1 /*
2  * Copyright (C) 2015-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 /*
35  * nfp_cppcore.c
36  * Provides low-level access to the NFP's internal CPP bus
37  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38  *          Jason McMullan <jason.mcmullan@netronome.com>
39  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
40  */
41 
42 #include <asm/unaligned.h>
43 #include <linux/delay.h>
44 #include <linux/device.h>
45 #include <linux/ioport.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/wait.h>
52 
53 #include "nfp_arm.h"
54 #include "nfp_cpp.h"
55 #include "nfp6000/nfp6000.h"
56 
57 #define NFP_ARM_GCSR_SOFTMODEL2                              0x0000014c
58 #define NFP_ARM_GCSR_SOFTMODEL3                              0x00000150
59 
60 struct nfp_cpp_resource {
61 	struct list_head list;
62 	const char *name;
63 	u32 cpp_id;
64 	u64 start;
65 	u64 end;
66 };
67 
68 /**
69  * struct nfp_cpp - main nfpcore device structure
70  * Following fields are read-only after probe() exits or netdevs are spawned.
71  * @dev:		embedded device structure
72  * @op:			low-level implementation ops
73  * @priv:		private data of the low-level implementation
74  * @model:		chip model
75  * @interface:		chip interface id we are using to reach it
76  * @serial:		chip serial number
77  * @imb_cat_table:	CPP Mapping Table
78  *
79  * Following fields use explicit locking:
80  * @resource_list:	NFP CPP resource list
81  * @resource_lock:	protects @resource_list
82  *
83  * @area_cache_list:	cached areas for cpp/xpb read/write speed up
84  * @area_cache_mutex:	protects @area_cache_list
85  *
86  * @waitq:		area wait queue
87  */
88 struct nfp_cpp {
89 	struct device dev;
90 
91 	void *priv;
92 
93 	u32 model;
94 	u16 interface;
95 	u8 serial[NFP_SERIAL_LEN];
96 
97 	const struct nfp_cpp_operations *op;
98 	struct list_head resource_list;
99 	rwlock_t resource_lock;
100 	wait_queue_head_t waitq;
101 
102 	u32 imb_cat_table[16];
103 
104 	struct mutex area_cache_mutex;
105 	struct list_head area_cache_list;
106 };
107 
108 /* Element of the area_cache_list */
109 struct nfp_cpp_area_cache {
110 	struct list_head entry;
111 	u32 id;
112 	u64 addr;
113 	u32 size;
114 	struct nfp_cpp_area *area;
115 };
116 
117 struct nfp_cpp_area {
118 	struct nfp_cpp *cpp;
119 	struct kref kref;
120 	atomic_t refcount;
121 	struct mutex mutex;	/* Lock for the area's refcount */
122 	unsigned long long offset;
123 	unsigned long size;
124 	struct nfp_cpp_resource resource;
125 	void __iomem *iomem;
126 	/* Here follows the 'priv' part of nfp_cpp_area. */
127 };
128 
129 struct nfp_cpp_explicit {
130 	struct nfp_cpp *cpp;
131 	struct nfp_cpp_explicit_command cmd;
132 	/* Here follows the 'priv' part of nfp_cpp_area. */
133 };
134 
135 static void __resource_add(struct list_head *head, struct nfp_cpp_resource *res)
136 {
137 	struct nfp_cpp_resource *tmp;
138 	struct list_head *pos;
139 
140 	list_for_each(pos, head) {
141 		tmp = container_of(pos, struct nfp_cpp_resource, list);
142 
143 		if (tmp->cpp_id > res->cpp_id)
144 			break;
145 
146 		if (tmp->cpp_id == res->cpp_id && tmp->start > res->start)
147 			break;
148 	}
149 
150 	list_add_tail(&res->list, pos);
151 }
152 
153 static void __resource_del(struct nfp_cpp_resource *res)
154 {
155 	list_del_init(&res->list);
156 }
157 
158 static void __release_cpp_area(struct kref *kref)
159 {
160 	struct nfp_cpp_area *area =
161 		container_of(kref, struct nfp_cpp_area, kref);
162 	struct nfp_cpp *cpp = nfp_cpp_area_cpp(area);
163 
164 	if (area->cpp->op->area_cleanup)
165 		area->cpp->op->area_cleanup(area);
166 
167 	write_lock(&cpp->resource_lock);
168 	__resource_del(&area->resource);
169 	write_unlock(&cpp->resource_lock);
170 	kfree(area);
171 }
172 
173 static void nfp_cpp_area_put(struct nfp_cpp_area *area)
174 {
175 	kref_put(&area->kref, __release_cpp_area);
176 }
177 
178 static struct nfp_cpp_area *nfp_cpp_area_get(struct nfp_cpp_area *area)
179 {
180 	kref_get(&area->kref);
181 
182 	return area;
183 }
184 
185 /**
186  * nfp_cpp_free() - free the CPP handle
187  * @cpp:	CPP handle
188  */
189 void nfp_cpp_free(struct nfp_cpp *cpp)
190 {
191 	struct nfp_cpp_area_cache *cache, *ctmp;
192 	struct nfp_cpp_resource *res, *rtmp;
193 
194 	/* Remove all caches */
195 	list_for_each_entry_safe(cache, ctmp, &cpp->area_cache_list, entry) {
196 		list_del(&cache->entry);
197 		if (cache->id)
198 			nfp_cpp_area_release(cache->area);
199 		nfp_cpp_area_free(cache->area);
200 		kfree(cache);
201 	}
202 
203 	/* There should be no dangling areas at this point */
204 	WARN_ON(!list_empty(&cpp->resource_list));
205 
206 	/* .. but if they weren't, try to clean up. */
207 	list_for_each_entry_safe(res, rtmp, &cpp->resource_list, list) {
208 		struct nfp_cpp_area *area = container_of(res,
209 							 struct nfp_cpp_area,
210 							 resource);
211 
212 		dev_err(cpp->dev.parent, "Dangling area: %d:%d:%d:0x%0llx-0x%0llx%s%s\n",
213 			NFP_CPP_ID_TARGET_of(res->cpp_id),
214 			NFP_CPP_ID_ACTION_of(res->cpp_id),
215 			NFP_CPP_ID_TOKEN_of(res->cpp_id),
216 			res->start, res->end,
217 			res->name ? " " : "",
218 			res->name ? res->name : "");
219 
220 		if (area->cpp->op->area_release)
221 			area->cpp->op->area_release(area);
222 
223 		__release_cpp_area(&area->kref);
224 	}
225 
226 	if (cpp->op->free)
227 		cpp->op->free(cpp);
228 
229 	device_unregister(&cpp->dev);
230 
231 	kfree(cpp);
232 }
233 
234 /**
235  * nfp_cpp_model() - Retrieve the Model ID of the NFP
236  * @cpp:	NFP CPP handle
237  *
238  * Return: NFP CPP Model ID
239  */
240 u32 nfp_cpp_model(struct nfp_cpp *cpp)
241 {
242 	return cpp->model;
243 }
244 
245 /**
246  * nfp_cpp_interface() - Retrieve the Interface ID of the NFP
247  * @cpp:	NFP CPP handle
248  *
249  * Return: NFP CPP Interface ID
250  */
251 u16 nfp_cpp_interface(struct nfp_cpp *cpp)
252 {
253 	return cpp->interface;
254 }
255 
256 /**
257  * nfp_cpp_serial() - Retrieve the Serial ID of the NFP
258  * @cpp:	NFP CPP handle
259  * @serial:	Pointer to NFP serial number
260  *
261  * Return:  Length of NFP serial number
262  */
263 int nfp_cpp_serial(struct nfp_cpp *cpp, const u8 **serial)
264 {
265 	*serial = &cpp->serial[0];
266 	return sizeof(cpp->serial);
267 }
268 
269 /**
270  * nfp_cpp_area_alloc_with_name() - allocate a new CPP area
271  * @cpp:	CPP device handle
272  * @dest:	NFP CPP ID
273  * @name:	Name of region
274  * @address:	Address of region
275  * @size:	Size of region
276  *
277  * Allocate and initialize a CPP area structure.  The area must later
278  * be locked down with an 'acquire' before it can be safely accessed.
