1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/ethtool.h> 31 #include <linux/log2.h> 32 #include <linux/if_vlan.h> 33 #include <linux/if_bridge.h> 34 #include <linux/random.h> 35 #include <linux/vmalloc.h> 36 #include <linux/ktime.h> 37 38 #include <net/tls.h> 39 #include <net/vxlan.h> 40 #include <net/xdp_sock_drv.h> 41 42 #include "nfpcore/nfp_dev.h" 43 #include "nfpcore/nfp_nsp.h" 44 #include "ccm.h" 45 #include "nfp_app.h" 46 #include "nfp_net_ctrl.h" 47 #include "nfp_net.h" 48 #include "nfp_net_dp.h" 49 #include "nfp_net_sriov.h" 50 #include "nfp_net_xsk.h" 51 #include "nfp_port.h" 52 #include "crypto/crypto.h" 53 #include "crypto/fw.h" 54 55 /** 56 * nfp_net_get_fw_version() - Read and parse the FW version 57 * @fw_ver: Output fw_version structure to read to 58 * @ctrl_bar: Mapped address of the control BAR 59 */ 60 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 61 void __iomem *ctrl_bar) 62 { 63 u32 reg; 64 65 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 66 put_unaligned_le32(reg, fw_ver); 67 } 68 69 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 70 { 71 queue &= dev_info->qc_idx_mask; 72 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 73 } 74 75 /* Firmware reconfig 76 * 77 * Firmware reconfig may take a while so we have two versions of it - 78 * synchronous and asynchronous (posted). All synchronous callers are holding 79 * RTNL so we don't have to worry about serializing them. 80 */ 81 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 82 { 83 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 84 /* ensure update is written before pinging HW */ 85 nn_pci_flush(nn); 86 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 87 nn->reconfig_in_progress_update = update; 88 } 89 90 /* Pass 0 as update to run posted reconfigs. */ 91 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 92 { 93 update |= nn->reconfig_posted; 94 nn->reconfig_posted = 0; 95 96 nfp_net_reconfig_start(nn, update); 97 98 nn->reconfig_timer_active = true; 99 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 100 } 101 102 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 103 { 104 u32 reg; 105 106 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 107 if (reg == 0) 108 return true; 109 if (reg & NFP_NET_CFG_UPDATE_ERR) { 110 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 111 reg, nn->reconfig_in_progress_update, 112 nn_readl(nn, NFP_NET_CFG_CTRL)); 113 return true; 114 } else if (last_check) { 115 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 116 reg, nn->reconfig_in_progress_update, 117 nn_readl(nn, NFP_NET_CFG_CTRL)); 118 return true; 119 } 120 121 return false; 122 } 123 124 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 125 { 126 bool timed_out = false; 127 int i; 128 129 /* Poll update field, waiting for NFP to ack the config. 130 * Do an opportunistic wait-busy loop, afterward sleep. 131 */ 132 for (i = 0; i < 50; i++) { 133 if (nfp_net_reconfig_check_done(nn, false)) 134 return false; 135 udelay(4); 136 } 137 138 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 139 usleep_range(250, 500); 140 timed_out = time_is_before_eq_jiffies(deadline); 141 } 142 143 return timed_out; 144 } 145 146 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 147 { 148 if (__nfp_net_reconfig_wait(nn, deadline)) 149 return -EIO; 150 151 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 152 return -EIO; 153 154 return 0; 155 } 156 157 static void nfp_net_reconfig_timer(struct timer_list *t) 158 { 159 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 160 161 spin_lock_bh(&nn->reconfig_lock); 162 163 nn->reconfig_timer_active = false; 164 165 /* If sync caller is present it will take over from us */ 166 if (nn->reconfig_sync_present) 167 goto done; 168 169 /* Read reconfig status and report errors */ 170 nfp_net_reconfig_check_done(nn, true); 171 172 if (nn->reconfig_posted) 173 nfp_net_reconfig_start_async(nn, 0); 174 done: 175 spin_unlock_bh(&nn->reconfig_lock); 176 } 177 178 /** 179 * nfp_net_reconfig_post() - Post async reconfig request 180 * @nn: NFP Net device to reconfigure 181 * @update: The value for the update field in the BAR config 182 * 183 * Record FW reconfiguration request. Reconfiguration will be kicked off 184 * whenever reconfiguration machinery is idle. Multiple requests can be 185 * merged together! 186 */ 187 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 188 { 189 spin_lock_bh(&nn->reconfig_lock); 190 191 /* Sync caller will kick off async reconf when it's done, just post */ 192 if (nn->reconfig_sync_present) { 193 nn->reconfig_posted |= update; 194 goto done; 195 } 196 197 /* Opportunistically check if the previous command is done */ 198 if (!nn->reconfig_timer_active || 199 nfp_net_reconfig_check_done(nn, false)) 200 nfp_net_reconfig_start_async(nn, update); 201 else 202 nn->reconfig_posted |= update; 203 done: 204 spin_unlock_bh(&nn->reconfig_lock); 205 } 206 207 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 208 { 209 bool cancelled_timer = false; 210 u32 pre_posted_requests; 211 212 spin_lock_bh(&nn->reconfig_lock); 213 214 WARN_ON(nn->reconfig_sync_present); 215 nn->reconfig_sync_present = true; 216 217 if (nn->reconfig_timer_active) { 218 nn->reconfig_timer_active = false; 219 cancelled_timer = true; 220 } 221 pre_posted_requests = nn->reconfig_posted; 222 nn->reconfig_posted = 0; 223 224 spin_unlock_bh(&nn->reconfig_lock); 225 226 if (cancelled_timer) { 227 del_timer_sync(&nn->reconfig_timer); 228 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 229 } 230 231 /* Run the posted reconfigs which were issued before we started */ 232 if (pre_posted_requests) { 233 nfp_net_reconfig_start(nn, pre_posted_requests); 234 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 235 } 236 } 237 238 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 239 { 240 nfp_net_reconfig_sync_enter(nn); 241 242 spin_lock_bh(&nn->reconfig_lock); 243 nn->reconfig_sync_present = false; 244 spin_unlock_bh(&nn->reconfig_lock); 245 } 246 247 /** 248 * __nfp_net_reconfig() - Reconfigure the firmware 249 * @nn: NFP Net device to reconfigure 250 * @update: The value for the update field in the BAR config 251 * 252 * Write the update word to the BAR and ping the reconfig queue. The 253 * poll until the firmware has acknowledged the update by zeroing the 254 * update word. 255 * 256 * Return: Negative errno on error, 0 on success 257 */ 258 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 259 { 260 int ret; 261 262 nfp_net_reconfig_sync_enter(nn); 263 264 nfp_net_reconfig_start(nn, update); 265 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 266 267 spin_lock_bh(&nn->reconfig_lock); 268 269 if (nn->reconfig_posted) 270 nfp_net_reconfig_start_async(nn, 0); 271 272 nn->reconfig_sync_present = false; 273 274 spin_unlock_bh(&nn->reconfig_lock); 275 276 return ret; 277 } 278 279 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 280 { 281 int ret; 282 283 nn_ctrl_bar_lock(nn); 284 ret = __nfp_net_reconfig(nn, update); 285 nn_ctrl_bar_unlock(nn); 286 287 return ret; 288 } 289 290 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 291 { 292 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 293 nn_err(nn, "mailbox too small for %u of data (%u)\n", 294 data_size, nn->tlv_caps.mbox_len); 295 return -EIO; 296 } 297 298 nn_ctrl_bar_lock(nn); 299 return 0; 300 } 301 302 /** 303 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 304 * @nn: NFP Net device to reconfigure 305 * @mbox_cmd: The value for the mailbox command 306 * 307 * Helper function for mailbox updates 308 * 309 * Return: Negative errno on error, 0 on success 310 */ 311 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 312 { 313 u32 mbox = nn->tlv_caps.mbox_off; 314 int ret; 315 316 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 317 318 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 319 if (ret) { 320 nn_err(nn, "Mailbox update error\n"); 321 return ret; 322 } 323 324 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 325 } 326 327 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 328 { 329 u32 mbox = nn->tlv_caps.mbox_off; 330 331 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 332 333 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 334 } 335 336 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 337 { 338 u32 mbox = nn->tlv_caps.mbox_off; 339 340 nfp_net_reconfig_wait_posted(nn); 341 342 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 343 } 344 345 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 346 { 347 int ret; 348 349 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 350 nn_ctrl_bar_unlock(nn); 351 return ret; 352 } 353 354 /* Interrupt configuration and handling 355 */ 356 357 /** 358 * nfp_net_irqs_alloc() - allocates MSI-X irqs 359 * @pdev: PCI device structure 360 * @irq_entries: Array to be initialized and used to hold the irq entries 361 * @min_irqs: Minimal acceptable number of interrupts 362 * @wanted_irqs: Target number of interrupts to allocate 363 * 364 * Return: Number of irqs obtained or 0 on error. 