1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38 
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50 #include "crypto/fw.h"
51 
52 /**
53  * nfp_net_get_fw_version() - Read and parse the FW version
54  * @fw_ver:	Output fw_version structure to read to
55  * @ctrl_bar:	Mapped address of the control BAR
56  */
57 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
58 			    void __iomem *ctrl_bar)
59 {
60 	u32 reg;
61 
62 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
63 	put_unaligned_le32(reg, fw_ver);
64 }
65 
66 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
67 {
68 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
69 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
70 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
71 }
72 
73 static void
74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
75 {
76 	dma_sync_single_for_device(dp->dev, dma_addr,
77 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
78 				   dp->rx_dma_dir);
79 }
80 
81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
82 {
83 	dma_unmap_single_attrs(dp->dev, dma_addr,
84 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
85 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
86 }
87 
88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
89 				    unsigned int len)
90 {
91 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
92 				len, dp->rx_dma_dir);
93 }
94 
95 /* Firmware reconfig
96  *
97  * Firmware reconfig may take a while so we have two versions of it -
98  * synchronous and asynchronous (posted).  All synchronous callers are holding
99  * RTNL so we don't have to worry about serializing them.
100  */
101 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
102 {
103 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
104 	/* ensure update is written before pinging HW */
105 	nn_pci_flush(nn);
106 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
107 	nn->reconfig_in_progress_update = update;
108 }
109 
110 /* Pass 0 as update to run posted reconfigs. */
111 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
112 {
113 	update |= nn->reconfig_posted;
114 	nn->reconfig_posted = 0;
115 
116 	nfp_net_reconfig_start(nn, update);
117 
118 	nn->reconfig_timer_active = true;
119 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
120 }
121 
122 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
123 {
124 	u32 reg;
125 
126 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
127 	if (reg == 0)
128 		return true;
129 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
130 		nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
131 		       reg, nn->reconfig_in_progress_update,
132 		       nn_readl(nn, NFP_NET_CFG_CTRL));
133 		return true;
134 	} else if (last_check) {
135 		nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
136 		       reg, nn->reconfig_in_progress_update,
137 		       nn_readl(nn, NFP_NET_CFG_CTRL));
138 		return true;
139 	}
140 
141 	return false;
142 }
143 
144 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
145 {
146 	bool timed_out = false;
147 	int i;
148 
149 	/* Poll update field, waiting for NFP to ack the config.
150 	 * Do an opportunistic wait-busy loop, afterward sleep.
151 	 */
152 	for (i = 0; i < 50; i++) {
153 		if (nfp_net_reconfig_check_done(nn, false))
154 			return false;
155 		udelay(4);
156 	}
157 
158 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
159 		usleep_range(250, 500);
160 		timed_out = time_is_before_eq_jiffies(deadline);
161 	}
162 
163 	return timed_out;
164 }
165 
166 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
167 {
168 	if (__nfp_net_reconfig_wait(nn, deadline))
169 		return -EIO;
170 
171 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
172 		return -EIO;
173 
174 	return 0;
175 }
176 
177 static void nfp_net_reconfig_timer(struct timer_list *t)
178 {
179 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
180 
181 	spin_lock_bh(&nn->reconfig_lock);
182 
183 	nn->reconfig_timer_active = false;
184 
185 	/* If sync caller is present it will take over from us */
186 	if (nn->reconfig_sync_present)
187 		goto done;
188 
189 	/* Read reconfig status and report errors */
190 	nfp_net_reconfig_check_done(nn, true);
191 
192 	if (nn->reconfig_posted)
193 		nfp_net_reconfig_start_async(nn, 0);
194 done:
195 	spin_unlock_bh(&nn->reconfig_lock);
196 }
197 
198 /**
199  * nfp_net_reconfig_post() - Post async reconfig request
200  * @nn:      NFP Net device to reconfigure
201  * @update:  The value for the update field in the BAR config
202  *
203  * Record FW reconfiguration request.  Reconfiguration will be kicked off
204  * whenever reconfiguration machinery is idle.  Multiple requests can be
205  * merged together!
206  */
207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
208 {
209 	spin_lock_bh(&nn->reconfig_lock);
210 
211 	/* Sync caller will kick off async reconf when it's done, just post */
212 	if (nn->reconfig_sync_present) {
213 		nn->reconfig_posted |= update;
214 		goto done;
215 	}
216 
217 	/* Opportunistically check if the previous command is done */
218 	if (!nn->reconfig_timer_active ||
219 	    nfp_net_reconfig_check_done(nn, false))
220 		nfp_net_reconfig_start_async(nn, update);
221 	else
222 		nn->reconfig_posted |= update;
223 done:
224 	spin_unlock_bh(&nn->reconfig_lock);
225 }
226 
227 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
228 {
229 	bool cancelled_timer = false;
230 	u32 pre_posted_requests;
231 
232 	spin_lock_bh(&nn->reconfig_lock);
233 
234 	WARN_ON(nn->reconfig_sync_present);
235 	nn->reconfig_sync_present = true;
236 
237 	if (nn->reconfig_timer_active) {
238 		nn->reconfig_timer_active = false;
239 		cancelled_timer = true;
240 	}
241 	pre_posted_requests = nn->reconfig_posted;
242 	nn->reconfig_posted = 0;
243 
244 	spin_unlock_bh(&nn->reconfig_lock);
245 
246 	if (cancelled_timer) {
247 		del_timer_sync(&nn->reconfig_timer);
248 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
249 	}
250 
251 	/* Run the posted reconfigs which were issued before we started */
252 	if (pre_posted_requests) {
253 		nfp_net_reconfig_start(nn, pre_posted_requests);
254 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
255 	}
256 }
257 
258 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
259 {
260 	nfp_net_reconfig_sync_enter(nn);
261 
262 	spin_lock_bh(&nn->reconfig_lock);
263 	nn->reconfig_sync_present = false;
264 	spin_unlock_bh(&nn->reconfig_lock);
265 }
266 
267 /**
268  * __nfp_net_reconfig() - Reconfigure the firmware
269  * @nn:      NFP Net device to reconfigure
270  * @update:  The value for the update field in the BAR config
271  *
272  * Write the update word to the BAR and ping the reconfig queue.  The
273  * poll until the firmware has acknowledged the update by zeroing the
274  * update word.
