1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/msi.h> 31 #include <linux/ethtool.h> 32 #include <linux/log2.h> 33 #include <linux/if_vlan.h> 34 #include <linux/random.h> 35 #include <linux/vmalloc.h> 36 #include <linux/ktime.h> 37 38 #include <net/tls.h> 39 #include <net/vxlan.h> 40 #include <net/xdp_sock_drv.h> 41 42 #include "nfpcore/nfp_dev.h" 43 #include "nfpcore/nfp_nsp.h" 44 #include "ccm.h" 45 #include "nfp_app.h" 46 #include "nfp_net_ctrl.h" 47 #include "nfp_net.h" 48 #include "nfp_net_dp.h" 49 #include "nfp_net_sriov.h" 50 #include "nfp_net_xsk.h" 51 #include "nfp_port.h" 52 #include "crypto/crypto.h" 53 #include "crypto/fw.h" 54 55 /** 56 * nfp_net_get_fw_version() - Read and parse the FW version 57 * @fw_ver: Output fw_version structure to read to 58 * @ctrl_bar: Mapped address of the control BAR 59 */ 60 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 61 void __iomem *ctrl_bar) 62 { 63 u32 reg; 64 65 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 66 put_unaligned_le32(reg, fw_ver); 67 } 68 69 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 70 { 71 queue &= dev_info->qc_idx_mask; 72 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 73 } 74 75 /* Firmware reconfig 76 * 77 * Firmware reconfig may take a while so we have two versions of it - 78 * synchronous and asynchronous (posted). All synchronous callers are holding 79 * RTNL so we don't have to worry about serializing them. 80 */ 81 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 82 { 83 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 84 /* ensure update is written before pinging HW */ 85 nn_pci_flush(nn); 86 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 87 nn->reconfig_in_progress_update = update; 88 } 89 90 /* Pass 0 as update to run posted reconfigs. */ 91 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 92 { 93 update |= nn->reconfig_posted; 94 nn->reconfig_posted = 0; 95 96 nfp_net_reconfig_start(nn, update); 97 98 nn->reconfig_timer_active = true; 99 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 100 } 101 102 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 103 { 104 u32 reg; 105 106 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 107 if (reg == 0) 108 return true; 109 if (reg & NFP_NET_CFG_UPDATE_ERR) { 110 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 111 reg, nn->reconfig_in_progress_update, 112 nn_readl(nn, NFP_NET_CFG_CTRL)); 113 return true; 114 } else if (last_check) { 115 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 116 reg, nn->reconfig_in_progress_update, 117 nn_readl(nn, NFP_NET_CFG_CTRL)); 118 return true; 119 } 120 121 return false; 122 } 123 124 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 125 { 126 bool timed_out = false; 127 int i; 128 129 /* Poll update field, waiting for NFP to ack the config. 130 * Do an opportunistic wait-busy loop, afterward sleep. 131 */ 132 for (i = 0; i < 50; i++) { 133 if (nfp_net_reconfig_check_done(nn, false)) 134 return false; 135 udelay(4); 136 } 137 138 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 139 usleep_range(250, 500); 140 timed_out = time_is_before_eq_jiffies(deadline); 141 } 142 143 return timed_out; 144 } 145 146 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 147 { 148 if (__nfp_net_reconfig_wait(nn, deadline)) 149 return -EIO; 150 151 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 152 return -EIO; 153 154 return 0; 155 } 156 157 static void nfp_net_reconfig_timer(struct timer_list *t) 158 { 159 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 160 161 spin_lock_bh(&nn->reconfig_lock); 162 163 nn->reconfig_timer_active = false; 164 165 /* If sync caller is present it will take over from us */ 166 if (nn->reconfig_sync_present) 167 goto done; 168 169 /* Read reconfig status and report errors */ 170 nfp_net_reconfig_check_done(nn, true); 171 172 if (nn->reconfig_posted) 173 nfp_net_reconfig_start_async(nn, 0); 174 done: 175 spin_unlock_bh(&nn->reconfig_lock); 176 } 177 178 /** 179 * nfp_net_reconfig_post() - Post async reconfig request 180 * @nn: NFP Net device to reconfigure 181 * @update: The value for the update field in the BAR config 182 * 183 * Record FW reconfiguration request. Reconfiguration will be kicked off 184 * whenever reconfiguration machinery is idle. Multiple requests can be 185 * merged together! 186 */ 187 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 188 { 189 spin_lock_bh(&nn->reconfig_lock); 190 191 /* Sync caller will kick off async reconf when it's done, just post */ 192 if (nn->reconfig_sync_present) { 193 nn->reconfig_posted |= update; 194 goto done; 195 } 196 197 /* Opportunistically check if the previous command is done */ 198 if (!nn->reconfig_timer_active || 199 nfp_net_reconfig_check_done(nn, false)) 200 nfp_net_reconfig_start_async(nn, update); 201 else 202 nn->reconfig_posted |= update; 203 done: 204 spin_unlock_bh(&nn->reconfig_lock); 205 } 206 207 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 208 { 209 bool cancelled_timer = false; 210 u32 pre_posted_requests; 211 212 spin_lock_bh(&nn->reconfig_lock); 213 214 WARN_ON(nn->reconfig_sync_present); 215 nn->reconfig_sync_present = true; 216 217 if (nn->reconfig_timer_active) { 218 nn->reconfig_timer_active = false; 219 cancelled_timer = true; 220 } 221 pre_posted_requests = nn->reconfig_posted; 222 nn->reconfig_posted = 0; 223 224 spin_unlock_bh(&nn->reconfig_lock); 225 226 if (cancelled_timer) { 227 del_timer_sync(&nn->reconfig_timer); 228 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 229 } 230 231 /* Run the posted reconfigs which were issued before we started */ 232 if (pre_posted_requests) { 233 nfp_net_reconfig_start(nn, pre_posted_requests); 234 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 235 } 236 } 237 238 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 239 { 240 nfp_net_reconfig_sync_enter(nn); 241 242 spin_lock_bh(&nn->reconfig_lock); 243 nn->reconfig_sync_present = false; 244 spin_unlock_bh(&nn->reconfig_lock); 245 } 246 247 /** 248 * __nfp_net_reconfig() - Reconfigure the firmware 249 * @nn: NFP Net device to reconfigure 250 * @update: The value for the update field in the BAR config 251 * 252 * Write the update word to the BAR and ping the reconfig queue. The 253 * poll until the firmware has acknowledged the update by zeroing the 254 * update word. 255 * 256 * Return: Negative errno on error, 0 on success 257 */ 258 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 259 { 260 int ret; 261 262 nfp_net_reconfig_sync_enter(nn); 263 264 nfp_net_reconfig_start(nn, update); 265 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 266 267 spin_lock_bh(&nn->reconfig_lock); 268 269 if (nn->reconfig_posted) 270 nfp_net_reconfig_start_async(nn, 0); 271 272 nn->reconfig_sync_present = false; 273 274 spin_unlock_bh(&nn->reconfig_lock); 275 276 return ret; 277 } 278 279 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 280 { 281 int ret; 282 283 nn_ctrl_bar_lock(nn); 284 ret = __nfp_net_reconfig(nn, update); 285 nn_ctrl_bar_unlock(nn); 286 287 return ret; 288 } 289 290 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 291 { 292 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 293 nn_err(nn, "mailbox too small for %u of data (%u)\n", 294 data_size, nn->tlv_caps.mbox_len); 295 return -EIO; 296 } 297 298 nn_ctrl_bar_lock(nn); 299 return 0; 300 } 301 302 /** 303 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 304 * @nn: NFP Net device to reconfigure 305 * @mbox_cmd: The value for the mailbox command 306 * 307 * Helper function for mailbox updates 308 * 309 * Return: Negative errno on error, 0 on success 310 */ 311 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 312 { 313 u32 mbox = nn->tlv_caps.mbox_off; 314 int ret; 315 316 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 317 318 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 319 if (ret) { 320 nn_err(nn, "Mailbox update error\n"); 321 return ret; 322 } 323 324 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 325 } 326 327 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 328 { 329 u32 mbox = nn->tlv_caps.mbox_off; 330 331 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 332 333 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 334 } 335 336 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 337 { 338 u32 mbox = nn->tlv_caps.mbox_off; 339 340 nfp_net_reconfig_wait_posted(nn); 341 342 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 343 } 344 345 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 346 { 347 int ret; 348 349 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 350 nn_ctrl_bar_unlock(nn); 351 return ret; 352 } 353 354 /* Interrupt configuration and handling 355 */ 356 357 /** 358 * nfp_net_irqs_alloc() - allocates MSI-X irqs 359 * @pdev: PCI device structure 360 * @irq_entries: Array to be initialized and used to hold the irq entries 361 * @min_irqs: Minimal acceptable number of interrupts 362 * @wanted_irqs: Target number of interrupts to allocate 363 * 364 * Return: Number of irqs obtained or 0 on error. 