1 /*
2  * Copyright (C) 2015-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 /*
35  * nfp_net_common.c
36  * Netronome network device driver: Common functions between PF and VF
37  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38  *          Jason McMullan <jason.mcmullan@netronome.com>
39  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
40  *          Brad Petrus <brad.petrus@netronome.com>
41  *          Chris Telfer <chris.telfer@netronome.com>
42  */
43 
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66 
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69 
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_net_sriov.h"
75 #include "nfp_port.h"
76 
77 /**
78  * nfp_net_get_fw_version() - Read and parse the FW version
79  * @fw_ver:	Output fw_version structure to read to
80  * @ctrl_bar:	Mapped address of the control BAR
81  */
82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
83 			    void __iomem *ctrl_bar)
84 {
85 	u32 reg;
86 
87 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
88 	put_unaligned_le32(reg, fw_ver);
89 }
90 
91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
92 {
93 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
94 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
95 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
96 }
97 
98 static void
99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
100 {
101 	dma_sync_single_for_device(dp->dev, dma_addr,
102 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
103 				   dp->rx_dma_dir);
104 }
105 
106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
107 {
108 	dma_unmap_single_attrs(dp->dev, dma_addr,
109 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
110 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
111 }
112 
113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
114 				    unsigned int len)
115 {
116 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
117 				len, dp->rx_dma_dir);
118 }
119 
120 /* Firmware reconfig
121  *
122  * Firmware reconfig may take a while so we have two versions of it -
123  * synchronous and asynchronous (posted).  All synchronous callers are holding
124  * RTNL so we don't have to worry about serializing them.
125  */
126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
127 {
128 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
129 	/* ensure update is written before pinging HW */
130 	nn_pci_flush(nn);
131 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
132 }
133 
134 /* Pass 0 as update to run posted reconfigs. */
135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
136 {
137 	update |= nn->reconfig_posted;
138 	nn->reconfig_posted = 0;
139 
140 	nfp_net_reconfig_start(nn, update);
141 
142 	nn->reconfig_timer_active = true;
143 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
144 }
145 
146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
147 {
148 	u32 reg;
149 
150 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
151 	if (reg == 0)
152 		return true;
153 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
154 		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
155 		return true;
156 	} else if (last_check) {
157 		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
158 		return true;
159 	}
160 
161 	return false;
162 }
163 
164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
165 {
166 	bool timed_out = false;
167 
168 	/* Poll update field, waiting for NFP to ack the config */
169 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
170 		msleep(1);
171 		timed_out = time_is_before_eq_jiffies(deadline);
172 	}
173 
174 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
175 		return -EIO;
176 
177 	return timed_out ? -EIO : 0;
178 }
179 
180 static void nfp_net_reconfig_timer(unsigned long data)
181 {
182 	struct nfp_net *nn = (void *)data;
183 
184 	spin_lock_bh(&nn->reconfig_lock);
185 
186 	nn->reconfig_timer_active = false;
187 
188 	/* If sync caller is present it will take over from us */
189 	if (nn->reconfig_sync_present)
190 		goto done;
191 
192 	/* Read reconfig status and report errors */
193 	nfp_net_reconfig_check_done(nn, true);
194 
195 	if (nn->reconfig_posted)
196 		nfp_net_reconfig_start_async(nn, 0);
197 done:
198 	spin_unlock_bh(&nn->reconfig_lock);
199 }
200 
201 /**
202  * nfp_net_reconfig_post() - Post async reconfig request
203  * @nn:      NFP Net device to reconfigure
204  * @update:  The value for the update field in the BAR config
205  *
206  * Record FW reconfiguration request.  Reconfiguration will be kicked off
207  * whenever reconfiguration machinery is idle.  Multiple requests can be
208  * merged together!
209  */
210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
211 {
212 	spin_lock_bh(&nn->reconfig_lock);
213 
214 	/* Sync caller will kick off async reconf when it's done, just post */
215 	if (nn->reconfig_sync_present) {
216 		nn->reconfig_posted |= update;
217 		goto done;
218 	}
219 
220 	/* Opportunistically check if the previous command is done */
221 	if (!nn->reconfig_timer_active ||
222 	    nfp_net_reconfig_check_done(nn, false))
223 		nfp_net_reconfig_start_async(nn, update);
224 	else
225 		nn->reconfig_posted |= update;
226 done:
227 	spin_unlock_bh(&nn->reconfig_lock);
228 }
229 
230 /**
231  * nfp_net_reconfig() - Reconfigure the firmware
232  * @nn:      NFP Net device to reconfigure
233  * @update:  The value for the update field in the BAR config
234  *
235  * Write the update word to the BAR and ping the reconfig queue.  The
236  * poll until the firmware has acknowledged the update by zeroing the
237  * update word.
238  *
239  * Return: Negative errno on error, 0 on success
240  */
241 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
242 {
243 	bool cancelled_timer = false;
244 	u32 pre_posted_requests;
245 	int ret;
246 
247 	spin_lock_bh(&nn->reconfig_lock);
248 
249 	nn->reconfig_sync_present = true;
250 
251 	if (nn->reconfig_timer_active) {
252 		del_timer(&nn->reconfig_timer);
253 		nn->reconfig_timer_active = false;
254 		cancelled_timer = true;
255 	}
256 	pre_posted_requests = nn->reconfig_posted;
257 	nn->reconfig_posted = 0;
258 
259 	spin_unlock_bh(&nn->reconfig_lock);
260 
261 	if (cancelled_timer)
262 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
263 
264 	/* Run the posted reconfigs which were issued before we started */
265 	if (pre_posted_requests) {
266 		nfp_net_reconfig_start(nn, pre_posted_requests);
267 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
268 	}
269 
270 	nfp_net_reconfig_start(nn, update);
271 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
272 
273 	spin_lock_bh(&nn->reconfig_lock);
274 
275 	if (nn->reconfig_posted)
276 		nfp_net_reconfig_start_async(nn, 0);
277 
278 	nn->reconfig_sync_present = false;
279 
280 	spin_unlock_bh(&nn->reconfig_lock);
281 
282 	return ret;
283 }
284 
285 /**
286  * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
287  * @nn:        NFP Net device to reconfigure
288  * @mbox_cmd:  The value for the mailbox command
289  *
290  * Helper function for mailbox updates
291  *
292  * Return: Negative errno on error, 0 on success
293  */
294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
295 {
296 	int ret;
297 
298 	nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
299 
300 	ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
301 	if (ret) {
302 		nn_err(nn, "Mailbox update error\n");
303 		return ret;
304 	}
305 
306 	return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
307 }
308 
309 /* Interrupt configuration and handling
310  */
311 
312 /**
313  * nfp_net_irq_unmask() - Unmask automasked interrupt
314  * @nn:       NFP Network structure
315  * @entry_nr: MSI-X table entry
316  *
317  * Clear the ICR for the IRQ entry.
318  */
319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
320 {
321 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
322 	nn_pci_flush(nn);
323 }
324 
325 /**
326  * nfp_net_irqs_alloc() - allocates MSI-X irqs
327  * @pdev:        PCI device structure
328  * @irq_entries: Array to be initialized and used to hold the irq entries
329  * @min_irqs:    Minimal acceptable number of interrupts
330  * @wanted_irqs: Target number of interrupts to allocate
331  *
332  * Return: Number of irqs obtained or 0 on error.
333  */
334 unsigned int
335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
336 		   unsigned int min_irqs, unsigned int wanted_irqs)
337 {
338 	unsigned int i;
339 	int got_irqs;
340 
341 	for (i = 0; i < wanted_irqs; i++)
342 		irq_entries[i].entry = i;
343 
344 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
345 					 min_irqs, wanted_irqs);
346 	if (got_irqs < 0) {
347 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
348 			min_irqs, wanted_irqs, got_irqs);
349 		return 0;
350 	}
351 
352 	if (got_irqs < wanted_irqs)
353 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
354 			 wanted_irqs, got_irqs);
355 
356 	return got_irqs;
357 }
358 
359 /**
360  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
361  * @nn:		 NFP Network structure
362  * @irq_entries: Table of allocated interrupts
363  * @n:		 Size of @irq_entries (number of entries to grab)
364  *
365  * After interrupts are allocated with nfp_net_irqs_alloc() this function
366  * should be called to assign them to a specific netdev (port).
367  */
368 void
369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
370 		    unsigned int n)
371 {
372 	struct nfp_net_dp *dp = &nn->dp;
373 
374 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
375 	dp->num_r_vecs = nn->max_r_vecs;
376 
377 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
378 
379 	if (dp->num_rx_rings > dp->num_r_vecs ||
380 	    dp->num_tx_rings > dp->num_r_vecs)
381 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
382 			 dp->num_rx_rings, dp->num_tx_rings,
383 			 dp->num_r_vecs);
384 
385 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
386 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
387 	dp->num_stack_tx_rings = dp->num_tx_rings;
388 }
389 
390 /**
391  * nfp_net_irqs_disable() - Disable interrupts
392  * @pdev:        PCI device structure
393  *
394  * Undoes what @nfp_net_irqs_alloc() does.
395  */
396 void nfp_net_irqs_disable(struct pci_dev *pdev)
397 {
398 	pci_disable_msix(pdev);
399 }
400 
401 /**
402  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
403  * @irq:      Interrupt
404  * @data:     Opaque data structure
405  *
406  * Return: Indicate if the interrupt has been handled.
407  */
408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
409 {
410 	struct nfp_net_r_vector *r_vec = data;
411 
412 	napi_schedule_irqoff(&r_vec->napi);
413 
414 	/* The FW auto-masks any interrupt, either via the MASK bit in
415 	 * the MSI-X table or via the per entry ICR field.  So there
416 	 * is no need to disable interrupts here.
417 	 */
418 	return IRQ_HANDLED;
419 }
420 
421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
422 {
423 	struct nfp_net_r_vector *r_vec = data;
424 
425 	tasklet_schedule(&r_vec->tasklet);
426 
427 	return IRQ_HANDLED;
428 }
429 
430 /**
431  * nfp_net_read_link_status() - Reread link status from control BAR
432  * @nn:       NFP Network structure
433  */
434 static void nfp_net_read_link_status(struct nfp_net *nn)
435 {
436 	unsigned long flags;
437 	bool link_up;
438 	u32 sts;
439 
440 	spin_lock_irqsave(&nn->link_status_lock, flags);
441 
442 	sts = nn_readl(nn, NFP_NET_CFG_STS);
443 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
444 
445 	if (nn->link_up == link_up)
446 		goto out;
447 
448 	nn->link_up = link_up;
449 	if (nn->port)
450 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
451 
452 	if (nn->link_up) {
453 		netif_carrier_on(nn->dp.netdev);
454 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
455 	} else {
456 		netif_carrier_off(nn->dp.netdev);
457 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
458 	}
459 out:
460 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
461 }
462 
463 /**
464  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
465  * @irq:      Interrupt
466  * @data:     Opaque data structure
467  *
468  * Return: Indicate if the interrupt has been handled.
469  */
470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
471 {
472 	struct nfp_net *nn = data;
473 	struct msix_entry *entry;
474 
475 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
476 
477 	nfp_net_read_link_status(nn);
478 
479 	nfp_net_irq_unmask(nn, entry->entry);
480 
481 	return IRQ_HANDLED;
482 }
483 
484 /**
485  * nfp_net_irq_exn() - Interrupt service routine for exceptions
486  * @irq:      Interrupt
487  * @data:     Opaque data structure
488  *
489  * Return: Indicate if the interrupt has been handled.
490  */
491 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
492 {
493 	struct nfp_net *nn = data;
494 
495 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
496 	/* XXX TO BE IMPLEMENTED */
497 	return IRQ_HANDLED;
498 }
499 
500 /**
501  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
502  * @tx_ring:  TX ring structure
503  * @r_vec:    IRQ vector servicing this ring
504  * @idx:      Ring index
505  * @is_xdp:   Is this an XDP TX ring?
