1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38 
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50 #include "crypto/fw.h"
51 
52 /**
53  * nfp_net_get_fw_version() - Read and parse the FW version
54  * @fw_ver:	Output fw_version structure to read to
55  * @ctrl_bar:	Mapped address of the control BAR
56  */
57 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
58 			    void __iomem *ctrl_bar)
59 {
60 	u32 reg;
61 
62 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
63 	put_unaligned_le32(reg, fw_ver);
64 }
65 
66 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
67 {
68 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
69 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
70 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
71 }
72 
73 static void
74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
75 {
76 	dma_sync_single_for_device(dp->dev, dma_addr,
77 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
78 				   dp->rx_dma_dir);
79 }
80 
81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
82 {
83 	dma_unmap_single_attrs(dp->dev, dma_addr,
84 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
85 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
86 }
87 
88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
89 				    unsigned int len)
90 {
91 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
92 				len, dp->rx_dma_dir);
93 }
94 
95 /* Firmware reconfig
96  *
97  * Firmware reconfig may take a while so we have two versions of it -
98  * synchronous and asynchronous (posted).  All synchronous callers are holding
99  * RTNL so we don't have to worry about serializing them.
100  */
101 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
102 {
103 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
104 	/* ensure update is written before pinging HW */
105 	nn_pci_flush(nn);
106 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
107 	nn->reconfig_in_progress_update = update;
108 }
109 
110 /* Pass 0 as update to run posted reconfigs. */
111 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
112 {
113 	update |= nn->reconfig_posted;
114 	nn->reconfig_posted = 0;
115 
116 	nfp_net_reconfig_start(nn, update);
117 
118 	nn->reconfig_timer_active = true;
119 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
120 }
121 
122 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
123 {
124 	u32 reg;
125 
126 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
127 	if (reg == 0)
128 		return true;
129 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
130 		nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
131 		       reg, nn->reconfig_in_progress_update,
132 		       nn_readl(nn, NFP_NET_CFG_CTRL));
133 		return true;
134 	} else if (last_check) {
135 		nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
136 		       reg, nn->reconfig_in_progress_update,
137 		       nn_readl(nn, NFP_NET_CFG_CTRL));
138 		return true;
139 	}
140 
141 	return false;
142 }
143 
144 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
145 {
146 	bool timed_out = false;
147 	int i;
148 
149 	/* Poll update field, waiting for NFP to ack the config.
150 	 * Do an opportunistic wait-busy loop, afterward sleep.
151 	 */
152 	for (i = 0; i < 50; i++) {
153 		if (nfp_net_reconfig_check_done(nn, false))
154 			return false;
155 		udelay(4);
156 	}
157 
158 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
159 		usleep_range(250, 500);
160 		timed_out = time_is_before_eq_jiffies(deadline);
161 	}
162 
163 	return timed_out;
164 }
165 
166 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
167 {
168 	if (__nfp_net_reconfig_wait(nn, deadline))
169 		return -EIO;
170 
171 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
172 		return -EIO;
173 
174 	return 0;
175 }
176 
177 static void nfp_net_reconfig_timer(struct timer_list *t)
178 {
179 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
180 
181 	spin_lock_bh(&nn->reconfig_lock);
182 
183 	nn->reconfig_timer_active = false;
184 
185 	/* If sync caller is present it will take over from us */
186 	if (nn->reconfig_sync_present)
187 		goto done;
188 
189 	/* Read reconfig status and report errors */
190 	nfp_net_reconfig_check_done(nn, true);
191 
192 	if (nn->reconfig_posted)
193 		nfp_net_reconfig_start_async(nn, 0);
194 done:
195 	spin_unlock_bh(&nn->reconfig_lock);
196 }
197 
198 /**
199  * nfp_net_reconfig_post() - Post async reconfig request
200  * @nn:      NFP Net device to reconfigure
201  * @update:  The value for the update field in the BAR config
202  *
203  * Record FW reconfiguration request.  Reconfiguration will be kicked off
204  * whenever reconfiguration machinery is idle.  Multiple requests can be
205  * merged together!
206  */
207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
208 {
209 	spin_lock_bh(&nn->reconfig_lock);
210 
211 	/* Sync caller will kick off async reconf when it's done, just post */
212 	if (nn->reconfig_sync_present) {
213 		nn->reconfig_posted |= update;
214 		goto done;
215 	}
216 
217 	/* Opportunistically check if the previous command is done */
218 	if (!nn->reconfig_timer_active ||
219 	    nfp_net_reconfig_check_done(nn, false))
220 		nfp_net_reconfig_start_async(nn, update);
221 	else
222 		nn->reconfig_posted |= update;
223 done:
224 	spin_unlock_bh(&nn->reconfig_lock);
225 }
226 
227 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
228 {
229 	bool cancelled_timer = false;
230 	u32 pre_posted_requests;
231 
232 	spin_lock_bh(&nn->reconfig_lock);
233 
234 	WARN_ON(nn->reconfig_sync_present);
235 	nn->reconfig_sync_present = true;
236 
237 	if (nn->reconfig_timer_active) {
238 		nn->reconfig_timer_active = false;
239 		cancelled_timer = true;
240 	}
241 	pre_posted_requests = nn->reconfig_posted;
242 	nn->reconfig_posted = 0;
243 
244 	spin_unlock_bh(&nn->reconfig_lock);
245 
246 	if (cancelled_timer) {
247 		del_timer_sync(&nn->reconfig_timer);
248 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
249 	}
250 
251 	/* Run the posted reconfigs which were issued before we started */
252 	if (pre_posted_requests) {
253 		nfp_net_reconfig_start(nn, pre_posted_requests);
254 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
255 	}
256 }
257 
258 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
259 {
260 	nfp_net_reconfig_sync_enter(nn);
261 
262 	spin_lock_bh(&nn->reconfig_lock);
263 	nn->reconfig_sync_present = false;
264 	spin_unlock_bh(&nn->reconfig_lock);
265 }
266 
267 /**
268  * __nfp_net_reconfig() - Reconfigure the firmware
269  * @nn:      NFP Net device to reconfigure
270  * @update:  The value for the update field in the BAR config
271  *
272  * Write the update word to the BAR and ping the reconfig queue.  The
273  * poll until the firmware has acknowledged the update by zeroing the
274  * update word.
275  *
276  * Return: Negative errno on error, 0 on success
277  */
278 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
279 {
280 	int ret;
281 
282 	nfp_net_reconfig_sync_enter(nn);
283 
284 	nfp_net_reconfig_start(nn, update);
285 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
286 
287 	spin_lock_bh(&nn->reconfig_lock);
288 
289 	if (nn->reconfig_posted)
290 		nfp_net_reconfig_start_async(nn, 0);
291 
292 	nn->reconfig_sync_present = false;
293 
294 	spin_unlock_bh(&nn->reconfig_lock);
295 
296 	return ret;
297 }
298 
299 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
300 {
301 	int ret;
302 
303 	nn_ctrl_bar_lock(nn);
304 	ret = __nfp_net_reconfig(nn, update);
305 	nn_ctrl_bar_unlock(nn);
306 
307 	return ret;
308 }
309 
310 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
311 {
312 	if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
313 		nn_err(nn, "mailbox too small for %u of data (%u)\n",
314 		       data_size, nn->tlv_caps.mbox_len);
315 		return -EIO;
316 	}
317 
318 	nn_ctrl_bar_lock(nn);
319 	return 0;
320 }
321 
322 /**
323  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
324  * @nn:        NFP Net device to reconfigure
325  * @mbox_cmd:  The value for the mailbox command
326  *
327  * Helper function for mailbox updates
328  *
329  * Return: Negative errno on error, 0 on success
330  */
331 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
332 {
333 	u32 mbox = nn->tlv_caps.mbox_off;
334 	int ret;
335 
336 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
337 
338 	ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
339 	if (ret) {
340 		nn_err(nn, "Mailbox update error\n");
341 		return ret;
342 	}
343 
344 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
345 }
346 
347 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
348 {
349 	u32 mbox = nn->tlv_caps.mbox_off;
350 
351 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
352 
353 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
354 }
355 
356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
357 {
358 	u32 mbox = nn->tlv_caps.mbox_off;
359 
360 	nfp_net_reconfig_wait_posted(nn);
361 
362 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
363 }
364 
365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
366 {
367 	int ret;
368 
369 	ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
370 	nn_ctrl_bar_unlock(nn);
371 	return ret;
372 }
373 
374 /* Interrupt configuration and handling
375  */
376 
377 /**
378  * nfp_net_irq_unmask() - Unmask automasked interrupt
379  * @nn:       NFP Network structure
380  * @entry_nr: MSI-X table entry
381  *
382  * Clear the ICR for the IRQ entry.
383  */
384 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
385 {
386 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
387 	nn_pci_flush(nn);
388 }
389 
390 /**
391  * nfp_net_irqs_alloc() - allocates MSI-X irqs
392  * @pdev:        PCI device structure
393  * @irq_entries: Array to be initialized and used to hold the irq entries
394  * @min_irqs:    Minimal acceptable number of interrupts
395  * @wanted_irqs: Target number of interrupts to allocate
396  *
397  * Return: Number of irqs obtained or 0 on error.
398  */
399 unsigned int
400 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
401 		   unsigned int min_irqs, unsigned int wanted_irqs)
402 {
403 	unsigned int i;
404 	int got_irqs;
405 
406 	for (i = 0; i < wanted_irqs; i++)
407 		irq_entries[i].entry = i;
408 
409 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
410 					 min_irqs, wanted_irqs);
411 	if (got_irqs < 0) {
412 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
413 			min_irqs, wanted_irqs, got_irqs);
414 		return 0;
415 	}
416 
417 	if (got_irqs < wanted_irqs)
418 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
419 			 wanted_irqs, got_irqs);
420 
421 	return got_irqs;
422 }
423 
424 /**
425  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
426  * @nn:		 NFP Network structure
427  * @irq_entries: Table of allocated interrupts
428  * @n:		 Size of @irq_entries (number of entries to grab)
429  *
430  * After interrupts are allocated with nfp_net_irqs_alloc() this function
431  * should be called to assign them to a specific netdev (port).
432  */
433 void
434 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
435 		    unsigned int n)
436 {
437 	struct nfp_net_dp *dp = &nn->dp;
438 
439 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
440 	dp->num_r_vecs = nn->max_r_vecs;
441 
442 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
443 
444 	if (dp->num_rx_rings > dp->num_r_vecs ||
445 	    dp->num_tx_rings > dp->num_r_vecs)
446 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
447 			 dp->num_rx_rings, dp->num_tx_rings,
448 			 dp->num_r_vecs);
449 
450 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
451 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
452 	dp->num_stack_tx_rings = dp->num_tx_rings;
453 }
454 
455 /**
456  * nfp_net_irqs_disable() - Disable interrupts
457  * @pdev:        PCI device structure
458  *
459  * Undoes what @nfp_net_irqs_alloc() does.
460  */
461 void nfp_net_irqs_disable(struct pci_dev *pdev)
462 {
463 	pci_disable_msix(pdev);
464 }
465 
466 /**
467  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
468  * @irq:      Interrupt
469  * @data:     Opaque data structure
470  *
471  * Return: Indicate if the interrupt has been handled.
472  */
473 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
474 {
475 	struct nfp_net_r_vector *r_vec = data;
476 
477 	napi_schedule_irqoff(&r_vec->napi);
478 
479 	/* The FW auto-masks any interrupt, either via the MASK bit in
480 	 * the MSI-X table or via the per entry ICR field.  So there
481 	 * is no need to disable interrupts here.
482 	 */
483 	return IRQ_HANDLED;
484 }
485 
486 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
487 {
488 	struct nfp_net_r_vector *r_vec = data;
489 
490 	tasklet_schedule(&r_vec->tasklet);
491 
492 	return IRQ_HANDLED;
493 }
494 
495 /**
496  * nfp_net_read_link_status() - Reread link status from control BAR
497  * @nn:       NFP Network structure
498  */
499 static void nfp_net_read_link_status(struct nfp_net *nn)
500 {
501 	unsigned long flags;
502 	bool link_up;
503 	u32 sts;
504 
505 	spin_lock_irqsave(&nn->link_status_lock, flags);
506 
507 	sts = nn_readl(nn, NFP_NET_CFG_STS);
508 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
509 
510 	if (nn->link_up == link_up)
511 		goto out;
512 
513 	nn->link_up = link_up;
514 	if (nn->port)
515 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
516 
517 	if (nn->link_up) {
518 		netif_carrier_on(nn->dp.netdev);
519 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
520 	} else {
521 		netif_carrier_off(nn->dp.netdev);
522 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
523 	}
524 out:
525 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
526 }
527 
528 /**
529  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
530  * @irq:      Interrupt
531  * @data:     Opaque data structure
532  *
533  * Return: Indicate if the interrupt has been handled.
534  */
535 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
536 {
537 	struct nfp_net *nn = data;
538 	struct msix_entry *entry;
539 
540 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
541 
542 	nfp_net_read_link_status(nn);
543 
544 	nfp_net_irq_unmask(nn, entry->entry);
545 
546 	return IRQ_HANDLED;
547 }
548 
549 /**
550  * nfp_net_irq_exn() - Interrupt service routine for exceptions
551  * @irq:      Interrupt
552  * @data:     Opaque data structure
553  *
554  * Return: Indicate if the interrupt has been handled.
555  */
556 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
557 {
558 	struct nfp_net *nn = data;
559 
560 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
561 	/* XXX TO BE IMPLEMENTED */
562 	return IRQ_HANDLED;
563 }
564 
565 /**
566  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
567  * @tx_ring:  TX ring structure
568  * @r_vec:    IRQ vector servicing this ring
569  * @idx:      Ring index
570  * @is_xdp:   Is this an XDP TX ring?
