1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/ethtool.h> 31 #include <linux/log2.h> 32 #include <linux/if_vlan.h> 33 #include <linux/if_bridge.h> 34 #include <linux/random.h> 35 #include <linux/vmalloc.h> 36 #include <linux/ktime.h> 37 38 #include <net/tls.h> 39 #include <net/vxlan.h> 40 #include <net/xdp_sock_drv.h> 41 42 #include "nfpcore/nfp_dev.h" 43 #include "nfpcore/nfp_nsp.h" 44 #include "ccm.h" 45 #include "nfp_app.h" 46 #include "nfp_net_ctrl.h" 47 #include "nfp_net.h" 48 #include "nfp_net_dp.h" 49 #include "nfp_net_sriov.h" 50 #include "nfp_net_xsk.h" 51 #include "nfp_port.h" 52 #include "crypto/crypto.h" 53 #include "crypto/fw.h" 54 55 /** 56 * nfp_net_get_fw_version() - Read and parse the FW version 57 * @fw_ver: Output fw_version structure to read to 58 * @ctrl_bar: Mapped address of the control BAR 59 */ 60 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 61 void __iomem *ctrl_bar) 62 { 63 u32 reg; 64 65 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 66 put_unaligned_le32(reg, fw_ver); 67 } 68 69 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 70 { 71 queue &= dev_info->qc_idx_mask; 72 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 73 } 74 75 /* Firmware reconfig 76 * 77 * Firmware reconfig may take a while so we have two versions of it - 78 * synchronous and asynchronous (posted). All synchronous callers are holding 79 * RTNL so we don't have to worry about serializing them. 80 */ 81 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 82 { 83 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 84 /* ensure update is written before pinging HW */ 85 nn_pci_flush(nn); 86 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 87 nn->reconfig_in_progress_update = update; 88 } 89 90 /* Pass 0 as update to run posted reconfigs. */ 91 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 92 { 93 update |= nn->reconfig_posted; 94 nn->reconfig_posted = 0; 95 96 nfp_net_reconfig_start(nn, update); 97 98 nn->reconfig_timer_active = true; 99 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 100 } 101 102 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 103 { 104 u32 reg; 105 106 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 107 if (reg == 0) 108 return true; 109 if (reg & NFP_NET_CFG_UPDATE_ERR) { 110 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 111 reg, nn->reconfig_in_progress_update, 112 nn_readl(nn, NFP_NET_CFG_CTRL)); 113 return true; 114 } else if (last_check) { 115 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 116 reg, nn->reconfig_in_progress_update, 117 nn_readl(nn, NFP_NET_CFG_CTRL)); 118 return true; 119 } 120 121 return false; 122 } 123 124 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 125 { 126 bool timed_out = false; 127 int i; 128 129 /* Poll update field, waiting for NFP to ack the config. 130 * Do an opportunistic wait-busy loop, afterward sleep. 131 */ 132 for (i = 0; i < 50; i++) { 133 if (nfp_net_reconfig_check_done(nn, false)) 134 return false; 135 udelay(4); 136 } 137 138 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 139 usleep_range(250, 500); 140 timed_out = time_is_before_eq_jiffies(deadline); 141 } 142 143 return timed_out; 144 } 145 146 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 147 { 148 if (__nfp_net_reconfig_wait(nn, deadline)) 149 return -EIO; 150 151 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 152 return -EIO; 153 154 return 0; 155 } 156 157 static void nfp_net_reconfig_timer(struct timer_list *t) 158 { 159 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 160 161 spin_lock_bh(&nn->reconfig_lock); 162 163 nn->reconfig_timer_active = false; 164 165 /* If sync caller is present it will take over from us */ 166 if (nn->reconfig_sync_present) 167 goto done; 168 169 /* Read reconfig status and report errors */ 170 nfp_net_reconfig_check_done(nn, true); 171 172 if (nn->reconfig_posted) 173 nfp_net_reconfig_start_async(nn, 0); 174 done: 175 spin_unlock_bh(&nn->reconfig_lock); 176 } 177 178 /** 179 * nfp_net_reconfig_post() - Post async reconfig request 180 * @nn: NFP Net device to reconfigure 181 * @update: The value for the update field in the BAR config 182 * 183 * Record FW reconfiguration request. Reconfiguration will be kicked off 184 * whenever reconfiguration machinery is idle. Multiple requests can be 185 * merged together! 186 */ 187 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 188 { 189 spin_lock_bh(&nn->reconfig_lock); 190 191 /* Sync caller will kick off async reconf when it's done, just post */ 192 if (nn->reconfig_sync_present) { 193 nn->reconfig_posted |= update; 194 goto done; 195 } 196 197 /* Opportunistically check if the previous command is done */ 198 if (!nn->reconfig_timer_active || 199 nfp_net_reconfig_check_done(nn, false)) 200 nfp_net_reconfig_start_async(nn, update); 201 else 202 nn->reconfig_posted |= update; 203 done: 204 spin_unlock_bh(&nn->reconfig_lock); 205 } 206 207 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 208 { 209 bool cancelled_timer = false; 210 u32 pre_posted_requests; 211 212 spin_lock_bh(&nn->reconfig_lock); 213 214 WARN_ON(nn->reconfig_sync_present); 215 nn->reconfig_sync_present = true; 216 217 if (nn->reconfig_timer_active) { 218 nn->reconfig_timer_active = false; 219 cancelled_timer = true; 220 } 221 pre_posted_requests = nn->reconfig_posted; 222 nn->reconfig_posted = 0; 223 224 spin_unlock_bh(&nn->reconfig_lock); 225 226 if (cancelled_timer) { 227 del_timer_sync(&nn->reconfig_timer); 228 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 229 } 230 231 /* Run the posted reconfigs which were issued before we started */ 232 if (pre_posted_requests) { 233 nfp_net_reconfig_start(nn, pre_posted_requests); 234 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 235 } 236 } 237 238 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 239 { 240 nfp_net_reconfig_sync_enter(nn); 241 242 spin_lock_bh(&nn->reconfig_lock); 243 nn->reconfig_sync_present = false; 244 spin_unlock_bh(&nn->reconfig_lock); 245 } 246 247 /** 248 * __nfp_net_reconfig() - Reconfigure the firmware 249 * @nn: NFP Net device to reconfigure 250 * @update: The value for the update field in the BAR config 251 * 252 * Write the update word to the BAR and ping the reconfig queue. The 253 * poll until the firmware has acknowledged the update by zeroing the 254 * update word. 255 * 256 * Return: Negative errno on error, 0 on success 257 */ 258 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 259 { 260 int ret; 261 262 nfp_net_reconfig_sync_enter(nn); 263 264 nfp_net_reconfig_start(nn, update); 265 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 266 267 spin_lock_bh(&nn->reconfig_lock); 268 269 if (nn->reconfig_posted) 270 nfp_net_reconfig_start_async(nn, 0); 271 272 nn->reconfig_sync_present = false; 273 274 spin_unlock_bh(&nn->reconfig_lock); 275 276 return ret; 277 } 278 279 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 280 { 281 int ret; 282 283 nn_ctrl_bar_lock(nn); 284 ret = __nfp_net_reconfig(nn, update); 285 nn_ctrl_bar_unlock(nn); 286 287 return ret; 288 } 289 290 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 291 { 292 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 293 nn_err(nn, "mailbox too small for %u of data (%u)\n", 294 data_size, nn->tlv_caps.mbox_len); 295 return -EIO; 296 } 297 298 nn_ctrl_bar_lock(nn); 299 return 0; 300 } 301 302 /** 303 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 304 * @nn: NFP Net device to reconfigure 305 * @mbox_cmd: The value for the mailbox command 306 * 307 * Helper function for mailbox updates 308 * 309 * Return: Negative errno on error, 0 on success 310 */ 311 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 312 { 313 u32 mbox = nn->tlv_caps.mbox_off; 314 int ret; 315 316 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 317 318 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 319 if (ret) { 320 nn_err(nn, "Mailbox update error\n"); 321 return ret; 322 } 323 324 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 325 } 326 327 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 328 { 329 u32 mbox = nn->tlv_caps.mbox_off; 330 331 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 332 333 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 334 } 335 336 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 337 { 338 u32 mbox = nn->tlv_caps.mbox_off; 339 340 nfp_net_reconfig_wait_posted(nn); 341 342 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 343 } 344 345 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 346 { 347 int ret; 348 349 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 350 nn_ctrl_bar_unlock(nn); 351 return ret; 352 } 353 354 /* Interrupt configuration and handling 355 */ 356 357 /** 358 * nfp_net_irqs_alloc() - allocates MSI-X irqs 359 * @pdev: PCI device structure 360 * @irq_entries: Array to be initialized and used to hold the irq entries 361 * @min_irqs: Minimal acceptable number of interrupts 362 * @wanted_irqs: Target number of interrupts to allocate 363 * 364 * Return: Number of irqs obtained or 0 on error. 365 */ 366 unsigned int 367 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 368 unsigned int min_irqs, unsigned int wanted_irqs) 369 { 370 unsigned int i; 371 int got_irqs; 372 373 for (i = 0; i < wanted_irqs; i++) 374 irq_entries[i].entry = i; 375 376 got_irqs = pci_enable_msix_range(pdev, irq_entries, 377 min_irqs, wanted_irqs); 378 if (got_irqs < 0) { 379 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 380 min_irqs, wanted_irqs, got_irqs); 381 return 0; 382 } 383 384 if (got_irqs < wanted_irqs) 385 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 386 wanted_irqs, got_irqs); 387 388 return got_irqs; 389 } 390 391 /** 392 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 393 * @nn: NFP Network structure 394 * @irq_entries: Table of allocated interrupts 395 * @n: Size of @irq_entries (number of entries to grab) 396 * 397 * After interrupts are allocated with nfp_net_irqs_alloc() this function 398 * should be called to assign them to a specific netdev (port). 