506  */
507 static void
508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
509 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
510 		     bool is_xdp)
511 {
512 	struct nfp_net *nn = r_vec->nfp_net;
513 
514 	tx_ring->idx = idx;
515 	tx_ring->r_vec = r_vec;
516 	tx_ring->is_xdp = is_xdp;
517 	u64_stats_init(&tx_ring->r_vec->tx_sync);
518 
519 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
520 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
521 }
522 
523 /**
524  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
525  * @rx_ring:  RX ring structure
526  * @r_vec:    IRQ vector servicing this ring
527  * @idx:      Ring index
528  */
529 static void
530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
531 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
532 {
533 	struct nfp_net *nn = r_vec->nfp_net;
534 
535 	rx_ring->idx = idx;
536 	rx_ring->r_vec = r_vec;
537 	u64_stats_init(&rx_ring->r_vec->rx_sync);
538 
539 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
540 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
541 }
542 
543 /**
544  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
545  * @nn:		NFP Network structure
546  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
547  * @format:	printf-style format to construct the interrupt name
548  * @name:	Pointer to allocated space for interrupt name
549  * @name_sz:	Size of space for interrupt name
550  * @vector_idx:	Index of MSI-X vector used for this interrupt
551  * @handler:	IRQ handler to register for this interrupt
552  */
553 static int
554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
555 			const char *format, char *name, size_t name_sz,
556 			unsigned int vector_idx, irq_handler_t handler)
557 {
558 	struct msix_entry *entry;
559 	int err;
560 
561 	entry = &nn->irq_entries[vector_idx];
562 
563 	snprintf(name, name_sz, format, nfp_net_name(nn));
564 	err = request_irq(entry->vector, handler, 0, name, nn);
565 	if (err) {
566 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
567 		       entry->vector, err);
568 		return err;
569 	}
570 	nn_writeb(nn, ctrl_offset, entry->entry);
571 
572 	return 0;
573 }
574 
575 /**
576  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
577  * @nn:		NFP Network structure
578  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
579  * @vector_idx:	Index of MSI-X vector used for this interrupt
580  */
581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
582 				 unsigned int vector_idx)
583 {
584 	nn_writeb(nn, ctrl_offset, 0xff);
585 	free_irq(nn->irq_entries[vector_idx].vector, nn);
586 }
587 
588 /* Transmit
589  *
590  * One queue controller peripheral queue is used for transmit.  The
591  * driver en-queues packets for transmit by advancing the write
592  * pointer.  The device indicates that packets have transmitted by
593  * advancing the read pointer.  The driver maintains a local copy of
594  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
595  * keeps @wr_p in sync with the queue controller write pointer and can
596  * determine how many packets have been transmitted by comparing its
597  * copy of the read pointer @rd_p with the read pointer maintained by
598  * the queue controller peripheral.
599  */
600 
601 /**
602  * nfp_net_tx_full() - Check if the TX ring is full
603  * @tx_ring: TX ring to check
604  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
605  *
606  * This function checks, based on the *host copy* of read/write
607  * pointer if a given TX ring is full.  The real TX queue may have
608  * some newly made available slots.
609  *
610  * Return: True if the ring is full.
611  */
612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
613 {
614 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
615 }
616 
617 /* Wrappers for deciding when to stop and restart TX queues */
618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
619 {
620 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
621 }
622 
623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
624 {
625 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
626 }
627 
628 /**
629  * nfp_net_tx_ring_stop() - stop tx ring
630  * @nd_q:    netdev queue
631  * @tx_ring: driver tx queue structure
632  *
633  * Safely stop TX ring.  Remember that while we are running .start_xmit()
634  * someone else may be cleaning the TX ring completions so we need to be
635  * extra careful here.
636  */
637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
638 				 struct nfp_net_tx_ring *tx_ring)
639 {
640 	netif_tx_stop_queue(nd_q);
641 
642 	/* We can race with the TX completion out of NAPI so recheck */
643 	smp_mb();
644 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
645 		netif_tx_start_queue(nd_q);
646 }
647 
648 /**
649  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
650  * @r_vec: per-ring structure
651  * @txbuf: Pointer to driver soft TX descriptor
652  * @txd: Pointer to HW TX descriptor
653  * @skb: Pointer to SKB
654  *
655  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
656  * Return error on packet header greater than maximum supported LSO header size.
657  */
658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
659 			   struct nfp_net_tx_buf *txbuf,
660 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
661 {
662 	u32 hdrlen;
663 	u16 mss;
664 
665 	if (!skb_is_gso(skb))
666 		return;
667 
668 	if (!skb->encapsulation) {
669 		txd->l3_offset = skb_network_offset(skb);
670 		txd->l4_offset = skb_transport_offset(skb);
671 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 	} else {
673 		txd->l3_offset = skb_inner_network_offset(skb);
674 		txd->l4_offset = skb_inner_transport_offset(skb);
675 		hdrlen = skb_inner_transport_header(skb) - skb->data +
676 			inner_tcp_hdrlen(skb);
677 	}
678 
679 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
680 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
681 
682 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
683 	txd->lso_hdrlen = hdrlen;
684 	txd->mss = cpu_to_le16(mss);
685 	txd->flags |= PCIE_DESC_TX_LSO;
686 
687 	u64_stats_update_begin(&r_vec->tx_sync);
688 	r_vec->tx_lso++;
689 	u64_stats_update_end(&r_vec->tx_sync);
690 }
691 
692 /**
693  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
694  * @dp:  NFP Net data path struct
695  * @r_vec: per-ring structure
696  * @txbuf: Pointer to driver soft TX descriptor
697  * @txd: Pointer to TX descriptor
698  * @skb: Pointer to SKB
699  *
700  * This function sets the TX checksum flags in the TX descriptor based
701  * on the configuration and the protocol of the packet to be transmitted.
702  */
703 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
704 			    struct nfp_net_r_vector *r_vec,
705 			    struct nfp_net_tx_buf *txbuf,
706 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
707 {
708 	struct ipv6hdr *ipv6h;
709 	struct iphdr *iph;
710 	u8 l4_hdr;
711 
712 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
713 		return;
714 
715 	if (skb->ip_summed != CHECKSUM_PARTIAL)
716 		return;
717 
718 	txd->flags |= PCIE_DESC_TX_CSUM;
719 	if (skb->encapsulation)
720 		txd->flags |= PCIE_DESC_TX_ENCAP;
721 
722 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
723 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
724 
725 	if (iph->version == 4) {
726 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
727 		l4_hdr = iph->protocol;
728 	} else if (ipv6h->version == 6) {
729 		l4_hdr = ipv6h->nexthdr;
730 	} else {
731 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
732 		return;
733 	}
734 
735 	switch (l4_hdr) {
736 	case IPPROTO_TCP:
737 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
738 		break;
739 	case IPPROTO_UDP:
740 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
741 		break;
742 	default:
743 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
744 		return;
745 	}
746 
747 	u64_stats_update_begin(&r_vec->tx_sync);
748 	if (skb->encapsulation)
749 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
750 	else
751 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
752 	u64_stats_update_end(&r_vec->tx_sync);
753 }
754 
755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
756 {
757 	wmb();
758 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
759 	tx_ring->wr_ptr_add = 0;
760 }
761 
762 static int nfp_net_prep_port_id(struct sk_buff *skb)
763 {
764 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
765 	unsigned char *data;
766 
767 	if (likely(!md_dst))
768 		return 0;
769 	if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
770 		return 0;
771 
772 	if (unlikely(skb_cow_head(skb, 8)))
773 		return -ENOMEM;
774 
775 	data = skb_push(skb, 8);
776 	put_unaligned_be32(NFP_NET_META_PORTID, data);
777 	put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
778 
779 	return 8;
780 }
781 
782 /**
783  * nfp_net_tx() - Main transmit entry point
784  * @skb:    SKB to transmit
785  * @netdev: netdev structure
786  *
787  * Return: NETDEV_TX_OK on success.
788  */
789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
790 {
791 	struct nfp_net *nn = netdev_priv(netdev);
792 	const struct skb_frag_struct *frag;
793 	struct nfp_net_tx_desc *txd, txdg;
794 	int f, nr_frags, wr_idx, md_bytes;
795 	struct nfp_net_tx_ring *tx_ring;
796 	struct nfp_net_r_vector *r_vec;
797 	struct nfp_net_tx_buf *txbuf;
798 	struct netdev_queue *nd_q;
799 	struct nfp_net_dp *dp;
800 	dma_addr_t dma_addr;
801 	unsigned int fsize;
802 	u16 qidx;
803 
804 	dp = &nn->dp;
805 	qidx = skb_get_queue_mapping(skb);
806 	tx_ring = &dp->tx_rings[qidx];
807 	r_vec = tx_ring->r_vec;
808 	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
809 
810 	nr_frags = skb_shinfo(skb)->nr_frags;
811 
812 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
813 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
814 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
815 		netif_tx_stop_queue(nd_q);
816 		nfp_net_tx_xmit_more_flush(tx_ring);
817 		u64_stats_update_begin(&r_vec->tx_sync);
818 		r_vec->tx_busy++;
819 		u64_stats_update_end(&r_vec->tx_sync);
820 		return NETDEV_TX_BUSY;
821 	}
822 
823 	md_bytes = nfp_net_prep_port_id(skb);
824 	if (unlikely(md_bytes < 0)) {
825 		nfp_net_tx_xmit_more_flush(tx_ring);
826 		dev_kfree_skb_any(skb);
827 		return NETDEV_TX_OK;
828 	}
829 
830 	/* Start with the head skbuf */
831 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
832 				  DMA_TO_DEVICE);
833 	if (dma_mapping_error(dp->dev, dma_addr))
834 		goto err_free;
835 
836 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
837 
838 	/* Stash the soft descriptor of the head then initialize it */
839 	txbuf = &tx_ring->txbufs[wr_idx];
840 	txbuf->skb = skb;
841 	txbuf->dma_addr = dma_addr;
842 	txbuf->fidx = -1;
843 	txbuf->pkt_cnt = 1;
844 	txbuf->real_len = skb->len;
845 
846 	/* Build TX descriptor */
847 	txd = &tx_ring->txds[wr_idx];
848 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
849 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
850 	nfp_desc_set_dma_addr(txd, dma_addr);
851 	txd->data_len = cpu_to_le16(skb->len);
852 
853 	txd->flags = 0;
854 	txd->mss = 0;
855 	txd->lso_hdrlen = 0;
856 
857 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
858 	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
859 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
860 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
861 		txd->flags |= PCIE_DESC_TX_VLAN;
862 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
863 	}
864 
865 	/* Gather DMA */
866 	if (nr_frags > 0) {
867 		/* all descs must match except for in addr, length and eop */
868 		txdg = *txd;
869 
870 		for (f = 0; f < nr_frags; f++) {
871 			frag = &skb_shinfo(skb)->frags[f];
872 			fsize = skb_frag_size(frag);
873 
874 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
875 						    fsize, DMA_TO_DEVICE);
876 			if (dma_mapping_error(dp->dev, dma_addr))
877 				goto err_unmap;
878 
879 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
880 			tx_ring->txbufs[wr_idx].skb = skb;
881 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
882 			tx_ring->txbufs[wr_idx].fidx = f;
883 
884 			txd = &tx_ring->txds[wr_idx];
885 			*txd = txdg;
886 			txd->dma_len = cpu_to_le16(fsize);
887 			nfp_desc_set_dma_addr(txd, dma_addr);
888 			txd->offset_eop |=
889 				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
890 		}
891 
892 		u64_stats_update_begin(&r_vec->tx_sync);
893 		r_vec->tx_gather++;
894 		u64_stats_update_end(&r_vec->tx_sync);
895 	}
896 
897 	netdev_tx_sent_queue(nd_q, txbuf->real_len);
898 
899 	skb_tx_timestamp(skb);
900 
901 	tx_ring->wr_p += nr_frags + 1;
902 	if (nfp_net_tx_ring_should_stop(tx_ring))
903 		nfp_net_tx_ring_stop(nd_q, tx_ring);
904 
905 	tx_ring->wr_ptr_add += nr_frags + 1;
906 	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
907 		nfp_net_tx_xmit_more_flush(tx_ring);
908 
909 	return NETDEV_TX_OK;
910 
911 err_unmap:
912 	while (--f >= 0) {
913 		frag = &skb_shinfo(skb)->frags[f];
914 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
915 			       skb_frag_size(frag), DMA_TO_DEVICE);
916 		tx_ring->txbufs[wr_idx].skb = NULL;
917 		tx_ring->txbufs[wr_idx].dma_addr = 0;
918 		tx_ring->txbufs[wr_idx].fidx = -2;
919 		wr_idx = wr_idx - 1;
920 		if (wr_idx < 0)
921 			wr_idx += tx_ring->cnt;
922 	}
923 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
924 			 skb_headlen(skb), DMA_TO_DEVICE);
925 	tx_ring->txbufs[wr_idx].skb = NULL;
926 	tx_ring->txbufs[wr_idx].dma_addr = 0;
927 	tx_ring->txbufs[wr_idx].fidx = -2;
928 err_free:
929 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
930 	nfp_net_tx_xmit_more_flush(tx_ring);
931 	u64_stats_update_begin(&r_vec->tx_sync);
932 	r_vec->tx_errors++;
933 	u64_stats_update_end(&r_vec->tx_sync);
934 	dev_kfree_skb_any(skb);
935 	return NETDEV_TX_OK;
936 }
937 
938 /**
939  * nfp_net_tx_complete() - Handled completed TX packets
940  * @tx_ring:   TX ring structure
941  *
942  * Return: Number of completed TX descriptors
943  */
944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
