1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/msi.h> 31 #include <linux/ethtool.h> 32 #include <linux/log2.h> 33 #include <linux/if_vlan.h> 34 #include <linux/if_bridge.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 #include <net/xdp_sock_drv.h> 42 43 #include "nfpcore/nfp_dev.h" 44 #include "nfpcore/nfp_nsp.h" 45 #include "ccm.h" 46 #include "nfp_app.h" 47 #include "nfp_net_ctrl.h" 48 #include "nfp_net.h" 49 #include "nfp_net_dp.h" 50 #include "nfp_net_sriov.h" 51 #include "nfp_net_xsk.h" 52 #include "nfp_port.h" 53 #include "crypto/crypto.h" 54 #include "crypto/fw.h" 55 56 /** 57 * nfp_net_get_fw_version() - Read and parse the FW version 58 * @fw_ver: Output fw_version structure to read to 59 * @ctrl_bar: Mapped address of the control BAR 60 */ 61 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 62 void __iomem *ctrl_bar) 63 { 64 u32 reg; 65 66 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 67 put_unaligned_le32(reg, fw_ver); 68 } 69 70 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 71 { 72 queue &= dev_info->qc_idx_mask; 73 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 74 } 75 76 /* Firmware reconfig 77 * 78 * Firmware reconfig may take a while so we have two versions of it - 79 * synchronous and asynchronous (posted). All synchronous callers are holding 80 * RTNL so we don't have to worry about serializing them. 81 */ 82 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 83 { 84 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 85 /* ensure update is written before pinging HW */ 86 nn_pci_flush(nn); 87 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 88 nn->reconfig_in_progress_update = update; 89 } 90 91 /* Pass 0 as update to run posted reconfigs. */ 92 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 93 { 94 update |= nn->reconfig_posted; 95 nn->reconfig_posted = 0; 96 97 nfp_net_reconfig_start(nn, update); 98 99 nn->reconfig_timer_active = true; 100 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 101 } 102 103 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 104 { 105 u32 reg; 106 107 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 108 if (reg == 0) 109 return true; 110 if (reg & NFP_NET_CFG_UPDATE_ERR) { 111 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 112 reg, nn->reconfig_in_progress_update, 113 nn_readl(nn, NFP_NET_CFG_CTRL)); 114 return true; 115 } else if (last_check) { 116 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 117 reg, nn->reconfig_in_progress_update, 118 nn_readl(nn, NFP_NET_CFG_CTRL)); 119 return true; 120 } 121 122 return false; 123 } 124 125 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 126 { 127 bool timed_out = false; 128 int i; 129 130 /* Poll update field, waiting for NFP to ack the config. 131 * Do an opportunistic wait-busy loop, afterward sleep. 132 */ 133 for (i = 0; i < 50; i++) { 134 if (nfp_net_reconfig_check_done(nn, false)) 135 return false; 136 udelay(4); 137 } 138 139 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 140 usleep_range(250, 500); 141 timed_out = time_is_before_eq_jiffies(deadline); 142 } 143 144 return timed_out; 145 } 146 147 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 148 { 149 if (__nfp_net_reconfig_wait(nn, deadline)) 150 return -EIO; 151 152 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 153 return -EIO; 154 155 return 0; 156 } 157 158 static void nfp_net_reconfig_timer(struct timer_list *t) 159 { 160 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 161 162 spin_lock_bh(&nn->reconfig_lock); 163 164 nn->reconfig_timer_active = false; 165 166 /* If sync caller is present it will take over from us */ 167 if (nn->reconfig_sync_present) 168 goto done; 169 170 /* Read reconfig status and report errors */ 171 nfp_net_reconfig_check_done(nn, true); 172 173 if (nn->reconfig_posted) 174 nfp_net_reconfig_start_async(nn, 0); 175 done: 176 spin_unlock_bh(&nn->reconfig_lock); 177 } 178 179 /** 180 * nfp_net_reconfig_post() - Post async reconfig request 181 * @nn: NFP Net device to reconfigure 182 * @update: The value for the update field in the BAR config 183 * 184 * Record FW reconfiguration request. Reconfiguration will be kicked off 185 * whenever reconfiguration machinery is idle. Multiple requests can be 186 * merged together! 187 */ 188 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 189 { 190 spin_lock_bh(&nn->reconfig_lock); 191 192 /* Sync caller will kick off async reconf when it's done, just post */ 193 if (nn->reconfig_sync_present) { 194 nn->reconfig_posted |= update; 195 goto done; 196 } 197 198 /* Opportunistically check if the previous command is done */ 199 if (!nn->reconfig_timer_active || 200 nfp_net_reconfig_check_done(nn, false)) 201 nfp_net_reconfig_start_async(nn, update); 202 else 203 nn->reconfig_posted |= update; 204 done: 205 spin_unlock_bh(&nn->reconfig_lock); 206 } 207 208 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 209 { 210 bool cancelled_timer = false; 211 u32 pre_posted_requests; 212 213 spin_lock_bh(&nn->reconfig_lock); 214 215 WARN_ON(nn->reconfig_sync_present); 216 nn->reconfig_sync_present = true; 217 218 if (nn->reconfig_timer_active) { 219 nn->reconfig_timer_active = false; 220 cancelled_timer = true; 221 } 222 pre_posted_requests = nn->reconfig_posted; 223 nn->reconfig_posted = 0; 224 225 spin_unlock_bh(&nn->reconfig_lock); 226 227 if (cancelled_timer) { 228 del_timer_sync(&nn->reconfig_timer); 229 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 230 } 231 232 /* Run the posted reconfigs which were issued before we started */ 233 if (pre_posted_requests) { 234 nfp_net_reconfig_start(nn, pre_posted_requests); 235 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 236 } 237 } 238 239 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 240 { 241 nfp_net_reconfig_sync_enter(nn); 242 243 spin_lock_bh(&nn->reconfig_lock); 244 nn->reconfig_sync_present = false; 245 spin_unlock_bh(&nn->reconfig_lock); 246 } 247 248 /** 249 * __nfp_net_reconfig() - Reconfigure the firmware 250 * @nn: NFP Net device to reconfigure 251 * @update: The value for the update field in the BAR config 252 * 253 * Write the update word to the BAR and ping the reconfig queue. The 254 * poll until the firmware has acknowledged the update by zeroing the 255 * update word. 256 * 257 * Return: Negative errno on error, 0 on success 258 */ 259 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 260 { 261 int ret; 262 263 nfp_net_reconfig_sync_enter(nn); 264 265 nfp_net_reconfig_start(nn, update); 266 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 267 268 spin_lock_bh(&nn->reconfig_lock); 269 270 if (nn->reconfig_posted) 271 nfp_net_reconfig_start_async(nn, 0); 272 273 nn->reconfig_sync_present = false; 274 275 spin_unlock_bh(&nn->reconfig_lock); 276 277 return ret; 278 } 279 280 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 281 { 282 int ret; 283 284 nn_ctrl_bar_lock(nn); 285 ret = __nfp_net_reconfig(nn, update); 286 nn_ctrl_bar_unlock(nn); 287 288 return ret; 289 } 290 291 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 292 { 293 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 294 nn_err(nn, "mailbox too small for %u of data (%u)\n", 295 data_size, nn->tlv_caps.mbox_len); 296 return -EIO; 297 } 298 299 nn_ctrl_bar_lock(nn); 300 return 0; 301 } 302 303 /** 304 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 305 * @nn: NFP Net device to reconfigure 306 * @mbox_cmd: The value for the mailbox command 307 * 308 * Helper function for mailbox updates 309 * 310 * Return: Negative errno on error, 0 on success 311 */ 312 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 313 { 314 u32 mbox = nn->tlv_caps.mbox_off; 315 int ret; 316 317 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 318 319 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 320 if (ret) { 321 nn_err(nn, "Mailbox update error\n"); 322 return ret; 323 } 324 325 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 326 } 327 328 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 329 { 330 u32 mbox = nn->tlv_caps.mbox_off; 331 332 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 333 334 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 335 } 336 337 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 338 { 339 u32 mbox = nn->tlv_caps.mbox_off; 340 341 nfp_net_reconfig_wait_posted(nn); 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 int ret; 349 350 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 351 nn_ctrl_bar_unlock(nn); 352 return ret; 353 } 354 355 /* Interrupt configuration and handling 356 */ 357 358 /** 359 * nfp_net_irqs_alloc() - allocates MSI-X irqs 360 * @pdev: PCI device structure 361 * @irq_entries: Array to be initialized and used to hold the irq entries 362 * @min_irqs: Minimal acceptable number of interrupts 363 * @wanted_irqs: Target number of interrupts to allocate 364 * 365 * Return: Number of irqs obtained or 0 on error. 