399 */ 400 void 401 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 402 unsigned int n) 403 { 404 struct nfp_net_dp *dp = &nn->dp; 405 406 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 407 dp->num_r_vecs = nn->max_r_vecs; 408 409 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 410 411 if (dp->num_rx_rings > dp->num_r_vecs || 412 dp->num_tx_rings > dp->num_r_vecs) 413 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 414 dp->num_rx_rings, dp->num_tx_rings, 415 dp->num_r_vecs); 416 417 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 418 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 419 dp->num_stack_tx_rings = dp->num_tx_rings; 420 } 421 422 /** 423 * nfp_net_irqs_disable() - Disable interrupts 424 * @pdev: PCI device structure 425 * 426 * Undoes what @nfp_net_irqs_alloc() does. 427 */ 428 void nfp_net_irqs_disable(struct pci_dev *pdev) 429 { 430 pci_disable_msix(pdev); 431 } 432 433 /** 434 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 435 * @irq: Interrupt 436 * @data: Opaque data structure 437 * 438 * Return: Indicate if the interrupt has been handled. 439 */ 440 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 441 { 442 struct nfp_net_r_vector *r_vec = data; 443 444 /* Currently we cannot tell if it's a rx or tx interrupt, 445 * since dim does not need accurate event_ctr to calculate, 446 * we just use this counter for both rx and tx dim. 447 */ 448 r_vec->event_ctr++; 449 450 napi_schedule_irqoff(&r_vec->napi); 451 452 /* The FW auto-masks any interrupt, either via the MASK bit in 453 * the MSI-X table or via the per entry ICR field. So there 454 * is no need to disable interrupts here. 455 */ 456 return IRQ_HANDLED; 457 } 458 459 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 460 { 461 struct nfp_net_r_vector *r_vec = data; 462 463 tasklet_schedule(&r_vec->tasklet); 464 465 return IRQ_HANDLED; 466 } 467 468 /** 469 * nfp_net_read_link_status() - Reread link status from control BAR 470 * @nn: NFP Network structure 471 */ 472 static void nfp_net_read_link_status(struct nfp_net *nn) 473 { 474 unsigned long flags; 475 bool link_up; 476 u16 sts; 477 478 spin_lock_irqsave(&nn->link_status_lock, flags); 479 480 sts = nn_readw(nn, NFP_NET_CFG_STS); 481 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 482 483 if (nn->link_up == link_up) 484 goto out; 485 486 nn->link_up = link_up; 487 if (nn->port) { 488 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 489 if (nn->port->link_cb) 490 nn->port->link_cb(nn->port); 491 } 492 493 if (nn->link_up) { 494 netif_carrier_on(nn->dp.netdev); 495 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 496 } else { 497 netif_carrier_off(nn->dp.netdev); 498 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 499 } 500 out: 501 spin_unlock_irqrestore(&nn->link_status_lock, flags); 502 } 503 504 /** 505 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 506 * @irq: Interrupt 507 * @data: Opaque data structure 508 * 509 * Return: Indicate if the interrupt has been handled. 510 */ 511 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 512 { 513 struct nfp_net *nn = data; 514 struct msix_entry *entry; 515 516 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 517 518 nfp_net_read_link_status(nn); 519 520 nfp_net_irq_unmask(nn, entry->entry); 521 522 return IRQ_HANDLED; 523 } 524 525 /** 526 * nfp_net_irq_exn() - Interrupt service routine for exceptions 527 * @irq: Interrupt 528 * @data: Opaque data structure 529 * 530 * Return: Indicate if the interrupt has been handled. 531 */ 532 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 533 { 534 struct nfp_net *nn = data; 535 536 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 537 /* XXX TO BE IMPLEMENTED */ 538 return IRQ_HANDLED; 539 } 540 541 /** 542 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 543 * @nn: NFP Network structure 544 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 545 * @format: printf-style format to construct the interrupt name 546 * @name: Pointer to allocated space for interrupt name 547 * @name_sz: Size of space for interrupt name 548 * @vector_idx: Index of MSI-X vector used for this interrupt 549 * @handler: IRQ handler to register for this interrupt 550 */ 551 static int 552 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 553 const char *format, char *name, size_t name_sz, 554 unsigned int vector_idx, irq_handler_t handler) 555 { 556 struct msix_entry *entry; 557 int err; 558 559 entry = &nn->irq_entries[vector_idx]; 560 561 snprintf(name, name_sz, format, nfp_net_name(nn)); 562 err = request_irq(entry->vector, handler, 0, name, nn); 563 if (err) { 564 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 565 entry->vector, err); 566 return err; 567 } 568 nn_writeb(nn, ctrl_offset, entry->entry); 569 nfp_net_irq_unmask(nn, entry->entry); 570 571 return 0; 572 } 573 574 /** 575 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 576 * @nn: NFP Network structure 577 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 578 * @vector_idx: Index of MSI-X vector used for this interrupt 579 */ 580 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 581 unsigned int vector_idx) 582 { 583 nn_writeb(nn, ctrl_offset, 0xff); 584 nn_pci_flush(nn); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 struct sk_buff * 589 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 590 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 591 { 592 #ifdef CONFIG_TLS_DEVICE 593 struct nfp_net_tls_offload_ctx *ntls; 594 struct sk_buff *nskb; 595 bool resync_pending; 596 u32 datalen, seq; 597 598 if (likely(!dp->ktls_tx)) 599 return skb; 600 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 601 return skb; 602 603 datalen = skb->len - skb_tcp_all_headers(skb); 604 seq = ntohl(tcp_hdr(skb)->seq); 605 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 606 resync_pending = tls_offload_tx_resync_pending(skb->sk); 607 if (unlikely(resync_pending || ntls->next_seq != seq)) { 608 /* Pure ACK out of order already */ 609 if (!datalen) 610 return skb; 611 612 u64_stats_update_begin(&r_vec->tx_sync); 613 r_vec->tls_tx_fallback++; 614 u64_stats_update_end(&r_vec->tx_sync); 615 616 nskb = tls_encrypt_skb(skb); 617 if (!nskb) { 618 u64_stats_update_begin(&r_vec->tx_sync); 619 r_vec->tls_tx_no_fallback++; 620 u64_stats_update_end(&r_vec->tx_sync); 621 return NULL; 622 } 623 /* encryption wasn't necessary */ 624 if (nskb == skb) 625 return skb; 626 /* we don't re-check ring space */ 627 if (unlikely(skb_is_nonlinear(nskb))) { 628 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 629 u64_stats_update_begin(&r_vec->tx_sync); 630 r_vec->tx_errors++; 631 u64_stats_update_end(&r_vec->tx_sync); 632 dev_kfree_skb_any(nskb); 633 return NULL; 634 } 635 636 /* jump forward, a TX may have gotten lost, need to sync TX */ 637 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 638 tls_offload_tx_resync_request(nskb->sk, seq, 639 ntls->next_seq); 640 641 *nr_frags = 0; 642 return nskb; 643 } 644 645 if (datalen) { 646 u64_stats_update_begin(&r_vec->tx_sync); 647 if (!skb_is_gso(skb)) 648 r_vec->hw_tls_tx++; 649 else 650 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 651 u64_stats_update_end(&r_vec->tx_sync); 652 } 653 654 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 655 ntls->next_seq += datalen; 656 #endif 657 return skb; 658 } 659 660 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 661 { 662 #ifdef CONFIG_TLS_DEVICE 663 struct nfp_net_tls_offload_ctx *ntls; 664 u32 datalen, seq; 665 666 if (!tls_handle) 667 return; 668 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 669 return; 670 671 datalen = skb->len - skb_tcp_all_headers(skb); 672 seq = ntohl(tcp_hdr(skb)->seq); 673 674 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 675 if (ntls->next_seq == seq + datalen) 676 ntls->next_seq = seq; 677 else 678 WARN_ON_ONCE(1); 679 #endif 680 } 681 682 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 683 { 684 struct nfp_net *nn = netdev_priv(netdev); 685 686 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 687 } 688 689 /* Receive processing */ 690 static unsigned int 691 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 692 { 693 unsigned int fl_bufsz = 0; 694 695 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 696 fl_bufsz += NFP_NET_MAX_PREPEND; 697 else 698 fl_bufsz += dp->rx_offset; 699 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 700 701 return fl_bufsz; 702 } 703 704 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 705 { 706 unsigned int fl_bufsz; 707 708 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 709 fl_bufsz += dp->rx_dma_off; 710 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 711 712 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 713 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 714 715 return fl_bufsz; 716 } 717 718 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 719 { 720 unsigned int fl_bufsz; 721 722 fl_bufsz = XDP_PACKET_HEADROOM; 723 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 724 725 return fl_bufsz; 726 } 727 728 /* Setup and Configuration 729 */ 730 731 /** 732 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 733 * @nn: NFP Network structure 734 */ 735 static void nfp_net_vecs_init(struct