365 */ 366 unsigned int 367 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 368 unsigned int min_irqs, unsigned int wanted_irqs) 369 { 370 unsigned int i; 371 int got_irqs; 372 373 for (i = 0; i < wanted_irqs; i++) 374 irq_entries[i].entry = i; 375 376 got_irqs = pci_enable_msix_range(pdev, irq_entries, 377 min_irqs, wanted_irqs); 378 if (got_irqs < 0) { 379 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 380 min_irqs, wanted_irqs, got_irqs); 381 return 0; 382 } 383 384 if (got_irqs < wanted_irqs) 385 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 386 wanted_irqs, got_irqs); 387 388 return got_irqs; 389 } 390 391 /** 392 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 393 * @nn: NFP Network structure 394 * @irq_entries: Table of allocated interrupts 395 * @n: Size of @irq_entries (number of entries to grab) 396 * 397 * After interrupts are allocated with nfp_net_irqs_alloc() this function 398 * should be called to assign them to a specific netdev (port). 399 */ 400 void 401 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 402 unsigned int n) 403 { 404 struct nfp_net_dp *dp = &nn->dp; 405 406 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 407 dp->num_r_vecs = nn->max_r_vecs; 408 409 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 410 411 if (dp->num_rx_rings > dp->num_r_vecs || 412 dp->num_tx_rings > dp->num_r_vecs) 413 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 414 dp->num_rx_rings, dp->num_tx_rings, 415 dp->num_r_vecs); 416 417 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 418 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 419 dp->num_stack_tx_rings = dp->num_tx_rings; 420 } 421 422 /** 423 * nfp_net_irqs_disable() - Disable interrupts 424 * @pdev: PCI device structure 425 * 426 * Undoes what @nfp_net_irqs_alloc() does. 427 */ 428 void nfp_net_irqs_disable(struct pci_dev *pdev) 429 { 430 pci_disable_msix(pdev); 431 } 432 433 /** 434 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 435 * @irq: Interrupt 436 * @data: Opaque data structure 437 * 438 * Return: Indicate if the interrupt has been handled. 439 */ 440 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 441 { 442 struct nfp_net_r_vector *r_vec = data; 443 444 /* Currently we cannot tell if it's a rx or tx interrupt, 445 * since dim does not need accurate event_ctr to calculate, 446 * we just use this counter for both rx and tx dim. 447 */ 448 r_vec->event_ctr++; 449 450 napi_schedule_irqoff(&r_vec->napi); 451 452 /* The FW auto-masks any interrupt, either via the MASK bit in 453 * the MSI-X table or via the per entry ICR field. So there 454 * is no need to disable interrupts here. 455 */ 456 return IRQ_HANDLED; 457 } 458 459 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 460 { 461 struct nfp_net_r_vector *r_vec = data; 462 463 tasklet_schedule(&r_vec->tasklet); 464 465 return IRQ_HANDLED; 466 } 467 468 /** 469 * nfp_net_read_link_status() - Reread link status from control BAR 470 * @nn: NFP Network structure 471 */ 472 static void nfp_net_read_link_status(struct nfp_net *nn) 473 { 474 unsigned long flags; 475 bool link_up; 476 u16 sts; 477 478 spin_lock_irqsave(&nn->link_status_lock, flags); 479 480 sts = nn_readw(nn, NFP_NET_CFG_STS); 481 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 482 483 if (nn->link_up == link_up) 484 goto out; 485 486 nn->link_up = link_up; 487 if (nn->port) { 488 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 489 if (nn->port->link_cb) 490 nn->port->link_cb(nn->port); 491 } 492 493 if (nn->link_up) { 494 netif_carrier_on(nn->dp.netdev); 495 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 496 } else { 497 netif_carrier_off(nn->dp.netdev); 498 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 499 } 500 out: 501 spin_unlock_irqrestore(&nn->link_status_lock, flags); 502 } 503 504 /** 505 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 506 * @irq: Interrupt 507 * @data: Opaque data structure 508 * 509 * Return: Indicate if the interrupt has been handled. 510 */ 511 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 512 { 513 struct nfp_net *nn = data; 514 struct msix_entry *entry; 515 516 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 517 518 nfp_net_read_link_status(nn); 519 520 nfp_net_irq_unmask(nn, entry->entry); 521 522 return IRQ_HANDLED; 523 } 524 525 /** 526 * nfp_net_irq_exn() - Interrupt service routine for exceptions 527 * @irq: Interrupt 528 * @data: Opaque data structure 529 * 530 * Return: Indicate if the interrupt has been handled. 531 */ 532 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 533 { 534 struct nfp_net *nn = data; 535 536 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 537 /* XXX TO BE IMPLEMENTED */ 538 return IRQ_HANDLED; 539 } 540 541 /** 542 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 543 * @nn: NFP Network structure 544 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 545 * @format: printf-style format to construct the interrupt name 546 * @name: Pointer to allocated space for interrupt name 547 * @name_sz: Size of space for interrupt name 548 * @vector_idx: Index of MSI-X vector used for this interrupt 549 * @handler: IRQ handler to register for this interrupt 550 */ 551 static int 552 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 553 const char *format, char *name, size_t name_sz, 554 unsigned int vector_idx, irq_handler_t handler) 555 { 556 struct msix_entry *entry; 557 int err; 558 559 entry = &nn->irq_entries[vector_idx]; 560 561 snprintf(name, name_sz, format, nfp_net_name(nn)); 562 err = request_irq(entry->vector, handler, 0, name, nn); 563 if (err) { 564 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 565 entry->vector, err); 566 return err; 567 } 568 nn_writeb(nn, ctrl_offset, entry->entry); 569 nfp_net_irq_unmask(nn, entry->entry); 570 571 return 0; 572 } 573 574 /** 575 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 576 * @nn: NFP Network structure 577 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 578 * @vector_idx: Index of MSI-X vector used for this interrupt 579 */ 580 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 581 unsigned int vector_idx) 582 { 583 nn_writeb(nn, ctrl_offset, 0xff); 584 nn_pci_flush(nn); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 struct sk_buff * 589 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 590 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 591 { 592 #ifdef CONFIG_TLS_DEVICE 593 struct nfp_net_tls_offload_ctx *ntls; 594 struct sk_buff *nskb; 595 bool resync_pending; 596 u32 datalen, seq; 597 598 if (likely(!dp->ktls_tx)) 599 return skb; 600 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 601 return skb; 602 603 datalen = skb->len - skb_tcp_all_headers(skb); 604 seq = ntohl(tcp_hdr(skb)->seq); 605 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 606 resync_pending = tls_offload_tx_resync_pending(skb->sk); 607 if (unlikely(resync_pending || ntls->next_seq != seq)) { 608 /* Pure ACK out of order already */ 609 if (!datalen) 610 return skb; 611 612 u64_stats_update_begin(&r_vec->tx_sync); 613 r_vec->tls_tx_fallback++; 614 u64_stats_update_end(&r_vec->tx_sync); 615 616 nskb = tls_encrypt_skb(skb); 617 if (!nskb) { 618 u64_stats_update_begin(&r_vec->tx_sync); 619 r_vec->tls_tx_no_fallback++; 620 u64_stats_update_end(&r_vec->tx_sync); 621 return NULL; 622 } 623 /* encryption wasn't necessary */ 624 if (nskb == skb) 625 return skb; 626 /* we don't re-check ring space */ 627 if (unlikely(skb_is_nonlinear(nskb))) { 628 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 629 u64_stats_update_begin(&r_vec->tx_sync); 630 r_vec->tx_errors++; 631 u64_stats_update_end(&r_vec->tx_sync); 632 dev_kfree_skb_any(nskb); 633 return NULL; 634 } 635 636 /* jump forward, a TX may have gotten lost, need to sync TX */ 637 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 638 tls_offload_tx_resync_request(nskb->sk, seq, 639 ntls->next_seq); 640 641 *nr_frags = 0; 642 return nskb; 643 } 644 645 if (datalen) { 646 u64_stats_update_begin(&r_vec->tx_sync); 647 if (!skb_is_gso(skb)) 648 r_vec->hw_tls_tx++; 649 else 650 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 651 u64_stats_update_end(&r_vec->tx_sync); 652 } 653 654 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 655 ntls->next_seq += datalen; 656 #endif 657 return skb; 658 } 659 660 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 661 { 662 #ifdef CONFIG_TLS_DEVICE 663 struct nfp_net_tls_offload_ctx *ntls; 664 u32 datalen, seq; 665 666 if (!tls_handle) 667 return; 668 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 669 return; 670 671 datalen = skb->len - skb_tcp_all_headers(skb); 672 seq = ntohl(tcp_hdr(skb)->seq); 673 674 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 675 if (ntls->next_seq == seq + datalen) 676 ntls->next_seq = seq; 677 else 678 WARN_ON_ONCE(1); 679 #endif 680 } 681 682 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 683 { 684 struct nfp_net *nn = netdev_priv(netdev); 685 686 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 687 } 688 689 /* Receive processing */ 690 static unsigned int 691 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 692 { 693 unsigned int fl_bufsz = 0; 694 695 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 696 fl_bufsz += NFP_NET_MAX_PREPEND; 697 else 698 fl_bufsz += dp->rx_offset; 699 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 700 701 return fl_bufsz; 702 } 703 704 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 705 { 706 unsigned int fl_bufsz; 707 708 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 709 fl_bufsz += dp->rx_dma_off; 710 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 711 712 