365 */ 366 unsigned int 367 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 368 unsigned int min_irqs, unsigned int wanted_irqs) 369 { 370 unsigned int i; 371 int got_irqs; 372 373 for (i = 0; i < wanted_irqs; i++) 374 irq_entries[i].entry = i; 375 376 got_irqs = pci_enable_msix_range(pdev, irq_entries, 377 min_irqs, wanted_irqs); 378 if (got_irqs < 0) { 379 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 380 min_irqs, wanted_irqs, got_irqs); 381 return 0; 382 } 383 384 if (got_irqs < wanted_irqs) 385 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 386 wanted_irqs, got_irqs); 387 388 return got_irqs; 389 } 390 391 /** 392 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 393 * @nn: NFP Network structure 394 * @irq_entries: Table of allocated interrupts 395 * @n: Size of @irq_entries (number of entries to grab) 396 * 397 * After interrupts are allocated with nfp_net_irqs_alloc() this function 398 * should be called to assign them to a specific netdev (port). 399 */ 400 void 401 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 402 unsigned int n) 403 { 404 struct nfp_net_dp *dp = &nn->dp; 405 406 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 407 dp->num_r_vecs = nn->max_r_vecs; 408 409 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 410 411 if (dp->num_rx_rings > dp->num_r_vecs || 412 dp->num_tx_rings > dp->num_r_vecs) 413 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 414 dp->num_rx_rings, dp->num_tx_rings, 415 dp->num_r_vecs); 416 417 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 418 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 419 dp->num_stack_tx_rings = dp->num_tx_rings; 420 } 421 422 /** 423 * nfp_net_irqs_disable() - Disable interrupts 424 * @pdev: PCI device structure 425 * 426 * Undoes what @nfp_net_irqs_alloc() does. 427 */ 428 void nfp_net_irqs_disable(struct pci_dev *pdev) 429 { 430 pci_disable_msix(pdev); 431 } 432 433 /** 434 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 435 * @irq: Interrupt 436 * @data: Opaque data structure 437 * 438 * Return: Indicate if the interrupt has been handled. 439 */ 440 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 441 { 442 struct nfp_net_r_vector *r_vec = data; 443 444 /* Currently we cannot tell if it's a rx or tx interrupt, 445 * since dim does not need accurate event_ctr to calculate, 446 * we just use this counter for both rx and tx dim. 447 */ 448 r_vec->event_ctr++; 449 450 napi_schedule_irqoff(&r_vec->napi); 451 452 /* The FW auto-masks any interrupt, either via the MASK bit in 453 * the MSI-X table or via the per entry ICR field. So there 454 * is no need to disable interrupts here. 455 */ 456 return IRQ_HANDLED; 457 } 458 459 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 460 { 461 struct nfp_net_r_vector *r_vec = data; 462 463 tasklet_schedule(&r_vec->tasklet); 464 465 return IRQ_HANDLED; 466 } 467 468 /** 469 * nfp_net_read_link_status() - Reread link status from control BAR 470 * @nn: NFP Network structure 471 */ 472 static void nfp_net_read_link_status(struct nfp_net *nn) 473 { 474 unsigned long flags; 475 bool link_up; 476 u32 sts; 477 478 spin_lock_irqsave(&nn->link_status_lock, flags); 479 480 sts = nn_readl(nn, NFP_NET_CFG_STS); 481 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 482 483 if (nn->link_up == link_up) 484 goto out; 485 486 nn->link_up = link_up; 487 if (nn->port) 488 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 489 490 if (nn->link_up) { 491 netif_carrier_on(nn->dp.netdev); 492 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 493 } else { 494 netif_carrier_off(nn->dp.netdev); 495 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 496 } 497 out: 498 spin_unlock_irqrestore(&nn->link_status_lock, flags); 499 } 500 501 /** 502 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 503 * @irq: Interrupt 504 * @data: Opaque data structure 505 * 506 * Return: Indicate if the interrupt has been handled. 507 */ 508 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 509 { 510 struct nfp_net *nn = data; 511 struct msix_entry *entry; 512 513 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 514 515 nfp_net_read_link_status(nn); 516 517 nfp_net_irq_unmask(nn, entry->entry); 518 519 return IRQ_HANDLED; 520 } 521 522 /** 523 * nfp_net_irq_exn() - Interrupt service routine for exceptions 524 * @irq: Interrupt 525 * @data: Opaque data structure 526 * 527 * Return: Indicate if the interrupt has been handled. 528 */ 529 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 530 { 531 struct nfp_net *nn = data; 532 533 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 534 /* XXX TO BE IMPLEMENTED */ 535 return IRQ_HANDLED; 536 } 537 538 /** 539 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 540 * @nn: NFP Network structure 541 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 542 * @format: printf-style format to construct the interrupt name 543 * @name: Pointer to allocated space for interrupt name 544 * @name_sz: Size of space for interrupt name 545 * @vector_idx: Index of MSI-X vector used for this interrupt 546 * @handler: IRQ handler to register for this interrupt 547 */ 548 static int 549 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 550 const char *format, char *name, size_t name_sz, 551 unsigned int vector_idx, irq_handler_t handler) 552 { 553 struct msix_entry *entry; 554 int err; 555 556 entry = &nn->irq_entries[vector_idx]; 557 558 snprintf(name, name_sz, format, nfp_net_name(nn)); 559 err = request_irq(entry->vector, handler, 0, name, nn); 560 if (err) { 561 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 562 entry->vector, err); 563 return err; 564 } 565 nn_writeb(nn, ctrl_offset, entry->entry); 566 nfp_net_irq_unmask(nn, entry->entry); 567 568 return 0; 569 } 570 571 /** 572 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 573 * @nn: NFP Network structure 574 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 575 * @vector_idx: Index of MSI-X vector used for this interrupt 576 */ 577 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 578 unsigned int vector_idx) 579 { 580 nn_writeb(nn, ctrl_offset, 0xff); 581 nn_pci_flush(nn); 582 free_irq(nn->irq_entries[vector_idx].vector, nn); 583 } 584 585 struct sk_buff * 586 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 587 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 588 { 589 #ifdef CONFIG_TLS_DEVICE 590 struct nfp_net_tls_offload_ctx *ntls; 591 struct sk_buff *nskb; 592 bool resync_pending; 593 u32 datalen, seq; 594 595 if (likely(!dp->ktls_tx)) 596 return skb; 597 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 598 return skb; 599 600 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 601 seq = ntohl(tcp_hdr(skb)->seq); 602 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 603 resync_pending = tls_offload_tx_resync_pending(skb->sk); 604 if (unlikely(resync_pending || ntls->next_seq != seq)) { 605 /* Pure ACK out of order already */ 606 if (!datalen) 607 return skb; 608 609 u64_stats_update_begin(&r_vec->tx_sync); 610 r_vec->tls_tx_fallback++; 611 u64_stats_update_end(&r_vec->tx_sync); 612 613 nskb = tls_encrypt_skb(skb); 614 if (!nskb) { 615 u64_stats_update_begin(&r_vec->tx_sync); 616 r_vec->tls_tx_no_fallback++; 617 u64_stats_update_end(&r_vec->tx_sync); 618 return NULL; 619 } 620 /* encryption wasn't necessary */ 621 if (nskb == skb) 622 return skb; 623 /* we don't re-check ring space */ 624 if (unlikely(skb_is_nonlinear(nskb))) { 625 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 626 u64_stats_update_begin(&r_vec->tx_sync); 627 r_vec->tx_errors++; 628 u64_stats_update_end(&r_vec->tx_sync); 629 dev_kfree_skb_any(nskb); 630 return NULL; 631 } 632 633 /* jump forward, a TX may have gotten lost, need to sync TX */ 634 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 635 tls_offload_tx_resync_request(nskb->sk, seq, 636 ntls->next_seq); 637 638 *nr_frags = 0; 639 return nskb; 640 } 641 642 if (datalen) { 643 u64_stats_update_begin(&r_vec->tx_sync); 644 if (!skb_is_gso(skb)) 645 r_vec->hw_tls_tx++; 646 else 647 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 648 u64_stats_update_end(&r_vec->tx_sync); 649 } 650 651 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 652 ntls->next_seq += datalen; 653 #endif 654 return skb; 655 } 656 657 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 658 { 659 #ifdef CONFIG_TLS_DEVICE 660 struct nfp_net_tls_offload_ctx *ntls; 661 u32 datalen, seq; 662 663 if (!tls_handle) 664 return; 665 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 666 return; 667 668 