279  *
280  * NOTE: @address and @size must be 32-bit aligned values.
281  *
282  * Return: NFP CPP area handle, or NULL
283  */
284 struct nfp_cpp_area *
285 nfp_cpp_area_alloc_with_name(struct nfp_cpp *cpp, u32 dest, const char *name,
286 			     unsigned long long address, unsigned long size)
287 {
288 	struct nfp_cpp_area *area;
289 	u64 tmp64 = address;
290 	int err, name_len;
291 
292 	/* Remap from cpp_island to cpp_target */
293 	err = nfp_target_cpp(dest, tmp64, &dest, &tmp64, cpp->imb_cat_table);
294 	if (err < 0)
295 		return NULL;
296 
297 	address = tmp64;
298 
299 	if (!name)
300 		name = "(reserved)";
301 
302 	name_len = strlen(name) + 1;
303 	area = kzalloc(sizeof(*area) + cpp->op->area_priv_size + name_len,
304 		       GFP_KERNEL);
305 	if (!area)
306 		return NULL;
307 
308 	area->cpp = cpp;
309 	area->resource.name = (void *)area + sizeof(*area) +
310 		cpp->op->area_priv_size;
311 	memcpy((char *)area->resource.name, name, name_len);
312 
313 	area->resource.cpp_id = dest;
314 	area->resource.start = address;
315 	area->resource.end = area->resource.start + size - 1;
316 	INIT_LIST_HEAD(&area->resource.list);
317 
318 	atomic_set(&area->refcount, 0);
319 	kref_init(&area->kref);
320 	mutex_init(&area->mutex);
321 
322 	if (cpp->op->area_init) {
323 		int err;
324 
325 		err = cpp->op->area_init(area, dest, address, size);
326 		if (err < 0) {
327 			kfree(area);
328 			return NULL;
329 		}
330 	}
331 
332 	write_lock(&cpp->resource_lock);
333 	__resource_add(&cpp->resource_list, &area->resource);
334 	write_unlock(&cpp->resource_lock);
335 
336 	area->offset = address;
337 	area->size = size;
338 
339 	return area;
340 }
341 
342 /**
343  * nfp_cpp_area_alloc() - allocate a new CPP area
344  * @cpp:	CPP handle
345  * @dest:	CPP id
346  * @address:	Start address on CPP target
347  * @size:	Size of area in bytes
348  *
349  * Allocate and initialize a CPP area structure.  The area must later
350  * be locked down with an 'acquire' before it can be safely accessed.
351  *
352  * NOTE: @address and @size must be 32-bit aligned values.
353  *
354  * Return: NFP CPP Area handle, or NULL
355  */
356 struct nfp_cpp_area *
357 nfp_cpp_area_alloc(struct nfp_cpp *cpp, u32 dest,
358 		   unsigned long long address, unsigned long size)
359 {
360 	return nfp_cpp_area_alloc_with_name(cpp, dest, NULL, address, size);
361 }
362 
363 /**
364  * nfp_cpp_area_alloc_acquire() - allocate a new CPP area and lock it down
365  * @cpp:	CPP handle
366  * @name:	Name of region
367  * @dest:	CPP id
368  * @address:	Start address on CPP target
369  * @size:	Size of area
370  *
371  * Allocate and initialize a CPP area structure, and lock it down so
372  * that it can be accessed directly.
373  *
374  * NOTE: @address and @size must be 32-bit aligned values.
375  * The area must also be 'released' when the structure is freed.
376  *
377  * Return: NFP CPP Area handle, or NULL
378  */
379 struct nfp_cpp_area *
380 nfp_cpp_area_alloc_acquire(struct nfp_cpp *cpp, const char *name, u32 dest,
381 			   unsigned long long address, unsigned long size)
382 {
383 	struct nfp_cpp_area *area;
384 
385 	area = nfp_cpp_area_alloc_with_name(cpp, dest, name, address, size);
386 	if (!area)
387 		return NULL;
388 
389 	if (nfp_cpp_area_acquire(area)) {
390 		nfp_cpp_area_free(area);
391 		return NULL;
392 	}
393 
394 	return area;
395 }
396 
397 /**
398  * nfp_cpp_area_free() - free up the CPP area
399  * @area:	CPP area handle
400  *
401  * Frees up memory resources held by the CPP area.
