRX_RESET_DELAY); 1632 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1633 pci_push(base); 1634 } 1635 1636 static void nv_mac_reset(struct net_device *dev) 1637 { 1638 struct fe_priv *np = netdev_priv(dev); 1639 u8 __iomem *base = get_hwbase(dev); 1640 u32 temp1, temp2, temp3; 1641 1642 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1643 pci_push(base); 1644 1645 /* save registers since they will be cleared on reset */ 1646 temp1 = readl(base + NvRegMacAddrA); 1647 temp2 = readl(base + NvRegMacAddrB); 1648 temp3 = readl(base + NvRegTransmitPoll); 1649 1650 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1651 pci_push(base); 1652 udelay(NV_MAC_RESET_DELAY); 1653 writel(0, base + NvRegMacReset); 1654 pci_push(base); 1655 udelay(NV_MAC_RESET_DELAY); 1656 1657 /* restore saved registers */ 1658 writel(temp1, base + NvRegMacAddrA); 1659 writel(temp2, base + NvRegMacAddrB); 1660 writel(temp3, base + NvRegTransmitPoll); 1661 1662 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1663 pci_push(base); 1664 } 1665 1666 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1667 static void nv_update_stats(struct net_device *dev) 1668 { 1669 struct fe_priv *np = netdev_priv(dev); 1670 u8 __iomem *base = get_hwbase(dev); 1671 1672 /* If it happens that this is run in top-half context, then 1673 * replace the spin_lock of hwstats_lock with 1674 * spin_lock_irqsave() in calling functions. */ 1675 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1676 assert_spin_locked(&np->hwstats_lock); 1677 1678 /* query hardware */ 1679 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1680 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1681 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1682 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1683 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1684 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1685 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1686 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1687 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1688 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1689 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1690 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1691 np->estats.rx_runt += readl(base + NvRegRxRunt); 1692 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1693 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1694 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1695 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1696 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1697 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1698 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1699 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1700 np->estats.rx_packets = 1701 np->estats.rx_unicast + 1702 np->estats.rx_multicast + 1703 np->estats.rx_broadcast; 1704 np->estats.rx_errors_total = 1705 np->estats.rx_crc_errors + 1706 np->estats.rx_over_errors + 1707 np->estats.rx_frame_error + 1708 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1709 np->estats.rx_late_collision + 1710 np->estats.rx_runt + 1711 np->estats.rx_frame_too_long; 1712 np->estats.tx_errors_total = 1713 np->estats.tx_late_collision + 1714 np->estats.tx_fifo_errors + 1715 np->estats.tx_carrier_errors + 1716 np->estats.tx_excess_deferral + 1717 np->estats.tx_retry_error; 1718 1719 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1720 np->estats.tx_deferral += readl(base + NvRegTxDef); 1721 np->estats.tx_packets += readl(base + NvRegTxFrame); 1722 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1723 np->estats.tx_pause += readl(base + NvRegTxPause); 1724 np->estats.rx_pause += readl(base + NvRegRxPause); 1725 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1726 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1727 } 1728 1729 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1730 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1731 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1732 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1733 } 1734 } 1735 1736 /* 1737 * nv_get_stats64: dev->ndo_get_stats64 function 1738 * Get latest stats value from the nic. 1739 * Called with read_lock(&dev_base_lock) held for read - 1740 * only synchronized against unregister_netdevice. 1741 */ 1742 static void 1743 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1744 __acquires(&netdev_priv(dev)->hwstats_lock) 1745 __releases(&netdev_priv(dev)->hwstats_lock) 1746 { 1747 struct fe_priv *np = netdev_priv(dev); 1748 unsigned int syncp_start; 1749 1750 /* 1751 * Note: because HW stats are not always available and for 1752 * consistency reasons, the following ifconfig stats are 1753 * managed by software: rx_bytes, tx_bytes, rx_packets and 1754 * tx_packets. The related hardware stats reported by ethtool 1755 * should be equivalent to these ifconfig stats, with 4 1756 * additional bytes per packet (Ethernet FCS CRC), except for 1757 * tx_packets when TSO kicks in. 1758 */ 1759 1760 /* software stats */ 1761 do { 1762 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp); 1763 storage->rx_packets = np->stat_rx_packets; 1764 storage->rx_bytes = np->stat_rx_bytes; 1765 storage->rx_dropped = np->stat_rx_dropped; 1766 storage->rx_missed_errors = np->stat_rx_missed_errors; 1767 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start)); 1768 1769 do { 1770 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp); 1771 storage->tx_packets = np->stat_tx_packets; 1772 storage->tx_bytes = np->stat_tx_bytes; 1773 storage->tx_dropped = np->stat_tx_dropped; 1774 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start)); 1775 1776 /* If the nic supports hw counters then retrieve latest values */ 1777 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1778 spin_lock_bh(&np->hwstats_lock); 1779 1780 nv_update_stats(dev); 1781 1782 /* generic stats */ 1783 storage->rx_errors = np->estats.rx_errors_total; 1784 storage->tx_errors = np->estats.tx_errors_total; 1785 1786 /* meaningful only when NIC supports stats v3 */ 1787 storage->multicast = np->estats.rx_multicast; 1788 1789 /* detailed rx_errors */ 1790 storage->rx_length_errors = np->estats.rx_length_error; 1791 storage->rx_over_errors = np->estats.rx_over_errors; 1792 storage->rx_crc_errors = np->estats.rx_crc_errors; 1793 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1794 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1795 1796 /* detailed tx_errors */ 1797 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1798 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1799 1800 spin_unlock_bh(&np->hwstats_lock); 1801 } 1802 } 1803 1804 /* 1805 * nv_alloc_rx: fill rx ring entries. 1806 * Return 1 if the allocations for the skbs failed and the 1807 * rx engine is without Available descriptors 1808 */ 1809 static int nv_alloc_rx(struct net_device *dev) 1810 { 1811 struct fe_priv *np = netdev_priv(dev); 1812 struct ring_desc *less_rx; 1813 1814 less_rx = np->get_rx.orig; 1815 if (less_rx-- == np->first_rx.orig) 1816 less_rx = np->last_rx.orig; 1817 1818 while (np->put_rx.orig != less_rx) { 1819 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1820 if (skb) { 1821 np->put_rx_ctx->skb = skb; 1822 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1823 skb->data, 1824 skb_tailroom(skb), 1825 DMA_FROM_DEVICE); 1826 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1827 np->put_rx_ctx->dma))) { 1828 kfree_skb(skb); 1829 goto packet_dropped; 1830 } 1831 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1832 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1833 wmb(); 1834 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1835 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1836 np->put_rx.orig = np->first_rx.orig; 1837 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1838 np->put_rx_ctx = np->first_rx_ctx; 1839 } else { 1840 packet_dropped: 1841 u64_stats_update_begin(&np->swstats_rx_syncp); 1842 np->stat_rx_dropped++; 1843 u64_stats_update_end(&np->swstats_rx_syncp); 1844 return 1; 1845 } 1846 } 1847 return 0; 1848 } 1849 1850 static int nv_alloc_rx_optimized(struct net_device *dev) 1851 { 1852 struct fe_priv *np = netdev_priv(dev); 1853 struct ring_desc_ex *less_rx; 1854 1855 less_rx = np->get_rx.ex; 1856 if (less_rx-- == np->first_rx.ex) 1857 less_rx = np->last_rx.ex; 1858 1859 while (np->put_rx.ex != less_rx) { 1860 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1861 if (skb) { 1862 np->put_rx_ctx->skb = skb; 1863 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1864 skb->data, 1865 skb_tailroom(skb), 1866 DMA_FROM_DEVICE); 1867 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1868 np->put_rx_ctx->dma))) { 1869 kfree_skb(skb); 1870 goto packet_dropped; 1871 } 1872 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1873 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1874 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1875 wmb(); 1876 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1877 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1878 np->put_rx.ex = np->first_rx.ex; 1879 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1880 np->put_rx_ctx = np->first_rx_ctx; 1881 } else { 1882 packet_dropped: 1883 u64_stats_update_begin(&np->swstats_rx_syncp); 1884 np->stat_rx_dropped++; 1885 u64_stats_update_end(&np->swstats_rx_syncp); 1886 return 1; 1887 } 1888 } 1889 return 0; 1890 } 1891 1892 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1893 static void nv_do_rx_refill(struct timer_list *t) 1894 { 1895 struct fe_priv *np = from_timer(np, t, oom_kick); 1896 1897 /* Just reschedule NAPI rx processing */ 1898 napi_schedule(&np->napi); 1899 } 1900 1901 static void nv_init_rx(struct net_device *dev) 1902 { 1903 struct fe_priv *np = netdev_priv(dev); 1904 int i; 1905 1906 np->get_rx = np->put_rx = np->first_rx = np->rx_ring; 1907 1908 if (!nv_optimized(np)) 1909 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1910 else 1911 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1912 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb; 1913 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1914 1915 for (i = 0; i < np->rx_ring_size; i++) { 1916 if (!nv_optimized(np)) { 1917 np->rx_ring.orig[i].flaglen = 0; 1918 np->rx_ring.orig[i].buf = 0; 1919 } else { 1920 np->rx_ring.ex[i].flaglen = 0; 1921 np->rx_ring.ex[i].txvlan = 0; 1922 np->rx_ring.ex[i].bufhigh = 0; 1923 np->rx_ring.ex[i].buflow = 0; 1924 } 1925 np->rx_skb[i].skb = NULL; 1926 np->rx_skb[i].dma = 0; 1927 } 1928 } 1929 1930 static void nv_init_tx(struct net_device *dev) 1931 { 1932 struct fe_priv *np = netdev_priv(dev); 1933 int i; 1934 1935 np->get_tx = np->put_tx = np->first_tx = np->tx_ring; 1936 1937 if (!nv_optimized(np)) 1938 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1939 else 1940 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1941 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb; 1942 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1943 netdev_reset_queue(np->dev); 1944 np->tx_pkts_in_progress = 0; 1945 np->tx_change_owner = NULL; 1946 np->tx_end_flip = NULL; 1947 np->tx_stop = 0; 1948 1949 for (i = 0; i < np->tx_ring_size; i++) { 1950 if (!nv_optimized(np)) { 1951 np->tx_ring.orig[i].flaglen = 0; 1952 np->tx_ring.orig[i].buf = 0; 1953 } else { 1954 np->tx_ring.ex[i].flaglen = 0; 1955 np->tx_ring.ex[i].txvlan = 0; 1956 np->tx_ring.ex[i].bufhigh = 0; 1957 np->tx_ring.ex[i].buflow = 0; 1958 } 1959 np->tx_skb[i].skb = NULL; 1960 np->tx_skb[i].dma = 0; 1961 np->tx_skb[i].dma_len = 0; 1962 np->tx_skb[i].dma_single = 0; 1963 np->tx_skb[i].first_tx_desc = NULL; 1964 np->tx_skb[i].next_tx_ctx = NULL; 1965 } 1966 } 1967 1968 static int nv_init_ring(struct net_device *dev) 1969 { 1970 struct fe_priv *np = netdev_priv(dev); 1971 1972 nv_init_tx(dev); 1973 nv_init_rx(dev); 1974 1975 if (!nv_optimized(np)) 1976 return nv_alloc_rx(dev); 1977 else 1978 return nv_alloc_rx_optimized(dev); 1979 } 1980 1981 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1982 { 1983 if (tx_skb->dma) { 1984 if (tx_skb->dma_single) 1985 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma, 1986 tx_skb->dma_len, 1987 DMA_TO_DEVICE); 1988 else 1989 pci_unmap_page(np->pci_dev, tx_skb->dma, 1990 tx_skb->dma_len, 1991 PCI_DMA_TODEVICE); 1992 tx_skb->dma = 0; 1993 } 1994 } 1995 1996 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1997 { 1998 nv_unmap_txskb(np, tx_skb); 1999 if (tx_skb->skb) { 2000 dev_kfree_skb_any(tx_skb->skb); 2001 tx_skb->skb = NULL; 2002 return 1; 2003 } 2004 return 0; 2005 } 2006 2007 static void nv_drain_tx(struct net_device *dev) 2008 { 2009 struct fe_priv *np = netdev_priv(dev); 2010 unsigned int i; 2011 2012 for (i = 0; i < np->tx_ring_size; i++) { 2013 if (!nv_optimized(np)) { 2014 np->tx_ring.orig[i].flaglen = 0; 2015 np->tx_ring.orig[i].buf = 0; 2016 } else { 2017 np->tx_ring.ex[i].flaglen = 0; 2018 np->tx_ring.ex[i].txvlan = 0; 2019 np->tx_ring.ex[i].bufhigh = 0; 2020 np->tx_ring.ex[i].buflow = 0; 2021 } 2022 if (nv_release_txskb(np, &np->tx_skb[i])) { 2023 u64_stats_update_begin(&np->swstats_tx_syncp); 2024 np->stat_tx_dropped++; 2025 u64_stats_update_end(&np->swstats_tx_syncp); 2026 } 2027 np->tx_skb[i].dma = 0; 2028 np->tx_skb[i].dma_len = 0; 2029 np->tx_skb[i].dma_single = 0; 2030 np->tx_skb[i].first_tx_desc = NULL; 2031 np->tx_skb[i].next_tx_ctx = NULL; 2032 } 2033 np->tx_pkts_in_progress = 0; 2034 np->tx_change_owner = NULL; 2035 np->tx_end_flip = NULL; 2036 } 2037 2038 static void nv_drain_rx(struct net_device *dev) 2039 { 2040 struct fe_priv *np = netdev_priv(dev); 2041 int i; 2042 2043 for (i = 0; i < np->rx_ring_size; i++) { 2044 if (!nv_optimized(np)) { 2045 np->rx_ring.orig[i].flaglen = 0; 2046 np->rx_ring.orig[i].buf = 0; 2047 } else { 2048 np->rx_ring.ex[i].flaglen = 0; 2049 np->rx_ring.ex[i].txvlan = 0; 2050 np->rx_ring.ex[i].bufhigh = 0; 2051 np->rx_ring.ex[i].buflow = 0; 2052 } 2053 wmb(); 2054 if (np->rx_skb[i].skb) { 2055 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma, 2056 (skb_end_pointer(np->rx_skb[i].skb) - 2057 np->rx_skb[i].skb->data), 2058 DMA_FROM_DEVICE); 2059 dev_kfree_skb(np->rx_skb[i].skb); 2060 np->rx_skb[i].skb = NULL; 2061 } 2062 } 2063 } 2064 2065 static void nv_drain_rxtx(struct net_device *dev) 2066 { 2067 nv_drain_tx(dev); 2068 nv_drain_rx(dev); 2069 } 2070 2071 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2072 { 2073 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2074 } 2075 2076 static void nv_legacybackoff_reseed(struct net_device *dev) 2077 { 2078 u8 __iomem *base = get_hwbase(dev); 2079 u32 reg; 2080 u32 low; 2081 int tx_status = 0; 2082 2083 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2084 get_random_bytes(&low, sizeof(low)); 2085 reg |= low & NVREG_SLOTTIME_MASK; 2086 2087 /* Need to stop tx before change takes effect. 2088 * Caller has already gained np->lock. 2089 */ 2090 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2091 if (tx_status) 2092 nv_stop_tx(dev); 2093 nv_stop_rx(dev); 2094 writel(reg, base + NvRegSlotTime); 2095 if (tx_status) 2096 nv_start_tx(dev); 2097 nv_start_rx(dev); 2098 } 2099 2100 /* Gear Backoff Seeds */ 2101 #define BACKOFF_SEEDSET_ROWS 8 2102 #define BACKOFF_SEEDSET_LFSRS 15 2103 2104 /* Known Good seed sets */ 2105 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2106 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2107 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2108 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2109 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2110 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2111 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2112 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2113 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2114 2115 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2116 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2117 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2118 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2119 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2120 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2121 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2122 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2123 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2124 2125 static void nv_gear_backoff_reseed(struct net_device *dev) 2126 { 2127 u8 __iomem *base = get_hwbase(dev); 2128 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2129 u32 temp, seedset, combinedSeed; 2130 int i; 2131 2132 /* Setup seed for free running LFSR */ 2133 /* We are going to read the time stamp counter 3 times 2134 and swizzle bits around to increase randomness */ 2135 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2136 miniseed1 &= 0x0fff; 2137 if (miniseed1 == 0) 2138 miniseed1 = 0xabc; 2139 2140 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2141 miniseed2 &= 0x0fff; 2142 if (miniseed2 == 0) 2143 miniseed2 = 0xabc; 2144 miniseed2_reversed = 2145 ((miniseed2 & 0xF00) >> 8) | 2146 (miniseed2 & 0x0F0) | 2147 ((miniseed2 & 0x00F) << 8); 2148 2149 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2150 miniseed3 &= 0x0fff; 2151 if (miniseed3 == 0) 2152 miniseed3 = 0xabc; 2153 miniseed3_reversed = 2154 ((miniseed3 & 0xF00) >> 8) | 2155 (miniseed3 & 0x0F0) | 2156 ((miniseed3 & 0x00F) << 8); 2157 2158 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2159 (miniseed2 ^ miniseed3_reversed); 2160 2161 /* Seeds can not be zero */ 2162 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2163 combinedSeed |= 0x08; 2164 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2165 combinedSeed |= 0x8000; 2166 2167 /* No need to disable tx here */ 2168 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2169 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2170 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2171 writel(temp, base + NvRegBackOffControl); 2172 2173 /* Setup seeds for all gear LFSRs. */ 2174 get_random_bytes(&seedset, sizeof(seedset)); 2175 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2176 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2177 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2178 temp |= main_seedset[seedset][i-1] & 0x3ff; 2179 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2180 writel(temp, base + NvRegBackOffControl); 2181 } 2182 } 2183 2184 /* 2185 * nv_start_xmit: dev->hard_start_xmit function 2186 * Called with netif_tx_lock held. 2187 */ 2188 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2189 { 2190 struct fe_priv *np = netdev_priv(dev); 2191 u32 tx_flags = 0; 2192 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2193 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2194 unsigned int