945 {
946 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
947 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
948 	const struct skb_frag_struct *frag;
949 	struct netdev_queue *nd_q;
950 	u32 done_pkts = 0, done_bytes = 0;
951 	struct sk_buff *skb;
952 	int todo, nr_frags;
953 	u32 qcp_rd_p;
954 	int fidx;
955 	int idx;
956 
957 	if (tx_ring->wr_p == tx_ring->rd_p)
958 		return;
959 
960 	/* Work out how many descriptors have been transmitted */
961 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
962 
963 	if (qcp_rd_p == tx_ring->qcp_rd_p)
964 		return;
965 
966 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
967 
968 	while (todo--) {
969 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
970 
971 		skb = tx_ring->txbufs[idx].skb;
972 		if (!skb)
973 			continue;
974 
975 		nr_frags = skb_shinfo(skb)->nr_frags;
976 		fidx = tx_ring->txbufs[idx].fidx;
977 
978 		if (fidx == -1) {
979 			/* unmap head */
980 			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
981 					 skb_headlen(skb), DMA_TO_DEVICE);
982 
983 			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
984 			done_bytes += tx_ring->txbufs[idx].real_len;
985 		} else {
986 			/* unmap fragment */
987 			frag = &skb_shinfo(skb)->frags[fidx];
988 			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
989 				       skb_frag_size(frag), DMA_TO_DEVICE);
990 		}
991 
992 		/* check for last gather fragment */
993 		if (fidx == nr_frags - 1)
994 			dev_consume_skb_any(skb);
995 
996 		tx_ring->txbufs[idx].dma_addr = 0;
997 		tx_ring->txbufs[idx].skb = NULL;
998 		tx_ring->txbufs[idx].fidx = -2;
999 	}
1000 
1001 	tx_ring->qcp_rd_p = qcp_rd_p;
1002 
1003 	u64_stats_update_begin(&r_vec->tx_sync);
1004 	r_vec->tx_bytes += done_bytes;
1005 	r_vec->tx_pkts += done_pkts;
1006 	u64_stats_update_end(&r_vec->tx_sync);
1007 
1008 	if (!dp->netdev)
1009 		return;
1010 
1011 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1012 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1013 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1014 		/* Make sure TX thread will see updated tx_ring->rd_p */
1015 		smp_mb();
1016 
1017 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1018 			netif_tx_wake_queue(nd_q);
1019 	}
1020 
1021 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1022 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1023 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1024 }
1025 
1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1027 {
1028 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1029 	u32 done_pkts = 0, done_bytes = 0;
1030 	bool done_all;
1031 	int idx, todo;
1032 	u32 qcp_rd_p;
1033 
1034 	/* Work out how many descriptors have been transmitted */
1035 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1036 
1037 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1038 		return true;
1039 
1040 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1041 
1042 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1043 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1044 
1045 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1046 
1047 	done_pkts = todo;
1048 	while (todo--) {
1049 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1050 		tx_ring->rd_p++;
1051 
1052 		done_bytes += tx_ring->txbufs[idx].real_len;
1053 	}
1054 
1055 	u64_stats_update_begin(&r_vec->tx_sync);
1056 	r_vec->tx_bytes += done_bytes;
1057 	r_vec->tx_pkts += done_pkts;
1058 	u64_stats_update_end(&r_vec->tx_sync);
1059 
1060 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1061 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1062 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1063 
1064 	return done_all;
1065 }
1066 
1067 /**
1068  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1069  * @dp:		NFP Net data path struct
1070  * @tx_ring:	TX ring structure
1071  *
1072  * Assumes that the device is stopped
1073  */
1074 static void
1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1076 {
1077 	const struct skb_frag_struct *frag;
1078 	struct netdev_queue *nd_q;
1079 
1080 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1081 		struct nfp_net_tx_buf *tx_buf;
1082 		struct sk_buff *skb;
1083 		int idx, nr_frags;
1084 
1085 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1086 		tx_buf = &tx_ring->txbufs[idx];
1087 
1088 		skb = tx_ring->txbufs[idx].skb;
1089 		nr_frags = skb_shinfo(skb)->nr_frags;
1090 
1091 		if (tx_buf->fidx == -1) {
1092 			/* unmap head */
1093 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1094 					 skb_headlen(skb), DMA_TO_DEVICE);
1095 		} else {
1096 			/* unmap fragment */
1097 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1098 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1099 				       skb_frag_size(frag), DMA_TO_DEVICE);
1100 		}
1101 
1102 		/* check for last gather fragment */
1103 		if (tx_buf->fidx == nr_frags - 1)
1104 			dev_kfree_skb_any(skb);
1105 
1106 		tx_buf->dma_addr = 0;
1107 		tx_buf->skb = NULL;
1108 		tx_buf->fidx = -2;
1109 
1110 		tx_ring->qcp_rd_p++;
1111 		tx_ring->rd_p++;
1112 	}
1113 
1114 	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1115 	tx_ring->wr_p = 0;
1116 	tx_ring->rd_p = 0;
1117 	tx_ring->qcp_rd_p = 0;
1118 	tx_ring->wr_ptr_add = 0;
1119 
1120 	if (tx_ring->is_xdp || !dp->netdev)
1121 		return;
1122 
1123 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1124 	netdev_tx_reset_queue(nd_q);
1125 }
1126 
1127 static void nfp_net_tx_timeout(struct net_device *netdev)
1128 {
1129 	struct nfp_net *nn = netdev_priv(netdev);
1130 	int i;
1131 
1132 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1133 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1134 			continue;
1135 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1136 	}
1137 	nn_warn(nn, "TX watchdog timeout\n");
1138 }
1139 
1140 /* Receive processing
1141  */
1142 static unsigned int
1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1144 {
1145 	unsigned int fl_bufsz;
1146 
1147 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1148 	fl_bufsz += dp->rx_dma_off;
1149 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1150 		fl_bufsz += NFP_NET_MAX_PREPEND;
1151 	else
1152 		fl_bufsz += dp->rx_offset;
1153 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1154 
1155 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1156 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1157 
1158 	return fl_bufsz;
1159 }
1160 
1161 static void
1162 nfp_net_free_frag(void *frag, bool xdp)
1163 {
1164 	if (!xdp)
1165 		skb_free_frag(frag);
1166 	else
1167 		__free_page(virt_to_page(frag));
1168 }
1169 
1170 /**
1171  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1172  * @dp:		NFP Net data path struct
1173  * @dma_addr:	Pointer to storage for DMA address (output param)
1174  *
1175  * This function will allcate a new page frag, map it for DMA.
1176  *
1177  * Return: allocated page frag or NULL on failure.
1178  */
1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1180 {
1181 	void *frag;
1182 
1183 	if (!dp->xdp_prog)
1184 		frag = netdev_alloc_frag(dp->fl_bufsz);
1185 	else
1186 		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1187 	if (!frag) {
1188 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1189 		return NULL;
1190 	}
1191 
1192 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1193 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1194 		nfp_net_free_frag(frag, dp->xdp_prog);
1195 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1196 		return NULL;
1197 	}
1198 
1199 	return frag;
1200 }
1201 
1202 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1203 {
1204 	void *frag;
1205 
1206 	if (!dp->xdp_prog)
1207 		frag = napi_alloc_frag(dp->fl_bufsz);
1208 	else
1209 		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1210 	if (!frag) {
1211 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1212 		return NULL;
1213 	}
1214 
1215 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1216 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1217 		nfp_net_free_frag(frag, dp->xdp_prog);
1218 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1219 		return NULL;
1220 	}
1221 
1222 	return frag;
1223 }
1224 
1225 /**
1226  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1227  * @dp:		NFP Net data path struct
1228  * @rx_ring:	RX ring structure
1229  * @frag:	page fragment buffer
1230  * @dma_addr:	DMA address of skb mapping
1231  */
1232 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1233 				struct nfp_net_rx_ring *rx_ring,
1234 				void *frag, dma_addr_t dma_addr)
1235 {
1236 	unsigned int wr_idx;
1237 
1238 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1239 
1240 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1241 
1242 	/* Stash SKB and DMA address away */
1243 	rx_ring->rxbufs[wr_idx].frag = frag;
1244 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1245 
1246 	/* Fill freelist descriptor */
1247 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1248 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1249 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1250 			      dma_addr + dp->rx_dma_off);
1251 
1252 	rx_ring->wr_p++;
1253 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1254 		/* Update write pointer of the freelist queue. Make
1255 		 * sure all writes are flushed before telling the hardware.
1256 		 */
1257 		wmb();
1258 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1259 	}
1260 }
1261 
1262 /**
1263  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1264  * @rx_ring:	RX ring structure
1265  *
1266  * Warning: Do *not* call if ring buffers were never put on the FW freelist
1267  *	    (i.e. device was not enabled)!
1268  */
1269 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1270 {
1271 	unsigned int wr_idx, last_idx;
1272 
1273 	/* Move the empty entry to the end of the list */
1274 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1275 	last_idx = rx_ring->cnt - 1;
1276 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1277 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1278 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1279 	rx_ring->rxbufs[last_idx].frag = NULL;
1280 
1281 	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1282 	rx_ring->wr_p = 0;
1283 	rx_ring->rd_p = 0;
1284 }
1285 
1286 /**
1287  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1288  * @dp:		NFP Net data path struct
1289  * @rx_ring:	RX ring to remove buffers from
1290  *
1291  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1292  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1293  * to restore required ring geometry.
1294  */
1295 static void
1296 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1297 			  struct nfp_net_rx_ring *rx_ring)
1298 {
1299 	unsigned int i;
1300 
1301 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1302 		/* NULL skb can only happen when initial filling of the ring
1303 		 * fails to allocate enough buffers and calls here to free
1304 		 * already allocated ones.
1305 		 */
1306 		if (!rx_ring->rxbufs[i].frag)
1307 			continue;
1308 
1309 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1310 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1311 		rx_ring->rxbufs[i].dma_addr = 0;
1312 		rx_ring->rxbufs[i].frag = NULL;
1313 	}
1314 }
1315 
1316 /**
1317  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1318  * @dp:		NFP Net data path struct
1319  * @rx_ring:	RX ring to remove buffers from
1320  */
1321 static int
1322 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1323 			   struct nfp_net_rx_ring *rx_ring)
1324 {
1325 	struct nfp_net_rx_buf *rxbufs;
1326 	unsigned int i;
1327 
1328 	rxbufs = rx_ring->rxbufs;
1329 
1330 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1331 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1332 		if (!rxbufs[i].frag) {
1333 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1334 			return -ENOMEM;
1335 		}
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1343  * @dp:	     NFP Net data path struct
1344  * @rx_ring: RX ring to fill
1345  */
1346 static void
1347 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1348 			      struct nfp_net_rx_ring *rx_ring)
1349 {
1350 	unsigned int i;
1351 
1352 	for (i = 0; i < rx_ring->cnt - 1; i++)
1353 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1354 				    rx_ring->rxbufs[i].dma_addr);
1355 }
1356 
1357 /**
1358  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1359  * @flags: RX descriptor flags field in CPU byte order
1360  */
1361 static int nfp_net_rx_csum_has_errors(u16 flags)
1362 {
1363 	u16 csum_all_checked, csum_all_ok;
1364 
1365 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1366 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1367 
1368 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1369 }
1370 
1371 /**
1372  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1373  * @dp:  NFP Net data path struct
1374  * @r_vec: per-ring structure
1375  * @rxd: Pointer to RX descriptor
1376  * @meta: Parsed metadata prepend
1377  * @skb: Pointer to SKB
1378  */
1379 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1380 			    struct nfp_net_r_vector *r_vec,
1381 			    struct nfp_net_rx_desc *rxd,
1382 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1383 {
1384 	skb_checksum_none_assert(skb);
1385 
1386 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1387 		return;
1388 
1389 	if (meta->csum_type) {
1390 		skb->ip_summed = meta->csum_type;
1391 		skb->csum = meta->csum;
1392 		u64_stats_update_begin(&r_vec->rx_sync);
1393 		r_vec->hw_csum_rx_ok++;
1394 		u64_stats_update_end(&r_vec->rx_sync);
1395 		return;
1396 	}
1397 
1398 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1399 		u64_stats_update_begin(&r_vec->rx_sync);
1400 		r_vec->hw_csum_rx_error++;
1401 		u64_stats_update_end(&r_vec->rx_sync);
1402 		return;
1403 	}
1404 
1405 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1406 	 * L4 headers were successfully parsed. FW will always report zero UDP
1407 	 * checksum as CSUM_OK.