402  */
403 void nfp_cpp_area_free(struct nfp_cpp_area *area)
404 {
405 	if (atomic_read(&area->refcount))
406 		nfp_warn(area->cpp, "Warning: freeing busy area\n");
407 	nfp_cpp_area_put(area);
408 }
409 
410 static bool nfp_cpp_area_acquire_try(struct nfp_cpp_area *area, int *status)
411 {
412 	*status = area->cpp->op->area_acquire(area);
413 
414 	return *status != -EAGAIN;
415 }
416 
417 static int __nfp_cpp_area_acquire(struct nfp_cpp_area *area)
418 {
419 	int err, status;
420 
421 	if (atomic_inc_return(&area->refcount) > 1)
422 		return 0;
423 
424 	if (!area->cpp->op->area_acquire)
425 		return 0;
426 
427 	err = wait_event_interruptible(area->cpp->waitq,
428 				       nfp_cpp_area_acquire_try(area, &status));
429 	if (!err)
430 		err = status;
431 	if (err) {
432 		nfp_warn(area->cpp, "Warning: area wait failed: %d\n", err);
433 		atomic_dec(&area->refcount);
434 		return err;
435 	}
436 
437 	nfp_cpp_area_get(area);
438 
439 	return 0;
440 }
441 
442 /**
443  * nfp_cpp_area_acquire() - lock down a CPP area for access
444  * @area:	CPP area handle
445  *
446  * Locks down the CPP area for a potential long term activity.  Area
447  * must always be locked down before being accessed.
448  *
449  * Return: 0, or -ERRNO
450  */
451 int nfp_cpp_area_acquire(struct nfp_cpp_area *area)
452 {
453 	int ret;
454 
455 	mutex_lock(&area->mutex);
456 	ret = __nfp_cpp_area_acquire(area);
457 	mutex_unlock(&area->mutex);
458 
459 	return ret;
460 }
461 
462 /**
463  * nfp_cpp_area_acquire_nonblocking() - lock down a CPP area for access
464  * @area:	CPP area handle
465  *
466  * Locks down the CPP area for a potential long term activity.  Area
467  * must always be locked down before being accessed.
468  *
469  * NOTE: Returns -EAGAIN is no area is available
470  *
471  * Return: 0, or -ERRNO
472  */
473 int nfp_cpp_area_acquire_nonblocking(struct nfp_cpp_area *area)
474 {
475 	mutex_lock(&area->mutex);
476 	if (atomic_inc_return(&area->refcount) == 1) {
477 		if (area->cpp->op->area_acquire) {
478 			int err;
479 
480 			err = area->cpp->op->area_acquire(area);
481 			if (err < 0) {
482 				atomic_dec(&area->refcount);
483 				mutex_unlock(&area->mutex);
484 				return err;
485 			}
486 		}
487 	}
488 	mutex_unlock(&area->mutex);
489 
490 	nfp_cpp_area_get(area);
491 	return 0;
492 }
493 
494 /**
495  * nfp_cpp_area_release() - release a locked down CPP area
496  * @area:	CPP area handle
497  *
498  * Releases a previously locked down CPP area.
499  */
500 void nfp_cpp_area_release(struct nfp_cpp_area *area)
501 {
502 	mutex_lock(&area->mutex);
503 	/* Only call the release on refcount == 0 */
504 	if (atomic_dec_and_test(&area->refcount)) {
505 		if (area->cpp->op->area_release) {
506 			area->cpp->op->area_release(area);
507 			/* Let anyone waiting for a BAR try to get one.. */
508 			wake_up_interruptible_all(&area->cpp->waitq);
509 		}
510 	}
511 	mutex_unlock(&area->mutex);
512 
513 	nfp_cpp_area_put(area);
514 }
515 
516 /**
517  * nfp_cpp_area_release_free() - release CPP area and free it
518  * @area:	CPP area handle
519  *
520  * Releases CPP area and frees up memory resources held by the it.
521  */
522 void nfp_cpp_area_release_free(struct nfp_cpp_area *area)
523 {
524 	nfp_cpp_area_release(area);
525 	nfp_cpp_area_free(area);
526 }
527 
528 /**
529  * nfp_cpp_area_read() - read data from CPP area
530  * @area:	  CPP area handle
531  * @offset:	  offset into CPP area
532  * @kernel_vaddr: kernel address to put data into
533  * @length:	  number of bytes to read
534  *
535  * Read data from indicated CPP region.
536  *
537  * NOTE: @offset and @length must be 32-bit aligned values.
538  * Area must have been locked down with an 'acquire'.
539  *
540  * Return: length of io, or -ERRNO
541  */
542 int nfp_cpp_area_read(struct nfp_cpp_area *area,
543 		      unsigned long offset, void *kernel_vaddr,
544 		      size_t length)
545 {
546 	return area->cpp->op->area_read(area, kernel_vaddr, offset, length);
547 }
548 
549 /**
550  * nfp_cpp_area_write() - write data to CPP area
551  * @area:	CPP area handle
552  * @offset:	offset into CPP area
553  * @kernel_vaddr: kernel address to read data from
554  * @length:	number of bytes to write
555  *
556  * Write data to indicated CPP region.
557  *
558  * NOTE: @offset and @length must be 32-bit aligned values.
559  * Area must have been locked down with an 'acquire'.
560  *
561  * Return: length of io, or -ERRNO
562  */
563 int nfp_cpp_area_write(struct nfp_cpp_area *area,
564 		       unsigned long offset, const void *kernel_vaddr,
565 		       size_t length)
566 {
567 	return area->cpp->op->area_write(area, kernel_vaddr, offset, length);
568 }
569 
570 /**
571  * nfp_cpp_area_size() - return size of a CPP area
572  * @cpp_area:	CPP area handle
573  *
574  * Return: Size of the area
575  */
576 size_t nfp_cpp_area_size(struct nfp_cpp_area *cpp_area)
577 {
578 	return cpp_area->size;
579 }
580 
581 /**
582  * nfp_cpp_area_name() - return name of a CPP area
583  * @cpp_area:	CPP area handle
584  *
585  * Return: Name of the area, or NULL
586  */
587 const char *nfp_cpp_area_name(struct nfp_cpp_area *cpp_area)
588 {
589 	return cpp_area->resource.name;
590 }
591 
592 /**
593  * nfp_cpp_area_priv() - return private struct for CPP area
594  * @cpp_area:	CPP area handle
595  *
596  * Return: Private data for the CPP area
597  */
598 void *nfp_cpp_area_priv(struct nfp_cpp_area *cpp_area)
599 {
600 	return &cpp_area[1];
601 }
602 
603 /**
604  * nfp_cpp_area_cpp() - return CPP handle for CPP area
605  * @cpp_area:	CPP area handle
606  *
607  * Return: NFP CPP handle
608  */
609 struct nfp_cpp *nfp_cpp_area_cpp(struct nfp_cpp_area *cpp_area)
610 {
611 	return cpp_area->cpp;
612 }
613 
614 /**
615  * nfp_cpp_area_resource() - get resource
616  * @area:	CPP area handle
617  *
618  * NOTE: Area must have been locked down with an 'acquire'.