366 */ 367 unsigned int 368 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 369 unsigned int min_irqs, unsigned int wanted_irqs) 370 { 371 unsigned int i; 372 int got_irqs; 373 374 for (i = 0; i < wanted_irqs; i++) 375 irq_entries[i].entry = i; 376 377 got_irqs = pci_enable_msix_range(pdev, irq_entries, 378 min_irqs, wanted_irqs); 379 if (got_irqs < 0) { 380 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 381 min_irqs, wanted_irqs, got_irqs); 382 return 0; 383 } 384 385 if (got_irqs < wanted_irqs) 386 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 387 wanted_irqs, got_irqs); 388 389 return got_irqs; 390 } 391 392 /** 393 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 394 * @nn: NFP Network structure 395 * @irq_entries: Table of allocated interrupts 396 * @n: Size of @irq_entries (number of entries to grab) 397 * 398 * After interrupts are allocated with nfp_net_irqs_alloc() this function 399 * should be called to assign them to a specific netdev (port). 400 */ 401 void 402 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 403 unsigned int n) 404 { 405 struct nfp_net_dp *dp = &nn->dp; 406 407 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 408 dp->num_r_vecs = nn->max_r_vecs; 409 410 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 411 412 if (dp->num_rx_rings > dp->num_r_vecs || 413 dp->num_tx_rings > dp->num_r_vecs) 414 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 415 dp->num_rx_rings, dp->num_tx_rings, 416 dp->num_r_vecs); 417 418 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 419 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 420 dp->num_stack_tx_rings = dp->num_tx_rings; 421 } 422 423 /** 424 * nfp_net_irqs_disable() - Disable interrupts 425 * @pdev: PCI device structure 426 * 427 * Undoes what @nfp_net_irqs_alloc() does. 428 */ 429 void nfp_net_irqs_disable(struct pci_dev *pdev) 430 { 431 pci_disable_msix(pdev); 432 } 433 434 /** 435 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 436 * @irq: Interrupt 437 * @data: Opaque data structure 438 * 439 * Return: Indicate if the interrupt has been handled. 440 */ 441 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 442 { 443 struct nfp_net_r_vector *r_vec = data; 444 445 /* Currently we cannot tell if it's a rx or tx interrupt, 446 * since dim does not need accurate event_ctr to calculate, 447 * we just use this counter for both rx and tx dim. 448 */ 449 r_vec->event_ctr++; 450 451 napi_schedule_irqoff(&r_vec->napi); 452 453 /* The FW auto-masks any interrupt, either via the MASK bit in 454 * the MSI-X table or via the per entry ICR field. So there 455 * is no need to disable interrupts here. 456 */ 457 return IRQ_HANDLED; 458 } 459 460 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 461 { 462 struct nfp_net_r_vector *r_vec = data; 463 464 tasklet_schedule(&r_vec->tasklet); 465 466 return IRQ_HANDLED; 467 } 468 469 /** 470 * nfp_net_read_link_status() - Reread link status from control BAR 471 * @nn: NFP Network structure 472 */ 473 static void nfp_net_read_link_status(struct nfp_net *nn) 474 { 475 unsigned long flags; 476 bool link_up; 477 u32 sts; 478 479 spin_lock_irqsave(&nn->link_status_lock, flags); 480 481 sts = nn_readl(nn, NFP_NET_CFG_STS); 482 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 483 484 if (nn->link_up == link_up) 485 goto out; 486 487 nn->link_up = link_up; 488 if (nn->port) 489 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 490 491 if (nn->link_up) { 492 netif_carrier_on(nn->dp.netdev); 493 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 494 } else { 495 netif_carrier_off(nn->dp.netdev); 496 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 497 } 498 out: 499 spin_unlock_irqrestore(&nn->link_status_lock, flags); 500 } 501 502 /** 503 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 504 * @irq: Interrupt 505 * @data: Opaque data structure 506 * 507 * Return: Indicate if the interrupt has been handled. 508 */ 509 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 510 { 511 struct nfp_net *nn = data; 512 struct msix_entry *entry; 513 514 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 515 516 nfp_net_read_link_status(nn); 517 518 nfp_net_irq_unmask(nn, entry->entry); 519 520 return IRQ_HANDLED; 521 } 522 523 /** 524 * nfp_net_irq_exn() - Interrupt service routine for exceptions 525 * @irq: Interrupt 526 * @data: Opaque data structure 527 * 528 * Return: Indicate if the interrupt has been handled. 529 */ 530 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 531 { 532 struct nfp_net *nn = data; 533 534 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 535 /* XXX TO BE IMPLEMENTED */ 536 return IRQ_HANDLED; 537 } 538 539 /** 540 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 541 * @nn: NFP Network structure 542 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 543 * @format: printf-style format to construct the interrupt name 544 * @name: Pointer to allocated space for interrupt name 545 * @name_sz: Size of space for interrupt name 546 * @vector_idx: Index of MSI-X vector used for this interrupt 547 * @handler: IRQ handler to register for this interrupt 548 */ 549 static int 550 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 551 const char *format, char *name, size_t name_sz, 552 unsigned int vector_idx, irq_handler_t handler) 553 { 554 struct msix_entry *entry; 555 int err; 556 557 entry = &nn->irq_entries[vector_idx]; 558 559 snprintf(name, name_sz, format, nfp_net_name(nn)); 560 err = request_irq(entry->vector, handler, 0, name, nn); 561 if (err) { 562 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 563 entry->vector, err); 564 return err; 565 } 566 nn_writeb(nn, ctrl_offset, entry->entry); 567 nfp_net_irq_unmask(nn, entry->entry); 568 569 return 0; 570 } 571 572 /** 573 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 574 * @nn: NFP Network structure 575 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 576 * @vector_idx: Index of MSI-X vector used for this interrupt 577 */ 578 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 579 unsigned int vector_idx) 580 { 581 nn_writeb(nn, ctrl_offset, 0xff); 582 nn_pci_flush(nn); 583 free_irq(nn->irq_entries[vector_idx].vector, nn); 584 } 585 586 struct sk_buff * 587 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 588 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 589 { 590 #ifdef CONFIG_TLS_DEVICE 591 struct nfp_net_tls_offload_ctx *ntls; 592 struct sk_buff *nskb; 593 bool resync_pending; 594 u32 datalen, seq; 595 596 if (likely(!dp->ktls_tx)) 597 return skb; 598 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 599 return skb; 600 601 datalen = skb->len - skb_tcp_all_headers(skb); 602 seq = ntohl(tcp_hdr(skb)->seq); 603 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 604 resync_pending = tls_offload_tx_resync_pending(skb->sk); 605 if (unlikely(resync_pending || ntls->next_seq != seq)) { 606 /* Pure ACK out of order already */ 607 if (!datalen) 608 return skb; 609 610 u64_stats_update_begin(&r_vec->tx_sync); 611 r_vec->tls_tx_fallback++; 612 u64_stats_update_end(&r_vec->tx_sync); 613 614 nskb = tls_encrypt_skb(skb); 615 if (!nskb) { 616 u64_stats_update_begin(&r_vec->tx_sync); 617 r_vec->tls_tx_no_fallback++; 618 u64_stats_update_end(&r_vec->tx_sync); 619 return NULL; 620 } 621 /* encryption wasn't necessary */ 622 if (nskb == skb) 623 return skb; 624 /* we don't re-check ring space */ 625 if (unlikely(skb_is_nonlinear(nskb))) { 626 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 627 u64_stats_update_begin(&r_vec->tx_sync); 628 r_vec->tx_errors++; 629 u64_stats_update_end(&r_vec->tx_sync); 630 dev_kfree_skb_any(nskb); 631 return NULL; 632 } 633 634 /* jump forward, a TX may have gotten lost, need to sync TX */ 635 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 636 tls_offload_tx_resync_request(nskb->sk, seq, 637 ntls->next_seq); 638 639 *nr_frags = 0; 640 return nskb; 641 } 642 643 if (datalen) { 644 u64_stats_update_begin(&r_vec->tx_sync); 645 if (!skb_is_gso(skb)) 646 r_vec->hw_tls_tx++; 647 else 648 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 649 u64_stats_update_end(&r_vec->tx_sync); 650 } 651 652 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 653 ntls->next_seq += datalen; 654 #endif 655 return skb; 656 } 657 658 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 659 { 660 #ifdef CONFIG_TLS_DEVICE 661 struct nfp_net_tls_offload_ctx *ntls; 662 u32 datalen, seq; 663 664 if (!tls_handle) 665 return; 666 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 667 return; 668 669 datalen = skb->len - skb_tcp_all_headers(skb); 670 seq = ntohl(tcp_hdr(skb)->seq); 671 672 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 673 if (ntls->next_seq == seq + datalen) 674 ntls->next_seq = seq; 675 else 676 WARN_ON_ONCE(1); 677 #endif 678 } 679 680 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 681 { 682 struct nfp_net *nn = netdev_priv(netdev); 683 684 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 685 } 686 687 /* Receive processing */ 688 static unsigned int 689 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 690 { 691 unsigned int fl_bufsz = 0; 692 693 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 694 fl_bufsz += NFP_NET_MAX_PREPEND; 695 else 696 fl_bufsz += dp->rx_offset; 697 