1408 	 */
1409 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1410 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1411 		__skb_incr_checksum_unnecessary(skb);
1412 		u64_stats_update_begin(&r_vec->rx_sync);
1413 		r_vec->hw_csum_rx_ok++;
1414 		u64_stats_update_end(&r_vec->rx_sync);
1415 	}
1416 
1417 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1418 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1419 		__skb_incr_checksum_unnecessary(skb);
1420 		u64_stats_update_begin(&r_vec->rx_sync);
1421 		r_vec->hw_csum_rx_inner_ok++;
1422 		u64_stats_update_end(&r_vec->rx_sync);
1423 	}
1424 }
1425 
1426 static void
1427 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1428 		 unsigned int type, __be32 *hash)
1429 {
1430 	if (!(netdev->features & NETIF_F_RXHASH))
1431 		return;
1432 
1433 	switch (type) {
1434 	case NFP_NET_RSS_IPV4:
1435 	case NFP_NET_RSS_IPV6:
1436 	case NFP_NET_RSS_IPV6_EX:
1437 		meta->hash_type = PKT_HASH_TYPE_L3;
1438 		break;
1439 	default:
1440 		meta->hash_type = PKT_HASH_TYPE_L4;
1441 		break;
1442 	}
1443 
1444 	meta->hash = get_unaligned_be32(hash);
1445 }
1446 
1447 static void
1448 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1449 		      void *data, struct nfp_net_rx_desc *rxd)
1450 {
1451 	struct nfp_net_rx_hash *rx_hash = data;
1452 
1453 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1454 		return;
1455 
1456 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1457 			 &rx_hash->hash);
1458 }
1459 
1460 static void *
1461 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1462 		   void *data, int meta_len)
1463 {
1464 	u32 meta_info;
1465 
1466 	meta_info = get_unaligned_be32(data);
1467 	data += 4;
1468 
1469 	while (meta_info) {
1470 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1471 		case NFP_NET_META_HASH:
1472 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1473 			nfp_net_set_hash(netdev, meta,
1474 					 meta_info & NFP_NET_META_FIELD_MASK,
1475 					 (__be32 *)data);
1476 			data += 4;
1477 			break;
1478 		case NFP_NET_META_MARK:
1479 			meta->mark = get_unaligned_be32(data);
1480 			data += 4;
1481 			break;
1482 		case NFP_NET_META_PORTID:
1483 			meta->portid = get_unaligned_be32(data);
1484 			data += 4;
1485 			break;
1486 		case NFP_NET_META_CSUM:
1487 			meta->csum_type = CHECKSUM_COMPLETE;
1488 			meta->csum =
1489 				(__force __wsum)__get_unaligned_cpu32(data);
1490 			data += 4;
1491 			break;
1492 		default:
1493 			return NULL;
1494 		}
1495 
1496 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1497 	}
1498 
1499 	return data;
1500 }
1501 
1502 static void
1503 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1504 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1505 		struct sk_buff *skb)
1506 {
1507 	u64_stats_update_begin(&r_vec->rx_sync);
1508 	r_vec->rx_drops++;
1509 	u64_stats_update_end(&r_vec->rx_sync);
1510 
1511 	/* skb is build based on the frag, free_skb() would free the frag
1512 	 * so to be able to reuse it we need an extra ref.
1513 	 */
1514 	if (skb && rxbuf && skb->head == rxbuf->frag)
1515 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1516 	if (rxbuf)
1517 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1518 	if (skb)
1519 		dev_kfree_skb_any(skb);
1520 }
1521 
1522 static bool
1523 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1524 		   struct nfp_net_tx_ring *tx_ring,
1525 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1526 		   unsigned int pkt_len, bool *completed)
1527 {
1528 	struct nfp_net_tx_buf *txbuf;
1529 	struct nfp_net_tx_desc *txd;
1530 	int wr_idx;
1531 
1532 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1533 		if (!*completed) {
1534 			nfp_net_xdp_complete(tx_ring);
1535 			*completed = true;
1536 		}
1537 
1538 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1539 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1540 					NULL);
1541 			return false;
1542 		}
1543 	}
1544 
1545 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1546 
1547 	/* Stash the soft descriptor of the head then initialize it */
1548 	txbuf = &tx_ring->txbufs[wr_idx];
1549 
1550 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1551 
1552 	txbuf->frag = rxbuf->frag;
1553 	txbuf->dma_addr = rxbuf->dma_addr;
1554 	txbuf->fidx = -1;
1555 	txbuf->pkt_cnt = 1;
1556 	txbuf->real_len = pkt_len;
1557 
1558 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1559 				   pkt_len, DMA_BIDIRECTIONAL);
1560 
1561 	/* Build TX descriptor */
1562 	txd = &tx_ring->txds[wr_idx];
1563 	txd->offset_eop = PCIE_DESC_TX_EOP;
1564 	txd->dma_len = cpu_to_le16(pkt_len);
1565 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1566 	txd->data_len = cpu_to_le16(pkt_len);
1567 
1568 	txd->flags = 0;
1569 	txd->mss = 0;
1570 	txd->lso_hdrlen = 0;
1571 
1572 	tx_ring->wr_p++;
1573 	tx_ring->wr_ptr_add++;
1574 	return true;
1575 }
1576 
1577 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
1578 			   unsigned int *off, unsigned int *len)
1579 {
1580 	struct xdp_buff xdp;
1581 	void *orig_data;
1582 	int ret;
1583 
1584 	xdp.data_hard_start = hard_start;
1585 	xdp.data = data + *off;
1586 	xdp.data_end = data + *off + *len;
1587 
1588 	orig_data = xdp.data;
1589 	ret = bpf_prog_run_xdp(prog, &xdp);
1590 
1591 	*len -= xdp.data - orig_data;
1592 	*off += xdp.data - orig_data;
1593 
1594 	return ret;
1595 }
1596 
1597 /**
1598  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1599  * @rx_ring:   RX ring to receive from
1600  * @budget:    NAPI budget
1601  *
1602  * Note, this function is separated out from the napi poll function to
1603  * more cleanly separate packet receive code from other bookkeeping
1604  * functions performed in the napi poll function.
1605  *
1606  * Return: Number of packets received.
1607  */
1608 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1609 {
1610 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1611 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1612 	struct nfp_net_tx_ring *tx_ring;
1613 	struct bpf_prog *xdp_prog;
1614 	bool xdp_tx_cmpl = false;
1615 	unsigned int true_bufsz;
1616 	struct sk_buff *skb;
1617 	int pkts_polled = 0;
1618 	int idx;
1619 
1620 	rcu_read_lock();
1621 	xdp_prog = READ_ONCE(dp->xdp_prog);
1622 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1623 	tx_ring = r_vec->xdp_ring;
1624 
1625 	while (pkts_polled < budget) {
1626 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1627 		struct nfp_net_rx_buf *rxbuf;
1628 		struct nfp_net_rx_desc *rxd;
1629 		struct nfp_meta_parsed meta;
1630 		struct net_device *netdev;
1631 		dma_addr_t new_dma_addr;
1632 		void *new_frag;
1633 
1634 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1635 
1636 		rxd = &rx_ring->rxds[idx];
1637 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1638 			break;
1639 
1640 		/* Memory barrier to ensure that we won't do other reads
1641 		 * before the DD bit.
1642 		 */
1643 		dma_rmb();
1644 
1645 		memset(&meta, 0, sizeof(meta));
1646 
1647 		rx_ring->rd_p++;
1648 		pkts_polled++;
1649 
1650 		rxbuf =	&rx_ring->rxbufs[idx];
1651 		/*         < meta_len >
1652 		 *  <-- [rx_offset] -->
1653 		 *  ---------------------------------------------------------
1654 		 * | [XX] |  metadata  |             packet           | XXXX |
1655 		 *  ---------------------------------------------------------
1656 		 *         <---------------- data_len --------------->
1657 		 *
1658 		 * The rx_offset is fixed for all packets, the meta_len can vary
1659 		 * on a packet by packet basis. If rx_offset is set to zero
1660 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1661 		 * buffer and is immediately followed by the packet (no [XX]).
1662 		 */
1663 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1664 		data_len = le16_to_cpu(rxd->rxd.data_len);
1665 		pkt_len = data_len - meta_len;
1666 
1667 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1668 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1669 			pkt_off += meta_len;
1670 		else
1671 			pkt_off += dp->rx_offset;
1672 		meta_off = pkt_off - meta_len;
1673 
1674 		/* Stats update */
1675 		u64_stats_update_begin(&r_vec->rx_sync);
1676 		r_vec->rx_pkts++;
1677 		r_vec->rx_bytes += pkt_len;
1678 		u64_stats_update_end(&r_vec->rx_sync);
1679 
1680 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1681 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1682 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1683 				   meta_len);
1684 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1685 			continue;
1686 		}
1687 
1688 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1689 					data_len);
1690 
1691 		if (!dp->chained_metadata_format) {
1692 			nfp_net_set_hash_desc(dp->netdev, &meta,
1693 					      rxbuf->frag + meta_off, rxd);
1694 		} else if (meta_len) {
1695 			void *end;
1696 
1697 			end = nfp_net_parse_meta(dp->netdev, &meta,
1698 						 rxbuf->frag + meta_off,
1699 						 meta_len);
1700 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1701 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1702 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1703 						NULL);
1704 				continue;
1705 			}
1706 		}
1707 
1708 		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1709 				  dp->bpf_offload_xdp) && !meta.portid) {
1710 			unsigned int dma_off;
1711 			void *hard_start;
1712 			int act;
1713 
1714 			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1715 
1716 			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1717 					      &pkt_off, &pkt_len);
1718 			switch (act) {
1719 			case XDP_PASS:
1720 				break;
1721 			case XDP_TX:
1722 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1723 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1724 								 tx_ring, rxbuf,
1725 								 dma_off,
1726 								 pkt_len,
1727 								 &xdp_tx_cmpl)))
1728 					trace_xdp_exception(dp->netdev,
1729 							    xdp_prog, act);
1730 				continue;
1731 			default:
1732 				bpf_warn_invalid_xdp_action(act);
1733 				/* fall through */
1734 			case XDP_ABORTED:
1735 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1736 				/* fall through */
1737 			case XDP_DROP:
1738 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1739 						    rxbuf->dma_addr);
1740 				continue;
1741 			}
1742 		}
1743 
1744 		skb = build_skb(rxbuf->frag, true_bufsz);
1745 		if (unlikely(!skb)) {
1746 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1747 			continue;
1748 		}
1749 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1750 		if (unlikely(!new_frag)) {
1751 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1752 			continue;
1753 		}
1754 
1755 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1756 
1757 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1758 
1759 		if (likely(!meta.portid)) {
1760 			netdev = dp->netdev;
1761 		} else {
1762 			struct nfp_net *nn;
1763 
1764 			nn = netdev_priv(dp->netdev);
1765 			netdev = nfp_app_repr_get(nn->app, meta.portid);
1766 			if (unlikely(!netdev)) {
1767 				nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1768 				continue;
1769 			}
1770 			nfp_repr_inc_rx_stats(netdev, pkt_len);
1771 		}
1772 
1773 		skb_reserve(skb, pkt_off);
1774 		skb_put(skb, pkt_len);
1775 
1776 		skb->mark = meta.mark;
1777 		skb_set_hash(skb, meta.hash, meta.hash_type);
1778 
1779 		skb_record_rx_queue(skb, rx_ring->idx);
1780 		skb->protocol = eth_type_trans(skb, netdev);
1781 
1782 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1783 
1784 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1785 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1786 					       le16_to_cpu(rxd->rxd.vlan));
1787 
1788 		napi_gro_receive(&rx_ring->r_vec->napi, skb);
1789 	}
1790 
1791 	if (xdp_prog) {
1792 		if (tx_ring->wr_ptr_add)
1793 			nfp_net_tx_xmit_more_flush(tx_ring);
1794 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1795 			 !xdp_tx_cmpl)
1796 			if (!nfp_net_xdp_complete(tx_ring))
1797 				pkts_polled = budget;
1798 	}
1799 	rcu_read_unlock();
1800 
1801 	return pkts_polled;
1802 }
1803 
1804 /**
1805  * nfp_net_poll() - napi poll function
1806  * @napi:    NAPI structure
1807  * @budget:  NAPI budget
1808  *
1809  * Return: number of packets polled.