619  *
620  * Return: struct resource pointer, or NULL
621  */
622 struct resource *nfp_cpp_area_resource(struct nfp_cpp_area *area)
623 {
624 	struct resource *res = NULL;
625 
626 	if (area->cpp->op->area_resource)
627 		res = area->cpp->op->area_resource(area);
628 
629 	return res;
630 }
631 
632 /**
633  * nfp_cpp_area_phys() - get physical address of CPP area
634  * @area:	CPP area handle
635  *
636  * NOTE: Area must have been locked down with an 'acquire'.
637  *
638  * Return: phy_addr_t of the area, or NULL
639  */
640 phys_addr_t nfp_cpp_area_phys(struct nfp_cpp_area *area)
641 {
642 	phys_addr_t addr = ~0;
643 
644 	if (area->cpp->op->area_phys)
645 		addr = area->cpp->op->area_phys(area);
646 
647 	return addr;
648 }
649 
650 /**
651  * nfp_cpp_area_iomem() - get IOMEM region for CPP area
652  * @area:	CPP area handle
653  *
654  * Returns an iomem pointer for use with readl()/writel() style
655  * operations.
656  *
657  * NOTE: Area must have been locked down with an 'acquire'.
658  *
659  * Return: __iomem pointer to the area, or NULL
660  */
661 void __iomem *nfp_cpp_area_iomem(struct nfp_cpp_area *area)
662 {
663 	void __iomem *iomem = NULL;
664 
665 	if (area->cpp->op->area_iomem)
666 		iomem = area->cpp->op->area_iomem(area);
667 
668 	return iomem;
669 }
670 
671 /**
672  * nfp_cpp_area_readl() - Read a u32 word from an area
673  * @area:	CPP Area handle
674  * @offset:	Offset into area
675  * @value:	Pointer to read buffer
676  *
677  * Return: 0 on success, or -ERRNO
678  */
679 int nfp_cpp_area_readl(struct nfp_cpp_area *area,
680 		       unsigned long offset, u32 *value)
681 {
682 	u8 tmp[4];
683 	int n;
684 
685 	n = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
686 	if (n != sizeof(tmp))
687 		return n < 0 ? n : -EIO;
688 
689 	*value = get_unaligned_le32(tmp);
690 	return 0;
691 }
692 
693 /**
694  * nfp_cpp_area_writel() - Write a u32 word to an area
695  * @area:	CPP Area handle
696  * @offset:	Offset into area
697  * @value:	Value to write
698  *
699  * Return: 0 on success, or -ERRNO
700  */
701 int nfp_cpp_area_writel(struct nfp_cpp_area *area,
702 			unsigned long offset, u32 value)
703 {
704 	u8 tmp[4];
705 	int n;
706 
707 	put_unaligned_le32(value, tmp);
708 	n = nfp_cpp_area_write(area, offset, &tmp, sizeof(tmp));
709 
710 	return n == sizeof(tmp) ? 0 : n < 0 ? n : -EIO;
711 }
712 
713 /**
714  * nfp_cpp_area_readq() - Read a u64 word from an area
715  * @area:	CPP Area handle
716  * @offset:	Offset into area
717  * @value:	Pointer to read buffer
718  *
719  * Return: 0 on success, or -ERRNO
720  */
721 int nfp_cpp_area_readq(struct nfp_cpp_area *area,
722 		       unsigned long offset, u64 *value)
723 {
724 	u8 tmp[8];
725 	int n;
726 
727 	n = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
728 	if (n != sizeof(tmp))
729 		return n < 0 ? n : -EIO;
730 
731 	*value = get_unaligned_le64(tmp);
732 	return 0;
733 }
734 
735 /**
736  * nfp_cpp_area_writeq() - Write a u64 word to an area
737  * @area:	CPP Area handle
738  * @offset:	Offset into area
739  * @value:	Value to write
740  *
741  * Return: 0 on success, or -ERRNO
742  */
743 int nfp_cpp_area_writeq(struct nfp_cpp_area *area,
744 			unsigned long offset, u64 value)
745 {
746 	u8 tmp[8];
747 	int n;
748 
749 	put_unaligned_le64(value, tmp);
750 	n = nfp_cpp_area_write(area, offset, &tmp, sizeof(tmp));
751 
752 	return n == sizeof(tmp) ? 0 : n < 0 ? n : -EIO;
753 }
754 
755 /**
756  * nfp_cpp_area_fill() - fill a CPP area with a value
757  * @area:	CPP area
758  * @offset:	offset into CPP area
759  * @value:	value to fill with
760  * @length:	length of area to fill
761  *
762  * Fill indicated area with given value.
763  *
764  * Return: length of io, or -ERRNO
765  */
766 int nfp_cpp_area_fill(struct nfp_cpp_area *area,
767 		      unsigned long offset, u32 value, size_t length)
768 {
769 	u8 tmp[4];
770 	size_t i;
771 	int k;
772 
773 	put_unaligned_le32(value, tmp);
774 
775 	if (offset % sizeof(tmp) || length % sizeof(tmp))
776 		return -EINVAL;
777 
778 	for (i = 0; i < length; i += sizeof(tmp)) {
779 		k = nfp_cpp_area_write(area, offset + i, &tmp, sizeof(tmp));
780 		if (k < 0)
781 			return k;
782 	}
783 
784 	return i;
785 }
786 
787 /**
788  * nfp_cpp_area_cache_add() - Permanently reserve and area for the hot cache
789  * @cpp:	NFP CPP handle
790  * @size:	Size of the area - MUST BE A POWER OF 2.
791  */
792 int nfp_cpp_area_cache_add(struct nfp_cpp *cpp, size_t size)
793 {
794 	struct nfp_cpp_area_cache *cache;
795 	struct nfp_cpp_area *area;
796 
797 	/* Allocate an area - we use the MU target's base as a placeholder,
798 	 * as all supported chips have a MU.