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 669 seq = ntohl(tcp_hdr(skb)->seq); 670 671 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 672 if (ntls->next_seq == seq + datalen) 673 ntls->next_seq = seq; 674 else 675 WARN_ON_ONCE(1); 676 #endif 677 } 678 679 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 680 { 681 struct nfp_net *nn = netdev_priv(netdev); 682 683 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 684 } 685 686 /* Receive processing */ 687 static unsigned int 688 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 689 { 690 unsigned int fl_bufsz = 0; 691 692 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 693 fl_bufsz += NFP_NET_MAX_PREPEND; 694 else 695 fl_bufsz += dp->rx_offset; 696 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 697 698 return fl_bufsz; 699 } 700 701 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 702 { 703 unsigned int fl_bufsz; 704 705 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 706 fl_bufsz += dp->rx_dma_off; 707 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 708 709 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 710 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 711 712 return fl_bufsz; 713 } 714 715 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 716 { 717 unsigned int fl_bufsz; 718 719 fl_bufsz = XDP_PACKET_HEADROOM; 720 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 721 722 return fl_bufsz; 723 } 724 725 /* Setup and Configuration 726 */ 727 728 /** 729 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 730 * @nn: NFP Network structure 731 */ 732 static void nfp_net_vecs_init(struct nfp_net *nn) 733 { 734 struct nfp_net_r_vector *r_vec; 735 int r; 736 737 nn->lsc_handler = nfp_net_irq_lsc; 738 nn->exn_handler = nfp_net_irq_exn; 739 740 for (r = 0; r < nn->max_r_vecs; r++) { 741 struct msix_entry *entry; 742 743 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 744 745 r_vec = &nn->r_vecs[r]; 746 r_vec->nfp_net = nn; 747 r_vec->irq_entry = entry->entry; 748 r_vec->irq_vector = entry->vector; 749 750 if (nn->dp.netdev) { 751 r_vec->handler = nfp_net_irq_rxtx; 752 } else { 753 r_vec->handler = nfp_ctrl_irq_rxtx; 754 755 __skb_queue_head_init(&r_vec->queue); 756 spin_lock_init(&r_vec->lock); 757 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 758 tasklet_disable(&r_vec->tasklet); 759 } 760 761 cpumask_set_cpu(r, &r_vec->affinity_mask); 762 } 763 } 764 765 static void 766 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 767 { 768 if (dp->netdev) 769 netif_napi_add(dp->netdev, &r_vec->napi, 770 nfp_net_has_xsk_pool_slow(dp, idx) ? 771 dp->ops->xsk_poll : dp->ops->poll, 772 NAPI_POLL_WEIGHT); 773 else 774 tasklet_enable(&r_vec->tasklet); 775 } 776 777 static void 778 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 779 { 780 if (dp->netdev) 781 netif_napi_del(&r_vec->napi); 782 else 783 tasklet_disable(&r_vec->tasklet); 784 } 785 786 static void 787 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 788 struct nfp_net_r_vector *r_vec, int idx) 789 { 790 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 791 r_vec->tx_ring = 792 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 793 794 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 795 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 796 797 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 798 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 799 800 if (r_vec->xsk_pool) 801 xsk_pool_set_rxq_info(r_vec->xsk_pool, 802 &r_vec->rx_ring->xdp_rxq); 803 804 nfp_net_napi_del(dp, r_vec); 805 nfp_net_napi_add(dp, r_vec, idx); 806 } 807 } 808 809 static int 810 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 811 int idx) 812 { 813 int err; 814 815 nfp_net_napi_add(&nn->dp, r_vec, idx); 816 817 snprintf(r_vec->name, sizeof(r_vec->name), 818 "%s-rxtx-%d", nfp_net_name(nn), idx); 819 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 820 r_vec); 821 if (err) { 822 nfp_net_napi_del(&nn->dp, r_vec); 823 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 824 return err; 825 } 826 disable_irq(r_vec->irq_vector); 827 828 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 829 830 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 831 r_vec->irq_entry); 832 833 return 0; 834 } 835 836 static void 837 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 838 { 839 irq_set_affinity_hint(r_vec->irq_vector, NULL); 840 nfp_net_napi_del(&nn->dp, r_vec); 841 free_irq(r_vec->irq_vector, r_vec); 842 } 843 844 /** 845 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 846 * @nn: NFP Net device to reconfigure 847 */ 848 void nfp_net_rss_write_itbl(struct nfp_net *nn) 849 { 850 int i; 851 852 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 853 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 854 get_unaligned_le32(nn->rss_itbl + i)); 855 } 856 857 /** 858 * nfp_net_rss_write_key() - Write RSS hash key to device 859 * @nn: NFP Net device to reconfigure 860 */ 861 void nfp_net_rss_write_key(struct nfp_net *nn) 862 { 863 int i; 864 865 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 866 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 867 get_unaligned_le32(nn->rss_key + i)); 868 } 869 870 /** 871 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 872 * @nn: NFP Net device to reconfigure 873 */ 874 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 875 { 876 u8 i; 877 u32 factor; 878 u32 value; 879 880 /* Compute factor used to convert coalesce '_usecs' parameters to 881 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 882 * count. 883 */ 884 factor = nn->tlv_caps.me_freq_mhz / 16; 885 886 /* copy RX interrupt coalesce parameters */ 887 value = (nn->rx_coalesce_max_frames << 16) | 888 (factor * nn->rx_coalesce_usecs); 889 for (i = 0; i < nn->dp.num_rx_rings; i++) 890 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 891 892 /* copy TX interrupt coalesce parameters */ 893 value = (nn->tx_coalesce_max_frames << 16) | 894 (factor * nn->tx_coalesce_usecs); 895 for (i = 0; i < nn->dp.num_tx_rings; i++) 896 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 897 } 898 899 /** 900 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 901 * @nn: NFP Net device to reconfigure 902 * @addr: MAC address to write 903 * 904 * Writes the MAC address from the netdev to the device control BAR. Does not 905 * perform the required reconfig. We do a bit of byte swapping dance because 906 * firmware is LE. 907 */ 908 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 909 { 910 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 911 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 912 } 913 914 /** 915 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 916 * @nn: NFP Net device to reconfigure 917 * 918 * Warning: must be fully idempotent. 919 */ 920 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 921 { 922 u32 new_ctrl, update; 923 unsigned int r; 924 int err; 925 926 new_ctrl = nn->dp.ctrl; 927 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 928 update = NFP_NET_CFG_UPDATE_GEN; 929 update |= NFP_NET_CFG_UPDATE_MSIX; 930 update |= NFP_NET_CFG_UPDATE_RING; 931 932 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 933 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 934 935 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 936 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 937 938 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 939 err = nfp_net_reconfig(nn, update); 940 if (err) 941 nn_err(nn, "Could not disable device: %d\n", err); 942 943 for (r = 0; r < nn->dp.num_rx_rings; r++) { 944 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 945 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 946 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 947 } 948 for (r = 0; r < nn->dp.num_tx_rings; r++) 949 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 950 for (r = 0; r < nn->dp.num_r_vecs; r++) 951 nfp_net_vec_clear_ring_data(nn, r); 952 953 nn->dp.ctrl = new_ctrl; 954 } 955 956 /** 957 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 958 * @nn: NFP Net device to reconfigure 959 */ 960 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 961 { 962 u32 bufsz, new_ctrl, update = 0; 963 unsigned int r; 964 int err; 965 966 new_ctrl = nn->dp.ctrl; 967 968 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 969 nfp_net_rss_write_key(nn); 970 nfp_net_rss_write_itbl(nn); 971 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 972 update |= NFP_NET_CFG_UPDATE_RSS; 973 } 974 975 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 976 nfp_net_coalesce_write_cfg(nn); 977 update |= NFP_NET_CFG_UPDATE_IRQMOD; 978 } 979 980 for (r = 0; r < nn->dp.num_tx_rings; r++) 981 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 982 for (r = 0; r < nn->dp.num_rx_rings; r++) 983 