275  *
276  * Return: Negative errno on error, 0 on success
277  */
278 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
279 {
280 	int ret;
281 
282 	nfp_net_reconfig_sync_enter(nn);
283 
284 	nfp_net_reconfig_start(nn, update);
285 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
286 
287 	spin_lock_bh(&nn->reconfig_lock);
288 
289 	if (nn->reconfig_posted)
290 		nfp_net_reconfig_start_async(nn, 0);
291 
292 	nn->reconfig_sync_present = false;
293 
294 	spin_unlock_bh(&nn->reconfig_lock);
295 
296 	return ret;
297 }
298 
299 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
300 {
301 	int ret;
302 
303 	nn_ctrl_bar_lock(nn);
304 	ret = __nfp_net_reconfig(nn, update);
305 	nn_ctrl_bar_unlock(nn);
306 
307 	return ret;
308 }
309 
310 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
311 {
312 	if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
313 		nn_err(nn, "mailbox too small for %u of data (%u)\n",
314 		       data_size, nn->tlv_caps.mbox_len);
315 		return -EIO;
316 	}
317 
318 	nn_ctrl_bar_lock(nn);
319 	return 0;
320 }
321 
322 /**
323  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
324  * @nn:        NFP Net device to reconfigure
325  * @mbox_cmd:  The value for the mailbox command
326  *
327  * Helper function for mailbox updates
328  *
329  * Return: Negative errno on error, 0 on success
330  */
331 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
332 {
333 	u32 mbox = nn->tlv_caps.mbox_off;
334 	int ret;
335 
336 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
337 
338 	ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
339 	if (ret) {
340 		nn_err(nn, "Mailbox update error\n");
341 		return ret;
342 	}
343 
344 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
345 }
346 
347 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
348 {
349 	u32 mbox = nn->tlv_caps.mbox_off;
350 
351 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
352 
353 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
354 }
355 
356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
357 {
358 	u32 mbox = nn->tlv_caps.mbox_off;
359 
360 	nfp_net_reconfig_wait_posted(nn);
361 
362 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
363 }
364 
365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
366 {
367 	int ret;
368 
369 	ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
370 	nn_ctrl_bar_unlock(nn);
371 	return ret;
372 }
373 
374 /* Interrupt configuration and handling
375  */
376 
377 /**
378  * nfp_net_irq_unmask() - Unmask automasked interrupt
379  * @nn:       NFP Network structure
380  * @entry_nr: MSI-X table entry
381  *
382  * Clear the ICR for the IRQ entry.
383  */
384 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
385 {
386 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
387 	nn_pci_flush(nn);
388 }
389 
390 /**
391  * nfp_net_irqs_alloc() - allocates MSI-X irqs
392  * @pdev:        PCI device structure
393  * @irq_entries: Array to be initialized and used to hold the irq entries
394  * @min_irqs:    Minimal acceptable number of interrupts
395  * @wanted_irqs: Target number of interrupts to allocate
396  *
397  * Return: Number of irqs obtained or 0 on error.
398  */
399 unsigned int
400 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
401 		   unsigned int min_irqs, unsigned int wanted_irqs)
402 {
403 	unsigned int i;
404 	int got_irqs;
405 
406 	for (i = 0; i < wanted_irqs; i++)
407 		irq_entries[i].entry = i;
408 
409 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
410 					 min_irqs, wanted_irqs);
411 	if (got_irqs < 0) {
412 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
413 			min_irqs, wanted_irqs, got_irqs);
414 		return 0;
415 	}
416 
417 	if (got_irqs < wanted_irqs)
418 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
419 			 wanted_irqs, got_irqs);
420 
421 	return got_irqs;
422 }
423 
424 /**
425  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
426  * @nn:		 NFP Network structure
427  * @irq_entries: Table of allocated interrupts
428  * @n:		 Size of @irq_entries (number of entries to grab)
429  *
430  * After interrupts are allocated with nfp_net_irqs_alloc() this function
431  * should be called to assign them to a specific netdev (port).