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 713 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 714 715 return fl_bufsz; 716 } 717 718 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 719 { 720 unsigned int fl_bufsz; 721 722 fl_bufsz = XDP_PACKET_HEADROOM; 723 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 724 725 return fl_bufsz; 726 } 727 728 /* Setup and Configuration 729 */ 730 731 /** 732 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 733 * @nn: NFP Network structure 734 */ 735 static void nfp_net_vecs_init(struct nfp_net *nn) 736 { 737 int numa_node = dev_to_node(&nn->pdev->dev); 738 struct nfp_net_r_vector *r_vec; 739 unsigned int r; 740 741 nn->lsc_handler = nfp_net_irq_lsc; 742 nn->exn_handler = nfp_net_irq_exn; 743 744 for (r = 0; r < nn->max_r_vecs; r++) { 745 struct msix_entry *entry; 746 747 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 748 749 r_vec = &nn->r_vecs[r]; 750 r_vec->nfp_net = nn; 751 r_vec->irq_entry = entry->entry; 752 r_vec->irq_vector = entry->vector; 753 754 if (nn->dp.netdev) { 755 r_vec->handler = nfp_net_irq_rxtx; 756 } else { 757 r_vec->handler = nfp_ctrl_irq_rxtx; 758 759 __skb_queue_head_init(&r_vec->queue); 760 spin_lock_init(&r_vec->lock); 761 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 762 tasklet_disable(&r_vec->tasklet); 763 } 764 765 cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask); 766 } 767 } 768 769 static void 770 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 771 { 772 if (dp->netdev) 773 netif_napi_add(dp->netdev, &r_vec->napi, 774 nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll); 775 else 776 tasklet_enable(&r_vec->tasklet); 777 } 778 779 static void 780 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 781 { 782 if (dp->netdev) 783 netif_napi_del(&r_vec->napi); 784 else 785 tasklet_disable(&r_vec->tasklet); 786 } 787 788 static void 789 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 790 struct nfp_net_r_vector *r_vec, int idx) 791 { 792 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 793 r_vec->tx_ring = 794 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 795 796 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 797 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 798 799 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 800 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 801 802 if (r_vec->xsk_pool) 803 xsk_pool_set_rxq_info(r_vec->xsk_pool, 804 &r_vec->rx_ring->xdp_rxq); 805 806 nfp_net_napi_del(dp, r_vec); 807 nfp_net_napi_add(dp, r_vec, idx); 808 } 809 } 810 811 static int 812 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 813 int idx) 814 { 815 int err; 816 817 nfp_net_napi_add(&nn->dp, r_vec, idx); 818 819 snprintf(r_vec->name, sizeof(r_vec->name), 820 "%s-rxtx-%d", nfp_net_name(nn), idx); 821 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 822 r_vec); 823 if (err) { 824 nfp_net_napi_del(&nn->dp, r_vec); 825 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 826 return err; 827 } 828 disable_irq(r_vec->irq_vector); 829 830 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 831 832 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 833 r_vec->irq_entry); 834 835 return 0; 836 } 837 838 static void 839 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 840 { 841 irq_set_affinity_hint(r_vec->irq_vector, NULL); 842 nfp_net_napi_del(&nn->dp, r_vec); 843 free_irq(r_vec->irq_vector, r_vec); 844 } 845 846 /** 847 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 848 * @nn: NFP Net device to reconfigure 849 */ 850 void nfp_net_rss_write_itbl(struct nfp_net *nn) 851 { 852 int i; 853 854 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 855 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 856 get_unaligned_le32(nn->rss_itbl + i)); 857 } 858 859 /** 860 * nfp_net_rss_write_key() - Write RSS hash key to device 861 * @nn: NFP Net device to reconfigure 862 */ 863 void nfp_net_rss_write_key(struct nfp_net *nn) 864 { 865 int i; 866 867 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 868 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 869 get_unaligned_le32(nn->rss_key + i)); 870 } 871 872 /** 873 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 874 * @nn: NFP Net device to reconfigure 875 */ 876 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 877 { 878 u8 i; 879 u32 factor; 880 u32 value; 881 882 /* Compute factor used to convert coalesce '_usecs' parameters to 883 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 884 * count. 885 */ 886 factor = nn->tlv_caps.me_freq_mhz / 16; 887 888 /* copy RX interrupt coalesce parameters */ 889 value = (nn->rx_coalesce_max_frames << 16) | 890 (factor * nn->rx_coalesce_usecs); 891 for (i = 0; i < nn->dp.num_rx_rings; i++) 892 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 893 894 /* copy TX interrupt coalesce parameters */ 895 value = (nn->tx_coalesce_max_frames << 16) | 896 (factor * nn->tx_coalesce_usecs); 897 for (i = 0; i < nn->dp.num_tx_rings; i++) 898 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 899 } 900 901 /** 902 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 903 * @nn: NFP Net device to reconfigure 904 * @addr: MAC address to write 905 * 906 * Writes the MAC address from the netdev to the device control BAR. Does not 907 * perform the required reconfig. We do a bit of byte swapping dance because 908 * firmware is LE. 909 */ 910 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 911 { 912 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 913 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 914 } 915 916 /** 917 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 918 * @nn: NFP Net device to reconfigure 919 * 920 * Warning: must be fully idempotent. 921 */ 922 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 923 { 924 u32 new_ctrl, update; 925 unsigned int r; 926 int err; 927 928 new_ctrl = nn->dp.ctrl; 929 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 930 update = NFP_NET_CFG_UPDATE_GEN; 931 update |= NFP_NET_CFG_UPDATE_MSIX; 932 update |= NFP_NET_CFG_UPDATE_RING; 933 934 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 935 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 936 937 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 938 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 939 940 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 941 err = nfp_net_reconfig(nn, update); 942 if (err) 943 nn_err(nn, "Could not disable device: %d\n", err); 944 945 for (r = 0; r < nn->dp.num_rx_rings; r++) { 946 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 947 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 948 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 949 } 950 for (r = 0; r < nn->dp.num_tx_rings; r++) 951 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 952 for (r = 0; r < nn->dp.num_r_vecs; r++) 953 nfp_net_vec_clear_ring_data(nn, r); 954 955 nn->dp.ctrl = new_ctrl; 956 } 957 958 /** 959 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 960 * @nn: NFP Net device to reconfigure 961 */ 962 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 963 { 964 u32 bufsz, new_ctrl, update = 0; 965 unsigned int r; 966 int err; 967 968 new_ctrl = nn->dp.ctrl; 969 970 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 971 nfp_net_rss_write_key(nn); 972 nfp_net_rss_write_itbl(nn); 973 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 974 update |= NFP_NET_CFG_UPDATE_RSS; 975 } 976 977 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 978 nfp_net_coalesce_write_cfg(nn); 979 update |= NFP_NET_CFG_UPDATE_IRQMOD; 980 } 981 982 for (r = 0; r < nn->dp.num_tx_rings; r++) 983 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 984 for (r = 0; r < nn->dp.num_rx_rings; r++) 985 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 986 987 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 988 U64_MAX >> (64 - nn->dp.num_tx_rings)); 989 990 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 991 U64_MAX >> (64 - nn->dp.num_rx_rings)); 992 993 if (nn->dp.netdev) 994 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 995 996 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 997 998 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 999 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 1000 1001 /* Enable device */ 1002 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1003 update |= NFP_NET_CFG_UPDATE_GEN; 1004 update |= NFP_NET_CFG_UPDATE_MSIX; 1005 update |= NFP_NET_CFG_UPDATE_RING; 1006 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1007 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1008 1009 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1010 err = nfp_net_reconfig(nn, update); 1011 if (err) { 1012 nfp_net_clear_config_and_disable(nn); 1013 return err; 1014 } 1015 1016 nn->dp.ctrl = new_ctrl; 1017 1018 for (r = 0; r < nn->dp.num_rx_rings; r++) 1019 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * nfp_net_close_stack() - Quiesce the stack (part of close) 1026 * @nn: NFP Net device to reconfigure 1027 */ 1028 static void nfp_net_close_stack(struct nfp_net *nn) 1029 { 1030 struct nfp_net_r_vector *r_vec; 1031 unsigned int r; 1032 1033 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1034 netif_carrier_off(nn->dp.netdev); 1035 nn->link_up = false; 1036 1037 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1038 r_vec = &nn->r_vecs[r]; 