1810  */
1811 static int nfp_net_poll(struct napi_struct *napi, int budget)
1812 {
1813 	struct nfp_net_r_vector *r_vec =
1814 		container_of(napi, struct nfp_net_r_vector, napi);
1815 	unsigned int pkts_polled = 0;
1816 
1817 	if (r_vec->tx_ring)
1818 		nfp_net_tx_complete(r_vec->tx_ring);
1819 	if (r_vec->rx_ring)
1820 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1821 
1822 	if (pkts_polled < budget)
1823 		if (napi_complete_done(napi, pkts_polled))
1824 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1825 
1826 	return pkts_polled;
1827 }
1828 
1829 /* Control device data path
1830  */
1831 
1832 static bool
1833 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1834 		struct sk_buff *skb, bool old)
1835 {
1836 	unsigned int real_len = skb->len, meta_len = 0;
1837 	struct nfp_net_tx_ring *tx_ring;
1838 	struct nfp_net_tx_buf *txbuf;
1839 	struct nfp_net_tx_desc *txd;
1840 	struct nfp_net_dp *dp;
1841 	dma_addr_t dma_addr;
1842 	int wr_idx;
1843 
1844 	dp = &r_vec->nfp_net->dp;
1845 	tx_ring = r_vec->tx_ring;
1846 
1847 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1848 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1849 		goto err_free;
1850 	}
1851 
1852 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1853 		u64_stats_update_begin(&r_vec->tx_sync);
1854 		r_vec->tx_busy++;
1855 		u64_stats_update_end(&r_vec->tx_sync);
1856 		if (!old)
1857 			__skb_queue_tail(&r_vec->queue, skb);
1858 		else
1859 			__skb_queue_head(&r_vec->queue, skb);
1860 		return true;
1861 	}
1862 
1863 	if (nfp_app_ctrl_has_meta(nn->app)) {
1864 		if (unlikely(skb_headroom(skb) < 8)) {
1865 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1866 			goto err_free;
1867 		}
1868 		meta_len = 8;
1869 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1870 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1871 	}
1872 
1873 	/* Start with the head skbuf */
1874 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1875 				  DMA_TO_DEVICE);
1876 	if (dma_mapping_error(dp->dev, dma_addr))
1877 		goto err_dma_warn;
1878 
1879 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1880 
1881 	/* Stash the soft descriptor of the head then initialize it */
1882 	txbuf = &tx_ring->txbufs[wr_idx];
1883 	txbuf->skb = skb;
1884 	txbuf->dma_addr = dma_addr;
1885 	txbuf->fidx = -1;
1886 	txbuf->pkt_cnt = 1;
1887 	txbuf->real_len = real_len;
1888 
1889 	/* Build TX descriptor */
1890 	txd = &tx_ring->txds[wr_idx];
1891 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1892 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1893 	nfp_desc_set_dma_addr(txd, dma_addr);
1894 	txd->data_len = cpu_to_le16(skb->len);
1895 
1896 	txd->flags = 0;
1897 	txd->mss = 0;
1898 	txd->lso_hdrlen = 0;
1899 
1900 	tx_ring->wr_p++;
1901 	tx_ring->wr_ptr_add++;
1902 	nfp_net_tx_xmit_more_flush(tx_ring);
1903 
1904 	return false;
1905 
1906 err_dma_warn:
1907 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1908 err_free:
1909 	u64_stats_update_begin(&r_vec->tx_sync);
1910 	r_vec->tx_errors++;
1911 	u64_stats_update_end(&r_vec->tx_sync);
1912 	dev_kfree_skb_any(skb);
1913 	return false;
1914 }
1915 
1916 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1917 {
1918 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1919 	bool ret;
1920 
1921 	spin_lock_bh(&r_vec->lock);
1922 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1923 	spin_unlock_bh(&r_vec->lock);
1924 
1925 	return ret;
1926 }
1927 
1928 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1929 {
1930 	struct sk_buff *skb;
1931 
1932 	while ((skb = __skb_dequeue(&r_vec->queue)))
1933 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1934 			return;
1935 }
1936 
1937 static bool
1938 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1939 {
1940 	u32 meta_type, meta_tag;
1941 
1942 	if (!nfp_app_ctrl_has_meta(nn->app))
1943 		return !meta_len;
1944 
1945 	if (meta_len != 8)
1946 		return false;
1947 
1948 	meta_type = get_unaligned_be32(data);
1949 	meta_tag = get_unaligned_be32(data + 4);
1950 
1951 	return (meta_type == NFP_NET_META_PORTID &&
1952 		meta_tag == NFP_META_PORT_ID_CTRL);
1953 }
1954 
1955 static bool
1956 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1957 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1958 {
1959 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1960 	struct nfp_net_rx_buf *rxbuf;
1961 	struct nfp_net_rx_desc *rxd;
1962 	dma_addr_t new_dma_addr;
1963 	struct sk_buff *skb;
1964 	void *new_frag;
1965 	int idx;
1966 
1967 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1968 
1969 	rxd = &rx_ring->rxds[idx];
1970 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1971 		return false;
1972 
1973 	/* Memory barrier to ensure that we won't do other reads
1974 	 * before the DD bit.
1975 	 */
1976 	dma_rmb();
1977 
1978 	rx_ring->rd_p++;
1979 
1980 	rxbuf =	&rx_ring->rxbufs[idx];
1981 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1982 	data_len = le16_to_cpu(rxd->rxd.data_len);
1983 	pkt_len = data_len - meta_len;
1984 
1985 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1986 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1987 		pkt_off += meta_len;
1988 	else
1989 		pkt_off += dp->rx_offset;
1990 	meta_off = pkt_off - meta_len;
1991 
1992 	/* Stats update */
1993 	u64_stats_update_begin(&r_vec->rx_sync);
1994 	r_vec->rx_pkts++;
1995 	r_vec->rx_bytes += pkt_len;
1996 	u64_stats_update_end(&r_vec->rx_sync);
1997 
1998 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1999 
2000 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2001 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2002 			   meta_len);
2003 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2004 		return true;
2005 	}
2006 
2007 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2008 	if (unlikely(!skb)) {
2009 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2010 		return true;
2011 	}
2012 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2013 	if (unlikely(!new_frag)) {
2014 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2015 		return true;
2016 	}
2017 
2018 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2019 
2020 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2021 
2022 	skb_reserve(skb, pkt_off);
2023 	skb_put(skb, pkt_len);
2024 
2025 	nfp_app_ctrl_rx(nn->app, skb);
2026 
2027 	return true;
2028 }
2029 
2030 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2031 {
2032 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2033 	struct nfp_net *nn = r_vec->nfp_net;
2034 	struct nfp_net_dp *dp = &nn->dp;
2035 
2036 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2037 		continue;
2038 }
2039 
2040 static void nfp_ctrl_poll(unsigned long arg)
2041 {
2042 	struct nfp_net_r_vector *r_vec = (void *)arg;
2043 
2044 	spin_lock_bh(&r_vec->lock);
2045 	nfp_net_tx_complete(r_vec->tx_ring);
2046 	__nfp_ctrl_tx_queued(r_vec);
2047 	spin_unlock_bh(&r_vec->lock);
2048 
2049 	nfp_ctrl_rx(r_vec);
2050 
2051 	nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2052 }
2053 
2054 /* Setup and Configuration
2055  */
2056 
2057 /**
2058  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2059  * @nn:		NFP Network structure
2060  */
2061 static void nfp_net_vecs_init(struct nfp_net *nn)
2062 {
2063 	struct nfp_net_r_vector *r_vec;
2064 	int r;
2065 
2066 	nn->lsc_handler = nfp_net_irq_lsc;
2067 	nn->exn_handler = nfp_net_irq_exn;
2068 
2069 	for (r = 0; r < nn->max_r_vecs; r++) {
2070 		struct msix_entry *entry;
2071 
2072 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2073 
2074 		r_vec = &nn->r_vecs[r];
2075 		r_vec->nfp_net = nn;
2076 		r_vec->irq_entry = entry->entry;
2077 		r_vec->irq_vector = entry->vector;
2078 
2079 		if (nn->dp.netdev) {
2080 			r_vec->handler = nfp_net_irq_rxtx;
2081 		} else {
2082 			r_vec->handler = nfp_ctrl_irq_rxtx;
2083 
2084 			__skb_queue_head_init(&r_vec->queue);
2085 			spin_lock_init(&r_vec->lock);
2086 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2087 				     (unsigned long)r_vec);
2088 			tasklet_disable(&r_vec->tasklet);
2089 		}
2090 
2091 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2092 	}
2093 }
2094 
2095 /**
2096  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2097  * @tx_ring:   TX ring to free
2098  */
2099 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2100 {
2101 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2102 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2103 
2104 	kfree(tx_ring->txbufs);
2105 
2106 	if (tx_ring->txds)
2107 		dma_free_coherent(dp->dev, tx_ring->size,
2108 				  tx_ring->txds, tx_ring->dma);
2109 
2110 	tx_ring->cnt = 0;
2111 	tx_ring->txbufs = NULL;
2112 	tx_ring->txds = NULL;
2113 	tx_ring->dma = 0;
2114 	tx_ring->size = 0;
2115 }
2116 
2117 /**
2118  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2119  * @dp:        NFP Net data path struct
2120  * @tx_ring:   TX Ring structure to allocate
2121  *
2122  * Return: 0 on success, negative errno otherwise.
2123  */
2124 static int
2125 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2126 {
2127 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2128 	int sz;
2129 
2130 	tx_ring->cnt = dp->txd_cnt;
2131 
2132 	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2133 	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2134 					    &tx_ring->dma, GFP_KERNEL);
2135 	if (!tx_ring->txds)
2136 		goto err_alloc;
2137 
2138 	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2139 	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2140 	if (!tx_ring->txbufs)
2141 		goto err_alloc;
2142 
2143 	if (!tx_ring->is_xdp && dp->netdev)
2144 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2145 				    tx_ring->idx);
2146 
2147 	return 0;
2148 
2149 err_alloc:
2150 	nfp_net_tx_ring_free(tx_ring);
2151 	return -ENOMEM;
2152 }
2153 
2154 static void
2155 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2156 			  struct nfp_net_tx_ring *tx_ring)
2157 {
2158 	unsigned int i;
2159 
2160 	if (!tx_ring->is_xdp)
2161 		return;
2162 
2163 	for (i = 0; i < tx_ring->cnt; i++) {
2164 		if (!tx_ring->txbufs[i].frag)
2165 			return;
2166 
2167 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2168 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2169 	}
2170 }
2171 
2172 static int
2173 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2174 			   struct nfp_net_tx_ring *tx_ring)
2175 {
2176 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2177 	unsigned int i;
2178 
2179 	if (!tx_ring->is_xdp)
2180 		return 0;
2181 
2182 	for (i = 0; i < tx_ring->cnt; i++) {
2183 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2184 		if (!txbufs[i].frag) {
2185 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2186 			return -ENOMEM;
2187 		}
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2194 {
2195 	unsigned int r;
2196 
2197 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2198 			       GFP_KERNEL);
2199 	if (!dp->tx_rings)
2200 		return -ENOMEM;
2201 
2202 	for (r = 0; r < dp->num_tx_rings; r++) {
2203 		int bias = 0;
2204 
2205 		if (r >= dp->num_stack_tx_rings)
2206 			bias = dp->num_stack_tx_rings;
2207 
2208 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2209 				     r, bias);
2210 
2211 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2212 			goto err_free_prev;
2213 
2214 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2215 			goto err_free_ring;
2216 	}
2217 
2218 	return 0;
2219 
2220 err_free_prev:
2221 	while (r--) {
2222 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2223 err_free_ring:
2224 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2225 	}
2226 	kfree(dp->tx_rings);
2227 	return -ENOMEM;
2228 }
2229 
2230 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2231 {
2232 	unsigned int r;
2233 
2234 	for (r = 0; r < dp->num_tx_rings; r++) {
2235 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2236 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2237 	}
2238 
2239 	kfree(dp->tx_rings);
2240 }
2241 
2242 /**
2243  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2244  * @rx_ring:  RX ring to free
2245  */
2246 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2247 {
2248 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2249 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2250 
2251 	kfree(rx_ring->rxbufs);
2252 
2253 	if (rx_ring->rxds)
2254 		dma_free_coherent(dp->dev, rx_ring->size,
2255 				  rx_ring->rxds, rx_ring->dma);
2256 
2257 	rx_ring->cnt = 0;
2258 	rx_ring->rxbufs = NULL;
2259 	rx_ring->rxds = NULL;
2260 	rx_ring->dma = 0;
2261 	rx_ring->size = 0;
2262 }
2263 
2264 /**
2265  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2266  * @dp:	      NFP Net data path struct
2267  * @rx_ring:  RX ring to allocate
2268  *
2269  * Return: 0 on success, negative errno otherwise.