432  */
433 void
434 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
435 		    unsigned int n)
436 {
437 	struct nfp_net_dp *dp = &nn->dp;
438 
439 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
440 	dp->num_r_vecs = nn->max_r_vecs;
441 
442 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
443 
444 	if (dp->num_rx_rings > dp->num_r_vecs ||
445 	    dp->num_tx_rings > dp->num_r_vecs)
446 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
447 			 dp->num_rx_rings, dp->num_tx_rings,
448 			 dp->num_r_vecs);
449 
450 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
451 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
452 	dp->num_stack_tx_rings = dp->num_tx_rings;
453 }
454 
455 /**
456  * nfp_net_irqs_disable() - Disable interrupts
457  * @pdev:        PCI device structure
458  *
459  * Undoes what @nfp_net_irqs_alloc() does.
460  */
461 void nfp_net_irqs_disable(struct pci_dev *pdev)
462 {
463 	pci_disable_msix(pdev);
464 }
465 
466 /**
467  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
468  * @irq:      Interrupt
469  * @data:     Opaque data structure
470  *
471  * Return: Indicate if the interrupt has been handled.
472  */
473 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
474 {
475 	struct nfp_net_r_vector *r_vec = data;
476 
477 	napi_schedule_irqoff(&r_vec->napi);
478 
479 	/* The FW auto-masks any interrupt, either via the MASK bit in
480 	 * the MSI-X table or via the per entry ICR field.  So there
481 	 * is no need to disable interrupts here.
482 	 */
483 	return IRQ_HANDLED;
484 }
485 
486 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
487 {
488 	struct nfp_net_r_vector *r_vec = data;
489 
490 	tasklet_schedule(&r_vec->tasklet);
491 
492 	return IRQ_HANDLED;
493 }
494 
495 /**
496  * nfp_net_read_link_status() - Reread link status from control BAR
497  * @nn:       NFP Network structure
498  */
499 static void nfp_net_read_link_status(struct nfp_net *nn)
500 {
501 	unsigned long flags;
502 	bool link_up;
503 	u32 sts;
504 
505 	spin_lock_irqsave(&nn->link_status_lock, flags);
506 
507 	sts = nn_readl(nn, NFP_NET_CFG_STS);
508 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
509 
510 	if (nn->link_up == link_up)
511 		goto out;
512 
513 	nn->link_up = link_up;
514 	if (nn->port)
515 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
516 
517 	if (nn->link_up) {
518 		netif_carrier_on(nn->dp.netdev);
519 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
520 	} else {
521 		netif_carrier_off(nn->dp.netdev);
522 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
523 	}
524 out:
525 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
526 }
527 
528 /**
529  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
530  * @irq:      Interrupt
531  * @data:     Opaque data structure
532  *
533  * Return: Indicate if the interrupt has been handled.
534  */
535 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
536 {
537 	struct nfp_net *nn = data;
538 	struct msix_entry *entry;
539 
540 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
541 
542 	nfp_net_read_link_status(nn);
543 
544 	nfp_net_irq_unmask(nn, entry->entry);
545 
546 	return IRQ_HANDLED;
547 }
548 
549 /**
550  * nfp_net_irq_exn() - Interrupt service routine for exceptions
551  * @irq:      Interrupt
552  * @data:     Opaque data structure
553  *
554  * Return: Indicate if the interrupt has been handled.
555  */
556 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
557 {
558 	struct nfp_net *nn = data;
559 
560 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
561 	/* XXX TO BE IMPLEMENTED */
562 	return IRQ_HANDLED;
563 }
564 
565 /**
566  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
567  * @tx_ring:  TX ring structure
568  * @r_vec:    IRQ vector servicing this ring
569  * @idx:      Ring index
570  * @is_xdp:   Is this an XDP TX ring?
571  */
572 static void
573 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
574 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
575 		     bool is_xdp)
576 {
577 	struct nfp_net *nn = r_vec->nfp_net;
578 
579 	tx_ring->idx = idx;
580 	tx_ring->r_vec = r_vec;
581 	tx_ring->is_xdp = is_xdp;
582 	u64_stats_init(&tx_ring->r_vec->tx_sync);
583 
584 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
585 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
586 }
587 
588 /**
589  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
590  * @rx_ring:  RX ring structure
591  * @r_vec:    IRQ vector servicing this ring
592  * @idx:      Ring index
593  */
594 static void
595 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
596 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
597 {
598 	struct nfp_net *nn = r_vec->nfp_net;
599 
600 	rx_ring->idx = idx;
601 	rx_ring->r_vec = r_vec;
602 	u64_stats_init(&rx_ring->r_vec->rx_sync);
603 
604 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
605 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
606 }
607 
608 /**
609  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
610  * @nn:		NFP Network structure
611  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
612  * @format:	printf-style format to construct the interrupt name
613  * @name:	Pointer to allocated space for interrupt name
614  * @name_sz:	Size of space for interrupt name
615  * @vector_idx:	Index of MSI-X vector used for this interrupt
616  * @handler:	IRQ handler to register for this interrupt
617  */
618 static int
619 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
620 			const char *format, char *name, size_t name_sz,
621 			unsigned int vector_idx, irq_handler_t handler)
622 {
623 	struct msix_entry *entry;
624 	int err;
625 
626 	entry = &nn->irq_entries[vector_idx];
627 
628 	snprintf(name, name_sz, format, nfp_net_name(nn));
629 	err = request_irq(entry->vector, handler, 0, name, nn);
630 	if (err) {
631 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
632 		       entry->vector, err);
633 		return err;
634 	}
635 	nn_writeb(nn, ctrl_offset, entry->entry);
636 	nfp_net_irq_unmask(nn, entry->entry);
637 
638 	return 0;
639 }
640 
641 /**
642  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
643  * @nn:		NFP Network structure
644  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
645  * @vector_idx:	Index of MSI-X vector used for this interrupt
646  */
647 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
648 				 unsigned int vector_idx)
649 {
650 	nn_writeb(nn, ctrl_offset, 0xff);
651 	nn_pci_flush(nn);
652 	free_irq(nn->irq_entries[vector_idx].vector, nn);
653 }
654 
655 /* Transmit
656  *
657  * One queue controller peripheral queue is used for transmit.  The
658  * driver en-queues packets for transmit by advancing the write
659  * pointer.  The device indicates that packets have transmitted by
660  * advancing the read pointer.  The driver maintains a local copy of
661  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
662  * keeps @wr_p in sync with the queue controller write pointer and can
663  * determine how many packets have been transmitted by comparing its
664  * copy of the read pointer @rd_p with the read pointer maintained by
665  * the queue controller peripheral.