i; 2195 u32 offset = 0; 2196 u32 bcnt; 2197 u32 size = skb_headlen(skb); 2198 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2199 u32 empty_slots; 2200 struct ring_desc *put_tx; 2201 struct ring_desc *start_tx; 2202 struct ring_desc *prev_tx; 2203 struct nv_skb_map *prev_tx_ctx; 2204 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL; 2205 unsigned long flags; 2206 2207 /* add fragments to entries count */ 2208 for (i = 0; i < fragments; i++) { 2209 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2210 2211 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2212 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2213 } 2214 2215 spin_lock_irqsave(&np->lock, flags); 2216 empty_slots = nv_get_empty_tx_slots(np); 2217 if (unlikely(empty_slots <= entries)) { 2218 netif_stop_queue(dev); 2219 np->tx_stop = 1; 2220 spin_unlock_irqrestore(&np->lock, flags); 2221 return NETDEV_TX_BUSY; 2222 } 2223 spin_unlock_irqrestore(&np->lock, flags); 2224 2225 start_tx = put_tx = np->put_tx.orig; 2226 2227 /* setup the header buffer */ 2228 do { 2229 prev_tx = put_tx; 2230 prev_tx_ctx = np->put_tx_ctx; 2231 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2232 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2233 skb->data + offset, bcnt, 2234 DMA_TO_DEVICE); 2235 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2236 np->put_tx_ctx->dma))) { 2237 /* on DMA mapping error - drop the packet */ 2238 dev_kfree_skb_any(skb); 2239 u64_stats_update_begin(&np->swstats_tx_syncp); 2240 np->stat_tx_dropped++; 2241 u64_stats_update_end(&np->swstats_tx_syncp); 2242 return NETDEV_TX_OK; 2243 } 2244 np->put_tx_ctx->dma_len = bcnt; 2245 np->put_tx_ctx->dma_single = 1; 2246 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2247 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2248 2249 tx_flags = np->tx_flags; 2250 offset += bcnt; 2251 size -= bcnt; 2252 if (unlikely(put_tx++ == np->last_tx.orig)) 2253 put_tx = np->first_tx.orig; 2254 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2255 np->put_tx_ctx = np->first_tx_ctx; 2256 } while (size); 2257 2258 /* setup the fragments */ 2259 for (i = 0; i < fragments; i++) { 2260 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2261 u32 frag_size = skb_frag_size(frag); 2262 offset = 0; 2263 2264 do { 2265 prev_tx = put_tx; 2266 prev_tx_ctx = np->put_tx_ctx; 2267 if (!start_tx_ctx) 2268 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2269 2270 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2271 np->put_tx_ctx->dma = skb_frag_dma_map( 2272 &np->pci_dev->dev, 2273 frag, offset, 2274 bcnt, 2275 DMA_TO_DEVICE); 2276 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2277 np->put_tx_ctx->dma))) { 2278 2279 /* Unwind the mapped fragments */ 2280 do { 2281 nv_unmap_txskb(np, start_tx_ctx); 2282 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2283 tmp_tx_ctx = np->first_tx_ctx; 2284 } while (tmp_tx_ctx != np->put_tx_ctx); 2285 dev_kfree_skb_any(skb); 2286 np->put_tx_ctx = start_tx_ctx; 2287 u64_stats_update_begin(&np->swstats_tx_syncp); 2288 np->stat_tx_dropped++; 2289 u64_stats_update_end(&np->swstats_tx_syncp); 2290 return NETDEV_TX_OK; 2291 } 2292 2293 np->put_tx_ctx->dma_len = bcnt; 2294 np->put_tx_ctx->dma_single = 0; 2295 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2296 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2297 2298 offset += bcnt; 2299 frag_size -= bcnt; 2300 if (unlikely(put_tx++ == np->last_tx.orig)) 2301 put_tx = np->first_tx.orig; 2302 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2303 np->put_tx_ctx = np->first_tx_ctx; 2304 } while (frag_size); 2305 } 2306 2307 /* set last fragment flag */ 2308 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2309 2310 /* save skb in this slot's context area */ 2311 prev_tx_ctx->skb = skb; 2312 2313 if (skb_is_gso(skb)) 2314 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2315 else 2316 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2317 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2318 2319 spin_lock_irqsave(&np->lock, flags); 2320 2321 /* set tx flags */ 2322 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2323 2324 netdev_sent_queue(np->dev, skb->len); 2325 2326 skb_tx_timestamp(skb); 2327 2328 np->put_tx.orig = put_tx; 2329 2330 spin_unlock_irqrestore(&np->lock, flags); 2331 2332 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2333 return NETDEV_TX_OK; 2334 } 2335 2336 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2337 struct net_device *dev) 2338 { 2339 struct fe_priv *np = netdev_priv(dev); 2340 u32 tx_flags = 0; 2341 u32 tx_flags_extra; 2342 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2343 unsigned int i; 2344 u32 offset = 0; 2345 u32 bcnt; 2346 u32 size = skb_headlen(skb); 2347 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2348 u32 empty_slots; 2349 struct ring_desc_ex *put_tx; 2350 struct ring_desc_ex *start_tx; 2351 struct ring_desc_ex *prev_tx; 2352 struct nv_skb_map *prev_tx_ctx; 2353 struct nv_skb_map *start_tx_ctx = NULL; 2354 struct nv_skb_map *tmp_tx_ctx = NULL; 2355 unsigned long flags; 2356 2357 /* add fragments to entries count */ 2358 for (i = 0; i < fragments; i++) { 2359 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2360 2361 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2362 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2363 } 2364 2365 spin_lock_irqsave(&np->lock, flags); 2366 empty_slots = nv_get_empty_tx_slots(np); 2367 if (unlikely(empty_slots <= entries)) { 2368 netif_stop_queue(dev); 2369 np->tx_stop = 1; 2370 spin_unlock_irqrestore(&np->lock, flags); 2371 return NETDEV_TX_BUSY; 2372 } 2373 spin_unlock_irqrestore(&np->lock, flags); 2374 2375 start_tx = put_tx = np->put_tx.ex; 2376 start_tx_ctx = np->put_tx_ctx; 2377 2378 /* setup the header buffer */ 2379 do { 2380 prev_tx = put_tx; 2381 prev_tx_ctx = np->put_tx_ctx; 2382 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2383 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2384 skb->data + offset, bcnt, 2385 DMA_TO_DEVICE); 2386 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2387 np->put_tx_ctx->dma))) { 2388 /* on DMA mapping error - drop the packet */ 2389 dev_kfree_skb_any(skb); 2390 u64_stats_update_begin(&np->swstats_tx_syncp); 2391 np->stat_tx_dropped++; 2392 u64_stats_update_end(&np->swstats_tx_syncp); 2393 return NETDEV_TX_OK; 2394 } 2395 np->put_tx_ctx->dma_len = bcnt; 2396 np->put_tx_ctx->dma_single = 1; 2397 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2398 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2399 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2400 2401 tx_flags = NV_TX2_VALID; 2402 offset += bcnt; 2403 size -= bcnt; 2404 if (unlikely(put_tx++ == np->last_tx.ex)) 2405 put_tx = np->first_tx.ex; 2406 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2407 np->put_tx_ctx = np->first_tx_ctx; 2408 } while (size); 2409 2410 /* setup the fragments */ 2411 for (i = 0; i < fragments; i++) { 2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2413 u32 frag_size = skb_frag_size(frag); 2414 offset = 0; 2415 2416 do { 2417 prev_tx = put_tx; 2418 prev_tx_ctx = np->put_tx_ctx; 2419 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2420 if (!start_tx_ctx) 2421 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2422 np->put_tx_ctx->dma = skb_frag_dma_map( 2423 &np->pci_dev->dev, 2424 frag, offset, 2425 bcnt, 2426 DMA_TO_DEVICE); 2427 2428 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2429 np->put_tx_ctx->dma))) { 2430 2431 /* Unwind the mapped fragments */ 2432 do { 2433 nv_unmap_txskb(np, start_tx_ctx); 2434 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2435 tmp_tx_ctx = np->first_tx_ctx; 2436 } while (tmp_tx_ctx != np->put_tx_ctx); 2437 dev_kfree_skb_any(skb); 2438 np->put_tx_ctx = start_tx_ctx; 2439 u64_stats_update_begin(&np->swstats_tx_syncp); 2440 np->stat_tx_dropped++; 2441 u64_stats_update_end(&np->swstats_tx_syncp); 2442 return NETDEV_TX_OK; 2443 } 2444 np->put_tx_ctx->dma_len = bcnt; 2445 np->put_tx_ctx->dma_single = 0; 2446 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2447 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2448 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2449 2450 offset += bcnt; 2451 frag_size -= bcnt; 2452 if (unlikely(put_tx++ == np->last_tx.ex)) 2453 put_tx = np->first_tx.ex; 2454 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2455 np->put_tx_ctx = np->first_tx_ctx; 2456 } while (frag_size); 2457 } 2458 2459 /* set last fragment flag */ 2460 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2461 2462 /* save skb in this slot's context area */ 2463 prev_tx_ctx->skb = skb; 2464 2465 if (skb_is_gso(skb)) 2466 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2467 else 2468 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2469 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2470 2471 /* vlan tag */ 2472 if (skb_vlan_tag_present(skb)) 2473 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2474 skb_vlan_tag_get(skb)); 2475 else 2476 start_tx->txvlan = 0; 2477 2478 spin_lock_irqsave(&np->lock, flags); 2479 2480 if (np->tx_limit) { 2481 /* Limit the number of outstanding tx. Setup all fragments, but 2482 * do not set the VALID bit on the first descriptor. Save a pointer 2483 * to that descriptor and also for next skb_map element. 2484 */ 2485 2486 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2487 if (!np->tx_change_owner) 2488 np->tx_change_owner = start_tx_ctx; 2489 2490 /* remove VALID bit */ 2491 tx_flags &= ~NV_TX2_VALID; 2492 start_tx_ctx->first_tx_desc = start_tx; 2493 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2494 np->tx_end_flip = np->put_tx_ctx; 2495 } else { 2496 np->tx_pkts_in_progress++; 2497 } 2498 } 2499 2500 /* set tx flags */ 2501 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2502 2503 netdev_sent_queue(np->dev, skb->len); 2504 2505 skb_tx_timestamp(skb); 2506 2507 np->put_tx.ex = put_tx; 2508 2509 spin_unlock_irqrestore(&np->lock, flags); 2510 2511 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2512 return NETDEV_TX_OK; 2513 } 2514 2515 static inline void nv_tx_flip_ownership(struct net_device *dev) 2516 { 2517 struct fe_priv *np = netdev_priv(dev); 2518 2519 np->tx_pkts_in_progress--; 2520 if (np->tx_change_owner) { 2521 np->tx_change_owner->first_tx_desc->flaglen |= 2522 cpu_to_le32(NV_TX2_VALID); 2523 np->tx_pkts_in_progress++; 2524 2525 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2526 if (np->tx_change_owner == np->tx_end_flip) 2527 np->tx_change_owner = NULL; 2528 2529 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2530 } 2531 } 2532 2533 /* 2534 * nv_tx_done: check for completed packets, release the skbs. 2535 * 2536 * Caller must own np->lock. 2537 */ 2538 static int nv_tx_done(struct net_device *dev, int limit) 2539 { 2540 struct fe_priv *np = netdev_priv(dev); 2541 u32 flags; 2542 int tx_work = 0; 2543 struct ring_desc *orig_get_tx = np->get_tx.orig; 2544 unsigned int bytes_compl = 0; 2545 2546 while ((np->get_tx.orig != np->put_tx.orig) && 2547 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2548 (tx_work < limit)) { 2549 2550 nv_unmap_txskb(np, np->get_tx_ctx); 2551 2552 if (np->desc_ver == DESC_VER_1) { 2553 if (flags & NV_TX_LASTPACKET) { 2554 if (flags & NV_TX_ERROR) { 2555 if ((flags & NV_TX_RETRYERROR) 2556 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2557 nv_legacybackoff_reseed(dev); 2558 } else { 2559 u64_stats_update_begin(&np->swstats_tx_syncp); 2560 np->stat_tx_packets++; 2561 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2562 u64_stats_update_end(&np->swstats_tx_syncp); 2563 } 2564 bytes_compl += np->get_tx_ctx->skb->len; 2565 dev_kfree_skb_any(np->get_tx_ctx->skb); 2566 np->get_tx_ctx->skb = NULL; 2567 tx_work++; 2568 } 2569 } else { 2570 if (flags & NV_TX2_LASTPACKET) { 2571 if (flags & NV_TX2_ERROR) { 2572 if ((flags & NV_TX2_RETRYERROR) 2573 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2574 nv_legacybackoff_reseed(dev); 2575 } else { 2576 u64_stats_update_begin(&np->swstats_tx_syncp); 2577 np->stat_tx_packets++; 2578 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2579 u64_stats_update_end(&np->swstats_tx_syncp); 2580 } 2581 bytes_compl += np->get_tx_ctx->skb->len; 2582 dev_kfree_skb_any(np->get_tx_ctx->skb); 2583 np->get_tx_ctx->skb = NULL; 2584 tx_work++; 2585 } 2586 } 2587 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2588 np->get_tx.orig = np->first_tx.orig; 2589 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2590 np->get_tx_ctx = np->first_tx_ctx; 2591 } 2592 2593 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2594 2595 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2596 np->tx_stop = 0; 2597 netif_wake_queue(dev); 2598 } 2599 return tx_work; 2600 } 2601 2602 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2603 { 2604 struct fe_priv *np = netdev_priv(dev); 2605 u32 flags; 2606 int tx_work = 0; 2607 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2608 unsigned long bytes_cleaned = 0; 2609 2610 while ((np->get_tx.ex != np->put_tx.ex) && 2611 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2612 (tx_work < limit)) { 2613 2614 nv_unmap_txskb(np, np->get_tx_ctx); 2615 2616 if (flags & NV_TX2_LASTPACKET) { 2617 if (flags & NV_TX2_ERROR) { 2618 if ((flags & NV_TX2_RETRYERROR) 2619 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2620 if (np->driver_data & DEV_HAS_GEAR_MODE) 2621 nv_gear_backoff_reseed(dev); 2622 else 2623 nv_legacybackoff_reseed(dev); 2624 } 2625 } else { 2626 u64_stats_update_begin(&np->swstats_tx_syncp); 2627 np->stat_tx_packets++; 2628 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2629 u64_stats_update_end(&np->swstats_tx_syncp); 2630 } 2631 2632 bytes_cleaned += np->get_tx_ctx->skb->len; 2633 dev_kfree_skb_any(np->get_tx_ctx->skb); 2634 np->get_tx_ctx->skb = NULL; 2635 tx_work++; 2636 2637 if (np->tx_limit) 2638 nv_tx_flip_ownership(dev); 2639 } 2640 2641 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2642 np->get_tx.ex = np->first_tx.ex; 2643 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2644 np->get_tx_ctx = np->first_tx_ctx; 2645 } 2646 2647 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2648 2649 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2650 np->tx_stop = 0; 2651 netif_wake_queue(dev); 2652 } 2653 return tx_work; 2654 } 2655 2656 /* 2657 * nv_tx_timeout: dev->tx_timeout function 2658 * Called with netif_tx_lock held. 2659 */ 2660 static void nv_tx_timeout(struct net_device *dev) 2661 { 2662 struct fe_priv *np = netdev_priv(dev); 2663 u8 __iomem *base = get_hwbase(dev); 2664 u32 status; 2665 union ring_type put_tx; 2666 int saved_tx_limit; 2667 2668 if (np->msi_flags & NV_MSI_X_ENABLED) 2669 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2670 else 2671 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2672 2673 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2674 2675 if (unlikely(debug_tx_timeout)) { 2676 int i; 2677 2678 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2679 netdev_info(dev, "Dumping tx registers\n"); 2680 for (i = 0; i <= np->register_size; i += 32) { 2681 netdev_info(dev, 2682 "%3x: %08x %08x %08x %08x " 2683 "%08x %08x %08x %08x\n", 2684 i, 2685 readl(base + i + 0), readl(base + i + 4), 2686 readl(base + i + 8), readl(base + i + 12), 2687 readl(base + i + 16), readl(base + i + 20), 2688 readl(base + i + 24), readl(base + i + 28)); 2689 } 2690 netdev_info(dev, "Dumping tx ring\n"); 2691 for (i = 0; i < np->tx_ring_size; i += 4) { 2692 if (!nv_optimized(np)) { 2693 netdev_info(dev, 2694 "%03x: %08x %08x // %08x %08x " 2695 "// %08x %08x // %08x %08x\n", 2696 i, 2697 le32_to_cpu(np->tx_ring.orig[i].buf), 2698 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2699 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2700 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2701 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2702 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2703 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2704 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2705 } else { 2706 netdev_info(dev, 2707 "%03x: %08x %08x %08x " 2708 "// %08x %08x %08x " 2709 "// %08x %08x %08x " 2710 "// %08x %08x %08x\n", 2711 i, 2712 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2713 le32_to_cpu(np->tx_ring.ex[i].buflow), 2714 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2715 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2716 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2717 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2718 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2719 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2720 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2721 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2722 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2723 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2724 } 2725 } 2726 } 2727 2728 spin_lock_irq(&np->lock); 2729 2730 /* 1) stop tx engine */ 2731 nv_stop_tx(dev); 2732 2733 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2734 saved_tx_limit = np->tx_limit; 2735 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2736 np->tx_stop = 0; /* prevent waking tx queue */ 2737 if (!nv_optimized(np)) 2738 nv_tx_done(dev, np->tx_ring_size); 2739 else 2740 nv_tx_done_optimized(dev, np->tx_ring_size); 2741 2742 /* save current HW position */ 2743 if (np->tx_change_owner) 2744 put_tx.ex = np->tx_change_owner->first_tx_desc; 2745 else 2746 put_tx = np->put_tx; 2747 2748 /* 3) clear all tx state */ 2749 nv_drain_tx(dev); 2750 nv_init_tx(dev); 2751 2752 /* 4) restore state to current HW position */ 2753 np->get_tx = np->put_tx = put_tx; 2754 np->tx_limit = saved_tx_limit; 2755 2756 /* 5) restart tx engine */ 2757 nv_start_tx(dev); 2758 netif_wake_queue(dev); 2759 spin_unlock_irq(&np->lock); 2760 } 2761 2762 /* 2763 * Called when the nic notices a mismatch between the actual data len on the 2764 * wire and the len indicated in the 802 header 2765 */ 2766 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2767 { 2768 int hdrlen; /* length of the 802 header */ 2769 int protolen; /* length as stored in the proto field */ 2770 2771 /* 1) calculate len according to header */ 2772 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2773 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2774 hdrlen = VLAN_HLEN; 2775 } else { 2776 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2777 hdrlen = ETH_HLEN; 2778 } 2779 if (protolen > ETH_DATA_LEN) 2780 return datalen; /* Value in proto field not a len, no checks possible */ 2781 2782 protolen += hdrlen; 2783 /* consistency checks: */ 2784 if (datalen > ETH_ZLEN) { 2785 if (datalen >= protolen) { 2786 /* more data on wire than in 802 header, trim of 2787 * additional data. 2788 */ 2789 return protolen; 2790 } else { 2791 /* less data on wire than mentioned in header. 