571  */
572 static void
573 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
574 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
575 		     bool is_xdp)
576 {
577 	struct nfp_net *nn = r_vec->nfp_net;
578 
579 	tx_ring->idx = idx;
580 	tx_ring->r_vec = r_vec;
581 	tx_ring->is_xdp = is_xdp;
582 	u64_stats_init(&tx_ring->r_vec->tx_sync);
583 
584 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
585 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
586 }
587 
588 /**
589  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
590  * @rx_ring:  RX ring structure
591  * @r_vec:    IRQ vector servicing this ring
592  * @idx:      Ring index
593  */
594 static void
595 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
596 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
597 {
598 	struct nfp_net *nn = r_vec->nfp_net;
599 
600 	rx_ring->idx = idx;
601 	rx_ring->r_vec = r_vec;
602 	u64_stats_init(&rx_ring->r_vec->rx_sync);
603 
604 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
605 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
606 }
607 
608 /**
609  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
610  * @nn:		NFP Network structure
611  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
612  * @format:	printf-style format to construct the interrupt name
613  * @name:	Pointer to allocated space for interrupt name
614  * @name_sz:	Size of space for interrupt name
615  * @vector_idx:	Index of MSI-X vector used for this interrupt
616  * @handler:	IRQ handler to register for this interrupt
617  */
618 static int
619 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
620 			const char *format, char *name, size_t name_sz,
621 			unsigned int vector_idx, irq_handler_t handler)
622 {
623 	struct msix_entry *entry;
624 	int err;
625 
626 	entry = &nn->irq_entries[vector_idx];
627 
628 	snprintf(name, name_sz, format, nfp_net_name(nn));
629 	err = request_irq(entry->vector, handler, 0, name, nn);
630 	if (err) {
631 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
632 		       entry->vector, err);
633 		return err;
634 	}
635 	nn_writeb(nn, ctrl_offset, entry->entry);
636 	nfp_net_irq_unmask(nn, entry->entry);
637 
638 	return 0;
639 }
640 
641 /**
642  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
643  * @nn:		NFP Network structure
644  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
645  * @vector_idx:	Index of MSI-X vector used for this interrupt
646  */
647 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
648 				 unsigned int vector_idx)
649 {
650 	nn_writeb(nn, ctrl_offset, 0xff);
651 	nn_pci_flush(nn);
652 	free_irq(nn->irq_entries[vector_idx].vector, nn);
653 }
654 
655 /* Transmit
656  *
657  * One queue controller peripheral queue is used for transmit.  The
658  * driver en-queues packets for transmit by advancing the write
659  * pointer.  The device indicates that packets have transmitted by
660  * advancing the read pointer.  The driver maintains a local copy of
661  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
662  * keeps @wr_p in sync with the queue controller write pointer and can
663  * determine how many packets have been transmitted by comparing its
664  * copy of the read pointer @rd_p with the read pointer maintained by
665  * the queue controller peripheral.
666  */
667 
668 /**
669  * nfp_net_tx_full() - Check if the TX ring is full
670  * @tx_ring: TX ring to check
671  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
672  *
673  * This function checks, based on the *host copy* of read/write
674  * pointer if a given TX ring is full.  The real TX queue may have
675  * some newly made available slots.
676  *
677  * Return: True if the ring is full.
678  */
679 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
680 {
681 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
682 }
683 
684 /* Wrappers for deciding when to stop and restart TX queues */
685 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
686 {
687 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
688 }
689 
690 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
691 {
692 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
693 }
694 
695 /**
696  * nfp_net_tx_ring_stop() - stop tx ring
697  * @nd_q:    netdev queue
698  * @tx_ring: driver tx queue structure
699  *
700  * Safely stop TX ring.  Remember that while we are running .start_xmit()
701  * someone else may be cleaning the TX ring completions so we need to be
702  * extra careful here.
703  */
704 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
705 				 struct nfp_net_tx_ring *tx_ring)
706 {
707 	netif_tx_stop_queue(nd_q);
708 
709 	/* We can race with the TX completion out of NAPI so recheck */
710 	smp_mb();
711 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
712 		netif_tx_start_queue(nd_q);
713 }
714 
715 /**
716  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
717  * @r_vec: per-ring structure
718  * @txbuf: Pointer to driver soft TX descriptor
719  * @txd: Pointer to HW TX descriptor
720  * @skb: Pointer to SKB
721  * @md_bytes: Prepend length
722  *
723  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
724  * Return error on packet header greater than maximum supported LSO header size.
725  */
726 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
727 			   struct nfp_net_tx_buf *txbuf,
728 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
729 			   u32 md_bytes)
730 {
731 	u32 l3_offset, l4_offset, hdrlen;
732 	u16 mss;
733 
734 	if (!skb_is_gso(skb))
735 		return;
736 
737 	if (!skb->encapsulation) {
738 		l3_offset = skb_network_offset(skb);
739 		l4_offset = skb_transport_offset(skb);
740 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
741 	} else {
742 		l3_offset = skb_inner_network_offset(skb);
743 		l4_offset = skb_inner_transport_offset(skb);
744 		hdrlen = skb_inner_transport_header(skb) - skb->data +
745 			inner_tcp_hdrlen(skb);
746 	}
747 
748 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
749 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
750 
751 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
752 	txd->l3_offset = l3_offset - md_bytes;
753 	txd->l4_offset = l4_offset - md_bytes;
754 	txd->lso_hdrlen = hdrlen - md_bytes;
755 	txd->mss = cpu_to_le16(mss);
756 	txd->flags |= PCIE_DESC_TX_LSO;
757 
758 	u64_stats_update_begin(&r_vec->tx_sync);
759 	r_vec->tx_lso++;
760 	u64_stats_update_end(&r_vec->tx_sync);
761 }
762 
763 /**
764  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
765  * @dp:  NFP Net data path struct
766  * @r_vec: per-ring structure
767  * @txbuf: Pointer to driver soft TX descriptor
768  * @txd: Pointer to TX descriptor
769  * @skb: Pointer to SKB
770  *
771  * This function sets the TX checksum flags in the TX descriptor based
772  * on the configuration and the protocol of the packet to be transmitted.
773  */
774 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
775 			    struct nfp_net_r_vector *r_vec,
776 			    struct nfp_net_tx_buf *txbuf,
777 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
778 {
779 	struct ipv6hdr *ipv6h;
780 	struct iphdr *iph;
781 	u8 l4_hdr;
782 
783 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
784 		return;
785 
786 	if (skb->ip_summed != CHECKSUM_PARTIAL)
787 		return;
788 
789 	txd->flags |= PCIE_DESC_TX_CSUM;
790 	if (skb->encapsulation)
791 		txd->flags |= PCIE_DESC_TX_ENCAP;
792 
793 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
794 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
795 
796 	if (iph->version == 4) {
797 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
798 		l4_hdr = iph->protocol;
799 	} else if (ipv6h->version == 6) {
800 		l4_hdr = ipv6h->nexthdr;
801 	} else {
802 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
803 		return;
804 	}
805 
806 	switch (l4_hdr) {
807 	case IPPROTO_TCP:
808 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
809 		break;
810 	case IPPROTO_UDP:
811 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
812 		break;
813 	default:
814 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
815 		return;
816 	}
817 
818 	u64_stats_update_begin(&r_vec->tx_sync);
819 	if (skb->encapsulation)
820 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
821 	else
822 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
823 	u64_stats_update_end(&r_vec->tx_sync);
824 }
825 
826 static struct sk_buff *
827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
828 	       struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
829 {
830 #ifdef CONFIG_TLS_DEVICE
831 	struct nfp_net_tls_offload_ctx *ntls;
832 	struct sk_buff *nskb;
833 	bool resync_pending;
834 	u32 datalen, seq;
835 
836 	if (likely(!dp->ktls_tx))
837 		return skb;
838 	if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
839 		return skb;
840 
841 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
842 	seq = ntohl(tcp_hdr(skb)->seq);
843 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
844 	resync_pending = tls_offload_tx_resync_pending(skb->sk);
845 	if (unlikely(resync_pending || ntls->next_seq != seq)) {
846 		/* Pure ACK out of order already */
847 		if (!datalen)
848 			return skb;
849 
850 		u64_stats_update_begin(&r_vec->tx_sync);
851 		r_vec->tls_tx_fallback++;
852 		u64_stats_update_end(&r_vec->tx_sync);
853 
854 		nskb = tls_encrypt_skb(skb);
855 		if (!nskb) {
856 			u64_stats_update_begin(&r_vec->tx_sync);
857 			r_vec->tls_tx_no_fallback++;
858 			u64_stats_update_end(&r_vec->tx_sync);
859 			return NULL;
860 		}
861 		/* encryption wasn't necessary */
862 		if (nskb == skb)
863 			return skb;
864 		/* we don't re-check ring space */
865 		if (unlikely(skb_is_nonlinear(nskb))) {
866 			nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
867 			u64_stats_update_begin(&r_vec->tx_sync);
868 			r_vec->tx_errors++;
869 			u64_stats_update_end(&r_vec->tx_sync);
870 			dev_kfree_skb_any(nskb);
871 			return NULL;
872 		}
873 
874 		/* jump forward, a TX may have gotten lost, need to sync TX */
875 		if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
876 			tls_offload_tx_resync_request(nskb->sk, seq,
877 						      ntls->next_seq);
878 
879 		*nr_frags = 0;
880 		return nskb;
881 	}
882 
883 	if (datalen) {
884 		u64_stats_update_begin(&r_vec->tx_sync);
885 		if (!skb_is_gso(skb))
886 			r_vec->hw_tls_tx++;
887 		else
888 			r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
889 		u64_stats_update_end(&r_vec->tx_sync);
890 	}
891 
892 	memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
893 	ntls->next_seq += datalen;
894 #endif
895 	return skb;
896 }
897 
898 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
899 {
900 #ifdef CONFIG_TLS_DEVICE
901 	struct nfp_net_tls_offload_ctx *ntls;
902 	u32 datalen, seq;
903 
904 	if (!tls_handle)
905 		return;
906 	if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
907 		return;
908 
909 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
910 	seq = ntohl(tcp_hdr(skb)->seq);
911 
912 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
913 	if (ntls->next_seq == seq + datalen)
914 		ntls->next_seq = seq;
915 	else
916 		WARN_ON_ONCE(1);
917 #endif
918 }
919 
920 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
921 {
922 	wmb();
923 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
924 	tx_ring->wr_ptr_add = 0;
925 }
926 
927 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
928 {
929 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
930 	unsigned char *data;
931 	u32 meta_id = 0;
932 	int md_bytes;
933 
934 	if (likely(!md_dst && !tls_handle))
935 		return 0;
936 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
937 		if (!tls_handle)
938 			return 0;
939 		md_dst = NULL;
940 	}
941 
942 	md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
943 
944 	if (unlikely(skb_cow_head(skb, md_bytes)))
945 		return -ENOMEM;
946 
947 	meta_id = 0;
948 	data = skb_push(skb, md_bytes) + md_bytes;
949 	if (md_dst) {
950 		data -= 4;
951 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
952 		meta_id = NFP_NET_META_PORTID;
953 	}
954 	if (tls_handle) {
955 		/* conn handle is opaque, we just use u64 to be able to quickly
956 		 * compare it to zero
957 		 */
958 		data -= 8;
959 		memcpy(data, &tls_handle, sizeof(tls_handle));
960 		meta_id <<= NFP_NET_META_FIELD_SIZE;
961 		meta_id |= NFP_NET_META_CONN_HANDLE;
962 	}
963 
964 	data -= 4;
965 	put_unaligned_be32(meta_id, data);
966 
967 	return md_bytes;
968 }
969 
970 /**
971  * nfp_net_tx() - Main transmit entry point
972  * @skb:    SKB to transmit
973  * @netdev: netdev structure
974  *
975  * Return: NETDEV_TX_OK on success.
