1 /* 2 * Copyright (C) 2015 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/module.h> 45 #include <linux/kernel.h> 46 #include <linux/init.h> 47 #include <linux/fs.h> 48 #include <linux/netdevice.h> 49 #include <linux/etherdevice.h> 50 #include <linux/interrupt.h> 51 #include <linux/ip.h> 52 #include <linux/ipv6.h> 53 #include <linux/pci.h> 54 #include <linux/pci_regs.h> 55 #include <linux/msi.h> 56 #include <linux/ethtool.h> 57 #include <linux/log2.h> 58 #include <linux/if_vlan.h> 59 #include <linux/random.h> 60 61 #include <linux/ktime.h> 62 63 #include <net/pkt_cls.h> 64 #include <net/vxlan.h> 65 66 #include "nfp_net_ctrl.h" 67 #include "nfp_net.h" 68 69 /** 70 * nfp_net_get_fw_version() - Read and parse the FW version 71 * @fw_ver: Output fw_version structure to read to 72 * @ctrl_bar: Mapped address of the control BAR 73 */ 74 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 75 void __iomem *ctrl_bar) 76 { 77 u32 reg; 78 79 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 80 put_unaligned_le32(reg, fw_ver); 81 } 82 83 /* Firmware reconfig 84 * 85 * Firmware reconfig may take a while so we have two versions of it - 86 * synchronous and asynchronous (posted). All synchronous callers are holding 87 * RTNL so we don't have to worry about serializing them. 88 */ 89 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 90 { 91 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 92 /* ensure update is written before pinging HW */ 93 nn_pci_flush(nn); 94 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 95 } 96 97 /* Pass 0 as update to run posted reconfigs. */ 98 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 99 { 100 update |= nn->reconfig_posted; 101 nn->reconfig_posted = 0; 102 103 nfp_net_reconfig_start(nn, update); 104 105 nn->reconfig_timer_active = true; 106 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 107 } 108 109 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 110 { 111 u32 reg; 112 113 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 114 if (reg == 0) 115 return true; 116 if (reg & NFP_NET_CFG_UPDATE_ERR) { 117 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 118 return true; 119 } else if (last_check) { 120 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 121 return true; 122 } 123 124 return false; 125 } 126 127 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 128 { 129 bool timed_out = false; 130 131 /* Poll update field, waiting for NFP to ack the config */ 132 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 133 msleep(1); 134 timed_out = time_is_before_eq_jiffies(deadline); 135 } 136 137 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 138 return -EIO; 139 140 return timed_out ? -EIO : 0; 141 } 142 143 static void nfp_net_reconfig_timer(unsigned long data) 144 { 145 struct nfp_net *nn = (void *)data; 146 147 spin_lock_bh(&nn->reconfig_lock); 148 149 nn->reconfig_timer_active = false; 150 151 /* If sync caller is present it will take over from us */ 152 if (nn->reconfig_sync_present) 153 goto done; 154 155 /* Read reconfig status and report errors */ 156 nfp_net_reconfig_check_done(nn, true); 157 158 if (nn->reconfig_posted) 159 nfp_net_reconfig_start_async(nn, 0); 160 done: 161 spin_unlock_bh(&nn->reconfig_lock); 162 } 163 164 /** 165 * nfp_net_reconfig_post() - Post async reconfig request 166 * @nn: NFP Net device to reconfigure 167 * @update: The value for the update field in the BAR config 168 * 169 * Record FW reconfiguration request. Reconfiguration will be kicked off 170 * whenever reconfiguration machinery is idle. Multiple requests can be 171 * merged together! 172 */ 173 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 174 { 175 spin_lock_bh(&nn->reconfig_lock); 176 177 /* Sync caller will kick off async reconf when it's done, just post */ 178 if (nn->reconfig_sync_present) { 179 nn->reconfig_posted |= update; 180 goto done; 181 } 182 183 /* Opportunistically check if the previous command is done */ 184 if (!nn->reconfig_timer_active || 185 nfp_net_reconfig_check_done(nn, false)) 186 nfp_net_reconfig_start_async(nn, update); 187 else 188 nn->reconfig_posted |= update; 189 done: 190 spin_unlock_bh(&nn->reconfig_lock); 191 } 192 193 /** 194 * nfp_net_reconfig() - Reconfigure the firmware 195 * @nn: NFP Net device to reconfigure 196 * @update: The value for the update field in the BAR config 197 * 198 * Write the update word to the BAR and ping the reconfig queue. The 199 * poll until the firmware has acknowledged the update by zeroing the 200 * update word. 201 * 202 * Return: Negative errno on error, 0 on success 203 */ 204 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 205 { 206 bool cancelled_timer = false; 207 u32 pre_posted_requests; 208 int ret; 209 210 spin_lock_bh(&nn->reconfig_lock); 211 212 nn->reconfig_sync_present = true; 213 214 if (nn->reconfig_timer_active) { 215 del_timer(&nn->reconfig_timer); 216 nn->reconfig_timer_active = false; 217 cancelled_timer = true; 218 } 219 pre_posted_requests = nn->reconfig_posted; 220 nn->reconfig_posted = 0; 221 222 spin_unlock_bh(&nn->reconfig_lock); 223 224 if (cancelled_timer) 225 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 226 227 /* Run the posted reconfigs which were issued before we started */ 228 if (pre_posted_requests) { 229 nfp_net_reconfig_start(nn, pre_posted_requests); 230 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 231 } 232 233 nfp_net_reconfig_start(nn, update); 234 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 235 236 spin_lock_bh(&nn->reconfig_lock); 237 238 if (nn->reconfig_posted) 239 nfp_net_reconfig_start_async(nn, 0); 240 241 nn->reconfig_sync_present = false; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 return ret; 246 } 247 248 /* Interrupt configuration and handling 249 */ 250 251 /** 252 * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking 253 * @nn: NFP Network structure 254 * @entry_nr: MSI-X table entry 255 * 256 * Clear the MSI-X table mask bit for the given entry bypassing Linux irq 257 * handling subsystem. Use *only* to reenable automasked vectors. 258 */ 259 static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr) 260 { 261 struct list_head *msi_head = &nn->pdev->dev.msi_list; 262 struct msi_desc *entry; 263 u32 off; 264 265 /* All MSI-Xs have the same mask_base */ 266 entry = list_first_entry(msi_head, struct msi_desc, list); 267 268 off = (PCI_MSIX_ENTRY_SIZE * entry_nr) + 269 PCI_MSIX_ENTRY_VECTOR_CTRL; 270 writel(0, entry->mask_base + off); 271 readl(entry->mask_base); 272 } 273 274 /** 275 * nfp_net_irq_unmask() - Unmask automasked interrupt 276 * @nn: NFP Network structure 277 * @entry_nr: MSI-X table entry 278 * 279 * If MSI-X auto-masking is enabled clear the mask bit, otherwise 280 * clear the ICR for the entry. 281 */ 282 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 283 { 284 if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) { 285 nfp_net_irq_unmask_msix(nn, entry_nr); 286 return; 287 } 288 289 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 290 nn_pci_flush(nn); 291 } 292 293 /** 294 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs 295 * @nn: NFP Network structure 296 * @nr_vecs: Number of MSI-X vectors to allocate 297 * 298 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors. 299 * 300 * Return: Number of MSI-X vectors obtained or 0 on error. 301 */ 302 static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs) 303 { 304 struct pci_dev *pdev = nn->pdev; 305 int nvecs; 306 int i; 307 308 for (i = 0; i < nr_vecs; i++) 309 nn->irq_entries[i].entry = i; 310 311 nvecs = pci_enable_msix_range(pdev, nn->irq_entries, 312 NFP_NET_NON_Q_VECTORS + 1, nr_vecs); 313 if (nvecs < 0) { 314 nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n", 315 NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs); 316 return 0; 317 } 318 319 return nvecs; 320 } 321 322 /** 323 * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want 324 * @nn: NFP Network structure 325 * 326 * We want a vector per CPU (or ring), whatever is smaller plus 327 * NFP_NET_NON_Q_VECTORS for LSC etc. 328 * 329 * Return: Number of interrupts wanted 330 */ 331 static int nfp_net_irqs_wanted(struct nfp_net *nn) 332 { 333 int ncpus; 334 int vecs; 335 336 ncpus = num_online_cpus(); 337 338 vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings); 339 vecs = min_t(int, vecs, ncpus); 340 341 return vecs + NFP_NET_NON_Q_VECTORS; 342 } 343 344 /** 345 * nfp_net_irqs_alloc() - allocates MSI-X irqs 346 * @nn: NFP Network structure 347 * 348 * Return: Number of irqs obtained or 0 on error. 349 */ 350 int nfp_net_irqs_alloc(struct nfp_net *nn) 351 { 352 int wanted_irqs; 353 354 wanted_irqs = nfp_net_irqs_wanted(nn); 355 356 nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs); 357 if (nn->num_irqs == 0) { 358 nn_err(nn, "Failed to allocate MSI-X IRQs\n"); 359 return 0; 360 } 361 362 nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS; 363 364 if (nn->num_irqs < wanted_irqs) 365 nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n", 366 wanted_irqs, nn->num_irqs); 367 368 return nn->num_irqs; 369 } 370 371 /** 372 * nfp_net_irqs_disable() - Disable interrupts 373 * @nn: NFP Network structure 374 * 375 * Undoes what @nfp_net_irqs_alloc() does. 376 */ 377 void nfp_net_irqs_disable(struct nfp_net *nn) 378 { 379 pci_disable_msix(nn->pdev); 380 } 381 382 /** 383 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 384 * @irq: Interrupt 385 * @data: Opaque data structure 386 * 387 * Return: Indicate if the interrupt has been handled. 388 */ 389 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 390 { 391 struct nfp_net_r_vector *r_vec = data; 392 393 napi_schedule_irqoff(&r_vec->napi); 394 395 /* The FW auto-masks any interrupt, either via the MASK bit in 396 * the MSI-X table or via the per entry ICR field. So there 397 * is no need to disable interrupts here. 398 */ 399 return IRQ_HANDLED; 400 } 401 402 /** 403 * nfp_net_read_link_status() - Reread link status from control BAR 404 * @nn: NFP Network structure 405 */ 406 static void nfp_net_read_link_status(struct nfp_net *nn) 407 { 408 unsigned long flags; 409 bool link_up; 410 u32 sts; 411 412 spin_lock_irqsave(&nn->link_status_lock, flags); 413 414 sts = nn_readl(nn, NFP_NET_CFG_STS); 415 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 416 417 if (nn->link_up == link_up) 418 goto out; 419 420 nn->link_up = link_up; 421 422 if (nn->link_up) { 423 netif_carrier_on(nn->netdev); 424 netdev_info(nn->netdev, "NIC Link is Up\n"); 425 } else { 426 netif_carrier_off(nn->netdev); 427 netdev_info(nn->netdev, "NIC Link is Down\n"); 428 } 429 out: 430 spin_unlock_irqrestore(&nn->link_status_lock, flags); 431 } 432 433 /** 434 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 435 * @irq: Interrupt 436 * @data: Opaque data structure 437 * 438 * Return: Indicate if the interrupt has been handled. 