666  */
667 
668 /**
669  * nfp_net_tx_full() - Check if the TX ring is full
670  * @tx_ring: TX ring to check
671  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
672  *
673  * This function checks, based on the *host copy* of read/write
674  * pointer if a given TX ring is full.  The real TX queue may have
675  * some newly made available slots.
676  *
677  * Return: True if the ring is full.
678  */
679 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
680 {
681 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
682 }
683 
684 /* Wrappers for deciding when to stop and restart TX queues */
685 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
686 {
687 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
688 }
689 
690 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
691 {
692 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
693 }
694 
695 /**
696  * nfp_net_tx_ring_stop() - stop tx ring
697  * @nd_q:    netdev queue
698  * @tx_ring: driver tx queue structure
699  *
700  * Safely stop TX ring.  Remember that while we are running .start_xmit()
701  * someone else may be cleaning the TX ring completions so we need to be
702  * extra careful here.
703  */
704 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
705 				 struct nfp_net_tx_ring *tx_ring)
706 {
707 	netif_tx_stop_queue(nd_q);
708 
709 	/* We can race with the TX completion out of NAPI so recheck */
710 	smp_mb();
711 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
712 		netif_tx_start_queue(nd_q);
713 }
714 
715 /**
716  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
717  * @r_vec: per-ring structure
718  * @txbuf: Pointer to driver soft TX descriptor
719  * @txd: Pointer to HW TX descriptor
720  * @skb: Pointer to SKB
721  * @md_bytes: Prepend length
722  *
723  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
724  * Return error on packet header greater than maximum supported LSO header size.
725  */
726 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
727 			   struct nfp_net_tx_buf *txbuf,
728 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
729 			   u32 md_bytes)
730 {
731 	u32 l3_offset, l4_offset, hdrlen;
732 	u16 mss;
733 
734 	if (!skb_is_gso(skb))
735 		return;
736 
737 	if (!skb->encapsulation) {
738 		l3_offset = skb_network_offset(skb);
739 		l4_offset = skb_transport_offset(skb);
740 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
741 	} else {
742 		l3_offset = skb_inner_network_offset(skb);
743 		l4_offset = skb_inner_transport_offset(skb);
744 		hdrlen = skb_inner_transport_header(skb) - skb->data +
745 			inner_tcp_hdrlen(skb);
746 	}
747 
748 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
749 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
750 
751 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
752 	txd->l3_offset = l3_offset - md_bytes;
753 	txd->l4_offset = l4_offset - md_bytes;
754 	txd->lso_hdrlen = hdrlen - md_bytes;
755 	txd->mss = cpu_to_le16(mss);
756 	txd->flags |= PCIE_DESC_TX_LSO;
757 
758 	u64_stats_update_begin(&r_vec->tx_sync);
759 	r_vec->tx_lso++;
760 	u64_stats_update_end(&r_vec->tx_sync);
761 }
762 
763 /**
764  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
765  * @dp:  NFP Net data path struct
766  * @r_vec: per-ring structure
767  * @txbuf: Pointer to driver soft TX descriptor
768  * @txd: Pointer to TX descriptor
769  * @skb: Pointer to SKB
770  *
771  * This function sets the TX checksum flags in the TX descriptor based
772  * on the configuration and the protocol of the packet to be transmitted.