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 984 985 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 986 U64_MAX >> (64 - nn->dp.num_tx_rings)); 987 988 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 989 U64_MAX >> (64 - nn->dp.num_rx_rings)); 990 991 if (nn->dp.netdev) 992 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 993 994 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 995 996 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 997 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 998 999 /* Enable device */ 1000 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1001 update |= NFP_NET_CFG_UPDATE_GEN; 1002 update |= NFP_NET_CFG_UPDATE_MSIX; 1003 update |= NFP_NET_CFG_UPDATE_RING; 1004 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1005 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1006 1007 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1008 err = nfp_net_reconfig(nn, update); 1009 if (err) { 1010 nfp_net_clear_config_and_disable(nn); 1011 return err; 1012 } 1013 1014 nn->dp.ctrl = new_ctrl; 1015 1016 for (r = 0; r < nn->dp.num_rx_rings; r++) 1017 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * nfp_net_close_stack() - Quiesce the stack (part of close) 1024 * @nn: NFP Net device to reconfigure 1025 */ 1026 static void nfp_net_close_stack(struct nfp_net *nn) 1027 { 1028 struct nfp_net_r_vector *r_vec; 1029 unsigned int r; 1030 1031 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1032 netif_carrier_off(nn->dp.netdev); 1033 nn->link_up = false; 1034 1035 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1036 r_vec = &nn->r_vecs[r]; 1037 1038 disable_irq(r_vec->irq_vector); 1039 napi_disable(&r_vec->napi); 1040 1041 if (r_vec->rx_ring) 1042 cancel_work_sync(&r_vec->rx_dim.work); 1043 1044 if (r_vec->tx_ring) 1045 cancel_work_sync(&r_vec->tx_dim.work); 1046 } 1047 1048 netif_tx_disable(nn->dp.netdev); 1049 } 1050 1051 /** 1052 * nfp_net_close_free_all() - Free all runtime resources 1053 * @nn: NFP Net device to reconfigure 1054 */ 1055 static void nfp_net_close_free_all(struct nfp_net *nn) 1056 { 1057 unsigned int r; 1058 1059 nfp_net_tx_rings_free(&nn->dp); 1060 nfp_net_rx_rings_free(&nn->dp); 1061 1062 for (r = 0; r < nn->dp.num_r_vecs; r++) 1063 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1064 1065 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1066 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1067 } 1068 1069 /** 1070 * nfp_net_netdev_close() - Called when the device is downed 1071 * @netdev: netdev structure 1072 */ 1073 static int nfp_net_netdev_close(struct net_device *netdev) 1074 { 1075 struct nfp_net *nn = netdev_priv(netdev); 1076 1077 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1078 */ 1079 nfp_net_close_stack(nn); 1080 1081 /* Step 2: Tell NFP 1082 */ 1083 nfp_net_clear_config_and_disable(nn); 1084 nfp_port_configure(netdev, false); 1085 1086 /* Step 3: Free resources 1087 */ 1088 nfp_net_close_free_all(nn); 1089 1090 nn_dbg(nn, "%s down", netdev->name); 1091 return 0; 1092 } 1093 1094 void nfp_ctrl_close(struct nfp_net *nn) 1095 { 1096 int r; 1097 1098 rtnl_lock(); 1099 1100 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1101 disable_irq(nn->r_vecs[r].irq_vector); 1102 tasklet_disable(&nn->r_vecs[r].tasklet); 1103 } 1104 1105 nfp_net_clear_config_and_disable(nn); 1106 1107 nfp_net_close_free_all(nn); 1108 1109 rtnl_unlock(); 1110 } 1111 1112 static void nfp_net_rx_dim_work(struct work_struct *work) 1113 { 1114 struct nfp_net_r_vector *r_vec; 1115 unsigned int factor, value; 1116 struct dim_cq_moder moder; 1117 struct nfp_net *nn; 1118 struct dim *dim; 1119 1120 dim = container_of(work, struct dim, work); 1121 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1122 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1123 nn = r_vec->nfp_net; 1124 1125 /* Compute factor used to convert coalesce '_usecs' parameters to 1126 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1127 * count. 1128 */ 1129 factor = nn->tlv_caps.me_freq_mhz / 16; 1130 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1131 return; 1132 1133 /* copy RX interrupt coalesce parameters */ 1134 value = (moder.pkts << 16) | (factor * moder.usec); 1135 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1136 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1137 1138 dim->state = DIM_START_MEASURE; 1139 } 1140 1141 static void nfp_net_tx_dim_work(struct work_struct *work) 1142 { 1143 struct nfp_net_r_vector *r_vec; 1144 unsigned int factor, value; 1145 struct dim_cq_moder moder; 1146 struct nfp_net *nn; 1147 struct dim *dim; 1148 1149 dim = container_of(work, struct dim, work); 1150 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1151 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1152 nn = r_vec->nfp_net; 1153 1154 /* Compute factor used to convert coalesce '_usecs' parameters to 1155 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1156 * count. 1157 */ 1158 factor = nn->tlv_caps.me_freq_mhz / 16; 1159 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1160 return; 1161 1162 /* copy TX interrupt coalesce parameters */ 1163 value = (moder.pkts << 16) | (factor * moder.usec); 1164 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1165 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1166 1167 dim->state = DIM_START_MEASURE; 1168 } 1169 1170 /** 1171 * nfp_net_open_stack() - Start the device from stack's perspective 1172 * @nn: NFP Net device to reconfigure 1173 */ 1174 static void nfp_net_open_stack(struct nfp_net *nn) 1175 { 1176 struct nfp_net_r_vector *r_vec; 1177 unsigned int r; 1178 1179 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1180 r_vec = &nn->r_vecs[r]; 1181 1182 if (r_vec->rx_ring) { 1183 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1184 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1185 } 1186 1187 if (r_vec->tx_ring) { 1188 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1189 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1190 } 1191 1192 napi_enable(&r_vec->napi); 1193 enable_irq(r_vec->irq_vector); 1194 } 1195 1196 netif_tx_wake_all_queues(nn->dp.netdev); 1197 1198 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1199 nfp_net_read_link_status(nn); 1200 } 1201 1202 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1203 { 1204 int err, r; 1205 1206 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1207 nn->exn_name, sizeof(nn->exn_name), 1208 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1209 if (err) 1210 return err; 1211 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1212 nn->lsc_name, sizeof(nn->lsc_name), 1213 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1214 if (err) 1215 goto err_free_exn; 1216 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1217 1218 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1219 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1220 if (err) 1221 goto err_cleanup_vec_p; 1222 } 1223 1224 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1225 if (err) 1226 goto err_cleanup_vec; 1227 1228 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1229 if (err) 1230 goto err_free_rx_rings; 1231 1232 for (r = 0; r < nn->max_r_vecs; r++) 1233 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1234 1235 return 0; 1236 1237 err_free_rx_rings: 1238 nfp_net_rx_rings_free(&nn->dp); 1239 err_cleanup_vec: 1240 r = nn->dp.num_r_vecs; 1241 err_cleanup_vec_p: 1242 while (r--) 1243 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1244 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1245 err_free_exn: 1246 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1247 return err; 1248 } 1249 1250 static int nfp_net_netdev_open(struct net_device *netdev) 1251 { 1252 struct nfp_net *nn = netdev_priv(netdev); 1253 int err; 1254 1255 /* Step 1: Allocate resources for rings and the like 1256 * - Request interrupts 1257 * - Allocate RX and TX ring resources 1258 * - Setup initial RSS table 1259 */ 1260 err = nfp_net_open_alloc_all(nn); 1261 if (err) 1262 return err; 1263 1264 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1265 if (err) 1266 goto err_free_all; 1267 1268 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1269 if (err) 1270 goto err_free_all; 1271 1272 /* Step 2: Configure the NFP 1273 * - Ifup the physical interface if it exists 1274 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1275 * - Write MAC address (in case it changed) 1276 * - Set the MTU 1277 * - Set the Freelist buffer size 1278 * - Enable the FW 1279 */ 1280 err = nfp_port_configure(netdev, true); 1281 if (err) 1282 goto err_free_all; 1283 1284 err = nfp_net_set_config_and_enable(nn); 1285 if (err) 1286 goto err_port_disable; 1287 1288 /* Step 3: Enable for kernel 1289 * - put some freelist descriptors on each RX ring 1290 * - enable NAPI on each ring 1291 * - enable all TX queues 1292 * - set link state 1293 */ 1294 nfp_net_open_stack(nn); 1295 1296 return 0; 1297 1298 err_port_disable: 1299 nfp_port_configure(netdev, false); 1300 err_free_all: 1301 nfp_net_close_free_all(nn); 1302 return err; 1303 } 1304 1305 int nfp_ctrl_open(struct nfp_net *nn) 1306 { 1307 int err, r; 1308 1309 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1310 rtnl_lock(); 1311 1312 err = nfp_net_open_alloc_all(nn); 1313 if (err) 1314 goto err_unlock; 1315 1316 err = nfp_net_set_config_and_enable(nn); 1317 if (err) 1318 goto err_free_all; 1319 1320 for (r = 0; r < nn->dp.num_r_vecs; r++) 1321 enable_irq(nn->r_vecs[r].irq_vector); 1322 1323 rtnl_unlock(); 1324 1325 return 0; 1326 1327 err_free_all: 1328 nfp_net_close_free_all(nn); 1329 err_unlock: 1330 rtnl_unlock(); 1331 return err; 1332 } 1333 1334 static void nfp_net_set_rx_mode(struct net_device *netdev) 1335 { 1336 struct nfp_net *nn = netdev_priv(netdev); 1337 u32 new_ctrl; 1338 1339 new_ctrl = nn->dp.ctrl; 1340 1341 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1342 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1343 else 1344 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1345 1346 if (netdev->flags & IFF_PROMISC) { 1347 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1348 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1349 else 1350 nn_warn(nn, "FW does not support promiscuous mode\n"); 1351 } else { 1352 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1353 } 1354 1355 if (new_ctrl == nn->dp.ctrl) 1356 return; 1357 1358 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1359 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1360 1361 nn->dp.ctrl = new_ctrl; 1362 } 1363 1364 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1365 { 1366 int i; 1367 1368 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1369 nn->rss_itbl[i] = 1370 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1371 } 1372 1373 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1374 { 1375 struct nfp_net_dp new_dp = *dp; 1376 1377 *dp = nn->dp; 1378 nn->dp = new_dp; 1379 1380 nn->dp.netdev->mtu = new_dp.mtu; 1381 1382 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1383 nfp_net_rss_init_itbl(nn); 1384 } 1385 1386 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1387 { 1388 unsigned int r; 1389 int err; 1390 1391 nfp_net_dp_swap(nn, dp); 1392 1393 for (r = 0; r < nn->max_r_vecs; r++) 1394 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1395 1396 err = netif_set_real_num_queues(nn->dp.netdev, 1397 nn->dp.num_stack_tx_rings, 1398 nn->dp.num_rx_rings); 1399 if (err) 1400 return err; 1401 1402 return nfp_net_set_config_and_enable(nn); 1403 } 1404 1405 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1406 { 1407 struct nfp_net_dp *new; 1408 1409 new = kmalloc(sizeof(*new), GFP_KERNEL); 1410 if (!new) 1411 return NULL; 1412 1413 *new = nn->dp; 1414 1415 new->xsk_pools = kmemdup(new->xsk_pools, 1416 array_size(nn->max_r_vecs, 1417 sizeof(new->xsk_pools)), 1418 GFP_KERNEL); 1419 if (!new->xsk_pools) { 1420 kfree(new); 1421 return NULL; 1422 } 1423 1424 /* Clear things which need to be recomputed */ 1425 new->fl_bufsz = 0; 1426 new->tx_rings = NULL; 1427 new->rx_rings = NULL; 1428 new->num_r_vecs = 0; 1429 new->num_stack_tx_rings = 0; 1430 new->txrwb = NULL; 1431 new->txrwb_dma = 0; 1432 1433 return new; 1434 } 1435 1436 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1437 { 1438 kfree(dp->xsk_pools); 1439 kfree(dp); 1440 } 1441 1442 static int 1443 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1444 struct netlink_ext_ack *extack) 1445 { 1446 unsigned int r, xsk_min_fl_bufsz; 1447 1448 /* XDP-enabled tests */ 1449 if (!dp->xdp_prog) 1450 return 0; 1451 if (dp->fl_bufsz > PAGE_SIZE) { 1452 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1453 return -EINVAL; 1454 } 1455 if (dp->num_tx_rings > nn->max_tx_rings) { 1456 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1457 return -EINVAL; 1458 } 1459 1460 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1461 for (r = 0; r < nn->max_r_vecs; r++) { 1462 if (!dp->xsk_pools[r]) 1463 continue; 1464 1465 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1466 NL_SET_ERR_MSG_MOD(extack, 1467 "XSK buffer pool chunk size too small"); 1468 return -EINVAL; 1469 } 1470 } 1471 1472 return 0; 1473 } 1474 1475 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1476 struct netlink_ext_ack *extack) 1477 { 1478 int r, err; 1479 1480 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1481 1482 dp->num_stack_tx_rings = dp->num_tx_rings; 1483 if (dp->xdp_prog) 1484 dp->num_stack_tx_rings -= dp->num_rx_rings; 1485 1486 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1487 1488 err = nfp_net_check_config(nn, dp, extack); 1489 if (err) 1490 goto exit_free_dp; 1491 1492 if (!netif_running(dp->netdev)) { 1493 nfp_net_dp_swap(nn, dp); 1494 err = 0; 1495 goto exit_free_dp; 1496 } 1497 1498 /* Prepare new rings */ 1499 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1500 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1501 if (err) { 1502 dp->num_r_vecs = r; 1503 goto err_cleanup_vecs; 1504 } 1505 } 1506 1507 err = nfp_net_rx_rings_prepare(nn, dp); 1508 if (err) 1509 goto err_cleanup_vecs; 1510 1511 err = nfp_net_tx_rings_prepare(nn, dp); 1512 if (err) 1513 goto err_free_rx; 1514 1515 /* Stop device, swap in new rings, try to start the firmware */ 1516 nfp_net_close_stack(nn); 1517 nfp_net_clear_config_and_disable(nn); 1518 1519 err = nfp_net_dp_swap_enable(nn, dp); 1520 if (err) { 1521 int err2; 1522 1523 nfp_net_clear_config_and_disable(nn); 1524 1525 /* Try with old configuration and old rings */ 1526 err2 = nfp_net_dp_swap_enable(nn, dp); 1527 if (err2) 1528 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1529 err, err2); 1530 } 1531 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1532 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1533 1534 nfp_net_rx_rings_free(dp); 1535 nfp_net_tx_rings_free(dp); 1536 1537 nfp_net_open_stack(nn); 1538 exit_free_dp: 1539 nfp_net_free_dp(dp); 1540 1541 return err; 1542 1543 err_free_rx: 1544 nfp_net_rx_rings_free(dp); 1545 err_cleanup_vecs: 1546 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1547 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1548 nfp_net_free_dp(dp); 1549 return err; 1550 } 1551 1552 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1553 { 1554 struct nfp_net *nn = netdev_priv(netdev); 1555 struct nfp_net_dp *dp; 1556 int err; 1557 1558 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1559 if (err) 1560 return err; 1561 1562 dp = nfp_net_clone_dp(nn); 1563 if (!dp) 1564 return -ENOMEM; 1565 1566 dp->mtu = new_mtu; 1567 1568 return nfp_net_ring_reconfig(nn, dp, NULL); 1569 } 1570 1571 static int 1572 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1573 { 1574 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1575 struct nfp_net *nn = netdev_priv(netdev); 1576 int err; 1577 1578 /* Priority tagged packets with vlan id 0 are processed by the 1579 * NFP as untagged packets 1580 */ 1581 if (!vid) 1582 return 0; 1583 1584 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1585 if (err) 1586 return err; 1587 1588 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1589 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1590 ETH_P_8021Q); 1591 1592 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1593 } 1594 1595 static int 1596 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1597 { 1598 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1599 struct nfp_net *nn = netdev_priv(netdev); 1600 int err; 1601 1602 /* Priority tagged packets with vlan id 0 are processed by the 1603 * NFP as untagged packets 1604 */ 1605 if (!vid) 1606 return 0; 1607 1608 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1609 if (err) 1610 return err; 1611 1612 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1613 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1614 ETH_P_8021Q); 1615 1616 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1617 } 1618 1619 static void nfp_net_stat64(struct net_device *netdev, 1620 struct rtnl_link_stats64 *stats) 1621 { 1622 struct nfp_net *nn = netdev_priv(netdev); 1623 int r; 1624 1625 /* Collect software stats */ 1626 for (r = 0; r < nn->max_r_vecs; r++) { 1627 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1628 u64 data[3]; 1629 unsigned int start; 1630 1631 do { 1632 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1633 data[0] = r_vec->rx_pkts; 1634 data[1] = r_vec->rx_bytes; 1635 data[2] = r_vec->rx_drops; 1636 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1637 stats->rx_packets += data[0]; 1638 stats->rx_bytes += data[1]; 1639 stats->rx_dropped += data[2]; 1640 1641 do { 1642 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1643 