1039 1040 disable_irq(r_vec->irq_vector); 1041 napi_disable(&r_vec->napi); 1042 1043 if (r_vec->rx_ring) 1044 cancel_work_sync(&r_vec->rx_dim.work); 1045 1046 if (r_vec->tx_ring) 1047 cancel_work_sync(&r_vec->tx_dim.work); 1048 } 1049 1050 netif_tx_disable(nn->dp.netdev); 1051 } 1052 1053 /** 1054 * nfp_net_close_free_all() - Free all runtime resources 1055 * @nn: NFP Net device to reconfigure 1056 */ 1057 static void nfp_net_close_free_all(struct nfp_net *nn) 1058 { 1059 unsigned int r; 1060 1061 nfp_net_tx_rings_free(&nn->dp); 1062 nfp_net_rx_rings_free(&nn->dp); 1063 1064 for (r = 0; r < nn->dp.num_r_vecs; r++) 1065 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1066 1067 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1068 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1069 } 1070 1071 /** 1072 * nfp_net_netdev_close() - Called when the device is downed 1073 * @netdev: netdev structure 1074 */ 1075 static int nfp_net_netdev_close(struct net_device *netdev) 1076 { 1077 struct nfp_net *nn = netdev_priv(netdev); 1078 1079 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1080 */ 1081 nfp_net_close_stack(nn); 1082 1083 /* Step 2: Tell NFP 1084 */ 1085 nfp_net_clear_config_and_disable(nn); 1086 nfp_port_configure(netdev, false); 1087 1088 /* Step 3: Free resources 1089 */ 1090 nfp_net_close_free_all(nn); 1091 1092 nn_dbg(nn, "%s down", netdev->name); 1093 return 0; 1094 } 1095 1096 void nfp_ctrl_close(struct nfp_net *nn) 1097 { 1098 int r; 1099 1100 rtnl_lock(); 1101 1102 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1103 disable_irq(nn->r_vecs[r].irq_vector); 1104 tasklet_disable(&nn->r_vecs[r].tasklet); 1105 } 1106 1107 nfp_net_clear_config_and_disable(nn); 1108 1109 nfp_net_close_free_all(nn); 1110 1111 rtnl_unlock(); 1112 } 1113 1114 static void nfp_net_rx_dim_work(struct work_struct *work) 1115 { 1116 struct nfp_net_r_vector *r_vec; 1117 unsigned int factor, value; 1118 struct dim_cq_moder moder; 1119 struct nfp_net *nn; 1120 struct dim *dim; 1121 1122 dim = container_of(work, struct dim, work); 1123 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1124 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1125 nn = r_vec->nfp_net; 1126 1127 /* Compute factor used to convert coalesce '_usecs' parameters to 1128 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1129 * count. 1130 */ 1131 factor = nn->tlv_caps.me_freq_mhz / 16; 1132 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1133 return; 1134 1135 /* copy RX interrupt coalesce parameters */ 1136 value = (moder.pkts << 16) | (factor * moder.usec); 1137 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1138 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1139 1140 dim->state = DIM_START_MEASURE; 1141 } 1142 1143 static void nfp_net_tx_dim_work(struct work_struct *work) 1144 { 1145 struct nfp_net_r_vector *r_vec; 1146 unsigned int factor, value; 1147 struct dim_cq_moder moder; 1148 struct nfp_net *nn; 1149 struct dim *dim; 1150 1151 dim = container_of(work, struct dim, work); 1152 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1153 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1154 nn = r_vec->nfp_net; 1155 1156 /* Compute factor used to convert coalesce '_usecs' parameters to 1157 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1158 * count. 1159 */ 1160 factor = nn->tlv_caps.me_freq_mhz / 16; 1161 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 1162 return; 1163 1164 /* copy TX interrupt coalesce parameters */ 1165 value = (moder.pkts << 16) | (factor * moder.usec); 1166 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1167 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1168 1169 dim->state = DIM_START_MEASURE; 1170 } 1171 1172 /** 1173 * nfp_net_open_stack() - Start the device from stack's perspective 1174 * @nn: NFP Net device to reconfigure 1175 */ 1176 static void nfp_net_open_stack(struct nfp_net *nn) 1177 { 1178 struct nfp_net_r_vector *r_vec; 1179 unsigned int r; 1180 1181 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1182 r_vec = &nn->r_vecs[r]; 1183 1184 if (r_vec->rx_ring) { 1185 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1186 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1187 } 1188 1189 if (r_vec->tx_ring) { 1190 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1191 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1192 } 1193 1194 napi_enable(&r_vec->napi); 1195 enable_irq(r_vec->irq_vector); 1196 } 1197 1198 netif_tx_wake_all_queues(nn->dp.netdev); 1199 1200 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1201 nfp_net_read_link_status(nn); 1202 } 1203 1204 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1205 { 1206 int err, r; 1207 1208 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1209 nn->exn_name, sizeof(nn->exn_name), 1210 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1211 if (err) 1212 return err; 1213 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1214 nn->lsc_name, sizeof(nn->lsc_name), 1215 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1216 if (err) 1217 goto err_free_exn; 1218 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1219 1220 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1221 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1222 if (err) 1223 goto err_cleanup_vec_p; 1224 } 1225 1226 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1227 if (err) 1228 goto err_cleanup_vec; 1229 1230 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1231 if (err) 1232 goto err_free_rx_rings; 1233 1234 for (r = 0; r < nn->max_r_vecs; r++) 1235 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1236 1237 return 0; 1238 1239 err_free_rx_rings: 1240 nfp_net_rx_rings_free(&nn->dp); 1241 err_cleanup_vec: 1242 r = nn->dp.num_r_vecs; 1243 err_cleanup_vec_p: 1244 while (r--) 1245 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1246 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1247 err_free_exn: 1248 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1249 return err; 1250 } 1251 1252 static int nfp_net_netdev_open(struct net_device *netdev) 1253 { 1254 struct nfp_net *nn = netdev_priv(netdev); 1255 int err; 1256 1257 /* Step 1: Allocate resources for rings and the like 1258 * - Request interrupts 1259 * - Allocate RX and TX ring resources 1260 * - Setup initial RSS table 1261 */ 1262 err = nfp_net_open_alloc_all(nn); 1263 if (err) 1264 return err; 1265 1266 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1267 if (err) 1268 goto err_free_all; 1269 1270 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1271 if (err) 1272 goto err_free_all; 1273 1274 /* Step 2: Configure the NFP 1275 * - Ifup the physical interface if it exists 1276 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1277 * - Write MAC address (in case it changed) 1278 * - Set the MTU 1279 * - Set the Freelist buffer size 1280 * - Enable the FW 1281 */ 1282 err = nfp_port_configure(netdev, true); 1283 if (err) 1284 goto err_free_all; 1285 1286 err = nfp_net_set_config_and_enable(nn); 1287 if (err) 1288 goto err_port_disable; 1289 1290 /* Step 3: Enable for kernel 1291 * - put some freelist descriptors on each RX ring 1292 * - enable NAPI on each ring 1293 * - enable all TX queues 1294 * - set link state 1295 */ 1296 nfp_net_open_stack(nn); 1297 1298 return 0; 1299 1300 err_port_disable: 1301 nfp_port_configure(netdev, false); 1302 err_free_all: 1303 nfp_net_close_free_all(nn); 1304 return err; 1305 } 1306 1307 int nfp_ctrl_open(struct nfp_net *nn) 1308 { 1309 int err, r; 1310 1311 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1312 rtnl_lock(); 1313 1314 err = nfp_net_open_alloc_all(nn); 1315 if (err) 1316 goto err_unlock; 1317 1318 err = nfp_net_set_config_and_enable(nn); 1319 if (err) 1320 goto err_free_all; 1321 1322 for (r = 0; r < nn->dp.num_r_vecs; r++) 1323 enable_irq(nn->r_vecs[r].irq_vector); 1324 1325 rtnl_unlock(); 1326 1327 return 0; 1328 1329 err_free_all: 1330 nfp_net_close_free_all(nn); 1331 err_unlock: 1332 rtnl_unlock(); 1333 return err; 1334 } 1335 1336 static void nfp_net_set_rx_mode(struct net_device *netdev) 1337 { 1338 struct nfp_net *nn = netdev_priv(netdev); 1339 u32 new_ctrl; 1340 1341 new_ctrl = nn->dp.ctrl; 1342 1343 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1344 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1345 else 1346 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1347 1348 if (netdev->flags & IFF_PROMISC) { 1349 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1350 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1351 else 1352 nn_warn(nn, "FW does not support promiscuous mode\n"); 1353 } else { 1354 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1355 } 1356 1357 if (new_ctrl == nn->dp.ctrl) 1358 return; 1359 1360 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1361 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1362 1363 nn->dp.ctrl = new_ctrl; 1364 } 1365 1366 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1367 { 1368 int i; 1369 1370 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1371 nn->rss_itbl[i] = 1372 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1373 } 1374 1375 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1376 { 1377 struct nfp_net_dp new_dp = *dp; 1378 1379 *dp = nn->dp; 1380 nn->dp = new_dp; 1381 1382 nn->dp.netdev->mtu = new_dp.mtu; 1383 1384 