1 /*
2  * Copyright (C) 2015-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 /*
35  * nfp_net_common.c
36  * Netronome network device driver: Common functions between PF and VF
37  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38  *          Jason McMullan <jason.mcmullan@netronome.com>
39  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
40  *          Brad Petrus <brad.petrus@netronome.com>
41  *          Chris Telfer <chris.telfer@netronome.com>
42  */
43 
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66 
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69 
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_port.h"
75 
76 /**
77  * nfp_net_get_fw_version() - Read and parse the FW version
78  * @fw_ver:	Output fw_version structure to read to
79  * @ctrl_bar:	Mapped address of the control BAR
80  */
81 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
82 			    void __iomem *ctrl_bar)
83 {
84 	u32 reg;
85 
86 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
87 	put_unaligned_le32(reg, fw_ver);
88 }
89 
90 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
91 {
92 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
93 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
94 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
95 }
96 
97 static void
98 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
99 {
100 	dma_sync_single_for_device(dp->dev, dma_addr,
101 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
102 				   dp->rx_dma_dir);
103 }
104 
105 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
106 {
107 	dma_unmap_single_attrs(dp->dev, dma_addr,
108 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
109 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
110 }
111 
112 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
113 				    unsigned int len)
114 {
115 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
116 				len, dp->rx_dma_dir);
117 }
118 
119 /* Firmware reconfig
120  *
121  * Firmware reconfig may take a while so we have two versions of it -
122  * synchronous and asynchronous (posted).  All synchronous callers are holding
123  * RTNL so we don't have to worry about serializing them.
124  */
125 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
126 {
127 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
128 	/* ensure update is written before pinging HW */
129 	nn_pci_flush(nn);
130 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
131 }
132 
133 /* Pass 0 as update to run posted reconfigs. */
134 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
135 {
136 	update |= nn->reconfig_posted;
137 	nn->reconfig_posted = 0;
138 
139 	nfp_net_reconfig_start(nn, update);
140 
141 	nn->reconfig_timer_active = true;
142 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
143 }
144 
145 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
146 {
147 	u32 reg;
148 
149 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
150 	if (reg == 0)
151 		return true;
152 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
153 		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
154 		return true;
155 	} else if (last_check) {
156 		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
157 		return true;
158 	}
159 
160 	return false;
161 }
162 
163 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
164 {
165 	bool timed_out = false;
166 
167 	/* Poll update field, waiting for NFP to ack the config */
168 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
169 		msleep(1);
170 		timed_out = time_is_before_eq_jiffies(deadline);
171 	}
172 
173 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
174 		return -EIO;
175 
176 	return timed_out ? -EIO : 0;
177 }
178 
179 static void nfp_net_reconfig_timer(unsigned long data)
180 {
181 	struct nfp_net *nn = (void *)data;
182 
183 	spin_lock_bh(&nn->reconfig_lock);
184 
185 	nn->reconfig_timer_active = false;
186 
187 	/* If sync caller is present it will take over from us */
188 	if (nn->reconfig_sync_present)
189 		goto done;
190 
191 	/* Read reconfig status and report errors */
192 	nfp_net_reconfig_check_done(nn, true);
193 
194 	if (nn->reconfig_posted)
195 		nfp_net_reconfig_start_async(nn, 0);
196 done:
197 	spin_unlock_bh(&nn->reconfig_lock);
198 }
199 
200 /**
201  * nfp_net_reconfig_post() - Post async reconfig request
202  * @nn:      NFP Net device to reconfigure
203  * @update:  The value for the update field in the BAR config
204  *
205  * Record FW reconfiguration request.  Reconfiguration will be kicked off
206  * whenever reconfiguration machinery is idle.  Multiple requests can be
207  * merged together!
208  */
209 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
210 {
211 	spin_lock_bh(&nn->reconfig_lock);
212 
213 	/* Sync caller will kick off async reconf when it's done, just post */
214 	if (nn->reconfig_sync_present) {
215 		nn->reconfig_posted |= update;
216 		goto done;
217 	}
218 
219 	/* Opportunistically check if the previous command is done */
220 	if (!nn->reconfig_timer_active ||
221 	    nfp_net_reconfig_check_done(nn, false))
222 		nfp_net_reconfig_start_async(nn, update);
223 	else
224 		nn->reconfig_posted |= update;
225 done:
226 	spin_unlock_bh(&nn->reconfig_lock);
227 }
228 
229 /**
230  * nfp_net_reconfig() - Reconfigure the firmware
231  * @nn:      NFP Net device to reconfigure
232  * @update:  The value for the update field in the BAR config
233  *
234  * Write the update word to the BAR and ping the reconfig queue.  The
235  * poll until the firmware has acknowledged the update by zeroing the
236  * update word.
237  *
238  * Return: Negative errno on error, 0 on success
239  */
240 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
241 {
242 	bool cancelled_timer = false;
243 	u32 pre_posted_requests;
244 	int ret;
245 
246 	spin_lock_bh(&nn->reconfig_lock);
247 
248 	nn->reconfig_sync_present = true;
249 
250 	if (nn->reconfig_timer_active) {
251 		del_timer(&nn->reconfig_timer);
252 		nn->reconfig_timer_active = false;
253 		cancelled_timer = true;
254 	}
255 	pre_posted_requests = nn->reconfig_posted;
256 	nn->reconfig_posted = 0;
257 
258 	spin_unlock_bh(&nn->reconfig_lock);
259 
260 	if (cancelled_timer)
261 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
262 
263 	/* Run the posted reconfigs which were issued before we started */
264 	if (pre_posted_requests) {
265 		nfp_net_reconfig_start(nn, pre_posted_requests);
266 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
267 	}
268 
269 	nfp_net_reconfig_start(nn, update);
270 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
271 
272 	spin_lock_bh(&nn->reconfig_lock);
273 
274 	if (nn->reconfig_posted)
275 		nfp_net_reconfig_start_async(nn, 0);
276 
277 	nn->reconfig_sync_present = false;
278 
279 	spin_unlock_bh(&nn->reconfig_lock);
280 
281 	return ret;
282 }
283 
284 /**
285  * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
286  * @nn:        NFP Net device to reconfigure
287  * @mbox_cmd:  The value for the mailbox command
288  *
289  * Helper function for mailbox updates
290  *
291  * Return: Negative errno on error, 0 on success
292  */
293 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
294 {
295 	int ret;
296 
297 	nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
298 
299 	ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
300 	if (ret) {
301 		nn_err(nn, "Mailbox update error\n");
302 		return ret;
303 	}
304 
305 	return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
306 }
307 
308 /* Interrupt configuration and handling
309  */
310 
311 /**
312  * nfp_net_irq_unmask() - Unmask automasked interrupt
313  * @nn:       NFP Network structure
314  * @entry_nr: MSI-X table entry
315  *
316  * Clear the ICR for the IRQ entry.
317  */
318 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
319 {
320 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
321 	nn_pci_flush(nn);
322 }
323 
324 /**
325  * nfp_net_irqs_alloc() - allocates MSI-X irqs
326  * @pdev:        PCI device structure
327  * @irq_entries: Array to be initialized and used to hold the irq entries
328  * @min_irqs:    Minimal acceptable number of interrupts
329  * @wanted_irqs: Target number of interrupts to allocate
330  *
331  * Return: Number of irqs obtained or 0 on error.
332  */
333 unsigned int
334 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
335 		   unsigned int min_irqs, unsigned int wanted_irqs)
336 {
337 	unsigned int i;
338 	int got_irqs;
339 
340 	for (i = 0; i < wanted_irqs; i++)
341 		irq_entries[i].entry = i;
342 
343 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
344 					 min_irqs, wanted_irqs);
345 	if (got_irqs < 0) {
346 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
347 			min_irqs, wanted_irqs, got_irqs);
348 		return 0;
349 	}
350 
351 	if (got_irqs < wanted_irqs)
352 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
353 			 wanted_irqs, got_irqs);
354 
355 	return got_irqs;
356 }
357 
358 /**
359  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
360  * @nn:		 NFP Network structure
361  * @irq_entries: Table of allocated interrupts
362  * @n:		 Size of @irq_entries (number of entries to grab)
363  *
364  * After interrupts are allocated with nfp_net_irqs_alloc() this function
365  * should be called to assign them to a specific netdev (port).
366  */
367 void
368 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
369 		    unsigned int n)
370 {
371 	struct nfp_net_dp *dp = &nn->dp;
372 
373 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
374 	dp->num_r_vecs = nn->max_r_vecs;
375 
376 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
377 
378 	if (dp->num_rx_rings > dp->num_r_vecs ||
379 	    dp->num_tx_rings > dp->num_r_vecs)
380 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
381 			 dp->num_rx_rings, dp->num_tx_rings,
382 			 dp->num_r_vecs);
383 
384 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
385 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
386 	dp->num_stack_tx_rings = dp->num_tx_rings;
387 }
388 
389 /**
390  * nfp_net_irqs_disable() - Disable interrupts
391  * @pdev:        PCI device structure
392  *
393  * Undoes what @nfp_net_irqs_alloc() does.
394  */
395 void nfp_net_irqs_disable(struct pci_dev *pdev)
396 {
397 	pci_disable_msix(pdev);
398 }
399 
400 /**
401  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
402  * @irq:      Interrupt
403  * @data:     Opaque data structure
404  *
405  * Return: Indicate if the interrupt has been handled.
406  */
407 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
408 {
409 	struct nfp_net_r_vector *r_vec = data;
410 
411 	napi_schedule_irqoff(&r_vec->napi);
412 
413 	/* The FW auto-masks any interrupt, either via the MASK bit in
414 	 * the MSI-X table or via the per entry ICR field.  So there
415 	 * is no need to disable interrupts here.
416 	 */
417 	return IRQ_HANDLED;
418 }
419 
420 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
421 {
422 	struct nfp_net_r_vector *r_vec = data;
423 
424 	tasklet_schedule(&r_vec->tasklet);
425 
426 	return IRQ_HANDLED;
427 }
428 
429 /**
430  * nfp_net_read_link_status() - Reread link status from control BAR
431  * @nn:       NFP Network structure
432  */
433 static void nfp_net_read_link_status(struct nfp_net *nn)
434 {
435 	unsigned long flags;
436 	bool link_up;
437 	u32 sts;
438 
439 	spin_lock_irqsave(&nn->link_status_lock, flags);
440 
441 	sts = nn_readl(nn, NFP_NET_CFG_STS);
442 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
443 
444 	if (nn->link_up == link_up)
445 		goto out;
446 
447 	nn->link_up = link_up;
448 	if (nn->port)
449 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
450 
451 	if (nn->link_up) {
452 		netif_carrier_on(nn->dp.netdev);
453 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
454 	} else {
455 		netif_carrier_off(nn->dp.netdev);
456 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
457 	}
458 out:
459 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
460 }
461 
462 /**
463  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
464  * @irq:      Interrupt
465  * @data:     Opaque data structure
466  *
467  * Return: Indicate if the interrupt has been handled.
468  */
469 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
470 {
471 	struct nfp_net *nn = data;
472 	struct msix_entry *entry;
473 
474 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
475 
476 	nfp_net_read_link_status(nn);
477 
478 	nfp_net_irq_unmask(nn, entry->entry);
479 
480 	return IRQ_HANDLED;
481 }
482 
483 /**
484  * nfp_net_irq_exn() - Interrupt service routine for exceptions
485  * @irq:      Interrupt
486  * @data:     Opaque data structure
487  *
488  * Return: Indicate if the interrupt has been handled.
489  */
490 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
491 {
492 	struct nfp_net *nn = data;
493 
494 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
495 	/* XXX TO BE IMPLEMENTED */
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
501  * @tx_ring:  TX ring structure
502  * @r_vec:    IRQ vector servicing this ring
503  * @idx:      Ring index
504  * @is_xdp:   Is this an XDP TX ring?