data[0] = r_vec->tx_pkts; 1644 data[1] = r_vec->tx_bytes; 1645 data[2] = r_vec->tx_errors; 1646 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1647 stats->tx_packets += data[0]; 1648 stats->tx_bytes += data[1]; 1649 stats->tx_errors += data[2]; 1650 } 1651 1652 /* Add in device stats */ 1653 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1654 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1655 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1656 1657 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1658 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1659 } 1660 1661 static int nfp_net_set_features(struct net_device *netdev, 1662 netdev_features_t features) 1663 { 1664 netdev_features_t changed = netdev->features ^ features; 1665 struct nfp_net *nn = netdev_priv(netdev); 1666 u32 new_ctrl; 1667 int err; 1668 1669 /* Assume this is not called with features we have not advertised */ 1670 1671 new_ctrl = nn->dp.ctrl; 1672 1673 if (changed & NETIF_F_RXCSUM) { 1674 if (features & NETIF_F_RXCSUM) 1675 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 1676 else 1677 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 1678 } 1679 1680 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1681 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 1682 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 1683 else 1684 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 1685 } 1686 1687 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 1688 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1689 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 1690 NFP_NET_CFG_CTRL_LSO; 1691 else 1692 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 1693 } 1694 1695 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1696 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1697 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 1698 else 1699 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 1700 } 1701 1702 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 1703 if (features & NETIF_F_HW_VLAN_CTAG_TX) 1704 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 1705 else 1706 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 1707 } 1708 1709 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 1710 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 1711 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 1712 else 1713 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 1714 } 1715 1716 if (changed & NETIF_F_SG) { 1717 if (features & NETIF_F_SG) 1718 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 1719 else 1720 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 1721 } 1722 1723 err = nfp_port_set_features(netdev, features); 1724 if (err) 1725 return err; 1726 1727 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 1728 netdev->features, features, changed); 1729 1730 if (new_ctrl == nn->dp.ctrl) 1731 return 0; 1732 1733 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 1734 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1735 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1736 if (err) 1737 return err; 1738 1739 nn->dp.ctrl = new_ctrl; 1740 1741 return 0; 1742 } 1743 1744 static netdev_features_t 1745 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 1746 netdev_features_t features) 1747 { 1748 u8 l4_hdr; 1749 1750 /* We can't do TSO over double tagged packets (802.1AD) */ 1751 features &= vlan_features_check(skb, features); 1752 1753 if (!skb->encapsulation) 1754 return features; 1755 1756 /* Ensure that inner L4 header offset fits into TX descriptor field */ 1757 if (skb_is_gso(skb)) { 1758 u32 hdrlen; 1759 1760 hdrlen = skb_inner_transport_header(skb) - skb->data + 1761 inner_tcp_hdrlen(skb); 1762 1763 /* Assume worst case scenario of having longest possible 1764 * metadata prepend - 8B 1765 */ 1766 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 1767 features &= ~NETIF_F_GSO_MASK; 1768 } 1769 1770 /* VXLAN/GRE check */ 1771 switch (vlan_get_protocol(skb)) { 1772 case htons(ETH_P_IP): 1773 l4_hdr = ip_hdr(skb)->protocol; 1774 break; 1775 case htons(ETH_P_IPV6): 1776 l4_hdr = ipv6_hdr(skb)->nexthdr; 1777 break; 1778 default: 1779 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1780 } 1781 1782 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1783 skb->inner_protocol != htons(ETH_P_TEB) || 1784 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 1785 (l4_hdr == IPPROTO_UDP && 1786 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1787 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 1788 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1789 1790 return features; 1791 } 1792 1793 static int 1794 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 1795 { 1796 struct nfp_net *nn = netdev_priv(netdev); 1797 int n; 1798 1799 /* If port is defined, devlink_port is registered and devlink core 1800 * is taking care of name formatting. 1801 */ 1802 if (nn->port) 1803 return -EOPNOTSUPP; 1804 1805 if (nn->dp.is_vf || nn->vnic_no_name) 1806 return -EOPNOTSUPP; 1807 1808 n = snprintf(name, len, "n%d", nn->id); 1809 if (n >= len) 1810 return -EINVAL; 1811 1812 return 0; 1813 } 1814 1815 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 1816 { 1817 struct bpf_prog *prog = bpf->prog; 1818 struct nfp_net_dp *dp; 1819 int err; 1820 1821 if (!prog == !nn->dp.xdp_prog) { 1822 WRITE_ONCE(nn->dp.xdp_prog, prog); 1823 xdp_attachment_setup(&nn->xdp, bpf); 1824 return 0; 1825 } 1826 1827 dp = nfp_net_clone_dp(nn); 1828 if (!dp) 1829 return -ENOMEM; 1830 1831 dp->xdp_prog = prog; 1832 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 1833 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1834 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 1835 1836 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 1837 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 1838 if (err) 1839 return err; 1840 1841 xdp_attachment_setup(&nn->xdp, bpf); 1842 return 0; 1843 } 1844 1845 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 1846 { 1847 int err; 1848 1849 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 1850 if (err) 1851 return err; 1852 1853 xdp_attachment_setup(&nn->xdp_hw, bpf); 1854 return 0; 1855 } 1856 1857 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1858 { 1859 struct nfp_net *nn = netdev_priv(netdev); 1860 1861 switch (xdp->command) { 1862 case XDP_SETUP_PROG: 1863 return nfp_net_xdp_setup_drv(nn, xdp); 1864 case XDP_SETUP_PROG_HW: 1865 return nfp_net_xdp_setup_hw(nn, xdp); 1866 case XDP_SETUP_XSK_POOL: 1867 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 1868 xdp->xsk.queue_id); 1869 default: 1870 return nfp_app_bpf(nn->app, nn, xdp); 1871 } 1872 } 1873 1874 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 1875 { 1876 struct nfp_net *nn = netdev_priv(netdev); 1877 struct sockaddr *saddr = addr; 1878 int err; 1879 1880 err = eth_prepare_mac_addr_change(netdev, addr); 1881 if (err) 1882 return err; 1883 1884 nfp_net_write_mac_addr(nn, saddr->sa_data); 1885 1886 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 1887 if (err) 1888 return err; 1889 1890 eth_commit_mac_addr_change(netdev, addr); 1891 1892 return 0; 1893 } 1894 1895 const struct net_device_ops nfp_nfd3_netdev_ops = { 1896 .ndo_init = nfp_app_ndo_init, 1897 .ndo_uninit = nfp_app_ndo_uninit, 1898 .ndo_open = nfp_net_netdev_open, 1899 .ndo_stop = nfp_net_netdev_close, 1900 .ndo_start_xmit = nfp_net_tx, 1901 .ndo_get_stats64 = nfp_net_stat64, 1902 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1903 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1904 .ndo_set_vf_mac = nfp_app_set_vf_mac, 1905 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 1906 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 1907 .ndo_set_vf_trust = nfp_app_set_vf_trust, 1908 .ndo_get_vf_config = nfp_app_get_vf_config, 1909 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 1910 .ndo_setup_tc = nfp_port_setup_tc, 1911 .ndo_tx_timeout = nfp_net_tx_timeout, 1912 .ndo_set_rx_mode = nfp_net_set_rx_mode, 1913 .ndo_change_mtu = nfp_net_change_mtu, 1914 .ndo_set_mac_address = nfp_net_set_mac_address, 1915 .ndo_set_features = nfp_net_set_features, 1916 .ndo_features_check = nfp_net_features_check, 1917 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 1918 .ndo_bpf = nfp_net_xdp, 1919 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 1920 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 1921 }; 1922 1923 const struct net_device_ops nfp_nfdk_netdev_ops = { 1924 .ndo_init = nfp_app_ndo_init, 1925 .ndo_uninit = nfp_app_ndo_uninit, 1926 .ndo_open = nfp_net_netdev_open, 1927 .ndo_stop = nfp_net_netdev_close, 1928 .ndo_start_xmit = nfp_net_tx, 1929 .ndo_get_stats64 = nfp_net_stat64, 1930 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1931 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1932 .ndo_set_vf_mac = nfp_app_set_vf_mac, 1933 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 1934 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 1935 .ndo_set_vf_trust = nfp_app_set_vf_trust, 1936 .ndo_get_vf_config = nfp_app_get_vf_config, 1937 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 1938 .ndo_setup_tc = nfp_port_setup_tc, 1939 .ndo_tx_timeout = nfp_net_tx_timeout, 1940 .ndo_set_rx_mode = nfp_net_set_rx_mode, 1941 .ndo_change_mtu = nfp_net_change_mtu, 1942 .ndo_set_mac_address = nfp_net_set_mac_address, 1943 .ndo_set_features = nfp_net_set_features, 1944 .ndo_features_check = nfp_net_features_check, 1945 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 1946 .ndo_bpf = nfp_net_xdp, 1947 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 1948 }; 1949 1950 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 1951 { 1952 struct nfp_net *nn = netdev_priv(netdev); 1953 int i; 1954 1955 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 1956 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 1957 struct udp_tunnel_info ti0, ti1; 1958 1959 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 1960 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 1961 1962 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 1963 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 1964 } 1965 1966 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 1967 } 1968 1969 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 1970 .sync_table = nfp_udp_tunnel_sync, 1971 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 1972 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 1973 .tables = { 1974 { 1975 .n_entries = NFP_NET_N_VXLAN_PORTS, 1976 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 1977 }, 1978 }, 1979 }; 1980 1981 /** 1982 * nfp_net_info() - Print general info about the NIC 1983 * @nn: NFP Net device to reconfigure 1984 */ 1985 void nfp_net_info(struct nfp_net *nn) 1986 { 1987 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 1988 nn->dp.is_vf ? "VF " : "", 1989 nn->dp.num_tx_rings, nn->max_tx_rings, 1990 nn->dp.num_rx_rings, nn->max_rx_rings); 1991 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 1992 nn->fw_ver.extend, nn->fw_ver.class, 1993 nn->fw_ver.major, nn->fw_ver.minor, 1994 nn->max_mtu); 1995 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 1996 nn->cap, 1997 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 1998 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 1999 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2000 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2001 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2002 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2003 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2004 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2005 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2006 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2007 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2008 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2009 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2010 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2011 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2012 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2013 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2014 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2015 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2016 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2017 "RXCSUM_COMPLETE " : "", 2018 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2019 nfp_app_extra_cap(nn->app, nn)); 2020 } 2021 2022 /** 2023 * nfp_net_alloc() - Allocate netdev and related structure 2024 * @pdev: PCI device 2025 * @dev_info: NFP ASIC params 2026 * @ctrl_bar: PCI IOMEM with vNIC config memory 2027 * @needs_netdev: Whether to allocate a netdev for this vNIC 2028 * @max_tx_rings: Maximum number of TX rings supported by device 2029 * @max_rx_rings: Maximum number of RX rings supported by device 2030 * 2031 * This function allocates a netdev device and fills in the initial 2032 * part of the @struct nfp_net structure. In case of control device 2033 * nfp_net structure is allocated without the netdev. 2034 * 2035 * Return: NFP Net device structure, or ERR_PTR on error. 2036 */ 2037 struct nfp_net * 2038 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2039 void __iomem *ctrl_bar, bool needs_netdev, 2040 unsigned int max_tx_rings, unsigned int max_rx_rings) 2041 { 2042 struct nfp_net *nn; 2043 int err; 2044 2045 if (needs_netdev) { 2046 struct net_device *netdev; 2047 2048 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2049 max_tx_rings, max_rx_rings); 2050 if (!netdev) 2051 return ERR_PTR(-ENOMEM); 2052 2053 SET_NETDEV_DEV(netdev, &pdev->dev); 2054 nn = netdev_priv(netdev); 2055 nn->dp.netdev = netdev; 2056 } else { 2057 nn = vzalloc(sizeof(*nn)); 2058 if (!nn) 2059 return ERR_PTR(-ENOMEM); 2060 } 2061 2062 nn->dp.dev = &pdev->dev; 2063 nn->dp.ctrl_bar = ctrl_bar; 2064 nn->dev_info = dev_info; 2065 nn->pdev = pdev; 2066 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2067 2068 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2069 case NFP_NET_CFG_VERSION_DP_NFD3: 2070 nn->dp.ops = &nfp_nfd3_ops; 2071 break; 2072 case NFP_NET_CFG_VERSION_DP_NFDK: 2073 if (nn->fw_ver.major < 5) { 2074 dev_err(&pdev->dev, 2075 "NFDK must use ABI 5 or newer, found: %d\n", 2076 nn->fw_ver.major); 2077 err = -EINVAL; 2078 goto err_free_nn; 2079 } 2080 nn->dp.ops = &nfp_nfdk_ops; 2081 break; 2082 default: 2083 err = -EINVAL; 2084 goto err_free_nn; 2085 } 2086 2087 nn->max_tx_rings = max_tx_rings; 2088 nn->max_rx_rings = max_rx_rings; 2089 2090 nn->dp.num_tx_rings = min_t(unsigned int, 2091 max_tx_rings, num_online_cpus()); 2092 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2093 netif_get_num_default_rss_queues()); 2094 2095 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2096 nn->dp.num_r_vecs = min_t(unsigned int, 2097 nn->dp.num_r_vecs, num_online_cpus()); 2098 nn->max_r_vecs = nn->dp.num_r_vecs; 2099 2100 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2101 GFP_KERNEL); 2102 if (!nn->dp.xsk_pools) { 2103 err = -ENOMEM; 2104 goto err_free_nn; 2105 } 2106 2107 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2108 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2109 2110 sema_init(&nn->bar_lock, 1); 2111 2112 spin_lock_init(&nn->reconfig_lock); 2113 spin_lock_init(&nn->link_status_lock); 2114 2115 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2116 2117 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2118 &nn->tlv_caps); 2119 if (err) 2120 goto err_free_nn; 2121 2122 err = nfp_ccm_mbox_alloc(nn); 2123 if (err) 2124 goto err_free_nn; 2125 2126 return nn; 2127 2128 err_free_nn: 2129 if (nn->dp.netdev) 2130 free_netdev(nn->dp.netdev); 2131 else 2132 vfree(nn); 2133 return ERR_PTR(err); 2134 } 2135 2136 /** 2137 * nfp_net_free() - Undo what @nfp_net_alloc() did 2138 * @nn: NFP Net device to reconfigure 2139 */ 2140 void nfp_net_free(struct nfp_net *nn) 2141 { 2142 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2143 nfp_ccm_mbox_free(nn); 2144 2145 kfree(nn->dp.xsk_pools); 2146 if (nn->dp.netdev) 2147 free_netdev(nn->dp.netdev); 2148 else 2149 vfree(nn); 2150 } 2151 2152 /** 2153 * nfp_net_rss_key_sz() - Get current size of the RSS key 2154 * @nn: NFP Net device instance 2155 * 2156 * Return: size of the RSS key for currently selected hash function. 2157 */ 2158 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2159 { 2160 switch (nn->rss_hfunc) { 2161 case ETH_RSS_HASH_TOP: 2162 return NFP_NET_CFG_RSS_KEY_SZ; 2163 case ETH_RSS_HASH_XOR: 2164 return 0; 2165 case ETH_RSS_HASH_CRC32: 2166 return 4; 2167 } 2168 2169 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2170 return 0; 2171 } 2172 2173 /** 2174 * nfp_net_rss_init() - Set the initial RSS parameters 2175 * @nn: NFP Net device to reconfigure 2176 */ 2177 static void nfp_net_rss_init(struct nfp_net *nn) 2178 { 2179 unsigned long func_bit, rss_cap_hfunc; 2180 u32 reg; 2181 2182 /* Read the RSS function capability and select first supported func */ 2183 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2184 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2185 if (!rss_cap_hfunc) 2186 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2187 NFP_NET_CFG_RSS_TOEPLITZ); 2188 2189 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2190 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2191 dev_warn(nn->dp.dev, 2192 "Bad RSS config, defaulting to Toeplitz hash\n"); 2193 func_bit = ETH_RSS_HASH_TOP_BIT; 2194 } 2195 nn->rss_hfunc = 1 << func_bit; 2196 2197 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2198 2199 nfp_net_rss_init_itbl(nn); 2200 2201 /* Enable IPv4/IPv6 TCP by default */ 2202 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2203 NFP_NET_CFG_RSS_IPV6_TCP | 2204 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2205 NFP_NET_CFG_RSS_MASK; 2206 } 2207 2208 /** 2209 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2210 * @nn: NFP Net device to reconfigure 2211 */ 2212 static void nfp_net_irqmod_init(struct nfp_net *nn) 2213 { 2214 nn->rx_coalesce_usecs = 50; 2215 nn->rx_coalesce_max_frames = 64; 2216 nn->tx_coalesce_usecs = 50; 2217 nn->tx_coalesce_max_frames = 64; 2218 2219 nn->rx_coalesce_adapt_on = true; 2220 nn->tx_coalesce_adapt_on = true; 2221 } 2222 2223 static void nfp_net_netdev_init(struct nfp_net *nn) 2224 { 2225 struct net_device *netdev = nn->dp.netdev; 2226 2227 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2228 2229 netdev->mtu = nn->dp.mtu; 2230 2231 /* Advertise/enable offloads based on capabilities 2232 * 2233 * Note: netdev->features show the currently enabled features 2234 * and netdev->hw_features advertises which features are 2235 * supported. By default we enable most features. 