976  */
977 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
978 {
979 	struct nfp_net *nn = netdev_priv(netdev);
980 	const skb_frag_t *frag;
981 	int f, nr_frags, wr_idx, md_bytes;
982 	struct nfp_net_tx_ring *tx_ring;
983 	struct nfp_net_r_vector *r_vec;
984 	struct nfp_net_tx_buf *txbuf;
985 	struct nfp_net_tx_desc *txd;
986 	struct netdev_queue *nd_q;
987 	struct nfp_net_dp *dp;
988 	dma_addr_t dma_addr;
989 	unsigned int fsize;
990 	u64 tls_handle = 0;
991 	u16 qidx;
992 
993 	dp = &nn->dp;
994 	qidx = skb_get_queue_mapping(skb);
995 	tx_ring = &dp->tx_rings[qidx];
996 	r_vec = tx_ring->r_vec;
997 
998 	nr_frags = skb_shinfo(skb)->nr_frags;
999 
1000 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
1001 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1002 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
1003 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1004 		netif_tx_stop_queue(nd_q);
1005 		nfp_net_tx_xmit_more_flush(tx_ring);
1006 		u64_stats_update_begin(&r_vec->tx_sync);
1007 		r_vec->tx_busy++;
1008 		u64_stats_update_end(&r_vec->tx_sync);
1009 		return NETDEV_TX_BUSY;
1010 	}
1011 
1012 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1013 	if (unlikely(!skb)) {
1014 		nfp_net_tx_xmit_more_flush(tx_ring);
1015 		return NETDEV_TX_OK;
1016 	}
1017 
1018 	md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1019 	if (unlikely(md_bytes < 0))
1020 		goto err_flush;
1021 
1022 	/* Start with the head skbuf */
1023 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1024 				  DMA_TO_DEVICE);
1025 	if (dma_mapping_error(dp->dev, dma_addr))
1026 		goto err_dma_err;
1027 
1028 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1029 
1030 	/* Stash the soft descriptor of the head then initialize it */
1031 	txbuf = &tx_ring->txbufs[wr_idx];
1032 	txbuf->skb = skb;
1033 	txbuf->dma_addr = dma_addr;
1034 	txbuf->fidx = -1;
1035 	txbuf->pkt_cnt = 1;
1036 	txbuf->real_len = skb->len;
1037 
1038 	/* Build TX descriptor */
1039 	txd = &tx_ring->txds[wr_idx];
1040 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1041 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1042 	nfp_desc_set_dma_addr(txd, dma_addr);
1043 	txd->data_len = cpu_to_le16(skb->len);
1044 
1045 	txd->flags = 0;
1046 	txd->mss = 0;
1047 	txd->lso_hdrlen = 0;
1048 
1049 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1050 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1051 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1052 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1053 		txd->flags |= PCIE_DESC_TX_VLAN;
1054 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1055 	}
1056 
1057 	/* Gather DMA */
1058 	if (nr_frags > 0) {
1059 		__le64 second_half;
1060 
1061 		/* all descs must match except for in addr, length and eop */
1062 		second_half = txd->vals8[1];
1063 
1064 		for (f = 0; f < nr_frags; f++) {
1065 			frag = &skb_shinfo(skb)->frags[f];
1066 			fsize = skb_frag_size(frag);
1067 
1068 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1069 						    fsize, DMA_TO_DEVICE);
1070 			if (dma_mapping_error(dp->dev, dma_addr))
1071 				goto err_unmap;
1072 
1073 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
1074 			tx_ring->txbufs[wr_idx].skb = skb;
1075 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1076 			tx_ring->txbufs[wr_idx].fidx = f;
1077 
1078 			txd = &tx_ring->txds[wr_idx];
1079 			txd->dma_len = cpu_to_le16(fsize);
1080 			nfp_desc_set_dma_addr(txd, dma_addr);
1081 			txd->offset_eop = md_bytes |
1082 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1083 			txd->vals8[1] = second_half;
1084 		}
1085 
1086 		u64_stats_update_begin(&r_vec->tx_sync);
1087 		r_vec->tx_gather++;
1088 		u64_stats_update_end(&r_vec->tx_sync);
1089 	}
1090 
1091 	skb_tx_timestamp(skb);
1092 
1093 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1094 
1095 	tx_ring->wr_p += nr_frags + 1;
1096 	if (nfp_net_tx_ring_should_stop(tx_ring))
1097 		nfp_net_tx_ring_stop(nd_q, tx_ring);
1098 
1099 	tx_ring->wr_ptr_add += nr_frags + 1;
1100 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1101 		nfp_net_tx_xmit_more_flush(tx_ring);
1102 
1103 	return NETDEV_TX_OK;
1104 
1105 err_unmap:
1106 	while (--f >= 0) {
1107 		frag = &skb_shinfo(skb)->frags[f];
1108 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1109 			       skb_frag_size(frag), DMA_TO_DEVICE);
1110 		tx_ring->txbufs[wr_idx].skb = NULL;
1111 		tx_ring->txbufs[wr_idx].dma_addr = 0;
1112 		tx_ring->txbufs[wr_idx].fidx = -2;
1113 		wr_idx = wr_idx - 1;
1114 		if (wr_idx < 0)
1115 			wr_idx += tx_ring->cnt;
1116 	}
1117 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1118 			 skb_headlen(skb), DMA_TO_DEVICE);
1119 	tx_ring->txbufs[wr_idx].skb = NULL;
1120 	tx_ring->txbufs[wr_idx].dma_addr = 0;
1121 	tx_ring->txbufs[wr_idx].fidx = -2;
1122 err_dma_err:
1123 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1124 err_flush:
1125 	nfp_net_tx_xmit_more_flush(tx_ring);
1126 	u64_stats_update_begin(&r_vec->tx_sync);
1127 	r_vec->tx_errors++;
1128 	u64_stats_update_end(&r_vec->tx_sync);
1129 	nfp_net_tls_tx_undo(skb, tls_handle);
1130 	dev_kfree_skb_any(skb);
1131 	return NETDEV_TX_OK;
1132 }
1133 
1134 /**
1135  * nfp_net_tx_complete() - Handled completed TX packets
1136  * @tx_ring:	TX ring structure
1137  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
1138  */
1139 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1140 {
1141 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1142 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1143 	struct netdev_queue *nd_q;
1144 	u32 done_pkts = 0, done_bytes = 0;
1145 	u32 qcp_rd_p;
1146 	int todo;
1147 
1148 	if (tx_ring->wr_p == tx_ring->rd_p)
1149 		return;
1150 
1151 	/* Work out how many descriptors have been transmitted */
1152 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1153 
1154 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1155 		return;
1156 
1157 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1158 
1159 	while (todo--) {
1160 		const skb_frag_t *frag;
1161 		struct nfp_net_tx_buf *tx_buf;
1162 		struct sk_buff *skb;
1163 		int fidx, nr_frags;
1164 		int idx;
1165 
1166 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
1167 		tx_buf = &tx_ring->txbufs[idx];
1168 
1169 		skb = tx_buf->skb;
1170 		if (!skb)
1171 			continue;
1172 
1173 		nr_frags = skb_shinfo(skb)->nr_frags;
1174 		fidx = tx_buf->fidx;
1175 
1176 		if (fidx == -1) {
1177 			/* unmap head */
1178 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1179 					 skb_headlen(skb), DMA_TO_DEVICE);
1180 
1181 			done_pkts += tx_buf->pkt_cnt;
1182 			done_bytes += tx_buf->real_len;
1183 		} else {
1184 			/* unmap fragment */
1185 			frag = &skb_shinfo(skb)->frags[fidx];
1186 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1187 				       skb_frag_size(frag), DMA_TO_DEVICE);
1188 		}
1189 
1190 		/* check for last gather fragment */
1191 		if (fidx == nr_frags - 1)
1192 			napi_consume_skb(skb, budget);
1193 
1194 		tx_buf->dma_addr = 0;
1195 		tx_buf->skb = NULL;
1196 		tx_buf->fidx = -2;
1197 	}
1198 
1199 	tx_ring->qcp_rd_p = qcp_rd_p;
1200 
1201 	u64_stats_update_begin(&r_vec->tx_sync);
1202 	r_vec->tx_bytes += done_bytes;
1203 	r_vec->tx_pkts += done_pkts;
1204 	u64_stats_update_end(&r_vec->tx_sync);
1205 
1206 	if (!dp->netdev)
1207 		return;
1208 
1209 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1210 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1211 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1212 		/* Make sure TX thread will see updated tx_ring->rd_p */
1213 		smp_mb();
1214 
1215 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1216 			netif_tx_wake_queue(nd_q);
1217 	}
1218 
1219 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1220 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1221 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1222 }
1223 
1224 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1225 {
1226 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1227 	u32 done_pkts = 0, done_bytes = 0;
1228 	bool done_all;
1229 	int idx, todo;
1230 	u32 qcp_rd_p;
1231 
1232 	/* Work out how many descriptors have been transmitted */
1233 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1234 
1235 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1236 		return true;
1237 
1238 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1239 
1240 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1241 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1242 
1243 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1244 
1245 	done_pkts = todo;
1246 	while (todo--) {
1247 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1248 		tx_ring->rd_p++;
1249 
1250 		done_bytes += tx_ring->txbufs[idx].real_len;
1251 	}
1252 
1253 	u64_stats_update_begin(&r_vec->tx_sync);
1254 	r_vec->tx_bytes += done_bytes;
1255 	r_vec->tx_pkts += done_pkts;
1256 	u64_stats_update_end(&r_vec->tx_sync);
1257 
1258 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1259 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1260 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1261 
1262 	return done_all;
1263 }
1264 
1265 /**
1266  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1267  * @dp:		NFP Net data path struct
1268  * @tx_ring:	TX ring structure
1269  *
1270  * Assumes that the device is stopped, must be idempotent.
1271  */
1272 static void
1273 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1274 {
1275 	const skb_frag_t *frag;
1276 	struct netdev_queue *nd_q;
1277 
1278 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1279 		struct nfp_net_tx_buf *tx_buf;
1280 		struct sk_buff *skb;
1281 		int idx, nr_frags;
1282 
1283 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1284 		tx_buf = &tx_ring->txbufs[idx];
1285 
1286 		skb = tx_ring->txbufs[idx].skb;
1287 		nr_frags = skb_shinfo(skb)->nr_frags;
1288 
1289 		if (tx_buf->fidx == -1) {
1290 			/* unmap head */
1291 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1292 					 skb_headlen(skb), DMA_TO_DEVICE);
1293 		} else {
1294 			/* unmap fragment */
1295 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1296 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1297 				       skb_frag_size(frag), DMA_TO_DEVICE);
1298 		}
1299 
1300 		/* check for last gather fragment */
1301 		if (tx_buf->fidx == nr_frags - 1)
1302 			dev_kfree_skb_any(skb);
1303 
1304 		tx_buf->dma_addr = 0;
1305 		tx_buf->skb = NULL;
1306 		tx_buf->fidx = -2;
1307 
1308 		tx_ring->qcp_rd_p++;
1309 		tx_ring->rd_p++;
1310 	}
1311 
1312 	memset(tx_ring->txds, 0, tx_ring->size);
1313 	tx_ring->wr_p = 0;
1314 	tx_ring->rd_p = 0;
1315 	tx_ring->qcp_rd_p = 0;
1316 	tx_ring->wr_ptr_add = 0;
1317 
1318 	if (tx_ring->is_xdp || !dp->netdev)
1319 		return;
1320 
1321 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1322 	netdev_tx_reset_queue(nd_q);
1323 }
1324 
1325 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1326 {
1327 	struct nfp_net *nn = netdev_priv(netdev);
1328 
1329 	nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
1330 }
1331 
1332 /* Receive processing
1333  */
1334 static unsigned int
1335 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1336 {
1337 	unsigned int fl_bufsz;
1338 
1339 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1340 	fl_bufsz += dp->rx_dma_off;
1341 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1342 		fl_bufsz += NFP_NET_MAX_PREPEND;
1343 	else
1344 		fl_bufsz += dp->rx_offset;
1345 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1346 
1347 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1348 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1349 
1350 	return fl_bufsz;
1351 }
1352 
1353 static void
1354 nfp_net_free_frag(void *frag, bool xdp)
1355 {
1356 	if (!xdp)
1357 		skb_free_frag(frag);
1358 	else
1359 		__free_page(virt_to_page(frag));
1360 }
1361 
1362 /**
1363  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1364  * @dp:		NFP Net data path struct
1365  * @dma_addr:	Pointer to storage for DMA address (output param)
1366  *
1367  * This function will allcate a new page frag, map it for DMA.
1368  *
1369  * Return: allocated page frag or NULL on failure.
1370  */
1371 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1372 {
1373 	void *frag;
1374 
1375 	if (!dp->xdp_prog) {
1376 		frag = netdev_alloc_frag(dp->fl_bufsz);
1377 	} else {
1378 		struct page *page;
1379 
1380 		page = alloc_page(GFP_KERNEL);
1381 		frag = page ? page_address(page) : NULL;
1382 	}
1383 	if (!frag) {
1384 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1385 		return NULL;
1386 	}
1387 
1388 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1389 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1390 		nfp_net_free_frag(frag, dp->xdp_prog);
1391 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1392 		return NULL;
1393 	}
1394 
1395 	return frag;
1396 }
1397 
1398 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1399 {
1400 	void *frag;
1401 
1402 	if (!dp->xdp_prog) {
1403 		frag = napi_alloc_frag(dp->fl_bufsz);
1404 		if (unlikely(!frag))
1405 			return NULL;
1406 	} else {
1407 		struct page *page;
1408 
1409 		page = dev_alloc_page();
1410 		if (unlikely(!page))
1411 			return NULL;
1412 		frag = page_address(page);
1413 	}
1414 
1415 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1416 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1417 		nfp_net_free_frag(frag, dp->xdp_prog);
1418 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1419 		return NULL;
1420 	}
1421 
1422 	return frag;
1423 }
1424 
1425 /**
1426  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1427  * @dp:		NFP Net data path struct
1428  * @rx_ring:	RX ring structure
1429  * @frag:	page fragment buffer
1430  * @dma_addr:	DMA address of skb mapping
1431  */
1432 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1433 				struct nfp_net_rx_ring *rx_ring,
1434 				void *frag, dma_addr_t dma_addr)
1435 {
1436 	unsigned int wr_idx;
1437 
1438 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1439 
1440 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1441 
1442 	/* Stash SKB and DMA address away */
1443 	rx_ring->rxbufs[wr_idx].frag = frag;
1444 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1445 
1446 	/* Fill freelist descriptor */
1447 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1448 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1449 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1450 			      dma_addr + dp->rx_dma_off);
1451 
1452 	rx_ring->wr_p++;
1453 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1454 		/* Update write pointer of the freelist queue. Make
1455 		 * sure all writes are flushed before telling the hardware.
1456 		 */
1457 		wmb();
1458 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1459 	}
1460 }
1461 
1462 /**
1463  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1464  * @rx_ring:	RX ring structure
1465  *
1466  * Assumes that the device is stopped, must be idempotent.
1467  */
1468 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1469 {
1470 	unsigned int wr_idx, last_idx;
1471 
1472 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1473 	 * kept at cnt - 1 FL bufs.
1474 	 */
1475 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1476 		return;
1477 
1478 	/* Move the empty entry to the end of the list */
1479 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1480 	last_idx = rx_ring->cnt - 1;
1481 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1482 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1483 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1484 	rx_ring->rxbufs[last_idx].frag = NULL;
1485 
1486 	memset(rx_ring->rxds, 0, rx_ring->size);
1487 	rx_ring->wr_p = 0;
1488 	rx_ring->rd_p = 0;
1489 }
1490 
1491 /**
1492  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1493  * @dp:		NFP Net data path struct
1494  * @rx_ring:	RX ring to remove buffers from
1495  *
1496  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1497  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1498  * to restore required ring geometry.
1499  */
1500 static void
1501 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1502 			  struct nfp_net_rx_ring *rx_ring)
1503 {
1504 	unsigned int i;
1505 
1506 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1507 		/* NULL skb can only happen when initial filling of the ring
1508 		 * fails to allocate enough buffers and calls here to free
1509 		 * already allocated ones.