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1385 nfp_net_rss_init_itbl(nn); 1386 } 1387 1388 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1389 { 1390 unsigned int r; 1391 int err; 1392 1393 nfp_net_dp_swap(nn, dp); 1394 1395 for (r = 0; r < nn->max_r_vecs; r++) 1396 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1397 1398 err = netif_set_real_num_queues(nn->dp.netdev, 1399 nn->dp.num_stack_tx_rings, 1400 nn->dp.num_rx_rings); 1401 if (err) 1402 return err; 1403 1404 return nfp_net_set_config_and_enable(nn); 1405 } 1406 1407 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1408 { 1409 struct nfp_net_dp *new; 1410 1411 new = kmalloc(sizeof(*new), GFP_KERNEL); 1412 if (!new) 1413 return NULL; 1414 1415 *new = nn->dp; 1416 1417 new->xsk_pools = kmemdup(new->xsk_pools, 1418 array_size(nn->max_r_vecs, 1419 sizeof(new->xsk_pools)), 1420 GFP_KERNEL); 1421 if (!new->xsk_pools) { 1422 kfree(new); 1423 return NULL; 1424 } 1425 1426 /* Clear things which need to be recomputed */ 1427 new->fl_bufsz = 0; 1428 new->tx_rings = NULL; 1429 new->rx_rings = NULL; 1430 new->num_r_vecs = 0; 1431 new->num_stack_tx_rings = 0; 1432 new->txrwb = NULL; 1433 new->txrwb_dma = 0; 1434 1435 return new; 1436 } 1437 1438 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1439 { 1440 kfree(dp->xsk_pools); 1441 kfree(dp); 1442 } 1443 1444 static int 1445 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1446 struct netlink_ext_ack *extack) 1447 { 1448 unsigned int r, xsk_min_fl_bufsz; 1449 1450 /* XDP-enabled tests */ 1451 if (!dp->xdp_prog) 1452 return 0; 1453 if (dp->fl_bufsz > PAGE_SIZE) { 1454 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1455 return -EINVAL; 1456 } 1457 if (dp->num_tx_rings > nn->max_tx_rings) { 1458 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1459 return -EINVAL; 1460 } 1461 1462 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1463 for (r = 0; r < nn->max_r_vecs; r++) { 1464 if (!dp->xsk_pools[r]) 1465 continue; 1466 1467 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1468 NL_SET_ERR_MSG_MOD(extack, 1469 "XSK buffer pool chunk size too small"); 1470 return -EINVAL; 1471 } 1472 } 1473 1474 return 0; 1475 } 1476 1477 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1478 struct netlink_ext_ack *extack) 1479 { 1480 int r, err; 1481 1482 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1483 1484 dp->num_stack_tx_rings = dp->num_tx_rings; 1485 if (dp->xdp_prog) 1486 dp->num_stack_tx_rings -= dp->num_rx_rings; 1487 1488 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1489 1490 err = nfp_net_check_config(nn, dp, extack); 1491 if (err) 1492 goto exit_free_dp; 1493 1494 if (!netif_running(dp->netdev)) { 1495 nfp_net_dp_swap(nn, dp); 1496 err = 0; 1497 goto exit_free_dp; 1498 } 1499 1500 /* Prepare new rings */ 1501 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1502 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1503 if (err) { 1504 dp->num_r_vecs = r; 1505 goto err_cleanup_vecs; 1506 } 1507 } 1508 1509 err = nfp_net_rx_rings_prepare(nn, dp); 1510 if (err) 1511 goto err_cleanup_vecs; 1512 1513 err = nfp_net_tx_rings_prepare(nn, dp); 1514 if (err) 1515 goto err_free_rx; 1516 1517 /* Stop device, swap in new rings, try to start the firmware */ 1518 nfp_net_close_stack(nn); 1519 nfp_net_clear_config_and_disable(nn); 1520 1521 err = nfp_net_dp_swap_enable(nn, dp); 1522 if (err) { 1523 int err2; 1524 1525 nfp_net_clear_config_and_disable(nn); 1526 1527 /* Try with old configuration and old rings */ 1528 err2 = nfp_net_dp_swap_enable(nn, dp); 1529 if (err2) 1530 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1531 err, err2); 1532 } 1533 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1534 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1535 1536 nfp_net_rx_rings_free(dp); 1537 nfp_net_tx_rings_free(dp); 1538 1539 nfp_net_open_stack(nn); 1540 exit_free_dp: 1541 nfp_net_free_dp(dp); 1542 1543 return err; 1544 1545 err_free_rx: 1546 nfp_net_rx_rings_free(dp); 1547 err_cleanup_vecs: 1548 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1549 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1550 nfp_net_free_dp(dp); 1551 return err; 1552 } 1553 1554 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1555 { 1556 struct nfp_net *nn = netdev_priv(netdev); 1557 struct nfp_net_dp *dp; 1558 int err; 1559 1560 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1561 if (err) 1562 return err; 1563 1564 dp = nfp_net_clone_dp(nn); 1565 if (!dp) 1566 return -ENOMEM; 1567 1568 dp->mtu = new_mtu; 1569 1570 return nfp_net_ring_reconfig(nn, dp, NULL); 1571 } 1572 1573 static int 1574 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1575 { 1576 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1577 struct nfp_net *nn = netdev_priv(netdev); 1578 int err; 1579 1580 /* Priority tagged packets with vlan id 0 are processed by the 1581 * NFP as untagged packets 1582 */ 1583 if (!vid) 1584 return 0; 1585 1586 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1587 if (err) 1588 return err; 1589 1590 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1591 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1592 ETH_P_8021Q); 1593 1594 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1595 } 1596 1597 static int 1598 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1599 { 1600 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1601 struct nfp_net *nn = netdev_priv(netdev); 1602 int err; 1603 1604 /* Priority tagged packets with vlan id 0 are processed by the 1605 * NFP as untagged packets 1606 */ 1607 if (!vid) 1608 return 0; 1609 1610 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1611 if (err) 1612 return err; 1613 1614 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1615 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1616 ETH_P_8021Q); 1617 1618 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1619 } 1620 1621 static void nfp_net_stat64(struct net_device *netdev, 1622 struct rtnl_link_stats64 *stats) 1623 { 1624 struct nfp_net *nn = netdev_priv(netdev); 1625 int r; 1626 1627 /* Collect software stats */ 1628 for (r = 0; r < nn->max_r_vecs; r++) { 1629 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1630 u64 data[3]; 1631 unsigned int start; 1632 1633 do { 1634 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1635 data[0] = r_vec->rx_pkts; 1636 data[1] = r_vec->rx_bytes; 1637 data[2] = r_vec->rx_drops; 1638 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1639 stats->rx_packets += data[0]; 1640 stats->rx_bytes += data[1]; 1641 stats->rx_dropped += data[2]; 1642 1643 do { 1644 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1645 data[0] = r_vec->tx_pkts; 1646 data[1] = r_vec->tx_bytes; 1647 data[2] = r_vec->tx_errors; 1648 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1649 stats->tx_packets += data[0]; 1650 stats->tx_bytes += data[1]; 1651 stats->tx_errors += data[2]; 1652 } 1653 1654 /* Add in device stats */ 1655 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1656 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1657 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1658 1659 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1660 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1661 } 1662 1663 static int nfp_net_set_features(struct net_device *netdev, 1664 netdev_features_t features) 1665 { 1666 netdev_features_t changed = netdev->features ^ features; 1667 struct nfp_net *nn = netdev_priv(netdev); 1668 u32 new_ctrl; 1669 int err; 1670 1671 /* Assume this is not called with features we have not advertised */ 1672 1673 new_ctrl = nn->dp.ctrl; 1674 1675 if (changed & NETIF_F_RXCSUM) { 1676 if (features & NETIF_F_RXCSUM) 1677 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 1678 else 1679 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 1680 } 1681 1682 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1683 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 1684 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 1685 else 1686 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 1687 } 1688 1689 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 1690 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1691 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 1692 NFP_NET_CFG_CTRL_LSO; 1693 else 1694 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 1695 } 1696 1697 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1698 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1699 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 1700 NFP_NET_CFG_CTRL_RXVLAN; 1701 else 1702 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY; 1703 } 1704 1705 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 1706 if (features & NETIF_F_HW_VLAN_CTAG_TX) 1707 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 1708 NFP_NET_CFG_CTRL_TXVLAN; 1709 else 1710 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY; 1711 } 1712 1713 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 1714 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 1715 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 1716 else 1717 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 1718 } 1719 1720 if (changed & NETIF_F_HW_VLAN_STAG_RX) { 1721 if (features & NETIF_F_HW_VLAN_STAG_RX) 1722 new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 1723 else 1724 new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 