1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 #include <linux/vmalloc.h> 65 #include <linux/ktime.h> 66 67 #include <net/switchdev.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_app.h" 72 #include "nfp_net_ctrl.h" 73 #include "nfp_net.h" 74 #include "nfp_port.h" 75 76 /** 77 * nfp_net_get_fw_version() - Read and parse the FW version 78 * @fw_ver: Output fw_version structure to read to 79 * @ctrl_bar: Mapped address of the control BAR 80 */ 81 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 82 void __iomem *ctrl_bar) 83 { 84 u32 reg; 85 86 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 87 put_unaligned_le32(reg, fw_ver); 88 } 89 90 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 91 { 92 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 93 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 94 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 95 } 96 97 static void 98 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 99 { 100 dma_sync_single_for_device(dp->dev, dma_addr, 101 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 102 dp->rx_dma_dir); 103 } 104 105 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 106 { 107 dma_unmap_single_attrs(dp->dev, dma_addr, 108 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 109 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 110 } 111 112 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 113 unsigned int len) 114 { 115 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 116 len, dp->rx_dma_dir); 117 } 118 119 /* Firmware reconfig 120 * 121 * Firmware reconfig may take a while so we have two versions of it - 122 * synchronous and asynchronous (posted). All synchronous callers are holding 123 * RTNL so we don't have to worry about serializing them. 124 */ 125 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 126 { 127 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 128 /* ensure update is written before pinging HW */ 129 nn_pci_flush(nn); 130 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 131 } 132 133 /* Pass 0 as update to run posted reconfigs. */ 134 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 135 { 136 update |= nn->reconfig_posted; 137 nn->reconfig_posted = 0; 138 139 nfp_net_reconfig_start(nn, update); 140 141 nn->reconfig_timer_active = true; 142 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 143 } 144 145 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 146 { 147 u32 reg; 148 149 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 150 if (reg == 0) 151 return true; 152 if (reg & NFP_NET_CFG_UPDATE_ERR) { 153 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 154 return true; 155 } else if (last_check) { 156 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 157 return true; 158 } 159 160 return false; 161 } 162 163 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 164 { 165 bool timed_out = false; 166 167 /* Poll update field, waiting for NFP to ack the config */ 168 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 169 msleep(1); 170 timed_out = time_is_before_eq_jiffies(deadline); 171 } 172 173 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 174 return -EIO; 175 176 return timed_out ? -EIO : 0; 177 } 178 179 static void nfp_net_reconfig_timer(unsigned long data) 180 { 181 struct nfp_net *nn = (void *)data; 182 183 spin_lock_bh(&nn->reconfig_lock); 184 185 nn->reconfig_timer_active = false; 186 187 /* If sync caller is present it will take over from us */ 188 if (nn->reconfig_sync_present) 189 goto done; 190 191 /* Read reconfig status and report errors */ 192 nfp_net_reconfig_check_done(nn, true); 193 194 if (nn->reconfig_posted) 195 nfp_net_reconfig_start_async(nn, 0); 196 done: 197 spin_unlock_bh(&nn->reconfig_lock); 198 } 199 200 /** 201 * nfp_net_reconfig_post() - Post async reconfig request 202 * @nn: NFP Net device to reconfigure 203 * @update: The value for the update field in the BAR config 204 * 205 * Record FW reconfiguration request. Reconfiguration will be kicked off 206 * whenever reconfiguration machinery is idle. Multiple requests can be 207 * merged together! 208 */ 209 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 210 { 211 spin_lock_bh(&nn->reconfig_lock); 212 213 /* Sync caller will kick off async reconf when it's done, just post */ 214 if (nn->reconfig_sync_present) { 215 nn->reconfig_posted |= update; 216 goto done; 217 } 218 219 /* Opportunistically check if the previous command is done */ 220 if (!nn->reconfig_timer_active || 221 nfp_net_reconfig_check_done(nn, false)) 222 nfp_net_reconfig_start_async(nn, update); 223 else 224 nn->reconfig_posted |= update; 225 done: 226 spin_unlock_bh(&nn->reconfig_lock); 227 } 228 229 /** 230 * nfp_net_reconfig() - Reconfigure the firmware 231 * @nn: NFP Net device to reconfigure 232 * @update: The value for the update field in the BAR config 233 * 234 * Write the update word to the BAR and ping the reconfig queue. The 235 * poll until the firmware has acknowledged the update by zeroing the 236 * update word. 237 * 238 * Return: Negative errno on error, 0 on success 239 */ 240 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 241 { 242 bool cancelled_timer = false; 243 u32 pre_posted_requests; 244 int ret; 245 246 spin_lock_bh(&nn->reconfig_lock); 247 248 nn->reconfig_sync_present = true; 249 250 if (nn->reconfig_timer_active) { 251 del_timer(&nn->reconfig_timer); 252 nn->reconfig_timer_active = false; 253 cancelled_timer = true; 254 } 255 pre_posted_requests = nn->reconfig_posted; 256 nn->reconfig_posted = 0; 257 258 spin_unlock_bh(&nn->reconfig_lock); 259 260 if (cancelled_timer) 261 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 262 263 /* Run the posted reconfigs which were issued before we started */ 264 if (pre_posted_requests) { 265 nfp_net_reconfig_start(nn, pre_posted_requests); 266 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 267 } 268 269 nfp_net_reconfig_start(nn, update); 270 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 271 272 spin_lock_bh(&nn->reconfig_lock); 273 274 if (nn->reconfig_posted) 275 nfp_net_reconfig_start_async(nn, 0); 276 277 nn->reconfig_sync_present = false; 278 279 spin_unlock_bh(&nn->reconfig_lock); 280 281 return ret; 282 } 283 284 /** 285 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 286 * @nn: NFP Net device to reconfigure 287 * @mbox_cmd: The value for the mailbox command 288 * 289 * Helper function for mailbox updates 290 * 291 * Return: Negative errno on error, 0 on success 292 */ 293 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 294 { 295 int ret; 296 297 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd); 298 299 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 300 if (ret) { 301 nn_err(nn, "Mailbox update error\n"); 302 return ret; 303 } 304 305 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET); 306 } 307 308 /* Interrupt configuration and handling 309 */ 310 311 /** 312 * nfp_net_irq_unmask() - Unmask automasked interrupt 313 * @nn: NFP Network structure 314 * @entry_nr: MSI-X table entry 315 * 316 * Clear the ICR for the IRQ entry. 317 */ 318 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 319 { 320 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 321 nn_pci_flush(nn); 322 } 323 324 /** 325 * nfp_net_irqs_alloc() - allocates MSI-X irqs 326 * @pdev: PCI device structure 327 * @irq_entries: Array to be initialized and used to hold the irq entries 328 * @min_irqs: Minimal acceptable number of interrupts 329 * @wanted_irqs: Target number of interrupts to allocate 330 * 331 * Return: Number of irqs obtained or 0 on error. 332 */ 333 unsigned int 334 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 335 unsigned int min_irqs, unsigned int wanted_irqs) 336 { 337 unsigned int i; 338 int got_irqs; 339 340 for (i = 0; i < wanted_irqs; i++) 341 irq_entries[i].entry = i; 342 343 got_irqs = pci_enable_msix_range(pdev, irq_entries, 344 min_irqs, wanted_irqs); 345 if (got_irqs < 0) { 346 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 347 min_irqs, wanted_irqs, got_irqs); 348 return 0; 349 } 350 351 if (got_irqs < wanted_irqs) 352 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 353 wanted_irqs, got_irqs); 354 355 return got_irqs; 356 } 357 358 /** 359 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 360 * @nn: NFP Network structure 361 * @irq_entries: Table of allocated interrupts 362 * @n: Size of @irq_entries (number of entries to grab) 363 * 364 * After interrupts are allocated with nfp_net_irqs_alloc() this function 365 * should be called to assign them to a specific netdev (port). 366 */ 367 void 368 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 369 unsigned int n) 370 { 371 struct nfp_net_dp *dp = &nn->dp; 372 373 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 374 dp->num_r_vecs = nn->max_r_vecs; 375 376 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 377 378 if (dp->num_rx_rings > dp->num_r_vecs || 379 dp->num_tx_rings > dp->num_r_vecs) 380 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 381 dp->num_rx_rings, dp->num_tx_rings, 382 dp->num_r_vecs); 383 384 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 385 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 386 dp->num_stack_tx_rings = dp->num_tx_rings; 387 } 388 389 /** 390 * nfp_net_irqs_disable() - Disable interrupts 391 * @pdev: PCI device structure 392 * 393 * Undoes what @nfp_net_irqs_alloc() does. 394 */ 395 void nfp_net_irqs_disable(struct pci_dev *pdev) 396 { 397 pci_disable_msix(pdev); 398 } 399 400 /** 401 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 402 * @irq: Interrupt 403 * @data: Opaque data structure 404 * 405 * Return: Indicate if the interrupt has been handled. 406 */ 407 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 408 { 409 struct nfp_net_r_vector *r_vec = data; 410 411 napi_schedule_irqoff(&r_vec->napi); 412 413 /* The FW auto-masks any interrupt, either via the MASK bit in 414 * the MSI-X table or via the per entry ICR field. So there 415 * is no need to disable interrupts here. 416 */ 417 return IRQ_HANDLED; 418 } 419 420 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 421 { 422 struct nfp_net_r_vector *r_vec = data; 423 424 tasklet_schedule(&r_vec->tasklet); 425 426 return IRQ_HANDLED; 427 } 428 429 /** 430 * nfp_net_read_link_status() - Reread link status from control BAR 431 * @nn: NFP Network structure 432 */ 433 static void nfp_net_read_link_status(struct nfp_net *nn) 434 { 435 unsigned long flags; 436 bool link_up; 437 u32 sts; 438 439 spin_lock_irqsave(&nn->link_status_lock, flags); 440 441 sts = nn_readl(nn, NFP_NET_CFG_STS); 442 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 443 444 if (nn->link_up == link_up) 445 goto out; 446 447 nn->link_up = link_up; 448 if (nn->port) 449 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 450 451 if (nn->link_up) { 452 netif_carrier_on(nn->dp.netdev); 453 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 454 } else { 455 netif_carrier_off(nn->dp.netdev); 456 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 457 } 458 out: 459 spin_unlock_irqrestore(&nn->link_status_lock, flags); 460 } 461 462 /** 463 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 464 * @irq: Interrupt 465 * @data: Opaque data structure 466 * 467 * Return: Indicate if the interrupt has been handled. 468 */ 469 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 470 { 471 struct nfp_net *nn = data; 472 struct msix_entry *entry; 473 474 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 475 476 nfp_net_read_link_status(nn); 477 478 nfp_net_irq_unmask(nn, entry->entry); 479 480 return IRQ_HANDLED; 481 } 482 483 /** 484 * nfp_net_irq_exn() - Interrupt service routine for exceptions 485 * @irq: Interrupt 486 * @data: Opaque data structure 487 * 488 * Return: Indicate if the interrupt has been handled. 