2270  */
2271 static int
2272 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2273 {
2274 	int sz;
2275 
2276 	rx_ring->cnt = dp->rxd_cnt;
2277 	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2278 	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2279 					    &rx_ring->dma, GFP_KERNEL);
2280 	if (!rx_ring->rxds)
2281 		goto err_alloc;
2282 
2283 	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2284 	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2285 	if (!rx_ring->rxbufs)
2286 		goto err_alloc;
2287 
2288 	return 0;
2289 
2290 err_alloc:
2291 	nfp_net_rx_ring_free(rx_ring);
2292 	return -ENOMEM;
2293 }
2294 
2295 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2296 {
2297 	unsigned int r;
2298 
2299 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2300 			       GFP_KERNEL);
2301 	if (!dp->rx_rings)
2302 		return -ENOMEM;
2303 
2304 	for (r = 0; r < dp->num_rx_rings; r++) {
2305 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2306 
2307 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2308 			goto err_free_prev;
2309 
2310 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2311 			goto err_free_ring;
2312 	}
2313 
2314 	return 0;
2315 
2316 err_free_prev:
2317 	while (r--) {
2318 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2319 err_free_ring:
2320 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2321 	}
2322 	kfree(dp->rx_rings);
2323 	return -ENOMEM;
2324 }
2325 
2326 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2327 {
2328 	unsigned int r;
2329 
2330 	for (r = 0; r < dp->num_rx_rings; r++) {
2331 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2332 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2333 	}
2334 
2335 	kfree(dp->rx_rings);
2336 }
2337 
2338 static void
2339 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2340 			    struct nfp_net_r_vector *r_vec, int idx)
2341 {
2342 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2343 	r_vec->tx_ring =
2344 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2345 
2346 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2347 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2348 }
2349 
2350 static int
2351 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2352 		       int idx)
2353 {
2354 	int err;
2355 
2356 	/* Setup NAPI */
2357 	if (nn->dp.netdev)
2358 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2359 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2360 	else
2361 		tasklet_enable(&r_vec->tasklet);
2362 
2363 	snprintf(r_vec->name, sizeof(r_vec->name),
2364 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2365 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2366 			  r_vec);
2367 	if (err) {
2368 		if (nn->dp.netdev)
2369 			netif_napi_del(&r_vec->napi);
2370 		else
2371 			tasklet_disable(&r_vec->tasklet);
2372 
2373 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2374 		return err;
2375 	}
2376 	disable_irq(r_vec->irq_vector);
2377 
2378 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2379 
2380 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2381 	       r_vec->irq_entry);
2382 
2383 	return 0;
2384 }
2385 
2386 static void
2387 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2388 {
2389 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2390 	if (nn->dp.netdev)
2391 		netif_napi_del(&r_vec->napi);
2392 	else
2393 		tasklet_disable(&r_vec->tasklet);
2394 
2395 	free_irq(r_vec->irq_vector, r_vec);
2396 }
2397 
2398 /**
2399  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2400  * @nn:      NFP Net device to reconfigure
2401  */
2402 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2403 {
2404 	int i;
2405 
2406 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2407 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2408 			  get_unaligned_le32(nn->rss_itbl + i));
2409 }
2410 
2411 /**
2412  * nfp_net_rss_write_key() - Write RSS hash key to device
2413  * @nn:      NFP Net device to reconfigure
2414  */
2415 void nfp_net_rss_write_key(struct nfp_net *nn)
2416 {
2417 	int i;
2418 
2419 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2420 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2421 			  get_unaligned_le32(nn->rss_key + i));
2422 }
2423 
2424 /**
2425  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2426  * @nn:      NFP Net device to reconfigure
2427  */
2428 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2429 {
2430 	u8 i;
2431 	u32 factor;
2432 	u32 value;
2433 
2434 	/* Compute factor used to convert coalesce '_usecs' parameters to
2435 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2436 	 * count.
2437 	 */
2438 	factor = nn->me_freq_mhz / 16;
2439 
2440 	/* copy RX interrupt coalesce parameters */
2441 	value = (nn->rx_coalesce_max_frames << 16) |
2442 		(factor * nn->rx_coalesce_usecs);
2443 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2444 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2445 
2446 	/* copy TX interrupt coalesce parameters */
2447 	value = (nn->tx_coalesce_max_frames << 16) |
2448 		(factor * nn->tx_coalesce_usecs);
2449 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2450 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2451 }
2452 
2453 /**
2454  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2455  * @nn:      NFP Net device to reconfigure
2456  * @addr:    MAC address to write
2457  *
2458  * Writes the MAC address from the netdev to the device control BAR.  Does not
2459  * perform the required reconfig.  We do a bit of byte swapping dance because
2460  * firmware is LE.
2461  */
2462 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2463 {
2464 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2465 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2466 }
2467 
2468 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2469 {
2470 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2471 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2472 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2473 
2474 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2475 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2476 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2477 }
2478 
2479 /**
2480  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2481  * @nn:      NFP Net device to reconfigure
2482  */
2483 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2484 {
2485 	u32 new_ctrl, update;
2486 	unsigned int r;
2487 	int err;
2488 
2489 	new_ctrl = nn->dp.ctrl;
2490 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2491 	update = NFP_NET_CFG_UPDATE_GEN;
2492 	update |= NFP_NET_CFG_UPDATE_MSIX;
2493 	update |= NFP_NET_CFG_UPDATE_RING;
2494 
2495 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2496 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2497 
2498 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2499 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2500 
2501 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2502 	err = nfp_net_reconfig(nn, update);
2503 	if (err)
2504 		nn_err(nn, "Could not disable device: %d\n", err);
2505 
2506 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2507 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2508 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2509 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2510 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2511 		nfp_net_vec_clear_ring_data(nn, r);
2512 
2513 	nn->dp.ctrl = new_ctrl;
2514 }
2515 
2516 static void
2517 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2518 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2519 {
2520 	/* Write the DMA address, size and MSI-X info to the device */
2521 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2522 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2523 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2524 }
2525 
2526 static void
2527 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2528 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2529 {
2530 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2531 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2532 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2533 }
2534 
2535 /**
2536  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2537  * @nn:      NFP Net device to reconfigure
2538  */
2539 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2540 {
2541 	u32 bufsz, new_ctrl, update = 0;
2542 	unsigned int r;
2543 	int err;
2544 
2545 	new_ctrl = nn->dp.ctrl;
2546 
2547 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2548 		nfp_net_rss_write_key(nn);
2549 		nfp_net_rss_write_itbl(nn);
2550 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2551 		update |= NFP_NET_CFG_UPDATE_RSS;
2552 	}
2553 
2554 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2555 		nfp_net_coalesce_write_cfg(nn);
2556 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2557 	}
2558 
2559 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2560 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2561 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2562 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2563 
2564 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2565 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2566 
2567 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2568 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2569 
2570 	if (nn->dp.netdev)
2571 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2572 
2573 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2574 
2575 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2576 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2577 
2578 	/* Enable device */
2579 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2580 	update |= NFP_NET_CFG_UPDATE_GEN;
2581 	update |= NFP_NET_CFG_UPDATE_MSIX;
2582 	update |= NFP_NET_CFG_UPDATE_RING;
2583 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2584 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2585 
2586 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2587 	err = nfp_net_reconfig(nn, update);
2588 	if (err) {
2589 		nfp_net_clear_config_and_disable(nn);
2590 		return err;
2591 	}
2592 
2593 	nn->dp.ctrl = new_ctrl;
2594 
2595 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2596 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2597 
2598 	/* Since reconfiguration requests while NFP is down are ignored we
2599 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2600 	 */
2601 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2602 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2603 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2604 		udp_tunnel_get_rx_info(nn->dp.netdev);
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /**
2611  * nfp_net_close_stack() - Quiesce the stack (part of close)
2612  * @nn:	     NFP Net device to reconfigure
2613  */
2614 static void nfp_net_close_stack(struct nfp_net *nn)
2615 {
2616 	unsigned int r;
2617 
2618 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2619 	netif_carrier_off(nn->dp.netdev);
2620 	nn->link_up = false;
2621 
2622 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2623 		disable_irq(nn->r_vecs[r].irq_vector);
2624 		napi_disable(&nn->r_vecs[r].napi);
2625 	}
2626 
2627 	netif_tx_disable(nn->dp.netdev);
2628 }
2629 
2630 /**
2631  * nfp_net_close_free_all() - Free all runtime resources
2632  * @nn:      NFP Net device to reconfigure
2633  */
2634 static void nfp_net_close_free_all(struct nfp_net *nn)
2635 {
2636 	unsigned int r;
2637 
2638 	nfp_net_tx_rings_free(&nn->dp);
2639 	nfp_net_rx_rings_free(&nn->dp);
2640 
2641 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2642 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2643 
2644 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2645 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2646 }
2647 
2648 /**
2649  * nfp_net_netdev_close() - Called when the device is downed
2650  * @netdev:      netdev structure
2651  */
2652 static int nfp_net_netdev_close(struct net_device *netdev)
2653 {
2654 	struct nfp_net *nn = netdev_priv(netdev);
2655 
2656 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2657 	 */
2658 	nfp_net_close_stack(nn);
2659 
2660 	/* Step 2: Tell NFP
2661 	 */
2662 	nfp_net_clear_config_and_disable(nn);
2663 	nfp_port_configure(netdev, false);
2664 
2665 	/* Step 3: Free resources
2666 	 */
2667 	nfp_net_close_free_all(nn);
2668 
2669 	nn_dbg(nn, "%s down", netdev->name);
2670 	return 0;
2671 }
2672 
2673 void nfp_ctrl_close(struct nfp_net *nn)
2674 {
2675 	int r;
2676 
2677 	rtnl_lock();
2678 
2679 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2680 		disable_irq(nn->r_vecs[r].irq_vector);
2681 		tasklet_disable(&nn->r_vecs[r].tasklet);
2682 	}
2683 
2684 	nfp_net_clear_config_and_disable(nn);
2685 
2686 	nfp_net_close_free_all(nn);
2687 
2688 	rtnl_unlock();
2689 }
2690 
2691 /**
2692  * nfp_net_open_stack() - Start the device from stack's perspective
2693  * @nn:      NFP Net device to reconfigure
2694  */
2695 static void nfp_net_open_stack(struct nfp_net *nn)
2696 {
2697 	unsigned int r;
2698 
2699 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2700 		napi_enable(&nn->r_vecs[r].napi);
2701 		enable_irq(nn->r_vecs[r].irq_vector);
2702 	}
2703 
2704 	netif_tx_wake_all_queues(nn->dp.netdev);
2705 
2706 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2707 	nfp_net_read_link_status(nn);
2708 }
2709 
2710 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2711 {
2712 	int err, r;
2713 
2714 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2715 				      nn->exn_name, sizeof(nn->exn_name),
2716 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2717 	if (err)
2718 		return err;
2719 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2720 				      nn->lsc_name, sizeof(nn->lsc_name),
2721 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2722 	if (err)
2723 		goto err_free_exn;
2724 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2725 
2726 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2727 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2728 		if (err)
2729 			goto err_cleanup_vec_p;
2730 	}
2731 
2732 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2733 	if (err)
2734 		goto err_cleanup_vec;
2735 
2736 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2737 	if (err)
2738 		goto err_free_rx_rings;
2739 
2740 	for (r = 0; r < nn->max_r_vecs; r++)
2741 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2742 
2743 	return 0;
2744 
2745 err_free_rx_rings:
2746 	nfp_net_rx_rings_free(&nn->dp);
2747 err_cleanup_vec:
2748 	r = nn->dp.num_r_vecs;
2749 err_cleanup_vec_p:
2750 	while (r--)
2751 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2752 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2753 err_free_exn:
2754 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2755 	return err;
2756 }
2757 
2758 static int nfp_net_netdev_open(struct net_device *netdev)
2759 {
2760 	struct nfp_net *nn = netdev_priv(netdev);
2761 	int err;
2762 
2763 	/* Step 1: Allocate resources for rings and the like
2764 	 * - Request interrupts
2765 	 * - Allocate RX and TX ring resources
2766 	 * - Setup initial RSS table
2767 	 */
2768 	err = nfp_net_open_alloc_all(nn);
2769 	if (err)
2770 		return err;
2771 
2772 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2773 	if (err)
2774 		goto err_free_all;
2775 
2776 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2777 	if (err)
2778 		goto err_free_all;
2779 
2780 	/* Step 2: Configure the NFP
2781 	 * - Ifup the physical interface if it exists
2782 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2783 	 * - Write MAC address (in case it changed)
2784 	 * - Set the MTU
2785 	 * - Set the Freelist buffer size
2786 	 * - Enable the FW
2787 	 */
2788 	err = nfp_port_configure(netdev, true);
2789 	if (err)
2790 		goto err_free_all;
2791 
2792 	err = nfp_net_set_config_and_enable(nn);
2793 	if (err)