2236 */ 2237 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2238 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2239 2240 netdev->hw_features = NETIF_F_HIGHDMA; 2241 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2242 netdev->hw_features |= NETIF_F_RXCSUM; 2243 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2244 } 2245 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2246 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2247 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2248 } 2249 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2250 netdev->hw_features |= NETIF_F_SG; 2251 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2252 } 2253 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2254 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2255 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2256 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2257 NFP_NET_CFG_CTRL_LSO; 2258 } 2259 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2260 netdev->hw_features |= NETIF_F_RXHASH; 2261 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2262 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2263 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 2264 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2265 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2266 } 2267 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2268 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2269 netdev->hw_features |= NETIF_F_GSO_GRE; 2270 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2271 } 2272 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2273 netdev->hw_enc_features = netdev->hw_features; 2274 2275 netdev->vlan_features = netdev->hw_features; 2276 2277 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 2278 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2279 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2280 } 2281 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 2282 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2283 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2284 } else { 2285 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2286 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2287 } 2288 } 2289 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2290 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2291 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2292 } 2293 2294 netdev->features = netdev->hw_features; 2295 2296 if (nfp_app_has_tc(nn->app) && nn->port) 2297 netdev->hw_features |= NETIF_F_HW_TC; 2298 2299 /* Advertise but disable TSO by default. */ 2300 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 2301 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 2302 2303 /* Finalise the netdev setup */ 2304 switch (nn->dp.ops->version) { 2305 case NFP_NFD_VER_NFD3: 2306 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2307 break; 2308 case NFP_NFD_VER_NFDK: 2309 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2310 break; 2311 } 2312 2313 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2314 2315 /* MTU range: 68 - hw-specific max */ 2316 netdev->min_mtu = ETH_MIN_MTU; 2317 netdev->max_mtu = nn->max_mtu; 2318 2319 netif_set_gso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2320 2321 netif_carrier_off(netdev); 2322 2323 nfp_net_set_ethtool_ops(netdev); 2324 } 2325 2326 static int nfp_net_read_caps(struct nfp_net *nn) 2327 { 2328 /* Get some of the read-only fields from the BAR */ 2329 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2330 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2331 2332 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2333 * we allow use of non-chained metadata if RSS(v1) is the only 2334 * advertised capability requiring metadata. 2335 */ 2336 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2337 !nn->dp.netdev || 2338 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2339 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2340 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2341 * it has the same meaning as RSSv2. 2342 */ 2343 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2344 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2345 2346 /* Determine RX packet/metadata boundary offset */ 2347 if (nn->fw_ver.major >= 2) { 2348 u32 reg; 2349 2350 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2351 if (reg > NFP_NET_MAX_PREPEND) { 2352 nn_err(nn, "Invalid rx offset: %d\n", reg); 2353 return -EINVAL; 2354 } 2355 nn->dp.rx_offset = reg; 2356 } else { 2357 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2358 } 2359 2360 /* Mask out NFD-version-specific features */ 2361 nn->cap &= nn->dp.ops->cap_mask; 2362 2363 /* For control vNICs mask out the capabilities app doesn't want. */ 2364 if (!nn->dp.netdev) 2365 nn->cap &= nn->app->type->ctrl_cap_mask; 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * nfp_net_init() - Initialise/finalise the nfp_net structure 2372 * @nn: NFP Net device structure 2373 * 2374 * Return: 0 on success or negative errno on error. 2375 */ 2376 int nfp_net_init(struct nfp_net *nn) 2377 { 2378 int err; 2379 2380 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2381 2382 err = nfp_net_read_caps(nn); 2383 if (err) 2384 return err; 2385 2386 /* Set default MTU and Freelist buffer size */ 2387 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2388 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2389 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2390 nn->dp.mtu = nn->max_mtu; 2391 } else { 2392 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2393 } 2394 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2395 2396 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2397 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2398 2399 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2400 nfp_net_rss_init(nn); 2401 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2402 NFP_NET_CFG_CTRL_RSS; 2403 } 2404 2405 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2406 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2407 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2408 2409 /* Allow IRQ moderation, if supported */ 2410 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2411 nfp_net_irqmod_init(nn); 2412 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2413 } 2414 2415 /* Enable TX pointer writeback, if supported */ 2416 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2417 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2418 2419 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2420 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2421 2422 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2423 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2424 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2425 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2426 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2427 NFP_NET_CFG_UPDATE_GEN); 2428 if (err) 2429 return err; 2430 2431 if (nn->dp.netdev) { 2432 nfp_net_netdev_init(nn); 2433 2434 err = nfp_ccm_mbox_init(nn); 2435 if (err) 2436 return err; 2437 2438 err = nfp_net_tls_init(nn); 2439 if (err) 2440 goto err_clean_mbox; 2441 } 2442 2443 nfp_net_vecs_init(nn); 2444 2445 if (!nn->dp.netdev) 2446 return 0; 2447 return register_netdev(nn->dp.netdev); 2448 2449 err_clean_mbox: 2450 nfp_ccm_mbox_clean(nn); 2451 return err; 2452 } 2453 2454 /** 2455 * nfp_net_clean() - Undo what nfp_net_init() did. 2456 * @nn: NFP Net device structure 2457 */ 2458 void nfp_net_clean(struct nfp_net *nn) 2459 { 2460 if (!nn->dp.netdev) 2461 return; 2462 2463 unregister_netdev(nn->dp.netdev); 2464 nfp_ccm_mbox_clean(nn); 2465 nfp_net_reconfig_wait_posted(nn); 2466 } 2467