439 */ 440 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 441 { 442 struct nfp_net *nn = data; 443 444 nfp_net_read_link_status(nn); 445 446 nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX); 447 448 return IRQ_HANDLED; 449 } 450 451 /** 452 * nfp_net_irq_exn() - Interrupt service routine for exceptions 453 * @irq: Interrupt 454 * @data: Opaque data structure 455 * 456 * Return: Indicate if the interrupt has been handled. 457 */ 458 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 459 { 460 struct nfp_net *nn = data; 461 462 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 463 /* XXX TO BE IMPLEMENTED */ 464 return IRQ_HANDLED; 465 } 466 467 /** 468 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 469 * @tx_ring: TX ring structure 470 * @r_vec: IRQ vector servicing this ring 471 * @idx: Ring index 472 */ 473 static void 474 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 475 struct nfp_net_r_vector *r_vec, unsigned int idx) 476 { 477 struct nfp_net *nn = r_vec->nfp_net; 478 479 tx_ring->idx = idx; 480 tx_ring->r_vec = r_vec; 481 482 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 483 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 484 } 485 486 /** 487 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 488 * @rx_ring: RX ring structure 489 * @r_vec: IRQ vector servicing this ring 490 * @idx: Ring index 491 */ 492 static void 493 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 494 struct nfp_net_r_vector *r_vec, unsigned int idx) 495 { 496 struct nfp_net *nn = r_vec->nfp_net; 497 498 rx_ring->idx = idx; 499 rx_ring->r_vec = r_vec; 500 501 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 502 rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1); 503 504 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 505 rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx); 506 } 507 508 /** 509 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs. 510 * @netdev: netdev structure 511 */ 512 static void nfp_net_irqs_assign(struct net_device *netdev) 513 { 514 struct nfp_net *nn = netdev_priv(netdev); 515 struct nfp_net_r_vector *r_vec; 516 int r; 517 518 /* Assumes nn->num_tx_rings == nn->num_rx_rings */ 519 if (nn->num_tx_rings > nn->num_r_vecs) { 520 nn_warn(nn, "More rings (%d) than vectors (%d).\n", 521 nn->num_tx_rings, nn->num_r_vecs); 522 nn->num_tx_rings = nn->num_r_vecs; 523 nn->num_rx_rings = nn->num_r_vecs; 524 } 525 526 nn->lsc_handler = nfp_net_irq_lsc; 527 nn->exn_handler = nfp_net_irq_exn; 528 529 for (r = 0; r < nn->num_r_vecs; r++) { 530 r_vec = &nn->r_vecs[r]; 531 r_vec->nfp_net = nn; 532 r_vec->handler = nfp_net_irq_rxtx; 533 r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r; 534 535 cpumask_set_cpu(r, &r_vec->affinity_mask); 536 } 537 } 538 539 /** 540 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 541 * @nn: NFP Network structure 542 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 543 * @format: printf-style format to construct the interrupt name 544 * @name: Pointer to allocated space for interrupt name 545 * @name_sz: Size of space for interrupt name 546 * @vector_idx: Index of MSI-X vector used for this interrupt 547 * @handler: IRQ handler to register for this interrupt 548 */ 549 static int 550 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 551 const char *format, char *name, size_t name_sz, 552 unsigned int vector_idx, irq_handler_t handler) 553 { 554 struct msix_entry *entry; 555 int err; 556 557 entry = &nn->irq_entries[vector_idx]; 558 559 snprintf(name, name_sz, format, netdev_name(nn->netdev)); 560 err = request_irq(entry->vector, handler, 0, name, nn); 561 if (err) { 562 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 563 entry->vector, err); 564 return err; 565 } 566 nn_writeb(nn, ctrl_offset, vector_idx); 567 568 return 0; 569 } 570 571 /** 572 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 573 * @nn: NFP Network structure 574 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 575 * @vector_idx: Index of MSI-X vector used for this interrupt 576 */ 577 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 578 unsigned int vector_idx) 579 { 580 nn_writeb(nn, ctrl_offset, 0xff); 581 free_irq(nn->irq_entries[vector_idx].vector, nn); 582 } 583 584 /* Transmit 585 * 586 * One queue controller peripheral queue is used for transmit. The 587 * driver en-queues packets for transmit by advancing the write 588 * pointer. The device indicates that packets have transmitted by 589 * advancing the read pointer. The driver maintains a local copy of 590 * the read and write pointer in @struct nfp_net_tx_ring. The driver 591 * keeps @wr_p in sync with the queue controller write pointer and can 592 * determine how many packets have been transmitted by comparing its 593 * copy of the read pointer @rd_p with the read pointer maintained by 594 * the queue controller peripheral. 595 */ 596 597 /** 598 * nfp_net_tx_full() - Check if the TX ring is full 599 * @tx_ring: TX ring to check 600 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 601 * 602 * This function checks, based on the *host copy* of read/write 603 * pointer if a given TX ring is full. The real TX queue may have 604 * some newly made available slots. 605 * 606 * Return: True if the ring is full. 607 */ 608 static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 609 { 610 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 611 } 612 613 /* Wrappers for deciding when to stop and restart TX queues */ 614 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 615 { 616 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 617 } 618 619 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 620 { 621 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 622 } 623 624 /** 625 * nfp_net_tx_ring_stop() - stop tx ring 626 * @nd_q: netdev queue 627 * @tx_ring: driver tx queue structure 628 * 629 * Safely stop TX ring. Remember that while we are running .start_xmit() 630 * someone else may be cleaning the TX ring completions so we need to be 631 * extra careful here. 632 */ 633 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 634 struct nfp_net_tx_ring *tx_ring) 635 { 636 netif_tx_stop_queue(nd_q); 637 638 /* We can race with the TX completion out of NAPI so recheck */ 639 smp_mb(); 640 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 641 netif_tx_start_queue(nd_q); 642 } 643 644 /** 645 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 646 * @nn: NFP Net device 647 * @r_vec: per-ring structure 648 * @txbuf: Pointer to driver soft TX descriptor 649 * @txd: Pointer to HW TX descriptor 650 * @skb: Pointer to SKB 651 * 652 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 653 * Return error on packet header greater than maximum supported LSO header size. 654 */ 655 static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 656 struct nfp_net_tx_buf *txbuf, 657 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 658 { 659 u32 hdrlen; 660 u16 mss; 661 662 if (!skb_is_gso(skb)) 663 return; 664 665 if (!skb->encapsulation) 666 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 667 else 668 hdrlen = skb_inner_transport_header(skb) - skb->data + 669 inner_tcp_hdrlen(skb); 670 671 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 672 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 673 674 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 675 txd->l4_offset = hdrlen; 676 txd->mss = cpu_to_le16(mss); 677 txd->flags |= PCIE_DESC_TX_LSO; 678 679 u64_stats_update_begin(&r_vec->tx_sync); 680 r_vec->tx_lso++; 681 u64_stats_update_end(&r_vec->tx_sync); 682 } 683 684 /** 685 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 686 * @nn: NFP Net device 687 * @r_vec: per-ring structure 688 * @txbuf: Pointer to driver soft TX descriptor 689 * @txd: Pointer to TX descriptor 690 * @skb: Pointer to SKB 691 * 692 * This function sets the TX checksum flags in the TX descriptor based 693 * on the configuration and the protocol of the packet to be transmitted. 694 */ 695 static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 696 struct nfp_net_tx_buf *txbuf, 697 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 698 { 699 struct ipv6hdr *ipv6h; 700 struct iphdr *iph; 701 u8 l4_hdr; 702 703 if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 704 return; 705 706 if (skb->ip_summed != CHECKSUM_PARTIAL) 707 return; 708 709 txd->flags |= PCIE_DESC_TX_CSUM; 710 if (skb->encapsulation) 711 txd->flags |= PCIE_DESC_TX_ENCAP; 712 713 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 714 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 715 716 if (iph->version == 4) { 717 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 718 l4_hdr = iph->protocol; 719 } else if (ipv6h->version == 6) { 720 l4_hdr = ipv6h->nexthdr; 721 } else { 722 nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n", 723 iph->version); 724 return; 725 } 726 727 switch (l4_hdr) { 728 case IPPROTO_TCP: 729 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 730 break; 731 case IPPROTO_UDP: 732 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 733 break; 734 default: 735 nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n", 736 l4_hdr); 737 return; 738 } 739 740 u64_stats_update_begin(&r_vec->tx_sync); 741 if (skb->encapsulation) 742 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 743 else 744 r_vec->hw_csum_tx += txbuf->pkt_cnt; 745 u64_stats_update_end(&r_vec->tx_sync); 746 } 747 748 /** 749 * nfp_net_tx() - Main transmit entry point 750 * @skb: SKB to transmit 751 * @netdev: netdev structure 752 * 753 * Return: NETDEV_TX_OK on success. 