1510 		 */
1511 		if (!rx_ring->rxbufs[i].frag)
1512 			continue;
1513 
1514 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1515 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1516 		rx_ring->rxbufs[i].dma_addr = 0;
1517 		rx_ring->rxbufs[i].frag = NULL;
1518 	}
1519 }
1520 
1521 /**
1522  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1523  * @dp:		NFP Net data path struct
1524  * @rx_ring:	RX ring to remove buffers from
1525  */
1526 static int
1527 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1528 			   struct nfp_net_rx_ring *rx_ring)
1529 {
1530 	struct nfp_net_rx_buf *rxbufs;
1531 	unsigned int i;
1532 
1533 	rxbufs = rx_ring->rxbufs;
1534 
1535 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1536 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1537 		if (!rxbufs[i].frag) {
1538 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1539 			return -ENOMEM;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1548  * @dp:	     NFP Net data path struct
1549  * @rx_ring: RX ring to fill
1550  */
1551 static void
1552 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1553 			      struct nfp_net_rx_ring *rx_ring)
1554 {
1555 	unsigned int i;
1556 
1557 	for (i = 0; i < rx_ring->cnt - 1; i++)
1558 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1559 				    rx_ring->rxbufs[i].dma_addr);
1560 }
1561 
1562 /**
1563  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1564  * @flags: RX descriptor flags field in CPU byte order
1565  */
1566 static int nfp_net_rx_csum_has_errors(u16 flags)
1567 {
1568 	u16 csum_all_checked, csum_all_ok;
1569 
1570 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1571 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1572 
1573 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1574 }
1575 
1576 /**
1577  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1578  * @dp:  NFP Net data path struct
1579  * @r_vec: per-ring structure
1580  * @rxd: Pointer to RX descriptor
1581  * @meta: Parsed metadata prepend
1582  * @skb: Pointer to SKB
1583  */
1584 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1585 			    struct nfp_net_r_vector *r_vec,
1586 			    struct nfp_net_rx_desc *rxd,
1587 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1588 {
1589 	skb_checksum_none_assert(skb);
1590 
1591 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1592 		return;
1593 
1594 	if (meta->csum_type) {
1595 		skb->ip_summed = meta->csum_type;
1596 		skb->csum = meta->csum;
1597 		u64_stats_update_begin(&r_vec->rx_sync);
1598 		r_vec->hw_csum_rx_complete++;
1599 		u64_stats_update_end(&r_vec->rx_sync);
1600 		return;
1601 	}
1602 
1603 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1604 		u64_stats_update_begin(&r_vec->rx_sync);
1605 		r_vec->hw_csum_rx_error++;
1606 		u64_stats_update_end(&r_vec->rx_sync);
1607 		return;
1608 	}
1609 
1610 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1611 	 * L4 headers were successfully parsed. FW will always report zero UDP
1612 	 * checksum as CSUM_OK.
1613 	 */
1614 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1615 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1616 		__skb_incr_checksum_unnecessary(skb);
1617 		u64_stats_update_begin(&r_vec->rx_sync);
1618 		r_vec->hw_csum_rx_ok++;
1619 		u64_stats_update_end(&r_vec->rx_sync);
1620 	}
1621 
1622 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1623 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1624 		__skb_incr_checksum_unnecessary(skb);
1625 		u64_stats_update_begin(&r_vec->rx_sync);
1626 		r_vec->hw_csum_rx_inner_ok++;
1627 		u64_stats_update_end(&r_vec->rx_sync);
1628 	}
1629 }
1630 
1631 static void
1632 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1633 		 unsigned int type, __be32 *hash)
1634 {
1635 	if (!(netdev->features & NETIF_F_RXHASH))
1636 		return;
1637 
1638 	switch (type) {
1639 	case NFP_NET_RSS_IPV4:
1640 	case NFP_NET_RSS_IPV6:
1641 	case NFP_NET_RSS_IPV6_EX:
1642 		meta->hash_type = PKT_HASH_TYPE_L3;
1643 		break;
1644 	default:
1645 		meta->hash_type = PKT_HASH_TYPE_L4;
1646 		break;
1647 	}
1648 
1649 	meta->hash = get_unaligned_be32(hash);
1650 }
1651 
1652 static void
1653 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1654 		      void *data, struct nfp_net_rx_desc *rxd)
1655 {
1656 	struct nfp_net_rx_hash *rx_hash = data;
1657 
1658 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1659 		return;
1660 
1661 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1662 			 &rx_hash->hash);
1663 }
1664 
1665 static bool
1666 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1667 		   void *data, void *pkt, unsigned int pkt_len, int meta_len)
1668 {
1669 	u32 meta_info;
1670 
1671 	meta_info = get_unaligned_be32(data);
1672 	data += 4;
1673 
1674 	while (meta_info) {
1675 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1676 		case NFP_NET_META_HASH:
1677 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1678 			nfp_net_set_hash(netdev, meta,
1679 					 meta_info & NFP_NET_META_FIELD_MASK,
1680 					 (__be32 *)data);
1681 			data += 4;
1682 			break;
1683 		case NFP_NET_META_MARK:
1684 			meta->mark = get_unaligned_be32(data);
1685 			data += 4;
1686 			break;
1687 		case NFP_NET_META_PORTID:
1688 			meta->portid = get_unaligned_be32(data);
1689 			data += 4;
1690 			break;
1691 		case NFP_NET_META_CSUM:
1692 			meta->csum_type = CHECKSUM_COMPLETE;
1693 			meta->csum =
1694 				(__force __wsum)__get_unaligned_cpu32(data);
1695 			data += 4;
1696 			break;
1697 		case NFP_NET_META_RESYNC_INFO:
1698 			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
1699 						      pkt_len))
1700 				return NULL;
1701 			data += sizeof(struct nfp_net_tls_resync_req);
1702 			break;
1703 		default:
1704 			return true;
1705 		}
1706 
1707 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1708 	}
1709 
1710 	return data != pkt;
1711 }
1712 
1713 static void
1714 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1715 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1716 		struct sk_buff *skb)
1717 {
1718 	u64_stats_update_begin(&r_vec->rx_sync);
1719 	r_vec->rx_drops++;
1720 	/* If we have both skb and rxbuf the replacement buffer allocation
1721 	 * must have failed, count this as an alloc failure.
1722 	 */
1723 	if (skb && rxbuf)
1724 		r_vec->rx_replace_buf_alloc_fail++;
1725 	u64_stats_update_end(&r_vec->rx_sync);
1726 
1727 	/* skb is build based on the frag, free_skb() would free the frag
1728 	 * so to be able to reuse it we need an extra ref.
1729 	 */
1730 	if (skb && rxbuf && skb->head == rxbuf->frag)
1731 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1732 	if (rxbuf)
1733 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1734 	if (skb)
1735 		dev_kfree_skb_any(skb);
1736 }
1737 
1738 static bool
1739 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1740 		   struct nfp_net_tx_ring *tx_ring,
1741 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1742 		   unsigned int pkt_len, bool *completed)
1743 {
1744 	struct nfp_net_tx_buf *txbuf;
1745 	struct nfp_net_tx_desc *txd;
1746 	int wr_idx;
1747 
1748 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1749 		if (!*completed) {
1750 			nfp_net_xdp_complete(tx_ring);
1751 			*completed = true;
1752 		}
1753 
1754 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1755 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1756 					NULL);
1757 			return false;
1758 		}
1759 	}
1760 
1761 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1762 
1763 	/* Stash the soft descriptor of the head then initialize it */
1764 	txbuf = &tx_ring->txbufs[wr_idx];
1765 
1766 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1767 
1768 	txbuf->frag = rxbuf->frag;
1769 	txbuf->dma_addr = rxbuf->dma_addr;
1770 	txbuf->fidx = -1;
1771 	txbuf->pkt_cnt = 1;
1772 	txbuf->real_len = pkt_len;
1773 
1774 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1775 				   pkt_len, DMA_BIDIRECTIONAL);
1776 
1777 	/* Build TX descriptor */
1778 	txd = &tx_ring->txds[wr_idx];
1779 	txd->offset_eop = PCIE_DESC_TX_EOP;
1780 	txd->dma_len = cpu_to_le16(pkt_len);
1781 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1782 	txd->data_len = cpu_to_le16(pkt_len);
1783 
1784 	txd->flags = 0;
1785 	txd->mss = 0;
1786 	txd->lso_hdrlen = 0;
1787 
1788 	tx_ring->wr_p++;
1789 	tx_ring->wr_ptr_add++;
1790 	return true;
1791 }
1792 
1793 /**
1794  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1795  * @rx_ring:   RX ring to receive from
1796  * @budget:    NAPI budget
1797  *
1798  * Note, this function is separated out from the napi poll function to
1799  * more cleanly separate packet receive code from other bookkeeping
1800  * functions performed in the napi poll function.
1801  *
1802  * Return: Number of packets received.
1803  */
1804 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1805 {
1806 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1807 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1808 	struct nfp_net_tx_ring *tx_ring;
1809 	struct bpf_prog *xdp_prog;
1810 	bool xdp_tx_cmpl = false;
1811 	unsigned int true_bufsz;
1812 	struct sk_buff *skb;
1813 	int pkts_polled = 0;
1814 	struct xdp_buff xdp;
1815 	int idx;
1816 
1817 	rcu_read_lock();
1818 	xdp_prog = READ_ONCE(dp->xdp_prog);
1819 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1820 	xdp.rxq = &rx_ring->xdp_rxq;
1821 	tx_ring = r_vec->xdp_ring;
1822 
1823 	while (pkts_polled < budget) {
1824 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1825 		struct nfp_net_rx_buf *rxbuf;
1826 		struct nfp_net_rx_desc *rxd;
1827 		struct nfp_meta_parsed meta;
1828 		bool redir_egress = false;
1829 		struct net_device *netdev;
1830 		dma_addr_t new_dma_addr;
1831 		u32 meta_len_xdp = 0;
1832 		void *new_frag;
1833 
1834 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1835 
1836 		rxd = &rx_ring->rxds[idx];
1837 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1838 			break;
1839 
1840 		/* Memory barrier to ensure that we won't do other reads
1841 		 * before the DD bit.
1842 		 */
1843 		dma_rmb();
1844 
1845 		memset(&meta, 0, sizeof(meta));
1846 
1847 		rx_ring->rd_p++;
1848 		pkts_polled++;
1849 
1850 		rxbuf =	&rx_ring->rxbufs[idx];
1851 		/*         < meta_len >
1852 		 *  <-- [rx_offset] -->
1853 		 *  ---------------------------------------------------------
1854 		 * | [XX] |  metadata  |             packet           | XXXX |
1855 		 *  ---------------------------------------------------------
1856 		 *         <---------------- data_len --------------->
1857 		 *
1858 		 * The rx_offset is fixed for all packets, the meta_len can vary
1859 		 * on a packet by packet basis. If rx_offset is set to zero
1860 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1861 		 * buffer and is immediately followed by the packet (no [XX]).
1862 		 */
1863 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1864 		data_len = le16_to_cpu(rxd->rxd.data_len);
1865 		pkt_len = data_len - meta_len;
1866 
1867 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1868 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1869 			pkt_off += meta_len;
1870 		else
1871 			pkt_off += dp->rx_offset;
1872 		meta_off = pkt_off - meta_len;
1873 
1874 		/* Stats update */
1875 		u64_stats_update_begin(&r_vec->rx_sync);
1876 		r_vec->rx_pkts++;
1877 		r_vec->rx_bytes += pkt_len;
1878 		u64_stats_update_end(&r_vec->rx_sync);
1879 
1880 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1881 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1882 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1883 				   meta_len);
1884 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1885 			continue;
1886 		}
1887 
1888 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1889 					data_len);
1890 
1891 		if (!dp->chained_metadata_format) {
1892 			nfp_net_set_hash_desc(dp->netdev, &meta,
1893 					      rxbuf->frag + meta_off, rxd);
1894 		} else if (meta_len) {
1895 			if (unlikely(nfp_net_parse_meta(dp->netdev, &meta,
1896 							rxbuf->frag + meta_off,
1897 							rxbuf->frag + pkt_off,
1898 							pkt_len, meta_len))) {
1899 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1900 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1901 						NULL);
1902 				continue;
1903 			}
1904 		}
1905 
1906 		if (xdp_prog && !meta.portid) {
1907 			void *orig_data = rxbuf->frag + pkt_off;
1908 			unsigned int dma_off;
1909 			int act;
1910 
1911 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1912 			xdp.data = orig_data;
1913 			xdp.data_meta = orig_data;
1914 			xdp.data_end = orig_data + pkt_len;
1915 
1916 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1917 
1918 			pkt_len = xdp.data_end - xdp.data;
1919 			pkt_off += xdp.data - orig_data;
1920 
1921 			switch (act) {
1922 			case XDP_PASS:
1923 				meta_len_xdp = xdp.data - xdp.data_meta;
1924 				break;
1925 			case XDP_TX:
1926 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1927 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1928 								 tx_ring, rxbuf,
1929 								 dma_off,
1930 								 pkt_len,
1931 								 &xdp_tx_cmpl)))
1932 					trace_xdp_exception(dp->netdev,
1933 							    xdp_prog, act);
1934 				continue;
1935 			default:
1936 				bpf_warn_invalid_xdp_action(act);
1937 				/* fall through */
1938 			case XDP_ABORTED:
1939 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1940 				/* fall through */
1941 			case XDP_DROP:
1942 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1943 						    rxbuf->dma_addr);
1944 				continue;
1945 			}
1946 		}
1947 
1948 		if (likely(!meta.portid)) {
1949 			netdev = dp->netdev;
1950 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1951 			struct nfp_net *nn = netdev_priv(dp->netdev);
1952 
1953 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1954 					    pkt_len);
1955 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1956 					    rxbuf->dma_addr);
1957 			continue;
1958 		} else {
1959 			struct nfp_net *nn;
1960 
1961 			nn = netdev_priv(dp->netdev);
1962 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1963 						 &redir_egress);
1964 			if (unlikely(!netdev)) {
1965 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1966 						NULL);
1967 				continue;
1968 			}
1969 
1970 			if (nfp_netdev_is_nfp_repr(netdev))
1971 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1972 		}
1973 
1974 		skb = build_skb(rxbuf->frag, true_bufsz);
1975 		if (unlikely(!skb)) {
1976 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1977 			continue;
1978 		}
1979 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1980 		if (unlikely(!new_frag)) {
1981 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1982 			continue;
1983 		}
1984 
1985 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1986 
1987 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1988 
1989 		skb_reserve(skb, pkt_off);
1990 		skb_put(skb, pkt_len);
1991 
1992 		skb->mark = meta.mark;
1993 		skb_set_hash(skb, meta.hash, meta.hash_type);
1994 
1995 		skb_record_rx_queue(skb, rx_ring->idx);
1996 		skb->protocol = eth_type_trans(skb, netdev);
1997 
1998 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1999 
2000 #ifdef CONFIG_TLS_DEVICE
2001 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
2002 			skb->decrypted = true;
2003 			u64_stats_update_begin(&r_vec->rx_sync);
2004 			r_vec->hw_tls_rx++;
2005 			u64_stats_update_end(&r_vec->rx_sync);
2006 		}
2007 #endif
2008 
2009 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2010 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2011 					       le16_to_cpu(rxd->rxd.vlan));
2012 		if (meta_len_xdp)
2013 			skb_metadata_set(skb, meta_len_xdp);
2014 
2015 		if (likely(!redir_egress)) {
2016 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
2017 		} else {
2018 			skb->dev = netdev;
2019 			skb_reset_network_header(skb);
2020 			__skb_push(skb, ETH_HLEN);
2021 			dev_queue_xmit(skb);
2022 		}
2023 	}
2024 
2025 	if (xdp_prog) {
2026 		if (tx_ring->wr_ptr_add)
2027 			nfp_net_tx_xmit_more_flush(tx_ring);
2028 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2029 			 !xdp_tx_cmpl)
2030 			if (!nfp_net_xdp_complete(tx_ring))
2031 				pkts_polled = budget;
2032 	}
2033 	rcu_read_unlock();
2034 
2035 	return pkts_polled;
2036 }
2037 
2038 /**
2039  * nfp_net_poll() - napi poll function
2040  * @napi:    NAPI structure
2041  * @budget:  NAPI budget
2042  *
2043  * Return: number of packets polled.