nfp_net *nn) 736 { 737 int numa_node = dev_to_node(&nn->pdev->dev); 738 struct nfp_net_r_vector *r_vec; 739 unsigned int r; 740 741 nn->lsc_handler = nfp_net_irq_lsc; 742 nn->exn_handler = nfp_net_irq_exn; 743 744 for (r = 0; r < nn->max_r_vecs; r++) { 745 struct msix_entry *entry; 746 747 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 748 749 r_vec = &nn->r_vecs[r]; 750 r_vec->nfp_net = nn; 751 r_vec->irq_entry = entry->entry; 752 r_vec->irq_vector = entry->vector; 753 754 if (nn->dp.netdev) { 755 r_vec->handler = nfp_net_irq_rxtx; 756 } else { 757 r_vec->handler = nfp_ctrl_irq_rxtx; 758 759 __skb_queue_head_init(&r_vec->queue); 760 spin_lock_init(&r_vec->lock); 761 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 762 tasklet_disable(&r_vec->tasklet); 763 } 764 765 cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask); 766 } 767 } 768 769 static void 770 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 771 { 772 if (dp->netdev) 773 netif_napi_add(dp->netdev, &r_vec->napi, 774 nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll); 775 else 776 tasklet_enable(&r_vec->tasklet); 777 } 778 779 static void 780 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 781 { 782 if (dp->netdev) 783 netif_napi_del(&r_vec->napi); 784 else 785 tasklet_disable(&r_vec->tasklet); 786 } 787 788 static void 789 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 790 struct nfp_net_r_vector *r_vec, int idx) 791 { 792 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 793 r_vec->tx_ring = 794 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 795 796 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 797 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 798 799 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 800 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 801 802 if (r_vec->xsk_pool) 803 xsk_pool_set_rxq_info(r_vec->xsk_pool, 804 &r_vec->rx_ring->xdp_rxq); 805 806 nfp_net_napi_del(dp, r_vec); 807 nfp_net_napi_add(dp, r_vec, idx); 808 } 809 } 810 811 static int 812 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 813 int idx) 814 { 815 int err; 816 817 nfp_net_napi_add(&nn->dp, r_vec, idx); 818 819 snprintf(r_vec->name, sizeof(r_vec->name), 820 "%s-rxtx-%d", nfp_net_name(nn), idx); 821 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 822 r_vec); 823 if (err) { 824 nfp_net_napi_del(&nn->dp, r_vec); 825 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 826 return err; 827 } 828 disable_irq(r_vec->irq_vector); 829 830 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 831 832 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 833 r_vec->irq_entry); 834 835 return 0; 836 } 837 838 static void 839 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 840 { 841 irq_set_affinity_hint(r_vec->irq_vector, NULL); 842 nfp_net_napi_del(&nn->dp, r_vec); 843 free_irq(r_vec->irq_vector, r_vec); 844 } 845 846 /** 847 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 848 * @nn: NFP Net device to reconfigure 849 */ 850 void nfp_net_rss_write_itbl(struct nfp_net *nn) 851 { 852 int i; 853 854 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 855 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 856 get_unaligned_le32(nn->rss_itbl + i)); 857 } 858 859 /** 860 * nfp_net_rss_write_key() - Write RSS hash key to device 861 * @nn: NFP Net device to reconfigure 862 */ 863 void nfp_net_rss_write_key(struct nfp_net *nn) 864 { 865 int i; 866 867 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 868 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 869 get_unaligned_le32(nn->rss_key + i)); 870 } 871 872 /** 873 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 874 * @nn: NFP Net device to reconfigure 875 */ 876 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 877 { 878 u8 i; 879 u32 factor; 880 u32 value; 881 882 /* Compute factor used to convert coalesce '_usecs' parameters to 883 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 884 * count. 885 */ 886 factor = nn->tlv_caps.me_freq_mhz / 16; 887 888 /* copy RX interrupt coalesce parameters */ 889 value = (nn->rx_coalesce_max_frames << 16) | 890 (factor * nn->rx_coalesce_usecs); 891 for (i = 0; i < nn->dp.num_rx_rings; i++) 892 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 893 894 /* copy TX interrupt coalesce parameters */ 895 value = (nn->tx_coalesce_max_frames << 16) | 896 (factor * nn->tx_coalesce_usecs); 897 for (i = 0; i < nn->dp.num_tx_rings; i++) 898 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 899 } 900 901 /** 902 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 903 * @nn: NFP Net device to reconfigure 904 * @addr: MAC address to write 905 * 906 * Writes the MAC address from the netdev to the device control BAR. Does not 907 * perform the required reconfig. We do a bit of byte swapping dance because 908 * firmware is LE. 909 */ 910 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 911 { 912 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 913 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 914 } 915 916 /** 917 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 918 * @nn: NFP Net device to reconfigure 919 * 920 * Warning: must be fully idempotent. 921 */ 922 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 923 { 924 u32 new_ctrl, update; 925 unsigned int r; 926 int err; 927 928 new_ctrl = nn->dp.ctrl; 929 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 930 update = NFP_NET_CFG_UPDATE_GEN; 931 update |= NFP_NET_CFG_UPDATE_MSIX; 932 update |= NFP_NET_CFG_UPDATE_RING; 933 934 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 935 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 936 937 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 938 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 939 940 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 941 err = nfp_net_reconfig(nn, update); 942 if (err) 943 nn_err(nn, "Could not disable device: %d\n", err); 944 945 for (r = 0; r < nn->dp.num_rx_rings; r++) { 946 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 947 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 948 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 949 } 950 for (r = 0; r < nn->dp.num_tx_rings; r++) 951 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 952 for (r = 0; r < nn->dp.num_r_vecs; r++) 953 nfp_net_vec_clear_ring_data(nn, r); 954 955 nn->dp.ctrl = new_ctrl; 956 } 957 958 /** 959 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 960 * @nn: NFP Net device to reconfigure 961 */ 962 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 963 { 964 u32 bufsz, new_ctrl, update = 0; 965 unsigned int r; 966 int err; 967 968 new_ctrl = nn->dp.ctrl; 969 970 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 971 nfp_net_rss_write_key(nn); 972 nfp_net_rss_write_itbl(nn); 973 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 974 update |= NFP_NET_CFG_UPDATE_RSS; 975 } 976 977 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 978 nfp_net_coalesce_write_cfg(nn); 979 update |= NFP_NET_CFG_UPDATE_IRQMOD; 980 } 981 982 for (r = 0; r < nn->dp.num_tx_rings; r++) 983 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 984 for (r = 0; r < nn->dp.num_rx_rings; r++) 985 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 986 987 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 988 U64_MAX >> (64 - nn->dp.num_tx_rings)); 989 990 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 991 U64_MAX >> (64 - nn->dp.num_rx_rings)); 992 993 if (nn->dp.netdev) 994 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 995 996 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 997 998 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 999 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 1000 1001 /* Enable device */ 1002 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1003 update |= NFP_NET_CFG_UPDATE_GEN; 1004 update |= NFP_NET_CFG_UPDATE_MSIX; 1005 update |= NFP_NET_CFG_UPDATE_RING; 1006 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1007 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1008 1009 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1010 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, nn->dp.ctrl_w1); 1011 err = nfp_net_reconfig(nn, update); 1012 if (err) { 1013 nfp_net_clear_config_and_disable(nn); 1014 return err; 1015 } 1016 1017 nn->dp.ctrl = new_ctrl; 1018 1019 for (r = 0; r < nn->dp.num_rx_rings; r++) 1020 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * nfp_net_close_stack() - Quiesce the stack (part of close) 1027 * @nn: NFP Net device to reconfigure 1028 */ 1029 static void nfp_net_close_stack(struct nfp_net *nn) 1030 { 1031 struct nfp_net_r_vector *r_vec; 1032 unsigned int r; 1033 1034 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1035 netif_carrier_off(nn->dp.netdev); 1036 nn->link_up = false; 1037 1038 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1039 r_vec = &nn->r_vecs[r]; 1040 1041 disable_irq(r_vec->irq_vector); 1042 napi_disable(&r_vec->napi); 1043 1044 if (r_vec->rx_ring) 1045 cancel_work_sync(&r_vec->rx_dim.work); 1046 1047 if (r_vec->tx_ring) 1048 cancel_work_sync(&r_vec->tx_dim.work); 1049 } 1050 1051 netif_tx_disable(nn->dp.netdev); 1052 } 1053 1054 /** 1055 * nfp_net_close_free_all() - Free all runtime resources 1056 * @nn: NFP Net device to reconfigure 1057 */ 1058 static void nfp_net_close_free_all(struct nfp_net *nn) 1059 { 1060 unsigned int r; 1061 1062 nfp_net_tx_rings_free(&nn->dp); 1063 nfp_net_rx_rings_free(&nn->dp); 1064 1065 for (r = 0; r < nn->dp.num_r_vecs; r++) 1066 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1067 1068 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1069 