489 */ 490 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 491 { 492 struct nfp_net *nn = data; 493 494 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 495 /* XXX TO BE IMPLEMENTED */ 496 return IRQ_HANDLED; 497 } 498 499 /** 500 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 501 * @tx_ring: TX ring structure 502 * @r_vec: IRQ vector servicing this ring 503 * @idx: Ring index 504 * @is_xdp: Is this an XDP TX ring? 505 */ 506 static void 507 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 508 struct nfp_net_r_vector *r_vec, unsigned int idx, 509 bool is_xdp) 510 { 511 struct nfp_net *nn = r_vec->nfp_net; 512 513 tx_ring->idx = idx; 514 tx_ring->r_vec = r_vec; 515 tx_ring->is_xdp = is_xdp; 516 u64_stats_init(&tx_ring->r_vec->tx_sync); 517 518 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 519 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 520 } 521 522 /** 523 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 524 * @rx_ring: RX ring structure 525 * @r_vec: IRQ vector servicing this ring 526 * @idx: Ring index 527 */ 528 static void 529 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 530 struct nfp_net_r_vector *r_vec, unsigned int idx) 531 { 532 struct nfp_net *nn = r_vec->nfp_net; 533 534 rx_ring->idx = idx; 535 rx_ring->r_vec = r_vec; 536 u64_stats_init(&rx_ring->r_vec->rx_sync); 537 538 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 539 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 540 } 541 542 /** 543 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 544 * @nn: NFP Network structure 545 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 546 * @format: printf-style format to construct the interrupt name 547 * @name: Pointer to allocated space for interrupt name 548 * @name_sz: Size of space for interrupt name 549 * @vector_idx: Index of MSI-X vector used for this interrupt 550 * @handler: IRQ handler to register for this interrupt 551 */ 552 static int 553 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 554 const char *format, char *name, size_t name_sz, 555 unsigned int vector_idx, irq_handler_t handler) 556 { 557 struct msix_entry *entry; 558 int err; 559 560 entry = &nn->irq_entries[vector_idx]; 561 562 snprintf(name, name_sz, format, nfp_net_name(nn)); 563 err = request_irq(entry->vector, handler, 0, name, nn); 564 if (err) { 565 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 566 entry->vector, err); 567 return err; 568 } 569 nn_writeb(nn, ctrl_offset, entry->entry); 570 571 return 0; 572 } 573 574 /** 575 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 576 * @nn: NFP Network structure 577 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 578 * @vector_idx: Index of MSI-X vector used for this interrupt 579 */ 580 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 581 unsigned int vector_idx) 582 { 583 nn_writeb(nn, ctrl_offset, 0xff); 584 free_irq(nn->irq_entries[vector_idx].vector, nn); 585 } 586 587 /* Transmit 588 * 589 * One queue controller peripheral queue is used for transmit. The 590 * driver en-queues packets for transmit by advancing the write 591 * pointer. The device indicates that packets have transmitted by 592 * advancing the read pointer. The driver maintains a local copy of 593 * the read and write pointer in @struct nfp_net_tx_ring. The driver 594 * keeps @wr_p in sync with the queue controller write pointer and can 595 * determine how many packets have been transmitted by comparing its 596 * copy of the read pointer @rd_p with the read pointer maintained by 597 * the queue controller peripheral. 598 */ 599 600 /** 601 * nfp_net_tx_full() - Check if the TX ring is full 602 * @tx_ring: TX ring to check 603 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 604 * 605 * This function checks, based on the *host copy* of read/write 606 * pointer if a given TX ring is full. The real TX queue may have 607 * some newly made available slots. 608 * 609 * Return: True if the ring is full. 610 */ 611 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 612 { 613 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 614 } 615 616 /* Wrappers for deciding when to stop and restart TX queues */ 617 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 618 { 619 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 620 } 621 622 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 623 { 624 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 625 } 626 627 /** 628 * nfp_net_tx_ring_stop() - stop tx ring 629 * @nd_q: netdev queue 630 * @tx_ring: driver tx queue structure 631 * 632 * Safely stop TX ring. Remember that while we are running .start_xmit() 633 * someone else may be cleaning the TX ring completions so we need to be 634 * extra careful here. 635 */ 636 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 637 struct nfp_net_tx_ring *tx_ring) 638 { 639 netif_tx_stop_queue(nd_q); 640 641 /* We can race with the TX completion out of NAPI so recheck */ 642 smp_mb(); 643 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 644 netif_tx_start_queue(nd_q); 645 } 646 647 /** 648 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 649 * @r_vec: per-ring structure 650 * @txbuf: Pointer to driver soft TX descriptor 651 * @txd: Pointer to HW TX descriptor 652 * @skb: Pointer to SKB 653 * 654 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 655 * Return error on packet header greater than maximum supported LSO header size. 656 */ 657 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 658 struct nfp_net_tx_buf *txbuf, 659 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 660 { 661 u32 hdrlen; 662 u16 mss; 663 664 if (!skb_is_gso(skb)) 665 return; 666 667 if (!skb->encapsulation) { 668 txd->l3_offset = skb_network_offset(skb); 669 txd->l4_offset = skb_transport_offset(skb); 670 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 671 } else { 672 txd->l3_offset = skb_inner_network_offset(skb); 673 txd->l4_offset = skb_inner_transport_offset(skb); 674 hdrlen = skb_inner_transport_header(skb) - skb->data + 675 inner_tcp_hdrlen(skb); 676 } 677 678 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 679 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 680 681 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 682 txd->lso_hdrlen = hdrlen; 683 txd->mss = cpu_to_le16(mss); 684 txd->flags |= PCIE_DESC_TX_LSO; 685 686 u64_stats_update_begin(&r_vec->tx_sync); 687 r_vec->tx_lso++; 688 u64_stats_update_end(&r_vec->tx_sync); 689 } 690 691 /** 692 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 693 * @dp: NFP Net data path struct 694 * @r_vec: per-ring structure 695 * @txbuf: Pointer to driver soft TX descriptor 696 * @txd: Pointer to TX descriptor 697 * @skb: Pointer to SKB 698 * 699 * This function sets the TX checksum flags in the TX descriptor based 700 * on the configuration and the protocol of the packet to be transmitted. 701 */ 702 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 703 struct nfp_net_r_vector *r_vec, 704 struct nfp_net_tx_buf *txbuf, 705 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 706 { 707 struct ipv6hdr *ipv6h; 708 struct iphdr *iph; 709 u8 l4_hdr; 710 711 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 712 return; 713 714 if (skb->ip_summed != CHECKSUM_PARTIAL) 715 return; 716 717 txd->flags |= PCIE_DESC_TX_CSUM; 718 if (skb->encapsulation) 719 txd->flags |= PCIE_DESC_TX_ENCAP; 720 721 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 722 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 723 724 if (iph->version == 4) { 725 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 726 l4_hdr = iph->protocol; 727 } else if (ipv6h->version == 6) { 728 l4_hdr = ipv6h->nexthdr; 729 } else { 730 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 731 return; 732 } 733 734 switch (l4_hdr) { 735 case IPPROTO_TCP: 736 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 737 break; 738 case IPPROTO_UDP: 739 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 740 break; 741 default: 742 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 743 return; 744 } 745 746 u64_stats_update_begin(&r_vec->tx_sync); 747 if (skb->encapsulation) 748 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 749 else 750 r_vec->hw_csum_tx += txbuf->pkt_cnt; 751 u64_stats_update_end(&r_vec->tx_sync); 752 } 753 754 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 755 { 756 wmb(); 757 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 758 tx_ring->wr_ptr_add = 0; 759 } 760 761 static int nfp_net_prep_port_id(struct sk_buff *skb) 762 { 763 struct metadata_dst *md_dst = skb_metadata_dst(skb); 764 unsigned char *data; 765 766 if (likely(!md_dst)) 767 return 0; 768 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 769 return 0; 770 771 if (unlikely(skb_cow_head(skb, 8))) 772 return -ENOMEM; 773 774 data = skb_push(skb, 8); 775 put_unaligned_be32(NFP_NET_META_PORTID, data); 776 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 777 778 return 8; 779 } 780 781 /** 782 * nfp_net_tx() - Main transmit entry point 783 * @skb: SKB to transmit 784 * @netdev: netdev structure 785 * 786 * Return: NETDEV_TX_OK on success. 787 */ 788 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 789 { 790 struct nfp_net *nn = netdev_priv(netdev); 791 const struct skb_frag_struct *frag; 792 struct nfp_net_tx_desc *txd, txdg; 793 int f, nr_frags, wr_idx, md_bytes; 794 struct nfp_net_tx_ring *tx_ring; 795 struct nfp_net_r_vector *r_vec; 796 struct nfp_net_tx_buf *txbuf; 797 struct netdev_queue *nd_q; 798 struct nfp_net_dp *dp; 799 dma_addr_t dma_addr; 800 unsigned int fsize; 801 u16 qidx; 802 803 dp = &nn->dp; 804 qidx = skb_get_queue_mapping(skb); 805 tx_ring = &dp->tx_rings[qidx]; 806 r_vec = tx_ring->r_vec; 807 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 808 809 nr_frags = skb_shinfo(skb)->nr_frags; 810 811 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 812 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 813 qidx, tx_ring->wr_p, tx_ring->rd_p); 814 netif_tx_stop_queue(nd_q); 815 nfp_net_tx_xmit_more_flush(tx_ring); 816 u64_stats_update_begin(&r_vec->tx_sync); 817 r_vec->tx_busy++; 818 u64_stats_update_end(&r_vec->tx_sync); 819 return NETDEV_TX_BUSY; 820 } 821 822 md_bytes = nfp_net_prep_port_id(skb); 823 if (unlikely(md_bytes < 0)) { 824 nfp_net_tx_xmit_more_flush(tx_ring); 825 dev_kfree_skb_any(skb); 826 return NETDEV_TX_OK; 827 } 828 829 /* Start with the head skbuf */ 830 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 831 DMA_TO_DEVICE); 832 if (dma_mapping_error(dp->dev, dma_addr)) 833 goto err_free; 834 835 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 836 837 /* Stash the soft descriptor of the head then initialize it */ 838 txbuf = &tx_ring->txbufs[wr_idx]; 839 txbuf->skb = skb; 840 txbuf->dma_addr = dma_addr; 841 txbuf->fidx = -1; 842 txbuf->pkt_cnt = 1; 843 txbuf->real_len = skb->len; 844 845 /* Build TX descriptor */ 846 txd = &tx_ring->txds[wr_idx]; 847 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 848 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 849 nfp_desc_set_dma_addr(txd, dma_addr); 850 txd->data_len = cpu_to_le16(skb->len); 851 852 txd->flags = 0; 853 txd->mss = 0; 854 txd->lso_hdrlen = 0; 855 856 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 857 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 858 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 859 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 860 txd->flags |= PCIE_DESC_TX_VLAN; 861 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 862 } 863 864 /* Gather DMA */ 865 if (nr_frags > 0) { 866 /* all descs must match except for in addr, length and eop */ 867 txdg = *txd; 868 869 for (f = 0; f < nr_frags; f++) { 870 frag = &skb_shinfo(skb)->frags[f]; 871 fsize = skb_frag_size(frag); 872 873 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 874 fsize, DMA_TO_DEVICE); 875 if (dma_mapping_error(dp->dev, dma_addr)) 876 goto err_unmap; 877 878 wr_idx = D_IDX(tx_ring, wr_idx + 1); 879 tx_ring->txbufs[wr_idx].skb = skb; 880 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 881 tx_ring->txbufs[wr_idx].fidx = f; 882 883 txd = &tx_ring->txds[wr_idx]; 884 *txd = txdg; 885 txd->dma_len = cpu_to_le16(fsize); 886 nfp_desc_set_dma_addr(txd, dma_addr); 887 txd->offset_eop |= 888 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 889 } 890 891 u64_stats_update_begin(&r_vec->tx_sync); 892 r_vec->tx_gather++; 893 u64_stats_update_end(&r_vec->tx_sync); 894 } 895 896 netdev_tx_sent_queue(nd_q, txbuf->real_len); 897 898 tx_ring->wr_p += nr_frags + 1; 899 if (nfp_net_tx_ring_should_stop(tx_ring)) 900 nfp_net_tx_ring_stop(nd_q, tx_ring); 901 902 tx_ring->wr_ptr_add += nr_frags + 1; 903 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 904 nfp_net_tx_xmit_more_flush(tx_ring); 905 906 skb_tx_timestamp(skb); 907 908 return NETDEV_TX_OK; 909 910 err_unmap: 911 while (--f >= 0) { 912 frag = &skb_shinfo(skb)->frags[f]; 913 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 914 skb_frag_size(frag), DMA_TO_DEVICE); 915 tx_ring->txbufs[wr_idx].skb = NULL; 916 tx_ring->txbufs[wr_idx].dma_addr = 0; 917 tx_ring->txbufs[wr_idx].fidx = -2; 918 wr_idx = wr_idx - 1; 919 if (wr_idx < 0) 920 wr_idx += tx_ring->cnt; 921 } 922 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 923 skb_headlen(skb), DMA_TO_DEVICE); 924 tx_ring->txbufs[wr_idx].skb = NULL; 925 tx_ring->txbufs[wr_idx].dma_addr = 0; 926 tx_ring->txbufs[wr_idx].fidx = -2; 927 err_free: 928 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 929 nfp_net_tx_xmit_more_flush(tx_ring); 930 u64_stats_update_begin(&r_vec->tx_sync); 931 r_vec->tx_errors++; 932 u64_stats_update_end(&r_vec->tx_sync); 933 dev_kfree_skb_any(skb); 934 return NETDEV_TX_OK; 935 } 936 937 /** 938 * nfp_net_tx_complete() - Handled completed TX packets 939 * @tx_ring: TX ring structure 940 * 941 * Return: Number of completed TX descriptors 942 */ 943 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 944 { 945 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 946 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 947 const struct skb_frag_struct *frag; 948 struct netdev_queue *nd_q; 949 u32 done_pkts = 0, done_bytes = 0; 950 struct sk_buff *skb; 951 int todo, nr_frags; 952 u32 qcp_rd_p; 953 int fidx; 954 int idx; 955 956 if (tx_ring->wr_p == tx_ring->rd_p) 957 return; 958 959 /* Work out how many descriptors have been transmitted */ 960 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 961 962 if (qcp_rd_p == tx_ring->qcp_rd_p) 963 return; 964 965 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 966 967 while (todo--) { 968 idx = D_IDX(tx_ring, tx_ring->rd_p++); 969 970 skb = tx_ring->txbufs[idx].skb; 971 if (!skb) 972 continue; 973 974 nr_frags = skb_shinfo(skb)->nr_frags; 975 fidx = tx_ring->txbufs[idx].fidx; 976 977 if (fidx == -1) { 978 /* unmap head */ 979 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 980 skb_headlen(skb), DMA_TO_DEVICE); 981 982 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 983 done_bytes += tx_ring->txbufs[idx].real_len; 984 } else { 985 /* unmap fragment */ 986 frag = &skb_shinfo(skb)->frags[fidx]; 987 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 988 skb_frag_size(frag), DMA_TO_DEVICE); 989 } 990 991 /* check for last gather fragment */ 992 if (fidx == nr_frags - 1) 993 dev_kfree_skb_any(skb); 