2044  */
2045 static int nfp_net_poll(struct napi_struct *napi, int budget)
2046 {
2047 	struct nfp_net_r_vector *r_vec =
2048 		container_of(napi, struct nfp_net_r_vector, napi);
2049 	unsigned int pkts_polled = 0;
2050 
2051 	if (r_vec->tx_ring)
2052 		nfp_net_tx_complete(r_vec->tx_ring, budget);
2053 	if (r_vec->rx_ring)
2054 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2055 
2056 	if (pkts_polled < budget)
2057 		if (napi_complete_done(napi, pkts_polled))
2058 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2059 
2060 	return pkts_polled;
2061 }
2062 
2063 /* Control device data path
2064  */
2065 
2066 static bool
2067 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2068 		struct sk_buff *skb, bool old)
2069 {
2070 	unsigned int real_len = skb->len, meta_len = 0;
2071 	struct nfp_net_tx_ring *tx_ring;
2072 	struct nfp_net_tx_buf *txbuf;
2073 	struct nfp_net_tx_desc *txd;
2074 	struct nfp_net_dp *dp;
2075 	dma_addr_t dma_addr;
2076 	int wr_idx;
2077 
2078 	dp = &r_vec->nfp_net->dp;
2079 	tx_ring = r_vec->tx_ring;
2080 
2081 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2082 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2083 		goto err_free;
2084 	}
2085 
2086 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2087 		u64_stats_update_begin(&r_vec->tx_sync);
2088 		r_vec->tx_busy++;
2089 		u64_stats_update_end(&r_vec->tx_sync);
2090 		if (!old)
2091 			__skb_queue_tail(&r_vec->queue, skb);
2092 		else
2093 			__skb_queue_head(&r_vec->queue, skb);
2094 		return true;
2095 	}
2096 
2097 	if (nfp_app_ctrl_has_meta(nn->app)) {
2098 		if (unlikely(skb_headroom(skb) < 8)) {
2099 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2100 			goto err_free;
2101 		}
2102 		meta_len = 8;
2103 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2104 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2105 	}
2106 
2107 	/* Start with the head skbuf */
2108 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2109 				  DMA_TO_DEVICE);
2110 	if (dma_mapping_error(dp->dev, dma_addr))
2111 		goto err_dma_warn;
2112 
2113 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2114 
2115 	/* Stash the soft descriptor of the head then initialize it */
2116 	txbuf = &tx_ring->txbufs[wr_idx];
2117 	txbuf->skb = skb;
2118 	txbuf->dma_addr = dma_addr;
2119 	txbuf->fidx = -1;
2120 	txbuf->pkt_cnt = 1;
2121 	txbuf->real_len = real_len;
2122 
2123 	/* Build TX descriptor */
2124 	txd = &tx_ring->txds[wr_idx];
2125 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2126 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
2127 	nfp_desc_set_dma_addr(txd, dma_addr);
2128 	txd->data_len = cpu_to_le16(skb->len);
2129 
2130 	txd->flags = 0;
2131 	txd->mss = 0;
2132 	txd->lso_hdrlen = 0;
2133 
2134 	tx_ring->wr_p++;
2135 	tx_ring->wr_ptr_add++;
2136 	nfp_net_tx_xmit_more_flush(tx_ring);
2137 
2138 	return false;
2139 
2140 err_dma_warn:
2141 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2142 err_free:
2143 	u64_stats_update_begin(&r_vec->tx_sync);
2144 	r_vec->tx_errors++;
2145 	u64_stats_update_end(&r_vec->tx_sync);
2146 	dev_kfree_skb_any(skb);
2147 	return false;
2148 }
2149 
2150 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2151 {
2152 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2153 
2154 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2155 }
2156 
2157 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2158 {
2159 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2160 	bool ret;
2161 
2162 	spin_lock_bh(&r_vec->lock);
2163 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2164 	spin_unlock_bh(&r_vec->lock);
2165 
2166 	return ret;
2167 }
2168 
2169 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2170 {
2171 	struct sk_buff *skb;
2172 
2173 	while ((skb = __skb_dequeue(&r_vec->queue)))
2174 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2175 			return;
2176 }
2177 
2178 static bool
2179 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2180 {
2181 	u32 meta_type, meta_tag;
2182 
2183 	if (!nfp_app_ctrl_has_meta(nn->app))
2184 		return !meta_len;
2185 
2186 	if (meta_len != 8)
2187 		return false;
2188 
2189 	meta_type = get_unaligned_be32(data);
2190 	meta_tag = get_unaligned_be32(data + 4);
2191 
2192 	return (meta_type == NFP_NET_META_PORTID &&
2193 		meta_tag == NFP_META_PORT_ID_CTRL);
2194 }
2195 
2196 static bool
2197 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2198 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2199 {
2200 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2201 	struct nfp_net_rx_buf *rxbuf;
2202 	struct nfp_net_rx_desc *rxd;
2203 	dma_addr_t new_dma_addr;
2204 	struct sk_buff *skb;
2205 	void *new_frag;
2206 	int idx;
2207 
2208 	idx = D_IDX(rx_ring, rx_ring->rd_p);
2209 
2210 	rxd = &rx_ring->rxds[idx];
2211 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2212 		return false;
2213 
2214 	/* Memory barrier to ensure that we won't do other reads
2215 	 * before the DD bit.
2216 	 */
2217 	dma_rmb();
2218 
2219 	rx_ring->rd_p++;
2220 
2221 	rxbuf =	&rx_ring->rxbufs[idx];
2222 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2223 	data_len = le16_to_cpu(rxd->rxd.data_len);
2224 	pkt_len = data_len - meta_len;
2225 
2226 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2227 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2228 		pkt_off += meta_len;
2229 	else
2230 		pkt_off += dp->rx_offset;
2231 	meta_off = pkt_off - meta_len;
2232 
2233 	/* Stats update */
2234 	u64_stats_update_begin(&r_vec->rx_sync);
2235 	r_vec->rx_pkts++;
2236 	r_vec->rx_bytes += pkt_len;
2237 	u64_stats_update_end(&r_vec->rx_sync);
2238 
2239 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2240 
2241 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2242 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2243 			   meta_len);
2244 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2245 		return true;
2246 	}
2247 
2248 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2249 	if (unlikely(!skb)) {
2250 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2251 		return true;
2252 	}
2253 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2254 	if (unlikely(!new_frag)) {
2255 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2256 		return true;
2257 	}
2258 
2259 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2260 
2261 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2262 
2263 	skb_reserve(skb, pkt_off);
2264 	skb_put(skb, pkt_len);
2265 
2266 	nfp_app_ctrl_rx(nn->app, skb);
2267 
2268 	return true;
2269 }
2270 
2271 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2272 {
2273 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2274 	struct nfp_net *nn = r_vec->nfp_net;
2275 	struct nfp_net_dp *dp = &nn->dp;
2276 	unsigned int budget = 512;
2277 
2278 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2279 		continue;
2280 
2281 	return budget;
2282 }
2283 
2284 static void nfp_ctrl_poll(unsigned long arg)
2285 {
2286 	struct nfp_net_r_vector *r_vec = (void *)arg;
2287 
2288 	spin_lock(&r_vec->lock);
2289 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2290 	__nfp_ctrl_tx_queued(r_vec);
2291 	spin_unlock(&r_vec->lock);
2292 
2293 	if (nfp_ctrl_rx(r_vec)) {
2294 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2295 	} else {
2296 		tasklet_schedule(&r_vec->tasklet);
2297 		nn_dp_warn(&r_vec->nfp_net->dp,
2298 			   "control message budget exceeded!\n");
2299 	}
2300 }
2301 
2302 /* Setup and Configuration
2303  */
2304 
2305 /**
2306  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2307  * @nn:		NFP Network structure
2308  */
2309 static void nfp_net_vecs_init(struct nfp_net *nn)
2310 {
2311 	struct nfp_net_r_vector *r_vec;
2312 	int r;
2313 
2314 	nn->lsc_handler = nfp_net_irq_lsc;
2315 	nn->exn_handler = nfp_net_irq_exn;
2316 
2317 	for (r = 0; r < nn->max_r_vecs; r++) {
2318 		struct msix_entry *entry;
2319 
2320 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2321 
2322 		r_vec = &nn->r_vecs[r];
2323 		r_vec->nfp_net = nn;
2324 		r_vec->irq_entry = entry->entry;
2325 		r_vec->irq_vector = entry->vector;
2326 
2327 		if (nn->dp.netdev) {
2328 			r_vec->handler = nfp_net_irq_rxtx;
2329 		} else {
2330 			r_vec->handler = nfp_ctrl_irq_rxtx;
2331 
2332 			__skb_queue_head_init(&r_vec->queue);
2333 			spin_lock_init(&r_vec->lock);
2334 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2335 				     (unsigned long)r_vec);
2336 			tasklet_disable(&r_vec->tasklet);
2337 		}
2338 
2339 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2340 	}
2341 }
2342 
2343 /**
2344  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2345  * @tx_ring:   TX ring to free
2346  */
2347 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2348 {
2349 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2350 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2351 
2352 	kvfree(tx_ring->txbufs);
2353 
2354 	if (tx_ring->txds)
2355 		dma_free_coherent(dp->dev, tx_ring->size,
2356 				  tx_ring->txds, tx_ring->dma);
2357 
2358 	tx_ring->cnt = 0;
2359 	tx_ring->txbufs = NULL;
2360 	tx_ring->txds = NULL;
2361 	tx_ring->dma = 0;
2362 	tx_ring->size = 0;
2363 }
2364 
2365 /**
2366  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2367  * @dp:        NFP Net data path struct
2368  * @tx_ring:   TX Ring structure to allocate
2369  *
2370  * Return: 0 on success, negative errno otherwise.
2371  */
2372 static int
2373 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2374 {
2375 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2376 
2377 	tx_ring->cnt = dp->txd_cnt;
2378 
2379 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2380 	tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2381 					   &tx_ring->dma,
2382 					   GFP_KERNEL | __GFP_NOWARN);
2383 	if (!tx_ring->txds) {
2384 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2385 			    tx_ring->cnt);
2386 		goto err_alloc;
2387 	}
2388 
2389 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2390 				   GFP_KERNEL);
2391 	if (!tx_ring->txbufs)
2392 		goto err_alloc;
2393 
2394 	if (!tx_ring->is_xdp && dp->netdev)
2395 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2396 				    tx_ring->idx);
2397 
2398 	return 0;
2399 
2400 err_alloc:
2401 	nfp_net_tx_ring_free(tx_ring);
2402 	return -ENOMEM;
2403 }
2404 
2405 static void
2406 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2407 			  struct nfp_net_tx_ring *tx_ring)
2408 {
2409 	unsigned int i;
2410 
2411 	if (!tx_ring->is_xdp)
2412 		return;
2413 
2414 	for (i = 0; i < tx_ring->cnt; i++) {
2415 		if (!tx_ring->txbufs[i].frag)
2416 			return;
2417 
2418 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2419 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2420 	}
2421 }
2422 
2423 static int
2424 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2425 			   struct nfp_net_tx_ring *tx_ring)
2426 {
2427 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2428 	unsigned int i;
2429 
2430 	if (!tx_ring->is_xdp)
2431 		return 0;
2432 
2433 	for (i = 0; i < tx_ring->cnt; i++) {
2434 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2435 		if (!txbufs[i].frag) {
2436 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2437 			return -ENOMEM;
2438 		}
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2445 {
2446 	unsigned int r;
2447 
2448 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2449 			       GFP_KERNEL);
2450 	if (!dp->tx_rings)
2451 		return -ENOMEM;
2452 
2453 	for (r = 0; r < dp->num_tx_rings; r++) {
2454 		int bias = 0;
2455 
2456 		if (r >= dp->num_stack_tx_rings)
2457 			bias = dp->num_stack_tx_rings;
2458 
2459 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2460 				     r, bias);
2461 
2462 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2463 			goto err_free_prev;
2464 
2465 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2466 			goto err_free_ring;
2467 	}
2468 
2469 	return 0;
2470 
2471 err_free_prev:
2472 	while (r--) {
2473 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2474 err_free_ring:
2475 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2476 	}
2477 	kfree(dp->tx_rings);
2478 	return -ENOMEM;
2479 }
2480 
2481 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2482 {
2483 	unsigned int r;
2484 
2485 	for (r = 0; r < dp->num_tx_rings; r++) {
2486 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2487 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2488 	}
2489 
2490 	kfree(dp->tx_rings);
2491 }
2492 
2493 /**
2494  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2495  * @rx_ring:  RX ring to free
2496  */
2497 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2498 {
2499 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2500 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2501 
2502 	if (dp->netdev)
2503 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2504 	kvfree(rx_ring->rxbufs);
2505 
2506 	if (rx_ring->rxds)
2507 		dma_free_coherent(dp->dev, rx_ring->size,
2508 				  rx_ring->rxds, rx_ring->dma);
2509 
2510 	rx_ring->cnt = 0;
2511 	rx_ring->rxbufs = NULL;
2512 	rx_ring->rxds = NULL;
2513 	rx_ring->dma = 0;
2514 	rx_ring->size = 0;
2515 }
2516 
2517 /**
2518  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2519  * @dp:	      NFP Net data path struct
2520  * @rx_ring:  RX ring to allocate
2521  *
2522  * Return: 0 on success, negative errno otherwise.