754 */ 755 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 756 { 757 struct nfp_net *nn = netdev_priv(netdev); 758 const struct skb_frag_struct *frag; 759 struct nfp_net_r_vector *r_vec; 760 struct nfp_net_tx_desc *txd, txdg; 761 struct nfp_net_tx_buf *txbuf; 762 struct nfp_net_tx_ring *tx_ring; 763 struct netdev_queue *nd_q; 764 dma_addr_t dma_addr; 765 unsigned int fsize; 766 int f, nr_frags; 767 int wr_idx; 768 u16 qidx; 769 770 qidx = skb_get_queue_mapping(skb); 771 tx_ring = &nn->tx_rings[qidx]; 772 r_vec = tx_ring->r_vec; 773 nd_q = netdev_get_tx_queue(nn->netdev, qidx); 774 775 nr_frags = skb_shinfo(skb)->nr_frags; 776 777 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 778 nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n", 779 qidx, tx_ring->wr_p, tx_ring->rd_p); 780 netif_tx_stop_queue(nd_q); 781 u64_stats_update_begin(&r_vec->tx_sync); 782 r_vec->tx_busy++; 783 u64_stats_update_end(&r_vec->tx_sync); 784 return NETDEV_TX_BUSY; 785 } 786 787 /* Start with the head skbuf */ 788 dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb), 789 DMA_TO_DEVICE); 790 if (dma_mapping_error(&nn->pdev->dev, dma_addr)) 791 goto err_free; 792 793 wr_idx = tx_ring->wr_p % tx_ring->cnt; 794 795 /* Stash the soft descriptor of the head then initialize it */ 796 txbuf = &tx_ring->txbufs[wr_idx]; 797 txbuf->skb = skb; 798 txbuf->dma_addr = dma_addr; 799 txbuf->fidx = -1; 800 txbuf->pkt_cnt = 1; 801 txbuf->real_len = skb->len; 802 803 /* Build TX descriptor */ 804 txd = &tx_ring->txds[wr_idx]; 805 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; 806 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 807 nfp_desc_set_dma_addr(txd, dma_addr); 808 txd->data_len = cpu_to_le16(skb->len); 809 810 txd->flags = 0; 811 txd->mss = 0; 812 txd->l4_offset = 0; 813 814 nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb); 815 816 nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb); 817 818 if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 819 txd->flags |= PCIE_DESC_TX_VLAN; 820 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 821 } 822 823 /* Gather DMA */ 824 if (nr_frags > 0) { 825 /* all descs must match except for in addr, length and eop */ 826 txdg = *txd; 827 828 for (f = 0; f < nr_frags; f++) { 829 frag = &skb_shinfo(skb)->frags[f]; 830 fsize = skb_frag_size(frag); 831 832 dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0, 833 fsize, DMA_TO_DEVICE); 834 if (dma_mapping_error(&nn->pdev->dev, dma_addr)) 835 goto err_unmap; 836 837 wr_idx = (wr_idx + 1) % tx_ring->cnt; 838 tx_ring->txbufs[wr_idx].skb = skb; 839 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 840 tx_ring->txbufs[wr_idx].fidx = f; 841 842 txd = &tx_ring->txds[wr_idx]; 843 *txd = txdg; 844 txd->dma_len = cpu_to_le16(fsize); 845 nfp_desc_set_dma_addr(txd, dma_addr); 846 txd->offset_eop = 847 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 848 } 849 850 u64_stats_update_begin(&r_vec->tx_sync); 851 r_vec->tx_gather++; 852 u64_stats_update_end(&r_vec->tx_sync); 853 } 854 855 netdev_tx_sent_queue(nd_q, txbuf->real_len); 856 857 tx_ring->wr_p += nr_frags + 1; 858 if (nfp_net_tx_ring_should_stop(tx_ring)) 859 nfp_net_tx_ring_stop(nd_q, tx_ring); 860 861 tx_ring->wr_ptr_add += nr_frags + 1; 862 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) { 863 /* force memory write before we let HW know */ 864 wmb(); 865 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 866 tx_ring->wr_ptr_add = 0; 867 } 868 869 skb_tx_timestamp(skb); 870 871 return NETDEV_TX_OK; 872 873 err_unmap: 874 --f; 875 while (f >= 0) { 876 frag = &skb_shinfo(skb)->frags[f]; 877 dma_unmap_page(&nn->pdev->dev, 878 tx_ring->txbufs[wr_idx].dma_addr, 879 skb_frag_size(frag), DMA_TO_DEVICE); 880 tx_ring->txbufs[wr_idx].skb = NULL; 881 tx_ring->txbufs[wr_idx].dma_addr = 0; 882 tx_ring->txbufs[wr_idx].fidx = -2; 883 wr_idx = wr_idx - 1; 884 if (wr_idx < 0) 885 wr_idx += tx_ring->cnt; 886 } 887 dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr, 888 skb_headlen(skb), DMA_TO_DEVICE); 889 tx_ring->txbufs[wr_idx].skb = NULL; 890 tx_ring->txbufs[wr_idx].dma_addr = 0; 891 tx_ring->txbufs[wr_idx].fidx = -2; 892 err_free: 893 nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n"); 894 u64_stats_update_begin(&r_vec->tx_sync); 895 r_vec->tx_errors++; 896 u64_stats_update_end(&r_vec->tx_sync); 897 dev_kfree_skb_any(skb); 898 return NETDEV_TX_OK; 899 } 900 901 /** 902 * nfp_net_tx_complete() - Handled completed TX packets 903 * @tx_ring: TX ring structure 904 * 905 * Return: Number of completed TX descriptors 906 */ 907 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 908 { 909 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 910 struct nfp_net *nn = r_vec->nfp_net; 911 const struct skb_frag_struct *frag; 912 struct netdev_queue *nd_q; 913 u32 done_pkts = 0, done_bytes = 0; 914 struct sk_buff *skb; 915 int todo, nr_frags; 916 u32 qcp_rd_p; 917 int fidx; 918 int idx; 919 920 /* Work out how many descriptors have been transmitted */ 921 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 922 923 if (qcp_rd_p == tx_ring->qcp_rd_p) 924 return; 925 926 if (qcp_rd_p > tx_ring->qcp_rd_p) 927 todo = qcp_rd_p - tx_ring->qcp_rd_p; 928 else 929 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 930 931 while (todo--) { 932 idx = tx_ring->rd_p % tx_ring->cnt; 933 tx_ring->rd_p++; 934 935 skb = tx_ring->txbufs[idx].skb; 936 if (!skb) 937 continue; 938 939 nr_frags = skb_shinfo(skb)->nr_frags; 940 fidx = tx_ring->txbufs[idx].fidx; 941 942 if (fidx == -1) { 943 /* unmap head */ 944 dma_unmap_single(&nn->pdev->dev, 945 tx_ring->txbufs[idx].dma_addr, 946 skb_headlen(skb), DMA_TO_DEVICE); 947 948 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 949 done_bytes += tx_ring->txbufs[idx].real_len; 950 } else { 951 /* unmap fragment */ 952 frag = &skb_shinfo(skb)->frags[fidx]; 953 dma_unmap_page(&nn->pdev->dev, 954 tx_ring->txbufs[idx].dma_addr, 955 skb_frag_size(frag), DMA_TO_DEVICE); 956 } 957 958 /* check for last gather fragment */ 959 if (fidx == nr_frags - 1) 960 dev_kfree_skb_any(skb); 961 962 tx_ring->txbufs[idx].dma_addr = 0; 963 tx_ring->txbufs[idx].skb = NULL; 964 tx_ring->txbufs[idx].fidx = -2; 965 } 966 967 tx_ring->qcp_rd_p = qcp_rd_p; 968 969 u64_stats_update_begin(&r_vec->tx_sync); 970 r_vec->tx_bytes += done_bytes; 971 r_vec->tx_pkts += done_pkts; 972 u64_stats_update_end(&r_vec->tx_sync); 973 974 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 975 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 976 if (nfp_net_tx_ring_should_wake(tx_ring)) { 977 /* Make sure TX thread will see updated tx_ring->rd_p */ 978 smp_mb(); 979 980 if (unlikely(netif_tx_queue_stopped(nd_q))) 981 netif_tx_wake_queue(nd_q); 982 } 983 984 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 985 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 986 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 987 } 988 989 /** 990 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 991 * @nn: NFP Net device 992 * @tx_ring: TX ring structure 993 * 994 * Assumes that the device is stopped 995 */ 996 static void 997 nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring) 998 { 999 const struct skb_frag_struct *frag; 1000 struct netdev_queue *nd_q; 1001 struct pci_dev *pdev = nn->pdev; 1002 1003 while (tx_ring->rd_p != tx_ring->wr_p) { 1004 int nr_frags, fidx, idx; 1005 struct sk_buff *skb; 1006 1007 idx = tx_ring->rd_p % tx_ring->cnt; 1008 skb = tx_ring->txbufs[idx].skb; 1009 nr_frags = skb_shinfo(skb)->nr_frags; 1010 fidx = tx_ring->txbufs[idx].fidx; 1011 1012 if (fidx == -1) { 1013 /* unmap head */ 1014 dma_unmap_single(&pdev->dev, 1015 tx_ring->txbufs[idx].dma_addr, 1016 skb_headlen(skb), DMA_TO_DEVICE); 1017 } else { 1018 /* unmap fragment */ 1019 frag = &skb_shinfo(skb)->frags[fidx]; 1020 dma_unmap_page(&pdev->dev, 1021 tx_ring->txbufs[idx].dma_addr, 1022 skb_frag_size(frag), DMA_TO_DEVICE); 1023 } 1024 1025 /* check for last gather fragment */ 1026 if (fidx == nr_frags - 1) 1027 dev_kfree_skb_any(skb); 1028 1029 tx_ring->txbufs[idx].dma_addr = 0; 1030 tx_ring->txbufs[idx].skb = NULL; 1031 tx_ring->txbufs[idx].fidx = -2; 1032 1033 tx_ring->qcp_rd_p++; 1034 tx_ring->rd_p++; 1035 } 1036 1037 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1038 tx_ring->wr_p = 0; 1039 tx_ring->rd_p = 0; 1040 tx_ring->qcp_rd_p = 0; 1041 tx_ring->wr_ptr_add = 0; 1042 1043 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 1044 netdev_tx_reset_queue(nd_q); 1045 } 1046 1047 static void nfp_net_tx_timeout(struct net_device *netdev) 1048 { 1049 struct nfp_net *nn = netdev_priv(netdev); 1050 int i; 1051 1052 for (i = 0; i < nn->num_tx_rings; i++) { 1053 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1054 continue; 1055 nn_warn(nn, "TX timeout on ring: %d\n", i); 1056 } 1057 nn_warn(nn, "TX watchdog timeout\n"); 1058 } 1059 1060 /* Receive processing 1061 */ 1062 1063 /** 1064 * nfp_net_rx_space() - return the number of free slots on the RX ring 1065 * @rx_ring: RX ring structure 1066 * 1067 * Make sure we leave at least one slot free. 1068 * 1069 * Return: True if there is space on the RX ring 1070 */ 1071 static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring) 1072 { 1073 return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p); 1074 } 1075 1076 /** 1077 * nfp_net_rx_alloc_one() - Allocate and map skb for RX 1078 * @rx_ring: RX ring structure of the skb 1079 * @dma_addr: Pointer to storage for DMA address (output param) 1080 * @fl_bufsz: size of freelist buffers 1081 * 1082 * This function will allcate a new skb, map it for DMA. 1083 * 1084 * Return: allocated skb or NULL on failure. 1085 */ 1086 static struct sk_buff * 1087 nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr, 1088 unsigned int fl_bufsz) 1089 { 1090 struct nfp_net *nn = rx_ring->r_vec->nfp_net; 1091 struct sk_buff *skb; 1092 1093 skb = netdev_alloc_skb(nn->netdev, fl_bufsz); 1094 if (!skb) { 1095 nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n"); 1096 return NULL; 1097 } 1098 1099 *dma_addr = dma_map_single(&nn->pdev->dev, skb->data, 1100 fl_bufsz, DMA_FROM_DEVICE); 1101 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) { 1102 dev_kfree_skb_any(skb); 1103 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n"); 1104 return NULL; 1105 } 1106 1107 return skb; 1108 } 1109 1110 /** 1111 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1112 * @rx_ring: RX ring structure 1113 * @skb: Skb to put on rings 1114 * @dma_addr: DMA address of skb mapping 1115 */ 1116 static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring, 1117 struct sk_buff *skb, dma_addr_t dma_addr) 1118 { 1119 unsigned int wr_idx; 1120 1121 wr_idx = rx_ring->wr_p % rx_ring->cnt; 1122 1123 /* Stash SKB and DMA address away */ 1124 rx_ring->rxbufs[wr_idx].skb = skb; 1125 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1126 1127 /* Fill freelist descriptor */ 1128 rx_ring->rxds[wr_idx].fld.reserved = 0; 1129 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1130 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr); 1131 1132 rx_ring->wr_p++; 1133 rx_ring->wr_ptr_add++; 1134 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { 1135 /* Update write pointer of the freelist queue. Make 1136 * sure all writes are flushed before telling the hardware. 1137 */ 1138 wmb(); 1139 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); 1140 rx_ring->wr_ptr_add = 0; 1141 } 1142 } 1143 1144 /** 1145 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1146 * @rx_ring: RX ring structure 1147 * 1148 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1149 * (i.e. device was not enabled)! 