773  */
774 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
775 			    struct nfp_net_r_vector *r_vec,
776 			    struct nfp_net_tx_buf *txbuf,
777 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
778 {
779 	struct ipv6hdr *ipv6h;
780 	struct iphdr *iph;
781 	u8 l4_hdr;
782 
783 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
784 		return;
785 
786 	if (skb->ip_summed != CHECKSUM_PARTIAL)
787 		return;
788 
789 	txd->flags |= PCIE_DESC_TX_CSUM;
790 	if (skb->encapsulation)
791 		txd->flags |= PCIE_DESC_TX_ENCAP;
792 
793 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
794 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
795 
796 	if (iph->version == 4) {
797 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
798 		l4_hdr = iph->protocol;
799 	} else if (ipv6h->version == 6) {
800 		l4_hdr = ipv6h->nexthdr;
801 	} else {
802 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
803 		return;
804 	}
805 
806 	switch (l4_hdr) {
807 	case IPPROTO_TCP:
808 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
809 		break;
810 	case IPPROTO_UDP:
811 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
812 		break;
813 	default:
814 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
815 		return;
816 	}
817 
818 	u64_stats_update_begin(&r_vec->tx_sync);
819 	if (skb->encapsulation)
820 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
821 	else
822 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
823 	u64_stats_update_end(&r_vec->tx_sync);
824 }
825 
826 static struct sk_buff *
827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
828 	       struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
829 {
830 #ifdef CONFIG_TLS_DEVICE
831 	struct nfp_net_tls_offload_ctx *ntls;
832 	struct sk_buff *nskb;
833 	bool resync_pending;
834 	u32 datalen, seq;
835 
836 	if (likely(!dp->ktls_tx))
837 		return skb;
838 	if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
839 		return skb;
840 
841 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
842 	seq = ntohl(tcp_hdr(skb)->seq);
843 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
844 	resync_pending = tls_offload_tx_resync_pending(skb->sk);
845 	if (unlikely(resync_pending || ntls->next_seq != seq)) {
846 		/* Pure ACK out of order already */
847 		if (!datalen)
848 			return skb;
849 
850 		u64_stats_update_begin(&r_vec->tx_sync);
851 		r_vec->tls_tx_fallback++;
852 		u64_stats_update_end(&r_vec->tx_sync);
853 
854 		nskb = tls_encrypt_skb(skb);
855 		if (!nskb) {
856 			u64_stats_update_begin(&r_vec->tx_sync);
857 			r_vec->tls_tx_no_fallback++;
858 			u64_stats_update_end(&r_vec->tx_sync);
859 			return NULL;
860 		}
861 		/* encryption wasn't necessary */
862 		if (nskb == skb)
863 			return skb;
864 		/* we don't re-check ring space */
865 		if (unlikely(skb_is_nonlinear(nskb))) {
866 			nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
867 			u64_stats_update_begin(&r_vec->tx_sync);
868 			r_vec->tx_errors++;
869 			u64_stats_update_end(&r_vec->tx_sync);
870 			dev_kfree_skb_any(nskb);
871 			return NULL;
872 		}
873 
874 		/* jump forward, a TX may have gotten lost, need to sync TX */
875 		if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
876 			tls_offload_tx_resync_request(nskb->sk, seq,
877 						      ntls->next_seq);
878 
879 		*nr_frags = 0;
880 		return nskb;
881 	}
882 
883 	if (datalen) {
884 		u64_stats_update_begin(&r_vec->tx_sync);
885 		if (!skb_is_gso(skb))
886 			r_vec->hw_tls_tx++;
887 		else
888 			r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
889 		u64_stats_update_end(&r_vec->tx_sync);
890 	}
891 
892 	memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
893 	ntls->next_seq += datalen;
894 #endif
895 	return skb;
896 }
897 
898 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
899 {
900 #ifdef CONFIG_TLS_DEVICE
901 	struct nfp_net_tls_offload_ctx *ntls;
902 	u32 datalen, seq;
903 
904 	if (!tls_handle)
905 		return;
906 	if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
907 		return;
908 
909 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
910 	seq = ntohl(tcp_hdr(skb)->seq);
911 
912 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
913 	if (ntls->next_seq == seq + datalen)
914 		ntls->next_seq = seq;
915 	else
916 		WARN_ON_ONCE(1);
917 #endif
918 }
919 
920 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
921 {
922 	wmb();
923 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
924 	tx_ring->wr_ptr_add = 0;
925 }
926 
927 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
928 {
929 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
930 	unsigned char *data;
931 	u32 meta_id = 0;
932 	int md_bytes;
933 
934 	if (likely(!md_dst && !tls_handle))
935 		return 0;
936 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
937 		if (!tls_handle)
938 			return 0;
939 		md_dst = NULL;
940 	}
941 
942 	md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
943 
944 	if (unlikely(skb_cow_head(skb, md_bytes)))
945 		return -ENOMEM;
946 
947 	meta_id = 0;
948 	data = skb_push(skb, md_bytes) + md_bytes;
949 	if (md_dst) {
950 		data -= 4;
951 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
952 		meta_id = NFP_NET_META_PORTID;
953 	}
954 	if (tls_handle) {
955 		/* conn handle is opaque, we just use u64 to be able to quickly
956 		 * compare it to zero
957 		 */
958 		data -= 8;
959 		memcpy(data, &tls_handle, sizeof(tls_handle));
960 		meta_id <<= NFP_NET_META_FIELD_SIZE;
961 		meta_id |= NFP_NET_META_CONN_HANDLE;
962 	}
963 
964 	data -= 4;
965 	put_unaligned_be32(meta_id, data);
966 
967 	return md_bytes;
968 }
969 
970 /**
971  * nfp_net_tx() - Main transmit entry point
972  * @skb:    SKB to transmit
973  * @netdev: netdev structure
974  *
975  * Return: NETDEV_TX_OK on success.