2792 * Discard the packet. 2793 */ 2794 return -1; 2795 } 2796 } else { 2797 /* short packet. Accept only if 802 values are also short */ 2798 if (protolen > ETH_ZLEN) { 2799 return -1; 2800 } 2801 return datalen; 2802 } 2803 } 2804 2805 static int nv_rx_process(struct net_device *dev, int limit) 2806 { 2807 struct fe_priv *np = netdev_priv(dev); 2808 u32 flags; 2809 int rx_work = 0; 2810 struct sk_buff *skb; 2811 int len; 2812 2813 while ((np->get_rx.orig != np->put_rx.orig) && 2814 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2815 (rx_work < limit)) { 2816 2817 /* 2818 * the packet is for us - immediately tear down the pci mapping. 2819 * TODO: check if a prefetch of the first cacheline improves 2820 * the performance. 2821 */ 2822 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 2823 np->get_rx_ctx->dma_len, 2824 DMA_FROM_DEVICE); 2825 skb = np->get_rx_ctx->skb; 2826 np->get_rx_ctx->skb = NULL; 2827 2828 /* look at what we actually got: */ 2829 if (np->desc_ver == DESC_VER_1) { 2830 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2831 len = flags & LEN_MASK_V1; 2832 if (unlikely(flags & NV_RX_ERROR)) { 2833 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2834 len = nv_getlen(dev, skb->data, len); 2835 if (len < 0) { 2836 dev_kfree_skb(skb); 2837 goto next_pkt; 2838 } 2839 } 2840 /* framing errors are soft errors */ 2841 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2842 if (flags & NV_RX_SUBTRACT1) 2843 len--; 2844 } 2845 /* the rest are hard errors */ 2846 else { 2847 if (flags & NV_RX_MISSEDFRAME) { 2848 u64_stats_update_begin(&np->swstats_rx_syncp); 2849 np->stat_rx_missed_errors++; 2850 u64_stats_update_end(&np->swstats_rx_syncp); 2851 } 2852 dev_kfree_skb(skb); 2853 goto next_pkt; 2854 } 2855 } 2856 } else { 2857 dev_kfree_skb(skb); 2858 goto next_pkt; 2859 } 2860 } else { 2861 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2862 len = flags & LEN_MASK_V2; 2863 if (unlikely(flags & NV_RX2_ERROR)) { 2864 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2865 len = nv_getlen(dev, skb->data, len); 2866 if (len < 0) { 2867 dev_kfree_skb(skb); 2868 goto next_pkt; 2869 } 2870 } 2871 /* framing errors are soft errors */ 2872 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2873 if (flags & NV_RX2_SUBTRACT1) 2874 len--; 2875 } 2876 /* the rest are hard errors */ 2877 else { 2878 dev_kfree_skb(skb); 2879 goto next_pkt; 2880 } 2881 } 2882 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2883 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2884 skb->ip_summed = CHECKSUM_UNNECESSARY; 2885 } else { 2886 dev_kfree_skb(skb); 2887 goto next_pkt; 2888 } 2889 } 2890 /* got a valid packet - forward it to the network core */ 2891 skb_put(skb, len); 2892 skb->protocol = eth_type_trans(skb, dev); 2893 napi_gro_receive(&np->napi, skb); 2894 u64_stats_update_begin(&np->swstats_rx_syncp); 2895 np->stat_rx_packets++; 2896 np->stat_rx_bytes += len; 2897 u64_stats_update_end(&np->swstats_rx_syncp); 2898 next_pkt: 2899 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2900 np->get_rx.orig = np->first_rx.orig; 2901 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2902 np->get_rx_ctx = np->first_rx_ctx; 2903 2904 rx_work++; 2905 } 2906 2907 return rx_work; 2908 } 2909 2910 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2911 { 2912 struct fe_priv *np = netdev_priv(dev); 2913 u32 flags; 2914 u32 vlanflags = 0; 2915 int rx_work = 0; 2916 struct sk_buff *skb; 2917 int len; 2918 2919 while ((np->get_rx.ex != np->put_rx.ex) && 2920 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 2921 (rx_work < limit)) { 2922 2923 /* 2924 * the packet is for us - immediately tear down the pci mapping. 2925 * TODO: check if a prefetch of the first cacheline improves 2926 * the performance. 2927 */ 2928 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 2929 np->get_rx_ctx->dma_len, 2930 DMA_FROM_DEVICE); 2931 skb = np->get_rx_ctx->skb; 2932 np->get_rx_ctx->skb = NULL; 2933 2934 /* look at what we actually got: */ 2935 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2936 len = flags & LEN_MASK_V2; 2937 if (unlikely(flags & NV_RX2_ERROR)) { 2938 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2939 len = nv_getlen(dev, skb->data, len); 2940 if (len < 0) { 2941 dev_kfree_skb(skb); 2942 goto next_pkt; 2943 } 2944 } 2945 /* framing errors are soft errors */ 2946 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2947 if (flags & NV_RX2_SUBTRACT1) 2948 len--; 2949 } 2950 /* the rest are hard errors */ 2951 else { 2952 dev_kfree_skb(skb); 2953 goto next_pkt; 2954 } 2955 } 2956 2957 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2958 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2959 skb->ip_summed = CHECKSUM_UNNECESSARY; 2960 2961 /* got a valid packet - forward it to the network core */ 2962 skb_put(skb, len); 2963 skb->protocol = eth_type_trans(skb, dev); 2964 prefetch(skb->data); 2965 2966 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 2967 2968 /* 2969 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX 2970 * here. Even if vlan rx accel is disabled, 2971 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 2972 */ 2973 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2974 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 2975 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 2976 2977 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2978 } 2979 napi_gro_receive(&np->napi, skb); 2980 u64_stats_update_begin(&np->swstats_rx_syncp); 2981 np->stat_rx_packets++; 2982 np->stat_rx_bytes += len; 2983 u64_stats_update_end(&np->swstats_rx_syncp); 2984 } else { 2985 dev_kfree_skb(skb); 2986 } 2987 next_pkt: 2988 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 2989 np->get_rx.ex = np->first_rx.ex; 2990 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2991 np->get_rx_ctx = np->first_rx_ctx; 2992 2993 rx_work++; 2994 } 2995 2996 return rx_work; 2997 } 2998 2999 static void set_bufsize(struct net_device *dev) 3000 { 3001 struct fe_priv *np = netdev_priv(dev); 3002 3003 if (dev->mtu <= ETH_DATA_LEN) 3004 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 3005 else 3006 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 3007 } 3008 3009 /* 3010 * nv_change_mtu: dev->change_mtu function 3011 * Called with dev_base_lock held for read. 3012 */ 3013 static int nv_change_mtu(struct net_device *dev, int new_mtu) 3014 { 3015 struct fe_priv *np = netdev_priv(dev); 3016 int old_mtu; 3017 3018 old_mtu = dev->mtu; 3019 dev->mtu = new_mtu; 3020 3021 /* return early if the buffer sizes will not change */ 3022 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 3023 return 0; 3024 3025 /* synchronized against open : rtnl_lock() held by caller */ 3026 if (netif_running(dev)) { 3027 u8 __iomem *base = get_hwbase(dev); 3028 /* 3029 * It seems that the nic preloads valid ring entries into an 3030 * internal buffer. The procedure for flushing everything is 3031 * guessed, there is probably a simpler approach. 3032 * Changing the MTU is a rare event, it shouldn't matter. 3033 */ 3034 nv_disable_irq(dev); 3035 nv_napi_disable(dev); 3036 netif_tx_lock_bh(dev); 3037 netif_addr_lock(dev); 3038 spin_lock(&np->lock); 3039 /* stop engines */ 3040 nv_stop_rxtx(dev); 3041 nv_txrx_reset(dev); 3042 /* drain rx queue */ 3043 nv_drain_rxtx(dev); 3044 /* reinit driver view of the rx queue */ 3045 set_bufsize(dev); 3046 if (nv_init_ring(dev)) { 3047 if (!np->in_shutdown) 3048 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3049 } 3050 /* reinit nic view of the rx queue */ 3051 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 3052 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 3053 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 3054 base + NvRegRingSizes); 3055 pci_push(base); 3056 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 3057 pci_push(base); 3058 3059 /* restart rx engine */ 3060 nv_start_rxtx(dev); 3061 spin_unlock(&np->lock); 3062 netif_addr_unlock(dev); 3063 netif_tx_unlock_bh(dev); 3064 nv_napi_enable(dev); 3065 nv_enable_irq(dev); 3066 } 3067 return 0; 3068 } 3069 3070 static void nv_copy_mac_to_hw(struct net_device *dev) 3071 { 3072 u8 __iomem *base = get_hwbase(dev); 3073 u32 mac[2]; 3074 3075 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3076 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3077 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3078 3079 writel(mac[0], base + NvRegMacAddrA); 3080 writel(mac[1], base + NvRegMacAddrB); 3081 } 3082 3083 /* 3084 * nv_set_mac_address: dev->set_mac_address function 3085 * Called with rtnl_lock() held. 3086 */ 3087 static int nv_set_mac_address(struct net_device *dev, void *addr) 3088 { 3089 struct fe_priv *np = netdev_priv(dev); 3090 struct sockaddr *macaddr = (struct sockaddr *)addr; 3091 3092 if (!is_valid_ether_addr(macaddr->sa_data)) 3093 return -EADDRNOTAVAIL; 3094 3095 /* synchronized against open : rtnl_lock() held by caller */ 3096 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3097 3098 if (netif_running(dev)) { 3099 netif_tx_lock_bh(dev); 3100 netif_addr_lock(dev); 3101 spin_lock_irq(&np->lock); 3102 3103 /* stop rx engine */ 3104 nv_stop_rx(dev); 3105 3106 /* set mac address */ 3107 nv_copy_mac_to_hw(dev); 3108 3109 /* restart rx engine */ 3110 nv_start_rx(dev); 3111 spin_unlock_irq(&np->lock); 3112 netif_addr_unlock(dev); 3113 netif_tx_unlock_bh(dev); 3114 } else { 3115 nv_copy_mac_to_hw(dev); 3116 } 3117 return 0; 3118 } 3119 3120 /* 3121 * nv_set_multicast: dev->set_multicast function 3122 * Called with netif_tx_lock held. 3123 */ 3124 static void nv_set_multicast(struct net_device *dev) 3125 { 3126 struct fe_priv *np = netdev_priv(dev); 3127 u8 __iomem *base = get_hwbase(dev); 3128 u32 addr[2]; 3129 u32 mask[2]; 3130 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3131 3132 memset(addr, 0, sizeof(addr)); 3133 memset(mask, 0, sizeof(mask)); 3134 3135 if (dev->flags & IFF_PROMISC) { 3136 pff |= NVREG_PFF_PROMISC; 3137 } else { 3138 pff |= NVREG_PFF_MYADDR; 3139 3140 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3141 u32 alwaysOff[2]; 3142 u32 alwaysOn[2]; 3143 3144 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3145 if (dev->flags & IFF_ALLMULTI) { 3146 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3147 } else { 3148 struct netdev_hw_addr *ha; 3149 3150 netdev_for_each_mc_addr(ha, dev) { 3151 unsigned char *hw_addr = ha->addr; 3152 u32 a, b; 3153 3154 a = le32_to_cpu(*(__le32 *) hw_addr); 3155 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3156 alwaysOn[0] &= a; 3157 alwaysOff[0] &= ~a; 3158 alwaysOn[1] &= b; 3159 alwaysOff[1] &= ~b; 3160 } 3161 } 3162 addr[0] = alwaysOn[0]; 3163 addr[1] = alwaysOn[1]; 3164 mask[0] = alwaysOn[0] | alwaysOff[0]; 3165 mask[1] = alwaysOn[1] | alwaysOff[1]; 3166 } else { 3167 mask[0] = NVREG_MCASTMASKA_NONE; 3168 mask[1] = NVREG_MCASTMASKB_NONE; 3169 } 3170 } 3171 addr[0] |= NVREG_MCASTADDRA_FORCE; 3172 pff |= NVREG_PFF_ALWAYS; 3173 spin_lock_irq(&np->lock); 3174 nv_stop_rx(dev); 3175 writel(addr[0], base + NvRegMulticastAddrA); 3176 writel(addr[1], base + NvRegMulticastAddrB); 3177 writel(mask[0], base + NvRegMulticastMaskA); 3178 writel(mask[1], base + NvRegMulticastMaskB); 3179 writel(pff, base + NvRegPacketFilterFlags); 3180 nv_start_rx(dev); 3181 spin_unlock_irq(&np->lock); 3182 } 3183 3184 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3185 { 3186 struct fe_priv *np = netdev_priv(dev); 3187 u8 __iomem *base = get_hwbase(dev); 3188 3189 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3190 3191 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3192 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3193 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3194 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3195 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3196 } else { 3197 writel(pff, base + NvRegPacketFilterFlags); 3198 } 3199 } 3200 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3201 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3202 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3203 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3204 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3205 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3206 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3207 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3208 /* limit the number of tx pause frames to a default of 8 */ 3209 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3210 } 3211 writel(pause_enable, base + NvRegTxPauseFrame); 3212 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3213 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3214 } else { 3215 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3216 writel(regmisc, base + NvRegMisc1); 3217 } 3218 } 3219 } 3220 3221 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3222 { 3223 struct fe_priv *np = netdev_priv(dev); 3224 u8 __iomem *base = get_hwbase(dev); 3225 u32 phyreg, txreg; 3226 int mii_status; 3227 3228 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3229 np->duplex = duplex; 3230 3231 /* see if gigabit phy */ 3232 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3233 if (mii_status & PHY_GIGABIT) { 3234 np->gigabit = PHY_GIGABIT; 3235 phyreg = readl(base + NvRegSlotTime); 3236 phyreg &= ~(0x3FF00); 3237 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3238 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3239 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3240 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3241 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3242 phyreg |= NVREG_SLOTTIME_1000_FULL; 3243 writel(phyreg, base + NvRegSlotTime); 3244 } 3245 3246 phyreg = readl(base + NvRegPhyInterface); 3247 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3248 if (np->duplex == 0) 3249 phyreg |= PHY_HALF; 3250 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3251 phyreg |= PHY_100; 3252 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3253 NVREG_LINKSPEED_1000) 3254 phyreg |= PHY_1000; 3255 writel(phyreg, base + NvRegPhyInterface); 3256 3257 if (phyreg & PHY_RGMII) { 3258 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3259 NVREG_LINKSPEED_1000) 3260 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3261 else 3262 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3263 } else { 3264 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3265 } 3266 writel(txreg, base + NvRegTxDeferral); 3267 3268 if (np->desc_ver == DESC_VER_1) { 3269 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3270 } else { 3271 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3272 NVREG_LINKSPEED_1000) 3273 txreg = NVREG_TX_WM_DESC2_3_1000; 3274 else 3275 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3276 } 3277 writel(txreg, base + NvRegTxWatermark); 3278 3279 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3280 base + NvRegMisc1); 3281 pci_push(base); 3282 writel(np->linkspeed, base + NvRegLinkSpeed); 3283 pci_push(base); 3284 } 3285 3286 /** 3287 * nv_update_linkspeed - Setup the MAC according to the link partner 3288 * @dev: Network device to be configured 3289 * 3290 * The function queries the PHY and checks if there is a link partner. 3291 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3292 * set to 10 MBit HD. 3293 * 3294 * The function returns 0 if there is no link partner and 1 if there is 3295 * a good link partner. 3296 */ 3297 static int nv_update_linkspeed(struct net_device *dev) 3298 { 3299 struct fe_priv *np = netdev_priv(dev); 3300 u8 __iomem *base = get_hwbase(dev); 3301 int adv = 0; 3302 int lpa = 0; 3303 int adv_lpa, adv_pause, lpa_pause; 3304 int newls = np->linkspeed; 3305 int newdup = np->duplex; 3306 int mii_status; 3307 u32 bmcr; 3308 int retval = 0; 3309 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3310 u32 txrxFlags = 0; 3311 u32 phy_exp; 3312 3313 /* If device loopback is enabled, set carrier on and enable max link 3314 * speed. 3315 */ 3316 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3317 if (bmcr & BMCR_LOOPBACK) { 3318 if (netif_running(dev)) { 3319 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3320 if (!netif_carrier_ok(dev)) 3321 netif_carrier_on(dev); 3322 } 3323 return 1; 3324 } 3325 3326 /* BMSR_LSTATUS is latched, read it twice: 3327 * we want the current value. 3328 */ 3329 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3330 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3331 3332 if (!