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1070 } 1071 1072 /** 1073 * nfp_net_netdev_close() - Called when the device is downed 1074 * @netdev: netdev structure 1075 */ 1076 static int nfp_net_netdev_close(struct net_device *netdev) 1077 { 1078 struct nfp_net *nn = netdev_priv(netdev); 1079 1080 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1081 */ 1082 nfp_net_close_stack(nn); 1083 1084 /* Step 2: Tell NFP 1085 */ 1086 nfp_net_clear_config_and_disable(nn); 1087 nfp_port_configure(netdev, false); 1088 1089 /* Step 3: Free resources 1090 */ 1091 nfp_net_close_free_all(nn); 1092 1093 nn_dbg(nn, "%s down", netdev->name); 1094 return 0; 1095 } 1096 1097 void nfp_ctrl_close(struct nfp_net *nn) 1098 { 1099 int r; 1100 1101 rtnl_lock(); 1102 1103 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1104 disable_irq(nn->r_vecs[r].irq_vector); 1105 tasklet_disable(&nn->r_vecs[r].tasklet); 1106 } 1107 1108 nfp_net_clear_config_and_disable(nn); 1109 1110 nfp_net_close_free_all(nn); 1111 1112 rtnl_unlock(); 1113 } 1114 1115 static void nfp_net_rx_dim_work(struct work_struct *work) 1116 { 1117 struct nfp_net_r_vector *r_vec; 1118 unsigned int factor, value; 1119 struct dim_cq_moder moder; 1120 struct nfp_net *nn; 1121 struct dim *dim; 1122 1123 dim = container_of(work, struct dim, work); 1124 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1125 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1126 nn = r_vec->nfp_net; 1127 1128 /* Compute factor used to convert coalesce '_usecs' parameters to 1129 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1130 * count. 1131 */ 1132 factor = nn->tlv_caps.me_freq_mhz / 16; 1133 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1134 return; 1135 1136 /* copy RX interrupt coalesce parameters */ 1137 value = (moder.pkts << 16) | (factor * moder.usec); 1138 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1139 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1140 1141 dim->state = DIM_START_MEASURE; 1142 } 1143 1144 static void nfp_net_tx_dim_work(struct work_struct *work) 1145 { 1146 struct nfp_net_r_vector *r_vec; 1147 unsigned int factor, value; 1148 struct dim_cq_moder moder; 1149 struct nfp_net *nn; 1150 struct dim *dim; 1151 1152 dim = container_of(work, struct dim, work); 1153 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1154 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1155 nn = r_vec->nfp_net; 1156 1157 /* Compute factor used to convert coalesce '_usecs' parameters to 1158 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1159 * count. 1160 */ 1161 factor = nn->tlv_caps.me_freq_mhz / 16; 1162 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1163 return; 1164 1165 /* copy TX interrupt coalesce parameters */ 1166 value = (moder.pkts << 16) | (factor * moder.usec); 1167 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1168 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1169 1170 dim->state = DIM_START_MEASURE; 1171 } 1172 1173 /** 1174 * nfp_net_open_stack() - Start the device from stack's perspective 1175 * @nn: NFP Net device to reconfigure 1176 */ 1177 static void nfp_net_open_stack(struct nfp_net *nn) 1178 { 1179 struct nfp_net_r_vector *r_vec; 1180 unsigned int r; 1181 1182 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1183 r_vec = &nn->r_vecs[r]; 1184 1185 if (r_vec->rx_ring) { 1186 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1187 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1188 } 1189 1190 if (r_vec->tx_ring) { 1191 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1192 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1193 } 1194 1195 napi_enable(&r_vec->napi); 1196 enable_irq(r_vec->irq_vector); 1197 } 1198 1199 netif_tx_wake_all_queues(nn->dp.netdev); 1200 1201 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1202 nfp_net_read_link_status(nn); 1203 } 1204 1205 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1206 { 1207 int err, r; 1208 1209 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1210 nn->exn_name, sizeof(nn->exn_name), 1211 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1212 if (err) 1213 return err; 1214 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1215 nn->lsc_name, sizeof(nn->lsc_name), 1216 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1217 if (err) 1218 goto err_free_exn; 1219 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1220 1221 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1222 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1223 if (err) 1224 goto err_cleanup_vec_p; 1225 } 1226 1227 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1228 if (err) 1229 goto err_cleanup_vec; 1230 1231 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1232 if (err) 1233 goto err_free_rx_rings; 1234 1235 for (r = 0; r < nn->max_r_vecs; r++) 1236 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1237 1238 return 0; 1239 1240 err_free_rx_rings: 1241 nfp_net_rx_rings_free(&nn->dp); 1242 err_cleanup_vec: 1243 r = nn->dp.num_r_vecs; 1244 err_cleanup_vec_p: 1245 while (r--) 1246 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1247 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1248 err_free_exn: 1249 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1250 return err; 1251 } 1252 1253 static int nfp_net_netdev_open(struct net_device *netdev) 1254 { 1255 struct nfp_net *nn = netdev_priv(netdev); 1256 int err; 1257 1258 /* Step 1: Allocate resources for rings and the like 1259 * - Request interrupts 1260 * - Allocate RX and TX ring resources 1261 * - Setup initial RSS table 1262 */ 1263 err = nfp_net_open_alloc_all(nn); 1264 if (err) 1265 return err; 1266 1267 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1268 if (err) 1269 goto err_free_all; 1270 1271 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1272 if (err) 1273 goto err_free_all; 1274 1275 /* Step 2: Configure the NFP 1276 * - Ifup the physical interface if it exists 1277 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1278 * - Write MAC address (in case it changed) 1279 * - Set the MTU 1280 * - Set the Freelist buffer size 1281 * - Enable the FW 1282 */ 1283 err = nfp_port_configure(netdev, true); 1284 if (err) 1285 goto err_free_all; 1286 1287 err = nfp_net_set_config_and_enable(nn); 1288 if (err) 1289 goto err_port_disable; 1290 1291 /* Step 3: Enable for kernel 1292 * - put some freelist descriptors on each RX ring 1293 * - enable NAPI on each ring 1294 * - enable all TX queues 1295 * - set link state 1296 */ 1297 nfp_net_open_stack(nn); 1298 1299 return 0; 1300 1301 err_port_disable: 1302 nfp_port_configure(netdev, false); 1303 err_free_all: 1304 nfp_net_close_free_all(nn); 1305 return err; 1306 } 1307 1308 int nfp_ctrl_open(struct nfp_net *nn) 1309 { 1310 int err, r; 1311 1312 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1313 rtnl_lock(); 1314 1315 err = nfp_net_open_alloc_all(nn); 1316 if (err) 1317 goto err_unlock; 1318 1319 err = nfp_net_set_config_and_enable(nn); 1320 if (err) 1321 goto err_free_all; 1322 1323 for (r = 0; r < nn->dp.num_r_vecs; r++) 1324 enable_irq(nn->r_vecs[r].irq_vector); 1325 1326 rtnl_unlock(); 1327 1328 return 0; 1329 1330 err_free_all: 1331 nfp_net_close_free_all(nn); 1332 err_unlock: 1333 rtnl_unlock(); 1334 return err; 1335 } 1336 1337 static int nfp_net_mc_cfg(struct net_device *netdev, const unsigned char *addr, const u32 cmd) 1338 { 1339 struct nfp_net *nn = netdev_priv(netdev); 1340 int ret; 1341 1342 ret = nfp_net_mbox_lock(nn, NFP_NET_CFG_MULTICAST_SZ); 1343 if (ret) 1344 return ret; 1345 1346 nn_writel(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_HI, 1347 get_unaligned_be32(addr)); 1348 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_LO, 1349 get_unaligned_be16(addr + 4)); 1350 1351 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1352 } 1353 1354 static int nfp_net_mc_sync(struct net_device *netdev, const unsigned char *addr) 1355 { 1356 struct nfp_net *nn = netdev_priv(netdev); 1357 1358 if (netdev_mc_count(netdev) > NFP_NET_CFG_MAC_MC_MAX) { 1359 nn_err(nn, "Requested number of MC addresses (%d) exceeds maximum (%d).\n", 1360 netdev_mc_count(netdev), NFP_NET_CFG_MAC_MC_MAX); 1361 return -EINVAL; 1362 } 1363 1364 return nfp_net_mc_cfg(netdev, addr, NFP_NET_CFG_MBOX_CMD_MULTICAST_ADD); 1365 } 1366 1367 static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr) 1368 { 1369 return nfp_net_mc_cfg(netdev, addr, NFP_NET_CFG_MBOX_CMD_MULTICAST_DEL); 1370 } 1371 1372 static void nfp_net_set_rx_mode(struct net_device *netdev) 1373 { 1374 struct nfp_net *nn = netdev_priv(netdev); 1375 u32 new_ctrl, new_ctrl_w1; 1376 1377 new_ctrl = nn->dp.ctrl; 1378 new_ctrl_w1 = nn->dp.ctrl_w1; 1379 1380 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1381 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1382 else 1383 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1384 1385 if (netdev->flags & IFF_ALLMULTI) 1386 new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_MCAST_FILTER; 1387 else 1388 new_ctrl_w1 |= nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER; 1389 1390 if (netdev->flags & IFF_PROMISC) { 1391 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1392 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1393 else 1394 nn_warn(nn, "FW does not support promiscuous mode\n"); 1395 } else { 1396 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1397 } 1398 1399 if ((nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) && 1400 __dev_mc_sync(netdev, nfp_net_mc_sync, nfp_net_mc_unsync)) 1401 netdev_err(netdev, "Sync mc address failed\n"); 1402 1403 if (new_ctrl == nn->dp.ctrl && new_ctrl_w1 == nn->dp.ctrl_w1) 1404 