1150 */ 1151 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1152 { 1153 unsigned int wr_idx, last_idx; 1154 1155 /* Move the empty entry to the end of the list */ 1156 wr_idx = rx_ring->wr_p % rx_ring->cnt; 1157 last_idx = rx_ring->cnt - 1; 1158 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1159 rx_ring->rxbufs[wr_idx].skb = rx_ring->rxbufs[last_idx].skb; 1160 rx_ring->rxbufs[last_idx].dma_addr = 0; 1161 rx_ring->rxbufs[last_idx].skb = NULL; 1162 1163 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1164 rx_ring->wr_p = 0; 1165 rx_ring->rd_p = 0; 1166 rx_ring->wr_ptr_add = 0; 1167 } 1168 1169 /** 1170 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1171 * @nn: NFP Net device 1172 * @rx_ring: RX ring to remove buffers from 1173 * 1174 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1175 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1176 * to restore required ring geometry. 1177 */ 1178 static void 1179 nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) 1180 { 1181 struct pci_dev *pdev = nn->pdev; 1182 unsigned int i; 1183 1184 for (i = 0; i < rx_ring->cnt - 1; i++) { 1185 /* NULL skb can only happen when initial filling of the ring 1186 * fails to allocate enough buffers and calls here to free 1187 * already allocated ones. 1188 */ 1189 if (!rx_ring->rxbufs[i].skb) 1190 continue; 1191 1192 dma_unmap_single(&pdev->dev, rx_ring->rxbufs[i].dma_addr, 1193 rx_ring->bufsz, DMA_FROM_DEVICE); 1194 dev_kfree_skb_any(rx_ring->rxbufs[i].skb); 1195 rx_ring->rxbufs[i].dma_addr = 0; 1196 rx_ring->rxbufs[i].skb = NULL; 1197 } 1198 } 1199 1200 /** 1201 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1202 * @nn: NFP Net device 1203 * @rx_ring: RX ring to remove buffers from 1204 */ 1205 static int 1206 nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) 1207 { 1208 struct nfp_net_rx_buf *rxbufs; 1209 unsigned int i; 1210 1211 rxbufs = rx_ring->rxbufs; 1212 1213 for (i = 0; i < rx_ring->cnt - 1; i++) { 1214 rxbufs[i].skb = 1215 nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr, 1216 rx_ring->bufsz); 1217 if (!rxbufs[i].skb) { 1218 nfp_net_rx_ring_bufs_free(nn, rx_ring); 1219 return -ENOMEM; 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1228 * @rx_ring: RX ring to fill 1229 */ 1230 static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring) 1231 { 1232 unsigned int i; 1233 1234 for (i = 0; i < rx_ring->cnt - 1; i++) 1235 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].skb, 1236 rx_ring->rxbufs[i].dma_addr); 1237 } 1238 1239 /** 1240 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1241 * @flags: RX descriptor flags field in CPU byte order 1242 */ 1243 static int nfp_net_rx_csum_has_errors(u16 flags) 1244 { 1245 u16 csum_all_checked, csum_all_ok; 1246 1247 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1248 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1249 1250 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1251 } 1252 1253 /** 1254 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1255 * @nn: NFP Net device 1256 * @r_vec: per-ring structure 1257 * @rxd: Pointer to RX descriptor 1258 * @skb: Pointer to SKB 1259 */ 1260 static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1261 struct nfp_net_rx_desc *rxd, struct sk_buff *skb) 1262 { 1263 skb_checksum_none_assert(skb); 1264 1265 if (!(nn->netdev->features & NETIF_F_RXCSUM)) 1266 return; 1267 1268 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1269 u64_stats_update_begin(&r_vec->rx_sync); 1270 r_vec->hw_csum_rx_error++; 1271 u64_stats_update_end(&r_vec->rx_sync); 1272 return; 1273 } 1274 1275 /* Assume that the firmware will never report inner CSUM_OK unless outer 1276 * L4 headers were successfully parsed. FW will always report zero UDP 1277 * checksum as CSUM_OK. 1278 */ 1279 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1280 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1281 __skb_incr_checksum_unnecessary(skb); 1282 u64_stats_update_begin(&r_vec->rx_sync); 1283 r_vec->hw_csum_rx_ok++; 1284 u64_stats_update_end(&r_vec->rx_sync); 1285 } 1286 1287 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1288 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1289 __skb_incr_checksum_unnecessary(skb); 1290 u64_stats_update_begin(&r_vec->rx_sync); 1291 r_vec->hw_csum_rx_inner_ok++; 1292 u64_stats_update_end(&r_vec->rx_sync); 1293 } 1294 } 1295 1296 static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb, 1297 unsigned int type, __be32 *hash) 1298 { 1299 if (!(netdev->features & NETIF_F_RXHASH)) 1300 return; 1301 1302 switch (type) { 1303 case NFP_NET_RSS_IPV4: 1304 case NFP_NET_RSS_IPV6: 1305 case NFP_NET_RSS_IPV6_EX: 1306 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3); 1307 break; 1308 default: 1309 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4); 1310 break; 1311 } 1312 } 1313 1314 static void 1315 nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb, 1316 struct nfp_net_rx_desc *rxd) 1317 { 1318 struct nfp_net_rx_hash *rx_hash; 1319 1320 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1321 return; 1322 1323 rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash)); 1324 1325 nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type), 1326 &rx_hash->hash); 1327 } 1328 1329 static void * 1330 nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb, 1331 int meta_len) 1332 { 1333 u8 *data = skb->data - meta_len; 1334 u32 meta_info; 1335 1336 meta_info = get_unaligned_be32(data); 1337 data += 4; 1338 1339 while (meta_info) { 1340 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1341 case NFP_NET_META_HASH: 1342 meta_info >>= NFP_NET_META_FIELD_SIZE; 1343 nfp_net_set_hash(netdev, skb, 1344 meta_info & NFP_NET_META_FIELD_MASK, 1345 (__be32 *)data); 1346 data += 4; 1347 break; 1348 case NFP_NET_META_MARK: 1349 skb->mark = get_unaligned_be32(data); 1350 data += 4; 1351 break; 1352 default: 1353 return NULL; 1354 } 1355 1356 meta_info >>= NFP_NET_META_FIELD_SIZE; 1357 } 1358 1359 return data; 1360 } 1361 1362 /** 1363 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1364 * @rx_ring: RX ring to receive from 1365 * @budget: NAPI budget 1366 * 1367 * Note, this function is separated out from the napi poll function to 1368 * more cleanly separate packet receive code from other bookkeeping 1369 * functions performed in the napi poll function. 1370 * 1371 * There are differences between the NFP-3200 firmware and the 1372 * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue 1373 * to indicate that new packets have arrived. The NFP-6000 does not 1374 * have this queue and uses the DD bit in the RX descriptor. This 1375 * method cannot be used on the NFP-3200 as it causes a race 1376 * condition: The RX ring write pointer on the NFP-3200 is updated 1377 * after packets (and descriptors) have been DMAed. If the DD bit is 1378 * used and subsequently the read pointer is updated this may lead to 1379 * the RX queue to underflow (if the firmware has not yet update the 1380 * write pointer). Therefore we use slightly ugly conditional code 1381 * below to handle the differences. We may, in the future update the 1382 * NFP-3200 firmware to behave the same as the firmware on the 1383 * NFP-6000. 1384 * 1385 * Return: Number of packets received. 1386 */ 1387 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1388 { 1389 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1390 struct nfp_net *nn = r_vec->nfp_net; 1391 unsigned int data_len, meta_len; 1392 int avail = 0, pkts_polled = 0; 1393 struct sk_buff *skb, *new_skb; 1394 struct nfp_net_rx_desc *rxd; 1395 dma_addr_t new_dma_addr; 1396 u32 qcp_wr_p; 1397 int idx; 1398 1399 if (nn->is_nfp3200) { 1400 /* Work out how many packets arrived */ 1401 qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx); 1402 idx = rx_ring->rd_p % rx_ring->cnt; 1403 1404 if (qcp_wr_p == idx) 1405 /* No new packets */ 1406 return 0; 1407 1408 if (qcp_wr_p > idx) 1409 avail = qcp_wr_p - idx; 1410 else 1411 avail = qcp_wr_p + rx_ring->cnt - idx; 1412 } else { 1413 avail = budget + 1; 1414 } 1415 1416 while (avail > 0 && pkts_polled < budget) { 1417 idx = rx_ring->rd_p % rx_ring->cnt; 1418 1419 rxd = &rx_ring->rxds[idx]; 1420 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) { 1421 if (nn->is_nfp3200) 1422 nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n", 1423 rx_ring->idx, idx, 1424 rxd->vals[0], rxd->vals[1]); 1425 break; 1426 } 1427 /* Memory barrier to ensure that we won't do other reads 1428 * before the DD bit. 1429 */ 1430 dma_rmb(); 1431 1432 rx_ring->rd_p++; 1433 pkts_polled++; 1434 avail--; 1435 1436 skb = rx_ring->rxbufs[idx].skb; 1437 1438 new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr, 1439 nn->fl_bufsz); 1440 if (!new_skb) { 1441 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb, 1442 rx_ring->rxbufs[idx].dma_addr); 1443 u64_stats_update_begin(&r_vec->rx_sync); 1444 r_vec->rx_drops++; 1445 u64_stats_update_end(&r_vec->rx_sync); 1446 continue; 1447 } 1448 1449 dma_unmap_single(&nn->pdev->dev, 1450 rx_ring->rxbufs[idx].dma_addr, 1451 nn->fl_bufsz, DMA_FROM_DEVICE); 1452 1453 nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr); 1454 1455 /* < meta_len > 1456 * <-- [rx_offset] --> 1457 * --------------------------------------------------------- 1458 * | [XX] | metadata | packet | XXXX | 1459 * --------------------------------------------------------- 1460 * <---------------- data_len ---------------> 1461 * 1462 * The rx_offset is fixed for all packets, the meta_len can vary 1463 * on a packet by packet basis. If rx_offset is set to zero 1464 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1465 * buffer and is immediately followed by the packet (no [XX]). 1466 */ 1467 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1468 data_len = le16_to_cpu(rxd->rxd.data_len); 1469 1470 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1471 skb_reserve(skb, meta_len); 1472 else 1473 skb_reserve(skb, nn->rx_offset); 1474 skb_put(skb, data_len - meta_len); 1475 1476 /* Stats update */ 1477 u64_stats_update_begin(&r_vec->rx_sync); 1478 r_vec->rx_pkts++; 1479 r_vec->rx_bytes += skb->len; 1480 u64_stats_update_end(&r_vec->rx_sync); 1481 1482 if (nn->fw_ver.major <= 3) { 1483 nfp_net_set_hash_desc(nn->netdev, skb, rxd); 1484 } else if (meta_len) { 1485 void *end; 1486 1487 end = nfp_net_parse_meta(nn->netdev, skb, meta_len); 1488 if (unlikely(end != skb->data)) { 1489 u64_stats_update_begin(&r_vec->rx_sync); 1490 r_vec->rx_drops++; 1491 u64_stats_update_end(&r_vec->rx_sync); 1492 1493 dev_kfree_skb_any(skb); 1494 nn_warn_ratelimit(nn, "invalid RX packet metadata\n"); 1495 continue; 1496 } 1497 } 1498 1499 skb_record_rx_queue(skb, rx_ring->idx); 1500 skb->protocol = eth_type_trans(skb, nn->netdev); 1501 1502 nfp_net_rx_csum(nn, r_vec, rxd, skb); 1503 1504 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1505 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1506 le16_to_cpu(rxd->rxd.vlan)); 1507 1508 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1509 } 1510 1511 if (nn->is_nfp3200) 1512 nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled); 1513 1514 return pkts_polled; 1515 } 1516 1517 /** 1518 * nfp_net_poll() - napi poll function 1519 * @napi: NAPI structure 1520 * @budget: NAPI budget 1521 * 1522 * Return: number of packets polled. 