976  */
977 static netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
978 {
979 	struct nfp_net *nn = netdev_priv(netdev);
980 	const skb_frag_t *frag;
981 	int f, nr_frags, wr_idx, md_bytes;
982 	struct nfp_net_tx_ring *tx_ring;
983 	struct nfp_net_r_vector *r_vec;
984 	struct nfp_net_tx_buf *txbuf;
985 	struct nfp_net_tx_desc *txd;
986 	struct netdev_queue *nd_q;
987 	struct nfp_net_dp *dp;
988 	dma_addr_t dma_addr;
989 	unsigned int fsize;
990 	u64 tls_handle = 0;
991 	u16 qidx;
992 
993 	dp = &nn->dp;
994 	qidx = skb_get_queue_mapping(skb);
995 	tx_ring = &dp->tx_rings[qidx];
996 	r_vec = tx_ring->r_vec;
997 
998 	nr_frags = skb_shinfo(skb)->nr_frags;
999 
1000 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
1001 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1002 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
1003 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1004 		netif_tx_stop_queue(nd_q);
1005 		nfp_net_tx_xmit_more_flush(tx_ring);
1006 		u64_stats_update_begin(&r_vec->tx_sync);
1007 		r_vec->tx_busy++;
1008 		u64_stats_update_end(&r_vec->tx_sync);
1009 		return NETDEV_TX_BUSY;
1010 	}
1011 
1012 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1013 	if (unlikely(!skb)) {
1014 		nfp_net_tx_xmit_more_flush(tx_ring);
1015 		return NETDEV_TX_OK;
1016 	}
1017 
1018 	md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1019 	if (unlikely(md_bytes < 0))
1020 		goto err_flush;
1021 
1022 	/* Start with the head skbuf */
1023 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1024 				  DMA_TO_DEVICE);
1025 	if (dma_mapping_error(dp->dev, dma_addr))
1026 		goto err_dma_err;
1027 
1028 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1029 
1030 	/* Stash the soft descriptor of the head then initialize it */
1031 	txbuf = &tx_ring->txbufs[wr_idx];
1032 	txbuf->skb = skb;
1033 	txbuf->dma_addr = dma_addr;
1034 	txbuf->fidx = -1;
1035 	txbuf->pkt_cnt = 1;
1036 	txbuf->real_len = skb->len;
1037 
1038 	/* Build TX descriptor */
1039 	txd = &tx_ring->txds[wr_idx];
1040 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1041 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1042 	nfp_desc_set_dma_addr(txd, dma_addr);
1043 	txd->data_len = cpu_to_le16(skb->len);
1044 
1045 	txd->flags = 0;
1046 	txd->mss = 0;
1047 	txd->lso_hdrlen = 0;
1048 
1049 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1050 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1051 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1052 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1053 		txd->flags |= PCIE_DESC_TX_VLAN;
1054 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1055 	}
1056 
1057 	/* Gather DMA */
1058 	if (nr_frags > 0) {
1059 		__le64 second_half;
1060 
1061 		/* all descs must match except for in addr, length and eop */
1062 		second_half = txd->vals8[1];
1063 
1064 		for (f = 0; f < nr_frags; f++) {
1065 			frag = &skb_shinfo(skb)->frags[f];
1066 			fsize = skb_frag_size(frag);
1067 
1068 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1069 						    fsize, DMA_TO_DEVICE);
1070 			if (dma_mapping_error(dp->dev, dma_addr))
1071 				goto err_unmap;
1072 
1073 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
1074 			tx_ring->txbufs[wr_idx].skb = skb;
1075 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1076 			tx_ring->txbufs[wr_idx].fidx = f;
1077 
1078 			txd = &tx_ring->txds[wr_idx];
1079 			txd->dma_len = cpu_to_le16(fsize);
1080 			nfp_desc_set_dma_addr(txd, dma_addr);
1081 			txd->offset_eop = md_bytes |
1082 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1083 			txd->vals8[1] = second_half;
1084 		}
1085 
1086 		u64_stats_update_begin(&r_vec->tx_sync);
1087 		r_vec->tx_gather++;
1088 		u64_stats_update_end(&r_vec->tx_sync);
1089 	}
1090 
1091 	skb_tx_timestamp(skb);
1092 
1093 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1094 
1095 	tx_ring->wr_p += nr_frags + 1;
1096 	if (nfp_net_tx_ring_should_stop(tx_ring))
1097 		nfp_net_tx_ring_stop(nd_q, tx_ring);
1098 
1099 	tx_ring->wr_ptr_add += nr_frags + 1;
1100 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1101 		nfp_net_tx_xmit_more_flush(tx_ring);
1102 
1103 	return NETDEV_TX_OK;
1104 
1105 err_unmap:
1106 	while (--f >= 0) {
1107 		frag = &skb_shinfo(skb)->frags[f];
1108 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1109 			       skb_frag_size(frag), DMA_TO_DEVICE);
1110 		tx_ring->txbufs[wr_idx].skb = NULL;
1111 		tx_ring->txbufs[wr_idx].dma_addr = 0;
1112 		tx_ring->txbufs[wr_idx].fidx = -2;
1113 		wr_idx = wr_idx - 1;
1114 		if (wr_idx < 0)
1115 			wr_idx += tx_ring->cnt;
1116 	}
1117 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1118 			 skb_headlen(skb), DMA_TO_DEVICE);