505  */
506 static void
507 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
508 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
509 		     bool is_xdp)
510 {
511 	struct nfp_net *nn = r_vec->nfp_net;
512 
513 	tx_ring->idx = idx;
514 	tx_ring->r_vec = r_vec;
515 	tx_ring->is_xdp = is_xdp;
516 
517 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
518 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
519 }
520 
521 /**
522  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
523  * @rx_ring:  RX ring structure
524  * @r_vec:    IRQ vector servicing this ring
525  * @idx:      Ring index
526  */
527 static void
528 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
529 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
530 {
531 	struct nfp_net *nn = r_vec->nfp_net;
532 
533 	rx_ring->idx = idx;
534 	rx_ring->r_vec = r_vec;
535 
536 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
537 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
538 }
539 
540 /**
541  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
542  * @nn:		NFP Network structure
543  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
544  * @format:	printf-style format to construct the interrupt name
545  * @name:	Pointer to allocated space for interrupt name
546  * @name_sz:	Size of space for interrupt name
547  * @vector_idx:	Index of MSI-X vector used for this interrupt
548  * @handler:	IRQ handler to register for this interrupt
549  */
550 static int
551 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
552 			const char *format, char *name, size_t name_sz,
553 			unsigned int vector_idx, irq_handler_t handler)
554 {
555 	struct msix_entry *entry;
556 	int err;
557 
558 	entry = &nn->irq_entries[vector_idx];
559 
560 	snprintf(name, name_sz, format, nfp_net_name(nn));
561 	err = request_irq(entry->vector, handler, 0, name, nn);
562 	if (err) {
563 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
564 		       entry->vector, err);
565 		return err;
566 	}
567 	nn_writeb(nn, ctrl_offset, entry->entry);
568 
569 	return 0;
570 }
571 
572 /**
573  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
574  * @nn:		NFP Network structure
575  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
576  * @vector_idx:	Index of MSI-X vector used for this interrupt
577  */
578 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
579 				 unsigned int vector_idx)
580 {
581 	nn_writeb(nn, ctrl_offset, 0xff);
582 	free_irq(nn->irq_entries[vector_idx].vector, nn);
583 }
584 
585 /* Transmit
586  *
587  * One queue controller peripheral queue is used for transmit.  The
588  * driver en-queues packets for transmit by advancing the write
589  * pointer.  The device indicates that packets have transmitted by
590  * advancing the read pointer.  The driver maintains a local copy of
591  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
592  * keeps @wr_p in sync with the queue controller write pointer and can
593  * determine how many packets have been transmitted by comparing its
594  * copy of the read pointer @rd_p with the read pointer maintained by
595  * the queue controller peripheral.
596  */
597 
598 /**
599  * nfp_net_tx_full() - Check if the TX ring is full
600  * @tx_ring: TX ring to check
601  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
602  *
603  * This function checks, based on the *host copy* of read/write
604  * pointer if a given TX ring is full.  The real TX queue may have
605  * some newly made available slots.
606  *
607  * Return: True if the ring is full.
608  */
609 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
610 {
611 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
612 }
613 
614 /* Wrappers for deciding when to stop and restart TX queues */
615 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
616 {
617 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
618 }
619 
620 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
621 {
622 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
623 }
624 
625 /**
626  * nfp_net_tx_ring_stop() - stop tx ring
627  * @nd_q:    netdev queue
628  * @tx_ring: driver tx queue structure
629  *
630  * Safely stop TX ring.  Remember that while we are running .start_xmit()
631  * someone else may be cleaning the TX ring completions so we need to be
632  * extra careful here.
633  */
634 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
635 				 struct nfp_net_tx_ring *tx_ring)
636 {
637 	netif_tx_stop_queue(nd_q);
638 
639 	/* We can race with the TX completion out of NAPI so recheck */
640 	smp_mb();
641 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
642 		netif_tx_start_queue(nd_q);
643 }
644 
645 /**
646  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
647  * @r_vec: per-ring structure
648  * @txbuf: Pointer to driver soft TX descriptor
649  * @txd: Pointer to HW TX descriptor
650  * @skb: Pointer to SKB
651  *
652  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
653  * Return error on packet header greater than maximum supported LSO header size.
654  */
655 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
656 			   struct nfp_net_tx_buf *txbuf,
657 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
658 {
659 	u32 hdrlen;
660 	u16 mss;
661 
662 	if (!skb_is_gso(skb))
663 		return;
664 
665 	if (!skb->encapsulation) {
666 		txd->l3_offset = skb_network_offset(skb);
667 		txd->l4_offset = skb_transport_offset(skb);
668 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
669 	} else {
670 		txd->l3_offset = skb_inner_network_offset(skb);
671 		txd->l4_offset = skb_inner_transport_offset(skb);
672 		hdrlen = skb_inner_transport_header(skb) - skb->data +
673 			inner_tcp_hdrlen(skb);
674 	}
675 
676 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
677 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
678 
679 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
680 	txd->lso_hdrlen = hdrlen;
681 	txd->mss = cpu_to_le16(mss);
682 	txd->flags |= PCIE_DESC_TX_LSO;
683 
684 	u64_stats_update_begin(&r_vec->tx_sync);
685 	r_vec->tx_lso++;
686 	u64_stats_update_end(&r_vec->tx_sync);
687 }
688 
689 /**
690  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
691  * @dp:  NFP Net data path struct
692  * @r_vec: per-ring structure
693  * @txbuf: Pointer to driver soft TX descriptor
694  * @txd: Pointer to TX descriptor
695  * @skb: Pointer to SKB
696  *
697  * This function sets the TX checksum flags in the TX descriptor based
698  * on the configuration and the protocol of the packet to be transmitted.
699  */
700 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
701 			    struct nfp_net_r_vector *r_vec,
702 			    struct nfp_net_tx_buf *txbuf,
703 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
704 {
705 	struct ipv6hdr *ipv6h;
706 	struct iphdr *iph;
707 	u8 l4_hdr;
708 
709 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
710 		return;
711 
712 	if (skb->ip_summed != CHECKSUM_PARTIAL)
713 		return;
714 
715 	txd->flags |= PCIE_DESC_TX_CSUM;
716 	if (skb->encapsulation)
717 		txd->flags |= PCIE_DESC_TX_ENCAP;
718 
719 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
720 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
721 
722 	if (iph->version == 4) {
723 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
724 		l4_hdr = iph->protocol;
725 	} else if (ipv6h->version == 6) {
726 		l4_hdr = ipv6h->nexthdr;
727 	} else {
728 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
729 		return;
730 	}
731 
732 	switch (l4_hdr) {
733 	case IPPROTO_TCP:
734 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
735 		break;
736 	case IPPROTO_UDP:
737 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
738 		break;
739 	default:
740 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
741 		return;
742 	}
743 
744 	u64_stats_update_begin(&r_vec->tx_sync);
745 	if (skb->encapsulation)
746 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
747 	else
748 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
749 	u64_stats_update_end(&r_vec->tx_sync);
750 }
751 
752 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
753 {
754 	wmb();
755 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
756 	tx_ring->wr_ptr_add = 0;
757 }
758 
759 static int nfp_net_prep_port_id(struct sk_buff *skb)
760 {
761 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
762 	unsigned char *data;
763 
764 	if (likely(!md_dst))
765 		return 0;
766 	if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
767 		return 0;
768 
769 	if (unlikely(skb_cow_head(skb, 8)))
770 		return -ENOMEM;
771 
772 	data = skb_push(skb, 8);
773 	put_unaligned_be32(NFP_NET_META_PORTID, data);
774 	put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
775 
776 	return 8;
777 }
778 
779 /**
780  * nfp_net_tx() - Main transmit entry point
781  * @skb:    SKB to transmit
782  * @netdev: netdev structure
783  *
784  * Return: NETDEV_TX_OK on success.
785  */
786 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
787 {
788 	struct nfp_net *nn = netdev_priv(netdev);
789 	const struct skb_frag_struct *frag;
790 	struct nfp_net_tx_desc *txd, txdg;
791 	int f, nr_frags, wr_idx, md_bytes;
792 	struct nfp_net_tx_ring *tx_ring;
793 	struct nfp_net_r_vector *r_vec;
794 	struct nfp_net_tx_buf *txbuf;
795 	struct netdev_queue *nd_q;
796 	struct nfp_net_dp *dp;
797 	dma_addr_t dma_addr;
798 	unsigned int fsize;
799 	u16 qidx;
800 
801 	dp = &nn->dp;
802 	qidx = skb_get_queue_mapping(skb);
803 	tx_ring = &dp->tx_rings[qidx];
804 	r_vec = tx_ring->r_vec;
805 	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
806 
807 	nr_frags = skb_shinfo(skb)->nr_frags;
808 
809 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
810 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
811 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
812 		netif_tx_stop_queue(nd_q);
813 		nfp_net_tx_xmit_more_flush(tx_ring);
814 		u64_stats_update_begin(&r_vec->tx_sync);
815 		r_vec->tx_busy++;
816 		u64_stats_update_end(&r_vec->tx_sync);
817 		return NETDEV_TX_BUSY;
818 	}
819 
820 	md_bytes = nfp_net_prep_port_id(skb);
821 	if (unlikely(md_bytes < 0)) {
822 		nfp_net_tx_xmit_more_flush(tx_ring);
823 		dev_kfree_skb_any(skb);
824 		return NETDEV_TX_OK;
825 	}
826 
827 	/* Start with the head skbuf */
828 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
829 				  DMA_TO_DEVICE);
830 	if (dma_mapping_error(dp->dev, dma_addr))
831 		goto err_free;
832 
833 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
834 
835 	/* Stash the soft descriptor of the head then initialize it */
836 	txbuf = &tx_ring->txbufs[wr_idx];
837 	txbuf->skb = skb;
838 	txbuf->dma_addr = dma_addr;
839 	txbuf->fidx = -1;
840 	txbuf->pkt_cnt = 1;
841 	txbuf->real_len = skb->len;
842 
843 	/* Build TX descriptor */
844 	txd = &tx_ring->txds[wr_idx];
845 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
846 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
847 	nfp_desc_set_dma_addr(txd, dma_addr);
848 	txd->data_len = cpu_to_le16(skb->len);
849 
850 	txd->flags = 0;
851 	txd->mss = 0;
852 	txd->lso_hdrlen = 0;
853 
854 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
855 	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
856 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
857 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
858 		txd->flags |= PCIE_DESC_TX_VLAN;
859 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
860 	}
861 
862 	/* Gather DMA */
863 	if (nr_frags > 0) {
864 		/* all descs must match except for in addr, length and eop */
865 		txdg = *txd;
866 
867 		for (f = 0; f < nr_frags; f++) {
868 			frag = &skb_shinfo(skb)->frags[f];
869 			fsize = skb_frag_size(frag);
870 
871 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
872 						    fsize, DMA_TO_DEVICE);
873 			if (dma_mapping_error(dp->dev, dma_addr))
874 				goto err_unmap;
875 
876 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
877 			tx_ring->txbufs[wr_idx].skb = skb;
878 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
879 			tx_ring->txbufs[wr_idx].fidx = f;
880 
881 			txd = &tx_ring->txds[wr_idx];
882 			*txd = txdg;
883 			txd->dma_len = cpu_to_le16(fsize);
884 			nfp_desc_set_dma_addr(txd, dma_addr);
885 			txd->offset_eop |=
886 				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
887 		}
888 
889 		u64_stats_update_begin(&r_vec->tx_sync);
890 		r_vec->tx_gather++;
891 		u64_stats_update_end(&r_vec->tx_sync);
892 	}
893 
894 	netdev_tx_sent_queue(nd_q, txbuf->real_len);
895 
896 	tx_ring->wr_p += nr_frags + 1;
897 	if (nfp_net_tx_ring_should_stop(tx_ring))
898 		nfp_net_tx_ring_stop(nd_q, tx_ring);
899 
900 	tx_ring->wr_ptr_add += nr_frags + 1;
901 	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
902 		nfp_net_tx_xmit_more_flush(tx_ring);
903 
904 	skb_tx_timestamp(skb);
905 
906 	return NETDEV_TX_OK;
907 
908 err_unmap:
909 	--f;
910 	while (f >= 0) {
911 		frag = &skb_shinfo(skb)->frags[f];
912 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
913 			       skb_frag_size(frag), DMA_TO_DEVICE);
914 		tx_ring->txbufs[wr_idx].skb = NULL;
915 		tx_ring->txbufs[wr_idx].dma_addr = 0;
916 		tx_ring->txbufs[wr_idx].fidx = -2;
917 		wr_idx = wr_idx - 1;
918 		if (wr_idx < 0)
919 			wr_idx += tx_ring->cnt;
920 	}
921 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
922 			 skb_headlen(skb), DMA_TO_DEVICE);
923 	tx_ring->txbufs[wr_idx].skb = NULL;
924 	tx_ring->txbufs[wr_idx].dma_addr = 0;
925 	tx_ring->txbufs[wr_idx].fidx = -2;
926 err_free:
927 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
928 	nfp_net_tx_xmit_more_flush(tx_ring);
929 	u64_stats_update_begin(&r_vec->tx_sync);
930 	r_vec->tx_errors++;
931 	u64_stats_update_end(&r_vec->tx_sync);
932 	dev_kfree_skb_any(skb);
933 	return NETDEV_TX_OK;
934 }
935 
936 /**
937  * nfp_net_tx_complete() - Handled completed TX packets
938  * @tx_ring:   TX ring structure
939  *
940  * Return: Number of completed TX descriptors
941  */
942 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
943 {
944 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