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 698 699 return fl_bufsz; 700 } 701 702 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 703 { 704 unsigned int fl_bufsz; 705 706 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 707 fl_bufsz += dp->rx_dma_off; 708 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 709 710 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 711 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 712 713 return fl_bufsz; 714 } 715 716 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 717 { 718 unsigned int fl_bufsz; 719 720 fl_bufsz = XDP_PACKET_HEADROOM; 721 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 722 723 return fl_bufsz; 724 } 725 726 /* Setup and Configuration 727 */ 728 729 /** 730 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 731 * @nn: NFP Network structure 732 */ 733 static void nfp_net_vecs_init(struct nfp_net *nn) 734 { 735 struct nfp_net_r_vector *r_vec; 736 int r; 737 738 nn->lsc_handler = nfp_net_irq_lsc; 739 nn->exn_handler = nfp_net_irq_exn; 740 741 for (r = 0; r < nn->max_r_vecs; r++) { 742 struct msix_entry *entry; 743 744 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 745 746 r_vec = &nn->r_vecs[r]; 747 r_vec->nfp_net = nn; 748 r_vec->irq_entry = entry->entry; 749 r_vec->irq_vector = entry->vector; 750 751 if (nn->dp.netdev) { 752 r_vec->handler = nfp_net_irq_rxtx; 753 } else { 754 r_vec->handler = nfp_ctrl_irq_rxtx; 755 756 __skb_queue_head_init(&r_vec->queue); 757 spin_lock_init(&r_vec->lock); 758 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 759 tasklet_disable(&r_vec->tasklet); 760 } 761 762 cpumask_set_cpu(r, &r_vec->affinity_mask); 763 } 764 } 765 766 static void 767 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 768 { 769 if (dp->netdev) 770 netif_napi_add(dp->netdev, &r_vec->napi, 771 nfp_net_has_xsk_pool_slow(dp, idx) ? 772 dp->ops->xsk_poll : dp->ops->poll, 773 NAPI_POLL_WEIGHT); 774 else 775 tasklet_enable(&r_vec->tasklet); 776 } 777 778 static void 779 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 780 { 781 if (dp->netdev) 782 netif_napi_del(&r_vec->napi); 783 else 784 tasklet_disable(&r_vec->tasklet); 785 } 786 787 static void 788 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 789 struct nfp_net_r_vector *r_vec, int idx) 790 { 791 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 792 r_vec->tx_ring = 793 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 794 795 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 796 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 797 798 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 799 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 800 801 if (r_vec->xsk_pool) 802 xsk_pool_set_rxq_info(r_vec->xsk_pool, 803 &r_vec->rx_ring->xdp_rxq); 804 805 nfp_net_napi_del(dp, r_vec); 806 nfp_net_napi_add(dp, r_vec, idx); 807 } 808 } 809 810 static int 811 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 812 int idx) 813 { 814 int err; 815 816 nfp_net_napi_add(&nn->dp, r_vec, idx); 817 818 snprintf(r_vec->name, sizeof(r_vec->name), 819 "%s-rxtx-%d", nfp_net_name(nn), idx); 820 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 821 r_vec); 822 if (err) { 823 nfp_net_napi_del(&nn->dp, r_vec); 824 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 825 return err; 826 } 827 disable_irq(r_vec->irq_vector); 828 829 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 830 831 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 832 r_vec->irq_entry); 833 834 return 0; 835 } 836 837 static void 838 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 839 { 840 irq_set_affinity_hint(r_vec->irq_vector, NULL); 841 nfp_net_napi_del(&nn->dp, r_vec); 842 free_irq(r_vec->irq_vector, r_vec); 843 } 844 845 /** 846 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 847 * @nn: NFP Net device to reconfigure 848 */ 849 void nfp_net_rss_write_itbl(struct nfp_net *nn) 850 { 851 int i; 852 853 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 854 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 855 get_unaligned_le32(nn->rss_itbl + i)); 856 } 857 858 /** 859 * nfp_net_rss_write_key() - Write RSS hash key to device 860 * @nn: NFP Net device to reconfigure 861 */ 862 void nfp_net_rss_write_key(struct nfp_net *nn) 863 { 864 int i; 865 866 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 867 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 868 get_unaligned_le32(nn->rss_key + i)); 869 } 870 871 /** 872 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 873 * @nn: NFP Net device to reconfigure 874 */ 875 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 876 { 877 u8 i; 878 u32 factor; 879 u32 value; 880 881 /* Compute factor used to convert coalesce '_usecs' parameters to 882 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 883 * count. 884 */ 885 factor = nn->tlv_caps.me_freq_mhz / 16; 886 887 /* copy RX interrupt coalesce parameters */ 888 value = (nn->rx_coalesce_max_frames << 16) | 889 (factor * nn->rx_coalesce_usecs); 890 for (i = 0; i < nn->dp.num_rx_rings; i++) 891 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 892 893 /* copy TX interrupt coalesce parameters */ 894 value = (nn->tx_coalesce_max_frames << 16) | 895 (factor * nn->tx_coalesce_usecs); 896 for (i = 0; i < nn->dp.num_tx_rings; i++) 897 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 898 } 899 900 /** 901 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 902 * @nn: NFP Net device to reconfigure 903 * @addr: MAC address to write 904 * 905 * Writes the MAC address from the netdev to the device control BAR. Does not 906 * perform the required reconfig. We do a bit of byte swapping dance because 907 * firmware is LE. 908 */ 909 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 910 { 911 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 912 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 913 } 914 915 /** 916 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 917 * @nn: NFP Net device to reconfigure 918 * 919 * Warning: must be fully idempotent. 920 */ 921 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 922 { 923 u32 new_ctrl, update; 924 unsigned int r; 925 int err; 926 927 new_ctrl = nn->dp.ctrl; 928 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 929 update = NFP_NET_CFG_UPDATE_GEN; 930 update |= NFP_NET_CFG_UPDATE_MSIX; 931 update |= NFP_NET_CFG_UPDATE_RING; 932 933 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 934 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 935 936 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 937 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 938 939 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 940 err = nfp_net_reconfig(nn, update); 941 if (err) 942 nn_err(nn, "Could not disable device: %d\n", err); 943 944 for (r = 0; r < nn->dp.num_rx_rings; r++) { 945 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 946 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 947 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 948 } 949 for (r = 0; r < nn->dp.num_tx_rings; r++) 950 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 951 for (r = 0; r < nn->dp.num_r_vecs; r++) 952 nfp_net_vec_clear_ring_data(nn, r); 953 954 nn->dp.ctrl = new_ctrl; 955 } 956 957 /** 958 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 959 * @nn: NFP Net device to reconfigure 960 */ 961 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 962 { 963 u32 bufsz, new_ctrl, update = 0; 964 unsigned int r; 965 int err; 966 967 new_ctrl = nn->dp.ctrl; 968 969 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 970 nfp_net_rss_write_key(nn); 971 nfp_net_rss_write_itbl(nn); 972 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 973 update |= NFP_NET_CFG_UPDATE_RSS; 974 } 975 976 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 977 nfp_net_coalesce_write_cfg(nn); 978 update |= NFP_NET_CFG_UPDATE_IRQMOD; 979 } 980 981 for (r = 0; r < nn->dp.num_tx_rings; r++) 982 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 983 for (r = 0; r < nn->dp.num_rx_rings; r++) 984 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 985 986 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 987 U64_MAX >> (64 - nn->dp.num_tx_rings)); 988 989 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 990 U64_MAX >> (64 - nn->dp.num_rx_rings)); 991 992 if (nn->dp.netdev) 993 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 994 995 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 996 997 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 998 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 999 1000 /* Enable device */ 1001 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1002 update |= NFP_NET_CFG_UPDATE_GEN; 1003 update |= NFP_NET_CFG_UPDATE_MSIX; 1004 update |= NFP_NET_CFG_UPDATE_RING; 1005 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1006 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1007 1008 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1009 err = nfp_net_reconfig(nn, update); 1010 if (err) { 1011 nfp_net_clear_config_and_disable(nn); 1012 return err; 1013 } 1014 