(mii_status & BMSR_LSTATUS)) { 3333 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3334 newdup = 0; 3335 retval = 0; 3336 goto set_speed; 3337 } 3338 3339 if (np->autoneg == 0) { 3340 if (np->fixed_mode & LPA_100FULL) { 3341 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3342 newdup = 1; 3343 } else if (np->fixed_mode & LPA_100HALF) { 3344 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3345 newdup = 0; 3346 } else if (np->fixed_mode & LPA_10FULL) { 3347 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3348 newdup = 1; 3349 } else { 3350 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3351 newdup = 0; 3352 } 3353 retval = 1; 3354 goto set_speed; 3355 } 3356 /* check auto negotiation is complete */ 3357 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3358 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3359 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3360 newdup = 0; 3361 retval = 0; 3362 goto set_speed; 3363 } 3364 3365 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3366 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3367 3368 retval = 1; 3369 if (np->gigabit == PHY_GIGABIT) { 3370 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3371 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3372 3373 if ((control_1000 & ADVERTISE_1000FULL) && 3374 (status_1000 & LPA_1000FULL)) { 3375 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3376 newdup = 1; 3377 goto set_speed; 3378 } 3379 } 3380 3381 /* FIXME: handle parallel detection properly */ 3382 adv_lpa = lpa & adv; 3383 if (adv_lpa & LPA_100FULL) { 3384 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3385 newdup = 1; 3386 } else if (adv_lpa & LPA_100HALF) { 3387 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3388 newdup = 0; 3389 } else if (adv_lpa & LPA_10FULL) { 3390 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3391 newdup = 1; 3392 } else if (adv_lpa & LPA_10HALF) { 3393 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3394 newdup = 0; 3395 } else { 3396 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3397 newdup = 0; 3398 } 3399 3400 set_speed: 3401 if (np->duplex == newdup && np->linkspeed == newls) 3402 return retval; 3403 3404 np->duplex = newdup; 3405 np->linkspeed = newls; 3406 3407 /* The transmitter and receiver must be restarted for safe update */ 3408 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3409 txrxFlags |= NV_RESTART_TX; 3410 nv_stop_tx(dev); 3411 } 3412 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3413 txrxFlags |= NV_RESTART_RX; 3414 nv_stop_rx(dev); 3415 } 3416 3417 if (np->gigabit == PHY_GIGABIT) { 3418 phyreg = readl(base + NvRegSlotTime); 3419 phyreg &= ~(0x3FF00); 3420 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3421 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3422 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3423 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3424 phyreg |= NVREG_SLOTTIME_1000_FULL; 3425 writel(phyreg, base + NvRegSlotTime); 3426 } 3427 3428 phyreg = readl(base + NvRegPhyInterface); 3429 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3430 if (np->duplex == 0) 3431 phyreg |= PHY_HALF; 3432 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3433 phyreg |= PHY_100; 3434 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3435 phyreg |= PHY_1000; 3436 writel(phyreg, base + NvRegPhyInterface); 3437 3438 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3439 if (phyreg & PHY_RGMII) { 3440 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3441 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3442 } else { 3443 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3444 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3445 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3446 else 3447 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3448 } else { 3449 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3450 } 3451 } 3452 } else { 3453 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3454 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3455 else 3456 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3457 } 3458 writel(txreg, base + NvRegTxDeferral); 3459 3460 if (np->desc_ver == DESC_VER_1) { 3461 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3462 } else { 3463 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3464 txreg = NVREG_TX_WM_DESC2_3_1000; 3465 else 3466 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3467 } 3468 writel(txreg, base + NvRegTxWatermark); 3469 3470 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3471 base + NvRegMisc1); 3472 pci_push(base); 3473 writel(np->linkspeed, base + NvRegLinkSpeed); 3474 pci_push(base); 3475 3476 pause_flags = 0; 3477 /* setup pause frame */ 3478 if (netif_running(dev) && (np->duplex != 0)) { 3479 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3480 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3481 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3482 3483 switch (adv_pause) { 3484 case ADVERTISE_PAUSE_CAP: 3485 if (lpa_pause & LPA_PAUSE_CAP) { 3486 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3487 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3488 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3489 } 3490 break; 3491 case ADVERTISE_PAUSE_ASYM: 3492 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3493 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3494 break; 3495 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3496 if (lpa_pause & LPA_PAUSE_CAP) { 3497 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3498 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3499 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3500 } 3501 if (lpa_pause == LPA_PAUSE_ASYM) 3502 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3503 break; 3504 } 3505 } else { 3506 pause_flags = np->pause_flags; 3507 } 3508 } 3509 nv_update_pause(dev, pause_flags); 3510 3511 if (txrxFlags & NV_RESTART_TX) 3512 nv_start_tx(dev); 3513 if (txrxFlags & NV_RESTART_RX) 3514 nv_start_rx(dev); 3515 3516 return retval; 3517 } 3518 3519 static void nv_linkchange(struct net_device *dev) 3520 { 3521 if (nv_update_linkspeed(dev)) { 3522 if (!netif_carrier_ok(dev)) { 3523 netif_carrier_on(dev); 3524 netdev_info(dev, "link up\n"); 3525 nv_txrx_gate(dev, false); 3526 nv_start_rx(dev); 3527 } 3528 } else { 3529 if (netif_carrier_ok(dev)) { 3530 netif_carrier_off(dev); 3531 netdev_info(dev, "link down\n"); 3532 nv_txrx_gate(dev, true); 3533 nv_stop_rx(dev); 3534 } 3535 } 3536 } 3537 3538 static void nv_link_irq(struct net_device *dev) 3539 { 3540 u8 __iomem *base = get_hwbase(dev); 3541 u32 miistat; 3542 3543 miistat = readl(base + NvRegMIIStatus); 3544 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3545 3546 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3547 nv_linkchange(dev); 3548 } 3549 3550 static void nv_msi_workaround(struct fe_priv *np) 3551 { 3552 3553 /* Need to toggle the msi irq mask within the ethernet device, 3554 * otherwise, future interrupts will not be detected. 3555 */ 3556 if (np->msi_flags & NV_MSI_ENABLED) { 3557 u8 __iomem *base = np->base; 3558 3559 writel(0, base + NvRegMSIIrqMask); 3560 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3561 } 3562 } 3563 3564 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3565 { 3566 struct fe_priv *np = netdev_priv(dev); 3567 3568 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3569 if (total_work > NV_DYNAMIC_THRESHOLD) { 3570 /* transition to poll based interrupts */ 3571 np->quiet_count = 0; 3572 if (np->irqmask != NVREG_IRQMASK_CPU) { 3573 np->irqmask = NVREG_IRQMASK_CPU; 3574 return 1; 3575 } 3576 } else { 3577 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3578 np->quiet_count++; 3579 } else { 3580 /* reached a period of low activity, switch 3581 to per tx/rx packet interrupts */ 3582 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3583 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3584 return 1; 3585 } 3586 } 3587 } 3588 } 3589 return 0; 3590 } 3591 3592 static irqreturn_t nv_nic_irq(int foo, void *data) 3593 { 3594 struct net_device *dev = (struct net_device *) data; 3595 struct fe_priv *np = netdev_priv(dev); 3596 u8 __iomem *base = get_hwbase(dev); 3597 3598 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3599 np->events = readl(base + NvRegIrqStatus); 3600 writel(np->events, base + NvRegIrqStatus); 3601 } else { 3602 np->events = readl(base + NvRegMSIXIrqStatus); 3603 writel(np->events, base + NvRegMSIXIrqStatus); 3604 } 3605 if (!(np->events & np->irqmask)) 3606 return IRQ_NONE; 3607 3608 nv_msi_workaround(np); 3609 3610 if (napi_schedule_prep(&np->napi)) { 3611 /* 3612 * Disable further irq's (msix not enabled with napi) 3613 */ 3614 writel(0, base + NvRegIrqMask); 3615 __napi_schedule(&np->napi); 3616 } 3617 3618 return IRQ_HANDLED; 3619 } 3620 3621 /* All _optimized functions are used to help increase performance 3622 * (reduce CPU and increase throughput). They use descripter version 3, 3623 * compiler directives, and reduce memory accesses. 3624 */ 3625 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3626 { 3627 struct net_device *dev = (struct net_device *) data; 3628 struct fe_priv *np = netdev_priv(dev); 3629 u8 __iomem *base = get_hwbase(dev); 3630 3631 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3632 np->events = readl(base + NvRegIrqStatus); 3633 writel(np->events, base + NvRegIrqStatus); 3634 } else { 3635 np->events = readl(base + NvRegMSIXIrqStatus); 3636 writel(np->events, base + NvRegMSIXIrqStatus); 3637 } 3638 if (!(np->events & np->irqmask)) 3639 return IRQ_NONE; 3640 3641 nv_msi_workaround(np); 3642 3643 if (napi_schedule_prep(&np->napi)) { 3644 /* 3645 * Disable further irq's (msix not enabled with napi) 3646 */ 3647 writel(0, base + NvRegIrqMask); 3648 __napi_schedule(&np->napi); 3649 } 3650 3651 return IRQ_HANDLED; 3652 } 3653 3654 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3655 { 3656 struct net_device *dev = (struct net_device *) data; 3657 struct fe_priv *np = netdev_priv(dev); 3658 u8 __iomem *base = get_hwbase(dev); 3659 u32 events; 3660 int i; 3661 unsigned long flags; 3662 3663 for (i = 0;; i++) { 3664 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3665 writel(events, base + NvRegMSIXIrqStatus); 3666 netdev_dbg(dev, "tx irq events: %08x\n", events); 3667 if (!(events & np->irqmask)) 3668 break; 3669 3670 spin_lock_irqsave(&np->lock, flags); 3671 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3672 spin_unlock_irqrestore(&np->lock, flags); 3673 3674 if (unlikely(i > max_interrupt_work)) { 3675 spin_lock_irqsave(&np->lock, flags); 3676 /* disable interrupts on the nic */ 3677 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3678 pci_push(base); 3679 3680 if (!np->in_shutdown) { 3681 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3682 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3683 } 3684 spin_unlock_irqrestore(&np->lock, flags); 3685 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3686 __func__, i); 3687 break; 3688 } 3689 3690 } 3691 3692 return IRQ_RETVAL(i); 3693 } 3694 3695 static int nv_napi_poll(struct napi_struct *napi, int budget) 3696 { 3697 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3698 struct net_device *dev = np->dev; 3699 u8 __iomem *base = get_hwbase(dev); 3700 unsigned long flags; 3701 int retcode; 3702 int rx_count, tx_work = 0, rx_work = 0; 3703 3704 do { 3705 if (!nv_optimized(np)) { 3706 spin_lock_irqsave(&np->lock, flags); 3707 tx_work += nv_tx_done(dev, np->tx_ring_size); 3708 spin_unlock_irqrestore(&np->lock, flags); 3709 3710 rx_count = nv_rx_process(dev, budget - rx_work); 3711 retcode = nv_alloc_rx(dev); 3712 } else { 3713 spin_lock_irqsave(&np->lock, flags); 3714 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3715 spin_unlock_irqrestore(&np->lock, flags); 3716 3717 rx_count = nv_rx_process_optimized(dev, 3718 budget - rx_work); 3719 retcode = nv_alloc_rx_optimized(dev); 3720 } 3721 } while (retcode == 0 && 3722 rx_count > 0 && (rx_work += rx_count) < budget); 3723 3724 if (retcode) { 3725 spin_lock_irqsave(&np->lock, flags); 3726 if (!np->in_shutdown) 3727 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3728 spin_unlock_irqrestore(&np->lock, flags); 3729 } 3730 3731 nv_change_interrupt_mode(dev, tx_work + rx_work); 3732 3733 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3734 spin_lock_irqsave(&np->lock, flags); 3735 nv_link_irq(dev); 3736 spin_unlock_irqrestore(&np->lock, flags); 3737 } 3738 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3739 spin_lock_irqsave(&np->lock, flags); 3740 nv_linkchange(dev); 3741 spin_unlock_irqrestore(&np->lock, flags); 3742 np->link_timeout = jiffies + LINK_TIMEOUT; 3743 } 3744 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3745 spin_lock_irqsave(&np->lock, flags); 3746 if (!np->in_shutdown) { 3747 np->nic_poll_irq = np->irqmask; 3748 np->recover_error = 1; 3749 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3750 } 3751 spin_unlock_irqrestore(&np->lock, flags); 3752 napi_complete(napi); 3753 return rx_work; 3754 } 3755 3756 if (rx_work < budget) { 3757 /* re-enable interrupts 3758 (msix not enabled in napi) */ 3759 napi_complete_done(napi, rx_work); 3760 3761 writel(np->irqmask, base + NvRegIrqMask); 3762 } 3763 return rx_work; 3764 } 3765 3766 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3767 { 3768 struct net_device *dev = (struct net_device *) data; 3769 struct fe_priv *np = netdev_priv(dev); 3770 u8 __iomem *base = get_hwbase(dev); 3771 u32 events; 3772 int i; 3773 unsigned long flags; 3774 3775 for (i = 0;; i++) { 3776 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3777 writel(events, base + NvRegMSIXIrqStatus); 3778 netdev_dbg(dev, "rx irq events: %08x\n", events); 3779 if (!(events & np->irqmask)) 3780 break; 3781 3782 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3783 if (unlikely(nv_alloc_rx_optimized(dev))) { 3784 spin_lock_irqsave(&np->lock, flags); 3785 if (!np->in_shutdown) 3786 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3787 spin_unlock_irqrestore(&np->lock, flags); 3788 } 3789 } 3790 3791 if (unlikely(i > max_interrupt_work)) { 3792 spin_lock_irqsave(&np->lock, flags); 3793 /* disable interrupts on the nic */ 3794 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3795 pci_push(base); 3796 3797 if (!np->in_shutdown) { 3798 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3799 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3800 } 3801 spin_unlock_irqrestore(&np->lock, flags); 3802 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3803 __func__, i); 3804 break; 3805 } 3806 } 3807 3808 return IRQ_RETVAL(i); 3809 } 3810 3811 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3812 { 3813 struct net_device *dev = (struct net_device *) data; 3814 struct fe_priv *np = netdev_priv(dev); 3815 u8 __iomem *base = get_hwbase(dev); 3816 u32 events; 3817 int i; 3818 unsigned long flags; 3819 3820 for (i = 0;; i++) { 3821 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3822 writel(events, base + NvRegMSIXIrqStatus); 3823 netdev_dbg(dev, "irq events: %08x\n", events); 3824 if (!(events & np->irqmask)) 3825 break; 3826 3827 /* check tx in case we reached max loop limit in tx isr */ 3828 spin_lock_irqsave(&np->lock, flags); 3829 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3830 spin_unlock_irqrestore(&np->lock, flags); 3831 3832 if (events & NVREG_IRQ_LINK) { 3833 spin_lock_irqsave(&np->lock, flags); 3834 nv_link_irq(dev); 3835 spin_unlock_irqrestore(&np->lock, flags); 3836 } 3837 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3838 spin_lock_irqsave(&np->lock, flags); 3839 nv_linkchange(dev); 3840 spin_unlock_irqrestore(&np->lock, flags); 3841 np->link_timeout = jiffies + LINK_TIMEOUT; 3842 } 3843 if (events & NVREG_IRQ_RECOVER_ERROR) { 3844 spin_lock_irqsave(&np->lock, flags); 3845 /* disable interrupts on the nic */ 3846 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3847 pci_push(base); 3848 3849 if (!np->in_shutdown) { 3850 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3851 np->recover_error = 1; 3852 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3853 } 3854 spin_unlock_irqrestore(&np->lock, flags); 3855 break; 3856 } 3857 if (unlikely(i > max_interrupt_work)) { 3858 spin_lock_irqsave(&np->lock, flags); 3859 /* disable interrupts on the nic */ 3860 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3861 pci_push(base); 3862 3863 if (!np->in_shutdown) { 3864 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3865 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3866 } 3867 spin_unlock_irqrestore(&np->lock, flags); 3868 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3869 __func__, i); 3870 break; 3871 } 3872 3873 } 3874 3875 return IRQ_RETVAL(i); 3876 } 3877 3878 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3879 { 3880 struct net_device *dev = (struct net_device *) data; 3881 struct fe_priv *np = netdev_priv(dev); 3882 u8 __iomem *base = get_hwbase(dev); 3883 u32 events; 3884 3885 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3886 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3887 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3888 } else { 3889 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3890 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3891 } 3892 pci_push(base); 3893 if (!(events & NVREG_IRQ_TIMER)) 3894 return IRQ_RETVAL(0); 3895 3896 nv_msi_workaround(np); 3897 3898 spin_lock(&np->lock); 3899 np->intr_test = 1; 3900 spin_unlock(&np->lock); 3901 3902 return IRQ_RETVAL(1); 3903 } 3904 3905 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3906 { 3907 u8 __iomem *base = get_hwbase(dev); 3908 int i; 3909 u32 msixmap = 0; 3910 3911 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3912 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 3913 * the remaining 8 interrupts. 3914 */ 3915 for (i = 0; i < 8; i++) { 3916 if ((irqmask >> i) & 0x1) 3917 msixmap |= vector << (i << 2); 3918 } 3919 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 3920 3921 msixmap = 0; 3922 for (i = 0; i < 8; i++) { 3923 if ((irqmask >> (i + 8)) & 0x1) 3924 msixmap |= vector << (i << 2); 3925 } 3926 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 3927 } 3928 3929 static int nv_request_irq(struct net_device *dev, int intr_test) 3930 { 3931 struct fe_priv *np = get_nvpriv(dev); 3932 u8 __iomem *base = get_hwbase(dev); 3933 int ret; 3934 int i; 3935 irqreturn_t (*handler)(int foo, void *data); 3936 3937 if (intr_test) { 3938 handler = nv_nic_irq_test; 3939 } else { 3940 if (nv_optimized(np)) 3941 handler = nv_nic_irq_optimized; 3942 else 3943 handler = nv_nic_irq; 3944 } 3945 3946 if (np->msi_flags & NV_MSI_X_CAPABLE) { 3947 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3948 np->msi_x_entry[i].entry = i; 3949 ret = pci_enable_msix_range(np->pci_dev, 3950 np->msi_x_entry, 3951 np->msi_flags & NV_MSI_X_VECTORS_MASK, 3952 np->msi_flags & NV_MSI_X_VECTORS_MASK); 3953 if (ret > 0) { 3954 np->msi_flags |= NV_MSI_X_ENABLED; 3955 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 3956 /* Request irq for rx handling */ 3957 sprintf(np->name_rx, "%s-rx", dev->name); 3958 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 3959 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev); 3960 if (ret) { 3961 netdev_info(dev, 3962 "request_irq failed for rx %d\n", 3963 ret); 3964 pci_disable_msix(np->pci_dev); 3965 np->msi_flags &= ~NV_MSI_X_ENABLED; 3966 goto out_err; 3967 } 3968 /* Request irq for tx handling */ 3969 sprintf(np->name_tx, "%s-tx", dev->name); 3970 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 3971 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev); 3972 if (ret) { 3973 netdev_info(dev, 3974 "request_irq failed for tx %d\n", 3975 ret); 3976 pci_disable_msix(np->pci_dev); 3977 np->msi_flags &= ~NV_MSI_X_ENABLED; 3978 goto out_free_rx; 3979 } 3980 /* Request irq for link and timer handling */ 3981 sprintf(np->name_other, "%s-other", dev->name); 3982 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 3983 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev); 3984 if (ret) { 3985 netdev_info(dev, 3986 "request_irq failed for link %d\n", 3987 ret); 3988 pci_disable_msix(np->pci_dev); 3989 np->msi_flags &= ~NV_MSI_X_ENABLED; 3990 goto out_free_tx; 3991 } 3992 /* map interrupts to their respective vector */ 3993 writel(0, base + NvRegMSIXMap0); 3994 writel(0, base + NvRegMSIXMap1); 3995 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 3996 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 3997 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 3998 } else { 3999 /* Request irq for all interrupts */ 4000 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, 4001 handler, IRQF_SHARED, dev->name, dev); 4002 if (ret) { 4003 netdev_info(dev, 4004 "request_irq failed %d\n", 4005 ret); 