1119 	tx_ring->txbufs[wr_idx].skb = NULL;
1120 	tx_ring->txbufs[wr_idx].dma_addr = 0;
1121 	tx_ring->txbufs[wr_idx].fidx = -2;
1122 err_dma_err:
1123 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1124 err_flush:
1125 	nfp_net_tx_xmit_more_flush(tx_ring);
1126 	u64_stats_update_begin(&r_vec->tx_sync);
1127 	r_vec->tx_errors++;
1128 	u64_stats_update_end(&r_vec->tx_sync);
1129 	nfp_net_tls_tx_undo(skb, tls_handle);
1130 	dev_kfree_skb_any(skb);
1131 	return NETDEV_TX_OK;
1132 }
1133 
1134 /**
1135  * nfp_net_tx_complete() - Handled completed TX packets
1136  * @tx_ring:	TX ring structure
1137  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
1138  */
1139 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1140 {
1141 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1142 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1143 	struct netdev_queue *nd_q;
1144 	u32 done_pkts = 0, done_bytes = 0;
1145 	u32 qcp_rd_p;
1146 	int todo;
1147 
1148 	if (tx_ring->wr_p == tx_ring->rd_p)
1149 		return;
1150 
1151 	/* Work out how many descriptors have been transmitted */
1152 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1153 
1154 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1155 		return;
1156 
1157 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1158 
1159 	while (todo--) {
1160 		const skb_frag_t *frag;
1161 		struct nfp_net_tx_buf *tx_buf;
1162 		struct sk_buff *skb;
1163 		int fidx, nr_frags;
1164 		int idx;
1165 
1166 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
1167 		tx_buf = &tx_ring->txbufs[idx];
1168 
1169 		skb = tx_buf->skb;
1170 		if (!skb)
1171 			continue;
1172 
1173 		nr_frags = skb_shinfo(skb)->nr_frags;
1174 		fidx = tx_buf->fidx;
1175 
1176 		if (fidx == -1) {
1177 			/* unmap head */
1178 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1179 					 skb_headlen(skb), DMA_TO_DEVICE);
1180 
1181 			done_pkts += tx_buf->pkt_cnt;
1182 			done_bytes += tx_buf->real_len;
1183 		} else {
1184 			/* unmap fragment */
1185 			frag = &skb_shinfo(skb)->frags[fidx];
1186 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1187 				       skb_frag_size(frag), DMA_TO_DEVICE);
1188 		}
1189 
1190 		/* check for last gather fragment */
1191 		if (fidx == nr_frags - 1)
1192 			napi_consume_skb(skb, budget);
1193 
1194 		tx_buf->dma_addr = 0;
1195 		tx_buf->skb = NULL;
1196 		tx_buf->fidx = -2;
1197 	}
1198 
1199 	tx_ring->qcp_rd_p = qcp_rd_p;
1200 
1201 	u64_stats_update_begin(&r_vec->tx_sync);
1202 	r_vec->tx_bytes += done_bytes;
1203 	r_vec->tx_pkts += done_pkts;
1204 	u64_stats_update_end(&r_vec->tx_sync);
1205 
1206 	if (!dp->netdev)
1207 		return;
1208 
1209 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1210 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1211 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1212 		/* Make sure TX thread will see updated tx_ring->rd_p */
1213 		smp_mb();
1214 
1215 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1216 			netif_tx_wake_queue(nd_q);
1217 	}
1218 
1219 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1220 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1221 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1222 }
1223 
1224 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1225 {
1226 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1227 	u32 done_pkts = 0, done_bytes = 0;
1228 	bool done_all;
1229 	int idx, todo;
1230 	u32 qcp_rd_p;
1231 
1232 	/* Work out how many descriptors have been transmitted */
1233 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1234 
1235 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1236 		return true;
1237 
1238 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1239 
1240 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1241 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1242 
1243 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1244 
1245 	done_pkts = todo;
1246 	while (todo--) {
1247 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1248 		tx_ring->rd_p++;
1249 
1250 		done_bytes += tx_ring->txbufs[idx].real_len;
1251 	}
1252 
1253 	u64_stats_update_begin(&r_vec->tx_sync);
1254 	r_vec->tx_bytes += done_bytes;
1255 	r_vec->tx_pkts += done_pkts;
1256 	u64_stats_update_end(&r_vec->tx_sync);
1257 
1258 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1259 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1260 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1261 
1262 	return done_all;
1263 }
1264 
1265 /**
1266  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1267  * @dp:		NFP Net data path struct
1268  * @tx_ring:	TX ring structure
1269  *
1270  * Assumes that the device is stopped, must be idempotent.