2523  */
2524 static int
2525 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2526 {
2527 	int err;
2528 
2529 	if (dp->netdev) {
2530 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2531 				       rx_ring->idx);
2532 		if (err < 0)
2533 			return err;
2534 	}
2535 
2536 	rx_ring->cnt = dp->rxd_cnt;
2537 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2538 	rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2539 					   &rx_ring->dma,
2540 					   GFP_KERNEL | __GFP_NOWARN);
2541 	if (!rx_ring->rxds) {
2542 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2543 			    rx_ring->cnt);
2544 		goto err_alloc;
2545 	}
2546 
2547 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2548 				   GFP_KERNEL);
2549 	if (!rx_ring->rxbufs)
2550 		goto err_alloc;
2551 
2552 	return 0;
2553 
2554 err_alloc:
2555 	nfp_net_rx_ring_free(rx_ring);
2556 	return -ENOMEM;
2557 }
2558 
2559 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2560 {
2561 	unsigned int r;
2562 
2563 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2564 			       GFP_KERNEL);
2565 	if (!dp->rx_rings)
2566 		return -ENOMEM;
2567 
2568 	for (r = 0; r < dp->num_rx_rings; r++) {
2569 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2570 
2571 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2572 			goto err_free_prev;
2573 
2574 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2575 			goto err_free_ring;
2576 	}
2577 
2578 	return 0;
2579 
2580 err_free_prev:
2581 	while (r--) {
2582 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2583 err_free_ring:
2584 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2585 	}
2586 	kfree(dp->rx_rings);
2587 	return -ENOMEM;
2588 }
2589 
2590 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2591 {
2592 	unsigned int r;
2593 
2594 	for (r = 0; r < dp->num_rx_rings; r++) {
2595 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2596 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2597 	}
2598 
2599 	kfree(dp->rx_rings);
2600 }
2601 
2602 static void
2603 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2604 			    struct nfp_net_r_vector *r_vec, int idx)
2605 {
2606 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2607 	r_vec->tx_ring =
2608 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2609 
2610 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2611 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2612 }
2613 
2614 static int
2615 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2616 		       int idx)
2617 {
2618 	int err;
2619 
2620 	/* Setup NAPI */
2621 	if (nn->dp.netdev)
2622 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2623 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2624 	else
2625 		tasklet_enable(&r_vec->tasklet);
2626 
2627 	snprintf(r_vec->name, sizeof(r_vec->name),
2628 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2629 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2630 			  r_vec);
2631 	if (err) {
2632 		if (nn->dp.netdev)
2633 			netif_napi_del(&r_vec->napi);
2634 		else
2635 			tasklet_disable(&r_vec->tasklet);
2636 
2637 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2638 		return err;
2639 	}
2640 	disable_irq(r_vec->irq_vector);
2641 
2642 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2643 
2644 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2645 	       r_vec->irq_entry);
2646 
2647 	return 0;
2648 }
2649 
2650 static void
2651 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2652 {
2653 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2654 	if (nn->dp.netdev)
2655 		netif_napi_del(&r_vec->napi);
2656 	else
2657 		tasklet_disable(&r_vec->tasklet);
2658 
2659 	free_irq(r_vec->irq_vector, r_vec);
2660 }
2661 
2662 /**
2663  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2664  * @nn:      NFP Net device to reconfigure
2665  */
2666 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2667 {
2668 	int i;
2669 
2670 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2671 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2672 			  get_unaligned_le32(nn->rss_itbl + i));
2673 }
2674 
2675 /**
2676  * nfp_net_rss_write_key() - Write RSS hash key to device
2677  * @nn:      NFP Net device to reconfigure
2678  */
2679 void nfp_net_rss_write_key(struct nfp_net *nn)
2680 {
2681 	int i;
2682 
2683 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2684 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2685 			  get_unaligned_le32(nn->rss_key + i));
2686 }
2687 
2688 /**
2689  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2690  * @nn:      NFP Net device to reconfigure
2691  */
2692 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2693 {
2694 	u8 i;
2695 	u32 factor;
2696 	u32 value;
2697 
2698 	/* Compute factor used to convert coalesce '_usecs' parameters to
2699 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2700 	 * count.
2701 	 */
2702 	factor = nn->tlv_caps.me_freq_mhz / 16;
2703 
2704 	/* copy RX interrupt coalesce parameters */
2705 	value = (nn->rx_coalesce_max_frames << 16) |
2706 		(factor * nn->rx_coalesce_usecs);
2707 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2708 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2709 
2710 	/* copy TX interrupt coalesce parameters */
2711 	value = (nn->tx_coalesce_max_frames << 16) |
2712 		(factor * nn->tx_coalesce_usecs);
2713 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2714 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2715 }
2716 
2717 /**
2718  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2719  * @nn:      NFP Net device to reconfigure
2720  * @addr:    MAC address to write
2721  *
2722  * Writes the MAC address from the netdev to the device control BAR.  Does not
2723  * perform the required reconfig.  We do a bit of byte swapping dance because
2724  * firmware is LE.
2725  */
2726 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2727 {
2728 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2729 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2730 }
2731 
2732 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2733 {
2734 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2735 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2736 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2737 
2738 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2739 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2740 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2741 }
2742 
2743 /**
2744  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2745  * @nn:      NFP Net device to reconfigure
2746  *
2747  * Warning: must be fully idempotent.
2748  */
2749 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2750 {
2751 	u32 new_ctrl, update;
2752 	unsigned int r;
2753 	int err;
2754 
2755 	new_ctrl = nn->dp.ctrl;
2756 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2757 	update = NFP_NET_CFG_UPDATE_GEN;
2758 	update |= NFP_NET_CFG_UPDATE_MSIX;
2759 	update |= NFP_NET_CFG_UPDATE_RING;
2760 
2761 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2762 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2763 
2764 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2765 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2766 
2767 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2768 	err = nfp_net_reconfig(nn, update);
2769 	if (err)
2770 		nn_err(nn, "Could not disable device: %d\n", err);
2771 
2772 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2773 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2774 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2775 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2776 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2777 		nfp_net_vec_clear_ring_data(nn, r);
2778 
2779 	nn->dp.ctrl = new_ctrl;
2780 }
2781 
2782 static void
2783 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2784 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2785 {
2786 	/* Write the DMA address, size and MSI-X info to the device */
2787 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2788 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2789 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2790 }
2791 
2792 static void
2793 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2794 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2795 {
2796 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2797 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2798 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2799 }
2800 
2801 /**
2802  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2803  * @nn:      NFP Net device to reconfigure
2804  */
2805 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2806 {
2807 	u32 bufsz, new_ctrl, update = 0;
2808 	unsigned int r;
2809 	int err;
2810 
2811 	new_ctrl = nn->dp.ctrl;
2812 
2813 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2814 		nfp_net_rss_write_key(nn);
2815 		nfp_net_rss_write_itbl(nn);
2816 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2817 		update |= NFP_NET_CFG_UPDATE_RSS;
2818 	}
2819 
2820 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2821 		nfp_net_coalesce_write_cfg(nn);
2822 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2823 	}
2824 
2825 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2826 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2827 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2828 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2829 
2830 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2831 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2832 
2833 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2834 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2835 
2836 	if (nn->dp.netdev)
2837 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2838 
2839 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2840 
2841 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2842 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2843 
2844 	/* Enable device */
2845 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2846 	update |= NFP_NET_CFG_UPDATE_GEN;
2847 	update |= NFP_NET_CFG_UPDATE_MSIX;
2848 	update |= NFP_NET_CFG_UPDATE_RING;
2849 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2850 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2851 
2852 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2853 	err = nfp_net_reconfig(nn, update);
2854 	if (err) {
2855 		nfp_net_clear_config_and_disable(nn);
2856 		return err;
2857 	}
2858 
2859 	nn->dp.ctrl = new_ctrl;
2860 
2861 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2862 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2863 
2864 	/* Since reconfiguration requests while NFP is down are ignored we
2865 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2866 	 */
2867 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2868 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2869 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2870 		udp_tunnel_get_rx_info(nn->dp.netdev);
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 /**
2877  * nfp_net_close_stack() - Quiesce the stack (part of close)
2878  * @nn:	     NFP Net device to reconfigure
2879  */
2880 static void nfp_net_close_stack(struct nfp_net *nn)
2881 {
2882 	unsigned int r;
2883 
2884 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2885 	netif_carrier_off(nn->dp.netdev);
2886 	nn->link_up = false;
2887 
2888 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2889 		disable_irq(nn->r_vecs[r].irq_vector);
2890 		napi_disable(&nn->r_vecs[r].napi);
2891 	}
2892 
2893 	netif_tx_disable(nn->dp.netdev);
2894 }
2895 
2896 /**
2897  * nfp_net_close_free_all() - Free all runtime resources
2898  * @nn:      NFP Net device to reconfigure
2899  */
2900 static void nfp_net_close_free_all(struct nfp_net *nn)
2901 {
2902 	unsigned int r;
2903 
2904 	nfp_net_tx_rings_free(&nn->dp);
2905 	nfp_net_rx_rings_free(&nn->dp);
2906 
2907 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2908 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2909 
2910 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2911 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2912 }
2913 
2914 /**
2915  * nfp_net_netdev_close() - Called when the device is downed
2916  * @netdev:      netdev structure
2917  */
2918 static int nfp_net_netdev_close(struct net_device *netdev)
2919 {
2920 	struct nfp_net *nn = netdev_priv(netdev);
2921 
2922 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2923 	 */
2924 	nfp_net_close_stack(nn);
2925 
2926 	/* Step 2: Tell NFP
2927 	 */
2928 	nfp_net_clear_config_and_disable(nn);
2929 	nfp_port_configure(netdev, false);
2930 
2931 	/* Step 3: Free resources
2932 	 */
2933 	nfp_net_close_free_all(nn);
2934 
2935 	nn_dbg(nn, "%s down", netdev->name);
2936 	return 0;
2937 }
2938 
2939 void nfp_ctrl_close(struct nfp_net *nn)
2940 {
2941 	int r;
2942 
2943 	rtnl_lock();
2944 
2945 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2946 		disable_irq(nn->r_vecs[r].irq_vector);
2947 		tasklet_disable(&nn->r_vecs[r].tasklet);
2948 	}
2949 
2950 	nfp_net_clear_config_and_disable(nn);
2951 
2952 	nfp_net_close_free_all(nn);
2953 
2954 	rtnl_unlock();
2955 }
2956 
2957 /**
2958  * nfp_net_open_stack() - Start the device from stack's perspective
2959  * @nn:      NFP Net device to reconfigure
2960  */
2961 static void nfp_net_open_stack(struct nfp_net *nn)
2962 {
2963 	unsigned int r;
2964 
2965 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2966 		napi_enable(&nn->r_vecs[r].napi);
2967 		enable_irq(nn->r_vecs[r].irq_vector);
2968 	}
2969 
2970 	netif_tx_wake_all_queues(nn->dp.netdev);
2971 
2972 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2973 	nfp_net_read_link_status(nn);
2974 }
2975 
2976 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2977 {
2978 	int err, r;
2979 
2980 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2981 				      nn->exn_name, sizeof(nn->exn_name),
2982 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2983 	if (err)
2984 		return err;
2985 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2986 				      nn->lsc_name, sizeof(nn->lsc_name),
2987 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2988 	if (err)
2989 		goto err_free_exn;
2990 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2991 
2992 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2993 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2994 		if (err)
2995 			goto err_cleanup_vec_p;
2996 	}
2997 
2998 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2999 	if (err)
3000 		goto err_cleanup_vec;
3001 
3002 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
3003 	if (err)
3004 		goto err_free_rx_rings;
3005 
3006 	for (r = 0; r < nn->max_r_vecs; r++)
3007 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3008 
3009 	return 0;
3010 
3011 err_free_rx_rings:
3012 	nfp_net_rx_rings_free(&nn->dp);
3013 err_cleanup_vec:
3014 	r = nn->dp.num_r_vecs;
3015 err_cleanup_vec_p:
3016 	while (r--)
3017 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3018 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3019 err_free_exn:
3020 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3021 	return err;
3022 }
3023 
3024 static int nfp_net_netdev_open(struct net_device *netdev)
3025 {
3026 	struct nfp_net *nn = netdev_priv(netdev);
3027 	int err;
3028 
3029 	/* Step 1: Allocate resources for rings and the like
3030 	 * - Request interrupts
3031 	 * - Allocate RX and TX ring resources
3032 	 * - Setup initial RSS table
3033 	 */
3034 	err = nfp_net_open_alloc_all(nn);
3035 	if (err)
3036 		return err;
3037 
3038 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3039 	if (err)
3040 		goto err_free_all;
3041 
