1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/msi.h> 31 #include <linux/ethtool.h> 32 #include <linux/log2.h> 33 #include <linux/if_vlan.h> 34 #include <linux/if_bridge.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 #include <net/xdp_sock_drv.h> 42 43 #include "nfpcore/nfp_dev.h" 44 #include "nfpcore/nfp_nsp.h" 45 #include "ccm.h" 46 #include "nfp_app.h" 47 #include "nfp_net_ctrl.h" 48 #include "nfp_net.h" 49 #include "nfp_net_dp.h" 50 #include "nfp_net_sriov.h" 51 #include "nfp_net_xsk.h" 52 #include "nfp_port.h" 53 #include "crypto/crypto.h" 54 #include "crypto/fw.h" 55 56 /** 57 * nfp_net_get_fw_version() - Read and parse the FW version 58 * @fw_ver: Output fw_version structure to read to 59 * @ctrl_bar: Mapped address of the control BAR 60 */ 61 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 62 void __iomem *ctrl_bar) 63 { 64 u32 reg; 65 66 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 67 put_unaligned_le32(reg, fw_ver); 68 } 69 70 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 71 { 72 queue &= dev_info->qc_idx_mask; 73 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 74 } 75 76 /* Firmware reconfig 77 * 78 * Firmware reconfig may take a while so we have two versions of it - 79 * synchronous and asynchronous (posted). All synchronous callers are holding 80 * RTNL so we don't have to worry about serializing them. 81 */ 82 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 83 { 84 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 85 /* ensure update is written before pinging HW */ 86 nn_pci_flush(nn); 87 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 88 nn->reconfig_in_progress_update = update; 89 } 90 91 /* Pass 0 as update to run posted reconfigs. */ 92 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 93 { 94 update |= nn->reconfig_posted; 95 nn->reconfig_posted = 0; 96 97 nfp_net_reconfig_start(nn, update); 98 99 nn->reconfig_timer_active = true; 100 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 101 } 102 103 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 104 { 105 u32 reg; 106 107 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 108 if (reg == 0) 109 return true; 110 if (reg & NFP_NET_CFG_UPDATE_ERR) { 111 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 112 reg, nn->reconfig_in_progress_update, 113 nn_readl(nn, NFP_NET_CFG_CTRL)); 114 return true; 115 } else if (last_check) { 116 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 117 reg, nn->reconfig_in_progress_update, 118 nn_readl(nn, NFP_NET_CFG_CTRL)); 119 return true; 120 } 121 122 return false; 123 } 124 125 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 126 { 127 bool timed_out = false; 128 int i; 129 130 /* Poll update field, waiting for NFP to ack the config. 131 * Do an opportunistic wait-busy loop, afterward sleep. 132 */ 133 for (i = 0; i < 50; i++) { 134 if (nfp_net_reconfig_check_done(nn, false)) 135 return false; 136 udelay(4); 137 } 138 139 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 140 usleep_range(250, 500); 141 timed_out = time_is_before_eq_jiffies(deadline); 142 } 143 144 return timed_out; 145 } 146 147 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 148 { 149 if (__nfp_net_reconfig_wait(nn, deadline)) 150 return -EIO; 151 152 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 153 return -EIO; 154 155 return 0; 156 } 157 158 static void nfp_net_reconfig_timer(struct timer_list *t) 159 { 160 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 161 162 spin_lock_bh(&nn->reconfig_lock); 163 164 nn->reconfig_timer_active = false; 165 166 /* If sync caller is present it will take over from us */ 167 if (nn->reconfig_sync_present) 168 goto done; 169 170 /* Read reconfig status and report errors */ 171 nfp_net_reconfig_check_done(nn, true); 172 173 if (nn->reconfig_posted) 174 nfp_net_reconfig_start_async(nn, 0); 175 done: 176 spin_unlock_bh(&nn->reconfig_lock); 177 } 178 179 /** 180 * nfp_net_reconfig_post() - Post async reconfig request 181 * @nn: NFP Net device to reconfigure 182 * @update: The value for the update field in the BAR config 183 * 184 * Record FW reconfiguration request. Reconfiguration will be kicked off 185 * whenever reconfiguration machinery is idle. Multiple requests can be 186 * merged together! 187 */ 188 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 189 { 190 spin_lock_bh(&nn->reconfig_lock); 191 192 /* Sync caller will kick off async reconf when it's done, just post */ 193 if (nn->reconfig_sync_present) { 194 nn->reconfig_posted |= update; 195 goto done; 196 } 197 198 /* Opportunistically check if the previous command is done */ 199 if (!nn->reconfig_timer_active || 200 nfp_net_reconfig_check_done(nn, false)) 201 nfp_net_reconfig_start_async(nn, update); 202 else 203 nn->reconfig_posted |= update; 204 done: 205 spin_unlock_bh(&nn->reconfig_lock); 206 } 207 208 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 209 { 210 bool cancelled_timer = false; 211 u32 pre_posted_requests; 212 213 spin_lock_bh(&nn->reconfig_lock); 214 215 WARN_ON(nn->reconfig_sync_present); 216 nn->reconfig_sync_present = true; 217 218 if (nn->reconfig_timer_active) { 219 nn->reconfig_timer_active = false; 220 cancelled_timer = true; 221 } 222 pre_posted_requests = nn->reconfig_posted; 223 nn->reconfig_posted = 0; 224 225 spin_unlock_bh(&nn->reconfig_lock); 226 227 if (cancelled_timer) { 228 del_timer_sync(&nn->reconfig_timer); 229 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 230 } 231 232 /* Run the posted reconfigs which were issued before we started */ 233 if (pre_posted_requests) { 234 nfp_net_reconfig_start(nn, pre_posted_requests); 235 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 236 } 237 } 238 239 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 240 { 241 nfp_net_reconfig_sync_enter(nn); 242 243 spin_lock_bh(&nn->reconfig_lock); 244 nn->reconfig_sync_present = false; 245 spin_unlock_bh(&nn->reconfig_lock); 246 } 247 248 /** 249 * __nfp_net_reconfig() - Reconfigure the firmware 250 * @nn: NFP Net device to reconfigure 251 * @update: The value for the update field in the BAR config 252 * 253 * Write the update word to the BAR and ping the reconfig queue. The 254 * poll until the firmware has acknowledged the update by zeroing the 255 * update word. 256 * 257 * Return: Negative errno on error, 0 on success 258 */ 259 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 260 { 261 int ret; 262 263 nfp_net_reconfig_sync_enter(nn); 264 265 nfp_net_reconfig_start(nn, update); 266 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 267 268 spin_lock_bh(&nn->reconfig_lock); 269 270 if (nn->reconfig_posted) 271 nfp_net_reconfig_start_async(nn, 0); 272 273 nn->reconfig_sync_present = false; 274 275 spin_unlock_bh(&nn->reconfig_lock); 276 277 return ret; 278 } 279 280 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 281 { 282 int ret; 283 284 nn_ctrl_bar_lock(nn); 285 ret = __nfp_net_reconfig(nn, update); 286 nn_ctrl_bar_unlock(nn); 287 288 return ret; 289 } 290 291 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 292 { 293 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 294 nn_err(nn, "mailbox too small for %u of data (%u)\n", 295 data_size, nn->tlv_caps.mbox_len); 296 return -EIO; 297 } 298 299 nn_ctrl_bar_lock(nn); 300 return 0; 301 } 302 303 /** 304 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 305 * @nn: NFP Net device to reconfigure 306 * @mbox_cmd: The value for the mailbox command 307 * 308 * Helper function for mailbox updates 309 * 310 * Return: Negative errno on error, 0 on success 311 */ 312 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 313 { 314 u32 mbox = nn->tlv_caps.mbox_off; 315 int ret; 316 317 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 318 319 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 320 if (ret) { 321 nn_err(nn, "Mailbox update error\n"); 322 return ret; 323 } 324 325 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 326 } 327 328 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 329 { 330 u32 mbox = nn->tlv_caps.mbox_off; 331 332 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 333 334 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 335 } 336 337 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 338 { 339 u32 mbox = nn->tlv_caps.mbox_off; 340 341 nfp_net_reconfig_wait_posted(nn); 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 int ret; 349 350 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 351 nn_ctrl_bar_unlock(nn); 352 return ret; 353 } 354 355 /* Interrupt configuration and handling 356 */ 357 358 /** 359 * nfp_net_irqs_alloc() - allocates MSI-X irqs 360 * @pdev: PCI device structure 361 * @irq_entries: Array to be initialized and used to hold the irq entries 362 * @min_irqs: Minimal acceptable number of interrupts 363 * @wanted_irqs: Target number of interrupts to allocate 364 * 365 * Return: Number of irqs obtained or 0 on error. 