994 995 tx_ring->txbufs[idx].dma_addr = 0; 996 tx_ring->txbufs[idx].skb = NULL; 997 tx_ring->txbufs[idx].fidx = -2; 998 } 999 1000 tx_ring->qcp_rd_p = qcp_rd_p; 1001 1002 u64_stats_update_begin(&r_vec->tx_sync); 1003 r_vec->tx_bytes += done_bytes; 1004 r_vec->tx_pkts += done_pkts; 1005 u64_stats_update_end(&r_vec->tx_sync); 1006 1007 if (!dp->netdev) 1008 return; 1009 1010 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1011 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1012 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1013 /* Make sure TX thread will see updated tx_ring->rd_p */ 1014 smp_mb(); 1015 1016 if (unlikely(netif_tx_queue_stopped(nd_q))) 1017 netif_tx_wake_queue(nd_q); 1018 } 1019 1020 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1021 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1022 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1023 } 1024 1025 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1026 { 1027 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1028 u32 done_pkts = 0, done_bytes = 0; 1029 bool done_all; 1030 int idx, todo; 1031 u32 qcp_rd_p; 1032 1033 /* Work out how many descriptors have been transmitted */ 1034 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1035 1036 if (qcp_rd_p == tx_ring->qcp_rd_p) 1037 return true; 1038 1039 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1040 1041 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1042 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1043 1044 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1045 1046 done_pkts = todo; 1047 while (todo--) { 1048 idx = D_IDX(tx_ring, tx_ring->rd_p); 1049 tx_ring->rd_p++; 1050 1051 done_bytes += tx_ring->txbufs[idx].real_len; 1052 } 1053 1054 u64_stats_update_begin(&r_vec->tx_sync); 1055 r_vec->tx_bytes += done_bytes; 1056 r_vec->tx_pkts += done_pkts; 1057 u64_stats_update_end(&r_vec->tx_sync); 1058 1059 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1060 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1061 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1062 1063 return done_all; 1064 } 1065 1066 /** 1067 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1068 * @dp: NFP Net data path struct 1069 * @tx_ring: TX ring structure 1070 * 1071 * Assumes that the device is stopped 1072 */ 1073 static void 1074 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1075 { 1076 const struct skb_frag_struct *frag; 1077 struct netdev_queue *nd_q; 1078 1079 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1080 struct nfp_net_tx_buf *tx_buf; 1081 struct sk_buff *skb; 1082 int idx, nr_frags; 1083 1084 idx = D_IDX(tx_ring, tx_ring->rd_p); 1085 tx_buf = &tx_ring->txbufs[idx]; 1086 1087 skb = tx_ring->txbufs[idx].skb; 1088 nr_frags = skb_shinfo(skb)->nr_frags; 1089 1090 if (tx_buf->fidx == -1) { 1091 /* unmap head */ 1092 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1093 skb_headlen(skb), DMA_TO_DEVICE); 1094 } else { 1095 /* unmap fragment */ 1096 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1097 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1098 skb_frag_size(frag), DMA_TO_DEVICE); 1099 } 1100 1101 /* check for last gather fragment */ 1102 if (tx_buf->fidx == nr_frags - 1) 1103 dev_kfree_skb_any(skb); 1104 1105 tx_buf->dma_addr = 0; 1106 tx_buf->skb = NULL; 1107 tx_buf->fidx = -2; 1108 1109 tx_ring->qcp_rd_p++; 1110 tx_ring->rd_p++; 1111 } 1112 1113 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1114 tx_ring->wr_p = 0; 1115 tx_ring->rd_p = 0; 1116 tx_ring->qcp_rd_p = 0; 1117 tx_ring->wr_ptr_add = 0; 1118 1119 if (tx_ring->is_xdp || !dp->netdev) 1120 return; 1121 1122 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1123 netdev_tx_reset_queue(nd_q); 1124 } 1125 1126 static void nfp_net_tx_timeout(struct net_device *netdev) 1127 { 1128 struct nfp_net *nn = netdev_priv(netdev); 1129 int i; 1130 1131 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1132 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1133 continue; 1134 nn_warn(nn, "TX timeout on ring: %d\n", i); 1135 } 1136 nn_warn(nn, "TX watchdog timeout\n"); 1137 } 1138 1139 /* Receive processing 1140 */ 1141 static unsigned int 1142 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1143 { 1144 unsigned int fl_bufsz; 1145 1146 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1147 fl_bufsz += dp->rx_dma_off; 1148 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1149 fl_bufsz += NFP_NET_MAX_PREPEND; 1150 else 1151 fl_bufsz += dp->rx_offset; 1152 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1153 1154 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1155 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1156 1157 return fl_bufsz; 1158 } 1159 1160 static void 1161 nfp_net_free_frag(void *frag, bool xdp) 1162 { 1163 if (!xdp) 1164 skb_free_frag(frag); 1165 else 1166 __free_page(virt_to_page(frag)); 1167 } 1168 1169 /** 1170 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1171 * @dp: NFP Net data path struct 1172 * @dma_addr: Pointer to storage for DMA address (output param) 1173 * 1174 * This function will allcate a new page frag, map it for DMA. 1175 * 1176 * Return: allocated page frag or NULL on failure. 1177 */ 1178 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1179 { 1180 void *frag; 1181 1182 if (!dp->xdp_prog) 1183 frag = netdev_alloc_frag(dp->fl_bufsz); 1184 else 1185 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD)); 1186 if (!frag) { 1187 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1188 return NULL; 1189 } 1190 1191 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1192 if (dma_mapping_error(dp->dev, *dma_addr)) { 1193 nfp_net_free_frag(frag, dp->xdp_prog); 1194 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1195 return NULL; 1196 } 1197 1198 return frag; 1199 } 1200 1201 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1202 { 1203 void *frag; 1204 1205 if (!dp->xdp_prog) 1206 frag = napi_alloc_frag(dp->fl_bufsz); 1207 else 1208 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD)); 1209 if (!frag) { 1210 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1211 return NULL; 1212 } 1213 1214 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1215 if (dma_mapping_error(dp->dev, *dma_addr)) { 1216 nfp_net_free_frag(frag, dp->xdp_prog); 1217 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1218 return NULL; 1219 } 1220 1221 return frag; 1222 } 1223 1224 /** 1225 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1226 * @dp: NFP Net data path struct 1227 * @rx_ring: RX ring structure 1228 * @frag: page fragment buffer 1229 * @dma_addr: DMA address of skb mapping 1230 */ 1231 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1232 struct nfp_net_rx_ring *rx_ring, 1233 void *frag, dma_addr_t dma_addr) 1234 { 1235 unsigned int wr_idx; 1236 1237 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1238 1239 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1240 1241 /* Stash SKB and DMA address away */ 1242 rx_ring->rxbufs[wr_idx].frag = frag; 1243 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1244 1245 /* Fill freelist descriptor */ 1246 rx_ring->rxds[wr_idx].fld.reserved = 0; 1247 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1248 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1249 dma_addr + dp->rx_dma_off); 1250 1251 rx_ring->wr_p++; 1252 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1253 /* Update write pointer of the freelist queue. Make 1254 * sure all writes are flushed before telling the hardware. 1255 */ 1256 wmb(); 1257 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1258 } 1259 } 1260 1261 /** 1262 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1263 * @rx_ring: RX ring structure 1264 * 1265 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1266 * (i.e. device was not enabled)! 1267 */ 1268 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1269 { 1270 unsigned int wr_idx, last_idx; 1271 1272 /* Move the empty entry to the end of the list */ 1273 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1274 last_idx = rx_ring->cnt - 1; 1275 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1276 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1277 rx_ring->rxbufs[last_idx].dma_addr = 0; 1278 rx_ring->rxbufs[last_idx].frag = NULL; 1279 1280 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1281 rx_ring->wr_p = 0; 1282 rx_ring->rd_p = 0; 1283 } 1284 1285 /** 1286 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1287 * @dp: NFP Net data path struct 1288 * @rx_ring: RX ring to remove buffers from 1289 * 1290 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1291 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1292 * to restore required ring geometry. 1293 */ 1294 static void 1295 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1296 struct nfp_net_rx_ring *rx_ring) 1297 { 1298 unsigned int i; 1299 1300 for (i = 0; i < rx_ring->cnt - 1; i++) { 1301 /* NULL skb can only happen when initial filling of the ring 1302 * fails to allocate enough buffers and calls here to free 1303 * already allocated ones. 1304 */ 1305 if (!rx_ring->rxbufs[i].frag) 1306 continue; 1307 1308 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1309 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1310 rx_ring->rxbufs[i].dma_addr = 0; 1311 rx_ring->rxbufs[i].frag = NULL; 1312 } 1313 } 1314 1315 /** 1316 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1317 * @dp: NFP Net data path struct 1318 * @rx_ring: RX ring to remove buffers from 1319 */ 1320 static int 1321 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1322 struct nfp_net_rx_ring *rx_ring) 1323 { 1324 struct nfp_net_rx_buf *rxbufs; 1325 unsigned int i; 1326 1327 rxbufs = rx_ring->rxbufs; 1328 1329 for (i = 0; i < rx_ring->cnt - 1; i++) { 1330 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1331 if (!rxbufs[i].frag) { 1332 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1333 return -ENOMEM; 1334 } 1335 } 1336 1337 return 0; 1338 } 1339 1340 /** 1341 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1342 * @dp: NFP Net data path struct 1343 * @rx_ring: RX ring to fill 1344 */ 1345 static void 1346 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1347 struct nfp_net_rx_ring *rx_ring) 1348 { 1349 unsigned int i; 1350 1351 for (i = 0; i < rx_ring->cnt - 1; i++) 1352 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1353 rx_ring->rxbufs[i].dma_addr); 1354 } 1355 1356 /** 1357 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1358 * @flags: RX descriptor flags field in CPU byte order 1359 */ 1360 static int nfp_net_rx_csum_has_errors(u16 flags) 1361 { 1362 u16 csum_all_checked, csum_all_ok; 1363 1364 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1365 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1366 1367 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1368 } 1369 1370 /** 1371 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1372 * @dp: NFP Net data path struct 1373 * @r_vec: per-ring structure 1374 * @rxd: Pointer to RX descriptor 1375 * @meta: Parsed metadata prepend 1376 * @skb: Pointer to SKB 1377 */ 1378 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1379 struct nfp_net_r_vector *r_vec, 1380 struct nfp_net_rx_desc *rxd, 1381 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1382 { 1383 skb_checksum_none_assert(skb); 1384 1385 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1386 return; 1387 1388 if (meta->csum_type) { 1389 skb->ip_summed = meta->csum_type; 1390 skb->csum = meta->csum; 1391 u64_stats_update_begin(&r_vec->rx_sync); 1392 r_vec->hw_csum_rx_ok++; 1393 u64_stats_update_end(&r_vec->rx_sync); 1394 return; 1395 } 1396 1397 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1398 u64_stats_update_begin(&r_vec->rx_sync); 1399 r_vec->hw_csum_rx_error++; 1400 u64_stats_update_end(&r_vec->rx_sync); 1401 return; 1402 } 1403 1404 /* Assume that the firmware will never report inner CSUM_OK unless outer 1405 * L4 headers were successfully parsed. FW will always report zero UDP 1406 * checksum as CSUM_OK. 1407 */ 1408 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1409 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1410 __skb_incr_checksum_unnecessary(skb); 1411 u64_stats_update_begin(&r_vec->rx_sync); 1412 r_vec->hw_csum_rx_ok++; 1413 u64_stats_update_end(&r_vec->rx_sync); 1414 } 1415 1416 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1417 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1418 __skb_incr_checksum_unnecessary(skb); 1419 u64_stats_update_begin(&r_vec->rx_sync); 1420 r_vec->hw_csum_rx_inner_ok++; 1421 u64_stats_update_end(&r_vec->rx_sync); 1422 } 1423 } 1424 1425 static void 1426 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1427 unsigned int type, __be32 *hash) 1428 { 1429 if (!