1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 #include "crypto/fw.h" 51 52 /** 53 * nfp_net_get_fw_version() - Read and parse the FW version 54 * @fw_ver: Output fw_version structure to read to 55 * @ctrl_bar: Mapped address of the control BAR 56 */ 57 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 58 void __iomem *ctrl_bar) 59 { 60 u32 reg; 61 62 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 63 put_unaligned_le32(reg, fw_ver); 64 } 65 66 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 67 { 68 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 69 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 70 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 71 } 72 73 static void 74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 75 { 76 dma_sync_single_for_device(dp->dev, dma_addr, 77 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 78 dp->rx_dma_dir); 79 } 80 81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 82 { 83 dma_unmap_single_attrs(dp->dev, dma_addr, 84 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 85 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 86 } 87 88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 89 unsigned int len) 90 { 91 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 92 len, dp->rx_dma_dir); 93 } 94 95 /* Firmware reconfig 96 * 97 * Firmware reconfig may take a while so we have two versions of it - 98 * synchronous and asynchronous (posted). All synchronous callers are holding 99 * RTNL so we don't have to worry about serializing them. 100 */ 101 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 102 { 103 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 104 /* ensure update is written before pinging HW */ 105 nn_pci_flush(nn); 106 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 107 nn->reconfig_in_progress_update = update; 108 } 109 110 /* Pass 0 as update to run posted reconfigs. */ 111 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 112 { 113 update |= nn->reconfig_posted; 114 nn->reconfig_posted = 0; 115 116 nfp_net_reconfig_start(nn, update); 117 118 nn->reconfig_timer_active = true; 119 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 120 } 121 122 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 123 { 124 u32 reg; 125 126 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 127 if (reg == 0) 128 return true; 129 if (reg & NFP_NET_CFG_UPDATE_ERR) { 130 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 131 reg, nn->reconfig_in_progress_update, 132 nn_readl(nn, NFP_NET_CFG_CTRL)); 133 return true; 134 } else if (last_check) { 135 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 136 reg, nn->reconfig_in_progress_update, 137 nn_readl(nn, NFP_NET_CFG_CTRL)); 138 return true; 139 } 140 141 return false; 142 } 143 144 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 145 { 146 bool timed_out = false; 147 int i; 148 149 /* Poll update field, waiting for NFP to ack the config. 150 * Do an opportunistic wait-busy loop, afterward sleep. 151 */ 152 for (i = 0; i < 50; i++) { 153 if (nfp_net_reconfig_check_done(nn, false)) 154 return false; 155 udelay(4); 156 } 157 158 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 159 usleep_range(250, 500); 160 timed_out = time_is_before_eq_jiffies(deadline); 161 } 162 163 return timed_out; 164 } 165 166 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 167 { 168 if (__nfp_net_reconfig_wait(nn, deadline)) 169 return -EIO; 170 171 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 172 return -EIO; 173 174 return 0; 175 } 176 177 static void nfp_net_reconfig_timer(struct timer_list *t) 178 { 179 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 180 181 spin_lock_bh(&nn->reconfig_lock); 182 183 nn->reconfig_timer_active = false; 184 185 /* If sync caller is present it will take over from us */ 186 if (nn->reconfig_sync_present) 187 goto done; 188 189 /* Read reconfig status and report errors */ 190 nfp_net_reconfig_check_done(nn, true); 191 192 if (nn->reconfig_posted) 193 nfp_net_reconfig_start_async(nn, 0); 194 done: 195 spin_unlock_bh(&nn->reconfig_lock); 196 } 197 198 /** 199 * nfp_net_reconfig_post() - Post async reconfig request 200 * @nn: NFP Net device to reconfigure 201 * @update: The value for the update field in the BAR config 202 * 203 * Record FW reconfiguration request. Reconfiguration will be kicked off 204 * whenever reconfiguration machinery is idle. Multiple requests can be 205 * merged together! 206 */ 207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 208 { 209 spin_lock_bh(&nn->reconfig_lock); 210 211 /* Sync caller will kick off async reconf when it's done, just post */ 212 if (nn->reconfig_sync_present) { 213 nn->reconfig_posted |= update; 214 goto done; 215 } 216 217 /* Opportunistically check if the previous command is done */ 218 if (!nn->reconfig_timer_active || 219 nfp_net_reconfig_check_done(nn, false)) 220 nfp_net_reconfig_start_async(nn, update); 221 else 222 nn->reconfig_posted |= update; 223 done: 224 spin_unlock_bh(&nn->reconfig_lock); 225 } 226 227 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 228 { 229 bool cancelled_timer = false; 230 u32 pre_posted_requests; 231 232 spin_lock_bh(&nn->reconfig_lock); 233 234 WARN_ON(nn->reconfig_sync_present); 235 nn->reconfig_sync_present = true; 236 237 if (nn->reconfig_timer_active) { 238 nn->reconfig_timer_active = false; 239 cancelled_timer = true; 240 } 241 pre_posted_requests = nn->reconfig_posted; 242 nn->reconfig_posted = 0; 243 244 spin_unlock_bh(&nn->reconfig_lock); 245 246 if (cancelled_timer) { 247 del_timer_sync(&nn->reconfig_timer); 248 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 249 } 250 251 /* Run the posted reconfigs which were issued before we started */ 252 if (pre_posted_requests) { 253 nfp_net_reconfig_start(nn, pre_posted_requests); 254 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 255 } 256 } 257 258 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 259 { 260 nfp_net_reconfig_sync_enter(nn); 261 262 spin_lock_bh(&nn->reconfig_lock); 263 nn->reconfig_sync_present = false; 264 spin_unlock_bh(&nn->reconfig_lock); 265 } 266 267 /** 268 * __nfp_net_reconfig() - Reconfigure the firmware 269 * @nn: NFP Net device to reconfigure 270 * @update: The value for the update field in the BAR config 271 * 272 * Write the update word to the BAR and ping the reconfig queue. The 273 * poll until the firmware has acknowledged the update by zeroing the 274 * update word. 275 * 276 * Return: Negative errno on error, 0 on success 277 */ 278 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 279 { 280 int ret; 281 282 nfp_net_reconfig_sync_enter(nn); 283 284 nfp_net_reconfig_start(nn, update); 285 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 286 287 spin_lock_bh(&nn->reconfig_lock); 288 289 if (nn->reconfig_posted) 290 nfp_net_reconfig_start_async(nn, 0); 291 292 nn->reconfig_sync_present = false; 293 294 spin_unlock_bh(&nn->reconfig_lock); 295 296 return ret; 297 } 298 299 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 300 { 301 int ret; 302 303 nn_ctrl_bar_lock(nn); 304 ret = __nfp_net_reconfig(nn, update); 305 nn_ctrl_bar_unlock(nn); 306 307 return ret; 308 } 309 310 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 311 { 312 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 313 nn_err(nn, "mailbox too small for %u of data (%u)\n", 314 data_size, nn->tlv_caps.mbox_len); 315 return -EIO; 316 } 317 318 nn_ctrl_bar_lock(nn); 319 return 0; 320 } 321 322 /** 323 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 324 * @nn: NFP Net device to reconfigure 325 * @mbox_cmd: The value for the mailbox command 326 * 327 * Helper function for mailbox updates 328 * 329 * Return: Negative errno on error, 0 on success 330 */ 331 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 332 { 333 u32 mbox = nn->tlv_caps.mbox_off; 334 int ret; 335 336 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 337 338 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 339 if (ret) { 340 nn_err(nn, "Mailbox update error\n"); 341 return ret; 342 } 343 344 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 345 } 346 347 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 348 { 349 u32 mbox = nn->tlv_caps.mbox_off; 350 351 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 352 353 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 354 } 355 356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 357 { 358 u32 mbox = nn->tlv_caps.mbox_off; 359 360 nfp_net_reconfig_wait_posted(nn); 361 362 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 363 } 364 365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 366 { 367 int ret; 368 369 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 370 nn_ctrl_bar_unlock(nn); 371 return ret; 372 } 373 374 /* Interrupt configuration and handling 375 */ 376 377 /** 378 * nfp_net_irq_unmask() - Unmask automasked interrupt 379 * @nn: NFP Network structure 380 * @entry_nr: MSI-X table entry 381 * 382 * Clear the ICR for the IRQ entry. 383 */ 384 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 385 { 386 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 387 nn_pci_flush(nn); 388 } 389 390 /** 391 * nfp_net_irqs_alloc() - allocates MSI-X irqs 392 * @pdev: PCI device structure 393 * @irq_entries: Array to be initialized and used to hold the irq entries 394 * @min_irqs: Minimal acceptable number of interrupts 395 * @wanted_irqs: Target number of interrupts to allocate 396 * 397 * Return: Number of irqs obtained or 0 on error. 398 */ 399 unsigned int 400 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 401 unsigned int min_irqs, unsigned int wanted_irqs) 402 { 403 unsigned int i; 404 int got_irqs; 405 406 for (i = 0; i < wanted_irqs; i++) 407 irq_entries[i].entry = i; 408 409 got_irqs = pci_enable_msix_range(pdev, irq_entries, 410 min_irqs, wanted_irqs); 411 if (got_irqs < 0) { 412 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 413 min_irqs, wanted_irqs, got_irqs); 414 return 0; 415 } 416 417 if (got_irqs < wanted_irqs) 418 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 419 wanted_irqs, got_irqs); 420 421 return got_irqs; 422 } 423 424 /** 425 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 426 * @nn: NFP Network structure 427 * @irq_entries: Table of allocated interrupts 428 * @n: Size of @irq_entries (number of entries to grab) 429 * 430 * After interrupts are allocated with nfp_net_irqs_alloc() this function 431 * should be called to assign them to a specific netdev (port). 432 */ 433 void 434 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 435 unsigned int n) 436 { 437 struct nfp_net_dp *dp = &nn->dp; 438 439 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 440 dp->num_r_vecs = nn->max_r_vecs; 441 442 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 443 444 if (dp->num_rx_rings > dp->num_r_vecs || 445 dp->num_tx_rings > dp->num_r_vecs) 446 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 447 dp->num_rx_rings, dp->num_tx_rings, 448 dp->num_r_vecs); 449 450 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 451 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 452 dp->num_stack_tx_rings = dp->num_tx_rings; 453 } 454 455 /** 456 * nfp_net_irqs_disable() - Disable interrupts 457 * @pdev: PCI device structure 458 * 459 * Undoes what @nfp_net_irqs_alloc() does. 460 */ 461 void nfp_net_irqs_disable(struct pci_dev *pdev) 462 { 463 pci_disable_msix(pdev); 464 } 465 466 /** 467 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 468 * @irq: Interrupt 469 * @data: Opaque data structure 470 * 471 * Return: Indicate if the interrupt has been handled. 472 */ 473 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 474 { 475 struct nfp_net_r_vector *r_vec = data; 476 477 napi_schedule_irqoff(&r_vec->napi); 478 479 /* The FW auto-masks any interrupt, either via the MASK bit in 480 * the MSI-X table or via the per entry ICR field. So there 481 * is no need to disable interrupts here. 482 */ 483 return IRQ_HANDLED; 484 } 485 486 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 487 { 488 struct nfp_net_r_vector *r_vec = data; 489 490 tasklet_schedule(&r_vec->tasklet); 491 492 return IRQ_HANDLED; 493 } 494 495 /** 496 * nfp_net_read_link_status() - Reread link status from control BAR 497 * @nn: NFP Network structure 498 */ 499 static void nfp_net_read_link_status(struct nfp_net *nn) 500 { 501 unsigned long flags; 502 bool link_up; 503 u32 sts; 504 505 spin_lock_irqsave(&nn->link_status_lock, flags); 506 507 sts = nn_readl(nn, NFP_NET_CFG_STS); 508 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 509 510 if (nn->link_up == link_up) 511 goto out; 512 513 nn->link_up = link_up; 514 if (nn->port) 515 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 516 517 if (nn->link_up) { 518 netif_carrier_on(nn->dp.netdev); 519 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 520 } else { 521 netif_carrier_off(nn->dp.netdev); 522 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 523 } 524 out: 525 spin_unlock_irqrestore(&nn->link_status_lock, flags); 526 } 527 528 /** 529 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 530 * @irq: Interrupt 531 * @data: Opaque data structure 532 * 533 * Return: Indicate if the interrupt has been handled. 534 */ 535 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 536 { 537 struct nfp_net *nn = data; 538 struct msix_entry *entry; 539 540 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 541 542 nfp_net_read_link_status(nn); 543 544 nfp_net_irq_unmask(nn, entry->entry); 545 546 return IRQ_HANDLED; 547 } 548 549 /** 550 * nfp_net_irq_exn() - Interrupt service routine for exceptions 551 * @irq: Interrupt 552 * @data: Opaque data structure 553 * 554 * Return: Indicate if the interrupt has been handled. 