366 */ 367 unsigned int 368 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 369 unsigned int min_irqs, unsigned int wanted_irqs) 370 { 371 unsigned int i; 372 int got_irqs; 373 374 for (i = 0; i < wanted_irqs; i++) 375 irq_entries[i].entry = i; 376 377 got_irqs = pci_enable_msix_range(pdev, irq_entries, 378 min_irqs, wanted_irqs); 379 if (got_irqs < 0) { 380 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 381 min_irqs, wanted_irqs, got_irqs); 382 return 0; 383 } 384 385 if (got_irqs < wanted_irqs) 386 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 387 wanted_irqs, got_irqs); 388 389 return got_irqs; 390 } 391 392 /** 393 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 394 * @nn: NFP Network structure 395 * @irq_entries: Table of allocated interrupts 396 * @n: Size of @irq_entries (number of entries to grab) 397 * 398 * After interrupts are allocated with nfp_net_irqs_alloc() this function 399 * should be called to assign them to a specific netdev (port). 400 */ 401 void 402 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 403 unsigned int n) 404 { 405 struct nfp_net_dp *dp = &nn->dp; 406 407 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 408 dp->num_r_vecs = nn->max_r_vecs; 409 410 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 411 412 if (dp->num_rx_rings > dp->num_r_vecs || 413 dp->num_tx_rings > dp->num_r_vecs) 414 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 415 dp->num_rx_rings, dp->num_tx_rings, 416 dp->num_r_vecs); 417 418 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 419 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 420 dp->num_stack_tx_rings = dp->num_tx_rings; 421 } 422 423 /** 424 * nfp_net_irqs_disable() - Disable interrupts 425 * @pdev: PCI device structure 426 * 427 * Undoes what @nfp_net_irqs_alloc() does. 428 */ 429 void nfp_net_irqs_disable(struct pci_dev *pdev) 430 { 431 pci_disable_msix(pdev); 432 } 433 434 /** 435 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 436 * @irq: Interrupt 437 * @data: Opaque data structure 438 * 439 * Return: Indicate if the interrupt has been handled. 440 */ 441 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 442 { 443 struct nfp_net_r_vector *r_vec = data; 444 445 /* Currently we cannot tell if it's a rx or tx interrupt, 446 * since dim does not need accurate event_ctr to calculate, 447 * we just use this counter for both rx and tx dim. 448 */ 449 r_vec->event_ctr++; 450 451 napi_schedule_irqoff(&r_vec->napi); 452 453 /* The FW auto-masks any interrupt, either via the MASK bit in 454 * the MSI-X table or via the per entry ICR field. So there 455 * is no need to disable interrupts here. 456 */ 457 return IRQ_HANDLED; 458 } 459 460 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 461 { 462 struct nfp_net_r_vector *r_vec = data; 463 464 tasklet_schedule(&r_vec->tasklet); 465 466 return IRQ_HANDLED; 467 } 468 469 /** 470 * nfp_net_read_link_status() - Reread link status from control BAR 471 * @nn: NFP Network structure 472 */ 473 static void nfp_net_read_link_status(struct nfp_net *nn) 474 { 475 unsigned long flags; 476 bool link_up; 477 u16 sts; 478 479 spin_lock_irqsave(&nn->link_status_lock, flags); 480 481 sts = nn_readw(nn, NFP_NET_CFG_STS); 482 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 483 484 if (nn->link_up == link_up) 485 goto out; 486 487 nn->link_up = link_up; 488 if (nn->port) { 489 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 490 if (nn->port->link_cb) 491 nn->port->link_cb(nn->port); 492 } 493 494 if (nn->link_up) { 495 netif_carrier_on(nn->dp.netdev); 496 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 497 } else { 498 netif_carrier_off(nn->dp.netdev); 499 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 500 } 501 out: 502 spin_unlock_irqrestore(&nn->link_status_lock, flags); 503 } 504 505 /** 506 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 507 * @irq: Interrupt 508 * @data: Opaque data structure 509 * 510 * Return: Indicate if the interrupt has been handled. 511 */ 512 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 513 { 514 struct nfp_net *nn = data; 515 struct msix_entry *entry; 516 517 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 518 519 nfp_net_read_link_status(nn); 520 521 nfp_net_irq_unmask(nn, entry->entry); 522 523 return IRQ_HANDLED; 524 } 525 526 /** 527 * nfp_net_irq_exn() - Interrupt service routine for exceptions 528 * @irq: Interrupt 529 * @data: Opaque data structure 530 * 531 * Return: Indicate if the interrupt has been handled. 532 */ 533 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 534 { 535 struct nfp_net *nn = data; 536 537 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 538 /* XXX TO BE IMPLEMENTED */ 539 return IRQ_HANDLED; 540 } 541 542 /** 543 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 544 * @nn: NFP Network structure 545 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 546 * @format: printf-style format to construct the interrupt name 547 * @name: Pointer to allocated space for interrupt name 548 * @name_sz: Size of space for interrupt name 549 * @vector_idx: Index of MSI-X vector used for this interrupt 550 * @handler: IRQ handler to register for this interrupt 551 */ 552 static int 553 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 554 const char *format, char *name, size_t name_sz, 555 unsigned int vector_idx, irq_handler_t handler) 556 { 557 struct msix_entry *entry; 558 int err; 559 560 entry = &nn->irq_entries[vector_idx]; 561 562 snprintf(name, name_sz, format, nfp_net_name(nn)); 563 err = request_irq(entry->vector, handler, 0, name, nn); 564 if (err) { 565 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 566 entry->vector, err); 567 return err; 568 } 569 nn_writeb(nn, ctrl_offset, entry->entry); 570 nfp_net_irq_unmask(nn, entry->entry); 571 572 return 0; 573 } 574 575 /** 576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 577 * @nn: NFP Network structure 578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 579 * @vector_idx: Index of MSI-X vector used for this interrupt 580 */ 581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 582 unsigned int vector_idx) 583 { 584 nn_writeb(nn, ctrl_offset, 0xff); 585 nn_pci_flush(nn); 586 free_irq(nn->irq_entries[vector_idx].vector, nn); 587 } 588 589 struct sk_buff * 590 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 591 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 592 { 593 #ifdef CONFIG_TLS_DEVICE 594 struct nfp_net_tls_offload_ctx *ntls; 595 struct sk_buff *nskb; 596 bool resync_pending; 597 u32 datalen, seq; 598 599 if (likely(!dp->ktls_tx)) 600 return skb; 601 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 602 return skb; 603 604 datalen = skb->len - skb_tcp_all_headers(skb); 605 seq = ntohl(tcp_hdr(skb)->seq); 606 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 607 resync_pending = tls_offload_tx_resync_pending(skb->sk); 608 if (unlikely(resync_pending || ntls->next_seq != seq)) { 609 /* Pure ACK out of order already */ 610 if (!datalen) 611 return skb; 612 613 u64_stats_update_begin(&r_vec->tx_sync); 614 r_vec->tls_tx_fallback++; 615 u64_stats_update_end(&r_vec->tx_sync); 616 617 nskb = tls_encrypt_skb(skb); 618 if (!nskb) { 619 u64_stats_update_begin(&r_vec->tx_sync); 620 r_vec->tls_tx_no_fallback++; 621 u64_stats_update_end(&r_vec->tx_sync); 622 return NULL; 623 } 624 /* encryption wasn't necessary */ 625 if (nskb == skb) 626 return skb; 627 /* we don't re-check ring space */ 628 if (unlikely(skb_is_nonlinear(nskb))) { 629 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 630 u64_stats_update_begin(&r_vec->tx_sync); 631 r_vec->tx_errors++; 632 u64_stats_update_end(&r_vec->tx_sync); 633 dev_kfree_skb_any(nskb); 634 return NULL; 635 } 636 637 /* jump forward, a TX may have gotten lost, need to sync TX */ 638 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 639 tls_offload_tx_resync_request(nskb->sk, seq, 640 ntls->next_seq); 641 642 *nr_frags = 0; 643 return nskb; 644 } 645 646 if (datalen) { 647 u64_stats_update_begin(&r_vec->tx_sync); 648 if (!skb_is_gso(skb)) 649 r_vec->hw_tls_tx++; 650 else 651 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 652 u64_stats_update_end(&r_vec->tx_sync); 653 } 654 655 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 656 ntls->next_seq += datalen; 657 #endif 658 return skb; 659 } 660 661 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 662 { 663 #ifdef CONFIG_TLS_DEVICE 664 struct nfp_net_tls_offload_ctx *ntls; 665 u32 datalen, seq; 666 667 if (!tls_handle) 668 return; 669 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 670 return; 671 672 datalen = skb->len - skb_tcp_all_headers(skb); 673 seq = ntohl(tcp_hdr(skb)->seq); 674 675 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 676 if (ntls->next_seq == seq + datalen) 677 ntls->next_seq = seq; 678 else 679 WARN_ON_ONCE(1); 680 #endif 681 } 682 683 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 684 { 685 struct nfp_net *nn = netdev_priv(netdev); 686 687 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 688 } 689 690 /* Receive processing */ 691 static unsigned int 692 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 693 { 694 unsigned int fl_bufsz = 0; 695 696 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 697 fl_bufsz += NFP_NET_MAX_PREPEND; 698 else 699 fl_bufsz += dp->rx_offset; 700 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 701 702 return fl_bufsz; 703 } 704 705 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 706 { 707 unsigned int fl_bufsz; 708 709 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 710 fl_bufsz += dp->rx_dma_off; 711 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 712 713 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 