1015 nn->dp.ctrl = new_ctrl; 1016 1017 for (r = 0; r < nn->dp.num_rx_rings; r++) 1018 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1019 1020 return 0; 1021 } 1022 1023 /** 1024 * nfp_net_close_stack() - Quiesce the stack (part of close) 1025 * @nn: NFP Net device to reconfigure 1026 */ 1027 static void nfp_net_close_stack(struct nfp_net *nn) 1028 { 1029 struct nfp_net_r_vector *r_vec; 1030 unsigned int r; 1031 1032 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1033 netif_carrier_off(nn->dp.netdev); 1034 nn->link_up = false; 1035 1036 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1037 r_vec = &nn->r_vecs[r]; 1038 1039 disable_irq(r_vec->irq_vector); 1040 napi_disable(&r_vec->napi); 1041 1042 if (r_vec->rx_ring) 1043 cancel_work_sync(&r_vec->rx_dim.work); 1044 1045 if (r_vec->tx_ring) 1046 cancel_work_sync(&r_vec->tx_dim.work); 1047 } 1048 1049 netif_tx_disable(nn->dp.netdev); 1050 } 1051 1052 /** 1053 * nfp_net_close_free_all() - Free all runtime resources 1054 * @nn: NFP Net device to reconfigure 1055 */ 1056 static void nfp_net_close_free_all(struct nfp_net *nn) 1057 { 1058 unsigned int r; 1059 1060 nfp_net_tx_rings_free(&nn->dp); 1061 nfp_net_rx_rings_free(&nn->dp); 1062 1063 for (r = 0; r < nn->dp.num_r_vecs; r++) 1064 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1065 1066 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1067 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1068 } 1069 1070 /** 1071 * nfp_net_netdev_close() - Called when the device is downed 1072 * @netdev: netdev structure 1073 */ 1074 static int nfp_net_netdev_close(struct net_device *netdev) 1075 { 1076 struct nfp_net *nn = netdev_priv(netdev); 1077 1078 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1079 */ 1080 nfp_net_close_stack(nn); 1081 1082 /* Step 2: Tell NFP 1083 */ 1084 nfp_net_clear_config_and_disable(nn); 1085 nfp_port_configure(netdev, false); 1086 1087 /* Step 3: Free resources 1088 */ 1089 nfp_net_close_free_all(nn); 1090 1091 nn_dbg(nn, "%s down", netdev->name); 1092 return 0; 1093 } 1094 1095 void nfp_ctrl_close(struct nfp_net *nn) 1096 { 1097 int r; 1098 1099 rtnl_lock(); 1100 1101 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1102 disable_irq(nn->r_vecs[r].irq_vector); 1103 tasklet_disable(&nn->r_vecs[r].tasklet); 1104 } 1105 1106 nfp_net_clear_config_and_disable(nn); 1107 1108 nfp_net_close_free_all(nn); 1109 1110 rtnl_unlock(); 1111 } 1112 1113 static void nfp_net_rx_dim_work(struct work_struct *work) 1114 { 1115 struct nfp_net_r_vector *r_vec; 1116 unsigned int factor, value; 1117 struct dim_cq_moder moder; 1118 struct nfp_net *nn; 1119 struct dim *dim; 1120 1121 dim = container_of(work, struct dim, work); 1122 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1123 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1124 nn = r_vec->nfp_net; 1125 1126 /* Compute factor used to convert coalesce '_usecs' parameters to 1127 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1128 * count. 1129 */ 1130 factor = nn->tlv_caps.me_freq_mhz / 16; 1131 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1132 return; 1133 1134 /* copy RX interrupt coalesce parameters */ 1135 value = (moder.pkts << 16) | (factor * moder.usec); 1136 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1137 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1138 1139 dim->state = DIM_START_MEASURE; 1140 } 1141 1142 static void nfp_net_tx_dim_work(struct work_struct *work) 1143 { 1144 struct nfp_net_r_vector *r_vec; 1145 unsigned int factor, value; 1146 struct dim_cq_moder moder; 1147 struct nfp_net *nn; 1148 struct dim *dim; 1149 1150 dim = container_of(work, struct dim, work); 1151 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1152 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1153 nn = r_vec->nfp_net; 1154 1155 /* Compute factor used to convert coalesce '_usecs' parameters to 1156 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1157 * count. 1158 */ 1159 factor = nn->tlv_caps.me_freq_mhz / 16; 1160 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1161 return; 1162 1163 /* copy TX interrupt coalesce parameters */ 1164 value = (moder.pkts << 16) | (factor * moder.usec); 1165 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1166 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1167 1168 dim->state = DIM_START_MEASURE; 1169 } 1170 1171 /** 1172 * nfp_net_open_stack() - Start the device from stack's perspective 1173 * @nn: NFP Net device to reconfigure 1174 */ 1175 static void nfp_net_open_stack(struct nfp_net *nn) 1176 { 1177 struct nfp_net_r_vector *r_vec; 1178 unsigned int r; 1179 1180 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1181 r_vec = &nn->r_vecs[r]; 1182 1183 if (r_vec->rx_ring) { 1184 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1185 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1186 } 1187 1188 if (r_vec->tx_ring) { 1189 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1190 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1191 } 1192 1193 napi_enable(&r_vec->napi); 1194 enable_irq(r_vec->irq_vector); 1195 } 1196 1197 netif_tx_wake_all_queues(nn->dp.netdev); 1198 1199 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1200 nfp_net_read_link_status(nn); 1201 } 1202 1203 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1204 { 1205 int err, r; 1206 1207 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1208 nn->exn_name, sizeof(nn->exn_name), 1209 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1210 if (err) 1211 return err; 1212 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1213 nn->lsc_name, sizeof(nn->lsc_name), 1214 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1215 if (err) 1216 goto err_free_exn; 1217 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1218 1219 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1220 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1221 if (err) 1222 goto err_cleanup_vec_p; 1223 } 1224 1225 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1226 if (err) 1227 goto err_cleanup_vec; 1228 1229 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1230 if (err) 1231 goto err_free_rx_rings; 1232 1233 for (r = 0; r < nn->max_r_vecs; r++) 1234 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1235 1236 return 0; 1237 1238 err_free_rx_rings: 1239 nfp_net_rx_rings_free(&nn->dp); 1240 err_cleanup_vec: 1241 r = nn->dp.num_r_vecs; 1242 err_cleanup_vec_p: 1243 while (r--) 1244 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1245 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1246 err_free_exn: 1247 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1248 return err; 1249 } 1250 1251 static int nfp_net_netdev_open(struct net_device *netdev) 1252 { 1253 struct nfp_net *nn = netdev_priv(netdev); 1254 int err; 1255 1256 /* Step 1: Allocate resources for rings and the like 1257 * - Request interrupts 1258 * - Allocate RX and TX ring resources 1259 * - Setup initial RSS table 1260 */ 1261 err = nfp_net_open_alloc_all(nn); 1262 if (err) 1263 return err; 1264 1265 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1266 if (err) 1267 goto err_free_all; 1268 1269 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1270 if (err) 1271 goto err_free_all; 1272 1273 /* Step 2: Configure the NFP 1274 * - Ifup the physical interface if it exists 1275 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1276 * - Write MAC address (in case it changed) 1277 * - Set the MTU 1278 * - Set the Freelist buffer size 1279 * - Enable the FW 1280 */ 1281 err = nfp_port_configure(netdev, true); 1282 if (err) 1283 goto err_free_all; 1284 1285 err = nfp_net_set_config_and_enable(nn); 1286 if (err) 1287 goto err_port_disable; 1288 1289 /* Step 3: Enable for kernel 1290 * - put some freelist descriptors on each RX ring 1291 * - enable NAPI on each ring 1292 * - enable all TX queues 1293 * - set link state 1294 */ 1295 nfp_net_open_stack(nn); 1296 1297 return 0; 1298 1299 err_port_disable: 1300 nfp_port_configure(netdev, false); 1301 err_free_all: 1302 nfp_net_close_free_all(nn); 1303 return err; 1304 } 1305 1306 int nfp_ctrl_open(struct nfp_net *nn) 1307 { 1308 int err, r; 1309 1310 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1311 rtnl_lock(); 1312 1313 err = nfp_net_open_alloc_all(nn); 1314 if (err) 1315 goto err_unlock; 1316 1317 err = nfp_net_set_config_and_enable(nn); 1318 if (err) 1319 goto err_free_all; 1320 1321 for (r = 0; r < nn->dp.num_r_vecs; r++) 1322 enable_irq(nn->r_vecs[r].irq_vector); 1323 1324 rtnl_unlock(); 1325 1326 return 0; 1327 1328 err_free_all: 1329 nfp_net_close_free_all(nn); 1330 err_unlock: 1331 rtnl_unlock(); 1332 return err; 1333 } 1334 1335 static void nfp_net_set_rx_mode(struct net_device *netdev) 1336 { 1337 struct nfp_net *nn = netdev_priv(netdev); 1338 u32 new_ctrl; 1339 1340 new_ctrl = nn->dp.ctrl; 1341 1342 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1343 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1344 else 1345 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1346 1347 if (netdev->flags & IFF_PROMISC) { 1348 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1349 