555 */ 556 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 557 { 558 struct nfp_net *nn = data; 559 560 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 561 /* XXX TO BE IMPLEMENTED */ 562 return IRQ_HANDLED; 563 } 564 565 /** 566 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 567 * @tx_ring: TX ring structure 568 * @r_vec: IRQ vector servicing this ring 569 * @idx: Ring index 570 * @is_xdp: Is this an XDP TX ring? 571 */ 572 static void 573 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 574 struct nfp_net_r_vector *r_vec, unsigned int idx, 575 bool is_xdp) 576 { 577 struct nfp_net *nn = r_vec->nfp_net; 578 579 tx_ring->idx = idx; 580 tx_ring->r_vec = r_vec; 581 tx_ring->is_xdp = is_xdp; 582 u64_stats_init(&tx_ring->r_vec->tx_sync); 583 584 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 585 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 586 } 587 588 /** 589 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 590 * @rx_ring: RX ring structure 591 * @r_vec: IRQ vector servicing this ring 592 * @idx: Ring index 593 */ 594 static void 595 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 596 struct nfp_net_r_vector *r_vec, unsigned int idx) 597 { 598 struct nfp_net *nn = r_vec->nfp_net; 599 600 rx_ring->idx = idx; 601 rx_ring->r_vec = r_vec; 602 u64_stats_init(&rx_ring->r_vec->rx_sync); 603 604 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 605 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 606 } 607 608 /** 609 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 610 * @nn: NFP Network structure 611 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 612 * @format: printf-style format to construct the interrupt name 613 * @name: Pointer to allocated space for interrupt name 614 * @name_sz: Size of space for interrupt name 615 * @vector_idx: Index of MSI-X vector used for this interrupt 616 * @handler: IRQ handler to register for this interrupt 617 */ 618 static int 619 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 620 const char *format, char *name, size_t name_sz, 621 unsigned int vector_idx, irq_handler_t handler) 622 { 623 struct msix_entry *entry; 624 int err; 625 626 entry = &nn->irq_entries[vector_idx]; 627 628 snprintf(name, name_sz, format, nfp_net_name(nn)); 629 err = request_irq(entry->vector, handler, 0, name, nn); 630 if (err) { 631 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 632 entry->vector, err); 633 return err; 634 } 635 nn_writeb(nn, ctrl_offset, entry->entry); 636 nfp_net_irq_unmask(nn, entry->entry); 637 638 return 0; 639 } 640 641 /** 642 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 643 * @nn: NFP Network structure 644 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 645 * @vector_idx: Index of MSI-X vector used for this interrupt 646 */ 647 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 648 unsigned int vector_idx) 649 { 650 nn_writeb(nn, ctrl_offset, 0xff); 651 nn_pci_flush(nn); 652 free_irq(nn->irq_entries[vector_idx].vector, nn); 653 } 654 655 /* Transmit 656 * 657 * One queue controller peripheral queue is used for transmit. The 658 * driver en-queues packets for transmit by advancing the write 659 * pointer. The device indicates that packets have transmitted by 660 * advancing the read pointer. The driver maintains a local copy of 661 * the read and write pointer in @struct nfp_net_tx_ring. The driver 662 * keeps @wr_p in sync with the queue controller write pointer and can 663 * determine how many packets have been transmitted by comparing its 664 * copy of the read pointer @rd_p with the read pointer maintained by 665 * the queue controller peripheral. 666 */ 667 668 /** 669 * nfp_net_tx_full() - Check if the TX ring is full 670 * @tx_ring: TX ring to check 671 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 672 * 673 * This function checks, based on the *host copy* of read/write 674 * pointer if a given TX ring is full. The real TX queue may have 675 * some newly made available slots. 676 * 677 * Return: True if the ring is full. 678 */ 679 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 680 { 681 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 682 } 683 684 /* Wrappers for deciding when to stop and restart TX queues */ 685 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 686 { 687 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 688 } 689 690 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 691 { 692 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 693 } 694 695 /** 696 * nfp_net_tx_ring_stop() - stop tx ring 697 * @nd_q: netdev queue 698 * @tx_ring: driver tx queue structure 699 * 700 * Safely stop TX ring. Remember that while we are running .start_xmit() 701 * someone else may be cleaning the TX ring completions so we need to be 702 * extra careful here. 703 */ 704 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 705 struct nfp_net_tx_ring *tx_ring) 706 { 707 netif_tx_stop_queue(nd_q); 708 709 /* We can race with the TX completion out of NAPI so recheck */ 710 smp_mb(); 711 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 712 netif_tx_start_queue(nd_q); 713 } 714 715 /** 716 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 717 * @r_vec: per-ring structure 718 * @txbuf: Pointer to driver soft TX descriptor 719 * @txd: Pointer to HW TX descriptor 720 * @skb: Pointer to SKB 721 * @md_bytes: Prepend length 722 * 723 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 724 * Return error on packet header greater than maximum supported LSO header size. 725 */ 726 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 727 struct nfp_net_tx_buf *txbuf, 728 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 729 u32 md_bytes) 730 { 731 u32 l3_offset, l4_offset, hdrlen; 732 u16 mss; 733 734 if (!skb_is_gso(skb)) 735 return; 736 737 if (!skb->encapsulation) { 738 l3_offset = skb_network_offset(skb); 739 l4_offset = skb_transport_offset(skb); 740 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 741 } else { 742 l3_offset = skb_inner_network_offset(skb); 743 l4_offset = skb_inner_transport_offset(skb); 744 hdrlen = skb_inner_transport_header(skb) - skb->data + 745 inner_tcp_hdrlen(skb); 746 } 747 748 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 749 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 750 751 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 752 txd->l3_offset = l3_offset - md_bytes; 753 txd->l4_offset = l4_offset - md_bytes; 754 txd->lso_hdrlen = hdrlen - md_bytes; 755 txd->mss = cpu_to_le16(mss); 756 txd->flags |= PCIE_DESC_TX_LSO; 757 758 u64_stats_update_begin(&r_vec->tx_sync); 759 r_vec->tx_lso++; 760 u64_stats_update_end(&r_vec->tx_sync); 761 } 762 763 /** 764 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 765 * @dp: NFP Net data path struct 766 * @r_vec: per-ring structure 767 * @txbuf: Pointer to driver soft TX descriptor 768 * @txd: Pointer to TX descriptor 769 * @skb: Pointer to SKB 770 * 771 * This function sets the TX checksum flags in the TX descriptor based 772 * on the configuration and the protocol of the packet to be transmitted. 773 */ 774 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 775 struct nfp_net_r_vector *r_vec, 776 struct nfp_net_tx_buf *txbuf, 777 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 778 { 779 struct ipv6hdr *ipv6h; 780 struct iphdr *iph; 781 u8 l4_hdr; 782 783 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 784 return; 785 786 if (skb->ip_summed != CHECKSUM_PARTIAL) 787 return; 788 789 txd->flags |= PCIE_DESC_TX_CSUM; 790 if (skb->encapsulation) 791 txd->flags |= PCIE_DESC_TX_ENCAP; 792 793 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 794 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 795 796 if (iph->version == 4) { 797 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 798 l4_hdr = iph->protocol; 799 } else if (ipv6h->version == 6) { 800 l4_hdr = ipv6h->nexthdr; 801 } else { 802 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 803 return; 804 } 805 806 switch (l4_hdr) { 807 case IPPROTO_TCP: 808 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 809 break; 810 case IPPROTO_UDP: 811 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 812 break; 813 default: 814 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 815 return; 816 } 817 818 u64_stats_update_begin(&r_vec->tx_sync); 819 if (skb->encapsulation) 820 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 821 else 822 r_vec->hw_csum_tx += txbuf->pkt_cnt; 823 u64_stats_update_end(&r_vec->tx_sync); 824 } 825 826 static struct sk_buff * 827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 828 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 829 { 830 #ifdef CONFIG_TLS_DEVICE 831 struct nfp_net_tls_offload_ctx *ntls; 832 struct sk_buff *nskb; 833 bool resync_pending; 834 u32 datalen, seq; 835 836 if (likely(!dp->ktls_tx)) 837 return skb; 838 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 839 return skb; 840 841 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 842 seq = ntohl(tcp_hdr(skb)->seq); 843 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 844 resync_pending = tls_offload_tx_resync_pending(skb->sk); 845 if (unlikely(resync_pending || ntls->next_seq != seq)) { 846 /* Pure ACK out of order already */ 847 if (!datalen) 848 return skb; 849 850 u64_stats_update_begin(&r_vec->tx_sync); 851 r_vec->tls_tx_fallback++; 852 u64_stats_update_end(&r_vec->tx_sync); 853 854 nskb = tls_encrypt_skb(skb); 855 if (!nskb) { 856 u64_stats_update_begin(&r_vec->tx_sync); 857 r_vec->tls_tx_no_fallback++; 858 u64_stats_update_end(&r_vec->tx_sync); 859 return NULL; 860 } 861 /* encryption wasn't necessary */ 862 if (nskb == skb) 863 return skb; 864 /* we don't re-check ring space */ 865 if (unlikely(skb_is_nonlinear(nskb))) { 866 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 867 u64_stats_update_begin(&r_vec->tx_sync); 868 r_vec->tx_errors++; 869 u64_stats_update_end(&r_vec->tx_sync); 870 dev_kfree_skb_any(nskb); 871 return NULL; 872 } 873 874 /* jump forward, a TX may have gotten lost, need to sync TX */ 875 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 876 tls_offload_tx_resync_request(nskb->sk, seq, 877 ntls->next_seq); 878 879 *nr_frags = 0; 880 return nskb; 881 } 882 883 if (datalen) { 884 u64_stats_update_begin(&r_vec->tx_sync); 885 if (!skb_is_gso(skb)) 886 r_vec->hw_tls_tx++; 887 else 888 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 889 u64_stats_update_end(&r_vec->tx_sync); 890 } 891 892 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 893 ntls->next_seq += datalen; 894 #endif 895 return skb; 896 } 897 898 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 899 { 900 #ifdef CONFIG_TLS_DEVICE 901 struct nfp_net_tls_offload_ctx *ntls; 902 u32 datalen, seq; 903 904 if (!tls_handle) 905 return; 906 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 907 return; 908 909 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 910 seq = ntohl(tcp_hdr(skb)->seq); 911 912 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 913 if (ntls->next_seq == seq + datalen) 914 ntls->next_seq = seq; 915 else 916 WARN_ON_ONCE(1); 917 #endif 918 } 919 920 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 921 { 922 wmb(); 923 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 924 tx_ring->wr_ptr_add = 0; 925 } 926 927 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 928 { 929 struct metadata_dst *md_dst = skb_metadata_dst(skb); 930 unsigned char *data; 931 u32 meta_id = 0; 932 int md_bytes; 933 934 if (likely(!md_dst && !tls_handle)) 935 return 0; 936 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 937 if (!tls_handle) 938 return 0; 939 md_dst = NULL; 940 } 941 942 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 943 944 if (unlikely(skb_cow_head(skb, md_bytes))) 945 return -ENOMEM; 946 947 meta_id = 0; 948 data = skb_push(skb, md_bytes) + md_bytes; 949 if (md_dst) { 950 data -= 4; 951 put_unaligned_be32(md_dst->u.port_info.port_id, data); 952 meta_id = NFP_NET_META_PORTID; 953 } 954 if (tls_handle) { 955 /* conn handle is opaque, we just use u64 to be able to quickly 956 * compare it to zero 957 */ 958 data -= 8; 959 memcpy(data, &tls_handle, sizeof(tls_handle)); 960 meta_id <<= NFP_NET_META_FIELD_SIZE; 961 meta_id |= NFP_NET_META_CONN_HANDLE; 962 } 963 964 data -= 4; 965 put_unaligned_be32(meta_id, data); 966 967 return md_bytes; 968 } 969 970 /** 971 * nfp_net_tx() - Main transmit entry point 972 * @skb: SKB to transmit 973 * @netdev: netdev structure 974 * 975 * Return: NETDEV_TX_OK on success. 976 */ 977 static netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 978 { 979 struct nfp_net *nn = netdev_priv(netdev); 980 const skb_frag_t *frag; 981 int f, nr_frags, wr_idx, md_bytes; 982 struct nfp_net_tx_ring *tx_ring; 983 struct nfp_net_r_vector *r_vec; 984 struct nfp_net_tx_buf *txbuf; 985 struct nfp_net_tx_desc *txd; 986 struct netdev_queue *nd_q; 987 struct nfp_net_dp *dp; 988 dma_addr_t dma_addr; 989 unsigned int fsize; 990 u64 tls_handle = 0; 991 u16 qidx; 992 993 dp = &nn->dp; 994 qidx = skb_get_queue_mapping(skb); 995 tx_ring = &dp->tx_rings[qidx]; 996 r_vec = tx_ring->r_vec; 997 998 nr_frags = skb_shinfo(skb)->nr_frags; 999 1000 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 1001 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 1002 qidx, tx_ring->wr_p, tx_ring->rd_p); 1003 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 1004 netif_tx_stop_queue(nd_q); 1005 nfp_net_tx_xmit_more_flush(tx_ring); 1006 u64_stats_update_begin(&r_vec->tx_sync); 1007 r_vec->tx_busy++; 1008 u64_stats_update_end(&r_vec->tx_sync); 1009 return NETDEV_TX_BUSY; 1010 } 1011 1012 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 1013 if (unlikely(!skb)) { 1014 nfp_net_tx_xmit_more_flush(tx_ring); 1015 return NETDEV_TX_OK; 1016 } 1017 1018 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 1019 if (unlikely(md_bytes < 0)) 1020 goto err_flush; 1021 1022 /* Start with the head skbuf */ 1023 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1024 DMA_TO_DEVICE); 1025 if (dma_mapping_error(dp->dev, dma_addr)) 1026 goto err_dma_err; 1027 1028 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1029 1030 /* Stash the soft descriptor of the head then initialize it */ 1031 txbuf = &tx_ring->txbufs[wr_idx]; 1032 txbuf->skb = skb; 1033 txbuf->dma_addr = dma_addr; 1034 txbuf->fidx = -1; 1035 txbuf->pkt_cnt = 1; 1036 txbuf->real_len = skb->len; 1037 1038 /* Build TX descriptor */ 1039 txd = &tx_ring->txds[wr_idx]; 1040 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1041 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1042 nfp_desc_set_dma_addr(txd, dma_addr); 1043 txd->data_len = cpu_to_le16(skb->len); 1044 1045 txd->flags = 0; 1046 txd->mss = 0; 1047 txd->lso_hdrlen = 0; 1048 1049 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1050 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1051 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1052 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1053 txd->flags |= PCIE_DESC_TX_VLAN; 1054 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1055 } 1056 1057 /* Gather DMA */ 1058 if (nr_frags > 0) { 1059 __le64 second_half; 1060 1061 /* all descs must match except for in addr, length and eop */ 1062 second_half = txd->vals8[1]; 1063 1064 for (f = 0; f < nr_frags; f++) { 1065 frag = &skb_shinfo(skb)->frags[f]; 1066 fsize = skb_frag_size(frag); 1067 1068 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1069 fsize, DMA_TO_DEVICE); 1070 if (dma_mapping_error(dp->dev, dma_addr)) 1071 goto err_unmap; 1072 1073 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1074 