return; 1405 1406 if (new_ctrl != nn->dp.ctrl) 1407 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1408 if (new_ctrl_w1 != nn->dp.ctrl_w1) 1409 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); 1410 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1411 1412 nn->dp.ctrl = new_ctrl; 1413 nn->dp.ctrl_w1 = new_ctrl_w1; 1414 } 1415 1416 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1417 { 1418 int i; 1419 1420 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1421 nn->rss_itbl[i] = 1422 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1423 } 1424 1425 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1426 { 1427 struct nfp_net_dp new_dp = *dp; 1428 1429 *dp = nn->dp; 1430 nn->dp = new_dp; 1431 1432 nn->dp.netdev->mtu = new_dp.mtu; 1433 1434 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1435 nfp_net_rss_init_itbl(nn); 1436 } 1437 1438 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1439 { 1440 unsigned int r; 1441 int err; 1442 1443 nfp_net_dp_swap(nn, dp); 1444 1445 for (r = 0; r < nn->max_r_vecs; r++) 1446 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1447 1448 err = netif_set_real_num_queues(nn->dp.netdev, 1449 nn->dp.num_stack_tx_rings, 1450 nn->dp.num_rx_rings); 1451 if (err) 1452 return err; 1453 1454 return nfp_net_set_config_and_enable(nn); 1455 } 1456 1457 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1458 { 1459 struct nfp_net_dp *new; 1460 1461 new = kmalloc(sizeof(*new), GFP_KERNEL); 1462 if (!new) 1463 return NULL; 1464 1465 *new = nn->dp; 1466 1467 new->xsk_pools = kmemdup(new->xsk_pools, 1468 array_size(nn->max_r_vecs, 1469 sizeof(new->xsk_pools)), 1470 GFP_KERNEL); 1471 if (!new->xsk_pools) { 1472 kfree(new); 1473 return NULL; 1474 } 1475 1476 /* Clear things which need to be recomputed */ 1477 new->fl_bufsz = 0; 1478 new->tx_rings = NULL; 1479 new->rx_rings = NULL; 1480 new->num_r_vecs = 0; 1481 new->num_stack_tx_rings = 0; 1482 new->txrwb = NULL; 1483 new->txrwb_dma = 0; 1484 1485 return new; 1486 } 1487 1488 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1489 { 1490 kfree(dp->xsk_pools); 1491 kfree(dp); 1492 } 1493 1494 static int 1495 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1496 struct netlink_ext_ack *extack) 1497 { 1498 unsigned int r, xsk_min_fl_bufsz; 1499 1500 /* XDP-enabled tests */ 1501 if (!dp->xdp_prog) 1502 return 0; 1503 if (dp->fl_bufsz > PAGE_SIZE) { 1504 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1505 return -EINVAL; 1506 } 1507 if (dp->num_tx_rings > nn->max_tx_rings) { 1508 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1509 return -EINVAL; 1510 } 1511 1512 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1513 for (r = 0; r < nn->max_r_vecs; r++) { 1514 if (!dp->xsk_pools[r]) 1515 continue; 1516 1517 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1518 NL_SET_ERR_MSG_MOD(extack, 1519 "XSK buffer pool chunk size too small"); 1520 return -EINVAL; 1521 } 1522 } 1523 1524 return 0; 1525 } 1526 1527 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1528 struct netlink_ext_ack *extack) 1529 { 1530 int r, err; 1531 1532 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1533 1534 dp->num_stack_tx_rings = dp->num_tx_rings; 1535 if (dp->xdp_prog) 1536 dp->num_stack_tx_rings -= dp->num_rx_rings; 1537 1538 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1539 1540 err = nfp_net_check_config(nn, dp, extack); 1541 if (err) 1542 goto exit_free_dp; 1543 1544 if (!netif_running(dp->netdev)) { 1545 nfp_net_dp_swap(nn, dp); 1546 err = 0; 1547 goto exit_free_dp; 1548 } 1549 1550 /* Prepare new rings */ 1551 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1552 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1553 if (err) { 1554 dp->num_r_vecs = r; 1555 goto err_cleanup_vecs; 1556 } 1557 } 1558 1559 err = nfp_net_rx_rings_prepare(nn, dp); 1560 if (err) 1561 goto err_cleanup_vecs; 1562 1563 err = nfp_net_tx_rings_prepare(nn, dp); 1564 if (err) 1565 goto err_free_rx; 1566 1567 /* Stop device, swap in new rings, try to start the firmware */ 1568 nfp_net_close_stack(nn); 1569 nfp_net_clear_config_and_disable(nn); 1570 1571 err = nfp_net_dp_swap_enable(nn, dp); 1572 if (err) { 1573 int err2; 1574 1575 nfp_net_clear_config_and_disable(nn); 1576 1577 /* Try with old configuration and old rings */ 1578 err2 = nfp_net_dp_swap_enable(nn, dp); 1579 if (err2) 1580 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1581 err, err2); 1582 } 1583 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1584 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1585 1586 nfp_net_rx_rings_free(dp); 1587 nfp_net_tx_rings_free(dp); 1588 1589 nfp_net_open_stack(nn); 1590 exit_free_dp: 1591 nfp_net_free_dp(dp); 1592 1593 return err; 1594 1595 err_free_rx: 1596 nfp_net_rx_rings_free(dp); 1597 err_cleanup_vecs: 1598 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1599 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1600 nfp_net_free_dp(dp); 1601 return err; 1602 } 1603 1604 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1605 { 1606 struct nfp_net *nn = netdev_priv(netdev); 1607 struct nfp_net_dp *dp; 1608 int err; 1609 1610 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1611 if (err) 1612 return err; 1613 1614 dp = nfp_net_clone_dp(nn); 1615 if (!dp) 1616 return -ENOMEM; 1617 1618 dp->mtu = new_mtu; 1619 1620 return nfp_net_ring_reconfig(nn, dp, NULL); 1621 } 1622 1623 static int 1624 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1625 { 1626 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1627 struct nfp_net *nn = netdev_priv(netdev); 1628 int err; 1629 1630 /* Priority tagged packets with vlan id 0 are processed by the 1631 * NFP as untagged packets 1632 */ 1633 if (!vid) 1634 return 0; 1635 1636 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1637 if (err) 1638 return err; 1639 1640 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1641 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1642 ETH_P_8021Q); 1643 1644 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1645 } 1646 1647 static int 1648 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1649 { 1650 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1651 struct nfp_net *nn = netdev_priv(netdev); 1652 int err; 1653 1654 /* Priority tagged packets with vlan id 0 are processed by the 1655 * NFP as untagged packets 1656 */ 1657 if (!vid) 1658 return 0; 1659 1660 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1661 if (err) 1662 return err; 1663 1664 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1665 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1666 ETH_P_8021Q); 1667 1668 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1669 } 1670 1671 static void nfp_net_stat64(struct net_device *netdev, 1672 struct rtnl_link_stats64 *stats) 1673 { 1674 struct nfp_net *nn = netdev_priv(netdev); 1675 int r; 1676 1677 /* Collect software stats */ 1678 for (r = 0; r < nn->max_r_vecs; r++) { 1679 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1680 u64 data[3]; 1681 unsigned int start; 1682 1683 do { 1684 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1685 data[0] = r_vec->rx_pkts; 1686 data[1] = r_vec->rx_bytes; 1687 data[2] = r_vec->rx_drops; 1688 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1689 stats->rx_packets += data[0]; 1690 stats->rx_bytes += data[1]; 1691 stats->rx_dropped += data[2]; 1692 1693 do { 1694 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1695 data[0] = r_vec->tx_pkts; 1696 data[1] = r_vec->tx_bytes; 1697 data[2] = r_vec->tx_errors; 1698 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1699 stats->tx_packets += data[0]; 1700 stats->tx_bytes += data[1]; 1701 stats->tx_errors += data[2]; 1702 } 1703 1704 /* Add in device stats */ 1705 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1706 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1707 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1708 1709 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1710 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1711 } 1712 1713 static int nfp_net_set_features(struct net_device *netdev, 1714 netdev_features_t features) 1715 { 1716 netdev_features_t changed = netdev->features ^ features; 1717 struct nfp_net *nn = netdev_priv(netdev); 1718 u32 new_ctrl; 1719 int err; 1720 1721 /* Assume this is not called with features we have not advertised */ 1722 1723 new_ctrl = nn->dp.ctrl; 1724 1725 if (changed & NETIF_F_RXCSUM) { 1726 if (features & NETIF_F_RXCSUM) 1727 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 1728 else 1729 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 1730 } 1731 1732 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1733 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 1734 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 1735 else 1736 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 1737 } 1738 1739 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 1740 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1741 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 1742 NFP_NET_CFG_CTRL_LSO; 1743 else 1744 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 1745 } 1746 1747 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1748 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1749 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 1750 NFP_NET_CFG_CTRL_RXVLAN; 1751 else 1752 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY; 1753 } 1754 1755 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 1756 if (features & NETIF_F_HW_VLAN_CTAG_TX) 1757 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 1758 NFP_NET_CFG_CTRL_TXVLAN; 1759 else 1760 