1725 } 1726 1727 if (changed & NETIF_F_SG) { 1728 if (features & NETIF_F_SG) 1729 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 1730 else 1731 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 1732 } 1733 1734 err = nfp_port_set_features(netdev, features); 1735 if (err) 1736 return err; 1737 1738 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 1739 netdev->features, features, changed); 1740 1741 if (new_ctrl == nn->dp.ctrl) 1742 return 0; 1743 1744 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 1745 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1746 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1747 if (err) 1748 return err; 1749 1750 nn->dp.ctrl = new_ctrl; 1751 1752 return 0; 1753 } 1754 1755 static netdev_features_t 1756 nfp_net_fix_features(struct net_device *netdev, 1757 netdev_features_t features) 1758 { 1759 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1760 (features & NETIF_F_HW_VLAN_STAG_RX)) { 1761 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 1762 features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1763 netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 1764 netdev_warn(netdev, 1765 "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n"); 1766 } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) { 1767 features &= ~NETIF_F_HW_VLAN_STAG_RX; 1768 netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX; 1769 netdev_warn(netdev, 1770 "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n"); 1771 } 1772 } 1773 return features; 1774 } 1775 1776 static netdev_features_t 1777 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 1778 netdev_features_t features) 1779 { 1780 u8 l4_hdr; 1781 1782 /* We can't do TSO over double tagged packets (802.1AD) */ 1783 features &= vlan_features_check(skb, features); 1784 1785 if (!skb->encapsulation) 1786 return features; 1787 1788 /* Ensure that inner L4 header offset fits into TX descriptor field */ 1789 if (skb_is_gso(skb)) { 1790 u32 hdrlen; 1791 1792 hdrlen = skb_inner_tcp_all_headers(skb); 1793 1794 /* Assume worst case scenario of having longest possible 1795 * metadata prepend - 8B 1796 */ 1797 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 1798 features &= ~NETIF_F_GSO_MASK; 1799 } 1800 1801 /* VXLAN/GRE check */ 1802 switch (vlan_get_protocol(skb)) { 1803 case htons(ETH_P_IP): 1804 l4_hdr = ip_hdr(skb)->protocol; 1805 break; 1806 case htons(ETH_P_IPV6): 1807 l4_hdr = ipv6_hdr(skb)->nexthdr; 1808 break; 1809 default: 1810 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1811 } 1812 1813 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1814 skb->inner_protocol != htons(ETH_P_TEB) || 1815 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 1816 (l4_hdr == IPPROTO_UDP && 1817 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 1818 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 1819 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1820 1821 return features; 1822 } 1823 1824 static int 1825 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 1826 { 1827 struct nfp_net *nn = netdev_priv(netdev); 1828 int n; 1829 1830 /* If port is defined, devlink_port is registered and devlink core 1831 * is taking care of name formatting. 1832 */ 1833 if (nn->port) 1834 return -EOPNOTSUPP; 1835 1836 if (nn->dp.is_vf || nn->vnic_no_name) 1837 return -EOPNOTSUPP; 1838 1839 n = snprintf(name, len, "n%d", nn->id); 1840 if (n >= len) 1841 return -EINVAL; 1842 1843 return 0; 1844 } 1845 1846 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 1847 { 1848 struct bpf_prog *prog = bpf->prog; 1849 struct nfp_net_dp *dp; 1850 int err; 1851 1852 if (!prog == !nn->dp.xdp_prog) { 1853 WRITE_ONCE(nn->dp.xdp_prog, prog); 1854 xdp_attachment_setup(&nn->xdp, bpf); 1855 return 0; 1856 } 1857 1858 dp = nfp_net_clone_dp(nn); 1859 if (!dp) 1860 return -ENOMEM; 1861 1862 dp->xdp_prog = prog; 1863 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 1864 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1865 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 1866 1867 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 1868 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 1869 if (err) 1870 return err; 1871 1872 xdp_attachment_setup(&nn->xdp, bpf); 1873 return 0; 1874 } 1875 1876 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 1877 { 1878 int err; 1879 1880 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 1881 if (err) 1882 return err; 1883 1884 xdp_attachment_setup(&nn->xdp_hw, bpf); 1885 return 0; 1886 } 1887 1888 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1889 { 1890 struct nfp_net *nn = netdev_priv(netdev); 1891 1892 switch (xdp->command) { 1893 case XDP_SETUP_PROG: 1894 return nfp_net_xdp_setup_drv(nn, xdp); 1895 case XDP_SETUP_PROG_HW: 1896 return nfp_net_xdp_setup_hw(nn, xdp); 1897 case XDP_SETUP_XSK_POOL: 1898 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 1899 xdp->xsk.queue_id); 1900 default: 1901 return nfp_app_bpf(nn->app, nn, xdp); 1902 } 1903 } 1904 1905 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 1906 { 1907 struct nfp_net *nn = netdev_priv(netdev); 1908 struct sockaddr *saddr = addr; 1909 int err; 1910 1911 err = eth_prepare_mac_addr_change(netdev, addr); 1912 if (err) 1913 return err; 1914 1915 nfp_net_write_mac_addr(nn, saddr->sa_data); 1916 1917 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 1918 if (err) 1919 return err; 1920 1921 eth_commit_mac_addr_change(netdev, addr); 1922 1923 return 0; 1924 } 1925 1926 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 1927 struct net_device *dev, u32 filter_mask, 1928 int nlflags) 1929 { 1930 struct nfp_net *nn = netdev_priv(dev); 1931 u16 mode; 1932 1933 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1934 return -EOPNOTSUPP; 1935 1936 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? 1937 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; 1938 1939 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, 1940 nlflags, filter_mask, NULL); 1941 } 1942 1943 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 1944 u16 flags, struct netlink_ext_ack *extack) 1945 { 1946 struct nfp_net *nn = netdev_priv(dev); 1947 struct nlattr *attr, *br_spec; 1948 int rem, err; 1949 u32 new_ctrl; 1950 u16 mode; 1951 1952 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 1953 return -EOPNOTSUPP; 1954 1955 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 1956 if (!br_spec) 1957 return -EINVAL; 1958 1959 nla_for_each_nested(attr, br_spec, rem) { 1960 if (nla_type(attr) != IFLA_BRIDGE_MODE) 1961 continue; 1962 1963 if (nla_len(attr) < sizeof(mode)) 1964 return -EINVAL; 1965 1966 new_ctrl = nn->dp.ctrl; 1967 mode = nla_get_u16(attr); 1968 if (mode == BRIDGE_MODE_VEPA) 1969 new_ctrl |= NFP_NET_CFG_CTRL_VEPA; 1970 else if (mode == BRIDGE_MODE_VEB) 1971 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; 1972 else 1973 return -EOPNOTSUPP; 1974 1975 if (new_ctrl == nn->dp.ctrl) 1976 return 0; 1977 1978 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1979 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 1980 if (!err) 1981 nn->dp.ctrl = new_ctrl; 1982 1983 return err; 1984 } 1985 1986 return -EINVAL; 1987 } 1988 1989 const struct net_device_ops nfp_nfd3_netdev_ops = { 1990 .ndo_init = nfp_app_ndo_init, 1991 .ndo_uninit = nfp_app_ndo_uninit, 1992 .ndo_open = nfp_net_netdev_open, 1993 .ndo_stop = nfp_net_netdev_close, 1994 .ndo_start_xmit = nfp_net_tx, 1995 .ndo_get_stats64 = nfp_net_stat64, 1996 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 1997 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 1998 .ndo_set_vf_mac = nfp_app_set_vf_mac, 1999 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2000 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2001 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2002 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2003 .ndo_get_vf_config = nfp_app_get_vf_config, 2004 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2005 .ndo_setup_tc = nfp_port_setup_tc, 2006 .ndo_tx_timeout = nfp_net_tx_timeout, 2007 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2008 .ndo_change_mtu = nfp_net_change_mtu, 2009 .ndo_set_mac_address = nfp_net_set_mac_address, 2010 .ndo_set_features = nfp_net_set_features, 2011 .ndo_fix_features = nfp_net_fix_features, 2012 .ndo_features_check = nfp_net_features_check, 2013 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2014 .ndo_bpf = nfp_net_xdp, 2015 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 2016 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2017 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2018 }; 2019 2020 const struct net_device_ops nfp_nfdk_netdev_ops = { 2021 .ndo_init = nfp_app_ndo_init, 2022 .ndo_uninit = nfp_app_ndo_uninit, 2023 .ndo_open = nfp_net_netdev_open, 2024 .ndo_stop = nfp_net_netdev_close, 2025 .ndo_start_xmit = nfp_net_tx, 2026 .ndo_get_stats64 = nfp_net_stat64, 2027 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2028 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2029 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2030 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2031 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2032 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2033 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2034 .ndo_get_vf_config = nfp_app_get_vf_config, 2035 