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1350 else 1351 nn_warn(nn, "FW does not support promiscuous mode\n"); 1352 } else { 1353 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1354 } 1355 1356 if (new_ctrl == nn->dp.ctrl) 1357 return; 1358 1359 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1360 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1361 1362 nn->dp.ctrl = new_ctrl; 1363 } 1364 1365 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1366 { 1367 int i; 1368 1369 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1370 nn->rss_itbl[i] = 1371 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1372 } 1373 1374 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1375 { 1376 struct nfp_net_dp new_dp = *dp; 1377 1378 *dp = nn->dp; 1379 nn->dp = new_dp; 1380 1381 nn->dp.netdev->mtu = new_dp.mtu; 1382 1383 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1384 nfp_net_rss_init_itbl(nn); 1385 } 1386 1387 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1388 { 1389 unsigned int r; 1390 int err; 1391 1392 nfp_net_dp_swap(nn, dp); 1393 1394 for (r = 0; r < nn->max_r_vecs; r++) 1395 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1396 1397 err = netif_set_real_num_queues(nn->dp.netdev, 1398 nn->dp.num_stack_tx_rings, 1399 nn->dp.num_rx_rings); 1400 if (err) 1401 return err; 1402 1403 return nfp_net_set_config_and_enable(nn); 1404 } 1405 1406 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1407 { 1408 struct nfp_net_dp *new; 1409 1410 new = kmalloc(sizeof(*new), GFP_KERNEL); 1411 if (!new) 1412 return NULL; 1413 1414 *new = nn->dp; 1415 1416 new->xsk_pools = kmemdup(new->xsk_pools, 1417 array_size(nn->max_r_vecs, 1418 sizeof(new->xsk_pools)), 1419 GFP_KERNEL); 1420 if (!new->xsk_pools) { 1421 kfree(new); 1422 return NULL; 1423 } 1424 1425 /* Clear things which need to be recomputed */ 1426 new->fl_bufsz = 0; 1427 new->tx_rings = NULL; 1428 new->rx_rings = NULL; 1429 new->num_r_vecs = 0; 1430 new->num_stack_tx_rings = 0; 1431 new->txrwb = NULL; 1432 new->txrwb_dma = 0; 1433 1434 return new; 1435 } 1436 1437 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1438 { 1439 kfree(dp->xsk_pools); 1440 kfree(dp); 1441 } 1442 1443 static int 1444 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1445 struct netlink_ext_ack *extack) 1446 { 1447 unsigned int r, xsk_min_fl_bufsz; 1448 1449 /* XDP-enabled tests */ 1450 if (!dp->xdp_prog) 1451 return 0; 1452 if (dp->fl_bufsz > PAGE_SIZE) { 1453 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1454 return -EINVAL; 1455 } 1456 if (dp->num_tx_rings > nn->max_tx_rings) { 1457 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1458 return -EINVAL; 1459 } 1460 1461 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1462 for (r = 0; r < nn->max_r_vecs; r++) { 1463 if (!dp->xsk_pools[r]) 1464 continue; 1465 1466 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1467 NL_SET_ERR_MSG_MOD(extack, 1468 "XSK buffer pool chunk size too small"); 1469 return -EINVAL; 1470 } 1471 } 1472 1473 return 0; 1474 } 1475 1476 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1477 struct netlink_ext_ack *extack) 1478 { 1479 int r, err; 1480 1481 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1482 1483 dp->num_stack_tx_rings = dp->num_tx_rings; 1484 if (dp->xdp_prog) 1485 dp->num_stack_tx_rings -= dp->num_rx_rings; 1486 1487 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1488 1489 err = nfp_net_check_config(nn, dp, extack); 1490 if (err) 1491 goto exit_free_dp; 1492 1493 if (!netif_running(dp->netdev)) { 1494 nfp_net_dp_swap(nn, dp); 1495 err = 0; 1496 goto exit_free_dp; 1497 } 1498 1499 /* Prepare new rings */ 1500 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1501 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1502 if (err) { 1503 dp->num_r_vecs = r; 1504 goto err_cleanup_vecs; 1505 } 1506 } 1507 1508 err = nfp_net_rx_rings_prepare(nn, dp); 1509 if (err) 1510 goto err_cleanup_vecs; 1511 1512 err = nfp_net_tx_rings_prepare(nn, dp); 1513 if (err) 1514 goto err_free_rx; 1515 1516 /* Stop device, swap in new rings, try to start the firmware */ 1517 nfp_net_close_stack(nn); 1518 nfp_net_clear_config_and_disable(nn); 1519 1520 err = nfp_net_dp_swap_enable(nn, dp); 1521 if (err) { 1522 int err2; 1523 1524 nfp_net_clear_config_and_disable(nn); 1525 1526 /* Try with old configuration and old rings */ 1527 err2 = nfp_net_dp_swap_enable(nn, dp); 1528 if (err2) 1529 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1530 err, err2); 1531 } 1532 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1533 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1534 1535 nfp_net_rx_rings_free(dp); 1536 nfp_net_tx_rings_free(dp); 1537 1538 nfp_net_open_stack(nn); 1539 exit_free_dp: 1540 nfp_net_free_dp(dp); 1541 1542 return err; 1543 1544 err_free_rx: 1545 nfp_net_rx_rings_free(dp); 1546 err_cleanup_vecs: 1547 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1548 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1549 nfp_net_free_dp(dp); 1550 return err; 1551 } 1552 1553 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1554 { 1555 struct nfp_net *nn = netdev_priv(netdev); 1556 struct nfp_net_dp *dp; 1557 int err; 1558 1559 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1560 if (err) 1561 return err; 1562 1563 dp = nfp_net_clone_dp(nn); 1564 if (!dp) 1565 return -ENOMEM; 1566 1567 dp->mtu = new_mtu; 1568 1569 return nfp_net_ring_reconfig(nn, dp, NULL); 1570 } 1571 1572 static int 1573 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1574 { 1575 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1576 struct nfp_net *nn = netdev_priv(netdev); 1577 int err; 1578 1579 /* Priority tagged packets with vlan id 0 are processed by the 1580 * NFP as untagged packets 1581 */ 1582 if (!vid) 1583 return 0; 1584 1585 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1586 if (err) 1587 return err; 1588 1589 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1590 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1591 ETH_P_8021Q); 1592 1593 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1594 } 1595 1596 static int 1597 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1598 { 1599 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1600 struct nfp_net *nn = netdev_priv(netdev); 1601 int err; 1602 1603 /* Priority tagged packets with vlan id 0 are processed by the 1604 * NFP as untagged packets 1605 */ 1606 if (!vid) 1607 return 0; 1608 1609 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1610 if (err) 1611 return err; 1612 1613 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1614 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1615 ETH_P_8021Q); 1616 1617 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1618 } 1619 1620 static void nfp_net_stat64(struct net_device *netdev, 1621 struct rtnl_link_stats64 *stats) 1622 { 1623 struct nfp_net *nn = netdev_priv(netdev); 1624 int r; 1625 1626 /* Collect software stats */ 1627 for (r = 0; r < nn->max_r_vecs; r++) { 1628 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1629 u64 data[3]; 1630 unsigned int start; 1631 1632 do { 1633 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1634 data[0] = r_vec->rx_pkts; 1635 data[1] = r_vec->rx_bytes; 1636 data[2] = r_vec->rx_drops; 1637 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1638 stats->rx_packets += data[0]; 1639 stats->rx_bytes += data[1]; 1640 stats->rx_dropped += data[2]; 1641 1642 do { 1643 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1644 data[0] = r_vec->tx_pkts; 1645 data[1] = r_vec->tx_bytes; 1646 data[2] = r_vec->tx_errors; 1647 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1648 stats->tx_packets += data[0]; 1649 stats->tx_bytes += data[1]; 1650 stats->tx_errors += data[2]; 1651 } 1652 1653 /* Add in device stats */ 1654 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1655 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1656 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1657 1658 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1659 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1660 } 1661 1662 static int nfp_net_set_features(struct net_device *netdev, 1663 netdev_features_t features) 1664 { 1665 netdev_features_t changed = netdev->features ^ features; 1666 struct nfp_net *nn = netdev_priv(netdev); 1667 u32 new_ctrl; 1668 int err; 1669 1670 /* Assume this is not called with features we have not advertised */ 1671 1672 new_ctrl = nn->dp.ctrl; 1673 1674 if (changed & NETIF_F_RXCSUM) { 1675 if (features & NETIF_F_RXCSUM) 1676 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 1677 else 1678 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 1679 } 1680 1681 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1682 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 1683 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 1684 else 1685 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 1686 } 1687 1688 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 1689 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1690 