714 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 715 716 return fl_bufsz; 717 } 718 719 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 720 { 721 unsigned int fl_bufsz; 722 723 fl_bufsz = XDP_PACKET_HEADROOM; 724 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 725 726 return fl_bufsz; 727 } 728 729 /* Setup and Configuration 730 */ 731 732 /** 733 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 734 * @nn: NFP Network structure 735 */ 736 static void nfp_net_vecs_init(struct nfp_net *nn) 737 { 738 int numa_node = dev_to_node(&nn->pdev->dev); 739 struct nfp_net_r_vector *r_vec; 740 unsigned int r; 741 742 nn->lsc_handler = nfp_net_irq_lsc; 743 nn->exn_handler = nfp_net_irq_exn; 744 745 for (r = 0; r < nn->max_r_vecs; r++) { 746 struct msix_entry *entry; 747 748 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 749 750 r_vec = &nn->r_vecs[r]; 751 r_vec->nfp_net = nn; 752 r_vec->irq_entry = entry->entry; 753 r_vec->irq_vector = entry->vector; 754 755 if (nn->dp.netdev) { 756 r_vec->handler = nfp_net_irq_rxtx; 757 } else { 758 r_vec->handler = nfp_ctrl_irq_rxtx; 759 760 __skb_queue_head_init(&r_vec->queue); 761 spin_lock_init(&r_vec->lock); 762 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 763 tasklet_disable(&r_vec->tasklet); 764 } 765 766 cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask); 767 } 768 } 769 770 static void 771 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 772 { 773 if (dp->netdev) 774 netif_napi_add(dp->netdev, &r_vec->napi, 775 nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll); 776 else 777 tasklet_enable(&r_vec->tasklet); 778 } 779 780 static void 781 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 782 { 783 if (dp->netdev) 784 netif_napi_del(&r_vec->napi); 785 else 786 tasklet_disable(&r_vec->tasklet); 787 } 788 789 static void 790 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 791 struct nfp_net_r_vector *r_vec, int idx) 792 { 793 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 794 r_vec->tx_ring = 795 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 796 797 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 798 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 799 800 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 801 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 802 803 if (r_vec->xsk_pool) 804 xsk_pool_set_rxq_info(r_vec->xsk_pool, 805 &r_vec->rx_ring->xdp_rxq); 806 807 nfp_net_napi_del(dp, r_vec); 808 nfp_net_napi_add(dp, r_vec, idx); 809 } 810 } 811 812 static int 813 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 814 int idx) 815 { 816 int err; 817 818 nfp_net_napi_add(&nn->dp, r_vec, idx); 819 820 snprintf(r_vec->name, sizeof(r_vec->name), 821 "%s-rxtx-%d", nfp_net_name(nn), idx); 822 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 823 r_vec); 824 if (err) { 825 nfp_net_napi_del(&nn->dp, r_vec); 826 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 827 return err; 828 } 829 disable_irq(r_vec->irq_vector); 830 831 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 832 833 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 834 r_vec->irq_entry); 835 836 return 0; 837 } 838 839 static void 840 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 841 { 842 irq_set_affinity_hint(r_vec->irq_vector, NULL); 843 nfp_net_napi_del(&nn->dp, r_vec); 844 free_irq(r_vec->irq_vector, r_vec); 845 } 846 847 /** 848 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 849 * @nn: NFP Net device to reconfigure 850 */ 851 void nfp_net_rss_write_itbl(struct nfp_net *nn) 852 { 853 int i; 854 855 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 856 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 857 get_unaligned_le32(nn->rss_itbl + i)); 858 } 859 860 /** 861 * nfp_net_rss_write_key() - Write RSS hash key to device 862 * @nn: NFP Net device to reconfigure 863 */ 864 void nfp_net_rss_write_key(struct nfp_net *nn) 865 { 866 int i; 867 868 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 869 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 870 get_unaligned_le32(nn->rss_key + i)); 871 } 872 873 /** 874 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 875 * @nn: NFP Net device to reconfigure 876 */ 877 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 878 { 879 u8 i; 880 u32 factor; 881 u32 value; 882 883 /* Compute factor used to convert coalesce '_usecs' parameters to 884 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 885 * count. 886 */ 887 factor = nn->tlv_caps.me_freq_mhz / 16; 888 889 /* copy RX interrupt coalesce parameters */ 890 value = (nn->rx_coalesce_max_frames << 16) | 891 (factor * nn->rx_coalesce_usecs); 892 for (i = 0; i < nn->dp.num_rx_rings; i++) 893 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 894 895 /* copy TX interrupt coalesce parameters */ 896 value = (nn->tx_coalesce_max_frames << 16) | 897 (factor * nn->tx_coalesce_usecs); 898 for (i = 0; i < nn->dp.num_tx_rings; i++) 899 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 900 } 901 902 /** 903 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 904 * @nn: NFP Net device to reconfigure 905 * @addr: MAC address to write 906 * 907 * Writes the MAC address from the netdev to the device control BAR. Does not 908 * perform the required reconfig. We do a bit of byte swapping dance because 909 * firmware is LE. 910 */ 911 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 912 { 913 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 914 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 915 } 916 917 /** 918 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 919 * @nn: NFP Net device to reconfigure 920 * 921 * Warning: must be fully idempotent. 922 */ 923 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 924 { 925 u32 new_ctrl, update; 926 unsigned int r; 927 int err; 928 929 new_ctrl = nn->dp.ctrl; 930 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 931 update = NFP_NET_CFG_UPDATE_GEN; 932 update |= NFP_NET_CFG_UPDATE_MSIX; 933 update |= NFP_NET_CFG_UPDATE_RING; 934 935 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 936 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 937 938 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 939 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 940 941 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 942 err = nfp_net_reconfig(nn, update); 943 if (err) 944 nn_err(nn, "Could not disable device: %d\n", err); 945 946 for (r = 0; r < nn->dp.num_rx_rings; r++) { 947 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 948 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 949 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 950 } 951 for (r = 0; r < nn->dp.num_tx_rings; r++) 952 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 953 for (r = 0; r < nn->dp.num_r_vecs; r++) 954 nfp_net_vec_clear_ring_data(nn, r); 955 956 nn->dp.ctrl = new_ctrl; 957 } 958 959 /** 960 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 961 * @nn: NFP Net device to reconfigure 962 */ 963 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 964 { 965 u32 bufsz, new_ctrl, update = 0; 966 unsigned int r; 967 int err; 968 969 new_ctrl = nn->dp.ctrl; 970 971 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 972 nfp_net_rss_write_key(nn); 973 nfp_net_rss_write_itbl(nn); 974 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 975 update |= NFP_NET_CFG_UPDATE_RSS; 976 } 977 978 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 979 nfp_net_coalesce_write_cfg(nn); 980 update |= NFP_NET_CFG_UPDATE_IRQMOD; 981 } 982 983 for (r = 0; r < nn->dp.num_tx_rings; r++) 984 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 985 for (r = 0; r < nn->dp.num_rx_rings; r++) 986 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 987 988 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 989 U64_MAX >> (64 - nn->dp.num_tx_rings)); 990 991 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 992 U64_MAX >> (64 - nn->dp.num_rx_rings)); 993 994 if (nn->dp.netdev) 995 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 996 997 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 998 999 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 1000 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 1001 1002 /* Enable device */ 1003 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1004 update |= NFP_NET_CFG_UPDATE_GEN; 1005 update |= NFP_NET_CFG_UPDATE_MSIX; 1006 update |= NFP_NET_CFG_UPDATE_RING; 1007 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1008 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1009 1010 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1011 err = nfp_net_reconfig(nn, update); 1012 if (err) { 1013 nfp_net_clear_config_and_disable(nn); 1014 return err; 1015 } 1016 1017 nn->dp.ctrl = new_ctrl; 1018 1019 for (r = 0; r < nn->dp.num_rx_rings; r++) 1020 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * nfp_net_close_stack() - Quiesce the stack (part of close) 1027 * @nn: NFP Net device to reconfigure 1028 */ 1029 static void nfp_net_close_stack(struct nfp_net *nn) 1030 { 1031 struct nfp_net_r_vector *r_vec; 1032 unsigned int r; 1033 1034 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1035 netif_carrier_off(nn->dp.netdev); 1036 nn->link_up = false; 1037 1038 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1039 