945 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
946 	const struct skb_frag_struct *frag;
947 	struct netdev_queue *nd_q;
948 	u32 done_pkts = 0, done_bytes = 0;
949 	struct sk_buff *skb;
950 	int todo, nr_frags;
951 	u32 qcp_rd_p;
952 	int fidx;
953 	int idx;
954 
955 	if (tx_ring->wr_p == tx_ring->rd_p)
956 		return;
957 
958 	/* Work out how many descriptors have been transmitted */
959 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
960 
961 	if (qcp_rd_p == tx_ring->qcp_rd_p)
962 		return;
963 
964 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
965 
966 	while (todo--) {
967 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
968 
969 		skb = tx_ring->txbufs[idx].skb;
970 		if (!skb)
971 			continue;
972 
973 		nr_frags = skb_shinfo(skb)->nr_frags;
974 		fidx = tx_ring->txbufs[idx].fidx;
975 
976 		if (fidx == -1) {
977 			/* unmap head */
978 			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
979 					 skb_headlen(skb), DMA_TO_DEVICE);
980 
981 			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
982 			done_bytes += tx_ring->txbufs[idx].real_len;
983 		} else {
984 			/* unmap fragment */
985 			frag = &skb_shinfo(skb)->frags[fidx];
986 			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
987 				       skb_frag_size(frag), DMA_TO_DEVICE);
988 		}
989 
990 		/* check for last gather fragment */
991 		if (fidx == nr_frags - 1)
992 			dev_kfree_skb_any(skb);
993 
994 		tx_ring->txbufs[idx].dma_addr = 0;
995 		tx_ring->txbufs[idx].skb = NULL;
996 		tx_ring->txbufs[idx].fidx = -2;
997 	}
998 
999 	tx_ring->qcp_rd_p = qcp_rd_p;
1000 
1001 	u64_stats_update_begin(&r_vec->tx_sync);
1002 	r_vec->tx_bytes += done_bytes;
1003 	r_vec->tx_pkts += done_pkts;
1004 	u64_stats_update_end(&r_vec->tx_sync);
1005 
1006 	if (!dp->netdev)
1007 		return;
1008 
1009 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1010 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1011 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1012 		/* Make sure TX thread will see updated tx_ring->rd_p */
1013 		smp_mb();
1014 
1015 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1016 			netif_tx_wake_queue(nd_q);
1017 	}
1018 
1019 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1020 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1021 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1022 }
1023 
1024 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1025 {
1026 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1027 	u32 done_pkts = 0, done_bytes = 0;
1028 	bool done_all;
1029 	int idx, todo;
1030 	u32 qcp_rd_p;
1031 
1032 	/* Work out how many descriptors have been transmitted */
1033 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1034 
1035 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1036 		return true;
1037 
1038 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1039 
1040 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1041 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1042 
1043 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1044 
1045 	done_pkts = todo;
1046 	while (todo--) {
1047 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1048 		tx_ring->rd_p++;
1049 
1050 		done_bytes += tx_ring->txbufs[idx].real_len;
1051 	}
1052 
1053 	u64_stats_update_begin(&r_vec->tx_sync);
1054 	r_vec->tx_bytes += done_bytes;
1055 	r_vec->tx_pkts += done_pkts;
1056 	u64_stats_update_end(&r_vec->tx_sync);
1057 
1058 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1059 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1060 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1061 
1062 	return done_all;
1063 }
1064 
1065 /**
1066  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1067  * @dp:		NFP Net data path struct
1068  * @tx_ring:	TX ring structure
1069  *
1070  * Assumes that the device is stopped
1071  */
1072 static void
1073 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1074 {
1075 	const struct skb_frag_struct *frag;
1076 	struct netdev_queue *nd_q;
1077 
1078 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1079 		struct nfp_net_tx_buf *tx_buf;
1080 		struct sk_buff *skb;
1081 		int idx, nr_frags;
1082 
1083 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1084 		tx_buf = &tx_ring->txbufs[idx];
1085 
1086 		skb = tx_ring->txbufs[idx].skb;
1087 		nr_frags = skb_shinfo(skb)->nr_frags;
1088 
1089 		if (tx_buf->fidx == -1) {
1090 			/* unmap head */
1091 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1092 					 skb_headlen(skb), DMA_TO_DEVICE);
1093 		} else {
1094 			/* unmap fragment */
1095 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1096 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1097 				       skb_frag_size(frag), DMA_TO_DEVICE);
1098 		}
1099 
1100 		/* check for last gather fragment */
1101 		if (tx_buf->fidx == nr_frags - 1)
1102 			dev_kfree_skb_any(skb);
1103 
1104 		tx_buf->dma_addr = 0;
1105 		tx_buf->skb = NULL;
1106 		tx_buf->fidx = -2;
1107 
1108 		tx_ring->qcp_rd_p++;
1109 		tx_ring->rd_p++;
1110 	}
1111 
1112 	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1113 	tx_ring->wr_p = 0;
1114 	tx_ring->rd_p = 0;
1115 	tx_ring->qcp_rd_p = 0;
1116 	tx_ring->wr_ptr_add = 0;
1117 
1118 	if (tx_ring->is_xdp || !dp->netdev)
1119 		return;
1120 
1121 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1122 	netdev_tx_reset_queue(nd_q);
1123 }
1124 
1125 static void nfp_net_tx_timeout(struct net_device *netdev)
1126 {
1127 	struct nfp_net *nn = netdev_priv(netdev);
1128 	int i;
1129 
1130 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1131 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1132 			continue;
1133 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1134 	}
1135 	nn_warn(nn, "TX watchdog timeout\n");
1136 }
1137 
1138 /* Receive processing
1139  */
1140 static unsigned int
1141 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1142 {
1143 	unsigned int fl_bufsz;
1144 
1145 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1146 	fl_bufsz += dp->rx_dma_off;
1147 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1148 		fl_bufsz += NFP_NET_MAX_PREPEND;
1149 	else
1150 		fl_bufsz += dp->rx_offset;
1151 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1152 
1153 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1154 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1155 
1156 	return fl_bufsz;
1157 }
1158 
1159 static void
1160 nfp_net_free_frag(void *frag, bool xdp)
1161 {
1162 	if (!xdp)
1163 		skb_free_frag(frag);
1164 	else
1165 		__free_page(virt_to_page(frag));
1166 }
1167 
1168 /**
1169  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1170  * @dp:		NFP Net data path struct
1171  * @dma_addr:	Pointer to storage for DMA address (output param)
1172  *
1173  * This function will allcate a new page frag, map it for DMA.
1174  *
1175  * Return: allocated page frag or NULL on failure.
1176  */
1177 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1178 {
1179 	void *frag;
1180 
1181 	if (!dp->xdp_prog)
1182 		frag = netdev_alloc_frag(dp->fl_bufsz);
1183 	else
1184 		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1185 	if (!frag) {
1186 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1187 		return NULL;
1188 	}
1189 
1190 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1191 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1192 		nfp_net_free_frag(frag, dp->xdp_prog);
1193 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1194 		return NULL;
1195 	}
1196 
1197 	return frag;
1198 }
1199 
1200 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1201 {
1202 	void *frag;
1203 
1204 	if (!dp->xdp_prog)
1205 		frag = napi_alloc_frag(dp->fl_bufsz);
1206 	else
1207 		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1208 	if (!frag) {
1209 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1210 		return NULL;
1211 	}
1212 
1213 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1214 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1215 		nfp_net_free_frag(frag, dp->xdp_prog);
1216 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1217 		return NULL;
1218 	}
1219 
1220 	return frag;
1221 }
1222 
1223 /**
1224  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1225  * @dp:		NFP Net data path struct
1226  * @rx_ring:	RX ring structure
1227  * @frag:	page fragment buffer
1228  * @dma_addr:	DMA address of skb mapping
1229  */
1230 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1231 				struct nfp_net_rx_ring *rx_ring,
1232 				void *frag, dma_addr_t dma_addr)
1233 {
1234 	unsigned int wr_idx;
1235 
1236 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1237 
1238 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1239 
1240 	/* Stash SKB and DMA address away */
1241 	rx_ring->rxbufs[wr_idx].frag = frag;
1242 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1243 
1244 	/* Fill freelist descriptor */
1245 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1246 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1247 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1248 			      dma_addr + dp->rx_dma_off);
1249 
1250 	rx_ring->wr_p++;
1251 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1252 		/* Update write pointer of the freelist queue. Make
1253 		 * sure all writes are flushed before telling the hardware.
1254 		 */
1255 		wmb();
1256 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1257 	}
1258 }
1259 
1260 /**
1261  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1262  * @rx_ring:	RX ring structure
1263  *
1264  * Warning: Do *not* call if ring buffers were never put on the FW freelist
1265  *	    (i.e. device was not enabled)!
1266  */
1267 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1268 {
1269 	unsigned int wr_idx, last_idx;
1270 
1271 	/* Move the empty entry to the end of the list */
1272 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1273 	last_idx = rx_ring->cnt - 1;
1274 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1275 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1276 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1277 	rx_ring->rxbufs[last_idx].frag = NULL;
1278 
1279 	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1280 	rx_ring->wr_p = 0;
1281 	rx_ring->rd_p = 0;
1282 }
1283 
1284 /**
1285  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1286  * @dp:		NFP Net data path struct
1287  * @rx_ring:	RX ring to remove buffers from
1288  *
1289  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1290  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1291  * to restore required ring geometry.
1292  */
1293 static void
1294 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1295 			  struct nfp_net_rx_ring *rx_ring)
1296 {
1297 	unsigned int i;
1298 
1299 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1300 		/* NULL skb can only happen when initial filling of the ring
1301 		 * fails to allocate enough buffers and calls here to free
1302 		 * already allocated ones.
1303 		 */
1304 		if (!rx_ring->rxbufs[i].frag)
1305 			continue;
1306 
1307 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1308 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1309 		rx_ring->rxbufs[i].dma_addr = 0;
1310 		rx_ring->rxbufs[i].frag = NULL;
1311 	}
1312 }
1313 
1314 /**
1315  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1316  * @dp:		NFP Net data path struct
1317  * @rx_ring:	RX ring to remove buffers from
1318  */
1319 static int
1320 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1321 			   struct nfp_net_rx_ring *rx_ring)
1322 {
1323 	struct nfp_net_rx_buf *rxbufs;
1324 	unsigned int i;
1325 
1326 	rxbufs = rx_ring->rxbufs;
1327 
1328 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1329 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1330 		if (!rxbufs[i].frag) {
1331 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1332 			return -ENOMEM;
1333 		}
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1341  * @dp:	     NFP Net data path struct
1342  * @rx_ring: RX ring to fill
1343  */
1344 static void
1345 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1346 			      struct nfp_net_rx_ring *rx_ring)
1347 {
1348 	unsigned int i;
1349 
1350 	for (i = 0; i < rx_ring->cnt - 1; i++)
1351 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1352 				    rx_ring->rxbufs[i].dma_addr);
1353 }
1354 
1355 /**
1356  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1357  * @flags: RX descriptor flags field in CPU byte order
1358  */
1359 static int nfp_net_rx_csum_has_errors(u16 flags)
1360 {
1361 	u16 csum_all_checked, csum_all_ok;
1362 
1363 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1364 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1365 
1366 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1367 }
1368 
1369 /**
1370  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1371  * @dp:  NFP Net data path struct
1372  * @r_vec: per-ring structure
1373  * @rxd: Pointer to RX descriptor
1374  * @meta: Parsed metadata prepend
1375  * @skb: Pointer to SKB
1376  */
1377 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1378 			    struct nfp_net_r_vector *r_vec,
1379 			    struct nfp_net_rx_desc *rxd,
1380 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1381 {
1382 	skb_checksum_none_assert(skb);
1383 
1384 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1385 		return;
1386 
1387 	if (meta->csum_type) {
1388 		skb->ip_summed = meta->csum_type;
1389 		skb->csum = meta->csum;
1390 		u64_stats_update_begin(&r_vec->rx_sync);
1391 		r_vec->hw_csum_rx_ok++;
1392 		u64_stats_update_end(&r_vec->rx_sync);
1393 		return;
1394 	}
1395 
1396 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1397 		u64_stats_update_begin(&r_vec->rx_sync);
1398 		r_vec->hw_csum_rx_error++;
1399 		u64_stats_update_end(&r_vec->rx_sync);
1400 		return;
1401 	}
1402 
1403 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1404 	 * L4 headers were successfully parsed. FW will always report zero UDP
1405 	 * checksum as CSUM_OK.