tx_ring->txbufs[wr_idx].skb = skb; 1075 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1076 tx_ring->txbufs[wr_idx].fidx = f; 1077 1078 txd = &tx_ring->txds[wr_idx]; 1079 txd->dma_len = cpu_to_le16(fsize); 1080 nfp_desc_set_dma_addr(txd, dma_addr); 1081 txd->offset_eop = md_bytes | 1082 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1083 txd->vals8[1] = second_half; 1084 } 1085 1086 u64_stats_update_begin(&r_vec->tx_sync); 1087 r_vec->tx_gather++; 1088 u64_stats_update_end(&r_vec->tx_sync); 1089 } 1090 1091 skb_tx_timestamp(skb); 1092 1093 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1094 1095 tx_ring->wr_p += nr_frags + 1; 1096 if (nfp_net_tx_ring_should_stop(tx_ring)) 1097 nfp_net_tx_ring_stop(nd_q, tx_ring); 1098 1099 tx_ring->wr_ptr_add += nr_frags + 1; 1100 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1101 nfp_net_tx_xmit_more_flush(tx_ring); 1102 1103 return NETDEV_TX_OK; 1104 1105 err_unmap: 1106 while (--f >= 0) { 1107 frag = &skb_shinfo(skb)->frags[f]; 1108 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1109 skb_frag_size(frag), DMA_TO_DEVICE); 1110 tx_ring->txbufs[wr_idx].skb = NULL; 1111 tx_ring->txbufs[wr_idx].dma_addr = 0; 1112 tx_ring->txbufs[wr_idx].fidx = -2; 1113 wr_idx = wr_idx - 1; 1114 if (wr_idx < 0) 1115 wr_idx += tx_ring->cnt; 1116 } 1117 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1118 skb_headlen(skb), DMA_TO_DEVICE); 1119 tx_ring->txbufs[wr_idx].skb = NULL; 1120 tx_ring->txbufs[wr_idx].dma_addr = 0; 1121 tx_ring->txbufs[wr_idx].fidx = -2; 1122 err_dma_err: 1123 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1124 err_flush: 1125 nfp_net_tx_xmit_more_flush(tx_ring); 1126 u64_stats_update_begin(&r_vec->tx_sync); 1127 r_vec->tx_errors++; 1128 u64_stats_update_end(&r_vec->tx_sync); 1129 nfp_net_tls_tx_undo(skb, tls_handle); 1130 dev_kfree_skb_any(skb); 1131 return NETDEV_TX_OK; 1132 } 1133 1134 /** 1135 * nfp_net_tx_complete() - Handled completed TX packets 1136 * @tx_ring: TX ring structure 1137 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1138 */ 1139 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1140 { 1141 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1142 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1143 struct netdev_queue *nd_q; 1144 u32 done_pkts = 0, done_bytes = 0; 1145 u32 qcp_rd_p; 1146 int todo; 1147 1148 if (tx_ring->wr_p == tx_ring->rd_p) 1149 return; 1150 1151 /* Work out how many descriptors have been transmitted */ 1152 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1153 1154 if (qcp_rd_p == tx_ring->qcp_rd_p) 1155 return; 1156 1157 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1158 1159 while (todo--) { 1160 const skb_frag_t *frag; 1161 struct nfp_net_tx_buf *tx_buf; 1162 struct sk_buff *skb; 1163 int fidx, nr_frags; 1164 int idx; 1165 1166 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1167 tx_buf = &tx_ring->txbufs[idx]; 1168 1169 skb = tx_buf->skb; 1170 if (!skb) 1171 continue; 1172 1173 nr_frags = skb_shinfo(skb)->nr_frags; 1174 fidx = tx_buf->fidx; 1175 1176 if (fidx == -1) { 1177 /* unmap head */ 1178 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1179 skb_headlen(skb), DMA_TO_DEVICE); 1180 1181 done_pkts += tx_buf->pkt_cnt; 1182 done_bytes += tx_buf->real_len; 1183 } else { 1184 /* unmap fragment */ 1185 frag = &skb_shinfo(skb)->frags[fidx]; 1186 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1187 skb_frag_size(frag), DMA_TO_DEVICE); 1188 } 1189 1190 /* check for last gather fragment */ 1191 if (fidx == nr_frags - 1) 1192 napi_consume_skb(skb, budget); 1193 1194 tx_buf->dma_addr = 0; 1195 tx_buf->skb = NULL; 1196 tx_buf->fidx = -2; 1197 } 1198 1199 tx_ring->qcp_rd_p = qcp_rd_p; 1200 1201 u64_stats_update_begin(&r_vec->tx_sync); 1202 r_vec->tx_bytes += done_bytes; 1203 r_vec->tx_pkts += done_pkts; 1204 u64_stats_update_end(&r_vec->tx_sync); 1205 1206 if (!dp->netdev) 1207 return; 1208 1209 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1210 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1211 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1212 /* Make sure TX thread will see updated tx_ring->rd_p */ 1213 smp_mb(); 1214 1215 if (unlikely(netif_tx_queue_stopped(nd_q))) 1216 netif_tx_wake_queue(nd_q); 1217 } 1218 1219 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1220 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1221 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1222 } 1223 1224 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1225 { 1226 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1227 u32 done_pkts = 0, done_bytes = 0; 1228 bool done_all; 1229 int idx, todo; 1230 u32 qcp_rd_p; 1231 1232 /* Work out how many descriptors have been transmitted */ 1233 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1234 1235 if (qcp_rd_p == tx_ring->qcp_rd_p) 1236 return true; 1237 1238 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1239 1240 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1241 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1242 1243 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1244 1245 done_pkts = todo; 1246 while (todo--) { 1247 idx = D_IDX(tx_ring, tx_ring->rd_p); 1248 tx_ring->rd_p++; 1249 1250 done_bytes += tx_ring->txbufs[idx].real_len; 1251 } 1252 1253 u64_stats_update_begin(&r_vec->tx_sync); 1254 r_vec->tx_bytes += done_bytes; 1255 r_vec->tx_pkts += done_pkts; 1256 u64_stats_update_end(&r_vec->tx_sync); 1257 1258 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1259 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1260 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1261 1262 return done_all; 1263 } 1264 1265 /** 1266 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1267 * @dp: NFP Net data path struct 1268 * @tx_ring: TX ring structure 1269 * 1270 * Assumes that the device is stopped, must be idempotent. 1271 */ 1272 static void 1273 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1274 { 1275 const skb_frag_t *frag; 1276 struct netdev_queue *nd_q; 1277 1278 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1279 struct nfp_net_tx_buf *tx_buf; 1280 struct sk_buff *skb; 1281 int idx, nr_frags; 1282 1283 idx = D_IDX(tx_ring, tx_ring->rd_p); 1284 tx_buf = &tx_ring->txbufs[idx]; 1285 1286 skb = tx_ring->txbufs[idx].skb; 1287 nr_frags = skb_shinfo(skb)->nr_frags; 1288 1289 if (tx_buf->fidx == -1) { 1290 /* unmap head */ 1291 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1292 skb_headlen(skb), DMA_TO_DEVICE); 1293 } else { 1294 /* unmap fragment */ 1295 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1296 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1297 skb_frag_size(frag), DMA_TO_DEVICE); 1298 } 1299 1300 /* check for last gather fragment */ 1301 if (tx_buf->fidx == nr_frags - 1) 1302 dev_kfree_skb_any(skb); 1303 1304 tx_buf->dma_addr = 0; 1305 tx_buf->skb = NULL; 1306 tx_buf->fidx = -2; 1307 1308 tx_ring->qcp_rd_p++; 1309 tx_ring->rd_p++; 1310 } 1311 1312 memset(tx_ring->txds, 0, tx_ring->size); 1313 tx_ring->wr_p = 0; 1314 tx_ring->rd_p = 0; 1315 tx_ring->qcp_rd_p = 0; 1316 tx_ring->wr_ptr_add = 0; 1317 1318 if (tx_ring->is_xdp || !dp->netdev) 1319 return; 1320 1321 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1322 netdev_tx_reset_queue(nd_q); 1323 } 1324 1325 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 1326 { 1327 struct nfp_net *nn = netdev_priv(netdev); 1328 1329 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 1330 } 1331 1332 /* Receive processing 1333 */ 1334 static unsigned int 1335 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1336 { 1337 unsigned int fl_bufsz; 1338 1339 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1340 fl_bufsz += dp->rx_dma_off; 1341 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1342 fl_bufsz += NFP_NET_MAX_PREPEND; 1343 else 1344 fl_bufsz += dp->rx_offset; 1345 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1346 1347 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1348 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1349 1350 return fl_bufsz; 1351 } 1352 1353 static void 1354 nfp_net_free_frag(void *frag, bool xdp) 1355 { 1356 if (!xdp) 1357 skb_free_frag(frag); 1358 else 1359 __free_page(virt_to_page(frag)); 1360 } 1361 1362 /** 1363 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1364 * @dp: NFP Net data path struct 1365 * @dma_addr: Pointer to storage for DMA address (output param) 1366 * 1367 * This function will allcate a new page frag, map it for DMA. 1368 * 1369 * Return: allocated page frag or NULL on failure. 1370 */ 1371 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1372 { 1373 void *frag; 1374 1375 if (!dp->xdp_prog) { 1376 frag = netdev_alloc_frag(dp->fl_bufsz); 1377 } else { 1378 struct page *page; 1379 1380 page = alloc_page(GFP_KERNEL); 1381 frag = page ? page_address(page) : NULL; 1382 } 1383 if (!frag) { 1384 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1385 return NULL; 1386 } 1387 1388 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1389 if (dma_mapping_error(dp->dev, *dma_addr)) { 1390 nfp_net_free_frag(frag, dp->xdp_prog); 1391 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1392 return NULL; 1393 } 1394 1395 return frag; 1396 } 1397 1398 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1399 { 1400 void *frag; 1401 1402 if (!dp->xdp_prog) { 1403 frag = napi_alloc_frag(dp->fl_bufsz); 1404 if (unlikely(!frag)) 1405 return NULL; 1406 } else { 1407 struct page *page; 1408 1409 page = dev_alloc_page(); 1410 if (unlikely(!page)) 1411 return NULL; 1412 frag = page_address(page); 1413 } 1414 1415 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1416 if (dma_mapping_error(dp->dev, *dma_addr)) { 1417 nfp_net_free_frag(frag, dp->xdp_prog); 1418 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1419 return NULL; 1420 } 1421 1422 return frag; 1423 } 1424 1425 /** 1426 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1427 * @dp: NFP Net data path struct 1428 * @rx_ring: RX ring structure 1429 * @frag: page fragment buffer 1430 * @dma_addr: DMA address of skb mapping 1431 */ 1432 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1433 struct nfp_net_rx_ring *rx_ring, 1434 void *frag, dma_addr_t dma_addr) 1435 { 1436 unsigned int wr_idx; 1437 1438 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1439 1440 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1441 1442 /* Stash SKB and DMA address away */ 1443 rx_ring->rxbufs[wr_idx].frag = frag; 1444 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1445 1446 /* Fill freelist descriptor */ 1447 rx_ring->rxds[wr_idx].fld.reserved = 0; 1448 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1449 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1450 dma_addr + dp->rx_dma_off); 1451 1452 rx_ring->wr_p++; 1453 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1454 /* Update write pointer of the freelist queue. Make 1455 * sure all writes are flushed before telling the hardware. 1456 */ 1457 wmb(); 1458 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1459 } 1460 } 1461 1462 /** 1463 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1464 * @rx_ring: RX ring structure 1465 * 1466 * Assumes that the device is stopped, must be idempotent. 1467 */ 1468 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1469 { 1470 unsigned int wr_idx, last_idx; 1471 1472 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1473 * kept at cnt - 1 FL bufs. 1474 */ 1475 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1476 return; 1477 1478 /* Move the empty entry to the end of the list */ 1479 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1480 last_idx = rx_ring->cnt - 1; 1481 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1482 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1483 rx_ring->rxbufs[last_idx].dma_addr = 0; 1484 rx_ring->rxbufs[last_idx].frag = NULL; 1485 1486 memset(rx_ring->rxds, 0, rx_ring->size); 1487 rx_ring->wr_p = 0; 1488 rx_ring->rd_p = 0; 1489 } 1490 1491 /** 1492 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1493 * @dp: NFP Net data path struct 1494 * @rx_ring: RX ring to remove buffers from 1495 * 1496 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1497 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1498 * to restore required ring geometry. 1499 */ 1500 static void 1501 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1502 struct nfp_net_rx_ring *rx_ring) 1503 { 1504 unsigned int i; 1505 1506 for (i = 0; i < rx_ring->cnt - 1; i++) { 1507 /* NULL skb can only happen when initial filling of the ring 1508 * fails to allocate enough buffers and calls here to free 1509 * already allocated ones. 1510 */ 1511 if (!rx_ring->rxbufs[i].frag) 1512 continue; 1513 1514 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1515 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1516 rx_ring->rxbufs[i].dma_addr = 0; 1517 rx_ring->rxbufs[i].frag = NULL; 1518 } 1519 } 1520 1521 /** 1522 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1523 * @dp: NFP Net data path struct 1524 * @rx_ring: RX ring to remove buffers from 1525 */ 1526 static int 1527 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1528 struct nfp_net_rx_ring *rx_ring) 1529 { 1530 struct nfp_net_rx_buf *rxbufs; 1531 unsigned int i; 1532 1533 rxbufs = rx_ring->rxbufs; 1534 1535 for (i = 0; i < rx_ring->cnt - 1; i++) { 1536 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1537 if (!rxbufs[i].frag) { 1538 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1539 return -ENOMEM; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1548 * @dp: NFP Net data path struct 1549 * @rx_ring: RX ring to fill 1550 */ 1551 static void 1552 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1553 struct nfp_net_rx_ring *rx_ring) 1554 { 1555 unsigned int i; 1556 1557 for (i = 0; i < rx_ring->cnt - 1; i++) 1558 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1559 rx_ring->rxbufs[i].dma_addr); 1560 } 1561 1562 /** 1563 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1564 * @flags: RX descriptor flags field in CPU byte order 1565 */ 1566 static int nfp_net_rx_csum_has_errors(u16 flags) 1567 { 1568 u16 csum_all_checked, csum_all_ok; 1569 1570 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1571 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1572 1573 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1574 } 1575 1576 /** 1577 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1578 * @dp: NFP Net data path struct 1579 * @r_vec: per-ring structure 1580 * @rxd: Pointer to RX descriptor 1581 * @meta: Parsed metadata prepend 1582 * @skb: Pointer to SKB 1583 */ 1584 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1585 struct nfp_net_r_vector *r_vec, 1586 struct nfp_net_rx_desc *rxd, 1587 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1588 { 1589 skb_checksum_none_assert(skb); 1590 1591 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1592 return; 1593 1594 if (meta->csum_type) { 1595 skb->ip_summed = meta->csum_type; 1596 skb->csum = meta->csum; 1597 u64_stats_update_begin(&r_vec->rx_sync); 1598 r_vec->hw_csum_rx_complete++; 1599 u64_stats_update_end(&r_vec->rx_sync); 1600 return; 1601 } 1602 1603 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1604 u64_stats_update_begin(&r_vec->rx_sync); 1605 r_vec->hw_csum_rx_error++; 1606 u64_stats_update_end(&r_vec->rx_sync); 1607 return; 1608 } 1609 1610 /* Assume that the firmware will never report inner CSUM_OK unless outer 1611 * L4 headers were successfully parsed. FW will always report zero UDP 1612 * checksum as CSUM_OK. 1613 */ 1614 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1615 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1616 __skb_incr_checksum_unnecessary(skb); 1617 u64_stats_update_begin(&r_vec->rx_sync); 1618 r_vec->hw_csum_rx_ok++; 1619 u64_stats_update_end(&r_vec->rx_sync); 1620 } 1621 1622 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1623 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1624 __skb_incr_checksum_unnecessary(skb); 1625 u64_stats_update_begin(&r_vec->rx_sync); 1626 r_vec->hw_csum_rx_inner_ok++; 1627 u64_stats_update_end(&r_vec->rx_sync); 1628 } 1629 } 1630 1631 static void 1632 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1633 unsigned int type, __be32 *hash) 1634 { 1635 if (!