799 	 */
800 	area = nfp_cpp_area_alloc(cpp, NFP_CPP_ID(7, NFP_CPP_ACTION_RW, 0),
801 				  0, size);
802 	if (!area)
803 		return -ENOMEM;
804 
805 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
806 	if (!cache)
807 		return -ENOMEM;
808 
809 	cache->id = 0;
810 	cache->addr = 0;
811 	cache->size = size;
812 	cache->area = area;
813 	mutex_lock(&cpp->area_cache_mutex);
814 	list_add_tail(&cache->entry, &cpp->area_cache_list);
815 	mutex_unlock(&cpp->area_cache_mutex);
816 
817 	return 0;
818 }
819 
820 static struct nfp_cpp_area_cache *
821 area_cache_get(struct nfp_cpp *cpp, u32 id,
822 	       u64 addr, unsigned long *offset, size_t length)
823 {
824 	struct nfp_cpp_area_cache *cache;
825 	int err;
826 
827 	/* Early exit when length == 0, which prevents
828 	 * the need for special case code below when
829 	 * checking against available cache size.
830 	 */
831 	if (length == 0 || id == 0)
832 		return NULL;
833 
834 	/* Remap from cpp_island to cpp_target */
835 	err = nfp_target_cpp(id, addr, &id, &addr, cpp->imb_cat_table);
836 	if (err < 0)
837 		return NULL;
838 
839 	mutex_lock(&cpp->area_cache_mutex);
840 
841 	if (list_empty(&cpp->area_cache_list)) {
842 		mutex_unlock(&cpp->area_cache_mutex);
843 		return NULL;
844 	}
845 
846 	addr += *offset;
847 
848 	/* See if we have a match */
849 	list_for_each_entry(cache, &cpp->area_cache_list, entry) {
850 		if (id == cache->id &&
851 		    addr >= cache->addr &&
852 		    addr + length <= cache->addr + cache->size)
853 			goto exit;
854 	}
855 
856 	/* No matches - inspect the tail of the LRU */
857 	cache = list_entry(cpp->area_cache_list.prev,
858 			   struct nfp_cpp_area_cache, entry);
859 
860 	/* Can we fit in the cache entry? */
861 	if (round_down(addr + length - 1, cache->size) !=
862 	    round_down(addr, cache->size)) {
863 		mutex_unlock(&cpp->area_cache_mutex);
864 		return NULL;
865 	}
866 
867 	/* If id != 0, we will need to release it */
868 	if (cache->id) {
869 		nfp_cpp_area_release(cache->area);
870 		cache->id = 0;
871 		cache->addr = 0;
872 	}
873 
874 	/* Adjust the start address to be cache size aligned */
875 	cache->id = id;
876 	cache->addr = addr & ~(u64)(cache->size - 1);
877 
878 	/* Re-init to the new ID and address */
879 	if (cpp->op->area_init) {
880 		err = cpp->op->area_init(cache->area,
881 					 id, cache->addr, cache->size);
882 		if (err < 0) {
883 			mutex_unlock(&cpp->area_cache_mutex);
884 			return NULL;
885 		}
886 	}
887 
888 	/* Attempt to acquire */
889 	err = nfp_cpp_area_acquire(cache->area);
890 	if (err < 0) {
891 		mutex_unlock(&cpp->area_cache_mutex);
892 		return NULL;
893 	}
894 
895 exit:
896 	/* Adjust offset */
897 	*offset = addr - cache->addr;
898 	return cache;
899 }
900 
901 static void
902 area_cache_put(struct nfp_cpp *cpp, struct nfp_cpp_area_cache *cache)
903 {
904 	if (!cache)
905 		return;
906 
907 	/* Move to front of LRU */
908 	list_del(&cache->entry);
909 	list_add(&cache->entry, &cpp->area_cache_list);
910 
911 	mutex_unlock(&cpp->area_cache_mutex);
912 }
913 
914 static int __nfp_cpp_read(struct nfp_cpp *cpp, u32 destination,
915 			  unsigned long long address, void *kernel_vaddr,
916 			  size_t length)
917 {
918 	struct nfp_cpp_area_cache *cache;
919 	struct nfp_cpp_area *area;
920 	unsigned long offset = 0;
921 	int err;
922 
923 	cache = area_cache_get(cpp, destination, address, &offset, length);
924 	if (cache) {
925 		area = cache->area;
926 	} else {
927 		area = nfp_cpp_area_alloc(cpp, destination, address, length);
928 		if (!area)
929 			return -ENOMEM;
930 
931 		err = nfp_cpp_area_acquire(area);
932 		if (err) {
933 			nfp_cpp_area_free(area);
934 			return err;
935 		}
936 	}
937 
938 	err = nfp_cpp_area_read(area, offset, kernel_vaddr, length);
939 
940 	if (cache)
941 		area_cache_put(cpp, cache);
942 	else
943 		nfp_cpp_area_release_free(area);
944 
945 	return err;
946 }
947 
948 /**
949  * nfp_cpp_read() - read from CPP target
950  * @cpp:		CPP handle
951  * @destination:	CPP id
952  * @address:		offset into CPP target
953  * @kernel_vaddr:	kernel buffer for result
954  * @length:		number of bytes to read
955  *
956  * Return: length of io, or -ERRNO
957  */
958 int nfp_cpp_read(struct nfp_cpp *cpp, u32 destination,
959 		 unsigned long long address, void *kernel_vaddr,
960 		 size_t length)
961 {
962 	size_t n, offset;
963 	int ret;
964 
965 	for (offset = 0; offset < length; offset += n) {
966 		unsigned long long r_addr = address + offset;
967 
968 		/* make first read smaller to align to safe window */
969 		n = min_t(size_t, length - offset,
970 			  ALIGN(r_addr + 1, NFP_CPP_SAFE_AREA_SIZE) - r_addr);
971 
972 		ret = __nfp_cpp_read(cpp, destination, address + offset,
973 				     kernel_vaddr + offset, n);
974 		if (ret < 0)
975 			return ret;
976 		if (ret != n)
977 			return offset + n;
978 	}
979 
980 	return length;
981 }
982 
983 static int __nfp_cpp_write(struct nfp_cpp *cpp, u32 destination,