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2036 .ndo_setup_tc = nfp_port_setup_tc, 2037 .ndo_tx_timeout = nfp_net_tx_timeout, 2038 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2039 .ndo_change_mtu = nfp_net_change_mtu, 2040 .ndo_set_mac_address = nfp_net_set_mac_address, 2041 .ndo_set_features = nfp_net_set_features, 2042 .ndo_fix_features = nfp_net_fix_features, 2043 .ndo_features_check = nfp_net_features_check, 2044 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2045 .ndo_bpf = nfp_net_xdp, 2046 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2047 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2048 }; 2049 2050 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 2051 { 2052 struct nfp_net *nn = netdev_priv(netdev); 2053 int i; 2054 2055 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2056 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 2057 struct udp_tunnel_info ti0, ti1; 2058 2059 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 2060 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 2061 2062 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 2063 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 2064 } 2065 2066 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 2067 } 2068 2069 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 2070 .sync_table = nfp_udp_tunnel_sync, 2071 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 2072 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 2073 .tables = { 2074 { 2075 .n_entries = NFP_NET_N_VXLAN_PORTS, 2076 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 2077 }, 2078 }, 2079 }; 2080 2081 /** 2082 * nfp_net_info() - Print general info about the NIC 2083 * @nn: NFP Net device to reconfigure 2084 */ 2085 void nfp_net_info(struct nfp_net *nn) 2086 { 2087 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2088 nn->dp.is_vf ? "VF " : "", 2089 nn->dp.num_tx_rings, nn->max_tx_rings, 2090 nn->dp.num_rx_rings, nn->max_rx_rings); 2091 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2092 nn->fw_ver.extend, nn->fw_ver.class, 2093 nn->fw_ver.major, nn->fw_ver.minor, 2094 nn->max_mtu); 2095 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2096 nn->cap, 2097 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2098 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2099 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2100 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2101 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2102 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2103 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2104 nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "", 2105 nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "", 2106 nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "", 2107 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2108 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2109 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2110 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2111 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2112 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2113 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2114 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2115 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2116 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2117 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", 2118 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2119 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2120 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2121 "RXCSUM_COMPLETE " : "", 2122 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2123 nfp_app_extra_cap(nn->app, nn)); 2124 } 2125 2126 /** 2127 * nfp_net_alloc() - Allocate netdev and related structure 2128 * @pdev: PCI device 2129 * @dev_info: NFP ASIC params 2130 * @ctrl_bar: PCI IOMEM with vNIC config memory 2131 * @needs_netdev: Whether to allocate a netdev for this vNIC 2132 * @max_tx_rings: Maximum number of TX rings supported by device 2133 * @max_rx_rings: Maximum number of RX rings supported by device 2134 * 2135 * This function allocates a netdev device and fills in the initial 2136 * part of the @struct nfp_net structure. In case of control device 2137 * nfp_net structure is allocated without the netdev. 2138 * 2139 * Return: NFP Net device structure, or ERR_PTR on error. 2140 */ 2141 struct nfp_net * 2142 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2143 void __iomem *ctrl_bar, bool needs_netdev, 2144 unsigned int max_tx_rings, unsigned int max_rx_rings) 2145 { 2146 u64 dma_mask = dma_get_mask(&pdev->dev); 2147 struct nfp_net *nn; 2148 int err; 2149 2150 if (needs_netdev) { 2151 struct net_device *netdev; 2152 2153 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2154 max_tx_rings, max_rx_rings); 2155 if (!netdev) 2156 return ERR_PTR(-ENOMEM); 2157 2158 SET_NETDEV_DEV(netdev, &pdev->dev); 2159 nn = netdev_priv(netdev); 2160 nn->dp.netdev = netdev; 2161 } else { 2162 nn = vzalloc(sizeof(*nn)); 2163 if (!nn) 2164 return ERR_PTR(-ENOMEM); 2165 } 2166 2167 nn->dp.dev = &pdev->dev; 2168 nn->dp.ctrl_bar = ctrl_bar; 2169 nn->dev_info = dev_info; 2170 nn->pdev = pdev; 2171 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2172 2173 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2174 case NFP_NET_CFG_VERSION_DP_NFD3: 2175 nn->dp.ops = &nfp_nfd3_ops; 2176 break; 2177 case NFP_NET_CFG_VERSION_DP_NFDK: 2178 if (nn->fw_ver.major < 5) { 2179 dev_err(&pdev->dev, 2180 "NFDK must use ABI 5 or newer, found: %d\n", 2181 nn->fw_ver.major); 2182 err = -EINVAL; 2183 goto err_free_nn; 2184 } 2185 nn->dp.ops = &nfp_nfdk_ops; 2186 break; 2187 default: 2188 err = -EINVAL; 2189 goto err_free_nn; 2190 } 2191 2192 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { 2193 dev_err(&pdev->dev, 2194 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", 2195 nn->dp.ops->dma_mask, dma_mask); 2196 err = -EINVAL; 2197 goto err_free_nn; 2198 } 2199 2200 nn->max_tx_rings = max_tx_rings; 2201 nn->max_rx_rings = max_rx_rings; 2202 2203 nn->dp.num_tx_rings = min_t(unsigned int, 2204 max_tx_rings, num_online_cpus()); 2205 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2206 netif_get_num_default_rss_queues()); 2207 2208 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2209 nn->dp.num_r_vecs = min_t(unsigned int, 2210 nn->dp.num_r_vecs, num_online_cpus()); 2211 nn->max_r_vecs = nn->dp.num_r_vecs; 2212 2213 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2214 GFP_KERNEL); 2215 if (!nn->dp.xsk_pools) { 2216 err = -ENOMEM; 2217 goto err_free_nn; 2218 } 2219 2220 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2221 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2222 2223 sema_init(&nn->bar_lock, 1); 2224 2225 spin_lock_init(&nn->reconfig_lock); 2226 spin_lock_init(&nn->link_status_lock); 2227 2228 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2229 2230 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2231 &nn->tlv_caps); 2232 if (err) 2233 goto err_free_nn; 2234 2235 err = nfp_ccm_mbox_alloc(nn); 2236 if (err) 2237 goto err_free_nn; 2238 2239 return nn; 2240 2241 err_free_nn: 2242 if (nn->dp.netdev) 2243 free_netdev(nn->dp.netdev); 2244 else 2245 vfree(nn); 2246 return ERR_PTR(err); 2247 } 2248 2249 /** 2250 * nfp_net_free() - Undo what @nfp_net_alloc() did 2251 * @nn: NFP Net device to reconfigure 2252 */ 2253 void nfp_net_free(struct nfp_net *nn) 2254 { 2255 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2256 nfp_ccm_mbox_free(nn); 2257 2258 kfree(nn->dp.xsk_pools); 2259 if (nn->dp.netdev) 2260 free_netdev(nn->dp.netdev); 2261 else 2262 vfree(nn); 2263 } 2264 2265 /** 2266 * nfp_net_rss_key_sz() - Get current size of the RSS key 2267 * @nn: NFP Net device instance 2268 * 2269 * Return: size of the RSS key for currently selected hash function. 2270 */ 2271 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2272 { 2273 switch (nn->rss_hfunc) { 2274 case ETH_RSS_HASH_TOP: 2275 return NFP_NET_CFG_RSS_KEY_SZ; 2276 case ETH_RSS_HASH_XOR: 2277 return 0; 2278 case ETH_RSS_HASH_CRC32: 2279 return 4; 2280 } 2281 2282 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2283 return 0; 2284 } 2285 2286 /** 2287 * nfp_net_rss_init() - Set the initial RSS parameters 2288 * @nn: NFP Net device to reconfigure 2289 */ 2290 static void nfp_net_rss_init(struct nfp_net *nn) 2291 { 2292 unsigned long func_bit, rss_cap_hfunc; 2293 u32 reg; 2294 2295 /* Read the RSS function capability and select first supported func */ 2296 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2297 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2298 if (!rss_cap_hfunc) 2299 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2300 NFP_NET_CFG_RSS_TOEPLITZ); 2301 2302 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2303 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2304 dev_warn(nn->dp.dev, 2305 "Bad RSS config, defaulting to Toeplitz hash\n"); 2306 func_bit = ETH_RSS_HASH_TOP_BIT; 2307 } 2308 nn->rss_hfunc = 1 << func_bit; 2309 2310 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2311 2312 nfp_net_rss_init_itbl(nn); 2313 2314 /* Enable IPv4/IPv6 TCP by default */ 2315 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2316 NFP_NET_CFG_RSS_IPV6_TCP | 2317 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2318 NFP_NET_CFG_RSS_MASK; 2319 } 2320 2321 /** 2322 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2323 * @nn: NFP Net device to reconfigure 2324 */ 2325 static void nfp_net_irqmod_init(struct nfp_net *nn) 2326 { 2327 nn->rx_coalesce_usecs = 50; 2328 nn->rx_coalesce_max_frames = 64; 2329 nn->tx_coalesce_usecs = 50; 2330 nn->tx_coalesce_max_frames = 64; 2331 2332 nn->rx_coalesce_adapt_on = true; 2333 nn->tx_coalesce_adapt_on = true; 2334 } 2335 2336 static void nfp_net_netdev_init(struct nfp_net *nn) 2337 { 2338 struct net_device *netdev = nn->dp.netdev; 2339 2340 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2341 2342 netdev->mtu = nn->dp.mtu; 2343 2344 /* Advertise/enable offloads based on capabilities 2345 * 2346 * Note: netdev->features show the currently enabled features 2347 * and netdev->hw_features advertises which features are 2348 * supported. By default we enable most features. 