4006 pci_disable_msix(np->pci_dev); 4007 np->msi_flags &= ~NV_MSI_X_ENABLED; 4008 goto out_err; 4009 } 4010 4011 /* map interrupts to vector 0 */ 4012 writel(0, base + NvRegMSIXMap0); 4013 writel(0, base + NvRegMSIXMap1); 4014 } 4015 netdev_info(dev, "MSI-X enabled\n"); 4016 return 0; 4017 } 4018 } 4019 if (np->msi_flags & NV_MSI_CAPABLE) { 4020 ret = pci_enable_msi(np->pci_dev); 4021 if (ret == 0) { 4022 np->msi_flags |= NV_MSI_ENABLED; 4023 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev); 4024 if (ret) { 4025 netdev_info(dev, "request_irq failed %d\n", 4026 ret); 4027 pci_disable_msi(np->pci_dev); 4028 np->msi_flags &= ~NV_MSI_ENABLED; 4029 goto out_err; 4030 } 4031 4032 /* map interrupts to vector 0 */ 4033 writel(0, base + NvRegMSIMap0); 4034 writel(0, base + NvRegMSIMap1); 4035 /* enable msi vector 0 */ 4036 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 4037 netdev_info(dev, "MSI enabled\n"); 4038 return 0; 4039 } 4040 } 4041 4042 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 4043 goto out_err; 4044 4045 return 0; 4046 out_free_tx: 4047 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 4048 out_free_rx: 4049 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 4050 out_err: 4051 return 1; 4052 } 4053 4054 static void nv_free_irq(struct net_device *dev) 4055 { 4056 struct fe_priv *np = get_nvpriv(dev); 4057 int i; 4058 4059 if (np->msi_flags & NV_MSI_X_ENABLED) { 4060 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4061 free_irq(np->msi_x_entry[i].vector, dev); 4062 pci_disable_msix(np->pci_dev); 4063 np->msi_flags &= ~NV_MSI_X_ENABLED; 4064 } else { 4065 free_irq(np->pci_dev->irq, dev); 4066 if (np->msi_flags & NV_MSI_ENABLED) { 4067 pci_disable_msi(np->pci_dev); 4068 np->msi_flags &= ~NV_MSI_ENABLED; 4069 } 4070 } 4071 } 4072 4073 static void nv_do_nic_poll(struct timer_list *t) 4074 { 4075 struct fe_priv *np = from_timer(np, t, nic_poll); 4076 struct net_device *dev = np->dev; 4077 u8 __iomem *base = get_hwbase(dev); 4078 u32 mask = 0; 4079 unsigned long flags; 4080 unsigned int irq = 0; 4081 4082 /* 4083 * First disable irq(s) and then 4084 * reenable interrupts on the nic, we have to do this before calling 4085 * nv_nic_irq because that may decide to do otherwise 4086 */ 4087 4088 if (!using_multi_irqs(dev)) { 4089 if (np->msi_flags & NV_MSI_X_ENABLED) 4090 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector; 4091 else 4092 irq = np->pci_dev->irq; 4093 mask = np->irqmask; 4094 } else { 4095 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4096 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector; 4097 mask |= NVREG_IRQ_RX_ALL; 4098 } 4099 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4100 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector; 4101 mask |= NVREG_IRQ_TX_ALL; 4102 } 4103 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4104 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector; 4105 mask |= NVREG_IRQ_OTHER; 4106 } 4107 } 4108 4109 disable_irq_nosync_lockdep_irqsave(irq, &flags); 4110 synchronize_irq(irq); 4111 4112 if (np->recover_error) { 4113 np->recover_error = 0; 4114 netdev_info(dev, "MAC in recoverable error state\n"); 4115 if (netif_running(dev)) { 4116 netif_tx_lock_bh(dev); 4117 netif_addr_lock(dev); 4118 spin_lock(&np->lock); 4119 /* stop engines */ 4120 nv_stop_rxtx(dev); 4121 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4122 nv_mac_reset(dev); 4123 nv_txrx_reset(dev); 4124 /* drain rx queue */ 4125 nv_drain_rxtx(dev); 4126 /* reinit driver view of the rx queue */ 4127 set_bufsize(dev); 4128 if (nv_init_ring(dev)) { 4129 if (!np->in_shutdown) 4130 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4131 } 4132 /* reinit nic view of the rx queue */ 4133 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4134 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4135 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4136 base + NvRegRingSizes); 4137 pci_push(base); 4138 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4139 pci_push(base); 4140 /* clear interrupts */ 4141 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4142 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4143 else 4144 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4145 4146 /* restart rx engine */ 4147 nv_start_rxtx(dev); 4148 spin_unlock(&np->lock); 4149 netif_addr_unlock(dev); 4150 netif_tx_unlock_bh(dev); 4151 } 4152 } 4153 4154 writel(mask, base + NvRegIrqMask); 4155 pci_push(base); 4156 4157 if (!using_multi_irqs(dev)) { 4158 np->nic_poll_irq = 0; 4159 if (nv_optimized(np)) 4160 nv_nic_irq_optimized(0, dev); 4161 else 4162 nv_nic_irq(0, dev); 4163 } else { 4164 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4165 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4166 nv_nic_irq_rx(0, dev); 4167 } 4168 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4169 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4170 nv_nic_irq_tx(0, dev); 4171 } 4172 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4173 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4174 nv_nic_irq_other(0, dev); 4175 } 4176 } 4177 4178 enable_irq_lockdep_irqrestore(irq, &flags); 4179 } 4180 4181 #ifdef CONFIG_NET_POLL_CONTROLLER 4182 static void nv_poll_controller(struct net_device *dev) 4183 { 4184 struct fe_priv *np = netdev_priv(dev); 4185 4186 nv_do_nic_poll(&np->nic_poll); 4187 } 4188 #endif 4189 4190 static void nv_do_stats_poll(struct timer_list *t) 4191 __acquires(&netdev_priv(dev)->hwstats_lock) 4192 __releases(&netdev_priv(dev)->hwstats_lock) 4193 { 4194 struct fe_priv *np = from_timer(np, t, stats_poll); 4195 struct net_device *dev = np->dev; 4196 4197 /* If lock is currently taken, the stats are being refreshed 4198 * and hence fresh enough */ 4199 if (spin_trylock(&np->hwstats_lock)) { 4200 nv_update_stats(dev); 4201 spin_unlock(&np->hwstats_lock); 4202 } 4203 4204 if (!np->in_shutdown) 4205 mod_timer(&np->stats_poll, 4206 round_jiffies(jiffies + STATS_INTERVAL)); 4207 } 4208 4209 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4210 { 4211 struct fe_priv *np = netdev_priv(dev); 4212 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4213 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4214 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4215 } 4216 4217 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4218 { 4219 struct fe_priv *np = netdev_priv(dev); 4220 wolinfo->supported = WAKE_MAGIC; 4221 4222 spin_lock_irq(&np->lock); 4223 if (np->wolenabled) 4224 wolinfo->wolopts = WAKE_MAGIC; 4225 spin_unlock_irq(&np->lock); 4226 } 4227 4228 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4229 { 4230 struct fe_priv *np = netdev_priv(dev); 4231 u8 __iomem *base = get_hwbase(dev); 4232 u32 flags = 0; 4233 4234 if (wolinfo->wolopts == 0) { 4235 np->wolenabled = 0; 4236 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4237 np->wolenabled = 1; 4238 flags = NVREG_WAKEUPFLAGS_ENABLE; 4239 } 4240 if (netif_running(dev)) { 4241 spin_lock_irq(&np->lock); 4242 writel(flags, base + NvRegWakeUpFlags); 4243 spin_unlock_irq(&np->lock); 4244 } 4245 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4246 return 0; 4247 } 4248 4249 static int nv_get_link_ksettings(struct net_device *dev, 4250 struct ethtool_link_ksettings *cmd) 4251 { 4252 struct fe_priv *np = netdev_priv(dev); 4253 u32 speed, supported, advertising; 4254 int adv; 4255 4256 spin_lock_irq(&np->lock); 4257 cmd->base.port = PORT_MII; 4258 if (!netif_running(dev)) { 4259 /* We do not track link speed / duplex setting if the 4260 * interface is disabled. Force a link check */ 4261 if (nv_update_linkspeed(dev)) { 4262 netif_carrier_on(dev); 4263 } else { 4264 netif_carrier_off(dev); 4265 } 4266 } 4267 4268 if (netif_carrier_ok(dev)) { 4269 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4270 case NVREG_LINKSPEED_10: 4271 speed = SPEED_10; 4272 break; 4273 case NVREG_LINKSPEED_100: 4274 speed = SPEED_100; 4275 break; 4276 case NVREG_LINKSPEED_1000: 4277 speed = SPEED_1000; 4278 break; 4279 default: 4280 speed = -1; 4281 break; 4282 } 4283 cmd->base.duplex = DUPLEX_HALF; 4284 if (np->duplex) 4285 cmd->base.duplex = DUPLEX_FULL; 4286 } else { 4287 speed = SPEED_UNKNOWN; 4288 cmd->base.duplex = DUPLEX_UNKNOWN; 4289 } 4290 cmd->base.speed = speed; 4291 cmd->base.autoneg = np->autoneg; 4292 4293 advertising = ADVERTISED_MII; 4294 if (np->autoneg) { 4295 advertising |= ADVERTISED_Autoneg; 4296 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4297 if (adv & ADVERTISE_10HALF) 4298 advertising |= ADVERTISED_10baseT_Half; 4299 if (adv & ADVERTISE_10FULL) 4300 advertising |= ADVERTISED_10baseT_Full; 4301 if (adv & ADVERTISE_100HALF) 4302 advertising |= ADVERTISED_100baseT_Half; 4303 if (adv & ADVERTISE_100FULL) 4304 advertising |= ADVERTISED_100baseT_Full; 4305 if (np->gigabit == PHY_GIGABIT) { 4306 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4307 if (adv & ADVERTISE_1000FULL) 4308 advertising |= ADVERTISED_1000baseT_Full; 4309 } 4310 } 4311 supported = (SUPPORTED_Autoneg | 4312 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4313 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4314 SUPPORTED_MII); 4315 if (np->gigabit == PHY_GIGABIT) 4316 supported |= SUPPORTED_1000baseT_Full; 4317 4318 cmd->base.phy_address = np->phyaddr; 4319 4320 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4321 supported); 4322 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4323 advertising); 4324 4325 /* ignore maxtxpkt, maxrxpkt for now */ 4326 spin_unlock_irq(&np->lock); 4327 return 0; 4328 } 4329 4330 static int nv_set_link_ksettings(struct net_device *dev, 4331 const struct ethtool_link_ksettings *cmd) 4332 { 4333 struct fe_priv *np = netdev_priv(dev); 4334 u32 speed = cmd->base.speed; 4335 u32 advertising; 4336 4337 ethtool_convert_link_mode_to_legacy_u32(&advertising, 4338 cmd->link_modes.advertising); 4339 4340 if (cmd->base.port != PORT_MII) 4341 return -EINVAL; 4342 if (cmd->base.phy_address != np->phyaddr) { 4343 /* TODO: support switching between multiple phys. Should be 4344 * trivial, but not enabled due to lack of test hardware. */ 4345 return -EINVAL; 4346 } 4347 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4348 u32 mask; 4349 4350 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4351 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4352 if (np->gigabit == PHY_GIGABIT) 4353 mask |= ADVERTISED_1000baseT_Full; 4354 4355 if ((advertising & mask) == 0) 4356 return -EINVAL; 4357 4358 } else if (cmd->base.autoneg == AUTONEG_DISABLE) { 4359 /* Note: autonegotiation disable, speed 1000 intentionally 4360 * forbidden - no one should need that. */ 4361 4362 if (speed != SPEED_10 && speed != SPEED_100) 4363 return -EINVAL; 4364 if (cmd->base.duplex != DUPLEX_HALF && 4365 cmd->base.duplex != DUPLEX_FULL) 4366 return -EINVAL; 4367 } else { 4368 return -EINVAL; 4369 } 4370 4371 netif_carrier_off(dev); 4372 if (netif_running(dev)) { 4373 unsigned long flags; 4374 4375 nv_disable_irq(dev); 4376 netif_tx_lock_bh(dev); 4377 netif_addr_lock(dev); 4378 /* with plain spinlock lockdep complains */ 4379 spin_lock_irqsave(&np->lock, flags); 4380 /* stop engines */ 4381 /* FIXME: 4382 * this can take some time, and interrupts are disabled 4383 * due to spin_lock_irqsave, but let's hope no daemon 4384 * is going to change the settings very often... 4385 * Worst case: 4386 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4387 * + some minor delays, which is up to a second approximately 4388 */ 4389 nv_stop_rxtx(dev); 4390 spin_unlock_irqrestore(&np->lock, flags); 4391 netif_addr_unlock(dev); 4392 netif_tx_unlock_bh(dev); 4393 } 4394 4395 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4396 int adv, bmcr; 4397 4398 np->autoneg = 1; 4399 4400 /* advertise only what has been requested */ 4401 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4402 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4403 if (advertising & ADVERTISED_10baseT_Half) 4404 adv |= ADVERTISE_10HALF; 4405 if (advertising & ADVERTISED_10baseT_Full) 4406 adv |= ADVERTISE_10FULL; 4407 if (advertising & ADVERTISED_100baseT_Half) 4408 adv |= ADVERTISE_100HALF; 4409 if (advertising & ADVERTISED_100baseT_Full) 4410 adv |= ADVERTISE_100FULL; 4411 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4412 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4413 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4414 adv |= ADVERTISE_PAUSE_ASYM; 4415 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4416 4417 if (np->gigabit == PHY_GIGABIT) { 4418 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4419 adv &= ~ADVERTISE_1000FULL; 4420 if (advertising & ADVERTISED_1000baseT_Full) 4421 adv |= ADVERTISE_1000FULL; 4422 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4423 } 4424 4425 if (netif_running(dev)) 4426 netdev_info(dev, "link down\n"); 4427 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4428 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4429 bmcr |= BMCR_ANENABLE; 4430 /* reset the phy in order for settings to stick, 4431 * and cause autoneg to start */ 4432 if (phy_reset(dev, bmcr)) { 4433 netdev_info(dev, "phy reset failed\n"); 4434 return -EINVAL; 4435 } 4436 } else { 4437 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4438 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4439 } 4440 } else { 4441 int adv, bmcr; 4442 4443 np->autoneg = 0; 4444 4445 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4446 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4447 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF) 4448 adv |= ADVERTISE_10HALF; 4449 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL) 4450 adv |= ADVERTISE_10FULL; 4451 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF) 4452 adv |= ADVERTISE_100HALF; 4453 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL) 4454 adv |= ADVERTISE_100FULL; 4455 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4456 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4457 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4458 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4459 } 4460 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4461 adv |= ADVERTISE_PAUSE_ASYM; 4462 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4463 } 4464 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4465 np->fixed_mode = adv; 4466 4467 if (np->gigabit == PHY_GIGABIT) { 4468 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4469 adv &= ~ADVERTISE_1000FULL; 4470 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4471 } 4472 4473 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4474 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4475 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4476 bmcr |= BMCR_FULLDPLX; 4477 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4478 bmcr |= BMCR_SPEED100; 4479 if (np->phy_oui == PHY_OUI_MARVELL) { 4480 /* reset the phy in order for forced mode settings to stick */ 4481 if (phy_reset(dev, bmcr)) { 4482 netdev_info(dev, "phy reset failed\n"); 4483 return -EINVAL; 4484 } 4485 } else { 4486 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4487 if (netif_running(dev)) { 4488 /* Wait a bit and then reconfigure the nic. */ 4489 udelay(10); 4490 nv_linkchange(dev); 4491 } 4492 } 4493 } 4494 4495 if (netif_running(dev)) { 4496 nv_start_rxtx(dev); 4497 nv_enable_irq(dev); 4498 } 4499 4500 return 0; 4501 } 4502 4503 #define FORCEDETH_REGS_VER 1 4504 4505 static int nv_get_regs_len(struct net_device *dev) 4506 { 4507 struct fe_priv *np = netdev_priv(dev); 4508 return np->register_size; 4509 } 4510 4511 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4512 { 4513 struct fe_priv *np = netdev_priv(dev); 4514 u8 __iomem *base = get_hwbase(dev); 4515 u32 *rbuf = buf; 4516 int i; 4517 4518 regs->version = FORCEDETH_REGS_VER; 4519 spin_lock_irq(&np->lock); 4520 for (i = 0; i < np->register_size/sizeof(u32); i++) 4521 rbuf[i] = readl(base + i*sizeof(u32)); 4522 spin_unlock_irq(&np->lock); 4523 } 4524 4525 static int nv_nway_reset(struct net_device *dev) 4526 { 4527 struct fe_priv *np = netdev_priv(dev); 4528 int ret; 4529 4530 if (np->autoneg) { 4531 int bmcr; 4532 4533 netif_carrier_off(dev); 4534 if (netif_running(dev)) { 4535 nv_disable_irq(dev); 4536 netif_tx_lock_bh(dev); 4537 netif_addr_lock(dev); 4538 spin_lock(&np->lock); 4539 /* stop engines */ 4540 nv_stop_rxtx(dev); 4541 spin_unlock(&np->lock); 4542 netif_addr_unlock(dev); 4543 netif_tx_unlock_bh(dev); 4544 netdev_info(dev, "link down\n"); 4545 } 4546 4547 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4548 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4549 bmcr |= BMCR_ANENABLE; 4550 /* reset the phy in order for settings to stick*/ 4551 if (phy_reset(dev, bmcr)) { 4552 netdev_info(dev, "phy reset failed\n"); 4553 return -EINVAL; 4554 } 4555 } else { 4556 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4557 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4558 } 4559 4560 if (netif_running(dev)) { 4561 nv_start_rxtx(dev); 4562 nv_enable_irq(dev); 4563 } 4564 ret = 0; 4565 } else { 4566 ret = -EINVAL; 4567 } 4568 4569 return ret; 4570 } 4571 4572 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4573 { 4574 struct fe_priv *np = netdev_priv(dev); 4575 4576 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4577 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4578 4579 ring->rx_pending = np->rx_ring_size; 4580 ring->tx_pending = np->tx_ring_size; 4581 } 4582 4583 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4584 { 4585 struct fe_priv *np = netdev_priv(dev); 4586 u8 __iomem *base = get_hwbase(dev); 4587 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4588 dma_addr_t ring_addr; 4589 4590 if (ring->rx_pending < RX_RING_MIN || 4591 ring->tx_pending < TX_RING_MIN || 4592 ring->rx_mini_pending != 0 || 4593 ring->rx_jumbo_pending != 0 || 4594 (np->desc_ver == DESC_VER_1 && 4595 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4596 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4597 (np->desc_ver != DESC_VER_1 && 4598 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4599 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4600 return -EINVAL; 4601 } 4602 4603 /* allocate new rings */ 4604 if (!nv_optimized(np)) { 4605 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4606 sizeof(struct ring_desc) * 4607 (ring->rx_pending + 4608 ring->tx_pending), 4609 &ring_addr, GFP_ATOMIC); 4610 } else { 4611 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4612 sizeof(struct ring_desc_ex) * 4613 (ring->rx_pending + 4614 ring->tx_pending), 4615 &ring_addr, GFP_ATOMIC); 4616 } 4617 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL); 4618 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL); 4619 