r_vec = &nn->r_vecs[r]; 1040 1041 disable_irq(r_vec->irq_vector); 1042 napi_disable(&r_vec->napi); 1043 1044 if (r_vec->rx_ring) 1045 cancel_work_sync(&r_vec->rx_dim.work); 1046 1047 if (r_vec->tx_ring) 1048 cancel_work_sync(&r_vec->tx_dim.work); 1049 } 1050 1051 netif_tx_disable(nn->dp.netdev); 1052 } 1053 1054 /** 1055 * nfp_net_close_free_all() - Free all runtime resources 1056 * @nn: NFP Net device to reconfigure 1057 */ 1058 static void nfp_net_close_free_all(struct nfp_net *nn) 1059 { 1060 unsigned int r; 1061 1062 nfp_net_tx_rings_free(&nn->dp); 1063 nfp_net_rx_rings_free(&nn->dp); 1064 1065 for (r = 0; r < nn->dp.num_r_vecs; r++) 1066 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1067 1068 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1069 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1070 } 1071 1072 /** 1073 * nfp_net_netdev_close() - Called when the device is downed 1074 * @netdev: netdev structure 1075 */ 1076 static int nfp_net_netdev_close(struct net_device *netdev) 1077 { 1078 struct nfp_net *nn = netdev_priv(netdev); 1079 1080 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1081 */ 1082 nfp_net_close_stack(nn); 1083 1084 /* Step 2: Tell NFP 1085 */ 1086 nfp_net_clear_config_and_disable(nn); 1087 nfp_port_configure(netdev, false); 1088 1089 /* Step 3: Free resources 1090 */ 1091 nfp_net_close_free_all(nn); 1092 1093 nn_dbg(nn, "%s down", netdev->name); 1094 return 0; 1095 } 1096 1097 void nfp_ctrl_close(struct nfp_net *nn) 1098 { 1099 int r; 1100 1101 rtnl_lock(); 1102 1103 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1104 disable_irq(nn->r_vecs[r].irq_vector); 1105 tasklet_disable(&nn->r_vecs[r].tasklet); 1106 } 1107 1108 nfp_net_clear_config_and_disable(nn); 1109 1110 nfp_net_close_free_all(nn); 1111 1112 rtnl_unlock(); 1113 } 1114 1115 static void nfp_net_rx_dim_work(struct work_struct *work) 1116 { 1117 struct nfp_net_r_vector *r_vec; 1118 unsigned int factor, value; 1119 struct dim_cq_moder moder; 1120 struct nfp_net *nn; 1121 struct dim *dim; 1122 1123 dim = container_of(work, struct dim, work); 1124 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1125 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1126 nn = r_vec->nfp_net; 1127 1128 /* Compute factor used to convert coalesce '_usecs' parameters to 1129 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1130 * count. 1131 */ 1132 factor = nn->tlv_caps.me_freq_mhz / 16; 1133 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1134 return; 1135 1136 /* copy RX interrupt coalesce parameters */ 1137 value = (moder.pkts << 16) | (factor * moder.usec); 1138 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1139 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1140 1141 dim->state = DIM_START_MEASURE; 1142 } 1143 1144 static void nfp_net_tx_dim_work(struct work_struct *work) 1145 { 1146 struct nfp_net_r_vector *r_vec; 1147 unsigned int factor, value; 1148 struct dim_cq_moder moder; 1149 struct nfp_net *nn; 1150 struct dim *dim; 1151 1152 dim = container_of(work, struct dim, work); 1153 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1154 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1155 nn = r_vec->nfp_net; 1156 1157 /* Compute factor used to convert coalesce '_usecs' parameters to 1158 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1159 * count. 1160 */ 1161 factor = nn->tlv_caps.me_freq_mhz / 16; 1162 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1163 return; 1164 1165 /* copy TX interrupt coalesce parameters */ 1166 value = (moder.pkts << 16) | (factor * moder.usec); 1167 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1168 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1169 1170 dim->state = DIM_START_MEASURE; 1171 } 1172 1173 /** 1174 * nfp_net_open_stack() - Start the device from stack's perspective 1175 * @nn: NFP Net device to reconfigure 1176 */ 1177 static void nfp_net_open_stack(struct nfp_net *nn) 1178 { 1179 struct nfp_net_r_vector *r_vec; 1180 unsigned int r; 1181 1182 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1183 r_vec = &nn->r_vecs[r]; 1184 1185 if (r_vec->rx_ring) { 1186 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1187 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1188 } 1189 1190 if (r_vec->tx_ring) { 1191 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1192 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1193 } 1194 1195 napi_enable(&r_vec->napi); 1196 enable_irq(r_vec->irq_vector); 1197 } 1198 1199 netif_tx_wake_all_queues(nn->dp.netdev); 1200 1201 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1202 nfp_net_read_link_status(nn); 1203 } 1204 1205 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1206 { 1207 int err, r; 1208 1209 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1210 nn->exn_name, sizeof(nn->exn_name), 1211 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1212 if (err) 1213 return err; 1214 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1215 nn->lsc_name, sizeof(nn->lsc_name), 1216 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1217 if (err) 1218 goto err_free_exn; 1219 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1220 1221 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1222 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1223 if (err) 1224 goto err_cleanup_vec_p; 1225 } 1226 1227 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1228 if (err) 1229 goto err_cleanup_vec; 1230 1231 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1232 if (err) 1233 goto err_free_rx_rings; 1234 1235 for (r = 0; r < nn->max_r_vecs; r++) 1236 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1237 1238 return 0; 1239 1240 err_free_rx_rings: 1241 nfp_net_rx_rings_free(&nn->dp); 1242 err_cleanup_vec: 1243 r = nn->dp.num_r_vecs; 1244 err_cleanup_vec_p: 1245 while (r--) 1246 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1247 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1248 err_free_exn: 1249 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1250 return err; 1251 } 1252 1253 static int nfp_net_netdev_open(struct net_device *netdev) 1254 { 1255 struct nfp_net *nn = netdev_priv(netdev); 1256 int err; 1257 1258 /* Step 1: Allocate resources for rings and the like 1259 * - Request interrupts 1260 * - Allocate RX and TX ring resources 1261 * - Setup initial RSS table 1262 */ 1263 err = nfp_net_open_alloc_all(nn); 1264 if (err) 1265 return err; 1266 1267 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1268 if (err) 1269 goto err_free_all; 1270 1271 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1272 if (err) 1273 goto err_free_all; 1274 1275 /* Step 2: Configure the NFP 1276 * - Ifup the physical interface if it exists 1277 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1278 * - Write MAC address (in case it changed) 1279 * - Set the MTU 1280 * - Set the Freelist buffer size 1281 * - Enable the FW 1282 */ 1283 err = nfp_port_configure(netdev, true); 1284 if (err) 1285 goto err_free_all; 1286 1287 err = nfp_net_set_config_and_enable(nn); 1288 if (err) 1289 goto err_port_disable; 1290 1291 /* Step 3: Enable for kernel 1292 * - put some freelist descriptors on each RX ring 1293 * - enable NAPI on each ring 1294 * - enable all TX queues 1295 * - set link state 1296 */ 1297 nfp_net_open_stack(nn); 1298 1299 return 0; 1300 1301 err_port_disable: 1302 nfp_port_configure(netdev, false); 1303 err_free_all: 1304 nfp_net_close_free_all(nn); 1305 return err; 1306 } 1307 1308 int nfp_ctrl_open(struct nfp_net *nn) 1309 { 1310 int err, r; 1311 1312 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1313 rtnl_lock(); 1314 1315 err = nfp_net_open_alloc_all(nn); 1316 if (err) 1317 goto err_unlock; 1318 1319 err = nfp_net_set_config_and_enable(nn); 1320 if (err) 1321 goto err_free_all; 1322 1323 for (r = 0; r < nn->dp.num_r_vecs; r++) 1324 enable_irq(nn->r_vecs[r].irq_vector); 1325 1326 rtnl_unlock(); 1327 1328 return 0; 1329 1330 err_free_all: 1331 nfp_net_close_free_all(nn); 1332 err_unlock: 1333 rtnl_unlock(); 1334 return err; 1335 } 1336 1337 static void nfp_net_set_rx_mode(struct net_device *netdev) 1338 { 1339 struct nfp_net *nn = netdev_priv(netdev); 1340 u32 new_ctrl; 1341 1342 new_ctrl = nn->dp.ctrl; 1343 1344 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1345 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1346 else 1347 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1348 1349 if (netdev->flags & IFF_PROMISC) { 1350 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1351 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1352 else 1353 nn_warn(nn, "FW does not support promiscuous mode\n"); 1354 } else { 1355 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1356 } 1357 1358 if (new_ctrl == nn->dp.ctrl) 1359 return; 1360 1361 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1362 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1363 1364 nn->dp.ctrl = new_ctrl; 1365 } 1366 1367 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1368 { 1369 int i; 1370 1371 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1372 nn->rss_itbl[i] = 1373 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1374 } 1375 1376 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1377 { 1378 struct nfp_net_dp new_dp = *dp; 1379 1380 *dp = nn->dp; 1381 nn->dp = new_dp; 1382 