1523 */ 1524 static int nfp_net_poll(struct napi_struct *napi, int budget) 1525 { 1526 struct nfp_net_r_vector *r_vec = 1527 container_of(napi, struct nfp_net_r_vector, napi); 1528 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 1529 struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring; 1530 struct nfp_net *nn = r_vec->nfp_net; 1531 struct netdev_queue *txq; 1532 unsigned int pkts_polled; 1533 1534 tx_ring = &nn->tx_rings[rx_ring->idx]; 1535 txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 1536 nfp_net_tx_complete(tx_ring); 1537 1538 pkts_polled = nfp_net_rx(rx_ring, budget); 1539 1540 if (pkts_polled < budget) { 1541 napi_complete_done(napi, pkts_polled); 1542 nfp_net_irq_unmask(nn, r_vec->irq_idx); 1543 } 1544 1545 return pkts_polled; 1546 } 1547 1548 /* Setup and Configuration 1549 */ 1550 1551 /** 1552 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 1553 * @tx_ring: TX ring to free 1554 */ 1555 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 1556 { 1557 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1558 struct nfp_net *nn = r_vec->nfp_net; 1559 struct pci_dev *pdev = nn->pdev; 1560 1561 kfree(tx_ring->txbufs); 1562 1563 if (tx_ring->txds) 1564 dma_free_coherent(&pdev->dev, tx_ring->size, 1565 tx_ring->txds, tx_ring->dma); 1566 1567 tx_ring->cnt = 0; 1568 tx_ring->txbufs = NULL; 1569 tx_ring->txds = NULL; 1570 tx_ring->dma = 0; 1571 tx_ring->size = 0; 1572 } 1573 1574 /** 1575 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 1576 * @tx_ring: TX Ring structure to allocate 1577 * @cnt: Ring buffer count 1578 * 1579 * Return: 0 on success, negative errno otherwise. 1580 */ 1581 static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt) 1582 { 1583 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1584 struct nfp_net *nn = r_vec->nfp_net; 1585 struct pci_dev *pdev = nn->pdev; 1586 int sz; 1587 1588 tx_ring->cnt = cnt; 1589 1590 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 1591 tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size, 1592 &tx_ring->dma, GFP_KERNEL); 1593 if (!tx_ring->txds) 1594 goto err_alloc; 1595 1596 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 1597 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 1598 if (!tx_ring->txbufs) 1599 goto err_alloc; 1600 1601 netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx); 1602 1603 nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n", 1604 tx_ring->idx, tx_ring->qcidx, 1605 tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds); 1606 1607 return 0; 1608 1609 err_alloc: 1610 nfp_net_tx_ring_free(tx_ring); 1611 return -ENOMEM; 1612 } 1613 1614 static struct nfp_net_tx_ring * 1615 nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, u32 buf_cnt) 1616 { 1617 struct nfp_net_tx_ring *rings; 1618 unsigned int r; 1619 1620 rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL); 1621 if (!rings) 1622 return NULL; 1623 1624 for (r = 0; r < nn->num_tx_rings; r++) { 1625 nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r); 1626 1627 if (nfp_net_tx_ring_alloc(&rings[r], buf_cnt)) 1628 goto err_free_prev; 1629 } 1630 1631 return rings; 1632 1633 err_free_prev: 1634 while (r--) 1635 nfp_net_tx_ring_free(&rings[r]); 1636 kfree(rings); 1637 return NULL; 1638 } 1639 1640 static struct nfp_net_tx_ring * 1641 nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_tx_ring *rings) 1642 { 1643 struct nfp_net_tx_ring *old = nn->tx_rings; 1644 unsigned int r; 1645 1646 for (r = 0; r < nn->num_tx_rings; r++) 1647 old[r].r_vec->tx_ring = &rings[r]; 1648 1649 nn->tx_rings = rings; 1650 return old; 1651 } 1652 1653 static void 1654 nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_tx_ring *rings) 1655 { 1656 unsigned int r; 1657 1658 if (!rings) 1659 return; 1660 1661 for (r = 0; r < nn->num_tx_rings; r++) 1662 nfp_net_tx_ring_free(&rings[r]); 1663 1664 kfree(rings); 1665 } 1666 1667 /** 1668 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 1669 * @rx_ring: RX ring to free 1670 */ 1671 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 1672 { 1673 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1674 struct nfp_net *nn = r_vec->nfp_net; 1675 struct pci_dev *pdev = nn->pdev; 1676 1677 kfree(rx_ring->rxbufs); 1678 1679 if (rx_ring->rxds) 1680 dma_free_coherent(&pdev->dev, rx_ring->size, 1681 rx_ring->rxds, rx_ring->dma); 1682 1683 rx_ring->cnt = 0; 1684 rx_ring->rxbufs = NULL; 1685 rx_ring->rxds = NULL; 1686 rx_ring->dma = 0; 1687 rx_ring->size = 0; 1688 } 1689 1690 /** 1691 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 1692 * @rx_ring: RX ring to allocate 1693 * @fl_bufsz: Size of buffers to allocate 1694 * @cnt: Ring buffer count 1695 * 1696 * Return: 0 on success, negative errno otherwise. 1697 */ 1698 static int 1699 nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz, 1700 u32 cnt) 1701 { 1702 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1703 struct nfp_net *nn = r_vec->nfp_net; 1704 struct pci_dev *pdev = nn->pdev; 1705 int sz; 1706 1707 rx_ring->cnt = cnt; 1708 rx_ring->bufsz = fl_bufsz; 1709 1710 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 1711 rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size, 1712 &rx_ring->dma, GFP_KERNEL); 1713 if (!rx_ring->rxds) 1714 goto err_alloc; 1715 1716 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 1717 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 1718 if (!rx_ring->rxbufs) 1719 goto err_alloc; 1720 1721 nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n", 1722 rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx, 1723 rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds); 1724 1725 return 0; 1726 1727 err_alloc: 1728 nfp_net_rx_ring_free(rx_ring); 1729 return -ENOMEM; 1730 } 1731 1732 static struct nfp_net_rx_ring * 1733 nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, unsigned int fl_bufsz, 1734 u32 buf_cnt) 1735 { 1736 struct nfp_net_rx_ring *rings; 1737 unsigned int r; 1738 1739 rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL); 1740 if (!rings) 1741 return NULL; 1742 1743 for (r = 0; r < nn->num_rx_rings; r++) { 1744 nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r); 1745 1746 if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, buf_cnt)) 1747 goto err_free_prev; 1748 1749 if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r])) 1750 goto err_free_ring; 1751 } 1752 1753 return rings; 1754 1755 err_free_prev: 1756 while (r--) { 1757 nfp_net_rx_ring_bufs_free(nn, &rings[r]); 1758 err_free_ring: 1759 nfp_net_rx_ring_free(&rings[r]); 1760 } 1761 kfree(rings); 1762 return NULL; 1763 } 1764 1765 static struct nfp_net_rx_ring * 1766 nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_rx_ring *rings) 1767 { 1768 struct nfp_net_rx_ring *old = nn->rx_rings; 1769 unsigned int r; 1770 1771 for (r = 0; r < nn->num_rx_rings; r++) 1772 old[r].r_vec->rx_ring = &rings[r]; 1773 1774 nn->rx_rings = rings; 1775 return old; 1776 } 1777 1778 static void 1779 nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_rx_ring *rings) 1780 { 1781 unsigned int r; 1782 1783 if (!rings) 1784 return; 1785 1786 for (r = 0; r < nn->num_r_vecs; r++) { 1787 nfp_net_rx_ring_bufs_free(nn, &rings[r]); 1788 nfp_net_rx_ring_free(&rings[r]); 1789 } 1790 1791 kfree(rings); 1792 } 1793 1794 static int 1795 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1796 int idx) 1797 { 1798 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; 1799 int err; 1800 1801 r_vec->tx_ring = &nn->tx_rings[idx]; 1802 nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx); 1803 1804 r_vec->rx_ring = &nn->rx_rings[idx]; 1805 nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx); 1806 1807 snprintf(r_vec->name, sizeof(r_vec->name), 1808 "%s-rxtx-%d", nn->netdev->name, idx); 1809 err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec); 1810 if (err) { 1811 nn_err(nn, "Error requesting IRQ %d\n", entry->vector); 1812 return err; 1813 } 1814 disable_irq(entry->vector); 1815 1816 /* Setup NAPI */ 1817 netif_napi_add(nn->netdev, &r_vec->napi, 1818 nfp_net_poll, NAPI_POLL_WEIGHT); 1819 1820 irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask); 1821 1822 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry); 1823 1824 return 0; 1825 } 1826 1827 static void 1828 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 1829 { 1830 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; 1831 1832 irq_set_affinity_hint(entry->vector, NULL); 1833 netif_napi_del(&r_vec->napi); 1834 free_irq(entry->vector, r_vec); 1835 } 1836 1837 /** 1838 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 1839 * @nn: NFP Net device to reconfigure 1840 */ 1841 void nfp_net_rss_write_itbl(struct nfp_net *nn) 1842 { 1843 int i; 1844 1845 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 1846 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 1847 get_unaligned_le32(nn->rss_itbl + i)); 1848 } 1849 1850 /** 1851 * nfp_net_rss_write_key() - Write RSS hash key to device 1852 * @nn: NFP Net device to reconfigure 1853 */ 1854 void nfp_net_rss_write_key(struct nfp_net *nn) 1855 { 1856 int i; 1857 1858 for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4) 1859 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 1860 get_unaligned_le32(nn->rss_key + i)); 1861 } 1862 1863 /** 1864 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 1865 * @nn: NFP Net device to reconfigure 1866 */ 1867 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 1868 { 1869 u8 i; 1870 u32 factor; 1871 u32 value; 1872 1873 /* Compute factor used to convert coalesce '_usecs' parameters to 1874 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1875 * count. 