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 1691 NFP_NET_CFG_CTRL_LSO; 1692 else 1693 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 1694 } 1695 1696 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1697 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1698 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 1699 else 1700 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 1701 } 1702 1703 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 1704 if (features & NETIF_F_HW_VLAN_CTAG_TX) 1705 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 1706 else 1707 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 1708 } 1709 1710 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 1711 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 1712 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 1713 else 1714 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 1715 } 1716 1717 if (changed & NETIF_F_SG) { 1718 if (features & NETIF_F_SG) 1719 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 1720 else 1721 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 1722 } 1723 1724 err = nfp_port_set_features(netdev, features); 1725 if (err) 1726 return err; 1727 1728 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 1729 netdev->features, features, changed); 1730 1731 if (new_ctrl == nn->dp.ctrl) 1732 return 0; 1733 1734 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 1735 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1736 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1737 if (err) 1738 return err; 1739 1740 nn->dp.ctrl = new_ctrl; 1741 1742 return 0; 1743 } 1744 1745 static netdev_features_t 1746 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 1747 netdev_features_t features) 1748 { 1749 u8 l4_hdr; 1750 1751 /* We can't do TSO over double tagged packets (802.1AD) */ 1752 features &= vlan_features_check(skb, features); 1753 1754 if (!skb->encapsulation) 1755 return features; 1756 1757 /* Ensure that inner L4 header offset fits into TX descriptor field */ 1758 if (skb_is_gso(skb)) { 1759 u32 hdrlen; 1760 1761 hdrlen = skb_inner_tcp_all_headers(skb); 1762 1763 /* Assume worst case scenario of having longest possible 1764 * metadata prepend - 8B 1765 */ 1766 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 1767 features &= ~NETIF_F_GSO_MASK; 1768 } 1769 1770 /* VXLAN/GRE check */ 1771 switch (vlan_get_protocol(skb)) { 1772 case htons(ETH_P_IP): 1773 l4_hdr = ip_hdr(skb)->protocol; 1774 break; 1775 case htons(ETH_P_IPV6): 1776 l4_hdr = ipv6_hdr(skb)->nexthdr; 1777 break; 1778 default: 1779 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1780 } 1781 1782 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1783 skb->inner_protocol != htons(ETH_P_TEB) || 1784 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 1785 (l4_hdr == IPPROTO_UDP && 1786 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1787 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 1788 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1789 1790 return features; 1791 } 1792 1793 static int 1794 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 1795 { 1796 struct nfp_net *nn = netdev_priv(netdev); 1797 int n; 1798 1799 /* If port is defined, devlink_port is registered and devlink core 1800 * is taking care of name formatting. 1801 */ 1802 if (nn->port) 1803 return -EOPNOTSUPP; 1804 1805 if (nn->dp.is_vf || nn->vnic_no_name) 1806 return -EOPNOTSUPP; 1807 1808 n = snprintf(name, len, "n%d", nn->id); 1809 if (n >= len) 1810 return -EINVAL; 1811 1812 return 0; 1813 } 1814 1815 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 1816 { 1817 struct bpf_prog *prog = bpf->prog; 1818 struct nfp_net_dp *dp; 1819 int err; 1820 1821 if (!prog == !nn->dp.xdp_prog) { 1822 WRITE_ONCE(nn->dp.xdp_prog, prog); 1823 xdp_attachment_setup(&nn->xdp, bpf); 1824 return 0; 1825 } 1826 1827 dp = nfp_net_clone_dp(nn); 1828 if (!dp) 1829 return -ENOMEM; 1830 1831 dp->xdp_prog = prog; 1832 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 1833 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1834 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 1835 1836 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 1837 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 1838 if (err) 1839 return err; 1840 1841 xdp_attachment_setup(&nn->xdp, bpf); 1842 return 0; 1843 } 1844 1845 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 1846 { 1847 int err; 1848 1849 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 1850 if (err) 1851 return err; 1852 1853 xdp_attachment_setup(&nn->xdp_hw, bpf); 1854 return 0; 1855 } 1856 1857 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1858 { 1859 struct nfp_net *nn = netdev_priv(netdev); 1860 1861 switch (xdp->command) { 1862 case XDP_SETUP_PROG: 1863 return nfp_net_xdp_setup_drv(nn, xdp); 1864 case XDP_SETUP_PROG_HW: 1865 return nfp_net_xdp_setup_hw(nn, xdp); 1866 case XDP_SETUP_XSK_POOL: 1867 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 1868 xdp->xsk.queue_id); 1869 default: 1870 return nfp_app_bpf(nn->app, nn, xdp); 1871 } 1872 } 1873 1874 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 1875 { 1876 struct nfp_net *nn = netdev_priv(netdev); 1877 struct sockaddr *saddr = addr; 1878 int err; 1879 1880 err = eth_prepare_mac_addr_change(netdev, addr); 1881 if (err) 1882 return err; 1883 1884 nfp_net_write_mac_addr(nn, saddr->sa_data); 1885 1886 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 1887 if (err) 1888 return err; 1889 1890 eth_commit_mac_addr_change(netdev, addr); 1891 1892 return 0; 1893 } 1894 1895 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 1896 struct net_device *dev, u32 filter_mask, 1897 int nlflags) 1898 { 1899 struct nfp_net *nn = netdev_priv(dev); 1900 u16 mode; 1901 1902 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1903 return -EOPNOTSUPP; 1904 1905 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? 1906 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; 1907 1908 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, 1909 nlflags, filter_mask, NULL); 1910 } 1911 1912 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 1913 u16 flags, struct netlink_ext_ack *extack) 1914 { 1915 struct nfp_net *nn = netdev_priv(dev); 1916 struct nlattr *attr, *br_spec; 1917 int rem, err; 1918 u32 new_ctrl; 1919 u16 mode; 1920 1921 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1922 return -EOPNOTSUPP; 1923 1924 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 1925 if (!br_spec) 1926 return -EINVAL; 1927 1928 nla_for_each_nested(attr, br_spec, rem) { 1929 if (nla_type(attr) != IFLA_BRIDGE_MODE) 1930 continue; 1931 1932 if (nla_len(attr) < sizeof(mode)) 1933 return -EINVAL; 1934 1935 new_ctrl = nn->dp.ctrl; 1936 mode = nla_get_u16(attr); 1937 if (mode == BRIDGE_MODE_VEPA) 1938 new_ctrl |= NFP_NET_CFG_CTRL_VEPA; 1939 else if (mode == BRIDGE_MODE_VEB) 1940 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; 1941 else 1942 return -EOPNOTSUPP; 1943 1944 if (new_ctrl == nn->dp.ctrl) 1945 return 0; 1946 1947 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1948 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1949 if (!err) 1950 nn->dp.ctrl = new_ctrl; 1951 1952 return err; 1953 } 1954 1955 return -EINVAL; 1956 } 1957 1958 const struct net_device_ops nfp_nfd3_netdev_ops = { 1959 .ndo_init = nfp_app_ndo_init, 1960 .ndo_uninit = nfp_app_ndo_uninit, 1961 .ndo_open = nfp_net_netdev_open, 1962 .ndo_stop = nfp_net_netdev_close, 1963 .ndo_start_xmit = nfp_net_tx, 1964 .ndo_get_stats64 = nfp_net_stat64, 1965 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1966 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1967 .ndo_set_vf_mac = nfp_app_set_vf_mac, 1968 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 1969 .ndo_set_vf_rate = nfp_app_set_vf_rate, 1970 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 1971 .ndo_set_vf_trust = nfp_app_set_vf_trust, 1972 .ndo_get_vf_config = nfp_app_get_vf_config, 1973 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 1974 .ndo_setup_tc = nfp_port_setup_tc, 1975 .ndo_tx_timeout = nfp_net_tx_timeout, 1976 .ndo_set_rx_mode = nfp_net_set_rx_mode, 1977 .ndo_change_mtu = nfp_net_change_mtu, 1978 .ndo_set_mac_address = nfp_net_set_mac_address, 1979 .ndo_set_features = nfp_net_set_features, 1980 .ndo_features_check = nfp_net_features_check, 1981 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 1982 .ndo_bpf = nfp_net_xdp, 1983 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 1984 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 1985 .ndo_bridge_getlink = nfp_net_bridge_getlink, 1986 .ndo_bridge_setlink = nfp_net_bridge_setlink, 1987 }; 1988 1989 const struct net_device_ops nfp_nfdk_netdev_ops = { 1990 .ndo_init = nfp_app_ndo_init, 1991 .ndo_uninit = nfp_app_ndo_uninit, 1992 .ndo_open = nfp_net_netdev_open, 1993 .ndo_stop = nfp_net_netdev_close, 1994 .ndo_start_xmit = nfp_net_tx, 1995 .ndo_get_stats64 = nfp_net_stat64, 1996 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1997 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1998 .ndo_set_vf_mac = nfp_app_set_vf_mac, 1999 