1406 	 */
1407 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1408 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1409 		__skb_incr_checksum_unnecessary(skb);
1410 		u64_stats_update_begin(&r_vec->rx_sync);
1411 		r_vec->hw_csum_rx_ok++;
1412 		u64_stats_update_end(&r_vec->rx_sync);
1413 	}
1414 
1415 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1416 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1417 		__skb_incr_checksum_unnecessary(skb);
1418 		u64_stats_update_begin(&r_vec->rx_sync);
1419 		r_vec->hw_csum_rx_inner_ok++;
1420 		u64_stats_update_end(&r_vec->rx_sync);
1421 	}
1422 }
1423 
1424 static void
1425 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1426 		 unsigned int type, __be32 *hash)
1427 {
1428 	if (!(netdev->features & NETIF_F_RXHASH))
1429 		return;
1430 
1431 	switch (type) {
1432 	case NFP_NET_RSS_IPV4:
1433 	case NFP_NET_RSS_IPV6:
1434 	case NFP_NET_RSS_IPV6_EX:
1435 		meta->hash_type = PKT_HASH_TYPE_L3;
1436 		break;
1437 	default:
1438 		meta->hash_type = PKT_HASH_TYPE_L4;
1439 		break;
1440 	}
1441 
1442 	meta->hash = get_unaligned_be32(hash);
1443 }
1444 
1445 static void
1446 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1447 		      void *data, struct nfp_net_rx_desc *rxd)
1448 {
1449 	struct nfp_net_rx_hash *rx_hash = data;
1450 
1451 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1452 		return;
1453 
1454 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1455 			 &rx_hash->hash);
1456 }
1457 
1458 static void *
1459 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1460 		   void *data, int meta_len)
1461 {
1462 	u32 meta_info;
1463 
1464 	meta_info = get_unaligned_be32(data);
1465 	data += 4;
1466 
1467 	while (meta_info) {
1468 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1469 		case NFP_NET_META_HASH:
1470 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1471 			nfp_net_set_hash(netdev, meta,
1472 					 meta_info & NFP_NET_META_FIELD_MASK,
1473 					 (__be32 *)data);
1474 			data += 4;
1475 			break;
1476 		case NFP_NET_META_MARK:
1477 			meta->mark = get_unaligned_be32(data);
1478 			data += 4;
1479 			break;
1480 		case NFP_NET_META_PORTID:
1481 			meta->portid = get_unaligned_be32(data);
1482 			data += 4;
1483 			break;
1484 		case NFP_NET_META_CSUM:
1485 			meta->csum_type = CHECKSUM_COMPLETE;
1486 			meta->csum =
1487 				(__force __wsum)__get_unaligned_cpu32(data);
1488 			data += 4;
1489 			break;
1490 		default:
1491 			return NULL;
1492 		}
1493 
1494 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1495 	}
1496 
1497 	return data;
1498 }
1499 
1500 static void
1501 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1502 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1503 		struct sk_buff *skb)
1504 {
1505 	u64_stats_update_begin(&r_vec->rx_sync);
1506 	r_vec->rx_drops++;
1507 	u64_stats_update_end(&r_vec->rx_sync);
1508 
1509 	/* skb is build based on the frag, free_skb() would free the frag
1510 	 * so to be able to reuse it we need an extra ref.
1511 	 */
1512 	if (skb && rxbuf && skb->head == rxbuf->frag)
1513 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1514 	if (rxbuf)
1515 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1516 	if (skb)
1517 		dev_kfree_skb_any(skb);
1518 }
1519 
1520 static bool
1521 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1522 		   struct nfp_net_tx_ring *tx_ring,
1523 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1524 		   unsigned int pkt_len, bool *completed)
1525 {
1526 	struct nfp_net_tx_buf *txbuf;
1527 	struct nfp_net_tx_desc *txd;
1528 	int wr_idx;
1529 
1530 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1531 		if (!*completed) {
1532 			nfp_net_xdp_complete(tx_ring);
1533 			*completed = true;
1534 		}
1535 
1536 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1537 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1538 					NULL);
1539 			return false;
1540 		}
1541 	}
1542 
1543 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1544 
1545 	/* Stash the soft descriptor of the head then initialize it */
1546 	txbuf = &tx_ring->txbufs[wr_idx];
1547 
1548 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1549 
1550 	txbuf->frag = rxbuf->frag;
1551 	txbuf->dma_addr = rxbuf->dma_addr;
1552 	txbuf->fidx = -1;
1553 	txbuf->pkt_cnt = 1;
1554 	txbuf->real_len = pkt_len;
1555 
1556 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1557 				   pkt_len, DMA_BIDIRECTIONAL);
1558 
1559 	/* Build TX descriptor */
1560 	txd = &tx_ring->txds[wr_idx];
1561 	txd->offset_eop = PCIE_DESC_TX_EOP;
1562 	txd->dma_len = cpu_to_le16(pkt_len);
1563 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1564 	txd->data_len = cpu_to_le16(pkt_len);
1565 
1566 	txd->flags = 0;
1567 	txd->mss = 0;
1568 	txd->lso_hdrlen = 0;
1569 
1570 	tx_ring->wr_p++;
1571 	tx_ring->wr_ptr_add++;
1572 	return true;
1573 }
1574 
1575 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
1576 			   unsigned int *off, unsigned int *len)
1577 {
1578 	struct xdp_buff xdp;
1579 	void *orig_data;
1580 	int ret;
1581 
1582 	xdp.data_hard_start = hard_start;
1583 	xdp.data = data + *off;
1584 	xdp.data_end = data + *off + *len;
1585 
1586 	orig_data = xdp.data;
1587 	ret = bpf_prog_run_xdp(prog, &xdp);
1588 
1589 	*len -= xdp.data - orig_data;
1590 	*off += xdp.data - orig_data;
1591 
1592 	return ret;
1593 }
1594 
1595 /**
1596  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1597  * @rx_ring:   RX ring to receive from
1598  * @budget:    NAPI budget
1599  *
1600  * Note, this function is separated out from the napi poll function to
1601  * more cleanly separate packet receive code from other bookkeeping
1602  * functions performed in the napi poll function.
1603  *
1604  * Return: Number of packets received.
1605  */
1606 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1607 {
1608 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1609 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1610 	struct nfp_net_tx_ring *tx_ring;
1611 	struct bpf_prog *xdp_prog;
1612 	bool xdp_tx_cmpl = false;
1613 	unsigned int true_bufsz;
1614 	struct sk_buff *skb;
1615 	int pkts_polled = 0;
1616 	int idx;
1617 
1618 	rcu_read_lock();
1619 	xdp_prog = READ_ONCE(dp->xdp_prog);
1620 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1621 	tx_ring = r_vec->xdp_ring;
1622 
1623 	while (pkts_polled < budget) {
1624 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1625 		struct nfp_net_rx_buf *rxbuf;
1626 		struct nfp_net_rx_desc *rxd;
1627 		struct nfp_meta_parsed meta;
1628 		struct net_device *netdev;
1629 		dma_addr_t new_dma_addr;
1630 		void *new_frag;
1631 
1632 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1633 
1634 		rxd = &rx_ring->rxds[idx];
1635 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1636 			break;
1637 
1638 		/* Memory barrier to ensure that we won't do other reads
1639 		 * before the DD bit.
1640 		 */
1641 		dma_rmb();
1642 
1643 		memset(&meta, 0, sizeof(meta));
1644 
1645 		rx_ring->rd_p++;
1646 		pkts_polled++;
1647 
1648 		rxbuf =	&rx_ring->rxbufs[idx];
1649 		/*         < meta_len >
1650 		 *  <-- [rx_offset] -->
1651 		 *  ---------------------------------------------------------
1652 		 * | [XX] |  metadata  |             packet           | XXXX |
1653 		 *  ---------------------------------------------------------
1654 		 *         <---------------- data_len --------------->
1655 		 *
1656 		 * The rx_offset is fixed for all packets, the meta_len can vary
1657 		 * on a packet by packet basis. If rx_offset is set to zero
1658 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1659 		 * buffer and is immediately followed by the packet (no [XX]).
1660 		 */
1661 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1662 		data_len = le16_to_cpu(rxd->rxd.data_len);
1663 		pkt_len = data_len - meta_len;
1664 
1665 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1666 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1667 			pkt_off += meta_len;
1668 		else
1669 			pkt_off += dp->rx_offset;
1670 		meta_off = pkt_off - meta_len;
1671 
1672 		/* Stats update */
1673 		u64_stats_update_begin(&r_vec->rx_sync);
1674 		r_vec->rx_pkts++;
1675 		r_vec->rx_bytes += pkt_len;
1676 		u64_stats_update_end(&r_vec->rx_sync);
1677 
1678 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1679 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1680 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1681 				   meta_len);
1682 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1683 			continue;
1684 		}
1685 
1686 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1687 					data_len);
1688 
1689 		if (!dp->chained_metadata_format) {
1690 			nfp_net_set_hash_desc(dp->netdev, &meta,
1691 					      rxbuf->frag + meta_off, rxd);
1692 		} else if (meta_len) {
1693 			void *end;
1694 
1695 			end = nfp_net_parse_meta(dp->netdev, &meta,
1696 						 rxbuf->frag + meta_off,
1697 						 meta_len);
1698 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1699 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1700 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1701 						NULL);
1702 				continue;
1703 			}
1704 		}
1705 
1706 		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1707 				  dp->bpf_offload_xdp) && !meta.portid) {
1708 			unsigned int dma_off;
1709 			void *hard_start;
1710 			int act;
1711 
1712 			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1713 
1714 			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1715 					      &pkt_off, &pkt_len);
1716 			switch (act) {
1717 			case XDP_PASS:
1718 				break;
1719 			case XDP_TX:
1720 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1721 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1722 								 tx_ring, rxbuf,
1723 								 dma_off,
1724 								 pkt_len,
1725 								 &xdp_tx_cmpl)))
1726 					trace_xdp_exception(dp->netdev,
1727 							    xdp_prog, act);
1728 				continue;
1729 			default:
1730 				bpf_warn_invalid_xdp_action(act);
1731 				/* fall through */
1732 			case XDP_ABORTED:
1733 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1734 				/* fall through */
1735 			case XDP_DROP:
1736 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1737 						    rxbuf->dma_addr);
1738 				continue;
1739 			}
1740 		}
1741 
1742 		skb = build_skb(rxbuf->frag, true_bufsz);
1743 		if (unlikely(!skb)) {
1744 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1745 			continue;
1746 		}
1747 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1748 		if (unlikely(!new_frag)) {
1749 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1750 			continue;
1751 		}
1752 
1753 		if (likely(!meta.portid)) {
1754 			netdev = dp->netdev;
1755 		} else {
1756 			struct nfp_net *nn;
1757 
1758 			nn = netdev_priv(dp->netdev);
1759 			netdev = nfp_app_repr_get(nn->app, meta.portid);
1760 			if (unlikely(!netdev)) {
1761 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1762 				continue;
1763 			}
1764 			nfp_repr_inc_rx_stats(netdev, pkt_len);
1765 		}
1766 
1767 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1768 
1769 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1770 
1771 		skb_reserve(skb, pkt_off);
1772 		skb_put(skb, pkt_len);
1773 
1774 		skb->mark = meta.mark;
1775 		skb_set_hash(skb, meta.hash, meta.hash_type);
1776 
1777 		skb_record_rx_queue(skb, rx_ring->idx);
1778 		skb->protocol = eth_type_trans(skb, netdev);
1779 
1780 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1781 
1782 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1783 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1784 					       le16_to_cpu(rxd->rxd.vlan));
1785 
1786 		napi_gro_receive(&rx_ring->r_vec->napi, skb);
1787 	}
1788 
1789 	if (xdp_prog) {
1790 		if (tx_ring->wr_ptr_add)
1791 			nfp_net_tx_xmit_more_flush(tx_ring);
1792 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1793 			 !xdp_tx_cmpl)
1794 			if (!nfp_net_xdp_complete(tx_ring))
1795 				pkts_polled = budget;
1796 	}
1797 	rcu_read_unlock();
1798 
1799 	return pkts_polled;
1800 }
1801 
1802 /**
1803  * nfp_net_poll() - napi poll function
1804  * @napi:    NAPI structure
1805  * @budget:  NAPI budget
1806  *
1807  * Return: number of packets polled.