1876 */ 1877 factor = nn->me_freq_mhz / 16; 1878 1879 /* copy RX interrupt coalesce parameters */ 1880 value = (nn->rx_coalesce_max_frames << 16) | 1881 (factor * nn->rx_coalesce_usecs); 1882 for (i = 0; i < nn->num_r_vecs; i++) 1883 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 1884 1885 /* copy TX interrupt coalesce parameters */ 1886 value = (nn->tx_coalesce_max_frames << 16) | 1887 (factor * nn->tx_coalesce_usecs); 1888 for (i = 0; i < nn->num_r_vecs; i++) 1889 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 1890 } 1891 1892 /** 1893 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 1894 * @nn: NFP Net device to reconfigure 1895 * 1896 * Writes the MAC address from the netdev to the device control BAR. Does not 1897 * perform the required reconfig. We do a bit of byte swapping dance because 1898 * firmware is LE. 1899 */ 1900 static void nfp_net_write_mac_addr(struct nfp_net *nn) 1901 { 1902 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, 1903 get_unaligned_be32(nn->netdev->dev_addr)); 1904 /* We can't do writew for NFP-3200 compatibility */ 1905 nn_writel(nn, NFP_NET_CFG_MACADDR + 4, 1906 get_unaligned_be16(nn->netdev->dev_addr + 4) << 16); 1907 } 1908 1909 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 1910 { 1911 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 1912 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 1913 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 1914 1915 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 1916 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 1917 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 1918 } 1919 1920 /** 1921 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 1922 * @nn: NFP Net device to reconfigure 1923 */ 1924 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 1925 { 1926 u32 new_ctrl, update; 1927 unsigned int r; 1928 int err; 1929 1930 new_ctrl = nn->ctrl; 1931 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 1932 update = NFP_NET_CFG_UPDATE_GEN; 1933 update |= NFP_NET_CFG_UPDATE_MSIX; 1934 update |= NFP_NET_CFG_UPDATE_RING; 1935 1936 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1937 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 1938 1939 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 1940 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 1941 1942 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1943 err = nfp_net_reconfig(nn, update); 1944 if (err) 1945 nn_err(nn, "Could not disable device: %d\n", err); 1946 1947 for (r = 0; r < nn->num_r_vecs; r++) { 1948 nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring); 1949 nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring); 1950 nfp_net_vec_clear_ring_data(nn, r); 1951 } 1952 1953 nn->ctrl = new_ctrl; 1954 } 1955 1956 static void 1957 nfp_net_vec_write_ring_data(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1958 unsigned int idx) 1959 { 1960 /* Write the DMA address, size and MSI-X info to the device */ 1961 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), r_vec->rx_ring->dma); 1962 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(r_vec->rx_ring->cnt)); 1963 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), r_vec->irq_idx); 1964 1965 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), r_vec->tx_ring->dma); 1966 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(r_vec->tx_ring->cnt)); 1967 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), r_vec->irq_idx); 1968 } 1969 1970 static int __nfp_net_set_config_and_enable(struct nfp_net *nn) 1971 { 1972 u32 new_ctrl, update = 0; 1973 unsigned int r; 1974 int err; 1975 1976 new_ctrl = nn->ctrl; 1977 1978 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 1979 nfp_net_rss_write_key(nn); 1980 nfp_net_rss_write_itbl(nn); 1981 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 1982 update |= NFP_NET_CFG_UPDATE_RSS; 1983 } 1984 1985 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 1986 nfp_net_coalesce_write_cfg(nn); 1987 1988 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 1989 update |= NFP_NET_CFG_UPDATE_IRQMOD; 1990 } 1991 1992 for (r = 0; r < nn->num_r_vecs; r++) 1993 nfp_net_vec_write_ring_data(nn, &nn->r_vecs[r], r); 1994 1995 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ? 1996 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1); 1997 1998 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ? 1999 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1); 2000 2001 nfp_net_write_mac_addr(nn); 2002 2003 nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu); 2004 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz); 2005 2006 /* Enable device */ 2007 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2008 update |= NFP_NET_CFG_UPDATE_GEN; 2009 update |= NFP_NET_CFG_UPDATE_MSIX; 2010 update |= NFP_NET_CFG_UPDATE_RING; 2011 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2012 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2013 2014 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2015 err = nfp_net_reconfig(nn, update); 2016 2017 nn->ctrl = new_ctrl; 2018 2019 for (r = 0; r < nn->num_r_vecs; r++) 2020 nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring); 2021 2022 /* Since reconfiguration requests while NFP is down are ignored we 2023 * have to wipe the entire VXLAN configuration and reinitialize it. 2024 */ 2025 if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2026 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2027 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2028 udp_tunnel_get_rx_info(nn->netdev); 2029 } 2030 2031 return err; 2032 } 2033 2034 /** 2035 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2036 * @nn: NFP Net device to reconfigure 2037 */ 2038 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2039 { 2040 int err; 2041 2042 err = __nfp_net_set_config_and_enable(nn); 2043 if (err) 2044 nfp_net_clear_config_and_disable(nn); 2045 2046 return err; 2047 } 2048 2049 /** 2050 * nfp_net_open_stack() - Start the device from stack's perspective 2051 * @nn: NFP Net device to reconfigure 2052 */ 2053 static void nfp_net_open_stack(struct nfp_net *nn) 2054 { 2055 unsigned int r; 2056 2057 for (r = 0; r < nn->num_r_vecs; r++) { 2058 napi_enable(&nn->r_vecs[r].napi); 2059 enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); 2060 } 2061 2062 netif_tx_wake_all_queues(nn->netdev); 2063 2064 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2065 nfp_net_read_link_status(nn); 2066 } 2067 2068 static int nfp_net_netdev_open(struct net_device *netdev) 2069 { 2070 struct nfp_net *nn = netdev_priv(netdev); 2071 int err, r; 2072 2073 if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) { 2074 nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl); 2075 return -EBUSY; 2076 } 2077 2078 /* Step 1: Allocate resources for rings and the like 2079 * - Request interrupts 2080 * - Allocate RX and TX ring resources 2081 * - Setup initial RSS table 2082 */ 2083 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2084 nn->exn_name, sizeof(nn->exn_name), 2085 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2086 if (err) 2087 return err; 2088 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2089 nn->lsc_name, sizeof(nn->lsc_name), 2090 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2091 if (err) 2092 goto err_free_exn; 2093 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2094 2095 nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings), 2096 GFP_KERNEL); 2097 if (!nn->rx_rings) { 2098 err = -ENOMEM; 2099 goto err_free_lsc; 2100 } 2101 nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings), 2102 GFP_KERNEL); 2103 if (!nn->tx_rings) { 2104 err = -ENOMEM; 2105 goto err_free_rx_rings; 2106 } 2107 2108 for (r = 0; r < nn->num_r_vecs; r++) { 2109 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2110 if (err) 2111 goto err_free_prev_vecs; 2112 2113 err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt); 2114 if (err) 2115 goto err_cleanup_vec_p; 2116 2117 err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring, 2118 nn->fl_bufsz, nn->rxd_cnt); 2119 if (err) 2120 goto err_free_tx_ring_p; 2121 2122 err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring); 2123 if (err) 2124 goto err_flush_rx_ring_p; 2125 } 2126 2127 err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings); 2128 if (err) 2129 goto err_free_rings; 2130 2131 err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings); 2132 if (err) 2133 goto err_free_rings; 2134 2135 /* Step 2: Configure the NFP 2136 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2137 * - Write MAC address (in case it changed) 2138 * - Set the MTU 2139 * - Set the Freelist buffer size 2140 * - Enable the FW 2141 */ 2142 err = nfp_net_set_config_and_enable(nn); 2143 if (err) 2144 goto err_free_rings; 2145 2146 /* Step 3: Enable for kernel 2147 * - put some freelist descriptors on each RX ring 2148 * - enable NAPI on each ring 2149 * - enable all TX queues 2150 * - set link state 2151 */ 2152 nfp_net_open_stack(nn); 2153 2154 return 0; 2155 2156 err_free_rings: 2157 r = nn->num_r_vecs; 2158 err_free_prev_vecs: 2159 while (r--) { 2160 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); 2161 err_flush_rx_ring_p: 2162 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); 2163 err_free_tx_ring_p: 2164 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); 2165 err_cleanup_vec_p: 2166 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2167 } 2168 kfree(nn->tx_rings); 2169 err_free_rx_rings: 2170 kfree(nn->rx_rings); 2171 err_free_lsc: 2172 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2173 err_free_exn: 2174 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2175 return err; 2176 } 2177 2178 /** 2179 * nfp_net_close_stack() - Quiescent the stack (part of close) 2180 * @nn: NFP Net device to reconfigure 2181 */ 2182 static void nfp_net_close_stack(struct nfp_net *nn) 2183 { 2184 unsigned int r; 2185 2186 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2187 netif_carrier_off(nn->netdev); 2188 nn->link_up = false; 2189 2190 for (r = 0; r < nn->num_r_vecs; r++) { 2191 disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); 2192 napi_disable(&nn->r_vecs[r].napi); 2193 } 2194 2195 netif_tx_disable(nn->netdev); 2196 } 2197 2198 /** 2199 * nfp_net_close_free_all() - Free all runtime resources 2200 * @nn: NFP Net device to reconfigure 2201 */ 2202 static void nfp_net_close_free_all(struct nfp_net *nn) 2203 { 2204 unsigned int r; 2205 2206 for (r = 0; r < nn->num_r_vecs; r++) { 2207 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); 2208 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); 2209 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); 2210 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2211 } 2212 2213 kfree(nn->rx_rings); 2214 kfree(nn->tx_rings); 2215 2216 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2217 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2218 } 2219 2220 /** 2221 * nfp_net_netdev_close() - Called when the device is downed 2222 * @netdev: netdev structure 2223 */ 2224 static int nfp_net_netdev_close(struct net_device *netdev) 2225 { 2226 struct nfp_net *nn = netdev_priv(netdev); 2227 2228 if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) { 2229 nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl); 2230 return 0; 2231 } 2232 2233 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2234 */ 2235 nfp_net_close_stack(nn); 2236 2237 /* Step 2: Tell NFP 2238 */ 2239 nfp_net_clear_config_and_disable(nn); 2240 2241 /* Step 3: Free resources 2242 */ 2243 nfp_net_close_free_all(nn); 2244 2245 nn_dbg(nn, "%s down", netdev->name); 2246 return 0; 2247 } 2248 2249 static void nfp_net_set_rx_mode(struct net_device *netdev) 2250 { 2251 struct nfp_net *nn = netdev_priv(netdev); 2252 u32 new_ctrl; 2253 2254 new_ctrl = nn->ctrl; 2255 2256 if (netdev->flags & IFF_PROMISC) { 2257 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2258 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2259 else 2260 