(netdev->features & NETIF_F_RXHASH)) 1430 return; 1431 1432 switch (type) { 1433 case NFP_NET_RSS_IPV4: 1434 case NFP_NET_RSS_IPV6: 1435 case NFP_NET_RSS_IPV6_EX: 1436 meta->hash_type = PKT_HASH_TYPE_L3; 1437 break; 1438 default: 1439 meta->hash_type = PKT_HASH_TYPE_L4; 1440 break; 1441 } 1442 1443 meta->hash = get_unaligned_be32(hash); 1444 } 1445 1446 static void 1447 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1448 void *data, struct nfp_net_rx_desc *rxd) 1449 { 1450 struct nfp_net_rx_hash *rx_hash = data; 1451 1452 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1453 return; 1454 1455 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1456 &rx_hash->hash); 1457 } 1458 1459 static void * 1460 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1461 void *data, int meta_len) 1462 { 1463 u32 meta_info; 1464 1465 meta_info = get_unaligned_be32(data); 1466 data += 4; 1467 1468 while (meta_info) { 1469 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1470 case NFP_NET_META_HASH: 1471 meta_info >>= NFP_NET_META_FIELD_SIZE; 1472 nfp_net_set_hash(netdev, meta, 1473 meta_info & NFP_NET_META_FIELD_MASK, 1474 (__be32 *)data); 1475 data += 4; 1476 break; 1477 case NFP_NET_META_MARK: 1478 meta->mark = get_unaligned_be32(data); 1479 data += 4; 1480 break; 1481 case NFP_NET_META_PORTID: 1482 meta->portid = get_unaligned_be32(data); 1483 data += 4; 1484 break; 1485 case NFP_NET_META_CSUM: 1486 meta->csum_type = CHECKSUM_COMPLETE; 1487 meta->csum = 1488 (__force __wsum)__get_unaligned_cpu32(data); 1489 data += 4; 1490 break; 1491 default: 1492 return NULL; 1493 } 1494 1495 meta_info >>= NFP_NET_META_FIELD_SIZE; 1496 } 1497 1498 return data; 1499 } 1500 1501 static void 1502 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1503 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1504 struct sk_buff *skb) 1505 { 1506 u64_stats_update_begin(&r_vec->rx_sync); 1507 r_vec->rx_drops++; 1508 u64_stats_update_end(&r_vec->rx_sync); 1509 1510 /* skb is build based on the frag, free_skb() would free the frag 1511 * so to be able to reuse it we need an extra ref. 1512 */ 1513 if (skb && rxbuf && skb->head == rxbuf->frag) 1514 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1515 if (rxbuf) 1516 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1517 if (skb) 1518 dev_kfree_skb_any(skb); 1519 } 1520 1521 static bool 1522 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1523 struct nfp_net_tx_ring *tx_ring, 1524 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1525 unsigned int pkt_len, bool *completed) 1526 { 1527 struct nfp_net_tx_buf *txbuf; 1528 struct nfp_net_tx_desc *txd; 1529 int wr_idx; 1530 1531 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1532 if (!*completed) { 1533 nfp_net_xdp_complete(tx_ring); 1534 *completed = true; 1535 } 1536 1537 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1538 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1539 NULL); 1540 return false; 1541 } 1542 } 1543 1544 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1545 1546 /* Stash the soft descriptor of the head then initialize it */ 1547 txbuf = &tx_ring->txbufs[wr_idx]; 1548 1549 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1550 1551 txbuf->frag = rxbuf->frag; 1552 txbuf->dma_addr = rxbuf->dma_addr; 1553 txbuf->fidx = -1; 1554 txbuf->pkt_cnt = 1; 1555 txbuf->real_len = pkt_len; 1556 1557 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1558 pkt_len, DMA_BIDIRECTIONAL); 1559 1560 /* Build TX descriptor */ 1561 txd = &tx_ring->txds[wr_idx]; 1562 txd->offset_eop = PCIE_DESC_TX_EOP; 1563 txd->dma_len = cpu_to_le16(pkt_len); 1564 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1565 txd->data_len = cpu_to_le16(pkt_len); 1566 1567 txd->flags = 0; 1568 txd->mss = 0; 1569 txd->lso_hdrlen = 0; 1570 1571 tx_ring->wr_p++; 1572 tx_ring->wr_ptr_add++; 1573 return true; 1574 } 1575 1576 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start, 1577 unsigned int *off, unsigned int *len) 1578 { 1579 struct xdp_buff xdp; 1580 void *orig_data; 1581 int ret; 1582 1583 xdp.data_hard_start = hard_start; 1584 xdp.data = data + *off; 1585 xdp.data_end = data + *off + *len; 1586 1587 orig_data = xdp.data; 1588 ret = bpf_prog_run_xdp(prog, &xdp); 1589 1590 *len -= xdp.data - orig_data; 1591 *off += xdp.data - orig_data; 1592 1593 return ret; 1594 } 1595 1596 /** 1597 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1598 * @rx_ring: RX ring to receive from 1599 * @budget: NAPI budget 1600 * 1601 * Note, this function is separated out from the napi poll function to 1602 * more cleanly separate packet receive code from other bookkeeping 1603 * functions performed in the napi poll function. 1604 * 1605 * Return: Number of packets received. 1606 */ 1607 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1608 { 1609 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1610 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1611 struct nfp_net_tx_ring *tx_ring; 1612 struct bpf_prog *xdp_prog; 1613 bool xdp_tx_cmpl = false; 1614 unsigned int true_bufsz; 1615 struct sk_buff *skb; 1616 int pkts_polled = 0; 1617 int idx; 1618 1619 rcu_read_lock(); 1620 xdp_prog = READ_ONCE(dp->xdp_prog); 1621 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1622 tx_ring = r_vec->xdp_ring; 1623 1624 while (pkts_polled < budget) { 1625 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1626 struct nfp_net_rx_buf *rxbuf; 1627 struct nfp_net_rx_desc *rxd; 1628 struct nfp_meta_parsed meta; 1629 struct net_device *netdev; 1630 dma_addr_t new_dma_addr; 1631 void *new_frag; 1632 1633 idx = D_IDX(rx_ring, rx_ring->rd_p); 1634 1635 rxd = &rx_ring->rxds[idx]; 1636 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1637 break; 1638 1639 /* Memory barrier to ensure that we won't do other reads 1640 * before the DD bit. 1641 */ 1642 dma_rmb(); 1643 1644 memset(&meta, 0, sizeof(meta)); 1645 1646 rx_ring->rd_p++; 1647 pkts_polled++; 1648 1649 rxbuf = &rx_ring->rxbufs[idx]; 1650 /* < meta_len > 1651 * <-- [rx_offset] --> 1652 * --------------------------------------------------------- 1653 * | [XX] | metadata | packet | XXXX | 1654 * --------------------------------------------------------- 1655 * <---------------- data_len ---------------> 1656 * 1657 * The rx_offset is fixed for all packets, the meta_len can vary 1658 * on a packet by packet basis. If rx_offset is set to zero 1659 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1660 * buffer and is immediately followed by the packet (no [XX]). 1661 */ 1662 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1663 data_len = le16_to_cpu(rxd->rxd.data_len); 1664 pkt_len = data_len - meta_len; 1665 1666 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1667 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1668 pkt_off += meta_len; 1669 else 1670 pkt_off += dp->rx_offset; 1671 meta_off = pkt_off - meta_len; 1672 1673 /* Stats update */ 1674 u64_stats_update_begin(&r_vec->rx_sync); 1675 r_vec->rx_pkts++; 1676 r_vec->rx_bytes += pkt_len; 1677 u64_stats_update_end(&r_vec->rx_sync); 1678 1679 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1680 (dp->rx_offset && meta_len > dp->rx_offset))) { 1681 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1682 meta_len); 1683 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1684 continue; 1685 } 1686 1687 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1688 data_len); 1689 1690 if (!dp->chained_metadata_format) { 1691 nfp_net_set_hash_desc(dp->netdev, &meta, 1692 rxbuf->frag + meta_off, rxd); 1693 } else if (meta_len) { 1694 void *end; 1695 1696 end = nfp_net_parse_meta(dp->netdev, &meta, 1697 rxbuf->frag + meta_off, 1698 meta_len); 1699 if (unlikely(end != rxbuf->frag + pkt_off)) { 1700 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1701 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1702 NULL); 1703 continue; 1704 } 1705 } 1706 1707 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1708 dp->bpf_offload_xdp) && !meta.portid) { 1709 unsigned int dma_off; 1710 void *hard_start; 1711 int act; 1712 1713 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1714 1715 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start, 1716 &pkt_off, &pkt_len); 1717 switch (act) { 1718 case XDP_PASS: 1719 break; 1720 case XDP_TX: 1721 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1722 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1723 tx_ring, rxbuf, 1724 dma_off, 1725 pkt_len, 1726 &xdp_tx_cmpl))) 1727 trace_xdp_exception(dp->netdev, 1728 xdp_prog, act); 1729 continue; 1730 default: 1731 bpf_warn_invalid_xdp_action(act); 1732 /* fall through */ 1733 case XDP_ABORTED: 1734 trace_xdp_exception(dp->netdev, xdp_prog, act); 1735 /* fall through */ 1736 case XDP_DROP: 1737 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1738 rxbuf->dma_addr); 1739 continue; 1740 } 1741 } 1742 1743 skb = build_skb(rxbuf->frag, true_bufsz); 1744 if (unlikely(!skb)) { 1745 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1746 continue; 1747 } 1748 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1749 if (unlikely(!new_frag)) { 1750 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1751 continue; 1752 } 1753 1754 if (likely(!meta.portid)) { 1755 netdev = dp->netdev; 1756 } else { 1757 struct nfp_net *nn; 1758 1759 nn = netdev_priv(dp->netdev); 1760 netdev = nfp_app_repr_get(nn->app, meta.portid); 1761 if (unlikely(!netdev)) { 1762 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1763 continue; 1764 } 1765 nfp_repr_inc_rx_stats(netdev, pkt_len); 1766 } 1767 1768 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1769 1770 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1771 1772 skb_reserve(skb, pkt_off); 1773 skb_put(skb, pkt_len); 1774 1775 skb->mark = meta.mark; 1776 skb_set_hash(skb, meta.hash, meta.hash_type); 1777 1778 skb_record_rx_queue(skb, rx_ring->idx); 1779 skb->protocol = eth_type_trans(skb, netdev); 1780 1781 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1782 1783 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1784 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1785 le16_to_cpu(rxd->rxd.vlan)); 1786 1787 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1788 } 1789 1790 if (xdp_prog) { 1791 if (tx_ring->wr_ptr_add) 1792 nfp_net_tx_xmit_more_flush(tx_ring); 1793 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1794 !xdp_tx_cmpl) 1795 if (!nfp_net_xdp_complete(tx_ring)) 1796 pkts_polled = budget; 1797 } 1798 rcu_read_unlock(); 1799 1800 return pkts_polled; 1801 } 1802 1803 /** 1804 * nfp_net_poll() - napi poll function 1805 * @napi: NAPI structure 1806 * @budget: NAPI budget 1807 * 1808 * Return: number of packets polled. 1809 */ 1810 static int nfp_net_poll(struct napi_struct *napi, int budget) 1811 { 1812 struct nfp_net_r_vector *r_vec = 1813 container_of(napi, struct nfp_net_r_vector, napi); 1814 unsigned int pkts_polled = 0; 1815 1816 if (r_vec->tx_ring) 1817 nfp_net_tx_complete(r_vec->tx_ring); 1818 if (r_vec->rx_ring) 1819 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1820 1821 if (pkts_polled < budget) 1822 if (napi_complete_done(napi, pkts_polled)) 1823 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1824 1825 return pkts_polled; 1826 } 1827 1828 /* Control device data path 1829 */ 1830 1831 static bool 1832 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1833 struct sk_buff *skb, bool old) 1834 { 1835 unsigned int real_len = skb->len, meta_len = 0; 1836 struct nfp_net_tx_ring *tx_ring; 1837 struct nfp_net_tx_buf *txbuf; 1838 struct nfp_net_tx_desc *txd; 1839 struct nfp_net_dp *dp; 1840 dma_addr_t dma_addr; 1841 int wr_idx; 1842 1843 dp = &r_vec->nfp_net->dp; 1844 tx_ring = r_vec->tx_ring; 1845 1846 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1847 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1848 goto err_free; 1849 } 1850 1851 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1852 u64_stats_update_begin(&r_vec->tx_sync); 1853 r_vec->tx_busy++; 1854 u64_stats_update_end(&r_vec->tx_sync); 1855 if (!old) 1856 __skb_queue_tail(&r_vec->queue, skb); 1857 else 1858 __skb_queue_head(&r_vec->queue, skb); 1859 return true; 1860 } 1861 1862 if (nfp_app_ctrl_has_meta(nn->app)) { 1863 if (unlikely(skb_headroom(skb) < 8)) { 1864 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1865 goto err_free; 1866 } 1867 meta_len = 8; 1868 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1869 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1870 } 1871 1872 /* Start with the head skbuf */ 1873 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1874 DMA_TO_DEVICE); 1875 if (dma_mapping_error(dp->dev, dma_addr)) 1876 goto err_dma_warn; 1877 1878 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1879 1880 /* Stash the soft descriptor of the head then initialize it */ 1881 txbuf = &tx_ring->txbufs[wr_idx]; 1882 txbuf->skb = skb; 1883 txbuf->dma_addr = dma_addr; 1884 txbuf->fidx = -1; 1885 txbuf->pkt_cnt = 1; 1886 txbuf->real_len = real_len; 1887 1888 /* Build TX descriptor */ 1889 txd = &tx_ring->txds[wr_idx]; 1890 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1891 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1892 nfp_desc_set_dma_addr(txd, dma_addr); 1893 txd->data_len = cpu_to_le16(skb->len); 1894 1895 txd->flags = 0; 1896 txd->mss = 0; 1897 txd->lso_hdrlen = 0; 1898 1899 tx_ring->wr_p++; 1900 tx_ring->wr_ptr_add++; 1901 nfp_net_tx_xmit_more_flush(tx_ring); 1902 1903 return false; 1904 1905 err_dma_warn: 1906 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1907 err_free: 1908 u64_stats_update_begin(&r_vec->tx_sync); 1909 r_vec->tx_errors++; 1910 u64_stats_update_end(&r_vec->tx_sync); 1911 dev_kfree_skb_any(skb); 1912 return false; 1913 } 1914 1915 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1916 { 1917 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1918 bool ret; 1919 1920 spin_lock_bh(&r_vec->lock); 1921 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1922 spin_unlock_bh(&r_vec->lock); 1923 1924 return ret; 1925 } 1926 1927 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1928 { 1929 struct sk_buff *skb; 1930 1931 while ((skb = __skb_dequeue(&r_vec->queue))) 1932 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1933 return; 1934 } 1935 1936 static bool 1937 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1938 { 1939 u32 meta_type, meta_tag; 1940 1941 if (!nfp_app_ctrl_has_meta(nn->app)) 1942 