1383 nn->dp.netdev->mtu = new_dp.mtu; 1384 1385 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1386 nfp_net_rss_init_itbl(nn); 1387 } 1388 1389 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1390 { 1391 unsigned int r; 1392 int err; 1393 1394 nfp_net_dp_swap(nn, dp); 1395 1396 for (r = 0; r < nn->max_r_vecs; r++) 1397 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1398 1399 err = netif_set_real_num_queues(nn->dp.netdev, 1400 nn->dp.num_stack_tx_rings, 1401 nn->dp.num_rx_rings); 1402 if (err) 1403 return err; 1404 1405 return nfp_net_set_config_and_enable(nn); 1406 } 1407 1408 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1409 { 1410 struct nfp_net_dp *new; 1411 1412 new = kmalloc(sizeof(*new), GFP_KERNEL); 1413 if (!new) 1414 return NULL; 1415 1416 *new = nn->dp; 1417 1418 new->xsk_pools = kmemdup(new->xsk_pools, 1419 array_size(nn->max_r_vecs, 1420 sizeof(new->xsk_pools)), 1421 GFP_KERNEL); 1422 if (!new->xsk_pools) { 1423 kfree(new); 1424 return NULL; 1425 } 1426 1427 /* Clear things which need to be recomputed */ 1428 new->fl_bufsz = 0; 1429 new->tx_rings = NULL; 1430 new->rx_rings = NULL; 1431 new->num_r_vecs = 0; 1432 new->num_stack_tx_rings = 0; 1433 new->txrwb = NULL; 1434 new->txrwb_dma = 0; 1435 1436 return new; 1437 } 1438 1439 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1440 { 1441 kfree(dp->xsk_pools); 1442 kfree(dp); 1443 } 1444 1445 static int 1446 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1447 struct netlink_ext_ack *extack) 1448 { 1449 unsigned int r, xsk_min_fl_bufsz; 1450 1451 /* XDP-enabled tests */ 1452 if (!dp->xdp_prog) 1453 return 0; 1454 if (dp->fl_bufsz > PAGE_SIZE) { 1455 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1456 return -EINVAL; 1457 } 1458 if (dp->num_tx_rings > nn->max_tx_rings) { 1459 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1460 return -EINVAL; 1461 } 1462 1463 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1464 for (r = 0; r < nn->max_r_vecs; r++) { 1465 if (!dp->xsk_pools[r]) 1466 continue; 1467 1468 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1469 NL_SET_ERR_MSG_MOD(extack, 1470 "XSK buffer pool chunk size too small"); 1471 return -EINVAL; 1472 } 1473 } 1474 1475 return 0; 1476 } 1477 1478 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1479 struct netlink_ext_ack *extack) 1480 { 1481 int r, err; 1482 1483 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1484 1485 dp->num_stack_tx_rings = dp->num_tx_rings; 1486 if (dp->xdp_prog) 1487 dp->num_stack_tx_rings -= dp->num_rx_rings; 1488 1489 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1490 1491 err = nfp_net_check_config(nn, dp, extack); 1492 if (err) 1493 goto exit_free_dp; 1494 1495 if (!netif_running(dp->netdev)) { 1496 nfp_net_dp_swap(nn, dp); 1497 err = 0; 1498 goto exit_free_dp; 1499 } 1500 1501 /* Prepare new rings */ 1502 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1503 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1504 if (err) { 1505 dp->num_r_vecs = r; 1506 goto err_cleanup_vecs; 1507 } 1508 } 1509 1510 err = nfp_net_rx_rings_prepare(nn, dp); 1511 if (err) 1512 goto err_cleanup_vecs; 1513 1514 err = nfp_net_tx_rings_prepare(nn, dp); 1515 if (err) 1516 goto err_free_rx; 1517 1518 /* Stop device, swap in new rings, try to start the firmware */ 1519 nfp_net_close_stack(nn); 1520 nfp_net_clear_config_and_disable(nn); 1521 1522 err = nfp_net_dp_swap_enable(nn, dp); 1523 if (err) { 1524 int err2; 1525 1526 nfp_net_clear_config_and_disable(nn); 1527 1528 /* Try with old configuration and old rings */ 1529 err2 = nfp_net_dp_swap_enable(nn, dp); 1530 if (err2) 1531 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1532 err, err2); 1533 } 1534 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1535 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1536 1537 nfp_net_rx_rings_free(dp); 1538 nfp_net_tx_rings_free(dp); 1539 1540 nfp_net_open_stack(nn); 1541 exit_free_dp: 1542 nfp_net_free_dp(dp); 1543 1544 return err; 1545 1546 err_free_rx: 1547 nfp_net_rx_rings_free(dp); 1548 err_cleanup_vecs: 1549 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1550 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1551 nfp_net_free_dp(dp); 1552 return err; 1553 } 1554 1555 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1556 { 1557 struct nfp_net *nn = netdev_priv(netdev); 1558 struct nfp_net_dp *dp; 1559 int err; 1560 1561 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1562 if (err) 1563 return err; 1564 1565 dp = nfp_net_clone_dp(nn); 1566 if (!dp) 1567 return -ENOMEM; 1568 1569 dp->mtu = new_mtu; 1570 1571 return nfp_net_ring_reconfig(nn, dp, NULL); 1572 } 1573 1574 static int 1575 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1576 { 1577 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1578 struct nfp_net *nn = netdev_priv(netdev); 1579 int err; 1580 1581 /* Priority tagged packets with vlan id 0 are processed by the 1582 * NFP as untagged packets 1583 */ 1584 if (!vid) 1585 return 0; 1586 1587 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1588 if (err) 1589 return err; 1590 1591 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1592 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1593 ETH_P_8021Q); 1594 1595 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1596 } 1597 1598 static int 1599 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1600 { 1601 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1602 struct nfp_net *nn = netdev_priv(netdev); 1603 int err; 1604 1605 /* Priority tagged packets with vlan id 0 are processed by the 1606 * NFP as untagged packets 1607 */ 1608 if (!vid) 1609 return 0; 1610 1611 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1612 if (err) 1613 return err; 1614 1615 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1616 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1617 ETH_P_8021Q); 1618 1619 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1620 } 1621 1622 static void nfp_net_stat64(struct net_device *netdev, 1623 struct rtnl_link_stats64 *stats) 1624 { 1625 struct nfp_net *nn = netdev_priv(netdev); 1626 int r; 1627 1628 /* Collect software stats */ 1629 for (r = 0; r < nn->max_r_vecs; r++) { 1630 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1631 u64 data[3]; 1632 unsigned int start; 1633 1634 do { 1635 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1636 data[0] = r_vec->rx_pkts; 1637 data[1] = r_vec->rx_bytes; 1638 data[2] = r_vec->rx_drops; 1639 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1640 stats->rx_packets += data[0]; 1641 stats->rx_bytes += data[1]; 1642 stats->rx_dropped += data[2]; 1643 1644 do { 1645 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1646 data[0] = r_vec->tx_pkts; 1647 data[1] = r_vec->tx_bytes; 1648 data[2] = r_vec->tx_errors; 1649 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1650 stats->tx_packets += data[0]; 1651 stats->tx_bytes += data[1]; 1652 stats->tx_errors += data[2]; 1653 } 1654 1655 /* Add in device stats */ 1656 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1657 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1658 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1659 1660 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1661 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1662 } 1663 1664 static int nfp_net_set_features(struct net_device *netdev, 1665 netdev_features_t features) 1666 { 1667 netdev_features_t changed = netdev->features ^ features; 1668 struct nfp_net *nn = netdev_priv(netdev); 1669 u32 new_ctrl; 1670 int err; 1671 1672 /* Assume this is not called with features we have not advertised */ 1673 1674 new_ctrl = nn->dp.ctrl; 1675 1676 if (changed & NETIF_F_RXCSUM) { 1677 if (features & NETIF_F_RXCSUM) 1678 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 1679 else 1680 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 1681 } 1682 1683 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1684 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 1685 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 1686 else 1687 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 1688 } 1689 1690 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 1691 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1692 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 1693 NFP_NET_CFG_CTRL_LSO; 1694 else 1695 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 1696 } 1697 1698 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1699 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1700 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 1701 NFP_NET_CFG_CTRL_RXVLAN; 1702 else 1703 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY; 1704 } 1705 1706 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 1707 if (features & NETIF_F_HW_VLAN_CTAG_TX) 1708 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 1709 NFP_NET_CFG_CTRL_TXVLAN; 1710 else 1711 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY; 1712 } 1713 1714 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 1715 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 1716 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 1717 else 1718 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 1719 } 1720 1721 if (changed & NETIF_F_HW_VLAN_STAG_RX) { 1722 if (features & NETIF_F_HW_VLAN_STAG_RX) 