984 			   unsigned long long address,
985 			   const void *kernel_vaddr, size_t length)
986 {
987 	struct nfp_cpp_area_cache *cache;
988 	struct nfp_cpp_area *area;
989 	unsigned long offset = 0;
990 	int err;
991 
992 	cache = area_cache_get(cpp, destination, address, &offset, length);
993 	if (cache) {
994 		area = cache->area;
995 	} else {
996 		area = nfp_cpp_area_alloc(cpp, destination, address, length);
997 		if (!area)
998 			return -ENOMEM;
999 
1000 		err = nfp_cpp_area_acquire(area);
1001 		if (err) {
1002 			nfp_cpp_area_free(area);
1003 			return err;
1004 		}
1005 	}
1006 
1007 	err = nfp_cpp_area_write(area, offset, kernel_vaddr, length);
1008 
1009 	if (cache)
1010 		area_cache_put(cpp, cache);
1011 	else
1012 		nfp_cpp_area_release_free(area);
1013 
1014 	return err;
1015 }
1016 
1017 /**
1018  * nfp_cpp_write() - write to CPP target
1019  * @cpp:		CPP handle
1020  * @destination:	CPP id
1021  * @address:		offset into CPP target
1022  * @kernel_vaddr:	kernel buffer to read from
1023  * @length:		number of bytes to write
1024  *
1025  * Return: length of io, or -ERRNO
1026  */
1027 int nfp_cpp_write(struct nfp_cpp *cpp, u32 destination,
1028 		  unsigned long long address,
1029 		  const void *kernel_vaddr, size_t length)
1030 {
1031 	size_t n, offset;
1032 	int ret;
1033 
1034 	for (offset = 0; offset < length; offset += n) {
1035 		unsigned long long w_addr = address + offset;
1036 
1037 		/* make first write smaller to align to safe window */
1038 		n = min_t(size_t, length - offset,
1039 			  ALIGN(w_addr + 1, NFP_CPP_SAFE_AREA_SIZE) - w_addr);
1040 
1041 		ret = __nfp_cpp_write(cpp, destination, address + offset,
1042 				      kernel_vaddr + offset, n);
1043 		if (ret < 0)
1044 			return ret;
1045 		if (ret != n)
1046 			return offset + n;
1047 	}
1048 
1049 	return length;
1050 }
1051 
1052 /* Return the correct CPP address, and fixup xpb_addr as needed. */
1053 static u32 nfp_xpb_to_cpp(struct nfp_cpp *cpp, u32 *xpb_addr)
1054 {
1055 	int island;
1056 	u32 xpb;
1057 
1058 	xpb = NFP_CPP_ID(14, NFP_CPP_ACTION_RW, 0);
1059 	/* Ensure that non-local XPB accesses go
1060 	 * out through the global XPBM bus.
1061 	 */
1062 	island = (*xpb_addr >> 24) & 0x3f;
1063 	if (!island)
1064 		return xpb;
1065 
1066 	if (island != 1) {
1067 		*xpb_addr |= 1 << 30;
1068 		return xpb;
1069 	}
1070 
1071 	/* Accesses to the ARM Island overlay uses Island 0 / Global Bit */
1072 	*xpb_addr &= ~0x7f000000;
1073 	if (*xpb_addr < 0x60000) {
1074 		*xpb_addr |= 1 << 30;
1075 	} else {
1076 		/* And only non-ARM interfaces use the island id = 1 */
1077 		if (NFP_CPP_INTERFACE_TYPE_of(nfp_cpp_interface(cpp))
1078 		    != NFP_CPP_INTERFACE_TYPE_ARM)
1079 			*xpb_addr |= 1 << 24;
1080 	}
1081 
1082 	return xpb;
1083 }
1084 
1085 /**
1086  * nfp_xpb_readl() - Read a u32 word from a XPB location
1087  * @cpp:	CPP device handle
1088  * @xpb_addr:	Address for operation
1089  * @value:	Pointer to read buffer
1090  *
1091  * Return: 0 on success, or -ERRNO
1092  */
1093 int nfp_xpb_readl(struct nfp_cpp *cpp, u32 xpb_addr, u32 *value)
1094 {
1095 	u32 cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
1096 
1097 	return nfp_cpp_readl(cpp, cpp_dest, xpb_addr, value);
1098 }
1099 
1100 /**
1101  * nfp_xpb_writel() - Write a u32 word to a XPB location
1102  * @cpp:	CPP device handle
1103  * @xpb_addr:	Address for operation
1104  * @value:	Value to write
1105  *
1106  * Return: 0 on success, or -ERRNO
1107  */
1108 int nfp_xpb_writel(struct nfp_cpp *cpp, u32 xpb_addr, u32 value)
1109 {
1110 	u32 cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
1111 
1112 	return nfp_cpp_writel(cpp, cpp_dest, xpb_addr, value);
1113 }
1114 
1115 /**
1116  * nfp_xpb_writelm() - Modify bits of a 32-bit value from the XPB bus
1117  * @cpp:	NFP CPP device handle
1118  * @xpb_tgt:	XPB target and address
1119  * @mask:	mask of bits to alter
1120  * @value:	value to modify
1121  *
1122  * KERNEL: This operation is safe to call in interrupt or softirq context.
1123  *
1124  * Return: 0 on success, or -ERRNO
1125  */
1126 int nfp_xpb_writelm(struct nfp_cpp *cpp, u32 xpb_tgt,
1127 		    u32 mask, u32 value)
1128 {
1129 	int err;
1130 	u32 tmp;
1131 
1132 	err = nfp_xpb_readl(cpp, xpb_tgt, &tmp);
1133 	if (err < 0)
1134 		return err;
1135 
1136 	tmp &= ~mask;
1137 	tmp |= mask & value;
1138 	return nfp_xpb_writel(cpp, xpb_tgt, tmp);
1139 }
1140 
1141 /* Lockdep markers */
1142 static struct lock_class_key nfp_cpp_resource_lock_key;
1143 
1144 static void nfp_cpp_dev_release(struct device *dev)
1145 {
1146 	/* Nothing to do here - it just makes the kernel happy */
1147 }
1148 
1149 /**
1150  * nfp_cpp_from_operations() - Create a NFP CPP handle
1151  *                             from an operations structure
1152  * @ops:	NFP CPP operations structure
1153  * @parent:	Parent device
1154  * @priv:	Private data of low-level implementation
1155  *
1156  * NOTE: On failure, cpp_ops->free will be called!