return !meta_len; 1943 1944 if (meta_len != 8) 1945 return false; 1946 1947 meta_type = get_unaligned_be32(data); 1948 meta_tag = get_unaligned_be32(data + 4); 1949 1950 return (meta_type == NFP_NET_META_PORTID && 1951 meta_tag == NFP_META_PORT_ID_CTRL); 1952 } 1953 1954 static bool 1955 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1956 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1957 { 1958 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1959 struct nfp_net_rx_buf *rxbuf; 1960 struct nfp_net_rx_desc *rxd; 1961 dma_addr_t new_dma_addr; 1962 struct sk_buff *skb; 1963 void *new_frag; 1964 int idx; 1965 1966 idx = D_IDX(rx_ring, rx_ring->rd_p); 1967 1968 rxd = &rx_ring->rxds[idx]; 1969 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1970 return false; 1971 1972 /* Memory barrier to ensure that we won't do other reads 1973 * before the DD bit. 1974 */ 1975 dma_rmb(); 1976 1977 rx_ring->rd_p++; 1978 1979 rxbuf = &rx_ring->rxbufs[idx]; 1980 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1981 data_len = le16_to_cpu(rxd->rxd.data_len); 1982 pkt_len = data_len - meta_len; 1983 1984 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1985 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1986 pkt_off += meta_len; 1987 else 1988 pkt_off += dp->rx_offset; 1989 meta_off = pkt_off - meta_len; 1990 1991 /* Stats update */ 1992 u64_stats_update_begin(&r_vec->rx_sync); 1993 r_vec->rx_pkts++; 1994 r_vec->rx_bytes += pkt_len; 1995 u64_stats_update_end(&r_vec->rx_sync); 1996 1997 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 1998 1999 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2000 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2001 meta_len); 2002 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2003 return true; 2004 } 2005 2006 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2007 if (unlikely(!skb)) { 2008 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2009 return true; 2010 } 2011 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2012 if (unlikely(!new_frag)) { 2013 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2014 return true; 2015 } 2016 2017 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2018 2019 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2020 2021 skb_reserve(skb, pkt_off); 2022 skb_put(skb, pkt_len); 2023 2024 nfp_app_ctrl_rx(nn->app, skb); 2025 2026 return true; 2027 } 2028 2029 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2030 { 2031 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2032 struct nfp_net *nn = r_vec->nfp_net; 2033 struct nfp_net_dp *dp = &nn->dp; 2034 2035 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring)) 2036 continue; 2037 } 2038 2039 static void nfp_ctrl_poll(unsigned long arg) 2040 { 2041 struct nfp_net_r_vector *r_vec = (void *)arg; 2042 2043 spin_lock_bh(&r_vec->lock); 2044 nfp_net_tx_complete(r_vec->tx_ring); 2045 __nfp_ctrl_tx_queued(r_vec); 2046 spin_unlock_bh(&r_vec->lock); 2047 2048 nfp_ctrl_rx(r_vec); 2049 2050 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2051 } 2052 2053 /* Setup and Configuration 2054 */ 2055 2056 /** 2057 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2058 * @nn: NFP Network structure 2059 */ 2060 static void nfp_net_vecs_init(struct nfp_net *nn) 2061 { 2062 struct nfp_net_r_vector *r_vec; 2063 int r; 2064 2065 nn->lsc_handler = nfp_net_irq_lsc; 2066 nn->exn_handler = nfp_net_irq_exn; 2067 2068 for (r = 0; r < nn->max_r_vecs; r++) { 2069 struct msix_entry *entry; 2070 2071 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2072 2073 r_vec = &nn->r_vecs[r]; 2074 r_vec->nfp_net = nn; 2075 r_vec->irq_entry = entry->entry; 2076 r_vec->irq_vector = entry->vector; 2077 2078 if (nn->dp.netdev) { 2079 r_vec->handler = nfp_net_irq_rxtx; 2080 } else { 2081 r_vec->handler = nfp_ctrl_irq_rxtx; 2082 2083 __skb_queue_head_init(&r_vec->queue); 2084 spin_lock_init(&r_vec->lock); 2085 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2086 (unsigned long)r_vec); 2087 tasklet_disable(&r_vec->tasklet); 2088 } 2089 2090 cpumask_set_cpu(r, &r_vec->affinity_mask); 2091 } 2092 } 2093 2094 /** 2095 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2096 * @tx_ring: TX ring to free 2097 */ 2098 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2099 { 2100 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2101 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2102 2103 kfree(tx_ring->txbufs); 2104 2105 if (tx_ring->txds) 2106 dma_free_coherent(dp->dev, tx_ring->size, 2107 tx_ring->txds, tx_ring->dma); 2108 2109 tx_ring->cnt = 0; 2110 tx_ring->txbufs = NULL; 2111 tx_ring->txds = NULL; 2112 tx_ring->dma = 0; 2113 tx_ring->size = 0; 2114 } 2115 2116 /** 2117 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2118 * @dp: NFP Net data path struct 2119 * @tx_ring: TX Ring structure to allocate 2120 * 2121 * Return: 0 on success, negative errno otherwise. 2122 */ 2123 static int 2124 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2125 { 2126 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2127 int sz; 2128 2129 tx_ring->cnt = dp->txd_cnt; 2130 2131 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 2132 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2133 &tx_ring->dma, GFP_KERNEL); 2134 if (!tx_ring->txds) 2135 goto err_alloc; 2136 2137 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 2138 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 2139 if (!tx_ring->txbufs) 2140 goto err_alloc; 2141 2142 if (!tx_ring->is_xdp && dp->netdev) 2143 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2144 tx_ring->idx); 2145 2146 return 0; 2147 2148 err_alloc: 2149 nfp_net_tx_ring_free(tx_ring); 2150 return -ENOMEM; 2151 } 2152 2153 static void 2154 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2155 struct nfp_net_tx_ring *tx_ring) 2156 { 2157 unsigned int i; 2158 2159 if (!tx_ring->is_xdp) 2160 return; 2161 2162 for (i = 0; i < tx_ring->cnt; i++) { 2163 if (!tx_ring->txbufs[i].frag) 2164 return; 2165 2166 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2167 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2168 } 2169 } 2170 2171 static int 2172 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2173 struct nfp_net_tx_ring *tx_ring) 2174 { 2175 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2176 unsigned int i; 2177 2178 if (!tx_ring->is_xdp) 2179 return 0; 2180 2181 for (i = 0; i < tx_ring->cnt; i++) { 2182 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2183 if (!txbufs[i].frag) { 2184 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2185 return -ENOMEM; 2186 } 2187 } 2188 2189 return 0; 2190 } 2191 2192 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2193 { 2194 unsigned int r; 2195 2196 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2197 GFP_KERNEL); 2198 if (!dp->tx_rings) 2199 return -ENOMEM; 2200 2201 for (r = 0; r < dp->num_tx_rings; r++) { 2202 int bias = 0; 2203 2204 if (r >= dp->num_stack_tx_rings) 2205 bias = dp->num_stack_tx_rings; 2206 2207 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2208 r, bias); 2209 2210 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2211 goto err_free_prev; 2212 2213 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2214 goto err_free_ring; 2215 } 2216 2217 return 0; 2218 2219 err_free_prev: 2220 while (r--) { 2221 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2222 err_free_ring: 2223 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2224 } 2225 kfree(dp->tx_rings); 2226 return -ENOMEM; 2227 } 2228 2229 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2230 { 2231 unsigned int r; 2232 2233 for (r = 0; r < dp->num_tx_rings; r++) { 2234 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2235 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2236 } 2237 2238 kfree(dp->tx_rings); 2239 } 2240 2241 /** 2242 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2243 * @rx_ring: RX ring to free 2244 */ 2245 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2246 { 2247 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2248 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2249 2250 kfree(rx_ring->rxbufs); 2251 2252 if (rx_ring->rxds) 2253 dma_free_coherent(dp->dev, rx_ring->size, 2254 rx_ring->rxds, rx_ring->dma); 2255 2256 rx_ring->cnt = 0; 2257 rx_ring->rxbufs = NULL; 2258 rx_ring->rxds = NULL; 2259 rx_ring->dma = 0; 2260 rx_ring->size = 0; 2261 } 2262 2263 /** 2264 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2265 * @dp: NFP Net data path struct 2266 * @rx_ring: RX ring to allocate 2267 * 2268 * Return: 0 on success, negative errno otherwise. 2269 */ 2270 static int 2271 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2272 { 2273 int sz; 2274 2275 rx_ring->cnt = dp->rxd_cnt; 2276 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 2277 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2278 &rx_ring->dma, GFP_KERNEL); 2279 if (!rx_ring->rxds) 2280 goto err_alloc; 2281 2282 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 2283 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 2284 if (!rx_ring->rxbufs) 2285 goto err_alloc; 2286 2287 return 0; 2288 2289 err_alloc: 2290 nfp_net_rx_ring_free(rx_ring); 2291 return -ENOMEM; 2292 } 2293 2294 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2295 { 2296 unsigned int r; 2297 2298 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2299 GFP_KERNEL); 2300 if (!dp->rx_rings) 2301 return -ENOMEM; 2302 2303 for (r = 0; r < dp->num_rx_rings; r++) { 2304 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2305 2306 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2307 goto err_free_prev; 2308 2309 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2310 goto err_free_ring; 2311 } 2312 2313 return 0; 2314 2315 err_free_prev: 2316 while (r--) { 2317 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2318 err_free_ring: 2319 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2320 } 2321 kfree(dp->rx_rings); 2322 return -ENOMEM; 2323 } 2324 2325 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2326 { 2327 unsigned int r; 2328 2329 for (r = 0; r < dp->num_rx_rings; r++) { 2330 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2331 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2332 } 2333 2334 kfree(dp->rx_rings); 2335 } 2336 2337 static void 2338 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2339 struct nfp_net_r_vector *r_vec, int idx) 2340 { 2341 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2342 r_vec->tx_ring = 2343 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2344 2345 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2346 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2347 } 2348 2349 static int 2350 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2351 int idx) 2352 { 2353 int err; 2354 2355 /* Setup NAPI */ 2356 if (nn->dp.netdev) 2357 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2358 nfp_net_poll, NAPI_POLL_WEIGHT); 2359 else 2360 tasklet_enable(&r_vec->tasklet); 2361 2362 snprintf(r_vec->name, sizeof(r_vec->name), 2363 "%s-rxtx-%d", nfp_net_name(nn), idx); 2364 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2365 r_vec); 2366 if (err) { 2367 if (nn->dp.netdev) 2368 netif_napi_del(&r_vec->napi); 2369 else 2370 tasklet_disable(&r_vec->tasklet); 2371 2372 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2373 return err; 2374 } 2375 disable_irq(r_vec->irq_vector); 2376 2377 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2378 2379 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2380 r_vec->irq_entry); 2381 2382 return 0; 2383 } 2384 2385 static void 2386 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2387 { 2388 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2389 if (nn->dp.netdev) 2390 netif_napi_del(&r_vec->napi); 2391 else 2392 tasklet_disable(&r_vec->tasklet); 2393 2394 free_irq(r_vec->irq_vector, r_vec); 2395 } 2396 2397 /** 2398 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2399 * @nn: NFP Net device to reconfigure 2400 */ 2401 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2402 { 2403 int i; 2404 2405 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2406 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2407 get_unaligned_le32(nn->rss_itbl + i)); 2408 } 2409 2410 /** 2411 * nfp_net_rss_write_key() - Write RSS hash key to device 2412 * @nn: NFP Net device to reconfigure 2413 */ 2414 void nfp_net_rss_write_key(struct nfp_net *nn) 2415 { 2416 int i; 2417 2418 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2419 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2420 get_unaligned_le32(nn->rss_key + i)); 2421 } 2422 2423 /** 2424 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2425 * @nn: NFP Net device to reconfigure 2426 */ 2427 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2428 { 2429 u8 i; 2430 u32 factor; 2431 u32 value; 2432 2433 /* Compute factor used to convert coalesce '_usecs' parameters to 2434 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2435 * count. 