1808  */
1809 static int nfp_net_poll(struct napi_struct *napi, int budget)
1810 {
1811 	struct nfp_net_r_vector *r_vec =
1812 		container_of(napi, struct nfp_net_r_vector, napi);
1813 	unsigned int pkts_polled = 0;
1814 
1815 	if (r_vec->tx_ring)
1816 		nfp_net_tx_complete(r_vec->tx_ring);
1817 	if (r_vec->rx_ring)
1818 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1819 
1820 	if (pkts_polled < budget)
1821 		if (napi_complete_done(napi, pkts_polled))
1822 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1823 
1824 	return pkts_polled;
1825 }
1826 
1827 /* Control device data path
1828  */
1829 
1830 static bool
1831 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1832 		struct sk_buff *skb, bool old)
1833 {
1834 	unsigned int real_len = skb->len, meta_len = 0;
1835 	struct nfp_net_tx_ring *tx_ring;
1836 	struct nfp_net_tx_buf *txbuf;
1837 	struct nfp_net_tx_desc *txd;
1838 	struct nfp_net_dp *dp;
1839 	dma_addr_t dma_addr;
1840 	int wr_idx;
1841 
1842 	dp = &r_vec->nfp_net->dp;
1843 	tx_ring = r_vec->tx_ring;
1844 
1845 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1846 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1847 		goto err_free;
1848 	}
1849 
1850 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1851 		u64_stats_update_begin(&r_vec->tx_sync);
1852 		r_vec->tx_busy++;
1853 		u64_stats_update_end(&r_vec->tx_sync);
1854 		if (!old)
1855 			__skb_queue_tail(&r_vec->queue, skb);
1856 		else
1857 			__skb_queue_head(&r_vec->queue, skb);
1858 		return true;
1859 	}
1860 
1861 	if (nfp_app_ctrl_has_meta(nn->app)) {
1862 		if (unlikely(skb_headroom(skb) < 8)) {
1863 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1864 			goto err_free;
1865 		}
1866 		meta_len = 8;
1867 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1868 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1869 	}
1870 
1871 	/* Start with the head skbuf */
1872 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1873 				  DMA_TO_DEVICE);
1874 	if (dma_mapping_error(dp->dev, dma_addr))
1875 		goto err_dma_warn;
1876 
1877 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1878 
1879 	/* Stash the soft descriptor of the head then initialize it */
1880 	txbuf = &tx_ring->txbufs[wr_idx];
1881 	txbuf->skb = skb;
1882 	txbuf->dma_addr = dma_addr;
1883 	txbuf->fidx = -1;
1884 	txbuf->pkt_cnt = 1;
1885 	txbuf->real_len = real_len;
1886 
1887 	/* Build TX descriptor */
1888 	txd = &tx_ring->txds[wr_idx];
1889 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1890 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1891 	nfp_desc_set_dma_addr(txd, dma_addr);
1892 	txd->data_len = cpu_to_le16(skb->len);
1893 
1894 	txd->flags = 0;
1895 	txd->mss = 0;
1896 	txd->lso_hdrlen = 0;
1897 
1898 	tx_ring->wr_p++;
1899 	tx_ring->wr_ptr_add++;
1900 	nfp_net_tx_xmit_more_flush(tx_ring);
1901 
1902 	return false;
1903 
1904 err_dma_warn:
1905 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1906 err_free:
1907 	u64_stats_update_begin(&r_vec->tx_sync);
1908 	r_vec->tx_errors++;
1909 	u64_stats_update_end(&r_vec->tx_sync);
1910 	dev_kfree_skb_any(skb);
1911 	return false;
1912 }
1913 
1914 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1915 {
1916 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1917 	bool ret;
1918 
1919 	spin_lock_bh(&r_vec->lock);
1920 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1921 	spin_unlock_bh(&r_vec->lock);
1922 
1923 	return ret;
1924 }
1925 
1926 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1927 {
1928 	struct sk_buff *skb;
1929 
1930 	while ((skb = __skb_dequeue(&r_vec->queue)))
1931 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1932 			return;
1933 }
1934 
1935 static bool
1936 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1937 {
1938 	u32 meta_type, meta_tag;
1939 
1940 	if (!nfp_app_ctrl_has_meta(nn->app))
1941 		return !meta_len;
1942 
1943 	if (meta_len != 8)
1944 		return false;
1945 
1946 	meta_type = get_unaligned_be32(data);
1947 	meta_tag = get_unaligned_be32(data + 4);
1948 
1949 	return (meta_type == NFP_NET_META_PORTID &&
1950 		meta_tag == NFP_META_PORT_ID_CTRL);
1951 }
1952 
1953 static bool
1954 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1955 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1956 {
1957 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1958 	struct nfp_net_rx_buf *rxbuf;
1959 	struct nfp_net_rx_desc *rxd;
1960 	dma_addr_t new_dma_addr;
1961 	struct sk_buff *skb;
1962 	void *new_frag;
1963 	int idx;
1964 
1965 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1966 
1967 	rxd = &rx_ring->rxds[idx];
1968 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1969 		return false;
1970 
1971 	/* Memory barrier to ensure that we won't do other reads
1972 	 * before the DD bit.
1973 	 */
1974 	dma_rmb();
1975 
1976 	rx_ring->rd_p++;
1977 
1978 	rxbuf =	&rx_ring->rxbufs[idx];
1979 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1980 	data_len = le16_to_cpu(rxd->rxd.data_len);
1981 	pkt_len = data_len - meta_len;
1982 
1983 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1984 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1985 		pkt_off += meta_len;
1986 	else
1987 		pkt_off += dp->rx_offset;
1988 	meta_off = pkt_off - meta_len;
1989 
1990 	/* Stats update */
1991 	u64_stats_update_begin(&r_vec->rx_sync);
1992 	r_vec->rx_pkts++;
1993 	r_vec->rx_bytes += pkt_len;
1994 	u64_stats_update_end(&r_vec->rx_sync);
1995 
1996 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1997 
1998 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1999 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2000 			   meta_len);
2001 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2002 		return true;
2003 	}
2004 
2005 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2006 	if (unlikely(!skb)) {
2007 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2008 		return true;
2009 	}
2010 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2011 	if (unlikely(!new_frag)) {
2012 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2013 		return true;
2014 	}
2015 
2016 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2017 
2018 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2019 
2020 	skb_reserve(skb, pkt_off);
2021 	skb_put(skb, pkt_len);
2022 
2023 	nfp_app_ctrl_rx(nn->app, skb);
2024 
2025 	return true;
2026 }
2027 
2028 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2029 {
2030 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2031 	struct nfp_net *nn = r_vec->nfp_net;
2032 	struct nfp_net_dp *dp = &nn->dp;
2033 
2034 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2035 		continue;
2036 }
2037 
2038 static void nfp_ctrl_poll(unsigned long arg)
2039 {
2040 	struct nfp_net_r_vector *r_vec = (void *)arg;
2041 
2042 	spin_lock_bh(&r_vec->lock);
2043 	nfp_net_tx_complete(r_vec->tx_ring);
2044 	__nfp_ctrl_tx_queued(r_vec);
2045 	spin_unlock_bh(&r_vec->lock);
2046 
2047 	nfp_ctrl_rx(r_vec);
2048 
2049 	nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2050 }
2051 
2052 /* Setup and Configuration
2053  */
2054 
2055 /**
2056  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2057  * @nn:		NFP Network structure
2058  */
2059 static void nfp_net_vecs_init(struct nfp_net *nn)
2060 {
2061 	struct nfp_net_r_vector *r_vec;
2062 	int r;
2063 
2064 	nn->lsc_handler = nfp_net_irq_lsc;
2065 	nn->exn_handler = nfp_net_irq_exn;
2066 
2067 	for (r = 0; r < nn->max_r_vecs; r++) {
2068 		struct msix_entry *entry;
2069 
2070 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2071 
2072 		r_vec = &nn->r_vecs[r];
2073 		r_vec->nfp_net = nn;
2074 		r_vec->irq_entry = entry->entry;
2075 		r_vec->irq_vector = entry->vector;
2076 
2077 		if (nn->dp.netdev) {
2078 			r_vec->handler = nfp_net_irq_rxtx;
2079 		} else {
2080 			r_vec->handler = nfp_ctrl_irq_rxtx;
2081 
2082 			__skb_queue_head_init(&r_vec->queue);
2083 			spin_lock_init(&r_vec->lock);
2084 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2085 				     (unsigned long)r_vec);
2086 			tasklet_disable(&r_vec->tasklet);
2087 		}
2088 
2089 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2090 	}
2091 }
2092 
2093 /**
2094  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2095  * @tx_ring:   TX ring to free
2096  */
2097 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2098 {
2099 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2100 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2101 
2102 	kfree(tx_ring->txbufs);
2103 
2104 	if (tx_ring->txds)
2105 		dma_free_coherent(dp->dev, tx_ring->size,
2106 				  tx_ring->txds, tx_ring->dma);
2107 
2108 	tx_ring->cnt = 0;
2109 	tx_ring->txbufs = NULL;
2110 	tx_ring->txds = NULL;
2111 	tx_ring->dma = 0;
2112 	tx_ring->size = 0;
2113 }
2114 
2115 /**
2116  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2117  * @dp:        NFP Net data path struct
2118  * @tx_ring:   TX Ring structure to allocate
2119  *
2120  * Return: 0 on success, negative errno otherwise.
2121  */
2122 static int
2123 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2124 {
2125 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2126 	int sz;
2127 
2128 	tx_ring->cnt = dp->txd_cnt;
2129 
2130 	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2131 	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2132 					    &tx_ring->dma, GFP_KERNEL);
2133 	if (!tx_ring->txds)
2134 		goto err_alloc;
2135 
2136 	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2137 	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2138 	if (!tx_ring->txbufs)
2139 		goto err_alloc;
2140 
2141 	if (!tx_ring->is_xdp && dp->netdev)
2142 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2143 				    tx_ring->idx);
2144 
2145 	return 0;
2146 
2147 err_alloc:
2148 	nfp_net_tx_ring_free(tx_ring);
2149 	return -ENOMEM;
2150 }
2151 
2152 static void
2153 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2154 			  struct nfp_net_tx_ring *tx_ring)
2155 {
2156 	unsigned int i;
2157 
2158 	if (!tx_ring->is_xdp)
2159 		return;
2160 
2161 	for (i = 0; i < tx_ring->cnt; i++) {
2162 		if (!tx_ring->txbufs[i].frag)
2163 			return;
2164 
2165 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2166 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2167 	}
2168 }
2169 
2170 static int
2171 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2172 			   struct nfp_net_tx_ring *tx_ring)
2173 {
2174 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2175 	unsigned int i;
2176 
2177 	if (!tx_ring->is_xdp)
2178 		return 0;
2179 
2180 	for (i = 0; i < tx_ring->cnt; i++) {
2181 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2182 		if (!txbufs[i].frag) {
2183 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2184 			return -ENOMEM;
2185 		}
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2192 {
2193 	unsigned int r;
2194 
2195 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2196 			       GFP_KERNEL);
2197 	if (!dp->tx_rings)
2198 		return -ENOMEM;
2199 
2200 	for (r = 0; r < dp->num_tx_rings; r++) {
2201 		int bias = 0;
2202 
2203 		if (r >= dp->num_stack_tx_rings)
2204 			bias = dp->num_stack_tx_rings;
2205 
2206 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2207 				     r, bias);
2208 
2209 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2210 			goto err_free_prev;
2211 
2212 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2213 			goto err_free_ring;
2214 	}
2215 
2216 	return 0;
2217 
2218 err_free_prev:
2219 	while (r--) {
2220 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2221 err_free_ring:
2222 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2223 	}
2224 	kfree(dp->tx_rings);
2225 	return -ENOMEM;
2226 }
2227 
2228 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2229 {
2230 	unsigned int r;
2231 
2232 	for (r = 0; r < dp->num_tx_rings; r++) {
2233 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2234 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2235 	}
2236 
2237 	kfree(dp->tx_rings);
2238 }
2239 
2240 /**
2241  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2242  * @rx_ring:  RX ring to free
2243  */
2244 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2245 {
2246 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2247 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2248 
2249 	kfree(rx_ring->rxbufs);
2250 
2251 	if (rx_ring->rxds)
2252 		dma_free_coherent(dp->dev, rx_ring->size,
2253 				  rx_ring->rxds, rx_ring->dma);
2254 
2255 	rx_ring->cnt = 0;
2256 	rx_ring->rxbufs = NULL;
2257 	rx_ring->rxds = NULL;
2258 	rx_ring->dma = 0;
2259 	rx_ring->size = 0;
2260 }
2261 
2262 /**
2263  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2264  * @dp:	      NFP Net data path struct
2265  * @rx_ring:  RX ring to allocate
2266  *
2267  * Return: 0 on success, negative errno otherwise.