1723 new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 1724 else 1725 new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 1726 } 1727 1728 if (changed & NETIF_F_SG) { 1729 if (features & NETIF_F_SG) 1730 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 1731 else 1732 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 1733 } 1734 1735 err = nfp_port_set_features(netdev, features); 1736 if (err) 1737 return err; 1738 1739 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 1740 netdev->features, features, changed); 1741 1742 if (new_ctrl == nn->dp.ctrl) 1743 return 0; 1744 1745 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 1746 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1747 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1748 if (err) 1749 return err; 1750 1751 nn->dp.ctrl = new_ctrl; 1752 1753 return 0; 1754 } 1755 1756 static netdev_features_t 1757 nfp_net_fix_features(struct net_device *netdev, 1758 netdev_features_t features) 1759 { 1760 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1761 (features & NETIF_F_HW_VLAN_STAG_RX)) { 1762 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 1763 features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1764 netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1765 netdev_warn(netdev, 1766 "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n"); 1767 } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) { 1768 features &= ~NETIF_F_HW_VLAN_STAG_RX; 1769 netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX; 1770 netdev_warn(netdev, 1771 "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n"); 1772 } 1773 } 1774 return features; 1775 } 1776 1777 static netdev_features_t 1778 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 1779 netdev_features_t features) 1780 { 1781 u8 l4_hdr; 1782 1783 /* We can't do TSO over double tagged packets (802.1AD) */ 1784 features &= vlan_features_check(skb, features); 1785 1786 if (!skb->encapsulation) 1787 return features; 1788 1789 /* Ensure that inner L4 header offset fits into TX descriptor field */ 1790 if (skb_is_gso(skb)) { 1791 u32 hdrlen; 1792 1793 hdrlen = skb_inner_tcp_all_headers(skb); 1794 1795 /* Assume worst case scenario of having longest possible 1796 * metadata prepend - 8B 1797 */ 1798 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 1799 features &= ~NETIF_F_GSO_MASK; 1800 } 1801 1802 /* VXLAN/GRE check */ 1803 switch (vlan_get_protocol(skb)) { 1804 case htons(ETH_P_IP): 1805 l4_hdr = ip_hdr(skb)->protocol; 1806 break; 1807 case htons(ETH_P_IPV6): 1808 l4_hdr = ipv6_hdr(skb)->nexthdr; 1809 break; 1810 default: 1811 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1812 } 1813 1814 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1815 skb->inner_protocol != htons(ETH_P_TEB) || 1816 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 1817 (l4_hdr == IPPROTO_UDP && 1818 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1819 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 1820 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1821 1822 return features; 1823 } 1824 1825 static int 1826 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 1827 { 1828 struct nfp_net *nn = netdev_priv(netdev); 1829 int n; 1830 1831 /* If port is defined, devlink_port is registered and devlink core 1832 * is taking care of name formatting. 1833 */ 1834 if (nn->port) 1835 return -EOPNOTSUPP; 1836 1837 if (nn->dp.is_vf || nn->vnic_no_name) 1838 return -EOPNOTSUPP; 1839 1840 n = snprintf(name, len, "n%d", nn->id); 1841 if (n >= len) 1842 return -EINVAL; 1843 1844 return 0; 1845 } 1846 1847 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 1848 { 1849 struct bpf_prog *prog = bpf->prog; 1850 struct nfp_net_dp *dp; 1851 int err; 1852 1853 if (!prog == !nn->dp.xdp_prog) { 1854 WRITE_ONCE(nn->dp.xdp_prog, prog); 1855 xdp_attachment_setup(&nn->xdp, bpf); 1856 return 0; 1857 } 1858 1859 dp = nfp_net_clone_dp(nn); 1860 if (!dp) 1861 return -ENOMEM; 1862 1863 dp->xdp_prog = prog; 1864 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 1865 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1866 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 1867 1868 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 1869 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 1870 if (err) 1871 return err; 1872 1873 xdp_attachment_setup(&nn->xdp, bpf); 1874 return 0; 1875 } 1876 1877 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 1878 { 1879 int err; 1880 1881 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 1882 if (err) 1883 return err; 1884 1885 xdp_attachment_setup(&nn->xdp_hw, bpf); 1886 return 0; 1887 } 1888 1889 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1890 { 1891 struct nfp_net *nn = netdev_priv(netdev); 1892 1893 switch (xdp->command) { 1894 case XDP_SETUP_PROG: 1895 return nfp_net_xdp_setup_drv(nn, xdp); 1896 case XDP_SETUP_PROG_HW: 1897 return nfp_net_xdp_setup_hw(nn, xdp); 1898 case XDP_SETUP_XSK_POOL: 1899 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 1900 xdp->xsk.queue_id); 1901 default: 1902 return nfp_app_bpf(nn->app, nn, xdp); 1903 } 1904 } 1905 1906 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 1907 { 1908 struct nfp_net *nn = netdev_priv(netdev); 1909 struct sockaddr *saddr = addr; 1910 int err; 1911 1912 err = eth_prepare_mac_addr_change(netdev, addr); 1913 if (err) 1914 return err; 1915 1916 nfp_net_write_mac_addr(nn, saddr->sa_data); 1917 1918 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 1919 if (err) 1920 return err; 1921 1922 eth_commit_mac_addr_change(netdev, addr); 1923 1924 return 0; 1925 } 1926 1927 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 1928 struct net_device *dev, u32 filter_mask, 1929 int nlflags) 1930 { 1931 struct nfp_net *nn = netdev_priv(dev); 1932 u16 mode; 1933 1934 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1935 return -EOPNOTSUPP; 1936 1937 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? 1938 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; 1939 1940 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, 1941 nlflags, filter_mask, NULL); 1942 } 1943 1944 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 1945 u16 flags, struct netlink_ext_ack *extack) 1946 { 1947 struct nfp_net *nn = netdev_priv(dev); 1948 struct nlattr *attr, *br_spec; 1949 int rem, err; 1950 u32 new_ctrl; 1951 u16 mode; 1952 1953 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1954 return -EOPNOTSUPP; 1955 1956 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 1957 if (!br_spec) 1958 return -EINVAL; 1959 1960 nla_for_each_nested(attr, br_spec, rem) { 1961 if (nla_type(attr) != IFLA_BRIDGE_MODE) 1962 continue; 1963 1964 if (nla_len(attr) < sizeof(mode)) 1965 return -EINVAL; 1966 1967 new_ctrl = nn->dp.ctrl; 1968 mode = nla_get_u16(attr); 1969 if (mode == BRIDGE_MODE_VEPA) 1970 new_ctrl |= NFP_NET_CFG_CTRL_VEPA; 1971 else if (mode == BRIDGE_MODE_VEB) 1972 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; 1973 else 1974 return -EOPNOTSUPP; 1975 1976 if (new_ctrl == nn->dp.ctrl) 1977 return 0; 1978 1979 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1980 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1981 if (!err) 1982 nn->dp.ctrl = new_ctrl; 1983 1984 return err; 1985 } 1986 1987 return -EINVAL; 1988 } 1989 1990 const struct net_device_ops nfp_nfd3_netdev_ops = { 1991 .ndo_init = nfp_app_ndo_init, 1992 .ndo_uninit = nfp_app_ndo_uninit, 1993 .ndo_open = nfp_net_netdev_open, 1994 .ndo_stop = nfp_net_netdev_close, 1995 .ndo_start_xmit = nfp_net_tx, 1996 .ndo_get_stats64 = nfp_net_stat64, 1997 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1998 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1999 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2000 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2001 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2002 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2003 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2004 .ndo_get_vf_config = nfp_app_get_vf_config, 2005 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2006 .ndo_setup_tc = nfp_port_setup_tc, 2007 .ndo_tx_timeout = nfp_net_tx_timeout, 2008 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2009 .ndo_change_mtu = nfp_net_change_mtu, 2010 .ndo_set_mac_address = nfp_net_set_mac_address, 2011 .ndo_set_features = nfp_net_set_features, 2012 .ndo_fix_features = nfp_net_fix_features, 2013 .ndo_features_check = nfp_net_features_check, 2014 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2015 .ndo_bpf = nfp_net_xdp, 2016 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 2017 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2018 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2019 }; 2020 2021 const struct net_device_ops nfp_nfdk_netdev_ops = { 2022 .ndo_init = nfp_app_ndo_init, 2023 .ndo_uninit = nfp_app_ndo_uninit, 2024 .ndo_open = nfp_net_netdev_open, 2025 .ndo_stop = nfp_net_netdev_close, 2026 .ndo_start_xmit = nfp_net_tx, 2027 .ndo_get_stats64 = nfp_net_stat64, 2028 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2029 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2030 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2031 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2032 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2033 