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY; 1761 } 1762 1763 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 1764 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 1765 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 1766 else 1767 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 1768 } 1769 1770 if (changed & NETIF_F_HW_VLAN_STAG_RX) { 1771 if (features & NETIF_F_HW_VLAN_STAG_RX) 1772 new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 1773 else 1774 new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 1775 } 1776 1777 if (changed & NETIF_F_SG) { 1778 if (features & NETIF_F_SG) 1779 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 1780 else 1781 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 1782 } 1783 1784 err = nfp_port_set_features(netdev, features); 1785 if (err) 1786 return err; 1787 1788 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 1789 netdev->features, features, changed); 1790 1791 if (new_ctrl == nn->dp.ctrl) 1792 return 0; 1793 1794 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 1795 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1796 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1797 if (err) 1798 return err; 1799 1800 nn->dp.ctrl = new_ctrl; 1801 1802 return 0; 1803 } 1804 1805 static netdev_features_t 1806 nfp_net_fix_features(struct net_device *netdev, 1807 netdev_features_t features) 1808 { 1809 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1810 (features & NETIF_F_HW_VLAN_STAG_RX)) { 1811 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 1812 features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1813 netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1814 netdev_warn(netdev, 1815 "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n"); 1816 } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) { 1817 features &= ~NETIF_F_HW_VLAN_STAG_RX; 1818 netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX; 1819 netdev_warn(netdev, 1820 "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n"); 1821 } 1822 } 1823 return features; 1824 } 1825 1826 static netdev_features_t 1827 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 1828 netdev_features_t features) 1829 { 1830 u8 l4_hdr; 1831 1832 /* We can't do TSO over double tagged packets (802.1AD) */ 1833 features &= vlan_features_check(skb, features); 1834 1835 if (!skb->encapsulation) 1836 return features; 1837 1838 /* Ensure that inner L4 header offset fits into TX descriptor field */ 1839 if (skb_is_gso(skb)) { 1840 u32 hdrlen; 1841 1842 hdrlen = skb_inner_tcp_all_headers(skb); 1843 1844 /* Assume worst case scenario of having longest possible 1845 * metadata prepend - 8B 1846 */ 1847 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 1848 features &= ~NETIF_F_GSO_MASK; 1849 } 1850 1851 /* VXLAN/GRE check */ 1852 switch (vlan_get_protocol(skb)) { 1853 case htons(ETH_P_IP): 1854 l4_hdr = ip_hdr(skb)->protocol; 1855 break; 1856 case htons(ETH_P_IPV6): 1857 l4_hdr = ipv6_hdr(skb)->nexthdr; 1858 break; 1859 default: 1860 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1861 } 1862 1863 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1864 skb->inner_protocol != htons(ETH_P_TEB) || 1865 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 1866 (l4_hdr == IPPROTO_UDP && 1867 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1868 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 1869 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1870 1871 return features; 1872 } 1873 1874 static int 1875 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 1876 { 1877 struct nfp_net *nn = netdev_priv(netdev); 1878 int n; 1879 1880 /* If port is defined, devlink_port is registered and devlink core 1881 * is taking care of name formatting. 1882 */ 1883 if (nn->port) 1884 return -EOPNOTSUPP; 1885 1886 if (nn->dp.is_vf || nn->vnic_no_name) 1887 return -EOPNOTSUPP; 1888 1889 n = snprintf(name, len, "n%d", nn->id); 1890 if (n >= len) 1891 return -EINVAL; 1892 1893 return 0; 1894 } 1895 1896 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 1897 { 1898 struct bpf_prog *prog = bpf->prog; 1899 struct nfp_net_dp *dp; 1900 int err; 1901 1902 if (!prog == !nn->dp.xdp_prog) { 1903 WRITE_ONCE(nn->dp.xdp_prog, prog); 1904 xdp_attachment_setup(&nn->xdp, bpf); 1905 return 0; 1906 } 1907 1908 dp = nfp_net_clone_dp(nn); 1909 if (!dp) 1910 return -ENOMEM; 1911 1912 dp->xdp_prog = prog; 1913 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 1914 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1915 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 1916 1917 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 1918 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 1919 if (err) 1920 return err; 1921 1922 xdp_attachment_setup(&nn->xdp, bpf); 1923 return 0; 1924 } 1925 1926 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 1927 { 1928 int err; 1929 1930 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 1931 if (err) 1932 return err; 1933 1934 xdp_attachment_setup(&nn->xdp_hw, bpf); 1935 return 0; 1936 } 1937 1938 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1939 { 1940 struct nfp_net *nn = netdev_priv(netdev); 1941 1942 switch (xdp->command) { 1943 case XDP_SETUP_PROG: 1944 return nfp_net_xdp_setup_drv(nn, xdp); 1945 case XDP_SETUP_PROG_HW: 1946 return nfp_net_xdp_setup_hw(nn, xdp); 1947 case XDP_SETUP_XSK_POOL: 1948 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 1949 xdp->xsk.queue_id); 1950 default: 1951 return nfp_app_bpf(nn->app, nn, xdp); 1952 } 1953 } 1954 1955 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 1956 { 1957 struct nfp_net *nn = netdev_priv(netdev); 1958 struct sockaddr *saddr = addr; 1959 int err; 1960 1961 err = eth_prepare_mac_addr_change(netdev, addr); 1962 if (err) 1963 return err; 1964 1965 nfp_net_write_mac_addr(nn, saddr->sa_data); 1966 1967 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 1968 if (err) 1969 return err; 1970 1971 eth_commit_mac_addr_change(netdev, addr); 1972 1973 return 0; 1974 } 1975 1976 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 1977 struct net_device *dev, u32 filter_mask, 1978 int nlflags) 1979 { 1980 struct nfp_net *nn = netdev_priv(dev); 1981 u16 mode; 1982 1983 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1984 return -EOPNOTSUPP; 1985 1986 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? 1987 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; 1988 1989 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, 1990 nlflags, filter_mask, NULL); 1991 } 1992 1993 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 1994 u16 flags, struct netlink_ext_ack *extack) 1995 { 1996 struct nfp_net *nn = netdev_priv(dev); 1997 struct nlattr *attr, *br_spec; 1998 int rem, err; 1999 u32 new_ctrl; 2000 u16 mode; 2001 2002 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 2003 return -EOPNOTSUPP; 2004 2005 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 2006 if (!br_spec) 2007 return -EINVAL; 2008 2009 nla_for_each_nested(attr, br_spec, rem) { 2010 if (nla_type(attr) != IFLA_BRIDGE_MODE) 2011 continue; 2012 2013 if (nla_len(attr) < sizeof(mode)) 2014 return -EINVAL; 2015 2016 new_ctrl = nn->dp.ctrl; 2017 mode = nla_get_u16(attr); 2018 if (mode == BRIDGE_MODE_VEPA) 2019 new_ctrl |= NFP_NET_CFG_CTRL_VEPA; 2020 else if (mode == BRIDGE_MODE_VEB) 2021 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; 2022 else 2023 return -EOPNOTSUPP; 2024 2025 if (new_ctrl == nn->dp.ctrl) 2026 return 0; 2027 2028 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2029 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2030 if (!err) 2031 nn->dp.ctrl = new_ctrl; 2032 2033 return err; 2034 } 2035 2036 return -EINVAL; 2037 } 2038 2039 const struct net_device_ops nfp_nfd3_netdev_ops = { 2040 .ndo_init = nfp_app_ndo_init, 2041 .ndo_uninit = nfp_app_ndo_uninit, 2042 .ndo_open = nfp_net_netdev_open, 2043 .ndo_stop = nfp_net_netdev_close, 2044 .ndo_start_xmit = nfp_net_tx, 2045 .ndo_get_stats64 = nfp_net_stat64, 2046 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2047 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2048 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2049 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2050 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2051 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2052 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2053 .ndo_get_vf_config = nfp_app_get_vf_config, 2054 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2055 .ndo_setup_tc = nfp_port_setup_tc, 2056 .ndo_tx_timeout = nfp_net_tx_timeout, 2057 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2058 .ndo_change_mtu = nfp_net_change_mtu, 2059 .ndo_set_mac_address = nfp_net_set_mac_address, 2060 .ndo_set_features = nfp_net_set_features, 2061 .ndo_fix_features = nfp_net_fix_features, 2062 .ndo_features_check = nfp_net_features_check, 2063 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2064 .ndo_bpf = nfp_net_xdp, 2065 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 2066 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2067 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2068 }; 2069 2070 const struct net_device_ops nfp_nfdk_netdev_ops = { 2071 .ndo_init = nfp_app_ndo_init, 2072 .ndo_uninit = nfp_app_ndo_uninit, 2073 .ndo_open = nfp_net_netdev_open, 2074 .ndo_stop = nfp_net_netdev_close, 2075 .ndo_start_xmit = nfp_net_tx, 2076 .ndo_get_stats64 = nfp_net_stat64, 2077 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2078 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2079 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2080 