2794 		goto err_port_disable;
2795 
2796 	/* Step 3: Enable for kernel
2797 	 * - put some freelist descriptors on each RX ring
2798 	 * - enable NAPI on each ring
2799 	 * - enable all TX queues
2800 	 * - set link state
2801 	 */
2802 	nfp_net_open_stack(nn);
2803 
2804 	return 0;
2805 
2806 err_port_disable:
2807 	nfp_port_configure(netdev, false);
2808 err_free_all:
2809 	nfp_net_close_free_all(nn);
2810 	return err;
2811 }
2812 
2813 int nfp_ctrl_open(struct nfp_net *nn)
2814 {
2815 	int err, r;
2816 
2817 	/* ring dumping depends on vNICs being opened/closed under rtnl */
2818 	rtnl_lock();
2819 
2820 	err = nfp_net_open_alloc_all(nn);
2821 	if (err)
2822 		goto err_unlock;
2823 
2824 	err = nfp_net_set_config_and_enable(nn);
2825 	if (err)
2826 		goto err_free_all;
2827 
2828 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2829 		enable_irq(nn->r_vecs[r].irq_vector);
2830 
2831 	rtnl_unlock();
2832 
2833 	return 0;
2834 
2835 err_free_all:
2836 	nfp_net_close_free_all(nn);
2837 err_unlock:
2838 	rtnl_unlock();
2839 	return err;
2840 }
2841 
2842 static void nfp_net_set_rx_mode(struct net_device *netdev)
2843 {
2844 	struct nfp_net *nn = netdev_priv(netdev);
2845 	u32 new_ctrl;
2846 
2847 	new_ctrl = nn->dp.ctrl;
2848 
2849 	if (netdev->flags & IFF_PROMISC) {
2850 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2851 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2852 		else
2853 			nn_warn(nn, "FW does not support promiscuous mode\n");
2854 	} else {
2855 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2856 	}
2857 
2858 	if (new_ctrl == nn->dp.ctrl)
2859 		return;
2860 
2861 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2862 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2863 
2864 	nn->dp.ctrl = new_ctrl;
2865 }
2866 
2867 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2868 {
2869 	int i;
2870 
2871 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
2872 		nn->rss_itbl[i] =
2873 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2874 }
2875 
2876 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2877 {
2878 	struct nfp_net_dp new_dp = *dp;
2879 
2880 	*dp = nn->dp;
2881 	nn->dp = new_dp;
2882 
2883 	nn->dp.netdev->mtu = new_dp.mtu;
2884 
2885 	if (!netif_is_rxfh_configured(nn->dp.netdev))
2886 		nfp_net_rss_init_itbl(nn);
2887 }
2888 
2889 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2890 {
2891 	unsigned int r;
2892 	int err;
2893 
2894 	nfp_net_dp_swap(nn, dp);
2895 
2896 	for (r = 0; r <	nn->max_r_vecs; r++)
2897 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2898 
2899 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2900 	if (err)
2901 		return err;
2902 
2903 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2904 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
2905 						   nn->dp.num_stack_tx_rings);
2906 		if (err)
2907 			return err;
2908 	}
2909 
2910 	return nfp_net_set_config_and_enable(nn);
2911 }
2912 
2913 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2914 {
2915 	struct nfp_net_dp *new;
2916 
2917 	new = kmalloc(sizeof(*new), GFP_KERNEL);
2918 	if (!new)
2919 		return NULL;
2920 
2921 	*new = nn->dp;
2922 
2923 	/* Clear things which need to be recomputed */
2924 	new->fl_bufsz = 0;
2925 	new->tx_rings = NULL;
2926 	new->rx_rings = NULL;
2927 	new->num_r_vecs = 0;
2928 	new->num_stack_tx_rings = 0;
2929 
2930 	return new;
2931 }
2932 
2933 static int
2934 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2935 		     struct netlink_ext_ack *extack)
2936 {
2937 	/* XDP-enabled tests */
2938 	if (!dp->xdp_prog)
2939 		return 0;
2940 	if (dp->fl_bufsz > PAGE_SIZE) {
2941 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2942 		return -EINVAL;
2943 	}
2944 	if (dp->num_tx_rings > nn->max_tx_rings) {
2945 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2946 		return -EINVAL;
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2953 			  struct netlink_ext_ack *extack)
2954 {
2955 	int r, err;
2956 
2957 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2958 
2959 	dp->num_stack_tx_rings = dp->num_tx_rings;
2960 	if (dp->xdp_prog)
2961 		dp->num_stack_tx_rings -= dp->num_rx_rings;
2962 
2963 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2964 
2965 	err = nfp_net_check_config(nn, dp, extack);
2966 	if (err)
2967 		goto exit_free_dp;
2968 
2969 	if (!netif_running(dp->netdev)) {
2970 		nfp_net_dp_swap(nn, dp);
2971 		err = 0;
2972 		goto exit_free_dp;
2973 	}
2974 
2975 	/* Prepare new rings */
2976 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2977 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2978 		if (err) {
2979 			dp->num_r_vecs = r;
2980 			goto err_cleanup_vecs;
2981 		}
2982 	}
2983 
2984 	err = nfp_net_rx_rings_prepare(nn, dp);
2985 	if (err)
2986 		goto err_cleanup_vecs;
2987 
2988 	err = nfp_net_tx_rings_prepare(nn, dp);
2989 	if (err)
2990 		goto err_free_rx;
2991 
2992 	/* Stop device, swap in new rings, try to start the firmware */
2993 	nfp_net_close_stack(nn);
2994 	nfp_net_clear_config_and_disable(nn);
2995 
2996 	err = nfp_net_dp_swap_enable(nn, dp);
2997 	if (err) {
2998 		int err2;
2999 
3000 		nfp_net_clear_config_and_disable(nn);
3001 
3002 		/* Try with old configuration and old rings */
3003 		err2 = nfp_net_dp_swap_enable(nn, dp);
3004 		if (err2)
3005 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3006 			       err, err2);
3007 	}
3008 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3009 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3010 
3011 	nfp_net_rx_rings_free(dp);
3012 	nfp_net_tx_rings_free(dp);
3013 
3014 	nfp_net_open_stack(nn);
3015 exit_free_dp:
3016 	kfree(dp);
3017 
3018 	return err;
3019 
3020 err_free_rx:
3021 	nfp_net_rx_rings_free(dp);
3022 err_cleanup_vecs:
3023 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3024 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3025 	kfree(dp);
3026 	return err;
3027 }
3028 
3029 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3030 {
3031 	struct nfp_net *nn = netdev_priv(netdev);
3032 	struct nfp_net_dp *dp;
3033 
3034 	dp = nfp_net_clone_dp(nn);
3035 	if (!dp)
3036 		return -ENOMEM;
3037 
3038 	dp->mtu = new_mtu;
3039 
3040 	return nfp_net_ring_reconfig(nn, dp, NULL);
3041 }
3042 
3043 static int
3044 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3045 {
3046 	struct nfp_net *nn = netdev_priv(netdev);
3047 
3048 	/* Priority tagged packets with vlan id 0 are processed by the
3049 	 * NFP as untagged packets
3050 	 */
3051 	if (!vid)
3052 		return 0;
3053 
3054 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3055 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3056 
3057 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3058 }
3059 
3060 static int
3061 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3062 {
3063 	struct nfp_net *nn = netdev_priv(netdev);
3064 
3065 	/* Priority tagged packets with vlan id 0 are processed by the
3066 	 * NFP as untagged packets
3067 	 */
3068 	if (!vid)
3069 		return 0;
3070 
3071 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3072 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3073 
3074 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3075 }
3076 
3077 static void nfp_net_stat64(struct net_device *netdev,
3078 			   struct rtnl_link_stats64 *stats)
3079 {
3080 	struct nfp_net *nn = netdev_priv(netdev);
3081 	int r;
3082 
3083 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
3084 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3085 		u64 data[3];
3086 		unsigned int start;
3087 
3088 		do {
3089 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3090 			data[0] = r_vec->rx_pkts;
3091 			data[1] = r_vec->rx_bytes;
3092 			data[2] = r_vec->rx_drops;
3093 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3094 		stats->rx_packets += data[0];
3095 		stats->rx_bytes += data[1];
3096 		stats->rx_dropped += data[2];
3097 
3098 		do {
3099 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3100 			data[0] = r_vec->tx_pkts;
3101 			data[1] = r_vec->tx_bytes;
3102 			data[2] = r_vec->tx_errors;
3103 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3104 		stats->tx_packets += data[0];
3105 		stats->tx_bytes += data[1];
3106 		stats->tx_errors += data[2];
3107 	}
3108 }
3109 
3110 static int nfp_net_set_features(struct net_device *netdev,
3111 				netdev_features_t features)
3112 {
3113 	netdev_features_t changed = netdev->features ^ features;
3114 	struct nfp_net *nn = netdev_priv(netdev);
3115 	u32 new_ctrl;
3116 	int err;
3117 
3118 	/* Assume this is not called with features we have not advertised */
3119 
3120 	new_ctrl = nn->dp.ctrl;
3121 
3122 	if (changed & NETIF_F_RXCSUM) {
3123 		if (features & NETIF_F_RXCSUM)
3124 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3125 		else
3126 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3127 	}
3128 
3129 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3130 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3131 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3132 		else
3133 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3134 	}
3135 
3136 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3137 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3138 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3139 					      NFP_NET_CFG_CTRL_LSO;
3140 		else
3141 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3142 	}
3143 
3144 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3145 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3146 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3147 		else
3148 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3149 	}
3150 
3151 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3152 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3153 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3154 		else
3155 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3156 	}
3157 
3158 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3159 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3160 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3161 		else
3162 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3163 	}
3164 
3165 	if (changed & NETIF_F_SG) {
3166 		if (features & NETIF_F_SG)
3167 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3168 		else
3169 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3170 	}
3171 
3172 	if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3173 		nn_err(nn, "Cannot disable HW TC offload while in use\n");
3174 		return -EBUSY;
3175 	}
3176 
3177 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3178 	       netdev->features, features, changed);
3179 
3180 	if (new_ctrl == nn->dp.ctrl)
3181 		return 0;
3182 
3183 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3184 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3185 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3186 	if (err)
3187 		return err;
3188 
3189 	nn->dp.ctrl = new_ctrl;
3190 
3191 	return 0;
3192 }
3193 
3194 static netdev_features_t
3195 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3196 		       netdev_features_t features)
3197 {
3198 	u8 l4_hdr;
3199 
3200 	/* We can't do TSO over double tagged packets (802.1AD) */
3201 	features &= vlan_features_check(skb, features);
3202 
3203 	if (!skb->encapsulation)
3204 		return features;
3205 
3206 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3207 	if (skb_is_gso(skb)) {
3208 		u32 hdrlen;
3209 
3210 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3211 			inner_tcp_hdrlen(skb);
3212 
3213 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3214 			features &= ~NETIF_F_GSO_MASK;
3215 	}
3216 
3217 	/* VXLAN/GRE check */
3218 	switch (vlan_get_protocol(skb)) {
3219 	case htons(ETH_P_IP):
3220 		l4_hdr = ip_hdr(skb)->protocol;
3221 		break;
3222 	case htons(ETH_P_IPV6):
3223 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3224 		break;
3225 	default:
3226 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3227 	}
3228 
3229 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3230 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3231 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3232 	    (l4_hdr == IPPROTO_UDP &&
3233 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3234 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3235 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3236 
3237 	return features;
3238 }
3239 
3240 /**
3241  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3242  * @nn:   NFP Net device to reconfigure
3243  * @idx:  Index into the port table where new port should be written
3244  * @port: UDP port to configure (pass zero to remove VXLAN port)
3245  */
3246 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3247 {
3248 	int i;
3249 
3250 	nn->vxlan_ports[idx] = port;
3251 
3252 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3253 		return;
3254 
3255 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3256 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3257 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3258 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3259 			  be16_to_cpu(nn->vxlan_ports[i]));
3260 
3261 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3262 }
3263 
3264 /**
3265  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3266  * @nn:   NFP Network structure
3267  * @port: UDP port to look for
3268  *
3269  * Return: if the port is already in the table -- it's position;
3270  *	   if the port is not in the table -- free position to use;
3271  *	   if the table is full -- -ENOSPC.
3272  */
3273 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3274 {
3275 	int i, free_idx = -ENOSPC;
3276 
3277 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3278 		if (nn->vxlan_ports[i] == port)
3279 			return i;
3280 		if (!nn->vxlan_usecnt[i])
3281 			free_idx = i;
3282 	}
3283 
3284 	return free_idx;
3285 }
3286 
3287 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3288 				   struct udp_tunnel_info *ti)
3289 {
3290 	struct nfp_net *nn = netdev_priv(netdev);
3291 	int idx;
3292 
3293 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3294 		return;
3295 
3296 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3297 	if (idx == -ENOSPC)
3298 		return;
3299 
3300 	if (!nn->vxlan_usecnt[idx]++)
3301 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3302 }
3303 
3304 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3305 				   struct udp_tunnel_info *ti)
3306 {
3307 	struct nfp_net *nn = netdev_priv(netdev);
3308 	int idx;
3309 
3310 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3311 		return;
3312 
3313 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3314 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3315 		return;
3316 
3317 	if (!--nn->vxlan_usecnt[idx])
3318 		nfp_net_set_vxlan_port(nn, idx, 0);
3319 }
3320 
3321 static int
3322 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3323 		      struct netlink_ext_ack *extack)
3324 {
3325 	struct nfp_net_dp *dp;
3326 
3327 	if (!prog == !nn->dp.xdp_prog) {
3328 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3329 		return 0;
3330 	}
3331 
3332 	dp = nfp_net_clone_dp(nn);
3333 	if (!dp)
3334 		return -ENOMEM;
3335 
3336 	dp->xdp_prog = prog;
3337 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3338 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3339 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3340 
3341 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3342 	return nfp_net_ring_reconfig(nn, dp, extack);
3343 }
3344 
3345 static int
3346 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3347 		  struct netlink_ext_ack *extack)
3348 {
3349 	struct bpf_prog *drv_prog, *offload_prog;
3350 	int err;
3351 
3352 	if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3353 		return -EBUSY;
3354 
3355 	/* Load both when no flags set to allow easy activation of driver path
3356 	 * when program is replaced by one which can't be offloaded.