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4620 /* fall back to old rings */ 4621 if (!nv_optimized(np)) { 4622 if (rxtx_ring) 4623 dma_free_coherent(&np->pci_dev->dev, 4624 sizeof(struct ring_desc) * 4625 (ring->rx_pending + 4626 ring->tx_pending), 4627 rxtx_ring, ring_addr); 4628 } else { 4629 if (rxtx_ring) 4630 dma_free_coherent(&np->pci_dev->dev, 4631 sizeof(struct ring_desc_ex) * 4632 (ring->rx_pending + 4633 ring->tx_pending), 4634 rxtx_ring, ring_addr); 4635 } 4636 4637 kfree(rx_skbuff); 4638 kfree(tx_skbuff); 4639 goto exit; 4640 } 4641 4642 if (netif_running(dev)) { 4643 nv_disable_irq(dev); 4644 nv_napi_disable(dev); 4645 netif_tx_lock_bh(dev); 4646 netif_addr_lock(dev); 4647 spin_lock(&np->lock); 4648 /* stop engines */ 4649 nv_stop_rxtx(dev); 4650 nv_txrx_reset(dev); 4651 /* drain queues */ 4652 nv_drain_rxtx(dev); 4653 /* delete queues */ 4654 free_rings(dev); 4655 } 4656 4657 /* set new values */ 4658 np->rx_ring_size = ring->rx_pending; 4659 np->tx_ring_size = ring->tx_pending; 4660 4661 if (!nv_optimized(np)) { 4662 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4663 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4664 } else { 4665 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4666 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4667 } 4668 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4669 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4670 np->ring_addr = ring_addr; 4671 4672 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4673 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4674 4675 if (netif_running(dev)) { 4676 /* reinit driver view of the queues */ 4677 set_bufsize(dev); 4678 if (nv_init_ring(dev)) { 4679 if (!np->in_shutdown) 4680 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4681 } 4682 4683 /* reinit nic view of the queues */ 4684 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4685 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4686 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4687 base + NvRegRingSizes); 4688 pci_push(base); 4689 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4690 pci_push(base); 4691 4692 /* restart engines */ 4693 nv_start_rxtx(dev); 4694 spin_unlock(&np->lock); 4695 netif_addr_unlock(dev); 4696 netif_tx_unlock_bh(dev); 4697 nv_napi_enable(dev); 4698 nv_enable_irq(dev); 4699 } 4700 return 0; 4701 exit: 4702 return -ENOMEM; 4703 } 4704 4705 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4706 { 4707 struct fe_priv *np = netdev_priv(dev); 4708 4709 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4710 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4711 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4712 } 4713 4714 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4715 { 4716 struct fe_priv *np = netdev_priv(dev); 4717 int adv, bmcr; 4718 4719 if ((!np->autoneg && np->duplex == 0) || 4720 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4721 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4722 return -EINVAL; 4723 } 4724 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4725 netdev_info(dev, "hardware does not support tx pause frames\n"); 4726 return -EINVAL; 4727 } 4728 4729 netif_carrier_off(dev); 4730 if (netif_running(dev)) { 4731 nv_disable_irq(dev); 4732 netif_tx_lock_bh(dev); 4733 netif_addr_lock(dev); 4734 spin_lock(&np->lock); 4735 /* stop engines */ 4736 nv_stop_rxtx(dev); 4737 spin_unlock(&np->lock); 4738 netif_addr_unlock(dev); 4739 netif_tx_unlock_bh(dev); 4740 } 4741 4742 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4743 if (pause->rx_pause) 4744 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4745 if (pause->tx_pause) 4746 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4747 4748 if (np->autoneg && pause->autoneg) { 4749 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4750 4751 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4752 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4753 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4754 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4755 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4756 adv |= ADVERTISE_PAUSE_ASYM; 4757 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4758 4759 if (netif_running(dev)) 4760 netdev_info(dev, "link down\n"); 4761 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4762 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4763 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4764 } else { 4765 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4766 if (pause->rx_pause) 4767 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4768 if (pause->tx_pause) 4769 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4770 4771 if (!netif_running(dev)) 4772 nv_update_linkspeed(dev); 4773 else 4774 nv_update_pause(dev, np->pause_flags); 4775 } 4776 4777 if (netif_running(dev)) { 4778 nv_start_rxtx(dev); 4779 nv_enable_irq(dev); 4780 } 4781 return 0; 4782 } 4783 4784 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4785 { 4786 struct fe_priv *np = netdev_priv(dev); 4787 unsigned long flags; 4788 u32 miicontrol; 4789 int err, retval = 0; 4790 4791 spin_lock_irqsave(&np->lock, flags); 4792 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4793 if (features & NETIF_F_LOOPBACK) { 4794 if (miicontrol & BMCR_LOOPBACK) { 4795 spin_unlock_irqrestore(&np->lock, flags); 4796 netdev_info(dev, "Loopback already enabled\n"); 4797 return 0; 4798 } 4799 nv_disable_irq(dev); 4800 /* Turn on loopback mode */ 4801 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4802 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4803 if (err) { 4804 retval = PHY_ERROR; 4805 spin_unlock_irqrestore(&np->lock, flags); 4806 phy_init(dev); 4807 } else { 4808 if (netif_running(dev)) { 4809 /* Force 1000 Mbps full-duplex */ 4810 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4811 1); 4812 /* Force link up */ 4813 netif_carrier_on(dev); 4814 } 4815 spin_unlock_irqrestore(&np->lock, flags); 4816 netdev_info(dev, 4817 "Internal PHY loopback mode enabled.\n"); 4818 } 4819 } else { 4820 if (!(miicontrol & BMCR_LOOPBACK)) { 4821 spin_unlock_irqrestore(&np->lock, flags); 4822 netdev_info(dev, "Loopback already disabled\n"); 4823 return 0; 4824 } 4825 nv_disable_irq(dev); 4826 /* Turn off loopback */ 4827 spin_unlock_irqrestore(&np->lock, flags); 4828 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4829 phy_init(dev); 4830 } 4831 msleep(500); 4832 spin_lock_irqsave(&np->lock, flags); 4833 nv_enable_irq(dev); 4834 spin_unlock_irqrestore(&np->lock, flags); 4835 4836 return retval; 4837 } 4838 4839 static netdev_features_t nv_fix_features(struct net_device *dev, 4840 netdev_features_t features) 4841 { 4842 /* vlan is dependent on rx checksum offload */ 4843 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX)) 4844 features |= NETIF_F_RXCSUM; 4845 4846 return features; 4847 } 4848 4849 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4850 { 4851 struct fe_priv *np = get_nvpriv(dev); 4852 4853 spin_lock_irq(&np->lock); 4854 4855 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4856 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4857 else 4858 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4859 4860 if (features & NETIF_F_HW_VLAN_CTAG_TX) 4861 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4862 else 4863 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4864 4865 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4866 4867 spin_unlock_irq(&np->lock); 4868 } 4869 4870 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4871 { 4872 struct fe_priv *np = netdev_priv(dev); 4873 u8 __iomem *base = get_hwbase(dev); 4874 netdev_features_t changed = dev->features ^ features; 4875 int retval; 4876 4877 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4878 retval = nv_set_loopback(dev, features); 4879 if (retval != 0) 4880 return retval; 4881 } 4882 4883 if (changed & NETIF_F_RXCSUM) { 4884 spin_lock_irq(&np->lock); 4885 4886 if (features & NETIF_F_RXCSUM) 4887 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4888 else 4889 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4890 4891 if (netif_running(dev)) 4892 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4893 4894 spin_unlock_irq(&np->lock); 4895 } 4896 4897 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX)) 4898 nv_vlan_mode(dev, features); 4899 4900 return 0; 4901 } 4902 4903 static int nv_get_sset_count(struct net_device *dev, int sset) 4904 { 4905 struct fe_priv *np = netdev_priv(dev); 4906 4907 switch (sset) { 4908 case ETH_SS_TEST: 4909 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4910 return NV_TEST_COUNT_EXTENDED; 4911 else 4912 return NV_TEST_COUNT_BASE; 4913 case ETH_SS_STATS: 4914 if (np->driver_data & DEV_HAS_STATISTICS_V3) 4915 return NV_DEV_STATISTICS_V3_COUNT; 4916 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 4917 return NV_DEV_STATISTICS_V2_COUNT; 4918 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 4919 return NV_DEV_STATISTICS_V1_COUNT; 4920 else 4921 return 0; 4922 default: 4923 return -EOPNOTSUPP; 4924 } 4925 } 4926 4927 static void nv_get_ethtool_stats(struct net_device *dev, 4928 struct ethtool_stats *estats, u64 *buffer) 4929 __acquires(&netdev_priv(dev)->hwstats_lock) 4930 __releases(&netdev_priv(dev)->hwstats_lock) 4931 { 4932 struct fe_priv *np = netdev_priv(dev); 4933 4934 spin_lock_bh(&np->hwstats_lock); 4935 nv_update_stats(dev); 4936 memcpy(buffer, &np->estats, 4937 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 4938 spin_unlock_bh(&np->hwstats_lock); 4939 } 4940 4941 static int nv_link_test(struct net_device *dev) 4942 { 4943 struct fe_priv *np = netdev_priv(dev); 4944 int mii_status; 4945 4946 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4947 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4948 4949 /* check phy link status */ 4950 if (!(mii_status & BMSR_LSTATUS)) 4951 return 0; 4952 else 4953 return 1; 4954 } 4955 4956 static int nv_register_test(struct net_device *dev) 4957 { 4958 u8 __iomem *base = get_hwbase(dev); 4959 int i = 0; 4960 u32 orig_read, new_read; 4961 4962 do { 4963 orig_read = readl(base + nv_registers_test[i].reg); 4964 4965 /* xor with mask to toggle bits */ 4966 orig_read ^= nv_registers_test[i].mask; 4967 4968 writel(orig_read, base + nv_registers_test[i].reg); 4969 4970 new_read = readl(base + nv_registers_test[i].reg); 4971 4972 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 4973 return 0; 4974 4975 /* restore original value */ 4976 orig_read ^= nv_registers_test[i].mask; 4977 writel(orig_read, base + nv_registers_test[i].reg); 4978 4979 } while (nv_registers_test[++i].reg != 0); 4980 4981 return 1; 4982 } 4983 4984 static int nv_interrupt_test(struct net_device *dev) 4985 { 4986 struct fe_priv *np = netdev_priv(dev); 4987 u8 __iomem *base = get_hwbase(dev); 4988 int ret = 1; 4989 int testcnt; 4990 u32 save_msi_flags, save_poll_interval = 0; 4991 4992 if (netif_running(dev)) { 4993 /* free current irq */ 4994 nv_free_irq(dev); 4995 save_poll_interval = readl(base+NvRegPollingInterval); 4996 } 4997 4998 /* flag to test interrupt handler */ 4999 np->intr_test = 0; 5000 5001 /* setup test irq */ 5002 save_msi_flags = np->msi_flags; 5003 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 5004 np->msi_flags |= 0x001; /* setup 1 vector */ 5005 if (nv_request_irq(dev, 1)) 5006 return 0; 5007 5008 /* setup timer interrupt */ 5009 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5010 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5011 5012 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5013 5014 /* wait for at least one interrupt */ 5015 msleep(100); 5016 5017 spin_lock_irq(&np->lock); 5018 5019 /* flag should be set within ISR */ 5020 testcnt = np->intr_test; 5021 if (!testcnt) 5022 ret = 2; 5023 5024 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5025 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5026 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5027 else 5028 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5029 5030 spin_unlock_irq(&np->lock); 5031 5032 nv_free_irq(dev); 5033 5034 np->msi_flags = save_msi_flags; 5035 5036 if (netif_running(dev)) { 5037 writel(save_poll_interval, base + NvRegPollingInterval); 5038 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5039 /* restore original irq */ 5040 if (nv_request_irq(dev, 0)) 5041 return 0; 5042 } 5043 5044 return ret; 5045 } 5046 5047 static int nv_loopback_test(struct net_device *dev) 5048 { 5049 struct fe_priv *np = netdev_priv(dev); 5050 u8 __iomem *base = get_hwbase(dev); 5051 struct sk_buff *tx_skb, *rx_skb; 5052 dma_addr_t test_dma_addr; 5053 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 5054 u32 flags; 5055 int len, i, pkt_len; 5056 u8 *pkt_data; 5057 u32 filter_flags = 0; 5058 u32 misc1_flags = 0; 5059 int ret = 1; 5060 5061 if (netif_running(dev)) { 5062 nv_disable_irq(dev); 5063 filter_flags = readl(base + NvRegPacketFilterFlags); 5064 misc1_flags = readl(base + NvRegMisc1); 5065 } else { 5066 nv_txrx_reset(dev); 5067 } 5068 5069 /* reinit driver view of the rx queue */ 5070 set_bufsize(dev); 5071 nv_init_ring(dev); 5072 5073 /* setup hardware for loopback */ 5074 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 5075 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 5076 5077 /* reinit nic view of the rx queue */ 5078 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5079 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5080 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5081 base + NvRegRingSizes); 5082 pci_push(base); 5083 5084 /* restart rx engine */ 5085 nv_start_rxtx(dev); 5086 5087 /* setup packet for tx */ 5088 pkt_len = ETH_DATA_LEN; 5089 tx_skb = netdev_alloc_skb(dev, pkt_len); 5090 if (!tx_skb) { 5091 ret = 0; 5092 goto out; 5093 } 5094 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data, 5095 skb_tailroom(tx_skb), 5096 DMA_FROM_DEVICE); 5097 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 5098 test_dma_addr))) { 5099 dev_kfree_skb_any(tx_skb); 5100 goto out; 5101 } 5102 pkt_data = skb_put(tx_skb, pkt_len); 5103 for (i = 0; i < pkt_len; i++) 5104 pkt_data[i] = (u8)(i & 0xff); 5105 5106 if (!nv_optimized(np)) { 5107 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5108 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5109 } else { 5110 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5111 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5112 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5113 } 5114 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5115 pci_push(get_hwbase(dev)); 5116 5117 msleep(500); 5118 5119 /* check for rx of the packet */ 5120 if (!nv_optimized(np)) { 5121 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5122 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5123 5124 } else { 5125 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5126 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5127 } 5128 5129 if (flags & NV_RX_AVAIL) { 5130 ret = 0; 5131 } else if (np->desc_ver == DESC_VER_1) { 5132 if (flags & NV_RX_ERROR) 5133 ret = 0; 5134 } else { 5135 if (flags & NV_RX2_ERROR) 5136 ret = 0; 5137 } 5138 5139 if (ret) { 5140 if (len != pkt_len) { 5141 ret = 0; 5142 } else { 5143 rx_skb = np->rx_skb[0].skb; 5144 for (i = 0; i < pkt_len; i++) { 5145 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5146 ret = 0; 5147 break; 5148 } 5149 } 5150 } 5151 } 5152 5153 dma_unmap_single(&np->pci_dev->dev, test_dma_addr, 5154 (skb_end_pointer(tx_skb) - tx_skb->data), 5155 DMA_TO_DEVICE); 5156 dev_kfree_skb_any(tx_skb); 5157 out: 5158 /* stop engines */ 5159 nv_stop_rxtx(dev); 5160 nv_txrx_reset(dev); 5161 /* drain rx queue */ 5162 nv_drain_rxtx(dev); 5163 5164 if (netif_running(dev)) { 5165 writel(misc1_flags, base + NvRegMisc1); 5166 writel(filter_flags, base + NvRegPacketFilterFlags); 5167 nv_enable_irq(dev); 5168 } 5169 5170 return ret; 5171 } 5172 5173 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5174 { 5175 struct fe_priv *np = netdev_priv(dev); 5176 u8 __iomem *base = get_hwbase(dev); 5177 int result, count; 5178 5179 count = nv_get_sset_count(dev, ETH_SS_TEST); 5180 memset(buffer, 0, count * sizeof(u64)); 5181 5182 if (!nv_link_test(dev)) { 5183 test->flags |= ETH_TEST_FL_FAILED; 5184 buffer[0] = 1; 5185 } 5186 5187 if (test->flags & ETH_TEST_FL_OFFLINE) { 5188 if (netif_running(dev)) { 5189 netif_stop_queue(dev); 5190 nv_napi_disable(dev); 5191 netif_tx_lock_bh(dev); 5192 netif_addr_lock(dev); 5193 spin_lock_irq(&np->lock); 5194 nv_disable_hw_interrupts(dev, np->irqmask); 5195 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5196 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5197 else 5198 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5199 /* stop engines */ 5200 nv_stop_rxtx(dev); 5201 nv_txrx_reset(dev); 5202 /* drain rx queue */ 5203 nv_drain_rxtx(dev); 5204 spin_unlock_irq(&np->lock); 5205 netif_addr_unlock(dev); 5206 netif_tx_unlock_bh(dev); 5207 } 5208 5209 if (!nv_register_test(dev)) { 5210 test->flags |= ETH_TEST_FL_FAILED; 5211 buffer[1] = 1; 5212 } 5213 5214 result = nv_interrupt_test(dev); 5215 if (result != 1) { 5216 test->flags |= ETH_TEST_FL_FAILED; 5217 buffer[2] = 1; 5218 } 5219 if (result == 0) { 5220 /* bail out */ 5221 return; 5222 } 5223 5224 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) { 5225 test->flags |= ETH_TEST_FL_FAILED; 5226 buffer[3] = 1; 5227 } 5228 5229 if (netif_running(dev)) { 5230 /* reinit driver view of the rx queue */ 5231 set_bufsize(dev); 5232 if (nv_init_ring(dev)) { 5233 if (!np->in_shutdown) 5234 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5235 } 5236 /* reinit nic view of the rx queue */ 5237 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5238 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5239 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5240 base + NvRegRingSizes); 5241 pci_push(base); 5242 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5243 pci_push(base); 5244 /* restart rx engine */ 5245 nv_start_rxtx(dev); 5246 netif_start_queue(dev); 5247 nv_napi_enable(dev); 5248 nv_enable_hw_interrupts(dev, np->irqmask); 5249 } 5250 } 5251 } 5252 5253 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5254 { 5255 switch (stringset) { 5256 case ETH_SS_STATS: 5257 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5258 break; 5259 case ETH_SS_TEST: 5260 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5261 break; 5262 } 5263 } 5264 5265 static const struct ethtool_ops ops = { 5266 .get_drvinfo = nv_get_drvinfo, 5267 .get_link = ethtool_op_get_link, 5268 .get_wol = nv_get_wol, 5269 .set_wol = nv_set_wol, 5270 .get_regs_len = nv_get_regs_len, 5271 .get_regs = nv_get_regs, 5272 .nway_reset = nv_nway_reset, 