(netdev->features & NETIF_F_RXHASH)) 1636 return; 1637 1638 switch (type) { 1639 case NFP_NET_RSS_IPV4: 1640 case NFP_NET_RSS_IPV6: 1641 case NFP_NET_RSS_IPV6_EX: 1642 meta->hash_type = PKT_HASH_TYPE_L3; 1643 break; 1644 default: 1645 meta->hash_type = PKT_HASH_TYPE_L4; 1646 break; 1647 } 1648 1649 meta->hash = get_unaligned_be32(hash); 1650 } 1651 1652 static void 1653 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1654 void *data, struct nfp_net_rx_desc *rxd) 1655 { 1656 struct nfp_net_rx_hash *rx_hash = data; 1657 1658 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1659 return; 1660 1661 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1662 &rx_hash->hash); 1663 } 1664 1665 static bool 1666 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1667 void *data, void *pkt, unsigned int pkt_len, int meta_len) 1668 { 1669 u32 meta_info; 1670 1671 meta_info = get_unaligned_be32(data); 1672 data += 4; 1673 1674 while (meta_info) { 1675 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1676 case NFP_NET_META_HASH: 1677 meta_info >>= NFP_NET_META_FIELD_SIZE; 1678 nfp_net_set_hash(netdev, meta, 1679 meta_info & NFP_NET_META_FIELD_MASK, 1680 (__be32 *)data); 1681 data += 4; 1682 break; 1683 case NFP_NET_META_MARK: 1684 meta->mark = get_unaligned_be32(data); 1685 data += 4; 1686 break; 1687 case NFP_NET_META_PORTID: 1688 meta->portid = get_unaligned_be32(data); 1689 data += 4; 1690 break; 1691 case NFP_NET_META_CSUM: 1692 meta->csum_type = CHECKSUM_COMPLETE; 1693 meta->csum = 1694 (__force __wsum)__get_unaligned_cpu32(data); 1695 data += 4; 1696 break; 1697 case NFP_NET_META_RESYNC_INFO: 1698 if (nfp_net_tls_rx_resync_req(netdev, data, pkt, 1699 pkt_len)) 1700 return NULL; 1701 data += sizeof(struct nfp_net_tls_resync_req); 1702 break; 1703 default: 1704 return true; 1705 } 1706 1707 meta_info >>= NFP_NET_META_FIELD_SIZE; 1708 } 1709 1710 return data != pkt; 1711 } 1712 1713 static void 1714 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1715 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1716 struct sk_buff *skb) 1717 { 1718 u64_stats_update_begin(&r_vec->rx_sync); 1719 r_vec->rx_drops++; 1720 /* If we have both skb and rxbuf the replacement buffer allocation 1721 * must have failed, count this as an alloc failure. 1722 */ 1723 if (skb && rxbuf) 1724 r_vec->rx_replace_buf_alloc_fail++; 1725 u64_stats_update_end(&r_vec->rx_sync); 1726 1727 /* skb is build based on the frag, free_skb() would free the frag 1728 * so to be able to reuse it we need an extra ref. 1729 */ 1730 if (skb && rxbuf && skb->head == rxbuf->frag) 1731 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1732 if (rxbuf) 1733 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1734 if (skb) 1735 dev_kfree_skb_any(skb); 1736 } 1737 1738 static bool 1739 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1740 struct nfp_net_tx_ring *tx_ring, 1741 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1742 unsigned int pkt_len, bool *completed) 1743 { 1744 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; 1745 struct nfp_net_tx_buf *txbuf; 1746 struct nfp_net_tx_desc *txd; 1747 int wr_idx; 1748 1749 /* Reject if xdp_adjust_tail grow packet beyond DMA area */ 1750 if (pkt_len + dma_off > dma_map_sz) 1751 return false; 1752 1753 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1754 if (!*completed) { 1755 nfp_net_xdp_complete(tx_ring); 1756 *completed = true; 1757 } 1758 1759 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1760 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1761 NULL); 1762 return false; 1763 } 1764 } 1765 1766 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1767 1768 /* Stash the soft descriptor of the head then initialize it */ 1769 txbuf = &tx_ring->txbufs[wr_idx]; 1770 1771 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1772 1773 txbuf->frag = rxbuf->frag; 1774 txbuf->dma_addr = rxbuf->dma_addr; 1775 txbuf->fidx = -1; 1776 txbuf->pkt_cnt = 1; 1777 txbuf->real_len = pkt_len; 1778 1779 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1780 pkt_len, DMA_BIDIRECTIONAL); 1781 1782 /* Build TX descriptor */ 1783 txd = &tx_ring->txds[wr_idx]; 1784 txd->offset_eop = PCIE_DESC_TX_EOP; 1785 txd->dma_len = cpu_to_le16(pkt_len); 1786 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1787 txd->data_len = cpu_to_le16(pkt_len); 1788 1789 txd->flags = 0; 1790 txd->mss = 0; 1791 txd->lso_hdrlen = 0; 1792 1793 tx_ring->wr_p++; 1794 tx_ring->wr_ptr_add++; 1795 return true; 1796 } 1797 1798 /** 1799 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1800 * @rx_ring: RX ring to receive from 1801 * @budget: NAPI budget 1802 * 1803 * Note, this function is separated out from the napi poll function to 1804 * more cleanly separate packet receive code from other bookkeeping 1805 * functions performed in the napi poll function. 1806 * 1807 * Return: Number of packets received. 1808 */ 1809 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1810 { 1811 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1812 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1813 struct nfp_net_tx_ring *tx_ring; 1814 struct bpf_prog *xdp_prog; 1815 bool xdp_tx_cmpl = false; 1816 unsigned int true_bufsz; 1817 struct sk_buff *skb; 1818 int pkts_polled = 0; 1819 struct xdp_buff xdp; 1820 int idx; 1821 1822 xdp_prog = READ_ONCE(dp->xdp_prog); 1823 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1824 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, 1825 &rx_ring->xdp_rxq); 1826 tx_ring = r_vec->xdp_ring; 1827 1828 while (pkts_polled < budget) { 1829 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1830 struct nfp_net_rx_buf *rxbuf; 1831 struct nfp_net_rx_desc *rxd; 1832 struct nfp_meta_parsed meta; 1833 bool redir_egress = false; 1834 struct net_device *netdev; 1835 dma_addr_t new_dma_addr; 1836 u32 meta_len_xdp = 0; 1837 void *new_frag; 1838 1839 idx = D_IDX(rx_ring, rx_ring->rd_p); 1840 1841 rxd = &rx_ring->rxds[idx]; 1842 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1843 break; 1844 1845 /* Memory barrier to ensure that we won't do other reads 1846 * before the DD bit. 1847 */ 1848 dma_rmb(); 1849 1850 memset(&meta, 0, sizeof(meta)); 1851 1852 rx_ring->rd_p++; 1853 pkts_polled++; 1854 1855 rxbuf = &rx_ring->rxbufs[idx]; 1856 /* < meta_len > 1857 * <-- [rx_offset] --> 1858 * --------------------------------------------------------- 1859 * | [XX] | metadata | packet | XXXX | 1860 * --------------------------------------------------------- 1861 * <---------------- data_len ---------------> 1862 * 1863 * The rx_offset is fixed for all packets, the meta_len can vary 1864 * on a packet by packet basis. If rx_offset is set to zero 1865 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1866 * buffer and is immediately followed by the packet (no [XX]). 1867 */ 1868 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1869 data_len = le16_to_cpu(rxd->rxd.data_len); 1870 pkt_len = data_len - meta_len; 1871 1872 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1873 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1874 pkt_off += meta_len; 1875 else 1876 pkt_off += dp->rx_offset; 1877 meta_off = pkt_off - meta_len; 1878 1879 /* Stats update */ 1880 u64_stats_update_begin(&r_vec->rx_sync); 1881 r_vec->rx_pkts++; 1882 r_vec->rx_bytes += pkt_len; 1883 u64_stats_update_end(&r_vec->rx_sync); 1884 1885 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1886 (dp->rx_offset && meta_len > dp->rx_offset))) { 1887 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1888 meta_len); 1889 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1890 continue; 1891 } 1892 1893 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1894 data_len); 1895 1896 if (!dp->chained_metadata_format) { 1897 nfp_net_set_hash_desc(dp->netdev, &meta, 1898 rxbuf->frag + meta_off, rxd); 1899 } else if (meta_len) { 1900 if (unlikely(nfp_net_parse_meta(dp->netdev, &meta, 1901 rxbuf->frag + meta_off, 1902 rxbuf->frag + pkt_off, 1903 pkt_len, meta_len))) { 1904 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1905 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1906 NULL); 1907 continue; 1908 } 1909 } 1910 1911 if (xdp_prog && !meta.portid) { 1912 void *orig_data = rxbuf->frag + pkt_off; 1913 unsigned int dma_off; 1914 int act; 1915 1916 xdp_prepare_buff(&xdp, 1917 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, 1918 pkt_off - NFP_NET_RX_BUF_HEADROOM, 1919 pkt_len, true); 1920 1921 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1922 1923 pkt_len = xdp.data_end - xdp.data; 1924 pkt_off += xdp.data - orig_data; 1925 1926 switch (act) { 1927 case XDP_PASS: 1928 meta_len_xdp = xdp.data - xdp.data_meta; 1929 break; 1930 case XDP_TX: 1931 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1932 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1933 tx_ring, rxbuf, 1934 dma_off, 1935 pkt_len, 1936 &xdp_tx_cmpl))) 1937 trace_xdp_exception(dp->netdev, 1938 xdp_prog, act); 1939 continue; 1940 default: 1941 bpf_warn_invalid_xdp_action(act); 1942 fallthrough; 1943 case XDP_ABORTED: 1944 trace_xdp_exception(dp->netdev, xdp_prog, act); 1945 fallthrough; 1946 case XDP_DROP: 1947 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1948 rxbuf->dma_addr); 1949 continue; 1950 } 1951 } 1952 1953 if (likely(!meta.portid)) { 1954 netdev = dp->netdev; 1955 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1956 struct nfp_net *nn = netdev_priv(dp->netdev); 1957 1958 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1959 pkt_len); 1960 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1961 rxbuf->dma_addr); 1962 continue; 1963 } else { 1964 struct nfp_net *nn; 1965 1966 nn = netdev_priv(dp->netdev); 1967 netdev = nfp_app_dev_get(nn->app, meta.portid, 1968 &redir_egress); 1969 if (unlikely(!netdev)) { 1970 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1971 NULL); 1972 continue; 1973 } 1974 1975 if (nfp_netdev_is_nfp_repr(netdev)) 1976 nfp_repr_inc_rx_stats(netdev, pkt_len); 1977 } 1978 1979 skb = build_skb(rxbuf->frag, true_bufsz); 1980 if (unlikely(!skb)) { 1981 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1982 continue; 1983 } 1984 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1985 if (unlikely(!new_frag)) { 1986 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1987 continue; 1988 } 1989 1990 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1991 1992 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1993 1994 skb_reserve(skb, pkt_off); 1995 skb_put(skb, pkt_len); 1996 1997 skb->mark = meta.mark; 1998 skb_set_hash(skb, meta.hash, meta.hash_type); 1999 2000 skb_record_rx_queue(skb, rx_ring->idx); 2001 skb->protocol = eth_type_trans(skb, netdev); 2002 2003 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 2004 2005 #ifdef CONFIG_TLS_DEVICE 2006 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 2007 skb->decrypted = true; 2008 u64_stats_update_begin(&r_vec->rx_sync); 2009 r_vec->hw_tls_rx++; 2010 u64_stats_update_end(&r_vec->rx_sync); 2011 } 2012 #endif 2013 2014 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 2015 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2016 le16_to_cpu(rxd->rxd.vlan)); 2017 if (meta_len_xdp) 2018 skb_metadata_set(skb, meta_len_xdp); 2019 2020 if (likely(!redir_egress)) { 2021 napi_gro_receive(&rx_ring->r_vec->napi, skb); 2022 } else { 2023 skb->dev = netdev; 2024 skb_reset_network_header(skb); 2025 __skb_push(skb, ETH_HLEN); 2026 dev_queue_xmit(skb); 2027 } 2028 } 2029 2030 if (xdp_prog) { 2031 if (tx_ring->wr_ptr_add) 2032 nfp_net_tx_xmit_more_flush(tx_ring); 2033 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2034 !xdp_tx_cmpl) 2035 if (!nfp_net_xdp_complete(tx_ring)) 2036 pkts_polled = budget; 2037 } 2038 2039 return pkts_polled; 2040 } 2041 2042 /** 2043 * nfp_net_poll() - napi poll function 2044 * @napi: NAPI structure 2045 * @budget: NAPI budget 2046 * 2047 * Return: number of packets polled. 