1157  *
1158  * Return: NFP CPP handle on success, ERR_PTR on failure
1159  */
1160 struct nfp_cpp *
1161 nfp_cpp_from_operations(const struct nfp_cpp_operations *ops,
1162 			struct device *parent, void *priv)
1163 {
1164 	const u32 arm = NFP_CPP_ID(NFP_CPP_TARGET_ARM, NFP_CPP_ACTION_RW, 0);
1165 	struct nfp_cpp *cpp;
1166 	u32 mask[2];
1167 	u32 xpbaddr;
1168 	size_t tgt;
1169 	int err;
1170 
1171 	cpp = kzalloc(sizeof(*cpp), GFP_KERNEL);
1172 	if (!cpp) {
1173 		err = -ENOMEM;
1174 		goto err_malloc;
1175 	}
1176 
1177 	cpp->op = ops;
1178 	cpp->priv = priv;
1179 	cpp->interface = ops->get_interface(parent);
1180 	if (ops->read_serial)
1181 		ops->read_serial(parent, cpp->serial);
1182 	rwlock_init(&cpp->resource_lock);
1183 	init_waitqueue_head(&cpp->waitq);
1184 	lockdep_set_class(&cpp->resource_lock, &nfp_cpp_resource_lock_key);
1185 	INIT_LIST_HEAD(&cpp->resource_list);
1186 	INIT_LIST_HEAD(&cpp->area_cache_list);
1187 	mutex_init(&cpp->area_cache_mutex);
1188 	cpp->dev.init_name = "cpp";
1189 	cpp->dev.parent = parent;
1190 	cpp->dev.release = nfp_cpp_dev_release;
1191 	err = device_register(&cpp->dev);
1192 	if (err < 0) {
1193 		put_device(&cpp->dev);
1194 		goto err_dev;
1195 	}
1196 
1197 	dev_set_drvdata(&cpp->dev, cpp);
1198 
1199 	/* NOTE: cpp_lock is NOT locked for op->init,
1200 	 * since it may call NFP CPP API operations
1201 	 */
1202 	if (cpp->op->init) {
1203 		err = cpp->op->init(cpp);
1204 		if (err < 0) {
1205 			dev_err(parent,
1206 				"NFP interface initialization failed\n");
1207 			goto err_out;
1208 		}
1209 	}
1210 
1211 	err = nfp_cpp_model_autodetect(cpp, &cpp->model);
1212 	if (err < 0) {
1213 		dev_err(parent, "NFP model detection failed\n");
1214 		goto err_out;
1215 	}
1216 
1217 	for (tgt = 0; tgt < ARRAY_SIZE(cpp->imb_cat_table); tgt++) {
1218 			/* Hardcoded XPB IMB Base, island 0 */
1219 		xpbaddr = 0x000a0000 + (tgt * 4);
1220 		err = nfp_xpb_readl(cpp, xpbaddr,
1221 				    &cpp->imb_cat_table[tgt]);
1222 		if (err < 0) {
1223 			dev_err(parent,
1224 				"Can't read CPP mapping from device\n");
1225 			goto err_out;
1226 		}
1227 	}
1228 
1229 	nfp_cpp_readl(cpp, arm, NFP_ARM_GCSR + NFP_ARM_GCSR_SOFTMODEL2,
1230 		      &mask[0]);
1231 	nfp_cpp_readl(cpp, arm, NFP_ARM_GCSR + NFP_ARM_GCSR_SOFTMODEL3,
1232 		      &mask[1]);
1233 
1234 	dev_info(cpp->dev.parent, "Model: 0x%08x, SN: %pM, Ifc: 0x%04x\n",
1235 		 nfp_cpp_model(cpp), cpp->serial, nfp_cpp_interface(cpp));
1236 
1237 	return cpp;
1238 
1239 err_out:
1240 	device_unregister(&cpp->dev);
1241 err_dev:
1242 	kfree(cpp);
1243 err_malloc:
1244 	return ERR_PTR(err);
1245 }
1246 
1247 /**
1248  * nfp_cpp_priv() - Get the operations private data of a CPP handle
1249  * @cpp:	CPP handle
1250  *
1251  * Return: Private data for the NFP CPP handle
1252  */
1253 void *nfp_cpp_priv(struct nfp_cpp *cpp)
1254 {
1255 	return cpp->priv;
1256 }
1257 
1258 /**
1259  * nfp_cpp_device() - Get the Linux device handle of a CPP handle
1260  * @cpp:	CPP handle
1261  *
1262  * Return: Device for the NFP CPP bus
1263  */
1264 struct device *nfp_cpp_device(struct nfp_cpp *cpp)
1265 {
1266 	return &cpp->dev;
1267 }
1268 
1269 #define NFP_EXPL_OP(func, expl, args...)			  \
1270 	({							  \
1271 		struct nfp_cpp *cpp = nfp_cpp_explicit_cpp(expl); \
1272 		int err = -ENODEV;				  \
1273 								  \
1274 		if (cpp->op->func)				  \
1275 			err = cpp->op->func(expl, ##args);	  \
1276 		err;						  \
1277 	})
1278 
1279 #define NFP_EXPL_OP_NR(func, expl, args...)			  \
1280 	({							  \
1281 		struct nfp_cpp *cpp = nfp_cpp_explicit_cpp(expl); \
1282 								  \
1283 		if (cpp->op->func)				  \
1284 			cpp->op->func(expl, ##args);		  \
1285 								  \
1286 	})
1287 
1288 /**
1289  * nfp_cpp_explicit_acquire() - Acquire explicit access handle
1290  * @cpp:	NFP CPP handle
1291  *
1292  * The 'data_ref' and 'signal_ref' values are useful when
1293  * constructing the NFP_EXPL_CSR1 and NFP_EXPL_POST values.