nn_warn(nn, "FW does not support promiscuous mode\n"); 2261 } else { 2262 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2263 } 2264 2265 if (new_ctrl == nn->ctrl) 2266 return; 2267 2268 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2269 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2270 2271 nn->ctrl = new_ctrl; 2272 } 2273 2274 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 2275 { 2276 unsigned int old_mtu, old_fl_bufsz, new_fl_bufsz; 2277 struct nfp_net *nn = netdev_priv(netdev); 2278 struct nfp_net_rx_ring *tmp_rings; 2279 int err; 2280 2281 if (new_mtu < 68 || new_mtu > nn->max_mtu) { 2282 nn_err(nn, "New MTU (%d) is not valid\n", new_mtu); 2283 return -EINVAL; 2284 } 2285 2286 old_mtu = netdev->mtu; 2287 old_fl_bufsz = nn->fl_bufsz; 2288 new_fl_bufsz = NFP_NET_MAX_PREPEND + ETH_HLEN + VLAN_HLEN * 2 + new_mtu; 2289 2290 if (!netif_running(netdev)) { 2291 netdev->mtu = new_mtu; 2292 nn->fl_bufsz = new_fl_bufsz; 2293 return 0; 2294 } 2295 2296 /* Prepare new rings */ 2297 tmp_rings = nfp_net_shadow_rx_rings_prepare(nn, new_fl_bufsz, 2298 nn->rxd_cnt); 2299 if (!tmp_rings) 2300 return -ENOMEM; 2301 2302 /* Stop device, swap in new rings, try to start the firmware */ 2303 nfp_net_close_stack(nn); 2304 nfp_net_clear_config_and_disable(nn); 2305 2306 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); 2307 2308 netdev->mtu = new_mtu; 2309 nn->fl_bufsz = new_fl_bufsz; 2310 2311 err = nfp_net_set_config_and_enable(nn); 2312 if (err) { 2313 const int err_new = err; 2314 2315 /* Try with old configuration and old rings */ 2316 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); 2317 2318 netdev->mtu = old_mtu; 2319 nn->fl_bufsz = old_fl_bufsz; 2320 2321 err = __nfp_net_set_config_and_enable(nn); 2322 if (err) 2323 nn_err(nn, "Can't restore MTU - FW communication failed (%d,%d)\n", 2324 err_new, err); 2325 } 2326 2327 nfp_net_shadow_rx_rings_free(nn, tmp_rings); 2328 2329 nfp_net_open_stack(nn); 2330 2331 return err; 2332 } 2333 2334 int nfp_net_set_ring_size(struct nfp_net *nn, u32 rxd_cnt, u32 txd_cnt) 2335 { 2336 struct nfp_net_tx_ring *tx_rings = NULL; 2337 struct nfp_net_rx_ring *rx_rings = NULL; 2338 u32 old_rxd_cnt, old_txd_cnt; 2339 int err; 2340 2341 if (!netif_running(nn->netdev)) { 2342 nn->rxd_cnt = rxd_cnt; 2343 nn->txd_cnt = txd_cnt; 2344 return 0; 2345 } 2346 2347 old_rxd_cnt = nn->rxd_cnt; 2348 old_txd_cnt = nn->txd_cnt; 2349 2350 /* Prepare new rings */ 2351 if (nn->rxd_cnt != rxd_cnt) { 2352 rx_rings = nfp_net_shadow_rx_rings_prepare(nn, nn->fl_bufsz, 2353 rxd_cnt); 2354 if (!rx_rings) 2355 return -ENOMEM; 2356 } 2357 if (nn->txd_cnt != txd_cnt) { 2358 tx_rings = nfp_net_shadow_tx_rings_prepare(nn, txd_cnt); 2359 if (!tx_rings) { 2360 nfp_net_shadow_rx_rings_free(nn, rx_rings); 2361 return -ENOMEM; 2362 } 2363 } 2364 2365 /* Stop device, swap in new rings, try to start the firmware */ 2366 nfp_net_close_stack(nn); 2367 nfp_net_clear_config_and_disable(nn); 2368 2369 if (rx_rings) 2370 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); 2371 if (tx_rings) 2372 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); 2373 2374 nn->rxd_cnt = rxd_cnt; 2375 nn->txd_cnt = txd_cnt; 2376 2377 err = nfp_net_set_config_and_enable(nn); 2378 if (err) { 2379 const int err_new = err; 2380 2381 /* Try with old configuration and old rings */ 2382 if (rx_rings) 2383 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); 2384 if (tx_rings) 2385 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); 2386 2387 nn->rxd_cnt = old_rxd_cnt; 2388 nn->txd_cnt = old_txd_cnt; 2389 2390 err = __nfp_net_set_config_and_enable(nn); 2391 if (err) 2392 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2393 err_new, err); 2394 } 2395 2396 nfp_net_shadow_rx_rings_free(nn, rx_rings); 2397 nfp_net_shadow_tx_rings_free(nn, tx_rings); 2398 2399 nfp_net_open_stack(nn); 2400 2401 return err; 2402 } 2403 2404 static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev, 2405 struct rtnl_link_stats64 *stats) 2406 { 2407 struct nfp_net *nn = netdev_priv(netdev); 2408 int r; 2409 2410 for (r = 0; r < nn->num_r_vecs; r++) { 2411 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 2412 u64 data[3]; 2413 unsigned int start; 2414 2415 do { 2416 start = u64_stats_fetch_begin(&r_vec->rx_sync); 2417 data[0] = r_vec->rx_pkts; 2418 data[1] = r_vec->rx_bytes; 2419 data[2] = r_vec->rx_drops; 2420 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 2421 stats->rx_packets += data[0]; 2422 stats->rx_bytes += data[1]; 2423 stats->rx_dropped += data[2]; 2424 2425 do { 2426 start = u64_stats_fetch_begin(&r_vec->tx_sync); 2427 data[0] = r_vec->tx_pkts; 2428 data[1] = r_vec->tx_bytes; 2429 data[2] = r_vec->tx_errors; 2430 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 2431 stats->tx_packets += data[0]; 2432 stats->tx_bytes += data[1]; 2433 stats->tx_errors += data[2]; 2434 } 2435 2436 return stats; 2437 } 2438 2439 static bool nfp_net_ebpf_capable(struct nfp_net *nn) 2440 { 2441 if (nn->cap & NFP_NET_CFG_CTRL_BPF && 2442 nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI) 2443 return true; 2444 return false; 2445 } 2446 2447 static int 2448 nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto, 2449 struct tc_to_netdev *tc) 2450 { 2451 struct nfp_net *nn = netdev_priv(netdev); 2452 2453 if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS)) 2454 return -ENOTSUPP; 2455 if (proto != htons(ETH_P_ALL)) 2456 return -ENOTSUPP; 2457 2458 if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) 2459 return nfp_net_bpf_offload(nn, handle, proto, tc->cls_bpf); 2460 2461 return -EINVAL; 2462 } 2463 2464 static int nfp_net_set_features(struct net_device *netdev, 2465 netdev_features_t features) 2466 { 2467 netdev_features_t changed = netdev->features ^ features; 2468 struct nfp_net *nn = netdev_priv(netdev); 2469 u32 new_ctrl; 2470 int err; 2471 2472 /* Assume this is not called with features we have not advertised */ 2473 2474 new_ctrl = nn->ctrl; 2475 2476 if (changed & NETIF_F_RXCSUM) { 2477 if (features & NETIF_F_RXCSUM) 2478 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2479 else 2480 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; 2481 } 2482 2483 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2484 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 2485 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2486 else 2487 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 2488 } 2489 2490 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 2491 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 2492 new_ctrl |= NFP_NET_CFG_CTRL_LSO; 2493 else 2494 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; 2495 } 2496 2497 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 2498 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2499 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2500 else 2501 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 2502 } 2503 2504 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 2505 if (features & NETIF_F_HW_VLAN_CTAG_TX) 2506 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2507 else 2508 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 2509 } 2510 2511 if (changed & NETIF_F_SG) { 2512 if (features & NETIF_F_SG) 2513 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 2514 else 2515 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 2516 } 2517 2518 if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) { 2519 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 2520 return -EBUSY; 2521 } 2522 2523 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 2524 netdev->features, features, changed); 2525 2526 if (new_ctrl == nn->ctrl) 2527 return 0; 2528 2529 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl); 2530 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2531 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2532 if (err) 2533 return err; 2534 2535 nn->ctrl = new_ctrl; 2536 2537 return 0; 2538 } 2539 2540 static netdev_features_t 2541 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 2542 netdev_features_t features) 2543 { 2544 u8 l4_hdr; 2545 2546 /* We can't do TSO over double tagged packets (802.1AD) */ 2547 features &= vlan_features_check(skb, features); 2548 2549 if (!skb->encapsulation) 2550 return features; 2551 2552 /* Ensure that inner L4 header offset fits into TX descriptor field */ 2553 if (skb_is_gso(skb)) { 2554 u32 hdrlen; 2555 2556 hdrlen = skb_inner_transport_header(skb) - skb->data + 2557 inner_tcp_hdrlen(skb); 2558 2559 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 2560 features &= ~NETIF_F_GSO_MASK; 2561 } 2562 2563 /* VXLAN/GRE check */ 2564 switch (vlan_get_protocol(skb)) { 2565 case htons(ETH_P_IP): 2566 l4_hdr = ip_hdr(skb)->protocol; 2567 break; 2568 case htons(ETH_P_IPV6): 2569 l4_hdr = ipv6_hdr(skb)->nexthdr; 2570 break; 2571 default: 2572 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2573 } 2574 2575 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 2576 skb->inner_protocol != htons(ETH_P_TEB) || 2577 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 2578 (l4_hdr == IPPROTO_UDP && 2579 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 2580 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 2581 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2582 2583 return features; 2584 } 2585 2586 /** 2587 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 2588 * @nn: NFP Net device to reconfigure 2589 * @idx: Index into the port table where new port should be written 2590 * @port: UDP port to configure (pass zero to remove VXLAN port) 2591 */ 2592 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 2593 { 2594 int i; 2595 2596 nn->vxlan_ports[idx] = port; 2597 2598 if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN)) 2599 return; 2600 2601 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2602 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 2603 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 2604 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 2605 be16_to_cpu(nn->vxlan_ports[i])); 2606 2607 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 2608 } 2609 2610 /** 2611 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 2612 * @nn: NFP Network structure 2613 * @port: UDP port to look for 2614 * 2615 * Return: if the port is already in the table -- it's position; 2616 * if the port is not in the table -- free position to use; 2617 * if the table is full -- -ENOSPC. 