2436 */ 2437 factor = nn->me_freq_mhz / 16; 2438 2439 /* copy RX interrupt coalesce parameters */ 2440 value = (nn->rx_coalesce_max_frames << 16) | 2441 (factor * nn->rx_coalesce_usecs); 2442 for (i = 0; i < nn->dp.num_rx_rings; i++) 2443 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2444 2445 /* copy TX interrupt coalesce parameters */ 2446 value = (nn->tx_coalesce_max_frames << 16) | 2447 (factor * nn->tx_coalesce_usecs); 2448 for (i = 0; i < nn->dp.num_tx_rings; i++) 2449 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2450 } 2451 2452 /** 2453 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2454 * @nn: NFP Net device to reconfigure 2455 * @addr: MAC address to write 2456 * 2457 * Writes the MAC address from the netdev to the device control BAR. Does not 2458 * perform the required reconfig. We do a bit of byte swapping dance because 2459 * firmware is LE. 2460 */ 2461 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2462 { 2463 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2464 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2465 } 2466 2467 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2468 { 2469 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2470 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2471 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2472 2473 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2474 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2475 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2476 } 2477 2478 /** 2479 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2480 * @nn: NFP Net device to reconfigure 2481 */ 2482 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2483 { 2484 u32 new_ctrl, update; 2485 unsigned int r; 2486 int err; 2487 2488 new_ctrl = nn->dp.ctrl; 2489 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2490 update = NFP_NET_CFG_UPDATE_GEN; 2491 update |= NFP_NET_CFG_UPDATE_MSIX; 2492 update |= NFP_NET_CFG_UPDATE_RING; 2493 2494 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2495 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2496 2497 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2498 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2499 2500 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2501 err = nfp_net_reconfig(nn, update); 2502 if (err) 2503 nn_err(nn, "Could not disable device: %d\n", err); 2504 2505 for (r = 0; r < nn->dp.num_rx_rings; r++) 2506 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2507 for (r = 0; r < nn->dp.num_tx_rings; r++) 2508 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2509 for (r = 0; r < nn->dp.num_r_vecs; r++) 2510 nfp_net_vec_clear_ring_data(nn, r); 2511 2512 nn->dp.ctrl = new_ctrl; 2513 } 2514 2515 static void 2516 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2517 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2518 { 2519 /* Write the DMA address, size and MSI-X info to the device */ 2520 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2521 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2522 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2523 } 2524 2525 static void 2526 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2527 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2528 { 2529 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2530 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2531 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2532 } 2533 2534 /** 2535 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2536 * @nn: NFP Net device to reconfigure 2537 */ 2538 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2539 { 2540 u32 bufsz, new_ctrl, update = 0; 2541 unsigned int r; 2542 int err; 2543 2544 new_ctrl = nn->dp.ctrl; 2545 2546 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2547 nfp_net_rss_write_key(nn); 2548 nfp_net_rss_write_itbl(nn); 2549 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2550 update |= NFP_NET_CFG_UPDATE_RSS; 2551 } 2552 2553 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2554 nfp_net_coalesce_write_cfg(nn); 2555 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2556 } 2557 2558 for (r = 0; r < nn->dp.num_tx_rings; r++) 2559 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2560 for (r = 0; r < nn->dp.num_rx_rings; r++) 2561 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2562 2563 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2564 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2565 2566 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2567 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2568 2569 if (nn->dp.netdev) 2570 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2571 2572 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2573 2574 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2575 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2576 2577 /* Enable device */ 2578 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2579 update |= NFP_NET_CFG_UPDATE_GEN; 2580 update |= NFP_NET_CFG_UPDATE_MSIX; 2581 update |= NFP_NET_CFG_UPDATE_RING; 2582 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2583 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2584 2585 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2586 err = nfp_net_reconfig(nn, update); 2587 if (err) { 2588 nfp_net_clear_config_and_disable(nn); 2589 return err; 2590 } 2591 2592 nn->dp.ctrl = new_ctrl; 2593 2594 for (r = 0; r < nn->dp.num_rx_rings; r++) 2595 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2596 2597 /* Since reconfiguration requests while NFP is down are ignored we 2598 * have to wipe the entire VXLAN configuration and reinitialize it. 2599 */ 2600 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2601 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2602 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2603 udp_tunnel_get_rx_info(nn->dp.netdev); 2604 } 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * nfp_net_close_stack() - Quiesce the stack (part of close) 2611 * @nn: NFP Net device to reconfigure 2612 */ 2613 static void nfp_net_close_stack(struct nfp_net *nn) 2614 { 2615 unsigned int r; 2616 2617 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2618 netif_carrier_off(nn->dp.netdev); 2619 nn->link_up = false; 2620 2621 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2622 disable_irq(nn->r_vecs[r].irq_vector); 2623 napi_disable(&nn->r_vecs[r].napi); 2624 } 2625 2626 netif_tx_disable(nn->dp.netdev); 2627 } 2628 2629 /** 2630 * nfp_net_close_free_all() - Free all runtime resources 2631 * @nn: NFP Net device to reconfigure 2632 */ 2633 static void nfp_net_close_free_all(struct nfp_net *nn) 2634 { 2635 unsigned int r; 2636 2637 nfp_net_tx_rings_free(&nn->dp); 2638 nfp_net_rx_rings_free(&nn->dp); 2639 2640 for (r = 0; r < nn->dp.num_r_vecs; r++) 2641 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2642 2643 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2644 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2645 } 2646 2647 /** 2648 * nfp_net_netdev_close() - Called when the device is downed 2649 * @netdev: netdev structure 2650 */ 2651 static int nfp_net_netdev_close(struct net_device *netdev) 2652 { 2653 struct nfp_net *nn = netdev_priv(netdev); 2654 2655 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2656 */ 2657 nfp_net_close_stack(nn); 2658 2659 /* Step 2: Tell NFP 2660 */ 2661 nfp_net_clear_config_and_disable(nn); 2662 2663 /* Step 3: Free resources 2664 */ 2665 nfp_net_close_free_all(nn); 2666 2667 nn_dbg(nn, "%s down", netdev->name); 2668 return 0; 2669 } 2670 2671 void nfp_ctrl_close(struct nfp_net *nn) 2672 { 2673 int r; 2674 2675 rtnl_lock(); 2676 2677 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2678 disable_irq(nn->r_vecs[r].irq_vector); 2679 tasklet_disable(&nn->r_vecs[r].tasklet); 2680 } 2681 2682 nfp_net_clear_config_and_disable(nn); 2683 2684 nfp_net_close_free_all(nn); 2685 2686 rtnl_unlock(); 2687 } 2688 2689 /** 2690 * nfp_net_open_stack() - Start the device from stack's perspective 2691 * @nn: NFP Net device to reconfigure 2692 */ 2693 static void nfp_net_open_stack(struct nfp_net *nn) 2694 { 2695 unsigned int r; 2696 2697 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2698 napi_enable(&nn->r_vecs[r].napi); 2699 enable_irq(nn->r_vecs[r].irq_vector); 2700 } 2701 2702 netif_tx_wake_all_queues(nn->dp.netdev); 2703 2704 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2705 nfp_net_read_link_status(nn); 2706 } 2707 2708 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2709 { 2710 int err, r; 2711 2712 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2713 nn->exn_name, sizeof(nn->exn_name), 2714 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2715 if (err) 2716 return err; 2717 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2718 nn->lsc_name, sizeof(nn->lsc_name), 2719 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2720 if (err) 2721 goto err_free_exn; 2722 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2723 2724 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2725 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2726 if (err) 2727 goto err_cleanup_vec_p; 2728 } 2729 2730 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2731 if (err) 2732 goto err_cleanup_vec; 2733 2734 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2735 if (err) 2736 goto err_free_rx_rings; 2737 2738 for (r = 0; r < nn->max_r_vecs; r++) 2739 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2740 2741 return 0; 2742 2743 err_free_rx_rings: 2744 nfp_net_rx_rings_free(&nn->dp); 2745 err_cleanup_vec: 2746 r = nn->dp.num_r_vecs; 2747 err_cleanup_vec_p: 2748 while (r--) 2749 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2750 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2751 err_free_exn: 2752 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2753 return err; 2754 } 2755 2756 static int nfp_net_netdev_open(struct net_device *netdev) 2757 { 2758 struct nfp_net *nn = netdev_priv(netdev); 2759 int err; 2760 2761 /* Step 1: Allocate resources for rings and the like 2762 * - Request interrupts 2763 * - Allocate RX and TX ring resources 2764 * - Setup initial RSS table 2765 */ 2766 err = nfp_net_open_alloc_all(nn); 2767 if (err) 2768 return err; 2769 2770 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2771 if (err) 2772 goto err_free_all; 2773 2774 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2775 if (err) 2776 goto err_free_all; 2777 2778 /* Step 2: Configure the NFP 2779 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2780 * - Write MAC address (in case it changed) 2781 * - Set the MTU 2782 * - Set the Freelist buffer size 2783 * - Enable the FW 2784 */ 2785 err = nfp_net_set_config_and_enable(nn); 2786 if (err) 2787 goto err_free_all; 2788 2789 /* Step 3: Enable for kernel 2790 * - put some freelist descriptors on each RX ring 2791 * - enable NAPI on each ring 2792 * - enable all TX queues 2793 * - set link state 2794 */ 2795 nfp_net_open_stack(nn); 2796 2797 return 0; 2798 2799 err_free_all: 2800 nfp_net_close_free_all(nn); 2801 return err; 2802 } 2803 2804 int nfp_ctrl_open(struct nfp_net *nn) 2805 { 2806 int err, r; 2807 2808 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2809 rtnl_lock(); 2810 2811 err = nfp_net_open_alloc_all(nn); 2812 if (err) 2813 goto err_unlock; 2814 2815 err = nfp_net_set_config_and_enable(nn); 2816 if (err) 2817 goto err_free_all; 2818 2819 for (r = 0; r < nn->dp.num_r_vecs; r++) 2820 enable_irq(nn->r_vecs[r].irq_vector); 2821 2822 rtnl_unlock(); 2823 2824 return 0; 2825 2826 err_free_all: 2827 nfp_net_close_free_all(nn); 2828 err_unlock: 2829 rtnl_unlock(); 2830 return err; 2831 } 2832 2833 static void nfp_net_set_rx_mode(struct net_device *netdev) 2834 { 2835 struct nfp_net *nn = netdev_priv(netdev); 2836 u32 new_ctrl; 2837 2838 new_ctrl = nn->dp.ctrl; 2839 2840 if (netdev->flags & IFF_PROMISC) { 2841 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2842 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2843 else 2844 nn_warn(nn, "FW does not support promiscuous mode\n"); 2845 } else { 2846 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2847 } 2848 2849 if (new_ctrl == nn->dp.ctrl) 2850 return; 2851 2852 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2853 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2854 2855 nn->dp.ctrl = new_ctrl; 2856 } 2857 2858 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2859 { 2860 int i; 2861 2862 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2863 nn->rss_itbl[i] = 2864 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2865 } 2866 2867 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2868 { 2869 struct nfp_net_dp new_dp = *dp; 2870 2871 *dp = nn->dp; 2872 nn->dp = new_dp; 2873 2874 nn->dp.netdev->mtu = new_dp.mtu; 2875 2876 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2877 nfp_net_rss_init_itbl(nn); 2878 } 2879 2880 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2881 { 2882 unsigned int r; 2883 int err; 2884 2885 nfp_net_dp_swap(nn, dp); 2886 2887 for (r = 0; r < nn->max_r_vecs; r++) 2888 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2889 2890 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2891 if (err) 2892 return err; 2893 2894 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2895 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2896 nn->dp.num_stack_tx_rings); 2897 if (err) 2898 return err; 2899 } 2900 2901 return nfp_net_set_config_and_enable(nn); 2902 } 2903 2904 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2905 { 2906 struct nfp_net_dp *new; 2907 2908 new = kmalloc(sizeof(*new), GFP_KERNEL); 2909 if (!new) 2910 return NULL; 2911 2912 *new = nn->dp; 2913 2914 /* Clear things which need to be recomputed */ 2915 new->fl_bufsz = 0; 2916 new->tx_rings = NULL; 2917 new->rx_rings = NULL; 2918 new->num_r_vecs = 0; 2919 new->num_stack_tx_rings = 0; 2920 2921 return new; 2922 } 2923 2924 static int 2925 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2926 struct netlink_ext_ack *extack) 2927 { 2928 /* XDP-enabled tests */ 2929 if (!dp->xdp_prog) 2930 return 0; 2931 if (dp->fl_bufsz > PAGE_SIZE) { 2932 