5273 .get_ringparam = nv_get_ringparam, 5274 .set_ringparam = nv_set_ringparam, 5275 .get_pauseparam = nv_get_pauseparam, 5276 .set_pauseparam = nv_set_pauseparam, 5277 .get_strings = nv_get_strings, 5278 .get_ethtool_stats = nv_get_ethtool_stats, 5279 .get_sset_count = nv_get_sset_count, 5280 .self_test = nv_self_test, 5281 .get_ts_info = ethtool_op_get_ts_info, 5282 .get_link_ksettings = nv_get_link_ksettings, 5283 .set_link_ksettings = nv_set_link_ksettings, 5284 }; 5285 5286 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5287 static int nv_mgmt_acquire_sema(struct net_device *dev) 5288 { 5289 struct fe_priv *np = netdev_priv(dev); 5290 u8 __iomem *base = get_hwbase(dev); 5291 int i; 5292 u32 tx_ctrl, mgmt_sema; 5293 5294 for (i = 0; i < 10; i++) { 5295 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5296 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5297 break; 5298 msleep(500); 5299 } 5300 5301 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5302 return 0; 5303 5304 for (i = 0; i < 2; i++) { 5305 tx_ctrl = readl(base + NvRegTransmitterControl); 5306 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5307 writel(tx_ctrl, base + NvRegTransmitterControl); 5308 5309 /* verify that semaphore was acquired */ 5310 tx_ctrl = readl(base + NvRegTransmitterControl); 5311 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5312 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5313 np->mgmt_sema = 1; 5314 return 1; 5315 } else 5316 udelay(50); 5317 } 5318 5319 return 0; 5320 } 5321 5322 static void nv_mgmt_release_sema(struct net_device *dev) 5323 { 5324 struct fe_priv *np = netdev_priv(dev); 5325 u8 __iomem *base = get_hwbase(dev); 5326 u32 tx_ctrl; 5327 5328 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5329 if (np->mgmt_sema) { 5330 tx_ctrl = readl(base + NvRegTransmitterControl); 5331 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5332 writel(tx_ctrl, base + NvRegTransmitterControl); 5333 } 5334 } 5335 } 5336 5337 5338 static int nv_mgmt_get_version(struct net_device *dev) 5339 { 5340 struct fe_priv *np = netdev_priv(dev); 5341 u8 __iomem *base = get_hwbase(dev); 5342 u32 data_ready = readl(base + NvRegTransmitterControl); 5343 u32 data_ready2 = 0; 5344 unsigned long start; 5345 int ready = 0; 5346 5347 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5348 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5349 start = jiffies; 5350 while (time_before(jiffies, start + 5*HZ)) { 5351 data_ready2 = readl(base + NvRegTransmitterControl); 5352 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5353 ready = 1; 5354 break; 5355 } 5356 schedule_timeout_uninterruptible(1); 5357 } 5358 5359 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5360 return 0; 5361 5362 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5363 5364 return 1; 5365 } 5366 5367 static int nv_open(struct net_device *dev) 5368 { 5369 struct fe_priv *np = netdev_priv(dev); 5370 u8 __iomem *base = get_hwbase(dev); 5371 int ret = 1; 5372 int oom, i; 5373 u32 low; 5374 5375 /* power up phy */ 5376 mii_rw(dev, np->phyaddr, MII_BMCR, 5377 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5378 5379 nv_txrx_gate(dev, false); 5380 /* erase previous misconfiguration */ 5381 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5382 nv_mac_reset(dev); 5383 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5384 writel(0, base + NvRegMulticastAddrB); 5385 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5386 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5387 writel(0, base + NvRegPacketFilterFlags); 5388 5389 writel(0, base + NvRegTransmitterControl); 5390 writel(0, base + NvRegReceiverControl); 5391 5392 writel(0, base + NvRegAdapterControl); 5393 5394 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5395 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5396 5397 /* initialize descriptor rings */ 5398 set_bufsize(dev); 5399 oom = nv_init_ring(dev); 5400 5401 writel(0, base + NvRegLinkSpeed); 5402 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5403 nv_txrx_reset(dev); 5404 writel(0, base + NvRegUnknownSetupReg6); 5405 5406 np->in_shutdown = 0; 5407 5408 /* give hw rings */ 5409 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5410 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5411 base + NvRegRingSizes); 5412 5413 writel(np->linkspeed, base + NvRegLinkSpeed); 5414 if (np->desc_ver == DESC_VER_1) 5415 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5416 else 5417 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5418 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5419 writel(np->vlanctl_bits, base + NvRegVlanControl); 5420 pci_push(base); 5421 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5422 if (reg_delay(dev, NvRegUnknownSetupReg5, 5423 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5424 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5425 netdev_info(dev, 5426 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5427 5428 writel(0, base + NvRegMIIMask); 5429 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5430 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5431 5432 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5433 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5434 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5435 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5436 5437 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5438 5439 get_random_bytes(&low, sizeof(low)); 5440 low &= NVREG_SLOTTIME_MASK; 5441 if (np->desc_ver == DESC_VER_1) { 5442 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5443 } else { 5444 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5445 /* setup legacy backoff */ 5446 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5447 } else { 5448 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5449 nv_gear_backoff_reseed(dev); 5450 } 5451 } 5452 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5453 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5454 if (poll_interval == -1) { 5455 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5456 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5457 else 5458 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5459 } else 5460 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5461 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5462 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5463 base + NvRegAdapterControl); 5464 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5465 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5466 if (np->wolenabled) 5467 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5468 5469 i = readl(base + NvRegPowerState); 5470 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5471 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5472 5473 pci_push(base); 5474 udelay(10); 5475 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5476 5477 nv_disable_hw_interrupts(dev, np->irqmask); 5478 pci_push(base); 5479 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5480 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5481 pci_push(base); 5482 5483 if (nv_request_irq(dev, 0)) 5484 goto out_drain; 5485 5486 /* ask for interrupts */ 5487 nv_enable_hw_interrupts(dev, np->irqmask); 5488 5489 spin_lock_irq(&np->lock); 5490 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5491 writel(0, base + NvRegMulticastAddrB); 5492 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5493 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5494 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5495 /* One manual link speed update: Interrupts are enabled, future link 5496 * speed changes cause interrupts and are handled by nv_link_irq(). 5497 */ 5498 { 5499 u32 miistat; 5500 miistat = readl(base + NvRegMIIStatus); 5501 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5502 } 5503 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5504 * to init hw */ 5505 np->linkspeed = 0; 5506 ret = nv_update_linkspeed(dev); 5507 nv_start_rxtx(dev); 5508 netif_start_queue(dev); 5509 nv_napi_enable(dev); 5510 5511 if (ret) { 5512 netif_carrier_on(dev); 5513 } else { 5514 netdev_info(dev, "no link during initialization\n"); 5515 netif_carrier_off(dev); 5516 } 5517 if (oom) 5518 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5519 5520 /* start statistics timer */ 5521 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5522 mod_timer(&np->stats_poll, 5523 round_jiffies(jiffies + STATS_INTERVAL)); 5524 5525 spin_unlock_irq(&np->lock); 5526 5527 /* If the loopback feature was set while the device was down, make sure 5528 * that it's set correctly now. 5529 */ 5530 if (dev->features & NETIF_F_LOOPBACK) 5531 nv_set_loopback(dev, dev->features); 5532 5533 return 0; 5534 out_drain: 5535 nv_drain_rxtx(dev); 5536 return ret; 5537 } 5538 5539 static int nv_close(struct net_device *dev) 5540 { 5541 struct fe_priv *np = netdev_priv(dev); 5542 u8 __iomem *base; 5543 5544 spin_lock_irq(&np->lock); 5545 np->in_shutdown = 1; 5546 spin_unlock_irq(&np->lock); 5547 nv_napi_disable(dev); 5548 synchronize_irq(np->pci_dev->irq); 5549 5550 del_timer_sync(&np->oom_kick); 5551 del_timer_sync(&np->nic_poll); 5552 del_timer_sync(&np->stats_poll); 5553 5554 netif_stop_queue(dev); 5555 spin_lock_irq(&np->lock); 5556 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ 5557 nv_stop_rxtx(dev); 5558 nv_txrx_reset(dev); 5559 5560 /* disable interrupts on the nic or we will lock up */ 5561 base = get_hwbase(dev); 5562 nv_disable_hw_interrupts(dev, np->irqmask); 5563 pci_push(base); 5564 5565 spin_unlock_irq(&np->lock); 5566 5567 nv_free_irq(dev); 5568 5569 nv_drain_rxtx(dev); 5570 5571 if (np->wolenabled || !phy_power_down) { 5572 nv_txrx_gate(dev, false); 5573 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5574 nv_start_rx(dev); 5575 } else { 5576 /* power down phy */ 5577 mii_rw(dev, np->phyaddr, MII_BMCR, 5578 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5579 nv_txrx_gate(dev, true); 5580 } 5581 5582 /* FIXME: power down nic */ 5583 5584 return 0; 5585 } 5586 5587 static const struct net_device_ops nv_netdev_ops = { 5588 .ndo_open = nv_open, 5589 .ndo_stop = nv_close, 5590 .ndo_get_stats64 = nv_get_stats64, 5591 .ndo_start_xmit = nv_start_xmit, 5592 .ndo_tx_timeout = nv_tx_timeout, 5593 .ndo_change_mtu = nv_change_mtu, 5594 .ndo_fix_features = nv_fix_features, 5595 .ndo_set_features = nv_set_features, 5596 .ndo_validate_addr = eth_validate_addr, 5597 .ndo_set_mac_address = nv_set_mac_address, 5598 .ndo_set_rx_mode = nv_set_multicast, 5599 #ifdef CONFIG_NET_POLL_CONTROLLER 5600 .ndo_poll_controller = nv_poll_controller, 5601 #endif 5602 }; 5603 5604 static const struct net_device_ops nv_netdev_ops_optimized = { 5605 .ndo_open = nv_open, 5606 .ndo_stop = nv_close, 5607 .ndo_get_stats64 = nv_get_stats64, 5608 .ndo_start_xmit = nv_start_xmit_optimized, 5609 .ndo_tx_timeout = nv_tx_timeout, 5610 .ndo_change_mtu = nv_change_mtu, 5611 .ndo_fix_features = nv_fix_features, 5612 .ndo_set_features = nv_set_features, 5613 .ndo_validate_addr = eth_validate_addr, 5614 .ndo_set_mac_address = nv_set_mac_address, 5615 .ndo_set_rx_mode = nv_set_multicast, 5616 #ifdef CONFIG_NET_POLL_CONTROLLER 5617 .ndo_poll_controller = nv_poll_controller, 5618 #endif 5619 }; 5620 5621 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5622 { 5623 struct net_device *dev; 5624 struct fe_priv *np; 5625 unsigned long addr; 5626 u8 __iomem *base; 5627 int err, i; 5628 u32 powerstate, txreg; 5629 u32 phystate_orig = 0, phystate; 5630 int phyinitialized = 0; 5631 static int printed_version; 5632 5633 if (!printed_version++) 5634 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5635 FORCEDETH_VERSION); 5636 5637 dev = alloc_etherdev(sizeof(struct fe_priv)); 5638 err = -ENOMEM; 5639 if (!dev) 5640 goto out; 5641 5642 np = netdev_priv(dev); 5643 np->dev = dev; 5644 np->pci_dev = pci_dev; 5645 spin_lock_init(&np->lock); 5646 spin_lock_init(&np->hwstats_lock); 5647 SET_NETDEV_DEV(dev, &pci_dev->dev); 5648 u64_stats_init(&np->swstats_rx_syncp); 5649 u64_stats_init(&np->swstats_tx_syncp); 5650 5651 timer_setup(&np->oom_kick, nv_do_rx_refill, 0); 5652 timer_setup(&np->nic_poll, nv_do_nic_poll, 0); 5653 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE); 5654 5655 err = pci_enable_device(pci_dev); 5656 if (err) 5657 goto out_free; 5658 5659 pci_set_master(pci_dev); 5660 5661 err = pci_request_regions(pci_dev, DRV_NAME); 5662 if (err < 0) 5663 goto out_disable; 5664 5665 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5666 np->register_size = NV_PCI_REGSZ_VER3; 5667 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5668 np->register_size = NV_PCI_REGSZ_VER2; 5669 else 5670 np->register_size = NV_PCI_REGSZ_VER1; 5671 5672 err = -EINVAL; 5673 addr = 0; 5674 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5675 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5676 pci_resource_len(pci_dev, i) >= np->register_size) { 5677 addr = pci_resource_start(pci_dev, i); 5678 break; 5679 } 5680 } 5681 if (i == DEVICE_COUNT_RESOURCE) { 5682 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5683 goto out_relreg; 5684 } 5685 5686 /* copy of driver data */ 5687 np->driver_data = id->driver_data; 5688 /* copy of device id */ 5689 np->device_id = id->device; 5690 5691 /* handle different descriptor versions */ 5692 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5693 /* packet format 3: supports 40-bit addressing */ 5694 np->desc_ver = DESC_VER_3; 5695 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5696 if (dma_64bit) { 5697 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5698 dev_info(&pci_dev->dev, 5699 "64-bit DMA failed, using 32-bit addressing\n"); 5700 else 5701 dev->features |= NETIF_F_HIGHDMA; 5702 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5703 dev_info(&pci_dev->dev, 5704 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5705 } 5706 } 5707 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5708 /* packet format 2: supports jumbo frames */ 5709 np->desc_ver = DESC_VER_2; 5710 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5711 } else { 5712 /* original packet format */ 5713 np->desc_ver = DESC_VER_1; 5714 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5715 } 5716 5717 np->pkt_limit = NV_PKTLIMIT_1; 5718 if (id->driver_data & DEV_HAS_LARGEDESC) 5719 np->pkt_limit = NV_PKTLIMIT_2; 5720 5721 if (id->driver_data & DEV_HAS_CHECKSUM) { 5722 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5723 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5724 NETIF_F_TSO | NETIF_F_RXCSUM; 5725 } 5726 5727 np->vlanctl_bits = 0; 5728 if (id->driver_data & DEV_HAS_VLAN) { 5729 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5730 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | 5731 NETIF_F_HW_VLAN_CTAG_TX; 5732 } 5733 5734 dev->features |= dev->hw_features; 5735 5736 /* Add loopback capability to the device. */ 5737 dev->hw_features |= NETIF_F_LOOPBACK; 5738 5739 /* MTU range: 64 - 1500 or 9100 */ 5740 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 5741 dev->max_mtu = np->pkt_limit; 5742 5743 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5744 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5745 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5746 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5747 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5748 } 5749 5750 err = -ENOMEM; 5751 np->base = ioremap(addr, np->register_size); 5752 if (!np->base) 5753 goto out_relreg; 5754 5755 np->rx_ring_size = RX_RING_DEFAULT; 5756 np->tx_ring_size = TX_RING_DEFAULT; 5757 5758 if (!nv_optimized(np)) { 5759 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev, 5760 sizeof(struct ring_desc) * 5761 (np->rx_ring_size + 5762 np->tx_ring_size), 5763 &np->ring_addr, 5764 GFP_ATOMIC); 5765 if (!np->rx_ring.orig) 5766 goto out_unmap; 5767 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5768 } else { 5769 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev, 5770 sizeof(struct ring_desc_ex) * 5771 (np->rx_ring_size + 5772 np->tx_ring_size), 5773 &np->ring_addr, GFP_ATOMIC); 5774 if (!np->rx_ring.ex) 5775 goto out_unmap; 5776 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5777 } 5778 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5779 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5780 if (!np->rx_skb || !np->tx_skb) 5781 goto out_freering; 5782 5783 if (!nv_optimized(np)) 5784 dev->netdev_ops = &nv_netdev_ops; 5785 else 5786 dev->netdev_ops = &nv_netdev_ops_optimized; 5787 5788 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5789 dev->ethtool_ops = &ops; 5790 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5791 5792 pci_set_drvdata(pci_dev, dev); 5793 5794 /* read the mac address */ 5795 base = get_hwbase(dev); 5796 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5797 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5798 5799 /* check the workaround bit for correct mac address order */ 5800 txreg = readl(base + NvRegTransmitPoll); 5801 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5802 /* mac address is already in correct order */ 5803 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5804 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5805 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5806 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5807 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5808 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5809 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5810 /* mac address is already in correct order */ 5811 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5812 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5813 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5814 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5815 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5816 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5817 /* 5818 * Set orig mac address back to the reversed version. 5819 * This flag will be cleared during low power transition. 5820 * Therefore, we should always put back the reversed address. 