2268  */
2269 static int
2270 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2271 {
2272 	int sz;
2273 
2274 	rx_ring->cnt = dp->rxd_cnt;
2275 	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2276 	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2277 					    &rx_ring->dma, GFP_KERNEL);
2278 	if (!rx_ring->rxds)
2279 		goto err_alloc;
2280 
2281 	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2282 	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2283 	if (!rx_ring->rxbufs)
2284 		goto err_alloc;
2285 
2286 	return 0;
2287 
2288 err_alloc:
2289 	nfp_net_rx_ring_free(rx_ring);
2290 	return -ENOMEM;
2291 }
2292 
2293 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2294 {
2295 	unsigned int r;
2296 
2297 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2298 			       GFP_KERNEL);
2299 	if (!dp->rx_rings)
2300 		return -ENOMEM;
2301 
2302 	for (r = 0; r < dp->num_rx_rings; r++) {
2303 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2304 
2305 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2306 			goto err_free_prev;
2307 
2308 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2309 			goto err_free_ring;
2310 	}
2311 
2312 	return 0;
2313 
2314 err_free_prev:
2315 	while (r--) {
2316 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2317 err_free_ring:
2318 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2319 	}
2320 	kfree(dp->rx_rings);
2321 	return -ENOMEM;
2322 }
2323 
2324 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2325 {
2326 	unsigned int r;
2327 
2328 	for (r = 0; r < dp->num_rx_rings; r++) {
2329 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2330 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2331 	}
2332 
2333 	kfree(dp->rx_rings);
2334 }
2335 
2336 static void
2337 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2338 			    struct nfp_net_r_vector *r_vec, int idx)
2339 {
2340 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2341 	r_vec->tx_ring =
2342 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2343 
2344 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2345 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2346 }
2347 
2348 static int
2349 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2350 		       int idx)
2351 {
2352 	int err;
2353 
2354 	/* Setup NAPI */
2355 	if (nn->dp.netdev)
2356 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2357 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2358 	else
2359 		tasklet_enable(&r_vec->tasklet);
2360 
2361 	snprintf(r_vec->name, sizeof(r_vec->name),
2362 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2363 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2364 			  r_vec);
2365 	if (err) {
2366 		if (nn->dp.netdev)
2367 			netif_napi_del(&r_vec->napi);
2368 		else
2369 			tasklet_disable(&r_vec->tasklet);
2370 
2371 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2372 		return err;
2373 	}
2374 	disable_irq(r_vec->irq_vector);
2375 
2376 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2377 
2378 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2379 	       r_vec->irq_entry);
2380 
2381 	return 0;
2382 }
2383 
2384 static void
2385 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2386 {
2387 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2388 	if (nn->dp.netdev)
2389 		netif_napi_del(&r_vec->napi);
2390 	else
2391 		tasklet_disable(&r_vec->tasklet);
2392 
2393 	free_irq(r_vec->irq_vector, r_vec);
2394 }
2395 
2396 /**
2397  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2398  * @nn:      NFP Net device to reconfigure
2399  */
2400 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2401 {
2402 	int i;
2403 
2404 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2405 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2406 			  get_unaligned_le32(nn->rss_itbl + i));
2407 }
2408 
2409 /**
2410  * nfp_net_rss_write_key() - Write RSS hash key to device
2411  * @nn:      NFP Net device to reconfigure
2412  */
2413 void nfp_net_rss_write_key(struct nfp_net *nn)
2414 {
2415 	int i;
2416 
2417 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2418 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2419 			  get_unaligned_le32(nn->rss_key + i));
2420 }
2421 
2422 /**
2423  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2424  * @nn:      NFP Net device to reconfigure
2425  */
2426 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2427 {
2428 	u8 i;
2429 	u32 factor;
2430 	u32 value;
2431 
2432 	/* Compute factor used to convert coalesce '_usecs' parameters to
2433 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2434 	 * count.
2435 	 */
2436 	factor = nn->me_freq_mhz / 16;
2437 
2438 	/* copy RX interrupt coalesce parameters */
2439 	value = (nn->rx_coalesce_max_frames << 16) |
2440 		(factor * nn->rx_coalesce_usecs);
2441 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2442 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2443 
2444 	/* copy TX interrupt coalesce parameters */
2445 	value = (nn->tx_coalesce_max_frames << 16) |
2446 		(factor * nn->tx_coalesce_usecs);
2447 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2448 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2449 }
2450 
2451 /**
2452  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2453  * @nn:      NFP Net device to reconfigure
2454  * @addr:    MAC address to write
2455  *
2456  * Writes the MAC address from the netdev to the device control BAR.  Does not
2457  * perform the required reconfig.  We do a bit of byte swapping dance because
2458  * firmware is LE.
2459  */
2460 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2461 {
2462 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2463 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2464 }
2465 
2466 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2467 {
2468 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2469 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2470 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2471 
2472 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2473 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2474 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2475 }
2476 
2477 /**
2478  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2479  * @nn:      NFP Net device to reconfigure
2480  */
2481 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2482 {
2483 	u32 new_ctrl, update;
2484 	unsigned int r;
2485 	int err;
2486 
2487 	new_ctrl = nn->dp.ctrl;
2488 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2489 	update = NFP_NET_CFG_UPDATE_GEN;
2490 	update |= NFP_NET_CFG_UPDATE_MSIX;
2491 	update |= NFP_NET_CFG_UPDATE_RING;
2492 
2493 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2494 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2495 
2496 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2497 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2498 
2499 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2500 	err = nfp_net_reconfig(nn, update);
2501 	if (err)
2502 		nn_err(nn, "Could not disable device: %d\n", err);
2503 
2504 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2505 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2506 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2507 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2508 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2509 		nfp_net_vec_clear_ring_data(nn, r);
2510 
2511 	nn->dp.ctrl = new_ctrl;
2512 }
2513 
2514 static void
2515 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2516 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2517 {
2518 	/* Write the DMA address, size and MSI-X info to the device */
2519 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2520 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2521 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2522 }
2523 
2524 static void
2525 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2526 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2527 {
2528 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2529 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2530 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2531 }
2532 
2533 /**
2534  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2535  * @nn:      NFP Net device to reconfigure
2536  */
2537 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2538 {
2539 	u32 bufsz, new_ctrl, update = 0;
2540 	unsigned int r;
2541 	int err;
2542 
2543 	new_ctrl = nn->dp.ctrl;
2544 
2545 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2546 		nfp_net_rss_write_key(nn);
2547 		nfp_net_rss_write_itbl(nn);
2548 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2549 		update |= NFP_NET_CFG_UPDATE_RSS;
2550 	}
2551 
2552 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2553 		nfp_net_coalesce_write_cfg(nn);
2554 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2555 	}
2556 
2557 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2558 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2559 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2560 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2561 
2562 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2563 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2564 
2565 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2566 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2567 
2568 	if (nn->dp.netdev)
2569 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2570 
2571 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2572 
2573 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2574 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2575 
2576 	/* Enable device */
2577 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2578 	update |= NFP_NET_CFG_UPDATE_GEN;
2579 	update |= NFP_NET_CFG_UPDATE_MSIX;
2580 	update |= NFP_NET_CFG_UPDATE_RING;
2581 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2582 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2583 
2584 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2585 	err = nfp_net_reconfig(nn, update);
2586 	if (err) {
2587 		nfp_net_clear_config_and_disable(nn);
2588 		return err;
2589 	}
2590 
2591 	nn->dp.ctrl = new_ctrl;
2592 
2593 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2594 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2595 
2596 	/* Since reconfiguration requests while NFP is down are ignored we
2597 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2598 	 */
2599 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2600 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2601 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2602 		udp_tunnel_get_rx_info(nn->dp.netdev);
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 /**
2609  * nfp_net_close_stack() - Quiesce the stack (part of close)
2610  * @nn:	     NFP Net device to reconfigure
2611  */
2612 static void nfp_net_close_stack(struct nfp_net *nn)
2613 {
2614 	unsigned int r;
2615 
2616 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2617 	netif_carrier_off(nn->dp.netdev);
2618 	nn->link_up = false;
2619 
2620 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2621 		disable_irq(nn->r_vecs[r].irq_vector);
2622 		napi_disable(&nn->r_vecs[r].napi);
2623 	}
2624 
2625 	netif_tx_disable(nn->dp.netdev);
2626 }
2627 
2628 /**
2629  * nfp_net_close_free_all() - Free all runtime resources
2630  * @nn:      NFP Net device to reconfigure
2631  */
2632 static void nfp_net_close_free_all(struct nfp_net *nn)
2633 {
2634 	unsigned int r;
2635 
2636 	nfp_net_tx_rings_free(&nn->dp);
2637 	nfp_net_rx_rings_free(&nn->dp);
2638 
2639 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2640 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2641 
2642 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2643 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2644 }
2645 
2646 /**
2647  * nfp_net_netdev_close() - Called when the device is downed
2648  * @netdev:      netdev structure
2649  */
2650 static int nfp_net_netdev_close(struct net_device *netdev)
2651 {
2652 	struct nfp_net *nn = netdev_priv(netdev);
2653 
2654 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2655 	 */
2656 	nfp_net_close_stack(nn);
2657 
2658 	/* Step 2: Tell NFP
2659 	 */
2660 	nfp_net_clear_config_and_disable(nn);
2661 
2662 	/* Step 3: Free resources
2663 	 */
2664 	nfp_net_close_free_all(nn);
2665 
2666 	nn_dbg(nn, "%s down", netdev->name);
2667 	return 0;
2668 }
2669 
2670 void nfp_ctrl_close(struct nfp_net *nn)
2671 {
2672 	int r;
2673 
2674 	rtnl_lock();
2675 
2676 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2677 		disable_irq(nn->r_vecs[r].irq_vector);
2678 		tasklet_disable(&nn->r_vecs[r].tasklet);
2679 	}
2680 
2681 	nfp_net_clear_config_and_disable(nn);
2682 
2683 	nfp_net_close_free_all(nn);
2684 
2685 	rtnl_unlock();
2686 }
2687 
2688 /**
2689  * nfp_net_open_stack() - Start the device from stack's perspective
2690  * @nn:      NFP Net device to reconfigure
2691  */
2692 static void nfp_net_open_stack(struct nfp_net *nn)
2693 {
2694 	unsigned int r;
2695 
2696 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2697 		napi_enable(&nn->r_vecs[r].napi);
2698 		enable_irq(nn->r_vecs[r].irq_vector);
2699 	}
2700 
2701 	netif_tx_wake_all_queues(nn->dp.netdev);
2702 
2703 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2704 	nfp_net_read_link_status(nn);
2705 }
2706 
2707 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2708 {
2709 	int err, r;
2710 
2711 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2712 				      nn->exn_name, sizeof(nn->exn_name),
2713 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2714 	if (err)
2715 		return err;
2716 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2717 				      nn->lsc_name, sizeof(nn->lsc_name),
2718 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2719 	if (err)
2720 		goto err_free_exn;
2721 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2722 
2723 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2724 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2725 		if (err)
2726 			goto err_cleanup_vec_p;
2727 	}
2728 
2729 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2730 	if (err)
2731 		goto err_cleanup_vec;
2732 
2733 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2734 	if (err)
2735 		goto err_free_rx_rings;
2736 
2737 	for (r = 0; r < nn->max_r_vecs; r++)
2738 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2739 
2740 	return 0;
2741 
2742 err_free_rx_rings:
2743 	nfp_net_rx_rings_free(&nn->dp);
2744 err_cleanup_vec:
2745 	r = nn->dp.num_r_vecs;
2746 err_cleanup_vec_p:
2747 	while (r--)
2748 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2749 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2750 err_free_exn:
2751 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2752 	return err;
2753 }
2754 
2755 static int nfp_net_netdev_open(struct net_device *netdev)
2756 {
2757 	struct nfp_net *nn = netdev_priv(netdev);
2758 	int err;
2759 
2760 	/* Step 1: Allocate resources for rings and the like
2761 	 * - Request interrupts
2762 	 * - Allocate RX and TX ring resources
2763 	 * - Setup initial RSS table
2764 	 */
2765 	err = nfp_net_open_alloc_all(nn);
2766 	if (err)
2767 		return err;
2768 
2769 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2770 	if (err)
2771 		goto err_free_all;
2772 
2773 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2774 	if (err)
2775 		goto err_free_all;
2776 
2777 	/* Step 2: Configure the NFP
2778 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2779 	 * - Write MAC address (in case it changed)
2780 	 * - Set the MTU
2781 	 * - Set the Freelist buffer size
2782 	 * - Enable the FW
2783 	 */
2784 	err = nfp_net_set_config_and_enable(nn);
2785 	if (err)
2786 		goto err_free_all;
2787 
2788 	/* Step 3: Enable for kernel