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2000 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2001 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2002 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2003 .ndo_get_vf_config = nfp_app_get_vf_config, 2004 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2005 .ndo_setup_tc = nfp_port_setup_tc, 2006 .ndo_tx_timeout = nfp_net_tx_timeout, 2007 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2008 .ndo_change_mtu = nfp_net_change_mtu, 2009 .ndo_set_mac_address = nfp_net_set_mac_address, 2010 .ndo_set_features = nfp_net_set_features, 2011 .ndo_features_check = nfp_net_features_check, 2012 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2013 .ndo_bpf = nfp_net_xdp, 2014 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 2015 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2016 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2017 }; 2018 2019 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 2020 { 2021 struct nfp_net *nn = netdev_priv(netdev); 2022 int i; 2023 2024 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2025 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 2026 struct udp_tunnel_info ti0, ti1; 2027 2028 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 2029 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 2030 2031 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 2032 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 2033 } 2034 2035 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 2036 } 2037 2038 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 2039 .sync_table = nfp_udp_tunnel_sync, 2040 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 2041 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 2042 .tables = { 2043 { 2044 .n_entries = NFP_NET_N_VXLAN_PORTS, 2045 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 2046 }, 2047 }, 2048 }; 2049 2050 /** 2051 * nfp_net_info() - Print general info about the NIC 2052 * @nn: NFP Net device to reconfigure 2053 */ 2054 void nfp_net_info(struct nfp_net *nn) 2055 { 2056 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2057 nn->dp.is_vf ? "VF " : "", 2058 nn->dp.num_tx_rings, nn->max_tx_rings, 2059 nn->dp.num_rx_rings, nn->max_rx_rings); 2060 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2061 nn->fw_ver.extend, nn->fw_ver.class, 2062 nn->fw_ver.major, nn->fw_ver.minor, 2063 nn->max_mtu); 2064 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2065 nn->cap, 2066 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2067 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2068 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2069 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2070 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2071 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2072 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2073 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2074 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2075 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2076 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2077 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2078 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2079 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2080 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2081 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2082 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2083 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", 2084 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2085 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2086 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2087 "RXCSUM_COMPLETE " : "", 2088 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2089 nfp_app_extra_cap(nn->app, nn)); 2090 } 2091 2092 /** 2093 * nfp_net_alloc() - Allocate netdev and related structure 2094 * @pdev: PCI device 2095 * @dev_info: NFP ASIC params 2096 * @ctrl_bar: PCI IOMEM with vNIC config memory 2097 * @needs_netdev: Whether to allocate a netdev for this vNIC 2098 * @max_tx_rings: Maximum number of TX rings supported by device 2099 * @max_rx_rings: Maximum number of RX rings supported by device 2100 * 2101 * This function allocates a netdev device and fills in the initial 2102 * part of the @struct nfp_net structure. In case of control device 2103 * nfp_net structure is allocated without the netdev. 2104 * 2105 * Return: NFP Net device structure, or ERR_PTR on error. 2106 */ 2107 struct nfp_net * 2108 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2109 void __iomem *ctrl_bar, bool needs_netdev, 2110 unsigned int max_tx_rings, unsigned int max_rx_rings) 2111 { 2112 u64 dma_mask = dma_get_mask(&pdev->dev); 2113 struct nfp_net *nn; 2114 int err; 2115 2116 if (needs_netdev) { 2117 struct net_device *netdev; 2118 2119 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2120 max_tx_rings, max_rx_rings); 2121 if (!netdev) 2122 return ERR_PTR(-ENOMEM); 2123 2124 SET_NETDEV_DEV(netdev, &pdev->dev); 2125 nn = netdev_priv(netdev); 2126 nn->dp.netdev = netdev; 2127 } else { 2128 nn = vzalloc(sizeof(*nn)); 2129 if (!nn) 2130 return ERR_PTR(-ENOMEM); 2131 } 2132 2133 nn->dp.dev = &pdev->dev; 2134 nn->dp.ctrl_bar = ctrl_bar; 2135 nn->dev_info = dev_info; 2136 nn->pdev = pdev; 2137 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2138 2139 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2140 case NFP_NET_CFG_VERSION_DP_NFD3: 2141 nn->dp.ops = &nfp_nfd3_ops; 2142 break; 2143 case NFP_NET_CFG_VERSION_DP_NFDK: 2144 if (nn->fw_ver.major < 5) { 2145 dev_err(&pdev->dev, 2146 "NFDK must use ABI 5 or newer, found: %d\n", 2147 nn->fw_ver.major); 2148 err = -EINVAL; 2149 goto err_free_nn; 2150 } 2151 nn->dp.ops = &nfp_nfdk_ops; 2152 break; 2153 default: 2154 err = -EINVAL; 2155 goto err_free_nn; 2156 } 2157 2158 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { 2159 dev_err(&pdev->dev, 2160 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", 2161 nn->dp.ops->dma_mask, dma_mask); 2162 err = -EINVAL; 2163 goto err_free_nn; 2164 } 2165 2166 nn->max_tx_rings = max_tx_rings; 2167 nn->max_rx_rings = max_rx_rings; 2168 2169 nn->dp.num_tx_rings = min_t(unsigned int, 2170 max_tx_rings, num_online_cpus()); 2171 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2172 netif_get_num_default_rss_queues()); 2173 2174 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2175 nn->dp.num_r_vecs = min_t(unsigned int, 2176 nn->dp.num_r_vecs, num_online_cpus()); 2177 nn->max_r_vecs = nn->dp.num_r_vecs; 2178 2179 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2180 GFP_KERNEL); 2181 if (!nn->dp.xsk_pools) { 2182 err = -ENOMEM; 2183 goto err_free_nn; 2184 } 2185 2186 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2187 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2188 2189 sema_init(&nn->bar_lock, 1); 2190 2191 spin_lock_init(&nn->reconfig_lock); 2192 spin_lock_init(&nn->link_status_lock); 2193 2194 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2195 2196 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2197 &nn->tlv_caps); 2198 if (err) 2199 goto err_free_nn; 2200 2201 err = nfp_ccm_mbox_alloc(nn); 2202 if (err) 2203 goto err_free_nn; 2204 2205 return nn; 2206 2207 err_free_nn: 2208 if (nn->dp.netdev) 2209 free_netdev(nn->dp.netdev); 2210 else 2211 vfree(nn); 2212 return ERR_PTR(err); 2213 } 2214 2215 /** 2216 * nfp_net_free() - Undo what @nfp_net_alloc() did 2217 * @nn: NFP Net device to reconfigure 2218 */ 2219 void nfp_net_free(struct nfp_net *nn) 2220 { 2221 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2222 nfp_ccm_mbox_free(nn); 2223 2224 kfree(nn->dp.xsk_pools); 2225 if (nn->dp.netdev) 2226 free_netdev(nn->dp.netdev); 2227 else 2228 vfree(nn); 2229 } 2230 2231 /** 2232 * nfp_net_rss_key_sz() - Get current size of the RSS key 2233 * @nn: NFP Net device instance 2234 * 2235 * Return: size of the RSS key for currently selected hash function. 