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2933 return -EINVAL; 2934 } 2935 if (dp->num_tx_rings > nn->max_tx_rings) { 2936 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2937 return -EINVAL; 2938 } 2939 2940 return 0; 2941 } 2942 2943 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2944 struct netlink_ext_ack *extack) 2945 { 2946 int r, err; 2947 2948 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2949 2950 dp->num_stack_tx_rings = dp->num_tx_rings; 2951 if (dp->xdp_prog) 2952 dp->num_stack_tx_rings -= dp->num_rx_rings; 2953 2954 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2955 2956 err = nfp_net_check_config(nn, dp, extack); 2957 if (err) 2958 goto exit_free_dp; 2959 2960 if (!netif_running(dp->netdev)) { 2961 nfp_net_dp_swap(nn, dp); 2962 err = 0; 2963 goto exit_free_dp; 2964 } 2965 2966 /* Prepare new rings */ 2967 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2968 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2969 if (err) { 2970 dp->num_r_vecs = r; 2971 goto err_cleanup_vecs; 2972 } 2973 } 2974 2975 err = nfp_net_rx_rings_prepare(nn, dp); 2976 if (err) 2977 goto err_cleanup_vecs; 2978 2979 err = nfp_net_tx_rings_prepare(nn, dp); 2980 if (err) 2981 goto err_free_rx; 2982 2983 /* Stop device, swap in new rings, try to start the firmware */ 2984 nfp_net_close_stack(nn); 2985 nfp_net_clear_config_and_disable(nn); 2986 2987 err = nfp_net_dp_swap_enable(nn, dp); 2988 if (err) { 2989 int err2; 2990 2991 nfp_net_clear_config_and_disable(nn); 2992 2993 /* Try with old configuration and old rings */ 2994 err2 = nfp_net_dp_swap_enable(nn, dp); 2995 if (err2) 2996 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2997 err, err2); 2998 } 2999 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3000 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3001 3002 nfp_net_rx_rings_free(dp); 3003 nfp_net_tx_rings_free(dp); 3004 3005 nfp_net_open_stack(nn); 3006 exit_free_dp: 3007 kfree(dp); 3008 3009 return err; 3010 3011 err_free_rx: 3012 nfp_net_rx_rings_free(dp); 3013 err_cleanup_vecs: 3014 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3015 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3016 kfree(dp); 3017 return err; 3018 } 3019 3020 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3021 { 3022 struct nfp_net *nn = netdev_priv(netdev); 3023 struct nfp_net_dp *dp; 3024 3025 dp = nfp_net_clone_dp(nn); 3026 if (!dp) 3027 return -ENOMEM; 3028 3029 dp->mtu = new_mtu; 3030 3031 return nfp_net_ring_reconfig(nn, dp, NULL); 3032 } 3033 3034 static int 3035 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3036 { 3037 struct nfp_net *nn = netdev_priv(netdev); 3038 3039 /* Priority tagged packets with vlan id 0 are processed by the 3040 * NFP as untagged packets 3041 */ 3042 if (!vid) 3043 return 0; 3044 3045 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3046 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3047 3048 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3049 } 3050 3051 static int 3052 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3053 { 3054 struct nfp_net *nn = netdev_priv(netdev); 3055 3056 /* Priority tagged packets with vlan id 0 are processed by the 3057 * NFP as untagged packets 3058 */ 3059 if (!vid) 3060 return 0; 3061 3062 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3063 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3064 3065 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3066 } 3067 3068 static void nfp_net_stat64(struct net_device *netdev, 3069 struct rtnl_link_stats64 *stats) 3070 { 3071 struct nfp_net *nn = netdev_priv(netdev); 3072 int r; 3073 3074 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3075 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3076 u64 data[3]; 3077 unsigned int start; 3078 3079 do { 3080 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3081 data[0] = r_vec->rx_pkts; 3082 data[1] = r_vec->rx_bytes; 3083 data[2] = r_vec->rx_drops; 3084 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3085 stats->rx_packets += data[0]; 3086 stats->rx_bytes += data[1]; 3087 stats->rx_dropped += data[2]; 3088 3089 do { 3090 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3091 data[0] = r_vec->tx_pkts; 3092 data[1] = r_vec->tx_bytes; 3093 data[2] = r_vec->tx_errors; 3094 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3095 stats->tx_packets += data[0]; 3096 stats->tx_bytes += data[1]; 3097 stats->tx_errors += data[2]; 3098 } 3099 } 3100 3101 static int nfp_net_set_features(struct net_device *netdev, 3102 netdev_features_t features) 3103 { 3104 netdev_features_t changed = netdev->features ^ features; 3105 struct nfp_net *nn = netdev_priv(netdev); 3106 u32 new_ctrl; 3107 int err; 3108 3109 /* Assume this is not called with features we have not advertised */ 3110 3111 new_ctrl = nn->dp.ctrl; 3112 3113 if (changed & NETIF_F_RXCSUM) { 3114 if (features & NETIF_F_RXCSUM) 3115 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3116 else 3117 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3118 } 3119 3120 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3121 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3122 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3123 else 3124 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3125 } 3126 3127 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3128 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3129 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3130 NFP_NET_CFG_CTRL_LSO; 3131 else 3132 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3133 } 3134 3135 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3136 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3137 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3138 else 3139 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3140 } 3141 3142 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3143 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3144 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3145 else 3146 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3147 } 3148 3149 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3150 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3151 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3152 else 3153 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3154 } 3155 3156 if (changed & NETIF_F_SG) { 3157 if (features & NETIF_F_SG) 3158 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3159 else 3160 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3161 } 3162 3163 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) { 3164 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 3165 return -EBUSY; 3166 } 3167 3168 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3169 netdev->features, features, changed); 3170 3171 if (new_ctrl == nn->dp.ctrl) 3172 return 0; 3173 3174 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3175 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3176 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3177 if (err) 3178 return err; 3179 3180 nn->dp.ctrl = new_ctrl; 3181 3182 return 0; 3183 } 3184 3185 static netdev_features_t 3186 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3187 netdev_features_t features) 3188 { 3189 u8 l4_hdr; 3190 3191 /* We can't do TSO over double tagged packets (802.1AD) */ 3192 features &= vlan_features_check(skb, features); 3193 3194 if (!skb->encapsulation) 3195 return features; 3196 3197 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3198 if (skb_is_gso(skb)) { 3199 u32 hdrlen; 3200 3201 hdrlen = skb_inner_transport_header(skb) - skb->data + 3202 inner_tcp_hdrlen(skb); 3203 3204 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3205 features &= ~NETIF_F_GSO_MASK; 3206 } 3207 3208 /* VXLAN/GRE check */ 3209 switch (vlan_get_protocol(skb)) { 3210 case htons(ETH_P_IP): 3211 l4_hdr = ip_hdr(skb)->protocol; 3212 break; 3213 case htons(ETH_P_IPV6): 3214 l4_hdr = ipv6_hdr(skb)->nexthdr; 3215 break; 3216 default: 3217 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3218 } 3219 3220 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3221 skb->inner_protocol != htons(ETH_P_TEB) || 3222 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3223 (l4_hdr == IPPROTO_UDP && 3224 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3225 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3226 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3227 3228 return features; 3229 } 3230 3231 /** 3232 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3233 * @nn: NFP Net device to reconfigure 3234 * @idx: Index into the port table where new port should be written 3235 * @port: UDP port to configure (pass zero to remove VXLAN port) 3236 */ 3237 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3238 { 3239 int i; 3240 3241 nn->vxlan_ports[idx] = port; 3242 3243 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3244 return; 3245 3246 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3247 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3248 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3249 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3250 be16_to_cpu(nn->vxlan_ports[i])); 3251 3252 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3253 } 3254 3255 /** 3256 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3257 * @nn: NFP Network structure 3258 * @port: UDP port to look for 3259 * 3260 * Return: if the port is already in the table -- it's position; 3261 * if the port is not in the table -- free position to use; 3262 * if the table is full -- -ENOSPC. 3263 */ 3264 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3265 { 3266 int i, free_idx = -ENOSPC; 3267 3268 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3269 if (nn->vxlan_ports[i] == port) 3270 return i; 3271 if (!nn->vxlan_usecnt[i]) 3272 free_idx = i; 3273 } 3274 3275 return free_idx; 3276 } 3277 3278 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3279 struct udp_tunnel_info *ti) 3280 { 3281 struct nfp_net *nn = netdev_priv(netdev); 3282 int idx; 3283 3284 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3285 return; 3286 3287 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3288 if (idx == -ENOSPC) 3289 return; 3290 3291 if (!nn->vxlan_usecnt[idx]++) 3292 nfp_net_set_vxlan_port(nn, idx, ti->port); 3293 } 3294 3295 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3296 struct udp_tunnel_info *ti) 3297 { 3298 struct nfp_net *nn = netdev_priv(netdev); 3299 int idx; 3300 3301 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3302 return; 3303 3304 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3305 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3306 return; 3307 3308 if (!--nn->vxlan_usecnt[idx]) 3309 nfp_net_set_vxlan_port(nn, idx, 0); 3310 } 3311 3312 static int 3313 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog, 3314 struct netlink_ext_ack *extack) 3315 { 3316 struct nfp_net_dp *dp; 3317 3318 if (!prog == !nn->dp.xdp_prog) { 3319 WRITE_ONCE(nn->dp.xdp_prog, prog); 3320 return 0; 3321 } 3322 3323 dp = nfp_net_clone_dp(nn); 3324 if (!dp) 3325 return -ENOMEM; 3326 3327 dp->xdp_prog = prog; 3328 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3329 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3330 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3331 3332 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3333 return nfp_net_ring_reconfig(nn, dp, extack); 3334 } 3335 3336 static int 3337 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags, 3338 struct netlink_ext_ack *extack) 3339 { 3340 struct bpf_prog *drv_prog, *offload_prog; 3341 int err; 3342 3343 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES) 3344 return -EBUSY; 3345 3346 /* Load both when no flags set to allow easy activation of driver path 3347 * when program is replaced by one which can't be offloaded. 