2618 */ 2619 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 2620 { 2621 int i, free_idx = -ENOSPC; 2622 2623 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 2624 if (nn->vxlan_ports[i] == port) 2625 return i; 2626 if (!nn->vxlan_usecnt[i]) 2627 free_idx = i; 2628 } 2629 2630 return free_idx; 2631 } 2632 2633 static void nfp_net_add_vxlan_port(struct net_device *netdev, 2634 struct udp_tunnel_info *ti) 2635 { 2636 struct nfp_net *nn = netdev_priv(netdev); 2637 int idx; 2638 2639 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2640 return; 2641 2642 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2643 if (idx == -ENOSPC) 2644 return; 2645 2646 if (!nn->vxlan_usecnt[idx]++) 2647 nfp_net_set_vxlan_port(nn, idx, ti->port); 2648 } 2649 2650 static void nfp_net_del_vxlan_port(struct net_device *netdev, 2651 struct udp_tunnel_info *ti) 2652 { 2653 struct nfp_net *nn = netdev_priv(netdev); 2654 int idx; 2655 2656 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2657 return; 2658 2659 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2660 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 2661 return; 2662 2663 if (!--nn->vxlan_usecnt[idx]) 2664 nfp_net_set_vxlan_port(nn, idx, 0); 2665 } 2666 2667 static const struct net_device_ops nfp_net_netdev_ops = { 2668 .ndo_open = nfp_net_netdev_open, 2669 .ndo_stop = nfp_net_netdev_close, 2670 .ndo_start_xmit = nfp_net_tx, 2671 .ndo_get_stats64 = nfp_net_stat64, 2672 .ndo_setup_tc = nfp_net_setup_tc, 2673 .ndo_tx_timeout = nfp_net_tx_timeout, 2674 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2675 .ndo_change_mtu = nfp_net_change_mtu, 2676 .ndo_set_mac_address = eth_mac_addr, 2677 .ndo_set_features = nfp_net_set_features, 2678 .ndo_features_check = nfp_net_features_check, 2679 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 2680 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 2681 }; 2682 2683 /** 2684 * nfp_net_info() - Print general info about the NIC 2685 * @nn: NFP Net device to reconfigure 2686 */ 2687 void nfp_net_info(struct nfp_net *nn) 2688 { 2689 nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2690 nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx", 2691 nn->is_vf ? "VF " : "", 2692 nn->num_tx_rings, nn->max_tx_rings, 2693 nn->num_rx_rings, nn->max_rx_rings); 2694 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2695 nn->fw_ver.resv, nn->fw_ver.class, 2696 nn->fw_ver.major, nn->fw_ver.minor, 2697 nn->max_mtu); 2698 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2699 nn->cap, 2700 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2701 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2702 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2703 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2704 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2705 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2706 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2707 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2708 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2709 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", 2710 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", 2711 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 2712 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2713 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2714 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2715 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2716 nfp_net_ebpf_capable(nn) ? "BPF " : ""); 2717 } 2718 2719 /** 2720 * nfp_net_netdev_alloc() - Allocate netdev and related structure 2721 * @pdev: PCI device 2722 * @max_tx_rings: Maximum number of TX rings supported by device 2723 * @max_rx_rings: Maximum number of RX rings supported by device 2724 * 2725 * This function allocates a netdev device and fills in the initial 2726 * part of the @struct nfp_net structure. 2727 * 2728 * Return: NFP Net device structure, or ERR_PTR on error. 2729 */ 2730 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, 2731 int max_tx_rings, int max_rx_rings) 2732 { 2733 struct net_device *netdev; 2734 struct nfp_net *nn; 2735 int nqs; 2736 2737 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2738 max_tx_rings, max_rx_rings); 2739 if (!netdev) 2740 return ERR_PTR(-ENOMEM); 2741 2742 SET_NETDEV_DEV(netdev, &pdev->dev); 2743 nn = netdev_priv(netdev); 2744 2745 nn->netdev = netdev; 2746 nn->pdev = pdev; 2747 2748 nn->max_tx_rings = max_tx_rings; 2749 nn->max_rx_rings = max_rx_rings; 2750 2751 nqs = netif_get_num_default_rss_queues(); 2752 nn->num_tx_rings = min_t(int, nqs, max_tx_rings); 2753 nn->num_rx_rings = min_t(int, nqs, max_rx_rings); 2754 2755 nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2756 nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2757 2758 spin_lock_init(&nn->reconfig_lock); 2759 spin_lock_init(&nn->rx_filter_lock); 2760 spin_lock_init(&nn->link_status_lock); 2761 2762 setup_timer(&nn->reconfig_timer, 2763 nfp_net_reconfig_timer, (unsigned long)nn); 2764 setup_timer(&nn->rx_filter_stats_timer, 2765 nfp_net_filter_stats_timer, (unsigned long)nn); 2766 2767 return nn; 2768 } 2769 2770 /** 2771 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did 2772 * @nn: NFP Net device to reconfigure 2773 */ 2774 void nfp_net_netdev_free(struct nfp_net *nn) 2775 { 2776 free_netdev(nn->netdev); 2777 } 2778 2779 /** 2780 * nfp_net_rss_init() - Set the initial RSS parameters 2781 * @nn: NFP Net device to reconfigure 2782 */ 2783 static void nfp_net_rss_init(struct nfp_net *nn) 2784 { 2785 int i; 2786 2787 netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ); 2788 2789 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2790 nn->rss_itbl[i] = 2791 ethtool_rxfh_indir_default(i, nn->num_rx_rings); 2792 2793 /* Enable IPv4/IPv6 TCP by default */ 2794 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2795 NFP_NET_CFG_RSS_IPV6_TCP | 2796 NFP_NET_CFG_RSS_TOEPLITZ | 2797 NFP_NET_CFG_RSS_MASK; 2798 } 2799 2800 /** 2801 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2802 * @nn: NFP Net device to reconfigure 2803 */ 2804 static void nfp_net_irqmod_init(struct nfp_net *nn) 2805 { 2806 nn->rx_coalesce_usecs = 50; 2807 nn->rx_coalesce_max_frames = 64; 2808 nn->tx_coalesce_usecs = 50; 2809 nn->tx_coalesce_max_frames = 64; 2810 } 2811 2812 /** 2813 * nfp_net_netdev_init() - Initialise/finalise the netdev structure 2814 * @netdev: netdev structure 2815 * 2816 * Return: 0 on success or negative errno on error. 2817 */ 2818 int nfp_net_netdev_init(struct net_device *netdev) 2819 { 2820 struct nfp_net *nn = netdev_priv(netdev); 2821 int err; 2822 2823 /* Get some of the read-only fields from the BAR */ 2824 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2825 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2826 2827 nfp_net_write_mac_addr(nn); 2828 2829 /* Set default MTU and Freelist buffer size */ 2830 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 2831 netdev->mtu = nn->max_mtu; 2832 else 2833 netdev->mtu = NFP_NET_DEFAULT_MTU; 2834 nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ; 2835 2836 /* Advertise/enable offloads based on capabilities 2837 * 2838 * Note: netdev->features show the currently enabled features 2839 * and netdev->hw_features advertises which features are 2840 * supported. By default we enable most features. 2841 */ 2842 netdev->hw_features = NETIF_F_HIGHDMA; 2843 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { 2844 netdev->hw_features |= NETIF_F_RXCSUM; 2845 nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2846 } 2847 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2848 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2849 nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2850 } 2851 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2852 netdev->hw_features |= NETIF_F_SG; 2853 nn->ctrl |= NFP_NET_CFG_CTRL_GATHER; 2854 } 2855 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { 2856 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2857 nn->ctrl |= NFP_NET_CFG_CTRL_LSO; 2858 } 2859 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 2860 netdev->hw_features |= NETIF_F_RXHASH; 2861 nfp_net_rss_init(nn); 2862 nn->ctrl |= NFP_NET_CFG_CTRL_RSS; 2863 } 2864 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 2865 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2866 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2867 netdev->hw_features |= NETIF_F_GSO_GRE | 2868 NETIF_F_GSO_UDP_TUNNEL; 2869 nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 2870 2871 netdev->hw_enc_features = netdev->hw_features; 2872 } 2873 2874 netdev->vlan_features = netdev->hw_features; 2875 2876 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 2877 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2878 nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2879 } 2880 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 2881 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2882 nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2883 } 2884 2885 netdev->features = netdev->hw_features; 2886 2887 if (nfp_net_ebpf_capable(nn)) 2888 netdev->hw_features |= NETIF_F_HW_TC; 2889 2890 /* Advertise but disable TSO by default. */ 2891 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 2892 2893 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2894 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2895 nn->ctrl |= NFP_NET_CFG_CTRL_L2BC; 2896 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 2897 nn->ctrl |= NFP_NET_CFG_CTRL_L2MC; 2898 2899 /* Allow IRQ moderation, if supported */ 2900 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2901 nfp_net_irqmod_init(nn); 2902 nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2903 } 2904 2905 /* On NFP-3200 enable MSI-X auto-masking, if supported and the 2906 * interrupts are not shared. 2907 */ 2908 if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO) 2909 nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO; 2910 2911 /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */ 2912 if (nn->fw_ver.major >= 2) 2913 nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2914 else 2915 nn->rx_offset = NFP_NET_RX_OFFSET; 2916 2917 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2918 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2919 2920 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2921 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2922 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2923 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2924 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2925 NFP_NET_CFG_UPDATE_GEN); 2926 if (err) 2927 return err; 2928 2929 /* Finalise the netdev setup */ 2930 ether_setup(netdev); 2931 netdev->netdev_ops = &nfp_net_netdev_ops; 2932 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2933 netif_carrier_off(netdev); 2934 2935 nfp_net_set_ethtool_ops(netdev); 2936 nfp_net_irqs_assign(netdev); 2937 2938 return register_netdev(netdev); 2939 } 2940 2941 /** 2942 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. 2943 * @netdev: netdev structure 2944 */ 2945 void nfp_net_netdev_clean(struct net_device *netdev) 2946 { 2947 unregister_netdev(netdev); 2948 } 2949