2048 */ 2049 static int nfp_net_poll(struct napi_struct *napi, int budget) 2050 { 2051 struct nfp_net_r_vector *r_vec = 2052 container_of(napi, struct nfp_net_r_vector, napi); 2053 unsigned int pkts_polled = 0; 2054 2055 if (r_vec->tx_ring) 2056 nfp_net_tx_complete(r_vec->tx_ring, budget); 2057 if (r_vec->rx_ring) 2058 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2059 2060 if (pkts_polled < budget) 2061 if (napi_complete_done(napi, pkts_polled)) 2062 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2063 2064 return pkts_polled; 2065 } 2066 2067 /* Control device data path 2068 */ 2069 2070 static bool 2071 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2072 struct sk_buff *skb, bool old) 2073 { 2074 unsigned int real_len = skb->len, meta_len = 0; 2075 struct nfp_net_tx_ring *tx_ring; 2076 struct nfp_net_tx_buf *txbuf; 2077 struct nfp_net_tx_desc *txd; 2078 struct nfp_net_dp *dp; 2079 dma_addr_t dma_addr; 2080 int wr_idx; 2081 2082 dp = &r_vec->nfp_net->dp; 2083 tx_ring = r_vec->tx_ring; 2084 2085 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2086 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2087 goto err_free; 2088 } 2089 2090 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2091 u64_stats_update_begin(&r_vec->tx_sync); 2092 r_vec->tx_busy++; 2093 u64_stats_update_end(&r_vec->tx_sync); 2094 if (!old) 2095 __skb_queue_tail(&r_vec->queue, skb); 2096 else 2097 __skb_queue_head(&r_vec->queue, skb); 2098 return true; 2099 } 2100 2101 if (nfp_app_ctrl_has_meta(nn->app)) { 2102 if (unlikely(skb_headroom(skb) < 8)) { 2103 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2104 goto err_free; 2105 } 2106 meta_len = 8; 2107 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2108 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2109 } 2110 2111 /* Start with the head skbuf */ 2112 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2113 DMA_TO_DEVICE); 2114 if (dma_mapping_error(dp->dev, dma_addr)) 2115 goto err_dma_warn; 2116 2117 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2118 2119 /* Stash the soft descriptor of the head then initialize it */ 2120 txbuf = &tx_ring->txbufs[wr_idx]; 2121 txbuf->skb = skb; 2122 txbuf->dma_addr = dma_addr; 2123 txbuf->fidx = -1; 2124 txbuf->pkt_cnt = 1; 2125 txbuf->real_len = real_len; 2126 2127 /* Build TX descriptor */ 2128 txd = &tx_ring->txds[wr_idx]; 2129 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2130 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2131 nfp_desc_set_dma_addr(txd, dma_addr); 2132 txd->data_len = cpu_to_le16(skb->len); 2133 2134 txd->flags = 0; 2135 txd->mss = 0; 2136 txd->lso_hdrlen = 0; 2137 2138 tx_ring->wr_p++; 2139 tx_ring->wr_ptr_add++; 2140 nfp_net_tx_xmit_more_flush(tx_ring); 2141 2142 return false; 2143 2144 err_dma_warn: 2145 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2146 err_free: 2147 u64_stats_update_begin(&r_vec->tx_sync); 2148 r_vec->tx_errors++; 2149 u64_stats_update_end(&r_vec->tx_sync); 2150 dev_kfree_skb_any(skb); 2151 return false; 2152 } 2153 2154 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2155 { 2156 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2157 2158 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2159 } 2160 2161 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2162 { 2163 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2164 bool ret; 2165 2166 spin_lock_bh(&r_vec->lock); 2167 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2168 spin_unlock_bh(&r_vec->lock); 2169 2170 return ret; 2171 } 2172 2173 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2174 { 2175 struct sk_buff *skb; 2176 2177 while ((skb = __skb_dequeue(&r_vec->queue))) 2178 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2179 return; 2180 } 2181 2182 static bool 2183 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2184 { 2185 u32 meta_type, meta_tag; 2186 2187 if (!nfp_app_ctrl_has_meta(nn->app)) 2188 return !meta_len; 2189 2190 if (meta_len != 8) 2191 return false; 2192 2193 meta_type = get_unaligned_be32(data); 2194 meta_tag = get_unaligned_be32(data + 4); 2195 2196 return (meta_type == NFP_NET_META_PORTID && 2197 meta_tag == NFP_META_PORT_ID_CTRL); 2198 } 2199 2200 static bool 2201 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2202 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2203 { 2204 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2205 struct nfp_net_rx_buf *rxbuf; 2206 struct nfp_net_rx_desc *rxd; 2207 dma_addr_t new_dma_addr; 2208 struct sk_buff *skb; 2209 void *new_frag; 2210 int idx; 2211 2212 idx = D_IDX(rx_ring, rx_ring->rd_p); 2213 2214 rxd = &rx_ring->rxds[idx]; 2215 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2216 return false; 2217 2218 /* Memory barrier to ensure that we won't do other reads 2219 * before the DD bit. 2220 */ 2221 dma_rmb(); 2222 2223 rx_ring->rd_p++; 2224 2225 rxbuf = &rx_ring->rxbufs[idx]; 2226 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2227 data_len = le16_to_cpu(rxd->rxd.data_len); 2228 pkt_len = data_len - meta_len; 2229 2230 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2231 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2232 pkt_off += meta_len; 2233 else 2234 pkt_off += dp->rx_offset; 2235 meta_off = pkt_off - meta_len; 2236 2237 /* Stats update */ 2238 u64_stats_update_begin(&r_vec->rx_sync); 2239 r_vec->rx_pkts++; 2240 r_vec->rx_bytes += pkt_len; 2241 u64_stats_update_end(&r_vec->rx_sync); 2242 2243 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2244 2245 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2246 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2247 meta_len); 2248 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2249 return true; 2250 } 2251 2252 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2253 if (unlikely(!skb)) { 2254 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2255 return true; 2256 } 2257 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2258 if (unlikely(!new_frag)) { 2259 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2260 return true; 2261 } 2262 2263 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2264 2265 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2266 2267 skb_reserve(skb, pkt_off); 2268 skb_put(skb, pkt_len); 2269 2270 nfp_app_ctrl_rx(nn->app, skb); 2271 2272 return true; 2273 } 2274 2275 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2276 { 2277 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2278 struct nfp_net *nn = r_vec->nfp_net; 2279 struct nfp_net_dp *dp = &nn->dp; 2280 unsigned int budget = 512; 2281 2282 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2283 continue; 2284 2285 return budget; 2286 } 2287 2288 static void nfp_ctrl_poll(struct tasklet_struct *t) 2289 { 2290 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); 2291 2292 spin_lock(&r_vec->lock); 2293 nfp_net_tx_complete(r_vec->tx_ring, 0); 2294 __nfp_ctrl_tx_queued(r_vec); 2295 spin_unlock(&r_vec->lock); 2296 2297 if (nfp_ctrl_rx(r_vec)) { 2298 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2299 } else { 2300 tasklet_schedule(&r_vec->tasklet); 2301 nn_dp_warn(&r_vec->nfp_net->dp, 2302 "control message budget exceeded!\n"); 2303 } 2304 } 2305 2306 /* Setup and Configuration 2307 */ 2308 2309 /** 2310 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2311 * @nn: NFP Network structure 2312 */ 2313 static void nfp_net_vecs_init(struct nfp_net *nn) 2314 { 2315 struct nfp_net_r_vector *r_vec; 2316 int r; 2317 2318 nn->lsc_handler = nfp_net_irq_lsc; 2319 nn->exn_handler = nfp_net_irq_exn; 2320 2321 for (r = 0; r < nn->max_r_vecs; r++) { 2322 struct msix_entry *entry; 2323 2324 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2325 2326 r_vec = &nn->r_vecs[r]; 2327 r_vec->nfp_net = nn; 2328 r_vec->irq_entry = entry->entry; 2329 r_vec->irq_vector = entry->vector; 2330 2331 if (nn->dp.netdev) { 2332 r_vec->handler = nfp_net_irq_rxtx; 2333 } else { 2334 r_vec->handler = nfp_ctrl_irq_rxtx; 2335 2336 __skb_queue_head_init(&r_vec->queue); 2337 spin_lock_init(&r_vec->lock); 2338 tasklet_setup(&r_vec->tasklet, nfp_ctrl_poll); 2339 tasklet_disable(&r_vec->tasklet); 2340 } 2341 2342 cpumask_set_cpu(r, &r_vec->affinity_mask); 2343 } 2344 } 2345 2346 /** 2347 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2348 * @tx_ring: TX ring to free 2349 */ 2350 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2351 { 2352 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2353 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2354 2355 kvfree(tx_ring->txbufs); 2356 2357 if (tx_ring->txds) 2358 dma_free_coherent(dp->dev, tx_ring->size, 2359 tx_ring->txds, tx_ring->dma); 2360 2361 tx_ring->cnt = 0; 2362 tx_ring->txbufs = NULL; 2363 tx_ring->txds = NULL; 2364 tx_ring->dma = 0; 2365 tx_ring->size = 0; 2366 } 2367 2368 /** 2369 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2370 * @dp: NFP Net data path struct 2371 * @tx_ring: TX Ring structure to allocate 2372 * 2373 * Return: 0 on success, negative errno otherwise. 2374 */ 2375 static int 2376 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2377 { 2378 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2379 2380 tx_ring->cnt = dp->txd_cnt; 2381 2382 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2383 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2384 &tx_ring->dma, 2385 GFP_KERNEL | __GFP_NOWARN); 2386 if (!tx_ring->txds) { 2387 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2388 tx_ring->cnt); 2389 goto err_alloc; 2390 } 2391 2392 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2393 GFP_KERNEL); 2394 if (!tx_ring->txbufs) 2395 goto err_alloc; 2396 2397 if (!tx_ring->is_xdp && dp->netdev) 2398 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2399 tx_ring->idx); 2400 2401 return 0; 2402 2403 err_alloc: 2404 nfp_net_tx_ring_free(tx_ring); 2405 return -ENOMEM; 2406 } 2407 2408 static void 2409 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2410 struct nfp_net_tx_ring *tx_ring) 2411 { 2412 unsigned int i; 2413 2414 if (!tx_ring->is_xdp) 2415 return; 2416 2417 for (i = 0; i < tx_ring->cnt; i++) { 2418 if (!tx_ring->txbufs[i].frag) 2419 return; 2420 2421 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2422 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2423 } 2424 } 2425 2426 static int 2427 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2428 struct nfp_net_tx_ring *tx_ring) 2429 { 2430 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2431 unsigned int i; 2432 2433 if (!tx_ring->is_xdp) 2434 return 0; 2435 2436 for (i = 0; i < tx_ring->cnt; i++) { 2437 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2438 if (!txbufs[i].frag) { 2439 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2440 return -ENOMEM; 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2448 { 2449 unsigned int r; 2450 2451 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2452 GFP_KERNEL); 2453 if (!dp->tx_rings) 2454 return -ENOMEM; 2455 2456 for (r = 0; r < dp->num_tx_rings; r++) { 2457 int bias = 0; 2458 2459 if (r >= dp->num_stack_tx_rings) 2460 bias = dp->num_stack_tx_rings; 2461 2462 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2463 r, bias); 2464 2465 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2466 goto err_free_prev; 2467 2468 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2469 goto err_free_ring; 2470 } 2471 2472 return 0; 2473 2474 err_free_prev: 2475 while (r--) { 2476 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2477 err_free_ring: 2478 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2479 } 2480 kfree(dp->tx_rings); 2481 return -ENOMEM; 2482 } 2483 2484 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2485 { 2486 unsigned int r; 2487 2488 for (r = 0; r < dp->num_tx_rings; r++) { 2489 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2490 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2491 } 2492 2493 kfree(dp->tx_rings); 2494 } 2495 2496 /** 2497 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2498 * @rx_ring: RX ring to free 2499 */ 2500 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2501 { 2502 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2503 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2504 2505 if (dp->netdev) 2506 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2507 kvfree(rx_ring->rxbufs); 2508 2509 if (rx_ring->rxds) 2510 dma_free_coherent(dp->dev, rx_ring->size, 2511 rx_ring->rxds, rx_ring->dma); 2512 2513 rx_ring->cnt = 0; 2514 rx_ring->rxbufs = NULL; 2515 rx_ring->rxds = NULL; 2516 rx_ring->dma = 0; 2517 rx_ring->size = 0; 2518 } 2519 2520 /** 2521 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2522 * @dp: NFP Net data path struct 2523 * @rx_ring: RX ring to allocate 2524 * 2525 * Return: 0 on success, negative errno otherwise. 2526 */ 2527 static int 2528 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2529 { 2530 int err; 2531 2532 if (dp->netdev) { 2533 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2534 rx_ring->idx, rx_ring->r_vec->napi.napi_id); 2535 if (err < 0) 2536 return err; 2537 } 2538 2539 rx_ring->cnt = dp->rxd_cnt; 2540 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2541 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2542 &rx_ring->dma, 2543 GFP_KERNEL | __GFP_NOWARN); 2544 if (!rx_ring->rxds) { 2545 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2546 rx_ring->cnt); 2547 goto err_alloc; 2548 } 2549 2550 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2551 GFP_KERNEL); 2552 if (!rx_ring->rxbufs) 2553 goto err_alloc; 2554 2555 return 0; 2556 2557 err_alloc: 2558 nfp_net_rx_ring_free(rx_ring); 2559 return -ENOMEM; 2560 } 2561 2562 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2563 { 2564 unsigned int r; 2565 2566 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2567 GFP_KERNEL); 2568 if (!dp->rx_rings) 2569 return -ENOMEM; 2570 2571 for (r = 0; r < dp->num_rx_rings; r++) { 2572 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2573 2574 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2575 goto err_free_prev; 2576 2577 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2578 goto err_free_ring; 2579 } 2580 2581 return 0; 2582 2583 err_free_prev: 2584 while (r--) { 2585 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2586 err_free_ring: 2587 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2588 } 2589 kfree(dp->rx_rings); 2590 return -ENOMEM; 2591 } 2592 2593 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2594 { 2595 unsigned int r; 2596 2597 for (r = 0; r < dp->num_rx_rings; r++) { 2598 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2599 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2600 } 2601 2602 kfree(dp->rx_rings); 2603 } 2604 2605 static void 2606 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2607 struct nfp_net_r_vector *r_vec, int idx) 2608 { 2609 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2610 r_vec->tx_ring = 2611 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2612 2613 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2614 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2615 } 2616 2617 static int 2618 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2619 int idx) 2620 { 2621 int err; 2622 2623 /* Setup NAPI */ 2624 if (nn->dp.netdev) 2625 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2626 nfp_net_poll, NAPI_POLL_WEIGHT); 2627 else 2628 tasklet_enable(&r_vec->tasklet); 2629 2630 snprintf(r_vec->name, sizeof(r_vec->name), 2631 "%s-rxtx-%d", nfp_net_name(nn), idx); 2632 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2633 r_vec); 2634 if (err) { 2635 if (nn->dp.netdev) 2636 netif_napi_del(&r_vec->napi); 2637 else 2638 tasklet_disable(&r_vec->tasklet); 2639 2640 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2641 return err; 2642 } 2643 disable_irq(r_vec->irq_vector); 2644 2645 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2646 2647 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2648 r_vec->irq_entry); 2649 2650 return 0; 2651 } 2652 2653 static void 2654 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2655 { 2656 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2657 if (nn->dp.netdev) 2658 netif_napi_del(&r_vec->napi); 2659 else 2660 tasklet_disable(&r_vec->tasklet); 2661 2662 free_irq(r_vec->irq_vector, r_vec); 2663 } 2664 2665 /** 2666 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2667 * @nn: NFP Net device to reconfigure 2668 */ 2669 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2670 { 2671 int i; 2672 2673 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2674 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2675 get_unaligned_le32(nn->rss_itbl + i)); 2676 } 2677 2678 /** 2679 * nfp_net_rss_write_key() - Write RSS hash key to device 2680 * @nn: NFP Net device to reconfigure 2681 */ 2682 void nfp_net_rss_write_key(struct nfp_net *nn) 2683 { 2684 int i; 2685 2686 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2687 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2688 get_unaligned_le32(nn->rss_key + i)); 2689 } 2690 2691 /** 2692 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2693 * @nn: NFP Net device to reconfigure 2694 */ 2695 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2696 { 2697 u8 i; 2698 u32 factor; 2699 u32 value; 2700 2701 /* Compute factor used to convert coalesce '_usecs' parameters to 2702 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2703 * count. 