3357 	 */
3358 	drv_prog     = flags & XDP_FLAGS_HW_MODE  ? NULL : prog;
3359 	offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3360 
3361 	err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3362 	if (err)
3363 		return err;
3364 
3365 	err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3366 	if (err && flags & XDP_FLAGS_HW_MODE)
3367 		return err;
3368 
3369 	if (nn->xdp_prog)
3370 		bpf_prog_put(nn->xdp_prog);
3371 	nn->xdp_prog = prog;
3372 	nn->xdp_flags = flags;
3373 
3374 	return 0;
3375 }
3376 
3377 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3378 {
3379 	struct nfp_net *nn = netdev_priv(netdev);
3380 
3381 	switch (xdp->command) {
3382 	case XDP_SETUP_PROG:
3383 	case XDP_SETUP_PROG_HW:
3384 		return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3385 					 xdp->extack);
3386 	case XDP_QUERY_PROG:
3387 		xdp->prog_attached = !!nn->xdp_prog;
3388 		if (nn->dp.bpf_offload_xdp)
3389 			xdp->prog_attached = XDP_ATTACHED_HW;
3390 		xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3391 		return 0;
3392 	default:
3393 		return -EINVAL;
3394 	}
3395 }
3396 
3397 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3398 {
3399 	struct nfp_net *nn = netdev_priv(netdev);
3400 	struct sockaddr *saddr = addr;
3401 	int err;
3402 
3403 	err = eth_prepare_mac_addr_change(netdev, addr);
3404 	if (err)
3405 		return err;
3406 
3407 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3408 
3409 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3410 	if (err)
3411 		return err;
3412 
3413 	eth_commit_mac_addr_change(netdev, addr);
3414 
3415 	return 0;
3416 }
3417 
3418 const struct net_device_ops nfp_net_netdev_ops = {
3419 	.ndo_open		= nfp_net_netdev_open,
3420 	.ndo_stop		= nfp_net_netdev_close,
3421 	.ndo_start_xmit		= nfp_net_tx,
3422 	.ndo_get_stats64	= nfp_net_stat64,
3423 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3424 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3425 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3426 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3427 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3428 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3429 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3430 	.ndo_setup_tc		= nfp_port_setup_tc,
3431 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3432 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3433 	.ndo_change_mtu		= nfp_net_change_mtu,
3434 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3435 	.ndo_set_features	= nfp_net_set_features,
3436 	.ndo_features_check	= nfp_net_features_check,
3437 	.ndo_get_phys_port_name	= nfp_port_get_phys_port_name,
3438 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3439 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3440 	.ndo_xdp		= nfp_net_xdp,
3441 };
3442 
3443 /**
3444  * nfp_net_info() - Print general info about the NIC
3445  * @nn:      NFP Net device to reconfigure
3446  */
3447 void nfp_net_info(struct nfp_net *nn)
3448 {
3449 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3450 		nn->dp.is_vf ? "VF " : "",
3451 		nn->dp.num_tx_rings, nn->max_tx_rings,
3452 		nn->dp.num_rx_rings, nn->max_rx_rings);
3453 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3454 		nn->fw_ver.resv, nn->fw_ver.class,
3455 		nn->fw_ver.major, nn->fw_ver.minor,
3456 		nn->max_mtu);
3457 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3458 		nn->cap,
3459 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3460 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3461 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3462 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3463 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3464 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3465 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3466 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3467 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3468 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3469 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3470 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3471 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3472 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3473 		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3474 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3475 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3476 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3477 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3478 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3479 						      "RXCSUM_COMPLETE " : "",
3480 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3481 		nfp_app_extra_cap(nn->app, nn));
3482 }
3483 
3484 /**
3485  * nfp_net_alloc() - Allocate netdev and related structure
3486  * @pdev:         PCI device
3487  * @needs_netdev: Whether to allocate a netdev for this vNIC
3488  * @max_tx_rings: Maximum number of TX rings supported by device
3489  * @max_rx_rings: Maximum number of RX rings supported by device
3490  *
3491  * This function allocates a netdev device and fills in the initial
3492  * part of the @struct nfp_net structure.  In case of control device
3493  * nfp_net structure is allocated without the netdev.
3494  *
3495  * Return: NFP Net device structure, or ERR_PTR on error.
3496  */
3497 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3498 			      unsigned int max_tx_rings,
3499 			      unsigned int max_rx_rings)
3500 {
3501 	struct nfp_net *nn;
3502 
3503 	if (needs_netdev) {
3504 		struct net_device *netdev;
3505 
3506 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3507 					    max_tx_rings, max_rx_rings);
3508 		if (!netdev)
3509 			return ERR_PTR(-ENOMEM);
3510 
3511 		SET_NETDEV_DEV(netdev, &pdev->dev);
3512 		nn = netdev_priv(netdev);
3513 		nn->dp.netdev = netdev;
3514 	} else {
3515 		nn = vzalloc(sizeof(*nn));
3516 		if (!nn)
3517 			return ERR_PTR(-ENOMEM);
3518 	}
3519 
3520 	nn->dp.dev = &pdev->dev;
3521 	nn->pdev = pdev;
3522 
3523 	nn->max_tx_rings = max_tx_rings;
3524 	nn->max_rx_rings = max_rx_rings;
3525 
3526 	nn->dp.num_tx_rings = min_t(unsigned int,
3527 				    max_tx_rings, num_online_cpus());
3528 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3529 				 netif_get_num_default_rss_queues());
3530 
3531 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3532 	nn->dp.num_r_vecs = min_t(unsigned int,
3533 				  nn->dp.num_r_vecs, num_online_cpus());
3534 
3535 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3536 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3537 
3538 	spin_lock_init(&nn->reconfig_lock);
3539 	spin_lock_init(&nn->link_status_lock);
3540 
3541 	setup_timer(&nn->reconfig_timer,
3542 		    nfp_net_reconfig_timer, (unsigned long)nn);
3543 
3544 	return nn;
3545 }
3546 
3547 /**
3548  * nfp_net_free() - Undo what @nfp_net_alloc() did
3549  * @nn:      NFP Net device to reconfigure
3550  */
3551 void nfp_net_free(struct nfp_net *nn)
3552 {
3553 	if (nn->xdp_prog)
3554 		bpf_prog_put(nn->xdp_prog);
3555 
3556 	if (nn->dp.netdev)
3557 		free_netdev(nn->dp.netdev);
3558 	else
3559 		vfree(nn);
3560 }
3561 
3562 /**
3563  * nfp_net_rss_key_sz() - Get current size of the RSS key
3564  * @nn:		NFP Net device instance
3565  *
3566  * Return: size of the RSS key for currently selected hash function.
3567  */
3568 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3569 {
3570 	switch (nn->rss_hfunc) {
3571 	case ETH_RSS_HASH_TOP:
3572 		return NFP_NET_CFG_RSS_KEY_SZ;
3573 	case ETH_RSS_HASH_XOR:
3574 		return 0;
3575 	case ETH_RSS_HASH_CRC32:
3576 		return 4;
3577 	}
3578 
3579 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3580 	return 0;
3581 }
3582 
3583 /**
3584  * nfp_net_rss_init() - Set the initial RSS parameters
3585  * @nn:	     NFP Net device to reconfigure
3586  */
3587 static void nfp_net_rss_init(struct nfp_net *nn)
3588 {
3589 	unsigned long func_bit, rss_cap_hfunc;
3590 	u32 reg;
3591 
3592 	/* Read the RSS function capability and select first supported func */
3593 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3594 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3595 	if (!rss_cap_hfunc)
3596 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3597 					  NFP_NET_CFG_RSS_TOEPLITZ);
3598 
3599 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3600 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3601 		dev_warn(nn->dp.dev,
3602 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3603 		func_bit = ETH_RSS_HASH_TOP_BIT;
3604 	}
3605 	nn->rss_hfunc = 1 << func_bit;
3606 
3607 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3608 
3609 	nfp_net_rss_init_itbl(nn);
3610 
3611 	/* Enable IPv4/IPv6 TCP by default */
3612 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3613 		      NFP_NET_CFG_RSS_IPV6_TCP |
3614 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3615 		      NFP_NET_CFG_RSS_MASK;
3616 }
3617 
3618 /**
3619  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3620  * @nn:	     NFP Net device to reconfigure
3621  */
3622 static void nfp_net_irqmod_init(struct nfp_net *nn)
3623 {
3624 	nn->rx_coalesce_usecs      = 50;
3625 	nn->rx_coalesce_max_frames = 64;
3626 	nn->tx_coalesce_usecs      = 50;
3627 	nn->tx_coalesce_max_frames = 64;
3628 }
3629 
3630 static void nfp_net_netdev_init(struct nfp_net *nn)
3631 {
3632 	struct net_device *netdev = nn->dp.netdev;
3633 
3634 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3635 
3636 	netdev->mtu = nn->dp.mtu;
3637 
3638 	/* Advertise/enable offloads based on capabilities
3639 	 *
3640 	 * Note: netdev->features show the currently enabled features
3641 	 * and netdev->hw_features advertises which features are
3642 	 * supported.  By default we enable most features.
3643 	 */
3644 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3645 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3646 
3647 	netdev->hw_features = NETIF_F_HIGHDMA;
3648 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3649 		netdev->hw_features |= NETIF_F_RXCSUM;
3650 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3651 	}
3652 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3653 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3654 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3655 	}
3656 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3657 		netdev->hw_features |= NETIF_F_SG;
3658 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3659 	}
3660 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3661 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3662 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3663 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3664 					 NFP_NET_CFG_CTRL_LSO;
3665 	}
3666 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3667 		netdev->hw_features |= NETIF_F_RXHASH;
3668 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3669 	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3670 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3671 			netdev->hw_features |= NETIF_F_GSO_GRE |
3672 					       NETIF_F_GSO_UDP_TUNNEL;
3673 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3674 
3675 		netdev->hw_enc_features = netdev->hw_features;
3676 	}
3677 
3678 	netdev->vlan_features = netdev->hw_features;
3679 
3680 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3681 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3682 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3683 	}
3684 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3685 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3686 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3687 		} else {
3688 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3689 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3690 		}
3691 	}
3692 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3693 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3694 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3695 	}
3696 
3697 	netdev->features = netdev->hw_features;
3698 
3699 	if (nfp_app_has_tc(nn->app))
3700 		netdev->hw_features |= NETIF_F_HW_TC;
3701 
3702 	/* Advertise but disable TSO by default. */
3703 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3704 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3705 
3706 	/* Finalise the netdev setup */
3707 	netdev->netdev_ops = &nfp_net_netdev_ops;
3708 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3709 
3710 	SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3711 
3712 	/* MTU range: 68 - hw-specific max */
3713 	netdev->min_mtu = ETH_MIN_MTU;
3714 	netdev->max_mtu = nn->max_mtu;
3715 
3716 	netif_carrier_off(netdev);
3717 
3718 	nfp_net_set_ethtool_ops(netdev);
3719 }
3720 
3721 /**
3722  * nfp_net_init() - Initialise/finalise the nfp_net structure
3723  * @nn:		NFP Net device structure
3724  *
3725  * Return: 0 on success or negative errno on error.
3726  */
3727 int nfp_net_init(struct nfp_net *nn)
3728 {
3729 	int err;
3730 
3731 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3732 
3733 	/* Get some of the read-only fields from the BAR */
3734 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3735 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3736 
3737 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3738 	 * we allow use of non-chained metadata if RSS(v1) is the only
3739 	 * advertised capability requiring metadata.
3740 	 */
3741 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3742 					 !nn->dp.netdev ||
3743 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3744 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3745 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3746 	 * it has the same meaning as RSSv2.
3747 	 */
3748 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3749 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3750 
3751 	/* Determine RX packet/metadata boundary offset */
3752 	if (nn->fw_ver.major >= 2) {
3753 		u32 reg;
3754 
3755 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3756 		if (reg > NFP_NET_MAX_PREPEND) {
3757 			nn_err(nn, "Invalid rx offset: %d\n", reg);
3758 			return -EINVAL;
3759 		}
3760 		nn->dp.rx_offset = reg;
3761 	} else {
3762 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3763 	}
3764 
3765 	/* Set default MTU and Freelist buffer size */
3766 	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3767 		nn->dp.mtu = nn->max_mtu;
3768 	else
3769 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3770 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3771 
3772 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3773 		nfp_net_rss_init(nn);
3774 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3775 					 NFP_NET_CFG_CTRL_RSS;
3776 	}
3777 
3778 	/* Allow L2 Broadcast and Multicast through by default, if supported */
3779 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3780 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3781 	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3782 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3783 
3784 	/* Allow IRQ moderation, if supported */
3785 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3786 		nfp_net_irqmod_init(nn);
3787 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3788 	}
3789 
3790 	if (nn->dp.netdev)
3791 		nfp_net_netdev_init(nn);
3792 
3793 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
3794 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3795 
3796 	/* Make sure the FW knows the netdev is supposed to be disabled here */
3797 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3798 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3799 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3800 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3801 				   NFP_NET_CFG_UPDATE_GEN);
3802 	if (err)
3803 		return err;
3804 
3805 	nfp_net_vecs_init(nn);
3806 
3807 	if (!nn->dp.netdev)
3808 		return 0;
3809 	return register_netdev(nn->dp.netdev);
3810 }
3811 
3812 /**
3813  * nfp_net_clean() - Undo what nfp_net_init() did.
3814  * @nn:		NFP Net device structure
3815  */
3816 void nfp_net_clean(struct nfp_net *nn)
3817 {
3818 	if (!nn->dp.netdev)
3819 		return;
3820 
3821 	unregister_netdev(nn->dp.netdev);
3822 }
3823