2236 */ 2237 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2238 { 2239 switch (nn->rss_hfunc) { 2240 case ETH_RSS_HASH_TOP: 2241 return NFP_NET_CFG_RSS_KEY_SZ; 2242 case ETH_RSS_HASH_XOR: 2243 return 0; 2244 case ETH_RSS_HASH_CRC32: 2245 return 4; 2246 } 2247 2248 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2249 return 0; 2250 } 2251 2252 /** 2253 * nfp_net_rss_init() - Set the initial RSS parameters 2254 * @nn: NFP Net device to reconfigure 2255 */ 2256 static void nfp_net_rss_init(struct nfp_net *nn) 2257 { 2258 unsigned long func_bit, rss_cap_hfunc; 2259 u32 reg; 2260 2261 /* Read the RSS function capability and select first supported func */ 2262 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2263 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2264 if (!rss_cap_hfunc) 2265 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2266 NFP_NET_CFG_RSS_TOEPLITZ); 2267 2268 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2269 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2270 dev_warn(nn->dp.dev, 2271 "Bad RSS config, defaulting to Toeplitz hash\n"); 2272 func_bit = ETH_RSS_HASH_TOP_BIT; 2273 } 2274 nn->rss_hfunc = 1 << func_bit; 2275 2276 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2277 2278 nfp_net_rss_init_itbl(nn); 2279 2280 /* Enable IPv4/IPv6 TCP by default */ 2281 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2282 NFP_NET_CFG_RSS_IPV6_TCP | 2283 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2284 NFP_NET_CFG_RSS_MASK; 2285 } 2286 2287 /** 2288 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2289 * @nn: NFP Net device to reconfigure 2290 */ 2291 static void nfp_net_irqmod_init(struct nfp_net *nn) 2292 { 2293 nn->rx_coalesce_usecs = 50; 2294 nn->rx_coalesce_max_frames = 64; 2295 nn->tx_coalesce_usecs = 50; 2296 nn->tx_coalesce_max_frames = 64; 2297 2298 nn->rx_coalesce_adapt_on = true; 2299 nn->tx_coalesce_adapt_on = true; 2300 } 2301 2302 static void nfp_net_netdev_init(struct nfp_net *nn) 2303 { 2304 struct net_device *netdev = nn->dp.netdev; 2305 2306 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2307 2308 netdev->mtu = nn->dp.mtu; 2309 2310 /* Advertise/enable offloads based on capabilities 2311 * 2312 * Note: netdev->features show the currently enabled features 2313 * and netdev->hw_features advertises which features are 2314 * supported. By default we enable most features. 2315 */ 2316 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2317 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2318 2319 netdev->hw_features = NETIF_F_HIGHDMA; 2320 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2321 netdev->hw_features |= NETIF_F_RXCSUM; 2322 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2323 } 2324 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2325 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2326 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2327 } 2328 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2329 netdev->hw_features |= NETIF_F_SG; 2330 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2331 } 2332 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2333 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2334 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2335 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2336 NFP_NET_CFG_CTRL_LSO; 2337 } 2338 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2339 netdev->hw_features |= NETIF_F_RXHASH; 2340 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2341 if (nn->cap & NFP_NET_CFG_CTRL_LSO) { 2342 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 2343 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2344 NETIF_F_GSO_PARTIAL; 2345 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; 2346 } 2347 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2348 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2349 } 2350 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2351 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2352 netdev->hw_features |= NETIF_F_GSO_GRE; 2353 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2354 } 2355 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2356 netdev->hw_enc_features = netdev->hw_features; 2357 2358 netdev->vlan_features = netdev->hw_features; 2359 2360 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 2361 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2362 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2363 } 2364 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 2365 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2366 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2367 } else { 2368 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2369 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2370 } 2371 } 2372 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2373 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2374 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2375 } 2376 2377 netdev->features = netdev->hw_features; 2378 2379 if (nfp_app_has_tc(nn->app) && nn->port) 2380 netdev->hw_features |= NETIF_F_HW_TC; 2381 2382 /* Advertise but disable TSO by default. */ 2383 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 2384 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 2385 2386 /* Finalise the netdev setup */ 2387 switch (nn->dp.ops->version) { 2388 case NFP_NFD_VER_NFD3: 2389 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2390 break; 2391 case NFP_NFD_VER_NFDK: 2392 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2393 break; 2394 } 2395 2396 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2397 2398 /* MTU range: 68 - hw-specific max */ 2399 netdev->min_mtu = ETH_MIN_MTU; 2400 netdev->max_mtu = nn->max_mtu; 2401 2402 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2403 2404 netif_carrier_off(netdev); 2405 2406 nfp_net_set_ethtool_ops(netdev); 2407 } 2408 2409 static int nfp_net_read_caps(struct nfp_net *nn) 2410 { 2411 /* Get some of the read-only fields from the BAR */ 2412 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2413 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2414 2415 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2416 * we allow use of non-chained metadata if RSS(v1) is the only 2417 * advertised capability requiring metadata. 2418 */ 2419 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2420 !nn->dp.netdev || 2421 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2422 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2423 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2424 * it has the same meaning as RSSv2. 2425 */ 2426 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2427 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2428 2429 /* Determine RX packet/metadata boundary offset */ 2430 if (nn->fw_ver.major >= 2) { 2431 u32 reg; 2432 2433 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2434 if (reg > NFP_NET_MAX_PREPEND) { 2435 nn_err(nn, "Invalid rx offset: %d\n", reg); 2436 return -EINVAL; 2437 } 2438 nn->dp.rx_offset = reg; 2439 } else { 2440 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2441 } 2442 2443 /* Mask out NFD-version-specific features */ 2444 nn->cap &= nn->dp.ops->cap_mask; 2445 2446 /* For control vNICs mask out the capabilities app doesn't want. */ 2447 if (!nn->dp.netdev) 2448 nn->cap &= nn->app->type->ctrl_cap_mask; 2449 2450 return 0; 2451 } 2452 2453 /** 2454 * nfp_net_init() - Initialise/finalise the nfp_net structure 2455 * @nn: NFP Net device structure 2456 * 2457 * Return: 0 on success or negative errno on error. 2458 */ 2459 int nfp_net_init(struct nfp_net *nn) 2460 { 2461 int err; 2462 2463 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2464 2465 err = nfp_net_read_caps(nn); 2466 if (err) 2467 return err; 2468 2469 /* Set default MTU and Freelist buffer size */ 2470 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2471 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2472 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2473 nn->dp.mtu = nn->max_mtu; 2474 } else { 2475 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2476 } 2477 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2478 2479 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2480 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2481 2482 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2483 nfp_net_rss_init(nn); 2484 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2485 NFP_NET_CFG_CTRL_RSS; 2486 } 2487 2488 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2489 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2490 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2491 2492 /* Allow IRQ moderation, if supported */ 2493 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2494 nfp_net_irqmod_init(nn); 2495 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2496 } 2497 2498 /* Enable TX pointer writeback, if supported */ 2499 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2500 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2501 2502 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2503 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2504 2505 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2506 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2507 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2508 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2509 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2510 NFP_NET_CFG_UPDATE_GEN); 2511 if (err) 2512 return err; 2513 2514 if (nn->dp.netdev) { 2515 nfp_net_netdev_init(nn); 2516 2517 err = nfp_ccm_mbox_init(nn); 2518 if (err) 2519 return err; 2520 2521 err = nfp_net_tls_init(nn); 2522 if (err) 2523 goto err_clean_mbox; 2524 } 2525 2526 nfp_net_vecs_init(nn); 2527 2528 if (!nn->dp.netdev) 2529 return 0; 2530 return register_netdev(nn->dp.netdev); 2531 2532 err_clean_mbox: 2533 nfp_ccm_mbox_clean(nn); 2534 return err; 2535 } 2536 2537 /** 2538 * nfp_net_clean() - Undo what nfp_net_init() did. 2539 * @nn: NFP Net device structure 2540 */ 2541 void nfp_net_clean(struct nfp_net *nn) 2542 { 2543 if (!nn->dp.netdev) 2544 return; 2545 2546 unregister_netdev(nn->dp.netdev); 2547 nfp_ccm_mbox_clean(nn); 2548 nfp_net_reconfig_wait_posted(nn); 2549 } 2550