2704 */ 2705 factor = nn->tlv_caps.me_freq_mhz / 16; 2706 2707 /* copy RX interrupt coalesce parameters */ 2708 value = (nn->rx_coalesce_max_frames << 16) | 2709 (factor * nn->rx_coalesce_usecs); 2710 for (i = 0; i < nn->dp.num_rx_rings; i++) 2711 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2712 2713 /* copy TX interrupt coalesce parameters */ 2714 value = (nn->tx_coalesce_max_frames << 16) | 2715 (factor * nn->tx_coalesce_usecs); 2716 for (i = 0; i < nn->dp.num_tx_rings; i++) 2717 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2718 } 2719 2720 /** 2721 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2722 * @nn: NFP Net device to reconfigure 2723 * @addr: MAC address to write 2724 * 2725 * Writes the MAC address from the netdev to the device control BAR. Does not 2726 * perform the required reconfig. We do a bit of byte swapping dance because 2727 * firmware is LE. 2728 */ 2729 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2730 { 2731 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2732 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2733 } 2734 2735 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2736 { 2737 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2738 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2739 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2740 2741 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2742 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2743 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2744 } 2745 2746 /** 2747 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2748 * @nn: NFP Net device to reconfigure 2749 * 2750 * Warning: must be fully idempotent. 2751 */ 2752 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2753 { 2754 u32 new_ctrl, update; 2755 unsigned int r; 2756 int err; 2757 2758 new_ctrl = nn->dp.ctrl; 2759 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2760 update = NFP_NET_CFG_UPDATE_GEN; 2761 update |= NFP_NET_CFG_UPDATE_MSIX; 2762 update |= NFP_NET_CFG_UPDATE_RING; 2763 2764 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2765 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2766 2767 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2768 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2769 2770 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2771 err = nfp_net_reconfig(nn, update); 2772 if (err) 2773 nn_err(nn, "Could not disable device: %d\n", err); 2774 2775 for (r = 0; r < nn->dp.num_rx_rings; r++) 2776 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2777 for (r = 0; r < nn->dp.num_tx_rings; r++) 2778 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2779 for (r = 0; r < nn->dp.num_r_vecs; r++) 2780 nfp_net_vec_clear_ring_data(nn, r); 2781 2782 nn->dp.ctrl = new_ctrl; 2783 } 2784 2785 static void 2786 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2787 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2788 { 2789 /* Write the DMA address, size and MSI-X info to the device */ 2790 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2791 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2792 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2793 } 2794 2795 static void 2796 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2797 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2798 { 2799 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2800 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2801 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2802 } 2803 2804 /** 2805 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2806 * @nn: NFP Net device to reconfigure 2807 */ 2808 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2809 { 2810 u32 bufsz, new_ctrl, update = 0; 2811 unsigned int r; 2812 int err; 2813 2814 new_ctrl = nn->dp.ctrl; 2815 2816 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2817 nfp_net_rss_write_key(nn); 2818 nfp_net_rss_write_itbl(nn); 2819 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2820 update |= NFP_NET_CFG_UPDATE_RSS; 2821 } 2822 2823 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2824 nfp_net_coalesce_write_cfg(nn); 2825 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2826 } 2827 2828 for (r = 0; r < nn->dp.num_tx_rings; r++) 2829 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2830 for (r = 0; r < nn->dp.num_rx_rings; r++) 2831 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2832 2833 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2834 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2835 2836 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2837 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2838 2839 if (nn->dp.netdev) 2840 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2841 2842 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2843 2844 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2845 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2846 2847 /* Enable device */ 2848 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2849 update |= NFP_NET_CFG_UPDATE_GEN; 2850 update |= NFP_NET_CFG_UPDATE_MSIX; 2851 update |= NFP_NET_CFG_UPDATE_RING; 2852 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2853 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2854 2855 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2856 err = nfp_net_reconfig(nn, update); 2857 if (err) { 2858 nfp_net_clear_config_and_disable(nn); 2859 return err; 2860 } 2861 2862 nn->dp.ctrl = new_ctrl; 2863 2864 for (r = 0; r < nn->dp.num_rx_rings; r++) 2865 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2866 2867 return 0; 2868 } 2869 2870 /** 2871 * nfp_net_close_stack() - Quiesce the stack (part of close) 2872 * @nn: NFP Net device to reconfigure 2873 */ 2874 static void nfp_net_close_stack(struct nfp_net *nn) 2875 { 2876 unsigned int r; 2877 2878 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2879 netif_carrier_off(nn->dp.netdev); 2880 nn->link_up = false; 2881 2882 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2883 disable_irq(nn->r_vecs[r].irq_vector); 2884 napi_disable(&nn->r_vecs[r].napi); 2885 } 2886 2887 netif_tx_disable(nn->dp.netdev); 2888 } 2889 2890 /** 2891 * nfp_net_close_free_all() - Free all runtime resources 2892 * @nn: NFP Net device to reconfigure 2893 */ 2894 static void nfp_net_close_free_all(struct nfp_net *nn) 2895 { 2896 unsigned int r; 2897 2898 nfp_net_tx_rings_free(&nn->dp); 2899 nfp_net_rx_rings_free(&nn->dp); 2900 2901 for (r = 0; r < nn->dp.num_r_vecs; r++) 2902 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2903 2904 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2905 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2906 } 2907 2908 /** 2909 * nfp_net_netdev_close() - Called when the device is downed 2910 * @netdev: netdev structure 2911 */ 2912 static int nfp_net_netdev_close(struct net_device *netdev) 2913 { 2914 struct nfp_net *nn = netdev_priv(netdev); 2915 2916 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2917 */ 2918 nfp_net_close_stack(nn); 2919 2920 /* Step 2: Tell NFP 2921 */ 2922 nfp_net_clear_config_and_disable(nn); 2923 nfp_port_configure(netdev, false); 2924 2925 /* Step 3: Free resources 2926 */ 2927 nfp_net_close_free_all(nn); 2928 2929 nn_dbg(nn, "%s down", netdev->name); 2930 return 0; 2931 } 2932 2933 void nfp_ctrl_close(struct nfp_net *nn) 2934 { 2935 int r; 2936 2937 rtnl_lock(); 2938 2939 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2940 disable_irq(nn->r_vecs[r].irq_vector); 2941 tasklet_disable(&nn->r_vecs[r].tasklet); 2942 } 2943 2944 nfp_net_clear_config_and_disable(nn); 2945 2946 nfp_net_close_free_all(nn); 2947 2948 rtnl_unlock(); 2949 } 2950 2951 /** 2952 * nfp_net_open_stack() - Start the device from stack's perspective 2953 * @nn: NFP Net device to reconfigure 2954 */ 2955 static void nfp_net_open_stack(struct nfp_net *nn) 2956 { 2957 unsigned int r; 2958 2959 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2960 napi_enable(&nn->r_vecs[r].napi); 2961 enable_irq(nn->r_vecs[r].irq_vector); 2962 } 2963 2964 netif_tx_wake_all_queues(nn->dp.netdev); 2965 2966 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2967 nfp_net_read_link_status(nn); 2968 } 2969 2970 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2971 { 2972 int err, r; 2973 2974 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2975 nn->exn_name, sizeof(nn->exn_name), 2976 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2977 if (err) 2978 return err; 2979 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2980 nn->lsc_name, sizeof(nn->lsc_name), 2981 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2982 if (err) 2983 goto err_free_exn; 2984 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2985 2986 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2987 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2988 if (err) 2989 goto err_cleanup_vec_p; 2990 } 2991 2992 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2993 if (err) 2994 goto err_cleanup_vec; 2995 2996 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2997 if (err) 2998 goto err_free_rx_rings; 2999 3000 for (r = 0; r < nn->max_r_vecs; r++) 3001 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3002 3003 return 0; 3004 3005 err_free_rx_rings: 3006 nfp_net_rx_rings_free(&nn->dp); 3007 err_cleanup_vec: 3008 r = nn->dp.num_r_vecs; 3009 err_cleanup_vec_p: 3010 while (r--) 3011 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3012 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 3013 err_free_exn: 3014 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 3015 return err; 3016 } 3017 3018 static int nfp_net_netdev_open(struct net_device *netdev) 3019 { 3020 struct nfp_net *nn = netdev_priv(netdev); 3021 int err; 3022 3023 /* Step 1: Allocate resources for rings and the like 3024 * - Request interrupts 3025 * - Allocate RX and TX ring resources 3026 * - Setup initial RSS table 3027 */ 3028 err = nfp_net_open_alloc_all(nn); 3029 if (err) 3030 return err; 3031 3032 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3033 if (err) 3034 goto err_free_all; 3035 3036 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3037 if (err) 3038 goto err_free_all; 3039 3040 /* Step 2: Configure the NFP 3041 * - Ifup the physical interface if it exists 3042 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3043 * - Write MAC address (in case it changed) 3044 * - Set the MTU 3045 * - Set the Freelist buffer size 3046 * - Enable the FW 3047 */ 3048 err = nfp_port_configure(netdev, true); 3049 if (err) 3050 goto err_free_all; 3051 3052 err = nfp_net_set_config_and_enable(nn); 3053 if (err) 3054 goto err_port_disable; 3055 3056 /* Step 3: Enable for kernel 3057 * - put some freelist descriptors on each RX ring 3058 * - enable NAPI on each ring 3059 * - enable all TX queues 3060 * - set link state 3061 */ 3062 nfp_net_open_stack(nn); 3063 3064 return 0; 3065 3066 err_port_disable: 3067 nfp_port_configure(netdev, false); 3068 err_free_all: 3069 nfp_net_close_free_all(nn); 3070 return err; 3071 } 3072 3073 int nfp_ctrl_open(struct nfp_net *nn) 3074 { 3075 int err, r; 3076 3077 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3078 rtnl_lock(); 3079 3080 err = nfp_net_open_alloc_all(nn); 3081 if (err) 3082 goto err_unlock; 3083 3084 err = nfp_net_set_config_and_enable(nn); 3085 if (err) 3086 goto err_free_all; 3087 3088 for (r = 0; r < nn->dp.num_r_vecs; r++) 3089 enable_irq(nn->r_vecs[r].irq_vector); 3090 3091 rtnl_unlock(); 3092 3093 return 0; 3094 3095 err_free_all: 3096 nfp_net_close_free_all(nn); 3097 err_unlock: 3098 rtnl_unlock(); 3099 return err; 3100 } 3101 3102 static void nfp_net_set_rx_mode(struct net_device *netdev) 3103 { 3104 struct nfp_net *nn = netdev_priv(netdev); 3105 u32 new_ctrl; 3106 3107 new_ctrl = nn->dp.ctrl; 3108 3109 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3110 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3111 else 3112 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3113 3114 if (netdev->flags & IFF_PROMISC) { 3115 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3116 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3117 else 3118 nn_warn(nn, "FW does not support promiscuous mode\n"); 3119 } else { 3120 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3121 } 3122 3123 if (new_ctrl == nn->dp.ctrl) 3124 return; 3125 3126 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3127 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3128 3129 nn->dp.ctrl = new_ctrl; 3130 } 3131 3132 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3133 { 3134 int i; 3135 3136 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3137 nn->rss_itbl[i] = 3138 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3139 } 3140 3141 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3142 { 3143 struct nfp_net_dp new_dp = *dp; 3144 3145 *dp = nn->dp; 3146 nn->dp = new_dp; 3147 3148 nn->dp.netdev->mtu = new_dp.mtu; 3149 3150 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3151 nfp_net_rss_init_itbl(nn); 3152 } 3153 3154 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3155 { 3156 unsigned int r; 3157 int err; 3158 3159 nfp_net_dp_swap(nn, dp); 3160 3161 