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2034 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2035 .ndo_get_vf_config = nfp_app_get_vf_config, 2036 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2037 .ndo_setup_tc = nfp_port_setup_tc, 2038 .ndo_tx_timeout = nfp_net_tx_timeout, 2039 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2040 .ndo_change_mtu = nfp_net_change_mtu, 2041 .ndo_set_mac_address = nfp_net_set_mac_address, 2042 .ndo_set_features = nfp_net_set_features, 2043 .ndo_fix_features = nfp_net_fix_features, 2044 .ndo_features_check = nfp_net_features_check, 2045 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2046 .ndo_bpf = nfp_net_xdp, 2047 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2048 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2049 }; 2050 2051 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 2052 { 2053 struct nfp_net *nn = netdev_priv(netdev); 2054 int i; 2055 2056 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2057 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 2058 struct udp_tunnel_info ti0, ti1; 2059 2060 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 2061 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 2062 2063 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 2064 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 2065 } 2066 2067 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 2068 } 2069 2070 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 2071 .sync_table = nfp_udp_tunnel_sync, 2072 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 2073 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 2074 .tables = { 2075 { 2076 .n_entries = NFP_NET_N_VXLAN_PORTS, 2077 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 2078 }, 2079 }, 2080 }; 2081 2082 /** 2083 * nfp_net_info() - Print general info about the NIC 2084 * @nn: NFP Net device to reconfigure 2085 */ 2086 void nfp_net_info(struct nfp_net *nn) 2087 { 2088 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2089 nn->dp.is_vf ? "VF " : "", 2090 nn->dp.num_tx_rings, nn->max_tx_rings, 2091 nn->dp.num_rx_rings, nn->max_rx_rings); 2092 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2093 nn->fw_ver.extend, nn->fw_ver.class, 2094 nn->fw_ver.major, nn->fw_ver.minor, 2095 nn->max_mtu); 2096 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2097 nn->cap, 2098 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2099 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2100 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2101 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2102 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2103 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2104 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2105 nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "", 2106 nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "", 2107 nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "", 2108 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2109 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2110 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2111 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2112 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2113 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2114 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2115 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2116 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2117 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2118 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", 2119 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2120 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2121 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2122 "RXCSUM_COMPLETE " : "", 2123 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2124 nfp_app_extra_cap(nn->app, nn)); 2125 } 2126 2127 /** 2128 * nfp_net_alloc() - Allocate netdev and related structure 2129 * @pdev: PCI device 2130 * @dev_info: NFP ASIC params 2131 * @ctrl_bar: PCI IOMEM with vNIC config memory 2132 * @needs_netdev: Whether to allocate a netdev for this vNIC 2133 * @max_tx_rings: Maximum number of TX rings supported by device 2134 * @max_rx_rings: Maximum number of RX rings supported by device 2135 * 2136 * This function allocates a netdev device and fills in the initial 2137 * part of the @struct nfp_net structure. In case of control device 2138 * nfp_net structure is allocated without the netdev. 2139 * 2140 * Return: NFP Net device structure, or ERR_PTR on error. 2141 */ 2142 struct nfp_net * 2143 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2144 void __iomem *ctrl_bar, bool needs_netdev, 2145 unsigned int max_tx_rings, unsigned int max_rx_rings) 2146 { 2147 u64 dma_mask = dma_get_mask(&pdev->dev); 2148 struct nfp_net *nn; 2149 int err; 2150 2151 if (needs_netdev) { 2152 struct net_device *netdev; 2153 2154 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2155 max_tx_rings, max_rx_rings); 2156 if (!netdev) 2157 return ERR_PTR(-ENOMEM); 2158 2159 SET_NETDEV_DEV(netdev, &pdev->dev); 2160 nn = netdev_priv(netdev); 2161 nn->dp.netdev = netdev; 2162 } else { 2163 nn = vzalloc(sizeof(*nn)); 2164 if (!nn) 2165 return ERR_PTR(-ENOMEM); 2166 } 2167 2168 nn->dp.dev = &pdev->dev; 2169 nn->dp.ctrl_bar = ctrl_bar; 2170 nn->dev_info = dev_info; 2171 nn->pdev = pdev; 2172 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2173 2174 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2175 case NFP_NET_CFG_VERSION_DP_NFD3: 2176 nn->dp.ops = &nfp_nfd3_ops; 2177 break; 2178 case NFP_NET_CFG_VERSION_DP_NFDK: 2179 if (nn->fw_ver.major < 5) { 2180 dev_err(&pdev->dev, 2181 "NFDK must use ABI 5 or newer, found: %d\n", 2182 nn->fw_ver.major); 2183 err = -EINVAL; 2184 goto err_free_nn; 2185 } 2186 nn->dp.ops = &nfp_nfdk_ops; 2187 break; 2188 default: 2189 err = -EINVAL; 2190 goto err_free_nn; 2191 } 2192 2193 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { 2194 dev_err(&pdev->dev, 2195 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", 2196 nn->dp.ops->dma_mask, dma_mask); 2197 err = -EINVAL; 2198 goto err_free_nn; 2199 } 2200 2201 nn->max_tx_rings = max_tx_rings; 2202 nn->max_rx_rings = max_rx_rings; 2203 2204 nn->dp.num_tx_rings = min_t(unsigned int, 2205 max_tx_rings, num_online_cpus()); 2206 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2207 netif_get_num_default_rss_queues()); 2208 2209 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2210 nn->dp.num_r_vecs = min_t(unsigned int, 2211 nn->dp.num_r_vecs, num_online_cpus()); 2212 nn->max_r_vecs = nn->dp.num_r_vecs; 2213 2214 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2215 GFP_KERNEL); 2216 if (!nn->dp.xsk_pools) { 2217 err = -ENOMEM; 2218 goto err_free_nn; 2219 } 2220 2221 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2222 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2223 2224 sema_init(&nn->bar_lock, 1); 2225 2226 spin_lock_init(&nn->reconfig_lock); 2227 spin_lock_init(&nn->link_status_lock); 2228 2229 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2230 2231 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2232 &nn->tlv_caps); 2233 if (err) 2234 goto err_free_nn; 2235 2236 err = nfp_ccm_mbox_alloc(nn); 2237 if (err) 2238 goto err_free_nn; 2239 2240 return nn; 2241 2242 err_free_nn: 2243 if (nn->dp.netdev) 2244 free_netdev(nn->dp.netdev); 2245 else 2246 vfree(nn); 2247 return ERR_PTR(err); 2248 } 2249 2250 /** 2251 * nfp_net_free() - Undo what @nfp_net_alloc() did 2252 * @nn: NFP Net device to reconfigure 2253 */ 2254 void nfp_net_free(struct nfp_net *nn) 2255 { 2256 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2257 nfp_ccm_mbox_free(nn); 2258 2259 kfree(nn->dp.xsk_pools); 2260 if (nn->dp.netdev) 2261 free_netdev(nn->dp.netdev); 2262 else 2263 vfree(nn); 2264 } 2265 2266 /** 2267 * nfp_net_rss_key_sz() - Get current size of the RSS key 2268 * @nn: NFP Net device instance 2269 * 2270 * Return: size of the RSS key for currently selected hash function. 2271 */ 2272 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2273 { 2274 switch (nn->rss_hfunc) { 2275 case ETH_RSS_HASH_TOP: 2276 return NFP_NET_CFG_RSS_KEY_SZ; 2277 case ETH_RSS_HASH_XOR: 2278 return 0; 2279 case ETH_RSS_HASH_CRC32: 2280 return 4; 2281 } 2282 2283 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2284 return 0; 2285 } 2286 2287 /** 2288 * nfp_net_rss_init() - Set the initial RSS parameters 2289 * @nn: NFP Net device to reconfigure 2290 */ 2291 static void nfp_net_rss_init(struct nfp_net *nn) 2292 { 2293 unsigned long func_bit, rss_cap_hfunc; 2294 u32 reg; 2295 2296 /* Read the RSS function capability and select first supported func */ 2297 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2298 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2299 if (!rss_cap_hfunc) 2300 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2301 NFP_NET_CFG_RSS_TOEPLITZ); 2302 2303 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2304 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2305 dev_warn(nn->dp.dev, 2306 "Bad RSS config, defaulting to Toeplitz hash\n"); 2307 func_bit = ETH_RSS_HASH_TOP_BIT; 2308 } 2309 nn->rss_hfunc = 1 << func_bit; 2310 2311 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2312 2313 nfp_net_rss_init_itbl(nn); 2314 2315 /* Enable IPv4/IPv6 TCP by default */ 2316 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2317 NFP_NET_CFG_RSS_IPV6_TCP | 2318 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2319 NFP_NET_CFG_RSS_MASK; 2320 } 2321 2322 /** 2323 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2324 * @nn: NFP Net device to reconfigure 2325 */ 2326 static void nfp_net_irqmod_init(struct nfp_net *nn) 2327 { 2328 nn->rx_coalesce_usecs = 50; 2329 nn->rx_coalesce_max_frames = 64; 2330 nn->tx_coalesce_usecs = 50; 2331 nn->tx_coalesce_max_frames = 64; 2332 2333 nn->rx_coalesce_adapt_on = true; 2334 nn->tx_coalesce_adapt_on = true; 2335 } 2336 2337 static void nfp_net_netdev_init(struct nfp_net *nn) 2338 { 2339 struct net_device *netdev = nn->dp.netdev; 2340 2341 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2342 2343 netdev->mtu = nn->dp.mtu; 2344 2345 /* Advertise/enable offloads based on capabilities 2346 * 2347 * Note: netdev->features show the currently enabled features 2348 * and netdev->hw_features advertises which features are 2349 * supported. By default we enable most features. 