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2081 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2082 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2083 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2084 .ndo_get_vf_config = nfp_app_get_vf_config, 2085 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2086 .ndo_setup_tc = nfp_port_setup_tc, 2087 .ndo_tx_timeout = nfp_net_tx_timeout, 2088 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2089 .ndo_change_mtu = nfp_net_change_mtu, 2090 .ndo_set_mac_address = nfp_net_set_mac_address, 2091 .ndo_set_features = nfp_net_set_features, 2092 .ndo_fix_features = nfp_net_fix_features, 2093 .ndo_features_check = nfp_net_features_check, 2094 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2095 .ndo_bpf = nfp_net_xdp, 2096 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2097 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2098 }; 2099 2100 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 2101 { 2102 struct nfp_net *nn = netdev_priv(netdev); 2103 int i; 2104 2105 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2106 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 2107 struct udp_tunnel_info ti0, ti1; 2108 2109 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 2110 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 2111 2112 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 2113 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 2114 } 2115 2116 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 2117 } 2118 2119 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 2120 .sync_table = nfp_udp_tunnel_sync, 2121 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 2122 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 2123 .tables = { 2124 { 2125 .n_entries = NFP_NET_N_VXLAN_PORTS, 2126 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 2127 }, 2128 }, 2129 }; 2130 2131 /** 2132 * nfp_net_info() - Print general info about the NIC 2133 * @nn: NFP Net device to reconfigure 2134 */ 2135 void nfp_net_info(struct nfp_net *nn) 2136 { 2137 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2138 nn->dp.is_vf ? "VF " : "", 2139 nn->dp.num_tx_rings, nn->max_tx_rings, 2140 nn->dp.num_rx_rings, nn->max_rx_rings); 2141 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2142 nn->fw_ver.extend, nn->fw_ver.class, 2143 nn->fw_ver.major, nn->fw_ver.minor, 2144 nn->max_mtu); 2145 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2146 nn->cap, 2147 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2148 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2149 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2150 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2151 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2152 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2153 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2154 nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "", 2155 nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "", 2156 nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "", 2157 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2158 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2159 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2160 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2161 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2162 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2163 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2164 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2165 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2166 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2167 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", 2168 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2169 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2170 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2171 "RXCSUM_COMPLETE " : "", 2172 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2173 nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER ? "MULTICAST_FILTER " : "", 2174 nfp_app_extra_cap(nn->app, nn)); 2175 } 2176 2177 /** 2178 * nfp_net_alloc() - Allocate netdev and related structure 2179 * @pdev: PCI device 2180 * @dev_info: NFP ASIC params 2181 * @ctrl_bar: PCI IOMEM with vNIC config memory 2182 * @needs_netdev: Whether to allocate a netdev for this vNIC 2183 * @max_tx_rings: Maximum number of TX rings supported by device 2184 * @max_rx_rings: Maximum number of RX rings supported by device 2185 * 2186 * This function allocates a netdev device and fills in the initial 2187 * part of the @struct nfp_net structure. In case of control device 2188 * nfp_net structure is allocated without the netdev. 2189 * 2190 * Return: NFP Net device structure, or ERR_PTR on error. 2191 */ 2192 struct nfp_net * 2193 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2194 void __iomem *ctrl_bar, bool needs_netdev, 2195 unsigned int max_tx_rings, unsigned int max_rx_rings) 2196 { 2197 u64 dma_mask = dma_get_mask(&pdev->dev); 2198 struct nfp_net *nn; 2199 int err; 2200 2201 if (needs_netdev) { 2202 struct net_device *netdev; 2203 2204 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2205 max_tx_rings, max_rx_rings); 2206 if (!netdev) 2207 return ERR_PTR(-ENOMEM); 2208 2209 SET_NETDEV_DEV(netdev, &pdev->dev); 2210 nn = netdev_priv(netdev); 2211 nn->dp.netdev = netdev; 2212 } else { 2213 nn = vzalloc(sizeof(*nn)); 2214 if (!nn) 2215 return ERR_PTR(-ENOMEM); 2216 } 2217 2218 nn->dp.dev = &pdev->dev; 2219 nn->dp.ctrl_bar = ctrl_bar; 2220 nn->dev_info = dev_info; 2221 nn->pdev = pdev; 2222 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2223 2224 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2225 case NFP_NET_CFG_VERSION_DP_NFD3: 2226 nn->dp.ops = &nfp_nfd3_ops; 2227 break; 2228 case NFP_NET_CFG_VERSION_DP_NFDK: 2229 if (nn->fw_ver.major < 5) { 2230 dev_err(&pdev->dev, 2231 "NFDK must use ABI 5 or newer, found: %d\n", 2232 nn->fw_ver.major); 2233 err = -EINVAL; 2234 goto err_free_nn; 2235 } 2236 nn->dp.ops = &nfp_nfdk_ops; 2237 break; 2238 default: 2239 err = -EINVAL; 2240 goto err_free_nn; 2241 } 2242 2243 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { 2244 dev_err(&pdev->dev, 2245 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", 2246 nn->dp.ops->dma_mask, dma_mask); 2247 err = -EINVAL; 2248 goto err_free_nn; 2249 } 2250 2251 nn->max_tx_rings = max_tx_rings; 2252 nn->max_rx_rings = max_rx_rings; 2253 2254 nn->dp.num_tx_rings = min_t(unsigned int, 2255 max_tx_rings, num_online_cpus()); 2256 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2257 netif_get_num_default_rss_queues()); 2258 2259 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2260 nn->dp.num_r_vecs = min_t(unsigned int, 2261 nn->dp.num_r_vecs, num_online_cpus()); 2262 nn->max_r_vecs = nn->dp.num_r_vecs; 2263 2264 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2265 GFP_KERNEL); 2266 if (!nn->dp.xsk_pools) { 2267 err = -ENOMEM; 2268 goto err_free_nn; 2269 } 2270 2271 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2272 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2273 2274 sema_init(&nn->bar_lock, 1); 2275 2276 spin_lock_init(&nn->reconfig_lock); 2277 spin_lock_init(&nn->link_status_lock); 2278 2279 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2280 2281 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2282 &nn->tlv_caps); 2283 if (err) 2284 goto err_free_nn; 2285 2286 err = nfp_ccm_mbox_alloc(nn); 2287 if (err) 2288 goto err_free_nn; 2289 2290 return nn; 2291 2292 err_free_nn: 2293 if (nn->dp.netdev) 2294 free_netdev(nn->dp.netdev); 2295 else 2296 vfree(nn); 2297 return ERR_PTR(err); 2298 } 2299 2300 /** 2301 * nfp_net_free() - Undo what @nfp_net_alloc() did 2302 * @nn: NFP Net device to reconfigure 2303 */ 2304 void nfp_net_free(struct nfp_net *nn) 2305 { 2306 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2307 nfp_ccm_mbox_free(nn); 2308 2309 kfree(nn->dp.xsk_pools); 2310 if (nn->dp.netdev) 2311 free_netdev(nn->dp.netdev); 2312 else 2313 vfree(nn); 2314 } 2315 2316 /** 2317 * nfp_net_rss_key_sz() - Get current size of the RSS key 2318 * @nn: NFP Net device instance 2319 * 2320 * Return: size of the RSS key for currently selected hash function. 2321 */ 2322 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2323 { 2324 switch (nn->rss_hfunc) { 2325 case ETH_RSS_HASH_TOP: 2326 return NFP_NET_CFG_RSS_KEY_SZ; 2327 case ETH_RSS_HASH_XOR: 2328 return 0; 2329 case ETH_RSS_HASH_CRC32: 2330 return 4; 2331 } 2332 2333 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2334 return 0; 2335 } 2336 2337 /** 2338 * nfp_net_rss_init() - Set the initial RSS parameters 2339 * @nn: NFP Net device to reconfigure 2340 */ 2341 static void nfp_net_rss_init(struct nfp_net *nn) 2342 { 2343 unsigned long func_bit, rss_cap_hfunc; 2344 u32 reg; 2345 2346 /* Read the RSS function capability and select first supported func */ 2347 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2348 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2349 if (!rss_cap_hfunc) 2350 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2351 NFP_NET_CFG_RSS_TOEPLITZ); 2352 2353 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2354 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2355 dev_warn(nn->dp.dev, 2356 "Bad RSS config, defaulting to Toeplitz hash\n"); 2357 func_bit = ETH_RSS_HASH_TOP_BIT; 2358 } 2359 nn->rss_hfunc = 1 << func_bit; 2360 2361 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2362 2363 nfp_net_rss_init_itbl(nn); 2364 2365 /* Enable IPv4/IPv6 TCP by default */ 2366 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2367 NFP_NET_CFG_RSS_IPV6_TCP | 2368 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2369 NFP_NET_CFG_RSS_MASK; 2370 } 2371 2372 /** 2373 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2374 * @nn: NFP Net device to reconfigure 2375 */ 2376 static void nfp_net_irqmod_init(struct nfp_net *nn) 2377 { 2378 nn->rx_coalesce_usecs = 50; 2379 nn->rx_coalesce_max_frames = 64; 2380 nn->tx_coalesce_usecs = 50; 2381 nn->tx_coalesce_max_frames = 64; 2382 2383 nn->rx_coalesce_adapt_on = true; 2384 nn->tx_coalesce_adapt_on = true; 2385 } 2386 2387 static void nfp_net_netdev_init(struct nfp_net *nn) 2388 { 2389 struct net_device *netdev = nn->dp.netdev; 2390 2391 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2392 2393 netdev->mtu = nn->dp.mtu; 2394 2395 /* Advertise/enable offloads based on capabilities 2396 * 2397 * Note: netdev->features show the currently enabled features 2398 * and netdev->hw_features advertises which features are 2399 * supported. By default we enable most features. 