for (r = 0; r < nn->max_r_vecs; r++) 3162 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3163 3164 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 3165 if (err) 3166 return err; 3167 3168 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 3169 err = netif_set_real_num_tx_queues(nn->dp.netdev, 3170 nn->dp.num_stack_tx_rings); 3171 if (err) 3172 return err; 3173 } 3174 3175 return nfp_net_set_config_and_enable(nn); 3176 } 3177 3178 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3179 { 3180 struct nfp_net_dp *new; 3181 3182 new = kmalloc(sizeof(*new), GFP_KERNEL); 3183 if (!new) 3184 return NULL; 3185 3186 *new = nn->dp; 3187 3188 /* Clear things which need to be recomputed */ 3189 new->fl_bufsz = 0; 3190 new->tx_rings = NULL; 3191 new->rx_rings = NULL; 3192 new->num_r_vecs = 0; 3193 new->num_stack_tx_rings = 0; 3194 3195 return new; 3196 } 3197 3198 static int 3199 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3200 struct netlink_ext_ack *extack) 3201 { 3202 /* XDP-enabled tests */ 3203 if (!dp->xdp_prog) 3204 return 0; 3205 if (dp->fl_bufsz > PAGE_SIZE) { 3206 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3207 return -EINVAL; 3208 } 3209 if (dp->num_tx_rings > nn->max_tx_rings) { 3210 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3211 return -EINVAL; 3212 } 3213 3214 return 0; 3215 } 3216 3217 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3218 struct netlink_ext_ack *extack) 3219 { 3220 int r, err; 3221 3222 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3223 3224 dp->num_stack_tx_rings = dp->num_tx_rings; 3225 if (dp->xdp_prog) 3226 dp->num_stack_tx_rings -= dp->num_rx_rings; 3227 3228 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3229 3230 err = nfp_net_check_config(nn, dp, extack); 3231 if (err) 3232 goto exit_free_dp; 3233 3234 if (!netif_running(dp->netdev)) { 3235 nfp_net_dp_swap(nn, dp); 3236 err = 0; 3237 goto exit_free_dp; 3238 } 3239 3240 /* Prepare new rings */ 3241 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3242 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3243 if (err) { 3244 dp->num_r_vecs = r; 3245 goto err_cleanup_vecs; 3246 } 3247 } 3248 3249 err = nfp_net_rx_rings_prepare(nn, dp); 3250 if (err) 3251 goto err_cleanup_vecs; 3252 3253 err = nfp_net_tx_rings_prepare(nn, dp); 3254 if (err) 3255 goto err_free_rx; 3256 3257 /* Stop device, swap in new rings, try to start the firmware */ 3258 nfp_net_close_stack(nn); 3259 nfp_net_clear_config_and_disable(nn); 3260 3261 err = nfp_net_dp_swap_enable(nn, dp); 3262 if (err) { 3263 int err2; 3264 3265 nfp_net_clear_config_and_disable(nn); 3266 3267 /* Try with old configuration and old rings */ 3268 err2 = nfp_net_dp_swap_enable(nn, dp); 3269 if (err2) 3270 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3271 err, err2); 3272 } 3273 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3274 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3275 3276 nfp_net_rx_rings_free(dp); 3277 nfp_net_tx_rings_free(dp); 3278 3279 nfp_net_open_stack(nn); 3280 exit_free_dp: 3281 kfree(dp); 3282 3283 return err; 3284 3285 err_free_rx: 3286 nfp_net_rx_rings_free(dp); 3287 err_cleanup_vecs: 3288 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3289 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3290 kfree(dp); 3291 return err; 3292 } 3293 3294 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3295 { 3296 struct nfp_net *nn = netdev_priv(netdev); 3297 struct nfp_net_dp *dp; 3298 int err; 3299 3300 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3301 if (err) 3302 return err; 3303 3304 dp = nfp_net_clone_dp(nn); 3305 if (!dp) 3306 return -ENOMEM; 3307 3308 dp->mtu = new_mtu; 3309 3310 return nfp_net_ring_reconfig(nn, dp, NULL); 3311 } 3312 3313 static int 3314 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3315 { 3316 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3317 struct nfp_net *nn = netdev_priv(netdev); 3318 int err; 3319 3320 /* Priority tagged packets with vlan id 0 are processed by the 3321 * NFP as untagged packets 3322 */ 3323 if (!vid) 3324 return 0; 3325 3326 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3327 if (err) 3328 return err; 3329 3330 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3331 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3332 ETH_P_8021Q); 3333 3334 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3335 } 3336 3337 static int 3338 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3339 { 3340 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3341 struct nfp_net *nn = netdev_priv(netdev); 3342 int err; 3343 3344 /* Priority tagged packets with vlan id 0 are processed by the 3345 * NFP as untagged packets 3346 */ 3347 if (!vid) 3348 return 0; 3349 3350 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3351 if (err) 3352 return err; 3353 3354 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3355 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3356 ETH_P_8021Q); 3357 3358 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3359 } 3360 3361 static void nfp_net_stat64(struct net_device *netdev, 3362 struct rtnl_link_stats64 *stats) 3363 { 3364 struct nfp_net *nn = netdev_priv(netdev); 3365 int r; 3366 3367 /* Collect software stats */ 3368 for (r = 0; r < nn->max_r_vecs; r++) { 3369 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3370 u64 data[3]; 3371 unsigned int start; 3372 3373 do { 3374 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3375 data[0] = r_vec->rx_pkts; 3376 data[1] = r_vec->rx_bytes; 3377 data[2] = r_vec->rx_drops; 3378 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3379 stats->rx_packets += data[0]; 3380 stats->rx_bytes += data[1]; 3381 stats->rx_dropped += data[2]; 3382 3383 do { 3384 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3385 data[0] = r_vec->tx_pkts; 3386 data[1] = r_vec->tx_bytes; 3387 data[2] = r_vec->tx_errors; 3388 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3389 stats->tx_packets += data[0]; 3390 stats->tx_bytes += data[1]; 3391 stats->tx_errors += data[2]; 3392 } 3393 3394 /* Add in device stats */ 3395 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3396 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3397 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3398 3399 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3400 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3401 } 3402 3403 static int nfp_net_set_features(struct net_device *netdev, 3404 netdev_features_t features) 3405 { 3406 netdev_features_t changed = netdev->features ^ features; 3407 struct nfp_net *nn = netdev_priv(netdev); 3408 u32 new_ctrl; 3409 int err; 3410 3411 /* Assume this is not called with features we have not advertised */ 3412 3413 new_ctrl = nn->dp.ctrl; 3414 3415 if (changed & NETIF_F_RXCSUM) { 3416 if (features & NETIF_F_RXCSUM) 3417 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3418 else 3419 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3420 } 3421 3422 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3423 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3424 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3425 else 3426 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3427 } 3428 3429 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3430 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3431 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3432 NFP_NET_CFG_CTRL_LSO; 3433 else 3434 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3435 } 3436 3437 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3438 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3439 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3440 else 3441 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3442 } 3443 3444 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3445 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3446 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3447 else 3448 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3449 } 3450 3451 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3452 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3453 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3454 else 3455 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3456 } 3457 3458 if (changed & NETIF_F_SG) { 3459 if (features & NETIF_F_SG) 3460 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3461 else 3462 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3463 } 3464 3465 err = nfp_port_set_features(netdev, features); 3466 if (err) 3467 return err; 3468 3469 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3470 netdev->features, features, changed); 3471 3472 if (new_ctrl == nn->dp.ctrl) 3473 return 0; 3474 3475 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3476 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3477 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3478 if (err) 3479 return err; 3480 3481 nn->dp.ctrl = new_ctrl; 3482 3483 return 0; 3484 } 3485 3486 static netdev_features_t 3487 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3488 netdev_features_t features) 3489 { 3490 u8 l4_hdr; 3491 3492 /* We can't do TSO over double tagged packets (802.1AD) */ 3493 features &= vlan_features_check(skb, features); 3494 3495 if (!skb->encapsulation) 3496 return features; 3497 3498 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3499 if (skb_is_gso(skb)) { 3500 u32 hdrlen; 3501 3502 hdrlen = skb_inner_transport_header(skb) - skb->data + 3503 inner_tcp_hdrlen(skb); 3504 3505 /* Assume worst case scenario of having longest possible 3506 * metadata prepend - 8B 3507 */ 3508 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3509 features &= ~NETIF_F_GSO_MASK; 3510 } 3511 3512 /* VXLAN/GRE check */ 3513 switch (vlan_get_protocol(skb)) { 3514 case htons(ETH_P_IP): 3515 l4_hdr = ip_hdr(skb)->protocol; 3516 break; 3517 case htons(ETH_P_IPV6): 3518 l4_hdr = ipv6_hdr(skb)->nexthdr; 3519 break; 3520 default: 3521 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3522 } 3523 3524 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3525 skb->inner_protocol != htons(ETH_P_TEB) || 3526 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3527 (l4_hdr == IPPROTO_UDP && 3528 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3529 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3530 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3531 3532 return features; 3533 } 3534 3535 static int 3536 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3537 { 3538 struct nfp_net *nn = netdev_priv(netdev); 3539 int n; 3540 3541 /* If port is defined, devlink_port is registered and devlink core 3542 * is taking care of name formatting. 3543 */ 3544 if (nn->port) 3545 return -EOPNOTSUPP; 3546 3547 if (nn->dp.is_vf || nn->vnic_no_name) 3548 return -EOPNOTSUPP; 3549 3550 n = snprintf(name, len, "n%d", nn->id); 3551 if (n >= len) 3552 return -EINVAL; 3553 3554 return 0; 3555 } 3556 3557 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3558 { 3559 struct bpf_prog *prog = bpf->prog; 3560 struct nfp_net_dp *dp; 3561 int err; 3562 3563 if (!prog == !nn->dp.xdp_prog) { 3564 WRITE_ONCE(nn->dp.xdp_prog, prog); 3565 xdp_attachment_setup(&nn->xdp, bpf); 3566 return 0; 3567 } 3568 3569 dp = nfp_net_clone_dp(nn); 3570 if (!dp) 3571 return -ENOMEM; 3572 3573 dp->xdp_prog = prog; 3574 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3575 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3576 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3577 3578 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3579 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3580 if (err) 3581 return err; 3582 3583 xdp_attachment_setup(&nn->xdp, bpf); 3584 return 0; 3585 } 3586 3587 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3588 { 3589 int err; 3590 3591 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3592 if (err) 3593 return err; 3594 3595 xdp_attachment_setup(&nn->xdp_hw, bpf); 3596 return 0; 3597 } 3598 3599 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3600 { 3601 struct nfp_net *nn = netdev_priv(netdev); 3602 3603 switch (xdp->command) { 3604 case XDP_SETUP_PROG: 3605 return nfp_net_xdp_setup_drv(nn, xdp); 3606 case XDP_SETUP_PROG_HW: 3607 return nfp_net_xdp_setup_hw(nn, xdp); 3608 default: 3609 return nfp_app_bpf(nn->app, nn, xdp); 3610 } 3611 } 3612 3613 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3614 { 3615 struct nfp_net *nn = netdev_priv(netdev); 3616 struct sockaddr *saddr = addr; 3617 int err; 3618 3619 err = eth_prepare_mac_addr_change(netdev, addr); 3620 if (err) 3621 return err; 3622 3623 nfp_net_write_mac_addr(nn, saddr->sa_data); 3624 3625 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3626 if (err) 3627 return err; 3628 3629 eth_commit_mac_addr_change(netdev, addr); 3630 3631 return 0; 3632 } 3633 3634 const struct net_device_ops nfp_net_netdev_ops = { 3635 .ndo_init = nfp_app_ndo_init, 3636 .ndo_uninit = nfp_app_ndo_uninit, 3637 .ndo_open = nfp_net_netdev_open, 3638 .ndo_stop = nfp_net_netdev_close, 3639 .ndo_start_xmit = nfp_net_tx, 3640 .ndo_get_stats64 = nfp_net_stat64, 3641 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3642 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3643 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3644 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3645 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3646 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3647 .ndo_get_vf_config = nfp_app_get_vf_config, 3648 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3649 .ndo_setup_tc = nfp_port_setup_tc, 3650 .ndo_tx_timeout = nfp_net_tx_timeout, 3651 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3652 .ndo_change_mtu = nfp_net_change_mtu, 3653 .ndo_set_mac_address = nfp_net_set_mac_address, 3654 .ndo_set_features = nfp_net_set_features, 3655 .ndo_features_check = nfp_net_features_check, 3656 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3657 .ndo_bpf = nfp_net_xdp, 3658 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3659 }; 3660 3661 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 3662 { 3663 struct nfp_net *nn = netdev_priv(netdev); 3664 int i; 3665 3666 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3667 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 3668 struct udp_tunnel_info ti0, ti1; 3669 3670 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 3671 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 3672 3673 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 3674 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 3675 } 3676 3677 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 3678 } 3679 3680 