5821 */ 5822 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5823 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5824 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5825 } else { 5826 /* need to reverse mac address to correct order */ 5827 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5828 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5829 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5830 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5831 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5832 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5833 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5834 dev_dbg(&pci_dev->dev, 5835 "%s: set workaround bit for reversed mac addr\n", 5836 __func__); 5837 } 5838 5839 if (!is_valid_ether_addr(dev->dev_addr)) { 5840 /* 5841 * Bad mac address. At least one bios sets the mac address 5842 * to 01:23:45:67:89:ab 5843 */ 5844 dev_err(&pci_dev->dev, 5845 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5846 dev->dev_addr); 5847 eth_hw_addr_random(dev); 5848 dev_err(&pci_dev->dev, 5849 "Using random MAC address: %pM\n", dev->dev_addr); 5850 } 5851 5852 /* set mac address */ 5853 nv_copy_mac_to_hw(dev); 5854 5855 /* disable WOL */ 5856 writel(0, base + NvRegWakeUpFlags); 5857 np->wolenabled = 0; 5858 device_set_wakeup_enable(&pci_dev->dev, false); 5859 5860 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5861 5862 /* take phy and nic out of low power mode */ 5863 powerstate = readl(base + NvRegPowerState2); 5864 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5865 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5866 pci_dev->revision >= 0xA3) 5867 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5868 writel(powerstate, base + NvRegPowerState2); 5869 } 5870 5871 if (np->desc_ver == DESC_VER_1) 5872 np->tx_flags = NV_TX_VALID; 5873 else 5874 np->tx_flags = NV_TX2_VALID; 5875 5876 np->msi_flags = 0; 5877 if ((id->driver_data & DEV_HAS_MSI) && msi) 5878 np->msi_flags |= NV_MSI_CAPABLE; 5879 5880 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5881 /* msix has had reported issues when modifying irqmask 5882 as in the case of napi, therefore, disable for now 5883 */ 5884 #if 0 5885 np->msi_flags |= NV_MSI_X_CAPABLE; 5886 #endif 5887 } 5888 5889 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5890 np->irqmask = NVREG_IRQMASK_CPU; 5891 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5892 np->msi_flags |= 0x0001; 5893 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5894 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5895 /* start off in throughput mode */ 5896 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5897 /* remove support for msix mode */ 5898 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5899 } else { 5900 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5901 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5902 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5903 np->msi_flags |= 0x0003; 5904 } 5905 5906 if (id->driver_data & DEV_NEED_TIMERIRQ) 5907 np->irqmask |= NVREG_IRQ_TIMER; 5908 if (id->driver_data & DEV_NEED_LINKTIMER) { 5909 np->need_linktimer = 1; 5910 np->link_timeout = jiffies + LINK_TIMEOUT; 5911 } else { 5912 np->need_linktimer = 0; 5913 } 5914 5915 /* Limit the number of tx's outstanding for hw bug */ 5916 if (id->driver_data & DEV_NEED_TX_LIMIT) { 5917 np->tx_limit = 1; 5918 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 5919 pci_dev->revision >= 0xA2) 5920 np->tx_limit = 0; 5921 } 5922 5923 /* clear phy state and temporarily halt phy interrupts */ 5924 writel(0, base + NvRegMIIMask); 5925 phystate = readl(base + NvRegAdapterControl); 5926 if (phystate & NVREG_ADAPTCTL_RUNNING) { 5927 phystate_orig = 1; 5928 phystate &= ~NVREG_ADAPTCTL_RUNNING; 5929 writel(phystate, base + NvRegAdapterControl); 5930 } 5931 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5932 5933 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 5934 /* management unit running on the mac? */ 5935 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 5936 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 5937 nv_mgmt_acquire_sema(dev) && 5938 nv_mgmt_get_version(dev)) { 5939 np->mac_in_use = 1; 5940 if (np->mgmt_version > 0) 5941 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 5942 /* management unit setup the phy already? */ 5943 if (np->mac_in_use && 5944 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 5945 NVREG_XMITCTL_SYNC_PHY_INIT)) { 5946 /* phy is inited by mgmt unit */ 5947 phyinitialized = 1; 5948 } else { 5949 /* we need to init the phy */ 5950 } 5951 } 5952 } 5953 5954 /* find a suitable phy */ 5955 for (i = 1; i <= 32; i++) { 5956 int id1, id2; 5957 int phyaddr = i & 0x1F; 5958 5959 spin_lock_irq(&np->lock); 5960 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 5961 spin_unlock_irq(&np->lock); 5962 if (id1 < 0 || id1 == 0xffff) 5963 continue; 5964 spin_lock_irq(&np->lock); 5965 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 5966 spin_unlock_irq(&np->lock); 5967 if (id2 < 0 || id2 == 0xffff) 5968 continue; 5969 5970 np->phy_model = id2 & PHYID2_MODEL_MASK; 5971 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 5972 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 5973 np->phyaddr = phyaddr; 5974 np->phy_oui = id1 | id2; 5975 5976 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 5977 if (np->phy_oui == PHY_OUI_REALTEK2) 5978 np->phy_oui = PHY_OUI_REALTEK; 5979 /* Setup phy revision for Realtek */ 5980 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 5981 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 5982 5983 break; 5984 } 5985 if (i == 33) { 5986 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 5987 goto out_error; 5988 } 5989 5990 if (!phyinitialized) { 5991 /* reset it */ 5992 phy_init(dev); 5993 } else { 5994 /* see if it is a gigabit phy */ 5995 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5996 if (mii_status & PHY_GIGABIT) 5997 np->gigabit = PHY_GIGABIT; 5998 } 5999 6000 /* set default link speed settings */ 6001 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 6002 np->duplex = 0; 6003 np->autoneg = 1; 6004 6005 err = register_netdev(dev); 6006 if (err) { 6007 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 6008 goto out_error; 6009 } 6010 6011 netif_carrier_off(dev); 6012 6013 /* Some NICs freeze when TX pause is enabled while NIC is 6014 * down, and this stays across warm reboots. The sequence 6015 * below should be enough to recover from that state. 6016 */ 6017 nv_update_pause(dev, 0); 6018 nv_start_tx(dev); 6019 nv_stop_tx(dev); 6020 6021 if (id->driver_data & DEV_HAS_VLAN) 6022 nv_vlan_mode(dev, dev->features); 6023 6024 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 6025 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 6026 6027 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 6028 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 6029 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 6030 "csum " : "", 6031 dev->features & (NETIF_F_HW_VLAN_CTAG_RX | 6032 NETIF_F_HW_VLAN_CTAG_TX) ? 6033 "vlan " : "", 6034 dev->features & (NETIF_F_LOOPBACK) ? 6035 "loopback " : "", 6036 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 6037 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 6038 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 6039 np->gigabit == PHY_GIGABIT ? "gbit " : "", 6040 np->need_linktimer ? "lnktim " : "", 6041 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 6042 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 6043 np->desc_ver); 6044 6045 return 0; 6046 6047 out_error: 6048 if (phystate_orig) 6049 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 6050 out_freering: 6051 free_rings(dev); 6052 out_unmap: 6053 iounmap(get_hwbase(dev)); 6054 out_relreg: 6055 pci_release_regions(pci_dev); 6056 out_disable: 6057 pci_disable_device(pci_dev); 6058 out_free: 6059 free_netdev(dev); 6060 out: 6061 return err; 6062 } 6063 6064 static void nv_restore_phy(struct net_device *dev) 6065 { 6066 struct fe_priv *np = netdev_priv(dev); 6067 u16 phy_reserved, mii_control; 6068 6069 if (np->phy_oui == PHY_OUI_REALTEK && 6070 np->phy_model == PHY_MODEL_REALTEK_8201 && 6071 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 6072 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 6073 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 6074 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 6075 phy_reserved |= PHY_REALTEK_INIT8; 6076 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 6077 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 6078 6079 /* restart auto negotiation */ 6080 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 6081 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 6082 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 6083 } 6084 } 6085 6086 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 6087 { 6088 struct net_device *dev = pci_get_drvdata(pci_dev); 6089 struct fe_priv *np = netdev_priv(dev); 6090 u8 __iomem *base = get_hwbase(dev); 6091 6092 /* special op: write back the misordered MAC address - otherwise 6093 * the next nv_probe would see a wrong address. 6094 */ 6095 writel(np->orig_mac[0], base + NvRegMacAddrA); 6096 writel(np->orig_mac[1], base + NvRegMacAddrB); 6097 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 6098 base + NvRegTransmitPoll); 6099 } 6100 6101 static void nv_remove(struct pci_dev *pci_dev) 6102 { 6103 struct net_device *dev = pci_get_drvdata(pci_dev); 6104 6105 unregister_netdev(dev); 6106 6107 nv_restore_mac_addr(pci_dev); 6108 6109 /* restore any phy related changes */ 6110 nv_restore_phy(dev); 6111 6112 nv_mgmt_release_sema(dev); 6113 6114 /* free all structures */ 6115 free_rings(dev); 6116 iounmap(get_hwbase(dev)); 6117 pci_release_regions(pci_dev); 6118 pci_disable_device(pci_dev); 6119 free_netdev(dev); 6120 } 6121 6122 #ifdef CONFIG_PM_SLEEP 6123 static int nv_suspend(struct device *device) 6124 { 6125 struct pci_dev *pdev = to_pci_dev(device); 6126 struct net_device *dev = pci_get_drvdata(pdev); 6127 struct fe_priv *np = netdev_priv(dev); 6128 u8 __iomem *base = get_hwbase(dev); 6129 int i; 6130 6131 if (netif_running(dev)) { 6132 /* Gross. */ 6133 nv_close(dev); 6134 } 6135 netif_device_detach(dev); 6136 6137 /* save non-pci configuration space */ 6138 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6139 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6140 6141 return 0; 6142 } 6143 6144 static int nv_resume(struct device *device) 6145 { 6146 struct pci_dev *pdev = to_pci_dev(device); 6147 struct net_device *dev = pci_get_drvdata(pdev); 6148 struct fe_priv *np = netdev_priv(dev); 6149 u8 __iomem *base = get_hwbase(dev); 6150 int i, rc = 0; 6151 6152 /* restore non-pci configuration space */ 6153 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6154 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6155 6156 if (np->driver_data & DEV_NEED_MSI_FIX) 6157 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6158 6159 /* restore phy state, including autoneg */ 6160 phy_init(dev); 6161 6162 netif_device_attach(dev); 6163 if (netif_running(dev)) { 6164 rc = nv_open(dev); 6165 nv_set_multicast(dev); 6166 } 6167 return rc; 6168 } 6169 6170 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6171 #define NV_PM_OPS (&nv_pm_ops) 6172 6173 #else 6174 #define NV_PM_OPS NULL 6175 #endif /* CONFIG_PM_SLEEP */ 6176 6177 #ifdef CONFIG_PM 6178 static void nv_shutdown(struct pci_dev *pdev) 6179 { 6180 struct net_device *dev = pci_get_drvdata(pdev); 6181 struct fe_priv *np = netdev_priv(dev); 6182 6183 if (netif_running(dev)) 6184 nv_close(dev); 6185 6186 /* 6187 * Restore the MAC so a kernel started by kexec won't get confused. 6188 * If we really go for poweroff, we must not restore the MAC, 6189 * otherwise the MAC for WOL will be reversed at least on some boards. 6190 */ 6191 if (system_state != SYSTEM_POWER_OFF) 6192 nv_restore_mac_addr(pdev); 6193 6194 pci_disable_device(pdev); 6195 /* 6196 * Apparently it is not possible to reinitialise from D3 hot, 6197 * only put the device into D3 if we really go for poweroff. 6198 */ 6199 if (system_state == SYSTEM_POWER_OFF) { 6200 pci_wake_from_d3(pdev, np->wolenabled); 6201 pci_set_power_state(pdev, PCI_D3hot); 6202 } 6203 } 6204 #else 6205 #define nv_shutdown NULL 6206 #endif /* CONFIG_PM */ 6207 6208 static const struct pci_device_id pci_tbl[] = { 6209 { /* nForce Ethernet Controller */ 6210 PCI_DEVICE(0x10DE, 0x01C3), 6211 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6212 }, 6213 { /* nForce2 Ethernet Controller */ 6214 PCI_DEVICE(0x10DE, 0x0066), 6215 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6216 }, 6217 { /* nForce3 Ethernet Controller */ 6218 PCI_DEVICE(0x10DE, 0x00D6), 6219 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6220 }, 6221 { /* nForce3 Ethernet Controller */ 6222 PCI_DEVICE(0x10DE, 0x0086), 6223 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6224 }, 6225 { /* nForce3 Ethernet Controller */ 6226 PCI_DEVICE(0x10DE, 0x008C), 6227 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6228 }, 6229 { /* nForce3 Ethernet Controller */ 6230 PCI_DEVICE(0x10DE, 0x00E6), 6231 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6232 }, 6233 { /* nForce3 Ethernet Controller */ 6234 PCI_DEVICE(0x10DE, 0x00DF), 6235 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6236 }, 6237 { /* CK804 Ethernet Controller */ 6238 PCI_DEVICE(0x10DE, 0x0056), 6239 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6240 }, 6241 { /* CK804 Ethernet Controller */ 6242 PCI_DEVICE(0x10DE, 0x0057), 6243 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6244 }, 6245 { /* MCP04 Ethernet Controller */ 6246 PCI_DEVICE(0x10DE, 0x0037), 6247 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6248 }, 6249 { /* MCP04 Ethernet Controller */ 6250 PCI_DEVICE(0x10DE, 0x0038), 6251 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6252 }, 6253 { /* MCP51 Ethernet Controller */ 6254 PCI_DEVICE(0x10DE, 0x0268), 6255 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6256 }, 6257 { /* MCP51 Ethernet Controller */ 6258 PCI_DEVICE(0x10DE, 0x0269), 6259 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6260 }, 6261 { /* MCP55 Ethernet Controller */ 6262 PCI_DEVICE(0x10DE, 0x0372), 6263 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6264 }, 6265 { /* MCP55 Ethernet Controller */ 6266 PCI_DEVICE(0x10DE, 0x0373), 6267 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6268 }, 6269 { /* MCP61 Ethernet Controller */ 6270 PCI_DEVICE(0x10DE, 0x03E5), 6271 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6272 }, 6273 { /* MCP61 Ethernet Controller */ 6274 PCI_DEVICE(0x10DE, 0x03E6), 6275 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6276 }, 6277 { /* MCP61 Ethernet Controller */ 6278 PCI_DEVICE(0x10DE, 0x03EE), 6279 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6280 }, 6281 { /* MCP61 Ethernet Controller */ 6282 PCI_DEVICE(0x10DE, 0x03EF), 6283 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6284 }, 6285 { /* MCP65 Ethernet Controller */ 6286 PCI_DEVICE(0x10DE, 0x0450), 6287 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6288 }, 6289 { /* MCP65 Ethernet Controller */ 6290 PCI_DEVICE(0x10DE, 0x0451), 6291 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6292 }, 6293 { /* MCP65 Ethernet Controller */ 6294 PCI_DEVICE(0x10DE, 0x0452), 6295 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6296 }, 6297 { /* MCP65 Ethernet Controller */ 6298 PCI_DEVICE(0x10DE, 0x0453), 6299 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6300 }, 6301 { /* MCP67 Ethernet Controller */ 6302 PCI_DEVICE(0x10DE, 0x054C), 6303 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6304 }, 6305 { /* MCP67 Ethernet Controller */ 6306 PCI_DEVICE(0x10DE, 0x054D), 6307 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6308 }, 6309 { /* MCP67 Ethernet Controller */ 6310 PCI_DEVICE(0x10DE, 0x054E), 6311 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6312 }, 6313 { /* MCP67 Ethernet Controller */ 6314 PCI_DEVICE(0x10DE, 0x054F), 6315 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6316 }, 6317 { /* MCP73 Ethernet Controller */ 6318 PCI_DEVICE(0x10DE, 0x07DC), 6319 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6320 }, 6321 { /* MCP73 Ethernet Controller */ 6322 PCI_DEVICE(0x10DE, 0x07DD), 6323 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6324 }, 6325 { /* MCP73 Ethernet Controller */ 6326 PCI_DEVICE(0x10DE, 0x07DE), 6327 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6328 }, 6329 { /* MCP73 Ethernet Controller */ 6330 PCI_DEVICE(0x10DE, 0x07DF), 6331 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6332 }, 6333 { /* MCP77 Ethernet Controller */ 6334 PCI_DEVICE(0x10DE, 0x0760), 6335 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6336 }, 6337 { /* MCP77 Ethernet Controller */ 6338 PCI_DEVICE(0x10DE, 0x0761), 6339 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6340 }, 6341 { /* MCP77 Ethernet Controller */ 6342 PCI_DEVICE(0x10DE, 0x0762), 6343 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6344 }, 6345 { /* MCP77 Ethernet Controller */ 6346 PCI_DEVICE(0x10DE, 0x0763), 6347 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6348 }, 6349 { /* MCP79 Ethernet Controller */ 6350 PCI_DEVICE(0x10DE, 0x0AB0), 6351 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6352 }, 6353 { /* MCP79 Ethernet Controller */ 6354 PCI_DEVICE(0x10DE, 0x0AB1), 6355 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6356 }, 6357 { /* MCP79 Ethernet Controller */ 6358 PCI_DEVICE(0x10DE, 0x0AB2), 6359 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6360 }, 6361 { /* MCP79 Ethernet Controller */ 6362 PCI_DEVICE(0x10DE, 0x0AB3), 6363 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6364 }, 6365 { /* MCP89 Ethernet Controller */ 6366 PCI_DEVICE(0x10DE, 0x0D7D), 6367 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6368 }, 6369 {0,}, 6370 }; 6371 6372 static struct pci_driver forcedeth_pci_driver = { 6373 .name = DRV_NAME, 6374 .id_table = pci_tbl, 6375 .probe = nv_probe, 6376 .remove = nv_remove, 6377 .shutdown = nv_shutdown, 6378 .driver.pm = NV_PM_OPS, 6379 }; 6380 6381 module_param(max_interrupt_work, int, 0); 6382 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6383 module_param(optimization_mode, int, 0); 6384 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6385 module_param(poll_interval, int, 0); 6386 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6387 module_param(msi, int, 0); 6388 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6389 module_param(msix, int, 0); 6390 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6391 module_param(dma_64bit, int, 0); 6392 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6393 module_param(phy_cross, int, 0); 6394 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6395 module_param(phy_power_down, int, 0); 6396 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6397 module_param(debug_tx_timeout, bool, 0); 6398 MODULE_PARM_DESC(debug_tx_timeout, 6399 "Dump tx related registers and ring when tx_timeout happens"); 6400 6401 module_pci_driver(forcedeth_pci_driver); 6402 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6403 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6404 MODULE_LICENSE("GPL"); 6405 MODULE_DEVICE_TABLE(pci, pci_tbl); 6406