2349 */ 2350 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2351 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2352 2353 netdev->hw_features = NETIF_F_HIGHDMA; 2354 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2355 netdev->hw_features |= NETIF_F_RXCSUM; 2356 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2357 } 2358 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2359 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2360 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2361 } 2362 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2363 netdev->hw_features |= NETIF_F_SG; 2364 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2365 } 2366 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2367 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2368 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2369 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2370 NFP_NET_CFG_CTRL_LSO; 2371 } 2372 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2373 netdev->hw_features |= NETIF_F_RXHASH; 2374 2375 #ifdef CONFIG_NFP_NET_IPSEC 2376 if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC) 2377 netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM; 2378 #endif 2379 2380 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2381 if (nn->cap & NFP_NET_CFG_CTRL_LSO) { 2382 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 2383 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2384 NETIF_F_GSO_PARTIAL; 2385 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; 2386 } 2387 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2388 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2389 } 2390 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2391 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2392 netdev->hw_features |= NETIF_F_GSO_GRE; 2393 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2394 } 2395 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2396 netdev->hw_enc_features = netdev->hw_features; 2397 2398 netdev->vlan_features = netdev->hw_features; 2399 2400 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) { 2401 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2402 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 2403 NFP_NET_CFG_CTRL_RXVLAN; 2404 } 2405 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) { 2406 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2407 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2408 } else { 2409 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2410 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 2411 NFP_NET_CFG_CTRL_TXVLAN; 2412 } 2413 } 2414 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2415 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2416 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2417 } 2418 if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) { 2419 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX; 2420 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 2421 } 2422 2423 netdev->features = netdev->hw_features; 2424 2425 if (nfp_app_has_tc(nn->app) && nn->port) 2426 netdev->hw_features |= NETIF_F_HW_TC; 2427 2428 /* C-Tag strip and S-Tag strip can't be supported simultaneously, 2429 * so enable C-Tag strip and disable S-Tag strip by default. 2430 */ 2431 netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX; 2432 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 2433 2434 /* Finalise the netdev setup */ 2435 switch (nn->dp.ops->version) { 2436 case NFP_NFD_VER_NFD3: 2437 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2438 break; 2439 case NFP_NFD_VER_NFDK: 2440 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2441 break; 2442 } 2443 2444 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2445 2446 /* MTU range: 68 - hw-specific max */ 2447 netdev->min_mtu = ETH_MIN_MTU; 2448 netdev->max_mtu = nn->max_mtu; 2449 2450 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2451 2452 netif_carrier_off(netdev); 2453 2454 nfp_net_set_ethtool_ops(netdev); 2455 } 2456 2457 static int nfp_net_read_caps(struct nfp_net *nn) 2458 { 2459 /* Get some of the read-only fields from the BAR */ 2460 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2461 nn->cap_w1 = nn_readq(nn, NFP_NET_CFG_CAP_WORD1); 2462 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2463 2464 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2465 * we allow use of non-chained metadata if RSS(v1) is the only 2466 * advertised capability requiring metadata. 2467 */ 2468 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2469 !nn->dp.netdev || 2470 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2471 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2472 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2473 * it has the same meaning as RSSv2. 2474 */ 2475 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2476 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2477 2478 /* Determine RX packet/metadata boundary offset */ 2479 if (nn->fw_ver.major >= 2) { 2480 u32 reg; 2481 2482 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2483 if (reg > NFP_NET_MAX_PREPEND) { 2484 nn_err(nn, "Invalid rx offset: %d\n", reg); 2485 return -EINVAL; 2486 } 2487 nn->dp.rx_offset = reg; 2488 } else { 2489 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2490 } 2491 2492 /* Mask out NFD-version-specific features */ 2493 nn->cap &= nn->dp.ops->cap_mask; 2494 2495 /* For control vNICs mask out the capabilities app doesn't want. */ 2496 if (!nn->dp.netdev) 2497 nn->cap &= nn->app->type->ctrl_cap_mask; 2498 2499 return 0; 2500 } 2501 2502 /** 2503 * nfp_net_init() - Initialise/finalise the nfp_net structure 2504 * @nn: NFP Net device structure 2505 * 2506 * Return: 0 on success or negative errno on error. 2507 */ 2508 int nfp_net_init(struct nfp_net *nn) 2509 { 2510 int err; 2511 2512 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2513 2514 err = nfp_net_read_caps(nn); 2515 if (err) 2516 return err; 2517 2518 /* Set default MTU and Freelist buffer size */ 2519 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2520 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2521 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2522 nn->dp.mtu = nn->max_mtu; 2523 } else { 2524 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2525 } 2526 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2527 2528 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2529 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2530 2531 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2532 nfp_net_rss_init(nn); 2533 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2534 NFP_NET_CFG_CTRL_RSS; 2535 } 2536 2537 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2538 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2539 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2540 2541 /* Allow IRQ moderation, if supported */ 2542 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2543 nfp_net_irqmod_init(nn); 2544 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2545 } 2546 2547 /* Enable TX pointer writeback, if supported */ 2548 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2549 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2550 2551 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2552 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2553 2554 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2555 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2556 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2557 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2558 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2559 NFP_NET_CFG_UPDATE_GEN); 2560 if (err) 2561 return err; 2562 2563 if (nn->dp.netdev) { 2564 nfp_net_netdev_init(nn); 2565 2566 err = nfp_ccm_mbox_init(nn); 2567 if (err) 2568 return err; 2569 2570 err = nfp_net_tls_init(nn); 2571 if (err) 2572 goto err_clean_mbox; 2573 2574 nfp_net_ipsec_init(nn); 2575 } 2576 2577 nfp_net_vecs_init(nn); 2578 2579 if (!nn->dp.netdev) 2580 return 0; 2581 return register_netdev(nn->dp.netdev); 2582 2583 err_clean_mbox: 2584 nfp_ccm_mbox_clean(nn); 2585 return err; 2586 } 2587 2588 /** 2589 * nfp_net_clean() - Undo what nfp_net_init() did. 2590 * @nn: NFP Net device structure 2591 */ 2592 void nfp_net_clean(struct nfp_net *nn) 2593 { 2594 if (!nn->dp.netdev) 2595 return; 2596 2597 unregister_netdev(nn->dp.netdev); 2598 nfp_net_ipsec_clean(nn); 2599 nfp_ccm_mbox_clean(nn); 2600 nfp_net_reconfig_wait_posted(nn); 2601 } 2602