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 3681 .sync_table = nfp_udp_tunnel_sync, 3682 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 3683 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 3684 .tables = { 3685 { 3686 .n_entries = NFP_NET_N_VXLAN_PORTS, 3687 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 3688 }, 3689 }, 3690 }; 3691 3692 /** 3693 * nfp_net_info() - Print general info about the NIC 3694 * @nn: NFP Net device to reconfigure 3695 */ 3696 void nfp_net_info(struct nfp_net *nn) 3697 { 3698 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3699 nn->dp.is_vf ? "VF " : "", 3700 nn->dp.num_tx_rings, nn->max_tx_rings, 3701 nn->dp.num_rx_rings, nn->max_rx_rings); 3702 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3703 nn->fw_ver.resv, nn->fw_ver.class, 3704 nn->fw_ver.major, nn->fw_ver.minor, 3705 nn->max_mtu); 3706 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3707 nn->cap, 3708 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3709 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3710 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3711 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3712 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3713 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3714 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3715 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3716 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3717 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3718 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3719 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3720 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3721 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3722 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3723 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3724 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3725 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3726 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3727 "RXCSUM_COMPLETE " : "", 3728 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3729 nfp_app_extra_cap(nn->app, nn)); 3730 } 3731 3732 /** 3733 * nfp_net_alloc() - Allocate netdev and related structure 3734 * @pdev: PCI device 3735 * @ctrl_bar: PCI IOMEM with vNIC config memory 3736 * @needs_netdev: Whether to allocate a netdev for this vNIC 3737 * @max_tx_rings: Maximum number of TX rings supported by device 3738 * @max_rx_rings: Maximum number of RX rings supported by device 3739 * 3740 * This function allocates a netdev device and fills in the initial 3741 * part of the @struct nfp_net structure. In case of control device 3742 * nfp_net structure is allocated without the netdev. 3743 * 3744 * Return: NFP Net device structure, or ERR_PTR on error. 3745 */ 3746 struct nfp_net * 3747 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3748 unsigned int max_tx_rings, unsigned int max_rx_rings) 3749 { 3750 struct nfp_net *nn; 3751 int err; 3752 3753 if (needs_netdev) { 3754 struct net_device *netdev; 3755 3756 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3757 max_tx_rings, max_rx_rings); 3758 if (!netdev) 3759 return ERR_PTR(-ENOMEM); 3760 3761 SET_NETDEV_DEV(netdev, &pdev->dev); 3762 nn = netdev_priv(netdev); 3763 nn->dp.netdev = netdev; 3764 } else { 3765 nn = vzalloc(sizeof(*nn)); 3766 if (!nn) 3767 return ERR_PTR(-ENOMEM); 3768 } 3769 3770 nn->dp.dev = &pdev->dev; 3771 nn->dp.ctrl_bar = ctrl_bar; 3772 nn->pdev = pdev; 3773 3774 nn->max_tx_rings = max_tx_rings; 3775 nn->max_rx_rings = max_rx_rings; 3776 3777 nn->dp.num_tx_rings = min_t(unsigned int, 3778 max_tx_rings, num_online_cpus()); 3779 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3780 netif_get_num_default_rss_queues()); 3781 3782 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3783 nn->dp.num_r_vecs = min_t(unsigned int, 3784 nn->dp.num_r_vecs, num_online_cpus()); 3785 3786 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3787 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3788 3789 sema_init(&nn->bar_lock, 1); 3790 3791 spin_lock_init(&nn->reconfig_lock); 3792 spin_lock_init(&nn->link_status_lock); 3793 3794 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3795 3796 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3797 &nn->tlv_caps); 3798 if (err) 3799 goto err_free_nn; 3800 3801 err = nfp_ccm_mbox_alloc(nn); 3802 if (err) 3803 goto err_free_nn; 3804 3805 return nn; 3806 3807 err_free_nn: 3808 if (nn->dp.netdev) 3809 free_netdev(nn->dp.netdev); 3810 else 3811 vfree(nn); 3812 return ERR_PTR(err); 3813 } 3814 3815 /** 3816 * nfp_net_free() - Undo what @nfp_net_alloc() did 3817 * @nn: NFP Net device to reconfigure 3818 */ 3819 void nfp_net_free(struct nfp_net *nn) 3820 { 3821 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3822 nfp_ccm_mbox_free(nn); 3823 3824 if (nn->dp.netdev) 3825 free_netdev(nn->dp.netdev); 3826 else 3827 vfree(nn); 3828 } 3829 3830 /** 3831 * nfp_net_rss_key_sz() - Get current size of the RSS key 3832 * @nn: NFP Net device instance 3833 * 3834 * Return: size of the RSS key for currently selected hash function. 3835 */ 3836 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3837 { 3838 switch (nn->rss_hfunc) { 3839 case ETH_RSS_HASH_TOP: 3840 return NFP_NET_CFG_RSS_KEY_SZ; 3841 case ETH_RSS_HASH_XOR: 3842 return 0; 3843 case ETH_RSS_HASH_CRC32: 3844 return 4; 3845 } 3846 3847 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3848 return 0; 3849 } 3850 3851 /** 3852 * nfp_net_rss_init() - Set the initial RSS parameters 3853 * @nn: NFP Net device to reconfigure 3854 */ 3855 static void nfp_net_rss_init(struct nfp_net *nn) 3856 { 3857 unsigned long func_bit, rss_cap_hfunc; 3858 u32 reg; 3859 3860 /* Read the RSS function capability and select first supported func */ 3861 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3862 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3863 if (!rss_cap_hfunc) 3864 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3865 NFP_NET_CFG_RSS_TOEPLITZ); 3866 3867 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3868 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3869 dev_warn(nn->dp.dev, 3870 "Bad RSS config, defaulting to Toeplitz hash\n"); 3871 func_bit = ETH_RSS_HASH_TOP_BIT; 3872 } 3873 nn->rss_hfunc = 1 << func_bit; 3874 3875 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3876 3877 nfp_net_rss_init_itbl(nn); 3878 3879 /* Enable IPv4/IPv6 TCP by default */ 3880 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3881 NFP_NET_CFG_RSS_IPV6_TCP | 3882 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3883 NFP_NET_CFG_RSS_MASK; 3884 } 3885 3886 /** 3887 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3888 * @nn: NFP Net device to reconfigure 3889 */ 3890 static void nfp_net_irqmod_init(struct nfp_net *nn) 3891 { 3892 nn->rx_coalesce_usecs = 50; 3893 nn->rx_coalesce_max_frames = 64; 3894 nn->tx_coalesce_usecs = 50; 3895 nn->tx_coalesce_max_frames = 64; 3896 } 3897 3898 static void nfp_net_netdev_init(struct nfp_net *nn) 3899 { 3900 struct net_device *netdev = nn->dp.netdev; 3901 3902 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3903 3904 netdev->mtu = nn->dp.mtu; 3905 3906 /* Advertise/enable offloads based on capabilities 3907 * 3908 * Note: netdev->features show the currently enabled features 3909 * and netdev->hw_features advertises which features are 3910 * supported. By default we enable most features. 3911 */ 3912 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3913 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3914 3915 netdev->hw_features = NETIF_F_HIGHDMA; 3916 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3917 netdev->hw_features |= NETIF_F_RXCSUM; 3918 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3919 } 3920 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3921 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3922 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3923 } 3924 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3925 netdev->hw_features |= NETIF_F_SG; 3926 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3927 } 3928 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3929 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3930 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3931 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3932 NFP_NET_CFG_CTRL_LSO; 3933 } 3934 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3935 netdev->hw_features |= NETIF_F_RXHASH; 3936 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 3937 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3938 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 3939 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 3940 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 3941 } 3942 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3943 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3944 netdev->hw_features |= NETIF_F_GSO_GRE; 3945 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 3946 } 3947 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 3948 netdev->hw_enc_features = netdev->hw_features; 3949 3950 netdev->vlan_features = netdev->hw_features; 3951 3952 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3953 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3954 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3955 } 3956 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3957 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3958 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3959 } else { 3960 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3961 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3962 } 3963 } 3964 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3965 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3966 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3967 } 3968 3969 netdev->features = netdev->hw_features; 3970 3971 if (nfp_app_has_tc(nn->app) && nn->port) 3972 netdev->hw_features |= NETIF_F_HW_TC; 3973 3974 /* Advertise but disable TSO by default. */ 3975 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3976 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3977 3978 /* Finalise the netdev setup */ 3979 netdev->netdev_ops = &nfp_net_netdev_ops; 3980 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3981 3982 /* MTU range: 68 - hw-specific max */ 3983 netdev->min_mtu = ETH_MIN_MTU; 3984 netdev->max_mtu = nn->max_mtu; 3985 3986 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 3987 3988 netif_carrier_off(netdev); 3989 3990 nfp_net_set_ethtool_ops(netdev); 3991 } 3992 3993 static int nfp_net_read_caps(struct nfp_net *nn) 3994 { 3995 /* Get some of the read-only fields from the BAR */ 3996 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3997 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3998 3999 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4000 * we allow use of non-chained metadata if RSS(v1) is the only 4001 * advertised capability requiring metadata. 4002 */ 4003 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4004 !nn->dp.netdev || 4005 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4006 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4007 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4008 * it has the same meaning as RSSv2. 4009 */ 4010 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4011 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4012 4013 /* Determine RX packet/metadata boundary offset */ 4014 if (nn->fw_ver.major >= 2) { 4015 u32 reg; 4016 4017 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4018 if (reg > NFP_NET_MAX_PREPEND) { 4019 nn_err(nn, "Invalid rx offset: %d\n", reg); 4020 return -EINVAL; 4021 } 4022 nn->dp.rx_offset = reg; 4023 } else { 4024 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4025 } 4026 4027 /* For control vNICs mask out the capabilities app doesn't want. */ 4028 if (!nn->dp.netdev) 4029 nn->cap &= nn->app->type->ctrl_cap_mask; 4030 4031 return 0; 4032 } 4033 4034 /** 4035 * nfp_net_init() - Initialise/finalise the nfp_net structure 4036 * @nn: NFP Net device structure 4037 * 4038 * Return: 0 on success or negative errno on error. 4039 */ 4040 int nfp_net_init(struct nfp_net *nn) 4041 { 4042 int err; 4043 4044 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4045 4046 err = nfp_net_read_caps(nn); 4047 if (err) 4048 return err; 4049 4050 /* Set default MTU and Freelist buffer size */ 4051 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4052 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 4053 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4054 nn->dp.mtu = nn->max_mtu; 4055 } else { 4056 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4057 } 4058 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4059 4060 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4061 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4062 4063 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4064 nfp_net_rss_init(nn); 4065 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4066 NFP_NET_CFG_CTRL_RSS; 4067 } 4068 4069 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4070 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4071 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4072 4073 /* Allow IRQ moderation, if supported */ 4074 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4075 nfp_net_irqmod_init(nn); 4076 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4077 } 4078 4079 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4080 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4081 4082 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4083 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4084 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4085 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4086 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4087 NFP_NET_CFG_UPDATE_GEN); 4088 if (err) 4089 return err; 4090 4091 if (nn->dp.netdev) { 4092 nfp_net_netdev_init(nn); 4093 4094 err = nfp_ccm_mbox_init(nn); 4095 if (err) 4096 return err; 4097 4098 err = nfp_net_tls_init(nn); 4099 if (err) 4100 goto err_clean_mbox; 4101 } 4102 4103 nfp_net_vecs_init(nn); 4104 4105 if (!nn->dp.netdev) 4106 return 0; 4107 return register_netdev(nn->dp.netdev); 4108 4109 err_clean_mbox: 4110 nfp_ccm_mbox_clean(nn); 4111 return err; 4112 } 4113 4114 /** 4115 * nfp_net_clean() - Undo what nfp_net_init() did. 4116 * @nn: NFP Net device structure 4117 */ 4118 void nfp_net_clean(struct nfp_net *nn) 4119 { 4120 if (!nn->dp.netdev) 4121 return; 4122 4123 unregister_netdev(nn->dp.netdev); 4124 nfp_ccm_mbox_clean(nn); 4125 nfp_net_reconfig_wait_posted(nn); 4126 } 4127