2789 	 * - put some freelist descriptors on each RX ring
2790 	 * - enable NAPI on each ring
2791 	 * - enable all TX queues
2792 	 * - set link state
2793 	 */
2794 	nfp_net_open_stack(nn);
2795 
2796 	return 0;
2797 
2798 err_free_all:
2799 	nfp_net_close_free_all(nn);
2800 	return err;
2801 }
2802 
2803 int nfp_ctrl_open(struct nfp_net *nn)
2804 {
2805 	int err, r;
2806 
2807 	/* ring dumping depends on vNICs being opened/closed under rtnl */
2808 	rtnl_lock();
2809 
2810 	err = nfp_net_open_alloc_all(nn);
2811 	if (err)
2812 		goto err_unlock;
2813 
2814 	err = nfp_net_set_config_and_enable(nn);
2815 	if (err)
2816 		goto err_free_all;
2817 
2818 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2819 		enable_irq(nn->r_vecs[r].irq_vector);
2820 
2821 	rtnl_unlock();
2822 
2823 	return 0;
2824 
2825 err_free_all:
2826 	nfp_net_close_free_all(nn);
2827 err_unlock:
2828 	rtnl_unlock();
2829 	return err;
2830 }
2831 
2832 static void nfp_net_set_rx_mode(struct net_device *netdev)
2833 {
2834 	struct nfp_net *nn = netdev_priv(netdev);
2835 	u32 new_ctrl;
2836 
2837 	new_ctrl = nn->dp.ctrl;
2838 
2839 	if (netdev->flags & IFF_PROMISC) {
2840 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2841 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2842 		else
2843 			nn_warn(nn, "FW does not support promiscuous mode\n");
2844 	} else {
2845 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2846 	}
2847 
2848 	if (new_ctrl == nn->dp.ctrl)
2849 		return;
2850 
2851 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2852 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2853 
2854 	nn->dp.ctrl = new_ctrl;
2855 }
2856 
2857 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2858 {
2859 	int i;
2860 
2861 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
2862 		nn->rss_itbl[i] =
2863 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2864 }
2865 
2866 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2867 {
2868 	struct nfp_net_dp new_dp = *dp;
2869 
2870 	*dp = nn->dp;
2871 	nn->dp = new_dp;
2872 
2873 	nn->dp.netdev->mtu = new_dp.mtu;
2874 
2875 	if (!netif_is_rxfh_configured(nn->dp.netdev))
2876 		nfp_net_rss_init_itbl(nn);
2877 }
2878 
2879 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2880 {
2881 	unsigned int r;
2882 	int err;
2883 
2884 	nfp_net_dp_swap(nn, dp);
2885 
2886 	for (r = 0; r <	nn->max_r_vecs; r++)
2887 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2888 
2889 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2890 	if (err)
2891 		return err;
2892 
2893 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2894 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
2895 						   nn->dp.num_stack_tx_rings);
2896 		if (err)
2897 			return err;
2898 	}
2899 
2900 	return nfp_net_set_config_and_enable(nn);
2901 }
2902 
2903 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2904 {
2905 	struct nfp_net_dp *new;
2906 
2907 	new = kmalloc(sizeof(*new), GFP_KERNEL);
2908 	if (!new)
2909 		return NULL;
2910 
2911 	*new = nn->dp;
2912 
2913 	/* Clear things which need to be recomputed */
2914 	new->fl_bufsz = 0;
2915 	new->tx_rings = NULL;
2916 	new->rx_rings = NULL;
2917 	new->num_r_vecs = 0;
2918 	new->num_stack_tx_rings = 0;
2919 
2920 	return new;
2921 }
2922 
2923 static int
2924 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2925 		     struct netlink_ext_ack *extack)
2926 {
2927 	/* XDP-enabled tests */
2928 	if (!dp->xdp_prog)
2929 		return 0;
2930 	if (dp->fl_bufsz > PAGE_SIZE) {
2931 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2932 		return -EINVAL;
2933 	}
2934 	if (dp->num_tx_rings > nn->max_tx_rings) {
2935 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2936 		return -EINVAL;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2943 			  struct netlink_ext_ack *extack)
2944 {
2945 	int r, err;
2946 
2947 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2948 
2949 	dp->num_stack_tx_rings = dp->num_tx_rings;
2950 	if (dp->xdp_prog)
2951 		dp->num_stack_tx_rings -= dp->num_rx_rings;
2952 
2953 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2954 
2955 	err = nfp_net_check_config(nn, dp, extack);
2956 	if (err)
2957 		goto exit_free_dp;
2958 
2959 	if (!netif_running(dp->netdev)) {
2960 		nfp_net_dp_swap(nn, dp);
2961 		err = 0;
2962 		goto exit_free_dp;
2963 	}
2964 
2965 	/* Prepare new rings */
2966 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2967 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2968 		if (err) {
2969 			dp->num_r_vecs = r;
2970 			goto err_cleanup_vecs;
2971 		}
2972 	}
2973 
2974 	err = nfp_net_rx_rings_prepare(nn, dp);
2975 	if (err)
2976 		goto err_cleanup_vecs;
2977 
2978 	err = nfp_net_tx_rings_prepare(nn, dp);
2979 	if (err)
2980 		goto err_free_rx;
2981 
2982 	/* Stop device, swap in new rings, try to start the firmware */
2983 	nfp_net_close_stack(nn);
2984 	nfp_net_clear_config_and_disable(nn);
2985 
2986 	err = nfp_net_dp_swap_enable(nn, dp);
2987 	if (err) {
2988 		int err2;
2989 
2990 		nfp_net_clear_config_and_disable(nn);
2991 
2992 		/* Try with old configuration and old rings */
2993 		err2 = nfp_net_dp_swap_enable(nn, dp);
2994 		if (err2)
2995 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2996 			       err, err2);
2997 	}
2998 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2999 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3000 
3001 	nfp_net_rx_rings_free(dp);
3002 	nfp_net_tx_rings_free(dp);
3003 
3004 	nfp_net_open_stack(nn);
3005 exit_free_dp:
3006 	kfree(dp);
3007 
3008 	return err;
3009 
3010 err_free_rx:
3011 	nfp_net_rx_rings_free(dp);
3012 err_cleanup_vecs:
3013 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3014 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3015 	kfree(dp);
3016 	return err;
3017 }
3018 
3019 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3020 {
3021 	struct nfp_net *nn = netdev_priv(netdev);
3022 	struct nfp_net_dp *dp;
3023 
3024 	dp = nfp_net_clone_dp(nn);
3025 	if (!dp)
3026 		return -ENOMEM;
3027 
3028 	dp->mtu = new_mtu;
3029 
3030 	return nfp_net_ring_reconfig(nn, dp, NULL);
3031 }
3032 
3033 static int
3034 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3035 {
3036 	struct nfp_net *nn = netdev_priv(netdev);
3037 
3038 	/* Priority tagged packets with vlan id 0 are processed by the
3039 	 * NFP as untagged packets
3040 	 */
3041 	if (!vid)
3042 		return 0;
3043 
3044 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3045 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3046 
3047 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3048 }
3049 
3050 static int
3051 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3052 {
3053 	struct nfp_net *nn = netdev_priv(netdev);
3054 
3055 	/* Priority tagged packets with vlan id 0 are processed by the
3056 	 * NFP as untagged packets
3057 	 */
3058 	if (!vid)
3059 		return 0;
3060 
3061 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3062 	nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3063 
3064 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3065 }
3066 
3067 static void nfp_net_stat64(struct net_device *netdev,
3068 			   struct rtnl_link_stats64 *stats)
3069 {
3070 	struct nfp_net *nn = netdev_priv(netdev);
3071 	int r;
3072 
3073 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
3074 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3075 		u64 data[3];
3076 		unsigned int start;
3077 
3078 		do {
3079 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3080 			data[0] = r_vec->rx_pkts;
3081 			data[1] = r_vec->rx_bytes;
3082 			data[2] = r_vec->rx_drops;
3083 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3084 		stats->rx_packets += data[0];
3085 		stats->rx_bytes += data[1];
3086 		stats->rx_dropped += data[2];
3087 
3088 		do {
3089 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3090 			data[0] = r_vec->tx_pkts;
3091 			data[1] = r_vec->tx_bytes;
3092 			data[2] = r_vec->tx_errors;
3093 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3094 		stats->tx_packets += data[0];
3095 		stats->tx_bytes += data[1];
3096 		stats->tx_errors += data[2];
3097 	}
3098 }
3099 
3100 static int nfp_net_set_features(struct net_device *netdev,
3101 				netdev_features_t features)
3102 {
3103 	netdev_features_t changed = netdev->features ^ features;
3104 	struct nfp_net *nn = netdev_priv(netdev);
3105 	u32 new_ctrl;
3106 	int err;
3107 
3108 	/* Assume this is not called with features we have not advertised */
3109 
3110 	new_ctrl = nn->dp.ctrl;
3111 
3112 	if (changed & NETIF_F_RXCSUM) {
3113 		if (features & NETIF_F_RXCSUM)
3114 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3115 		else
3116 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3117 	}
3118 
3119 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3120 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3121 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3122 		else
3123 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3124 	}
3125 
3126 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3127 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3128 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3129 					      NFP_NET_CFG_CTRL_LSO;
3130 		else
3131 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3132 	}
3133 
3134 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3135 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3136 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3137 		else
3138 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3139 	}
3140 
3141 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3142 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3143 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3144 		else
3145 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3146 	}
3147 
3148 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3149 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3150 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3151 		else
3152 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3153 	}
3154 
3155 	if (changed & NETIF_F_SG) {
3156 		if (features & NETIF_F_SG)
3157 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3158 		else
3159 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3160 	}
3161 
3162 	if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3163 		nn_err(nn, "Cannot disable HW TC offload while in use\n");
3164 		return -EBUSY;
3165 	}
3166 
3167 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3168 	       netdev->features, features, changed);
3169 
3170 	if (new_ctrl == nn->dp.ctrl)
3171 		return 0;
3172 
3173 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3174 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3175 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3176 	if (err)
3177 		return err;
3178 
3179 	nn->dp.ctrl = new_ctrl;
3180 
3181 	return 0;
3182 }
3183 
3184 static netdev_features_t
3185 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3186 		       netdev_features_t features)
3187 {
3188 	u8 l4_hdr;
3189 
3190 	/* We can't do TSO over double tagged packets (802.1AD) */
3191 	features &= vlan_features_check(skb, features);
3192 
3193 	if (!skb->encapsulation)
3194 		return features;
3195 
3196 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3197 	if (skb_is_gso(skb)) {
3198 		u32 hdrlen;
3199 
3200 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3201 			inner_tcp_hdrlen(skb);
3202 
3203 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3204 			features &= ~NETIF_F_GSO_MASK;
3205 	}
3206 
3207 	/* VXLAN/GRE check */
3208 	switch (vlan_get_protocol(skb)) {
3209 	case htons(ETH_P_IP):
3210 		l4_hdr = ip_hdr(skb)->protocol;
3211 		break;
3212 	case htons(ETH_P_IPV6):
3213 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3214 		break;
3215 	default:
3216 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3217 	}
3218 
3219 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3220 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3221 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3222 	    (l4_hdr == IPPROTO_UDP &&
3223 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3224 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3225 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3226 
3227 	return features;
3228 }
3229 
3230 /**
3231  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3232  * @nn:   NFP Net device to reconfigure
3233  * @idx:  Index into the port table where new port should be written
3234  * @port: UDP port to configure (pass zero to remove VXLAN port)
3235  */
3236 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3237 {
3238 	int i;
3239 
3240 	nn->vxlan_ports[idx] = port;
3241 
3242 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3243 		return;
3244 
3245 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3246 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3247 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3248 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3249 			  be16_to_cpu(nn->vxlan_ports[i]));
3250 
3251 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3252 }
3253 
3254 /**
3255  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3256  * @nn:   NFP Network structure
3257  * @port: UDP port to look for
3258  *
3259  * Return: if the port is already in the table -- it's position;
3260  *	   if the port is not in the table -- free position to use;
3261  *	   if the table is full -- -ENOSPC.
3262  */
3263 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3264 {
3265 	int i, free_idx = -ENOSPC;
3266 
3267 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3268 		if (nn->vxlan_ports[i] == port)
3269 			return i;
3270 		if (!nn->vxlan_usecnt[i])
3271 			free_idx = i;
3272 	}
3273 
3274 	return free_idx;
3275 }
3276 
3277 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3278 				   struct udp_tunnel_info *ti)
3279 {
3280 	struct nfp_net *nn = netdev_priv(netdev);
3281 	int idx;
3282 
3283 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3284 		return;
3285 
3286 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3287 	if (idx == -ENOSPC)
3288 		return;
3289 
3290 	if (!nn->vxlan_usecnt[idx]++)
3291 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3292 }
3293 
3294 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3295 				   struct udp_tunnel_info *ti)
3296 {
3297 	struct nfp_net *nn = netdev_priv(netdev);
3298 	int idx;
3299 
3300 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3301 		return;
3302 
3303 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3304 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3305 		return;
3306 
3307 	if (!--nn->vxlan_usecnt[idx])
3308 		nfp_net_set_vxlan_port(nn, idx, 0);
3309 }
3310 
3311 static int
3312 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3313 		      struct netlink_ext_ack *extack)
3314 {
3315 	struct nfp_net_dp *dp;
3316 
3317 	if (!prog == !nn->dp.xdp_prog) {
3318 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3319 		return 0;
3320 	}
3321 
3322 	dp = nfp_net_clone_dp(nn);
3323 	if (!dp)
3324 		return -ENOMEM;
3325 
3326 	dp->xdp_prog = prog;
3327 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3328 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3329 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3330 
3331 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3332 	return nfp_net_ring_reconfig(nn, dp, extack);
3333 }
3334 
3335 static int
3336 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3337 		  struct netlink_ext_ack *extack)
3338 {
3339 	struct bpf_prog *drv_prog, *offload_prog;
3340 	int err;
3341 
3342 	if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3343 		return -EBUSY;
3344 
3345 	/* Load both when no flags set to allow easy activation of driver path
3346 	 * when program is replaced by one which can't be offloaded.