1294  *
1295  * Return: NFP CPP explicit handle
1296  */
1297 struct nfp_cpp_explicit *nfp_cpp_explicit_acquire(struct nfp_cpp *cpp)
1298 {
1299 	struct nfp_cpp_explicit *expl;
1300 	int err;
1301 
1302 	expl = kzalloc(sizeof(*expl) + cpp->op->explicit_priv_size, GFP_KERNEL);
1303 	if (!expl)
1304 		return NULL;
1305 
1306 	expl->cpp = cpp;
1307 	err = NFP_EXPL_OP(explicit_acquire, expl);
1308 	if (err < 0) {
1309 		kfree(expl);
1310 		return NULL;
1311 	}
1312 
1313 	return expl;
1314 }
1315 
1316 /**
1317  * nfp_cpp_explicit_set_target() - Set target fields for explicit
1318  * @expl:	Explicit handle
1319  * @cpp_id:	CPP ID field
1320  * @len:	CPP Length field
1321  * @mask:	CPP Mask field
1322  *
1323  * Return: 0, or -ERRNO
1324  */
1325 int nfp_cpp_explicit_set_target(struct nfp_cpp_explicit *expl,
1326 				u32 cpp_id, u8 len, u8 mask)
1327 {
1328 	expl->cmd.cpp_id = cpp_id;
1329 	expl->cmd.len = len;
1330 	expl->cmd.byte_mask = mask;
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * nfp_cpp_explicit_set_data() - Set data fields for explicit
1337  * @expl:	Explicit handle
1338  * @data_master: CPP Data Master field
1339  * @data_ref:	CPP Data Ref field
1340  *
1341  * Return: 0, or -ERRNO
1342  */
1343 int nfp_cpp_explicit_set_data(struct nfp_cpp_explicit *expl,
1344 			      u8 data_master, u16 data_ref)
1345 {
1346 	expl->cmd.data_master = data_master;
1347 	expl->cmd.data_ref = data_ref;
1348 
1349 	return 0;
1350 }
1351 
1352 /**
1353  * nfp_cpp_explicit_set_signal() - Set signal fields for explicit
1354  * @expl:	Explicit handle
1355  * @signal_master: CPP Signal Master field
1356  * @signal_ref:	CPP Signal Ref field
1357  *
1358  * Return: 0, or -ERRNO
1359  */
1360 int nfp_cpp_explicit_set_signal(struct nfp_cpp_explicit *expl,
1361 				u8 signal_master, u8 signal_ref)
1362 {
1363 	expl->cmd.signal_master = signal_master;
1364 	expl->cmd.signal_ref = signal_ref;
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * nfp_cpp_explicit_set_posted() - Set completion fields for explicit
1371  * @expl:	Explicit handle
1372  * @posted:	True for signaled completion, false otherwise
1373  * @siga:	CPP Signal A field
1374  * @siga_mode:	CPP Signal A Mode field
1375  * @sigb:	CPP Signal B field
1376  * @sigb_mode:	CPP Signal B Mode field
1377  *
1378  * Return: 0, or -ERRNO
1379  */
1380 int nfp_cpp_explicit_set_posted(struct nfp_cpp_explicit *expl, int posted,
1381 				u8 siga,
1382 				enum nfp_cpp_explicit_signal_mode siga_mode,
1383 				u8 sigb,
1384 				enum nfp_cpp_explicit_signal_mode sigb_mode)
1385 {
1386 	expl->cmd.posted = posted;
1387 	expl->cmd.siga = siga;
1388 	expl->cmd.sigb = sigb;
1389 	expl->cmd.siga_mode = siga_mode;
1390 	expl->cmd.sigb_mode = sigb_mode;
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * nfp_cpp_explicit_put() - Set up the write (pull) data for a explicit access
1397  * @expl:	NFP CPP Explicit handle
1398  * @buff:	Data to have the target pull in the transaction
1399  * @len:	Length of data, in bytes
1400  *
1401  * The 'len' parameter must be less than or equal to 128 bytes.
1402  *
1403  * If this function is called before the configuration
1404  * registers are set, it will return -EINVAL.
1405  *
1406  * Return: 0, or -ERRNO
1407  */
1408 int nfp_cpp_explicit_put(struct nfp_cpp_explicit *expl,
1409 			 const void *buff, size_t len)
1410 {
1411 	return NFP_EXPL_OP(explicit_put, expl, buff, len);
1412 }
1413 
1414 /**
1415  * nfp_cpp_explicit_do() - Execute a transaction, and wait for it to complete
1416  * @expl:	NFP CPP Explicit handle
1417  * @address:	Address to send in the explicit transaction
1418  *
1419  * If this function is called before the configuration
1420  * registers are set, it will return -1, with an errno of EINVAL.
1421  *
1422  * Return: 0, or -ERRNO
1423  */
1424 int nfp_cpp_explicit_do(struct nfp_cpp_explicit *expl, u64 address)
1425 {
1426 	return NFP_EXPL_OP(explicit_do, expl, &expl->cmd, address);
1427 }
1428 
1429 /**
1430  * nfp_cpp_explicit_get() - Get the 'push' (read) data from a explicit access
1431  * @expl:	NFP CPP Explicit handle
1432  * @buff:	Data that the target pushed in the transaction
1433  * @len:	Length of data, in bytes
1434  *
1435  * The 'len' parameter must be less than or equal to 128 bytes.
1436  *
1437  * If this function is called before all three configuration
1438  * registers are set, it will return -1, with an errno of EINVAL.
1439  *
1440  * If this function is called before nfp_cpp_explicit_do()
1441  * has completed, it will return -1, with an errno of EBUSY.
1442  *
1443  * Return: 0, or -ERRNO
1444  */
1445 int nfp_cpp_explicit_get(struct nfp_cpp_explicit *expl, void *buff, size_t len)
1446 {
1447 	return NFP_EXPL_OP(explicit_get, expl, buff, len);
1448 }
1449 
1450 /**
1451  * nfp_cpp_explicit_release() - Release explicit access handle
1452  * @expl:	NFP CPP Explicit handle
1453  *
1454  */
1455 void nfp_cpp_explicit_release(struct nfp_cpp_explicit *expl)
1456 {
1457 	NFP_EXPL_OP_NR(explicit_release, expl);
1458 	kfree(expl);
1459 }
1460 
1461 /**
1462  * nfp_cpp_explicit_cpp() - return CPP handle for CPP explicit
1463  * @cpp_explicit:	CPP explicit handle
1464  *
1465  * Return: NFP CPP handle of the explicit
1466  */
1467 struct nfp_cpp *nfp_cpp_explicit_cpp(struct nfp_cpp_explicit *cpp_explicit)
1468 {
1469 	return cpp_explicit->cpp;
1470 }
1471 
1472 /**
1473  * nfp_cpp_explicit_priv() - return private struct for CPP explicit
1474  * @cpp_explicit:	CPP explicit handle
1475  *
1476  * Return: private data of the explicit, or NULL
1477  */
1478 void *nfp_cpp_explicit_priv(struct nfp_cpp_explicit *cpp_explicit)
1479 {
1480 	return &cpp_explicit[1];
1481 }
1482