3042 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3043 	if (err)
3044 		goto err_free_all;
3045 
3046 	/* Step 2: Configure the NFP
3047 	 * - Ifup the physical interface if it exists
3048 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3049 	 * - Write MAC address (in case it changed)
3050 	 * - Set the MTU
3051 	 * - Set the Freelist buffer size
3052 	 * - Enable the FW
3053 	 */
3054 	err = nfp_port_configure(netdev, true);
3055 	if (err)
3056 		goto err_free_all;
3057 
3058 	err = nfp_net_set_config_and_enable(nn);
3059 	if (err)
3060 		goto err_port_disable;
3061 
3062 	/* Step 3: Enable for kernel
3063 	 * - put some freelist descriptors on each RX ring
3064 	 * - enable NAPI on each ring
3065 	 * - enable all TX queues
3066 	 * - set link state
3067 	 */
3068 	nfp_net_open_stack(nn);
3069 
3070 	return 0;
3071 
3072 err_port_disable:
3073 	nfp_port_configure(netdev, false);
3074 err_free_all:
3075 	nfp_net_close_free_all(nn);
3076 	return err;
3077 }
3078 
3079 int nfp_ctrl_open(struct nfp_net *nn)
3080 {
3081 	int err, r;
3082 
3083 	/* ring dumping depends on vNICs being opened/closed under rtnl */
3084 	rtnl_lock();
3085 
3086 	err = nfp_net_open_alloc_all(nn);
3087 	if (err)
3088 		goto err_unlock;
3089 
3090 	err = nfp_net_set_config_and_enable(nn);
3091 	if (err)
3092 		goto err_free_all;
3093 
3094 	for (r = 0; r < nn->dp.num_r_vecs; r++)
3095 		enable_irq(nn->r_vecs[r].irq_vector);
3096 
3097 	rtnl_unlock();
3098 
3099 	return 0;
3100 
3101 err_free_all:
3102 	nfp_net_close_free_all(nn);
3103 err_unlock:
3104 	rtnl_unlock();
3105 	return err;
3106 }
3107 
3108 static void nfp_net_set_rx_mode(struct net_device *netdev)
3109 {
3110 	struct nfp_net *nn = netdev_priv(netdev);
3111 	u32 new_ctrl;
3112 
3113 	new_ctrl = nn->dp.ctrl;
3114 
3115 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3116 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3117 	else
3118 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3119 
3120 	if (netdev->flags & IFF_PROMISC) {
3121 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3122 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3123 		else
3124 			nn_warn(nn, "FW does not support promiscuous mode\n");
3125 	} else {
3126 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3127 	}
3128 
3129 	if (new_ctrl == nn->dp.ctrl)
3130 		return;
3131 
3132 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3133 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3134 
3135 	nn->dp.ctrl = new_ctrl;
3136 }
3137 
3138 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3139 {
3140 	int i;
3141 
3142 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
3143 		nn->rss_itbl[i] =
3144 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3145 }
3146 
3147 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3148 {
3149 	struct nfp_net_dp new_dp = *dp;
3150 
3151 	*dp = nn->dp;
3152 	nn->dp = new_dp;
3153 
3154 	nn->dp.netdev->mtu = new_dp.mtu;
3155 
3156 	if (!netif_is_rxfh_configured(nn->dp.netdev))
3157 		nfp_net_rss_init_itbl(nn);
3158 }
3159 
3160 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3161 {
3162 	unsigned int r;
3163 	int err;
3164 
3165 	nfp_net_dp_swap(nn, dp);
3166 
3167 	for (r = 0; r <	nn->max_r_vecs; r++)
3168 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3169 
3170 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3171 	if (err)
3172 		return err;
3173 
3174 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3175 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
3176 						   nn->dp.num_stack_tx_rings);
3177 		if (err)
3178 			return err;
3179 	}
3180 
3181 	return nfp_net_set_config_and_enable(nn);
3182 }
3183 
3184 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3185 {
3186 	struct nfp_net_dp *new;
3187 
3188 	new = kmalloc(sizeof(*new), GFP_KERNEL);
3189 	if (!new)
3190 		return NULL;
3191 
3192 	*new = nn->dp;
3193 
3194 	/* Clear things which need to be recomputed */
3195 	new->fl_bufsz = 0;
3196 	new->tx_rings = NULL;
3197 	new->rx_rings = NULL;
3198 	new->num_r_vecs = 0;
3199 	new->num_stack_tx_rings = 0;
3200 
3201 	return new;
3202 }
3203 
3204 static int
3205 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3206 		     struct netlink_ext_ack *extack)
3207 {
3208 	/* XDP-enabled tests */
3209 	if (!dp->xdp_prog)
3210 		return 0;
3211 	if (dp->fl_bufsz > PAGE_SIZE) {
3212 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3213 		return -EINVAL;
3214 	}
3215 	if (dp->num_tx_rings > nn->max_tx_rings) {
3216 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3217 		return -EINVAL;
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3224 			  struct netlink_ext_ack *extack)
3225 {
3226 	int r, err;
3227 
3228 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3229 
3230 	dp->num_stack_tx_rings = dp->num_tx_rings;
3231 	if (dp->xdp_prog)
3232 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3233 
3234 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3235 
3236 	err = nfp_net_check_config(nn, dp, extack);
3237 	if (err)
3238 		goto exit_free_dp;
3239 
3240 	if (!netif_running(dp->netdev)) {
3241 		nfp_net_dp_swap(nn, dp);
3242 		err = 0;
3243 		goto exit_free_dp;
3244 	}
3245 
3246 	/* Prepare new rings */
3247 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3248 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3249 		if (err) {
3250 			dp->num_r_vecs = r;
3251 			goto err_cleanup_vecs;
3252 		}
3253 	}
3254 
3255 	err = nfp_net_rx_rings_prepare(nn, dp);
3256 	if (err)
3257 		goto err_cleanup_vecs;
3258 
3259 	err = nfp_net_tx_rings_prepare(nn, dp);
3260 	if (err)
3261 		goto err_free_rx;
3262 
3263 	/* Stop device, swap in new rings, try to start the firmware */
3264 	nfp_net_close_stack(nn);
3265 	nfp_net_clear_config_and_disable(nn);
3266 
3267 	err = nfp_net_dp_swap_enable(nn, dp);
3268 	if (err) {
3269 		int err2;
3270 
3271 		nfp_net_clear_config_and_disable(nn);
3272 
3273 		/* Try with old configuration and old rings */
3274 		err2 = nfp_net_dp_swap_enable(nn, dp);
3275 		if (err2)
3276 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3277 			       err, err2);
3278 	}
3279 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3280 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3281 
3282 	nfp_net_rx_rings_free(dp);
3283 	nfp_net_tx_rings_free(dp);
3284 
3285 	nfp_net_open_stack(nn);
3286 exit_free_dp:
3287 	kfree(dp);
3288 
3289 	return err;
3290 
3291 err_free_rx:
3292 	nfp_net_rx_rings_free(dp);
3293 err_cleanup_vecs:
3294 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3295 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3296 	kfree(dp);
3297 	return err;
3298 }
3299 
3300 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3301 {
3302 	struct nfp_net *nn = netdev_priv(netdev);
3303 	struct nfp_net_dp *dp;
3304 	int err;
3305 
3306 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3307 	if (err)
3308 		return err;
3309 
3310 	dp = nfp_net_clone_dp(nn);
3311 	if (!dp)
3312 		return -ENOMEM;
3313 
3314 	dp->mtu = new_mtu;
3315 
3316 	return nfp_net_ring_reconfig(nn, dp, NULL);
3317 }
3318 
3319 static int
3320 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3321 {
3322 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3323 	struct nfp_net *nn = netdev_priv(netdev);
3324 	int err;
3325 
3326 	/* Priority tagged packets with vlan id 0 are processed by the
3327 	 * NFP as untagged packets
3328 	 */
3329 	if (!vid)
3330 		return 0;
3331 
3332 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3333 	if (err)
3334 		return err;
3335 
3336 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3337 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3338 		  ETH_P_8021Q);
3339 
3340 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3341 }
3342 
3343 static int
3344 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3345 {
3346 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3347 	struct nfp_net *nn = netdev_priv(netdev);
3348 	int err;
3349 
3350 	/* Priority tagged packets with vlan id 0 are processed by the
3351 	 * NFP as untagged packets
3352 	 */
3353 	if (!vid)
3354 		return 0;
3355 
3356 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3357 	if (err)
3358 		return err;
3359 
3360 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3361 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3362 		  ETH_P_8021Q);
3363 
3364 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3365 }
3366 
3367 static void nfp_net_stat64(struct net_device *netdev,
3368 			   struct rtnl_link_stats64 *stats)
3369 {
3370 	struct nfp_net *nn = netdev_priv(netdev);
3371 	int r;
3372 
3373 	/* Collect software stats */
3374 	for (r = 0; r < nn->max_r_vecs; r++) {
3375 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3376 		u64 data[3];
3377 		unsigned int start;
3378 
3379 		do {
3380 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3381 			data[0] = r_vec->rx_pkts;
3382 			data[1] = r_vec->rx_bytes;
3383 			data[2] = r_vec->rx_drops;
3384 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3385 		stats->rx_packets += data[0];
3386 		stats->rx_bytes += data[1];
3387 		stats->rx_dropped += data[2];
3388 
3389 		do {
3390 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3391 			data[0] = r_vec->tx_pkts;
3392 			data[1] = r_vec->tx_bytes;
3393 			data[2] = r_vec->tx_errors;
3394 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3395 		stats->tx_packets += data[0];
3396 		stats->tx_bytes += data[1];
3397 		stats->tx_errors += data[2];
3398 	}
3399 
3400 	/* Add in device stats */
3401 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3402 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3403 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3404 
3405 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3406 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3407 }
3408 
3409 static int nfp_net_set_features(struct net_device *netdev,
3410 				netdev_features_t features)
3411 {
3412 	netdev_features_t changed = netdev->features ^ features;
3413 	struct nfp_net *nn = netdev_priv(netdev);
3414 	u32 new_ctrl;
3415 	int err;
3416 
3417 	/* Assume this is not called with features we have not advertised */
3418 
3419 	new_ctrl = nn->dp.ctrl;
3420 
3421 	if (changed & NETIF_F_RXCSUM) {
3422 		if (features & NETIF_F_RXCSUM)
3423 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3424 		else
3425 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3426 	}
3427 
3428 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3429 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3430 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3431 		else
3432 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3433 	}
3434 
3435 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3436 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3437 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3438 					      NFP_NET_CFG_CTRL_LSO;
3439 		else
3440 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3441 	}
3442 
3443 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3444 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3445 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3446 		else
3447 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3448 	}
3449 
3450 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3451 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3452 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3453 		else
3454 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3455 	}
3456 
3457 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3458 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3459 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3460 		else
3461 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3462 	}
3463 
3464 	if (changed & NETIF_F_SG) {
3465 		if (features & NETIF_F_SG)
3466 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3467 		else
3468 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3469 	}
3470 
3471 	err = nfp_port_set_features(netdev, features);
3472 	if (err)
3473 		return err;
3474 
3475 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3476 	       netdev->features, features, changed);
3477 
3478 	if (new_ctrl == nn->dp.ctrl)
3479 		return 0;
3480 
3481 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3482 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3483 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3484 	if (err)
3485 		return err;
3486 
3487 	nn->dp.ctrl = new_ctrl;
3488 
3489 	return 0;
3490 }
3491 
3492 static netdev_features_t
3493 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3494 		       netdev_features_t features)
3495 {
3496 	u8 l4_hdr;
3497 
3498 	/* We can't do TSO over double tagged packets (802.1AD) */
3499 	features &= vlan_features_check(skb, features);
3500 
3501 	if (!skb->encapsulation)
3502 		return features;
3503 
3504 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3505 	if (skb_is_gso(skb)) {
3506 		u32 hdrlen;
3507 
3508 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3509 			inner_tcp_hdrlen(skb);
3510 
3511 		/* Assume worst case scenario of having longest possible
3512 		 * metadata prepend - 8B
3513 		 */
3514 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3515 			features &= ~NETIF_F_GSO_MASK;
3516 	}
3517 
3518 	/* VXLAN/GRE check */
3519 	switch (vlan_get_protocol(skb)) {
3520 	case htons(ETH_P_IP):
3521 		l4_hdr = ip_hdr(skb)->protocol;
3522 		break;
3523 	case htons(ETH_P_IPV6):
3524 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3525 		break;
3526 	default:
3527 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3528 	}
3529 
3530 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3531 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3532 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3533 	    (l4_hdr == IPPROTO_UDP &&
3534 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3535 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3536 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3537 
3538 	return features;
3539 }
3540 
3541 static int
3542 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3543 {
3544 	struct nfp_net *nn = netdev_priv(netdev);
3545 	int n;
3546 
3547 	/* If port is defined, devlink_port is registered and devlink core
3548 	 * is taking care of name formatting.
3549 	 */
3550 	if (nn->port)
3551 		return -EOPNOTSUPP;
3552 
3553 	if (nn->dp.is_vf || nn->vnic_no_name)
3554 		return -EOPNOTSUPP;
3555 
3556 	n = snprintf(name, len, "n%d", nn->id);
3557 	if (n >= len)
3558 		return -EINVAL;
3559 
3560 	return 0;
3561 }
3562 
3563 /**
3564  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3565  * @nn:   NFP Net device to reconfigure
3566  * @idx:  Index into the port table where new port should be written
3567  * @port: UDP port to configure (pass zero to remove VXLAN port)
3568  */
3569 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3570 {
3571 	int i;
3572 
3573 	nn->vxlan_ports[idx] = port;
3574 
3575 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3576 		return;
3577 
3578 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3579 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3580 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3581 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3582 			  be16_to_cpu(nn->vxlan_ports[i]));
3583 
3584 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3585 }
3586 
3587 /**
3588  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3589  * @nn:   NFP Network structure
3590  * @port: UDP port to look for
3591  *
3592  * Return: if the port is already in the table -- it's position;
3593  *	   if the port is not in the table -- free position to use;
3594  *	   if the table is full -- -ENOSPC.