2400 */ 2401 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2402 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2403 2404 netdev->hw_features = NETIF_F_HIGHDMA; 2405 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2406 netdev->hw_features |= NETIF_F_RXCSUM; 2407 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2408 } 2409 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2410 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2411 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2412 } 2413 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2414 netdev->hw_features |= NETIF_F_SG; 2415 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2416 } 2417 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2418 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2419 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2420 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2421 NFP_NET_CFG_CTRL_LSO; 2422 } 2423 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2424 netdev->hw_features |= NETIF_F_RXHASH; 2425 2426 #ifdef CONFIG_NFP_NET_IPSEC 2427 if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC) 2428 netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM; 2429 #endif 2430 2431 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2432 if (nn->cap & NFP_NET_CFG_CTRL_LSO) { 2433 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 2434 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2435 NETIF_F_GSO_PARTIAL; 2436 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; 2437 } 2438 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2439 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2440 } 2441 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2442 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2443 netdev->hw_features |= NETIF_F_GSO_GRE; 2444 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2445 } 2446 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2447 netdev->hw_enc_features = netdev->hw_features; 2448 2449 netdev->vlan_features = netdev->hw_features; 2450 2451 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) { 2452 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2453 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 2454 NFP_NET_CFG_CTRL_RXVLAN; 2455 } 2456 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) { 2457 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2458 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2459 } else { 2460 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2461 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 2462 NFP_NET_CFG_CTRL_TXVLAN; 2463 } 2464 } 2465 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2466 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2467 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2468 } 2469 if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) { 2470 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX; 2471 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 2472 } 2473 2474 netdev->features = netdev->hw_features; 2475 2476 if (nfp_app_has_tc(nn->app) && nn->port) 2477 netdev->hw_features |= NETIF_F_HW_TC; 2478 2479 /* C-Tag strip and S-Tag strip can't be supported simultaneously, 2480 * so enable C-Tag strip and disable S-Tag strip by default. 2481 */ 2482 netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX; 2483 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 2484 2485 /* Finalise the netdev setup */ 2486 switch (nn->dp.ops->version) { 2487 case NFP_NFD_VER_NFD3: 2488 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2489 break; 2490 case NFP_NFD_VER_NFDK: 2491 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2492 break; 2493 } 2494 2495 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2496 2497 /* MTU range: 68 - hw-specific max */ 2498 netdev->min_mtu = ETH_MIN_MTU; 2499 netdev->max_mtu = nn->max_mtu; 2500 2501 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2502 2503 netif_carrier_off(netdev); 2504 2505 nfp_net_set_ethtool_ops(netdev); 2506 } 2507 2508 static int nfp_net_read_caps(struct nfp_net *nn) 2509 { 2510 /* Get some of the read-only fields from the BAR */ 2511 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2512 nn->cap_w1 = nn_readq(nn, NFP_NET_CFG_CAP_WORD1); 2513 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2514 2515 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2516 * we allow use of non-chained metadata if RSS(v1) is the only 2517 * advertised capability requiring metadata. 2518 */ 2519 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2520 !nn->dp.netdev || 2521 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2522 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2523 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2524 * it has the same meaning as RSSv2. 2525 */ 2526 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2527 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2528 2529 /* Determine RX packet/metadata boundary offset */ 2530 if (nn->fw_ver.major >= 2) { 2531 u32 reg; 2532 2533 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2534 if (reg > NFP_NET_MAX_PREPEND) { 2535 nn_err(nn, "Invalid rx offset: %d\n", reg); 2536 return -EINVAL; 2537 } 2538 nn->dp.rx_offset = reg; 2539 } else { 2540 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2541 } 2542 2543 /* Mask out NFD-version-specific features */ 2544 nn->cap &= nn->dp.ops->cap_mask; 2545 2546 /* For control vNICs mask out the capabilities app doesn't want. */ 2547 if (!nn->dp.netdev) 2548 nn->cap &= nn->app->type->ctrl_cap_mask; 2549 2550 return 0; 2551 } 2552 2553 /** 2554 * nfp_net_init() - Initialise/finalise the nfp_net structure 2555 * @nn: NFP Net device structure 2556 * 2557 * Return: 0 on success or negative errno on error. 2558 */ 2559 int nfp_net_init(struct nfp_net *nn) 2560 { 2561 int err; 2562 2563 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2564 2565 err = nfp_net_read_caps(nn); 2566 if (err) 2567 return err; 2568 2569 /* Set default MTU and Freelist buffer size */ 2570 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2571 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2572 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2573 nn->dp.mtu = nn->max_mtu; 2574 } else { 2575 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2576 } 2577 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2578 2579 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2580 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2581 2582 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2583 nfp_net_rss_init(nn); 2584 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2585 NFP_NET_CFG_CTRL_RSS; 2586 } 2587 2588 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2589 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2590 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2591 2592 /* Allow IRQ moderation, if supported */ 2593 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2594 nfp_net_irqmod_init(nn); 2595 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2596 } 2597 2598 /* Enable TX pointer writeback, if supported */ 2599 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2600 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2601 2602 if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) 2603 nn->dp.ctrl_w1 |= NFP_NET_CFG_CTRL_MCAST_FILTER; 2604 2605 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2606 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2607 2608 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2609 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2610 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2611 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2612 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, 0); 2613 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2614 NFP_NET_CFG_UPDATE_GEN); 2615 if (err) 2616 return err; 2617 2618 if (nn->dp.netdev) { 2619 nfp_net_netdev_init(nn); 2620 2621 err = nfp_ccm_mbox_init(nn); 2622 if (err) 2623 return err; 2624 2625 err = nfp_net_tls_init(nn); 2626 if (err) 2627 goto err_clean_mbox; 2628 2629 nfp_net_ipsec_init(nn); 2630 } 2631 2632 nfp_net_vecs_init(nn); 2633 2634 if (!nn->dp.netdev) 2635 return 0; 2636 return register_netdev(nn->dp.netdev); 2637 2638 err_clean_mbox: 2639 nfp_ccm_mbox_clean(nn); 2640 return err; 2641 } 2642 2643 /** 2644 * nfp_net_clean() - Undo what nfp_net_init() did. 2645 * @nn: NFP Net device structure 2646 */ 2647 void nfp_net_clean(struct nfp_net *nn) 2648 { 2649 if (!nn->dp.netdev) 2650 return; 2651 2652 unregister_netdev(nn->dp.netdev); 2653 nfp_net_ipsec_clean(nn); 2654 nfp_ccm_mbox_clean(nn); 2655 nfp_net_reconfig_wait_posted(nn); 2656 } 2657