3348 */ 3349 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog; 3350 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog; 3351 3352 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack); 3353 if (err) 3354 return err; 3355 3356 err = nfp_app_xdp_offload(nn->app, nn, offload_prog); 3357 if (err && flags & XDP_FLAGS_HW_MODE) 3358 return err; 3359 3360 if (nn->xdp_prog) 3361 bpf_prog_put(nn->xdp_prog); 3362 nn->xdp_prog = prog; 3363 nn->xdp_flags = flags; 3364 3365 return 0; 3366 } 3367 3368 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 3369 { 3370 struct nfp_net *nn = netdev_priv(netdev); 3371 3372 switch (xdp->command) { 3373 case XDP_SETUP_PROG: 3374 case XDP_SETUP_PROG_HW: 3375 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags, 3376 xdp->extack); 3377 case XDP_QUERY_PROG: 3378 xdp->prog_attached = !!nn->xdp_prog; 3379 if (nn->dp.bpf_offload_xdp) 3380 xdp->prog_attached = XDP_ATTACHED_HW; 3381 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0; 3382 return 0; 3383 default: 3384 return -EINVAL; 3385 } 3386 } 3387 3388 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3389 { 3390 struct nfp_net *nn = netdev_priv(netdev); 3391 struct sockaddr *saddr = addr; 3392 int err; 3393 3394 err = eth_prepare_mac_addr_change(netdev, addr); 3395 if (err) 3396 return err; 3397 3398 nfp_net_write_mac_addr(nn, saddr->sa_data); 3399 3400 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3401 if (err) 3402 return err; 3403 3404 eth_commit_mac_addr_change(netdev, addr); 3405 3406 return 0; 3407 } 3408 3409 const struct net_device_ops nfp_net_netdev_ops = { 3410 .ndo_open = nfp_net_netdev_open, 3411 .ndo_stop = nfp_net_netdev_close, 3412 .ndo_start_xmit = nfp_net_tx, 3413 .ndo_get_stats64 = nfp_net_stat64, 3414 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3415 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3416 .ndo_setup_tc = nfp_port_setup_tc, 3417 .ndo_tx_timeout = nfp_net_tx_timeout, 3418 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3419 .ndo_change_mtu = nfp_net_change_mtu, 3420 .ndo_set_mac_address = nfp_net_set_mac_address, 3421 .ndo_set_features = nfp_net_set_features, 3422 .ndo_features_check = nfp_net_features_check, 3423 .ndo_get_phys_port_name = nfp_port_get_phys_port_name, 3424 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3425 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3426 .ndo_xdp = nfp_net_xdp, 3427 }; 3428 3429 /** 3430 * nfp_net_info() - Print general info about the NIC 3431 * @nn: NFP Net device to reconfigure 3432 */ 3433 void nfp_net_info(struct nfp_net *nn) 3434 { 3435 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3436 nn->dp.is_vf ? "VF " : "", 3437 nn->dp.num_tx_rings, nn->max_tx_rings, 3438 nn->dp.num_rx_rings, nn->max_rx_rings); 3439 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3440 nn->fw_ver.resv, nn->fw_ver.class, 3441 nn->fw_ver.major, nn->fw_ver.minor, 3442 nn->max_mtu); 3443 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3444 nn->cap, 3445 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3446 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3447 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3448 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3449 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3450 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3451 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3452 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3453 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3454 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3455 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3456 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3457 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3458 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3459 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3460 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3461 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3462 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3463 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3464 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3465 "RXCSUM_COMPLETE " : "", 3466 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3467 nfp_app_extra_cap(nn->app, nn)); 3468 } 3469 3470 /** 3471 * nfp_net_alloc() - Allocate netdev and related structure 3472 * @pdev: PCI device 3473 * @needs_netdev: Whether to allocate a netdev for this vNIC 3474 * @max_tx_rings: Maximum number of TX rings supported by device 3475 * @max_rx_rings: Maximum number of RX rings supported by device 3476 * 3477 * This function allocates a netdev device and fills in the initial 3478 * part of the @struct nfp_net structure. In case of control device 3479 * nfp_net structure is allocated without the netdev. 3480 * 3481 * Return: NFP Net device structure, or ERR_PTR on error. 3482 */ 3483 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3484 unsigned int max_tx_rings, 3485 unsigned int max_rx_rings) 3486 { 3487 struct nfp_net *nn; 3488 3489 if (needs_netdev) { 3490 struct net_device *netdev; 3491 3492 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3493 max_tx_rings, max_rx_rings); 3494 if (!netdev) 3495 return ERR_PTR(-ENOMEM); 3496 3497 SET_NETDEV_DEV(netdev, &pdev->dev); 3498 nn = netdev_priv(netdev); 3499 nn->dp.netdev = netdev; 3500 } else { 3501 nn = vzalloc(sizeof(*nn)); 3502 if (!nn) 3503 return ERR_PTR(-ENOMEM); 3504 } 3505 3506 nn->dp.dev = &pdev->dev; 3507 nn->pdev = pdev; 3508 3509 nn->max_tx_rings = max_tx_rings; 3510 nn->max_rx_rings = max_rx_rings; 3511 3512 nn->dp.num_tx_rings = min_t(unsigned int, 3513 max_tx_rings, num_online_cpus()); 3514 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3515 netif_get_num_default_rss_queues()); 3516 3517 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3518 nn->dp.num_r_vecs = min_t(unsigned int, 3519 nn->dp.num_r_vecs, num_online_cpus()); 3520 3521 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3522 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3523 3524 spin_lock_init(&nn->reconfig_lock); 3525 spin_lock_init(&nn->link_status_lock); 3526 3527 setup_timer(&nn->reconfig_timer, 3528 nfp_net_reconfig_timer, (unsigned long)nn); 3529 3530 return nn; 3531 } 3532 3533 /** 3534 * nfp_net_free() - Undo what @nfp_net_alloc() did 3535 * @nn: NFP Net device to reconfigure 3536 */ 3537 void nfp_net_free(struct nfp_net *nn) 3538 { 3539 if (nn->xdp_prog) 3540 bpf_prog_put(nn->xdp_prog); 3541 3542 if (nn->dp.netdev) 3543 free_netdev(nn->dp.netdev); 3544 else 3545 vfree(nn); 3546 } 3547 3548 /** 3549 * nfp_net_rss_key_sz() - Get current size of the RSS key 3550 * @nn: NFP Net device instance 3551 * 3552 * Return: size of the RSS key for currently selected hash function. 3553 */ 3554 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3555 { 3556 switch (nn->rss_hfunc) { 3557 case ETH_RSS_HASH_TOP: 3558 return NFP_NET_CFG_RSS_KEY_SZ; 3559 case ETH_RSS_HASH_XOR: 3560 return 0; 3561 case ETH_RSS_HASH_CRC32: 3562 return 4; 3563 } 3564 3565 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3566 return 0; 3567 } 3568 3569 /** 3570 * nfp_net_rss_init() - Set the initial RSS parameters 3571 * @nn: NFP Net device to reconfigure 3572 */ 3573 static void nfp_net_rss_init(struct nfp_net *nn) 3574 { 3575 unsigned long func_bit, rss_cap_hfunc; 3576 u32 reg; 3577 3578 /* Read the RSS function capability and select first supported func */ 3579 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3580 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3581 if (!rss_cap_hfunc) 3582 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3583 NFP_NET_CFG_RSS_TOEPLITZ); 3584 3585 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3586 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3587 dev_warn(nn->dp.dev, 3588 "Bad RSS config, defaulting to Toeplitz hash\n"); 3589 func_bit = ETH_RSS_HASH_TOP_BIT; 3590 } 3591 nn->rss_hfunc = 1 << func_bit; 3592 3593 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3594 3595 nfp_net_rss_init_itbl(nn); 3596 3597 /* Enable IPv4/IPv6 TCP by default */ 3598 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3599 NFP_NET_CFG_RSS_IPV6_TCP | 3600 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3601 NFP_NET_CFG_RSS_MASK; 3602 } 3603 3604 /** 3605 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3606 * @nn: NFP Net device to reconfigure 3607 */ 3608 static void nfp_net_irqmod_init(struct nfp_net *nn) 3609 { 3610 nn->rx_coalesce_usecs = 50; 3611 nn->rx_coalesce_max_frames = 64; 3612 nn->tx_coalesce_usecs = 50; 3613 nn->tx_coalesce_max_frames = 64; 3614 } 3615 3616 static void nfp_net_netdev_init(struct nfp_net *nn) 3617 { 3618 struct net_device *netdev = nn->dp.netdev; 3619 3620 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3621 3622 netdev->mtu = nn->dp.mtu; 3623 3624 /* Advertise/enable offloads based on capabilities 3625 * 3626 * Note: netdev->features show the currently enabled features 3627 * and netdev->hw_features advertises which features are 3628 * supported. By default we enable most features. 3629 */ 3630 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3631 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3632 3633 netdev->hw_features = NETIF_F_HIGHDMA; 3634 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3635 netdev->hw_features |= NETIF_F_RXCSUM; 3636 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3637 } 3638 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3639 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3640 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3641 } 3642 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3643 netdev->hw_features |= NETIF_F_SG; 3644 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3645 } 3646 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3647 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3648 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3649 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3650 NFP_NET_CFG_CTRL_LSO; 3651 } 3652 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3653 netdev->hw_features |= NETIF_F_RXHASH; 3654 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3655 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3656 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3657 netdev->hw_features |= NETIF_F_GSO_GRE | 3658 NETIF_F_GSO_UDP_TUNNEL; 3659 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3660 3661 netdev->hw_enc_features = netdev->hw_features; 3662 } 3663 3664 netdev->vlan_features = netdev->hw_features; 3665 3666 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3667 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3668 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3669 } 3670 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3671 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3672 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3673 } else { 3674 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3675 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3676 } 3677 } 3678 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3679 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3680 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3681 } 3682 3683 netdev->features = netdev->hw_features; 3684 3685 if (nfp_app_has_tc(nn->app)) 3686 netdev->hw_features |= NETIF_F_HW_TC; 3687 3688 /* Advertise but disable TSO by default. */ 3689 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3690 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3691 3692 /* Finalise the netdev setup */ 3693 netdev->netdev_ops = &nfp_net_netdev_ops; 3694 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3695 3696 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3697 3698 /* MTU range: 68 - hw-specific max */ 3699 netdev->min_mtu = ETH_MIN_MTU; 3700 netdev->max_mtu = nn->max_mtu; 3701 3702 netif_carrier_off(netdev); 3703 3704 nfp_net_set_ethtool_ops(netdev); 3705 } 3706 3707 /** 3708 * nfp_net_init() - Initialise/finalise the nfp_net structure 3709 * @nn: NFP Net device structure 3710 * 3711 * Return: 0 on success or negative errno on error. 3712 */ 3713 int nfp_net_init(struct nfp_net *nn) 3714 { 3715 int err; 3716 3717 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3718 3719 /* Get some of the read-only fields from the BAR */ 3720 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3721 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3722 3723 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3724 * we allow use of non-chained metadata if RSS(v1) is the only 3725 * advertised capability requiring metadata. 3726 */ 3727 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3728 !nn->dp.netdev || 3729 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3730 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3731 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3732 * it has the same meaning as RSSv2. 3733 */ 3734 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3735 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3736 3737 /* Determine RX packet/metadata boundary offset */ 3738 if (nn->fw_ver.major >= 2) { 3739 u32 reg; 3740 3741 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3742 if (reg > NFP_NET_MAX_PREPEND) { 3743 nn_err(nn, "Invalid rx offset: %d\n", reg); 3744 return -EINVAL; 3745 } 3746 nn->dp.rx_offset = reg; 3747 } else { 3748 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3749 } 3750 3751 /* Set default MTU and Freelist buffer size */ 3752 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3753 nn->dp.mtu = nn->max_mtu; 3754 else 3755 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3756 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3757 3758 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3759 nfp_net_rss_init(nn); 3760 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3761 NFP_NET_CFG_CTRL_RSS; 3762 } 3763 3764 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3765 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3766 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3767 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3768 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3769 3770 /* Allow IRQ moderation, if supported */ 3771 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3772 nfp_net_irqmod_init(nn); 3773 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3774 } 3775 3776 if (nn->dp.netdev) 3777 nfp_net_netdev_init(nn); 3778 3779 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3780 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3781 3782 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3783 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3784 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3785 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3786 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3787 NFP_NET_CFG_UPDATE_GEN); 3788 if (err) 3789 return err; 3790 3791 nfp_net_vecs_init(nn); 3792 3793 if (!nn->dp.netdev) 3794 return 0; 3795 return register_netdev(nn->dp.netdev); 3796 } 3797 3798 /** 3799 * nfp_net_clean() - Undo what nfp_net_init() did. 3800 * @nn: NFP Net device structure 3801 */ 3802 void nfp_net_clean(struct nfp_net *nn) 3803 { 3804 if (!nn->dp.netdev) 3805 return; 3806 3807 unregister_netdev(nn->dp.netdev); 3808 } 3809