3595  */
3596 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3597 {
3598 	int i, free_idx = -ENOSPC;
3599 
3600 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3601 		if (nn->vxlan_ports[i] == port)
3602 			return i;
3603 		if (!nn->vxlan_usecnt[i])
3604 			free_idx = i;
3605 	}
3606 
3607 	return free_idx;
3608 }
3609 
3610 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3611 				   struct udp_tunnel_info *ti)
3612 {
3613 	struct nfp_net *nn = netdev_priv(netdev);
3614 	int idx;
3615 
3616 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3617 		return;
3618 
3619 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3620 	if (idx == -ENOSPC)
3621 		return;
3622 
3623 	if (!nn->vxlan_usecnt[idx]++)
3624 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3625 }
3626 
3627 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3628 				   struct udp_tunnel_info *ti)
3629 {
3630 	struct nfp_net *nn = netdev_priv(netdev);
3631 	int idx;
3632 
3633 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3634 		return;
3635 
3636 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3637 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3638 		return;
3639 
3640 	if (!--nn->vxlan_usecnt[idx])
3641 		nfp_net_set_vxlan_port(nn, idx, 0);
3642 }
3643 
3644 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3645 {
3646 	struct bpf_prog *prog = bpf->prog;
3647 	struct nfp_net_dp *dp;
3648 	int err;
3649 
3650 	if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3651 		return -EBUSY;
3652 
3653 	if (!prog == !nn->dp.xdp_prog) {
3654 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3655 		xdp_attachment_setup(&nn->xdp, bpf);
3656 		return 0;
3657 	}
3658 
3659 	dp = nfp_net_clone_dp(nn);
3660 	if (!dp)
3661 		return -ENOMEM;
3662 
3663 	dp->xdp_prog = prog;
3664 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3665 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3666 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3667 
3668 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3669 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3670 	if (err)
3671 		return err;
3672 
3673 	xdp_attachment_setup(&nn->xdp, bpf);
3674 	return 0;
3675 }
3676 
3677 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3678 {
3679 	int err;
3680 
3681 	if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3682 		return -EBUSY;
3683 
3684 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3685 	if (err)
3686 		return err;
3687 
3688 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3689 	return 0;
3690 }
3691 
3692 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3693 {
3694 	struct nfp_net *nn = netdev_priv(netdev);
3695 
3696 	switch (xdp->command) {
3697 	case XDP_SETUP_PROG:
3698 		return nfp_net_xdp_setup_drv(nn, xdp);
3699 	case XDP_SETUP_PROG_HW:
3700 		return nfp_net_xdp_setup_hw(nn, xdp);
3701 	case XDP_QUERY_PROG:
3702 		return xdp_attachment_query(&nn->xdp, xdp);
3703 	case XDP_QUERY_PROG_HW:
3704 		return xdp_attachment_query(&nn->xdp_hw, xdp);
3705 	default:
3706 		return nfp_app_bpf(nn->app, nn, xdp);
3707 	}
3708 }
3709 
3710 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3711 {
3712 	struct nfp_net *nn = netdev_priv(netdev);
3713 	struct sockaddr *saddr = addr;
3714 	int err;
3715 
3716 	err = eth_prepare_mac_addr_change(netdev, addr);
3717 	if (err)
3718 		return err;
3719 
3720 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3721 
3722 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3723 	if (err)
3724 		return err;
3725 
3726 	eth_commit_mac_addr_change(netdev, addr);
3727 
3728 	return 0;
3729 }
3730 
3731 const struct net_device_ops nfp_net_netdev_ops = {
3732 	.ndo_init		= nfp_app_ndo_init,
3733 	.ndo_uninit		= nfp_app_ndo_uninit,
3734 	.ndo_open		= nfp_net_netdev_open,
3735 	.ndo_stop		= nfp_net_netdev_close,
3736 	.ndo_start_xmit		= nfp_net_tx,
3737 	.ndo_get_stats64	= nfp_net_stat64,
3738 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3739 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3740 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3741 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3742 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3743 	.ndo_set_vf_trust	= nfp_app_set_vf_trust,
3744 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3745 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3746 	.ndo_setup_tc		= nfp_port_setup_tc,
3747 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3748 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3749 	.ndo_change_mtu		= nfp_net_change_mtu,
3750 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3751 	.ndo_set_features	= nfp_net_set_features,
3752 	.ndo_features_check	= nfp_net_features_check,
3753 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3754 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3755 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3756 	.ndo_bpf		= nfp_net_xdp,
3757 	.ndo_get_devlink_port	= nfp_devlink_get_devlink_port,
3758 };
3759 
3760 /**
3761  * nfp_net_info() - Print general info about the NIC
3762  * @nn:      NFP Net device to reconfigure
3763  */
3764 void nfp_net_info(struct nfp_net *nn)
3765 {
3766 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3767 		nn->dp.is_vf ? "VF " : "",
3768 		nn->dp.num_tx_rings, nn->max_tx_rings,
3769 		nn->dp.num_rx_rings, nn->max_rx_rings);
3770 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3771 		nn->fw_ver.resv, nn->fw_ver.class,
3772 		nn->fw_ver.major, nn->fw_ver.minor,
3773 		nn->max_mtu);
3774 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3775 		nn->cap,
3776 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3777 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3778 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3779 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3780 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3781 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3782 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3783 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3784 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3785 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3786 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3787 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3788 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3789 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3790 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3791 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3792 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3793 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3794 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3795 						      "RXCSUM_COMPLETE " : "",
3796 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3797 		nfp_app_extra_cap(nn->app, nn));
3798 }
3799 
3800 /**
3801  * nfp_net_alloc() - Allocate netdev and related structure
3802  * @pdev:         PCI device
3803  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3804  * @needs_netdev: Whether to allocate a netdev for this vNIC
3805  * @max_tx_rings: Maximum number of TX rings supported by device
3806  * @max_rx_rings: Maximum number of RX rings supported by device
3807  *
3808  * This function allocates a netdev device and fills in the initial
3809  * part of the @struct nfp_net structure.  In case of control device
3810  * nfp_net structure is allocated without the netdev.
3811  *
3812  * Return: NFP Net device structure, or ERR_PTR on error.
3813  */
3814 struct nfp_net *
3815 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3816 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3817 {
3818 	struct nfp_net *nn;
3819 	int err;
3820 
3821 	if (needs_netdev) {
3822 		struct net_device *netdev;
3823 
3824 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3825 					    max_tx_rings, max_rx_rings);
3826 		if (!netdev)
3827 			return ERR_PTR(-ENOMEM);
3828 
3829 		SET_NETDEV_DEV(netdev, &pdev->dev);
3830 		nn = netdev_priv(netdev);
3831 		nn->dp.netdev = netdev;
3832 	} else {
3833 		nn = vzalloc(sizeof(*nn));
3834 		if (!nn)
3835 			return ERR_PTR(-ENOMEM);
3836 	}
3837 
3838 	nn->dp.dev = &pdev->dev;
3839 	nn->dp.ctrl_bar = ctrl_bar;
3840 	nn->pdev = pdev;
3841 
3842 	nn->max_tx_rings = max_tx_rings;
3843 	nn->max_rx_rings = max_rx_rings;
3844 
3845 	nn->dp.num_tx_rings = min_t(unsigned int,
3846 				    max_tx_rings, num_online_cpus());
3847 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3848 				 netif_get_num_default_rss_queues());
3849 
3850 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3851 	nn->dp.num_r_vecs = min_t(unsigned int,
3852 				  nn->dp.num_r_vecs, num_online_cpus());
3853 
3854 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3855 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3856 
3857 	sema_init(&nn->bar_lock, 1);
3858 
3859 	spin_lock_init(&nn->reconfig_lock);
3860 	spin_lock_init(&nn->link_status_lock);
3861 
3862 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3863 
3864 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3865 				     &nn->tlv_caps);
3866 	if (err)
3867 		goto err_free_nn;
3868 
3869 	err = nfp_ccm_mbox_alloc(nn);
3870 	if (err)
3871 		goto err_free_nn;
3872 
3873 	return nn;
3874 
3875 err_free_nn:
3876 	if (nn->dp.netdev)
3877 		free_netdev(nn->dp.netdev);
3878 	else
3879 		vfree(nn);
3880 	return ERR_PTR(err);
3881 }
3882 
3883 /**
3884  * nfp_net_free() - Undo what @nfp_net_alloc() did
3885  * @nn:      NFP Net device to reconfigure
3886  */
3887 void nfp_net_free(struct nfp_net *nn)
3888 {
3889 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3890 	nfp_ccm_mbox_free(nn);
3891 
3892 	if (nn->dp.netdev)
3893 		free_netdev(nn->dp.netdev);
3894 	else
3895 		vfree(nn);
3896 }
3897 
3898 /**
3899  * nfp_net_rss_key_sz() - Get current size of the RSS key
3900  * @nn:		NFP Net device instance
3901  *
3902  * Return: size of the RSS key for currently selected hash function.
3903  */
3904 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3905 {
3906 	switch (nn->rss_hfunc) {
3907 	case ETH_RSS_HASH_TOP:
3908 		return NFP_NET_CFG_RSS_KEY_SZ;
3909 	case ETH_RSS_HASH_XOR:
3910 		return 0;
3911 	case ETH_RSS_HASH_CRC32:
3912 		return 4;
3913 	}
3914 
3915 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3916 	return 0;
3917 }
3918 
3919 /**
3920  * nfp_net_rss_init() - Set the initial RSS parameters
3921  * @nn:	     NFP Net device to reconfigure
3922  */
3923 static void nfp_net_rss_init(struct nfp_net *nn)
3924 {
3925 	unsigned long func_bit, rss_cap_hfunc;
3926 	u32 reg;
3927 
3928 	/* Read the RSS function capability and select first supported func */
3929 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3930 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3931 	if (!rss_cap_hfunc)
3932 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3933 					  NFP_NET_CFG_RSS_TOEPLITZ);
3934 
3935 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3936 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3937 		dev_warn(nn->dp.dev,
3938 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3939 		func_bit = ETH_RSS_HASH_TOP_BIT;
3940 	}
3941 	nn->rss_hfunc = 1 << func_bit;
3942 
3943 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3944 
3945 	nfp_net_rss_init_itbl(nn);
3946 
3947 	/* Enable IPv4/IPv6 TCP by default */
3948 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3949 		      NFP_NET_CFG_RSS_IPV6_TCP |
3950 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3951 		      NFP_NET_CFG_RSS_MASK;
3952 }
3953 
3954 /**
3955  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3956  * @nn:	     NFP Net device to reconfigure
3957  */
3958 static void nfp_net_irqmod_init(struct nfp_net *nn)
3959 {
3960 	nn->rx_coalesce_usecs      = 50;
3961 	nn->rx_coalesce_max_frames = 64;
3962 	nn->tx_coalesce_usecs      = 50;
3963 	nn->tx_coalesce_max_frames = 64;
3964 }
3965 
3966 static void nfp_net_netdev_init(struct nfp_net *nn)
3967 {
3968 	struct net_device *netdev = nn->dp.netdev;
3969 
3970 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3971 
3972 	netdev->mtu = nn->dp.mtu;
3973 
3974 	/* Advertise/enable offloads based on capabilities
3975 	 *
3976 	 * Note: netdev->features show the currently enabled features
3977 	 * and netdev->hw_features advertises which features are
3978 	 * supported.  By default we enable most features.
3979 	 */
3980 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3981 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3982 
3983 	netdev->hw_features = NETIF_F_HIGHDMA;
3984 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3985 		netdev->hw_features |= NETIF_F_RXCSUM;
3986 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3987 	}
3988 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3989 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3990 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3991 	}
3992 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3993 		netdev->hw_features |= NETIF_F_SG;
3994 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3995 	}
3996 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3997 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3998 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3999 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
4000 					 NFP_NET_CFG_CTRL_LSO;
4001 	}
4002 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
4003 		netdev->hw_features |= NETIF_F_RXHASH;
4004 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
4005 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4006 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
4007 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
4008 	}
4009 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
4010 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4011 			netdev->hw_features |= NETIF_F_GSO_GRE;
4012 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
4013 	}
4014 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
4015 		netdev->hw_enc_features = netdev->hw_features;
4016 
4017 	netdev->vlan_features = netdev->hw_features;
4018 
4019 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
4020 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4021 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
4022 	}
4023 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4024 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4025 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4026 		} else {
4027 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4028 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4029 		}
4030 	}
4031 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4032 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4033 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4034 	}
4035 
4036 	netdev->features = netdev->hw_features;
4037 
4038 	if (nfp_app_has_tc(nn->app) && nn->port)
4039 		netdev->hw_features |= NETIF_F_HW_TC;
4040 
4041 	/* Advertise but disable TSO by default. */
4042 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4043 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4044 
4045 	/* Finalise the netdev setup */
4046 	netdev->netdev_ops = &nfp_net_netdev_ops;
4047 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4048 
4049 	/* MTU range: 68 - hw-specific max */
4050 	netdev->min_mtu = ETH_MIN_MTU;
4051 	netdev->max_mtu = nn->max_mtu;
4052 
4053 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4054 
4055 	netif_carrier_off(netdev);
4056 
4057 	nfp_net_set_ethtool_ops(netdev);
4058 }
4059 
4060 static int nfp_net_read_caps(struct nfp_net *nn)
4061 {
4062 	/* Get some of the read-only fields from the BAR */
4063 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4064 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4065 
4066 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4067 	 * we allow use of non-chained metadata if RSS(v1) is the only
4068 	 * advertised capability requiring metadata.
4069 	 */
4070 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4071 					 !nn->dp.netdev ||
4072 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4073 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4074 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4075 	 * it has the same meaning as RSSv2.
4076 	 */
4077 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4078 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4079 
4080 	/* Determine RX packet/metadata boundary offset */
4081 	if (nn->fw_ver.major >= 2) {
4082 		u32 reg;
4083 
4084 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4085 		if (reg > NFP_NET_MAX_PREPEND) {
4086 			nn_err(nn, "Invalid rx offset: %d\n", reg);
4087 			return -EINVAL;
4088 		}
4089 		nn->dp.rx_offset = reg;
4090 	} else {
4091 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4092 	}
4093 
4094 	/* For control vNICs mask out the capabilities app doesn't want. */
4095 	if (!nn->dp.netdev)
4096 		nn->cap &= nn->app->type->ctrl_cap_mask;
4097 
4098 	return 0;
4099 }
4100 
4101 /**
4102  * nfp_net_init() - Initialise/finalise the nfp_net structure
4103  * @nn:		NFP Net device structure
4104  *
4105  * Return: 0 on success or negative errno on error.
4106  */
4107 int nfp_net_init(struct nfp_net *nn)
4108 {
4109 	int err;
4110 
4111 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4112 
4113 	err = nfp_net_read_caps(nn);
4114 	if (err)
4115 		return err;
4116 
4117 	/* Set default MTU and Freelist buffer size */
4118 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4119 		nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4120 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4121 		nn->dp.mtu = nn->max_mtu;
4122 	} else {
4123 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4124 	}
4125 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4126 
4127 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
4128 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4129 
4130 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4131 		nfp_net_rss_init(nn);
4132 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4133 					 NFP_NET_CFG_CTRL_RSS;
4134 	}
4135 
4136 	/* Allow L2 Broadcast and Multicast through by default, if supported */
4137 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4138 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4139 
4140 	/* Allow IRQ moderation, if supported */
4141 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4142 		nfp_net_irqmod_init(nn);
4143 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4144 	}
4145 
4146 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
4147 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4148 
4149 	/* Make sure the FW knows the netdev is supposed to be disabled here */
4150 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4151 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4152 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4153 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4154 				   NFP_NET_CFG_UPDATE_GEN);
4155 	if (err)
4156 		return err;
4157 
4158 	if (nn->dp.netdev) {
4159 		nfp_net_netdev_init(nn);
4160 
4161 		err = nfp_ccm_mbox_init(nn);
4162 		if (err)
4163 			return err;
4164 
4165 		err = nfp_net_tls_init(nn);
4166 		if (err)
4167 			goto err_clean_mbox;
4168 	}
4169 
4170 	nfp_net_vecs_init(nn);
4171 
4172 	if (!nn->dp.netdev)
4173 		return 0;
4174 	return register_netdev(nn->dp.netdev);
4175 
4176 err_clean_mbox:
4177 	nfp_ccm_mbox_clean(nn);
4178 	return err;
4179 }
4180 
4181 /**
4182  * nfp_net_clean() - Undo what nfp_net_init() did.
4183  * @nn:		NFP Net device structure
4184  */
4185 void nfp_net_clean(struct nfp_net *nn)
4186 {
4187 	if (!nn->dp.netdev)
4188 		return;
4189 
4190 	unregister_netdev(nn->dp.netdev);
4191 	nfp_ccm_mbox_clean(nn);
4192 	nfp_net_reconfig_wait_posted(nn);
4193 }
4194