2350 */ 2351 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2352 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2353 2354 netdev->hw_features = NETIF_F_HIGHDMA; 2355 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2356 netdev->hw_features |= NETIF_F_RXCSUM; 2357 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2358 } 2359 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2360 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2361 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2362 } 2363 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2364 netdev->hw_features |= NETIF_F_SG; 2365 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2366 } 2367 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2368 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2369 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2370 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2371 NFP_NET_CFG_CTRL_LSO; 2372 } 2373 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2374 netdev->hw_features |= NETIF_F_RXHASH; 2375 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2376 if (nn->cap & NFP_NET_CFG_CTRL_LSO) { 2377 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 2378 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2379 NETIF_F_GSO_PARTIAL; 2380 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; 2381 } 2382 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2383 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2384 } 2385 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2386 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2387 netdev->hw_features |= NETIF_F_GSO_GRE; 2388 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2389 } 2390 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2391 netdev->hw_enc_features = netdev->hw_features; 2392 2393 netdev->vlan_features = netdev->hw_features; 2394 2395 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) { 2396 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2397 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 2398 NFP_NET_CFG_CTRL_RXVLAN; 2399 } 2400 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) { 2401 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2402 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2403 } else { 2404 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2405 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 2406 NFP_NET_CFG_CTRL_TXVLAN; 2407 } 2408 } 2409 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2410 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2411 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2412 } 2413 if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) { 2414 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX; 2415 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 2416 } 2417 2418 netdev->features = netdev->hw_features; 2419 2420 if (nfp_app_has_tc(nn->app) && nn->port) 2421 netdev->hw_features |= NETIF_F_HW_TC; 2422 2423 /* C-Tag strip and S-Tag strip can't be supported simultaneously, 2424 * so enable C-Tag strip and disable S-Tag strip by default. 2425 */ 2426 netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX; 2427 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 2428 2429 /* Finalise the netdev setup */ 2430 switch (nn->dp.ops->version) { 2431 case NFP_NFD_VER_NFD3: 2432 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2433 break; 2434 case NFP_NFD_VER_NFDK: 2435 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2436 break; 2437 } 2438 2439 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2440 2441 /* MTU range: 68 - hw-specific max */ 2442 netdev->min_mtu = ETH_MIN_MTU; 2443 netdev->max_mtu = nn->max_mtu; 2444 2445 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2446 2447 netif_carrier_off(netdev); 2448 2449 nfp_net_set_ethtool_ops(netdev); 2450 } 2451 2452 static int nfp_net_read_caps(struct nfp_net *nn) 2453 { 2454 /* Get some of the read-only fields from the BAR */ 2455 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2456 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2457 2458 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2459 * we allow use of non-chained metadata if RSS(v1) is the only 2460 * advertised capability requiring metadata. 2461 */ 2462 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2463 !nn->dp.netdev || 2464 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2465 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2466 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2467 * it has the same meaning as RSSv2. 2468 */ 2469 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2470 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2471 2472 /* Determine RX packet/metadata boundary offset */ 2473 if (nn->fw_ver.major >= 2) { 2474 u32 reg; 2475 2476 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2477 if (reg > NFP_NET_MAX_PREPEND) { 2478 nn_err(nn, "Invalid rx offset: %d\n", reg); 2479 return -EINVAL; 2480 } 2481 nn->dp.rx_offset = reg; 2482 } else { 2483 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2484 } 2485 2486 /* Mask out NFD-version-specific features */ 2487 nn->cap &= nn->dp.ops->cap_mask; 2488 2489 /* For control vNICs mask out the capabilities app doesn't want. */ 2490 if (!nn->dp.netdev) 2491 nn->cap &= nn->app->type->ctrl_cap_mask; 2492 2493 return 0; 2494 } 2495 2496 /** 2497 * nfp_net_init() - Initialise/finalise the nfp_net structure 2498 * @nn: NFP Net device structure 2499 * 2500 * Return: 0 on success or negative errno on error. 2501 */ 2502 int nfp_net_init(struct nfp_net *nn) 2503 { 2504 int err; 2505 2506 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2507 2508 err = nfp_net_read_caps(nn); 2509 if (err) 2510 return err; 2511 2512 /* Set default MTU and Freelist buffer size */ 2513 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2514 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2515 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2516 nn->dp.mtu = nn->max_mtu; 2517 } else { 2518 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2519 } 2520 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2521 2522 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2523 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2524 2525 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2526 nfp_net_rss_init(nn); 2527 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2528 NFP_NET_CFG_CTRL_RSS; 2529 } 2530 2531 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2532 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2533 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2534 2535 /* Allow IRQ moderation, if supported */ 2536 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2537 nfp_net_irqmod_init(nn); 2538 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2539 } 2540 2541 /* Enable TX pointer writeback, if supported */ 2542 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2543 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2544 2545 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2546 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2547 2548 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2549 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2550 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2551 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2552 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2553 NFP_NET_CFG_UPDATE_GEN); 2554 if (err) 2555 return err; 2556 2557 if (nn->dp.netdev) { 2558 nfp_net_netdev_init(nn); 2559 2560 err = nfp_ccm_mbox_init(nn); 2561 if (err) 2562 return err; 2563 2564 err = nfp_net_tls_init(nn); 2565 if (err) 2566 goto err_clean_mbox; 2567 } 2568 2569 nfp_net_vecs_init(nn); 2570 2571 if (!nn->dp.netdev) 2572 return 0; 2573 return register_netdev(nn->dp.netdev); 2574 2575 err_clean_mbox: 2576 nfp_ccm_mbox_clean(nn); 2577 return err; 2578 } 2579 2580 /** 2581 * nfp_net_clean() - Undo what nfp_net_init() did. 2582 * @nn: NFP Net device structure 2583 */ 2584 void nfp_net_clean(struct nfp_net *nn) 2585 { 2586 if (!nn->dp.netdev) 2587 return; 2588 2589 unregister_netdev(nn->dp.netdev); 2590 nfp_ccm_mbox_clean(nn); 2591 nfp_net_reconfig_wait_posted(nn); 2592 } 2593