3347 	 */
3348 	drv_prog     = flags & XDP_FLAGS_HW_MODE  ? NULL : prog;
3349 	offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3350 
3351 	err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3352 	if (err)
3353 		return err;
3354 
3355 	err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3356 	if (err && flags & XDP_FLAGS_HW_MODE)
3357 		return err;
3358 
3359 	if (nn->xdp_prog)
3360 		bpf_prog_put(nn->xdp_prog);
3361 	nn->xdp_prog = prog;
3362 	nn->xdp_flags = flags;
3363 
3364 	return 0;
3365 }
3366 
3367 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3368 {
3369 	struct nfp_net *nn = netdev_priv(netdev);
3370 
3371 	switch (xdp->command) {
3372 	case XDP_SETUP_PROG:
3373 	case XDP_SETUP_PROG_HW:
3374 		return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3375 					 xdp->extack);
3376 	case XDP_QUERY_PROG:
3377 		xdp->prog_attached = !!nn->xdp_prog;
3378 		if (nn->dp.bpf_offload_xdp)
3379 			xdp->prog_attached = XDP_ATTACHED_HW;
3380 		xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3381 		return 0;
3382 	default:
3383 		return -EINVAL;
3384 	}
3385 }
3386 
3387 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3388 {
3389 	struct nfp_net *nn = netdev_priv(netdev);
3390 	struct sockaddr *saddr = addr;
3391 	int err;
3392 
3393 	err = eth_prepare_mac_addr_change(netdev, addr);
3394 	if (err)
3395 		return err;
3396 
3397 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3398 
3399 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3400 	if (err)
3401 		return err;
3402 
3403 	eth_commit_mac_addr_change(netdev, addr);
3404 
3405 	return 0;
3406 }
3407 
3408 const struct net_device_ops nfp_net_netdev_ops = {
3409 	.ndo_open		= nfp_net_netdev_open,
3410 	.ndo_stop		= nfp_net_netdev_close,
3411 	.ndo_start_xmit		= nfp_net_tx,
3412 	.ndo_get_stats64	= nfp_net_stat64,
3413 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3414 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3415 	.ndo_setup_tc		= nfp_port_setup_tc,
3416 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3417 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3418 	.ndo_change_mtu		= nfp_net_change_mtu,
3419 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3420 	.ndo_set_features	= nfp_net_set_features,
3421 	.ndo_features_check	= nfp_net_features_check,
3422 	.ndo_get_phys_port_name	= nfp_port_get_phys_port_name,
3423 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3424 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3425 	.ndo_xdp		= nfp_net_xdp,
3426 };
3427 
3428 /**
3429  * nfp_net_info() - Print general info about the NIC
3430  * @nn:      NFP Net device to reconfigure
3431  */
3432 void nfp_net_info(struct nfp_net *nn)
3433 {
3434 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3435 		nn->dp.is_vf ? "VF " : "",
3436 		nn->dp.num_tx_rings, nn->max_tx_rings,
3437 		nn->dp.num_rx_rings, nn->max_rx_rings);
3438 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3439 		nn->fw_ver.resv, nn->fw_ver.class,
3440 		nn->fw_ver.major, nn->fw_ver.minor,
3441 		nn->max_mtu);
3442 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3443 		nn->cap,
3444 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3445 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3446 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3447 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3448 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3449 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3450 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3451 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3452 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3453 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3454 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3455 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3456 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3457 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3458 		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3459 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3460 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3461 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3462 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3463 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3464 						      "RXCSUM_COMPLETE " : "",
3465 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3466 		nfp_app_extra_cap(nn->app, nn));
3467 }
3468 
3469 /**
3470  * nfp_net_alloc() - Allocate netdev and related structure
3471  * @pdev:         PCI device
3472  * @needs_netdev: Whether to allocate a netdev for this vNIC
3473  * @max_tx_rings: Maximum number of TX rings supported by device
3474  * @max_rx_rings: Maximum number of RX rings supported by device
3475  *
3476  * This function allocates a netdev device and fills in the initial
3477  * part of the @struct nfp_net structure.  In case of control device
3478  * nfp_net structure is allocated without the netdev.
3479  *
3480  * Return: NFP Net device structure, or ERR_PTR on error.
3481  */
3482 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3483 			      unsigned int max_tx_rings,
3484 			      unsigned int max_rx_rings)
3485 {
3486 	struct nfp_net *nn;
3487 
3488 	if (needs_netdev) {
3489 		struct net_device *netdev;
3490 
3491 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3492 					    max_tx_rings, max_rx_rings);
3493 		if (!netdev)
3494 			return ERR_PTR(-ENOMEM);
3495 
3496 		SET_NETDEV_DEV(netdev, &pdev->dev);
3497 		nn = netdev_priv(netdev);
3498 		nn->dp.netdev = netdev;
3499 	} else {
3500 		nn = vzalloc(sizeof(*nn));
3501 		if (!nn)
3502 			return ERR_PTR(-ENOMEM);
3503 	}
3504 
3505 	nn->dp.dev = &pdev->dev;
3506 	nn->pdev = pdev;
3507 
3508 	nn->max_tx_rings = max_tx_rings;
3509 	nn->max_rx_rings = max_rx_rings;
3510 
3511 	nn->dp.num_tx_rings = min_t(unsigned int,
3512 				    max_tx_rings, num_online_cpus());
3513 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3514 				 netif_get_num_default_rss_queues());
3515 
3516 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3517 	nn->dp.num_r_vecs = min_t(unsigned int,
3518 				  nn->dp.num_r_vecs, num_online_cpus());
3519 
3520 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3521 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3522 
3523 	spin_lock_init(&nn->reconfig_lock);
3524 	spin_lock_init(&nn->link_status_lock);
3525 
3526 	setup_timer(&nn->reconfig_timer,
3527 		    nfp_net_reconfig_timer, (unsigned long)nn);
3528 
3529 	return nn;
3530 }
3531 
3532 /**
3533  * nfp_net_free() - Undo what @nfp_net_alloc() did
3534  * @nn:      NFP Net device to reconfigure
3535  */
3536 void nfp_net_free(struct nfp_net *nn)
3537 {
3538 	if (nn->xdp_prog)
3539 		bpf_prog_put(nn->xdp_prog);
3540 
3541 	if (nn->dp.netdev)
3542 		free_netdev(nn->dp.netdev);
3543 	else
3544 		vfree(nn);
3545 }
3546 
3547 /**
3548  * nfp_net_rss_key_sz() - Get current size of the RSS key
3549  * @nn:		NFP Net device instance
3550  *
3551  * Return: size of the RSS key for currently selected hash function.
3552  */
3553 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3554 {
3555 	switch (nn->rss_hfunc) {
3556 	case ETH_RSS_HASH_TOP:
3557 		return NFP_NET_CFG_RSS_KEY_SZ;
3558 	case ETH_RSS_HASH_XOR:
3559 		return 0;
3560 	case ETH_RSS_HASH_CRC32:
3561 		return 4;
3562 	}
3563 
3564 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3565 	return 0;
3566 }
3567 
3568 /**
3569  * nfp_net_rss_init() - Set the initial RSS parameters
3570  * @nn:	     NFP Net device to reconfigure
3571  */
3572 static void nfp_net_rss_init(struct nfp_net *nn)
3573 {
3574 	unsigned long func_bit, rss_cap_hfunc;
3575 	u32 reg;
3576 
3577 	/* Read the RSS function capability and select first supported func */
3578 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3579 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3580 	if (!rss_cap_hfunc)
3581 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3582 					  NFP_NET_CFG_RSS_TOEPLITZ);
3583 
3584 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3585 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3586 		dev_warn(nn->dp.dev,
3587 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3588 		func_bit = ETH_RSS_HASH_TOP_BIT;
3589 	}
3590 	nn->rss_hfunc = 1 << func_bit;
3591 
3592 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3593 
3594 	nfp_net_rss_init_itbl(nn);
3595 
3596 	/* Enable IPv4/IPv6 TCP by default */
3597 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3598 		      NFP_NET_CFG_RSS_IPV6_TCP |
3599 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3600 		      NFP_NET_CFG_RSS_MASK;
3601 }
3602 
3603 /**
3604  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3605  * @nn:	     NFP Net device to reconfigure
3606  */
3607 static void nfp_net_irqmod_init(struct nfp_net *nn)
3608 {
3609 	nn->rx_coalesce_usecs      = 50;
3610 	nn->rx_coalesce_max_frames = 64;
3611 	nn->tx_coalesce_usecs      = 50;
3612 	nn->tx_coalesce_max_frames = 64;
3613 }
3614 
3615 static void nfp_net_netdev_init(struct nfp_net *nn)
3616 {
3617 	struct net_device *netdev = nn->dp.netdev;
3618 
3619 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3620 
3621 	netdev->mtu = nn->dp.mtu;
3622 
3623 	/* Advertise/enable offloads based on capabilities
3624 	 *
3625 	 * Note: netdev->features show the currently enabled features
3626 	 * and netdev->hw_features advertises which features are
3627 	 * supported.  By default we enable most features.
3628 	 */
3629 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3630 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3631 
3632 	netdev->hw_features = NETIF_F_HIGHDMA;
3633 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3634 		netdev->hw_features |= NETIF_F_RXCSUM;
3635 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3636 	}
3637 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3638 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3639 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3640 	}
3641 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3642 		netdev->hw_features |= NETIF_F_SG;
3643 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3644 	}
3645 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3646 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3647 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3648 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3649 					 NFP_NET_CFG_CTRL_LSO;
3650 	}
3651 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3652 		netdev->hw_features |= NETIF_F_RXHASH;
3653 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3654 	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3655 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3656 			netdev->hw_features |= NETIF_F_GSO_GRE |
3657 					       NETIF_F_GSO_UDP_TUNNEL;
3658 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3659 
3660 		netdev->hw_enc_features = netdev->hw_features;
3661 	}
3662 
3663 	netdev->vlan_features = netdev->hw_features;
3664 
3665 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3666 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3667 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3668 	}
3669 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3670 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3671 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3672 		} else {
3673 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3674 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3675 		}
3676 	}
3677 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3678 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3679 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3680 	}
3681 
3682 	netdev->features = netdev->hw_features;
3683 
3684 	if (nfp_app_has_tc(nn->app))
3685 		netdev->hw_features |= NETIF_F_HW_TC;
3686 
3687 	/* Advertise but disable TSO by default. */
3688 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3689 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3690 
3691 	/* Finalise the netdev setup */
3692 	netdev->netdev_ops = &nfp_net_netdev_ops;
3693 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3694 
3695 	SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3696 
3697 	/* MTU range: 68 - hw-specific max */
3698 	netdev->min_mtu = ETH_MIN_MTU;
3699 	netdev->max_mtu = nn->max_mtu;
3700 
3701 	netif_carrier_off(netdev);
3702 
3703 	nfp_net_set_ethtool_ops(netdev);
3704 }
3705 
3706 /**
3707  * nfp_net_init() - Initialise/finalise the nfp_net structure
3708  * @nn:		NFP Net device structure
3709  *
3710  * Return: 0 on success or negative errno on error.
3711  */
3712 int nfp_net_init(struct nfp_net *nn)
3713 {
3714 	int err;
3715 
3716 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3717 
3718 	/* Get some of the read-only fields from the BAR */
3719 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3720 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3721 
3722 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3723 	 * we allow use of non-chained metadata if RSS(v1) is the only
3724 	 * advertised capability requiring metadata.
3725 	 */
3726 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3727 					 !nn->dp.netdev ||
3728 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3729 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3730 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3731 	 * it has the same meaning as RSSv2.
3732 	 */
3733 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3734 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3735 
3736 	/* Determine RX packet/metadata boundary offset */
3737 	if (nn->fw_ver.major >= 2) {
3738 		u32 reg;
3739 
3740 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3741 		if (reg > NFP_NET_MAX_PREPEND) {
3742 			nn_err(nn, "Invalid rx offset: %d\n", reg);
3743 			return -EINVAL;
3744 		}
3745 		nn->dp.rx_offset = reg;
3746 	} else {
3747 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3748 	}
3749 
3750 	/* Set default MTU and Freelist buffer size */
3751 	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3752 		nn->dp.mtu = nn->max_mtu;
3753 	else
3754 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3755 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3756 
3757 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3758 		nfp_net_rss_init(nn);
3759 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3760 					 NFP_NET_CFG_CTRL_RSS;
3761 	}
3762 
3763 	/* Allow L2 Broadcast and Multicast through by default, if supported */
3764 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3765 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3766 	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3767 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3768 
3769 	/* Allow IRQ moderation, if supported */
3770 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3771 		nfp_net_irqmod_init(nn);
3772 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3773 	}
3774 
3775 	if (nn->dp.netdev)
3776 		nfp_net_netdev_init(nn);
3777 
3778 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
3779 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3780 
3781 	/* Make sure the FW knows the netdev is supposed to be disabled here */
3782 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3783 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3784 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3785 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3786 				   NFP_NET_CFG_UPDATE_GEN);
3787 	if (err)
3788 		return err;
3789 
3790 	nfp_net_vecs_init(nn);
3791 
3792 	if (!nn->dp.netdev)
3793 		return 0;
3794 	return register_netdev(nn->dp.netdev);
3795 }
3796 
3797 /**
3798  * nfp_net_clean() - Undo what nfp_net_init() did.
3799  * @nn:		NFP Net device structure
3800  */
3801 void nfp_net_clean(struct nfp_net *nn)
3802 {
3803 	if (!nn->dp.netdev)
3804 		return;
3805 
3806 	unregister_netdev(nn->dp.netdev);
3807 }
3808