1271  */
1272 static void
1273 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1274 {
1275 	const skb_frag_t *frag;
1276 	struct netdev_queue *nd_q;
1277 
1278 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1279 		struct nfp_net_tx_buf *tx_buf;
1280 		struct sk_buff *skb;
1281 		int idx, nr_frags;
1282 
1283 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1284 		tx_buf = &tx_ring->txbufs[idx];
1285 
1286 		skb = tx_ring->txbufs[idx].skb;
1287 		nr_frags = skb_shinfo(skb)->nr_frags;
1288 
1289 		if (tx_buf->fidx == -1) {
1290 			/* unmap head */
1291 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1292 					 skb_headlen(skb), DMA_TO_DEVICE);
1293 		} else {
1294 			/* unmap fragment */
1295 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1296 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1297 				       skb_frag_size(frag), DMA_TO_DEVICE);
1298 		}
1299 
1300 		/* check for last gather fragment */
1301 		if (tx_buf->fidx == nr_frags - 1)
1302 			dev_kfree_skb_any(skb);
1303 
1304 		tx_buf->dma_addr = 0;
1305 		tx_buf->skb = NULL;
1306 		tx_buf->fidx = -2;
1307 
1308 		tx_ring->qcp_rd_p++;
1309 		tx_ring->rd_p++;
1310 	}
1311 
1312 	memset(tx_ring->txds, 0, tx_ring->size);
1313 	tx_ring->wr_p = 0;
1314 	tx_ring->rd_p = 0;
1315 	tx_ring->qcp_rd_p = 0;
1316 	tx_ring->wr_ptr_add = 0;
1317 
1318 	if (tx_ring->is_xdp || !dp->netdev)
1319 		return;
1320 
1321 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1322 	netdev_tx_reset_queue(nd_q);
1323 }
1324 
1325 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1326 {
1327 	struct nfp_net *nn = netdev_priv(netdev);
1328 
1329 	nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
1330 }
1331 
1332 /* Receive processing
1333  */
1334 static unsigned int
1335 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1336 {
1337 	unsigned int fl_bufsz;
1338 
1339 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1340 	fl_bufsz += dp->rx_dma_off;
1341 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1342 		fl_bufsz += NFP_NET_MAX_PREPEND;
1343 	else
1344 		fl_bufsz += dp->rx_offset;
1345 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1346 
1347 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1348 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1349 
1350 	return fl_bufsz;
1351 }
1352 
1353 static void
1354 nfp_net_free_frag(void *frag, bool xdp)
1355 {
1356 	if (!xdp)
1357 		skb_free_frag(frag);
1358 	else
1359 		__free_page(virt_to_page(frag));
1360 }
1361 
1362 /**
1363  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1364  * @dp:		NFP Net data path struct
1365  * @dma_addr:	Pointer to storage for DMA address (output param)
1366  *
1367  * This function will allcate a new page frag, map it for DMA.
1368  *
1369  * Return: allocated page frag or NULL on failure.
1370  */
1371 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1372 {
1373 	void *frag;
1374 
1375 	if (!dp->xdp_prog) {
1376 		frag = netdev_alloc_frag(dp->fl_bufsz);
1377 	} else {
1378 		struct page *page;
1379 
1380 		page = alloc_page(GFP_KERNEL);
1381 		frag = page ? page_address(page) : NULL;
1382 	}
1383 	if (!frag) {
1384 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1385 		return NULL;
1386 	}
1387 
1388 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1389 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1390 		nfp_net_free_frag(frag, dp->xdp_prog);
1391 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1392 		return NULL;
1393 	}
1394 
1395 	return frag;
1396 }
1397 
1398 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1399 {
1400 	void *frag;
1401 
1402 	if (!dp->xdp_prog) {
1403 		frag = napi_alloc_frag(dp->fl_bufsz);
1404 		if (unlikely(!frag))
1405 			return NULL;
1406 	} else {
1407 		struct page *page;
1408 
1409 		page = dev_alloc_page();
1410 		if (unlikely(!page))
1411 			return NULL;
1412 		frag = page_address(page);
1413 	}
1414 
1415 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1416 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1417 		nfp_net_free_frag(frag, dp->xdp_prog);
1418 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1419 		return NULL;
1420 	}
1421 
1422 	return frag;
1423 }
1424 
1425 /**
1426  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1427  * @dp:		NFP Net data path struct
1428  * @rx_ring:	RX ring structure
1429  * @frag:	page fragment buffer
1430  * @dma_addr:	DMA address of skb mapping
1431  */
1432 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1433 				struct nfp_net_rx_ring *rx_ring,
1434 				void *frag, dma_addr_t dma_addr)
1435 {
1436 	unsigned int wr_idx;
1437 
1438 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1439 
1440 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1441 
1442 	/* Stash SKB and DMA address away */
1443 	rx_ring->rxbufs[wr_idx].frag = frag;
1444 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1445 
1446 	/* Fill freelist descriptor */
1447 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1448 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1449 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1450 			      dma_addr + dp->rx_dma_off);
1451 
1452 	rx_ring->wr_p++;
1453 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1454 		/* Update write pointer of the freelist queue. Make
1455 		 * sure all writes are flushed before telling the hardware.
1456 		 */
1457 		wmb();
1458 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1459 	}
1460 }
1461 
1462 /**
1463  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1464  * @rx_ring:	RX ring structure
1465  *
1466  * Assumes that the device is stopped, must be idempotent.
1467  */
1468 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1469 {
1470 	unsigned int wr_idx, last_idx;
1471 
1472 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1473 	 * kept at cnt - 1 FL bufs.
1474 	 */
1475 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1476 		return;
1477 
1478 	/* Move the empty entry to the end of the list */
1479 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1480 	last_idx = rx_ring->cnt - 1;
1481 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1482 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1483 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1484 	rx_ring->rxbufs[last_idx].frag = NULL;
1485 
1486 	memset(rx_ring->rxds, 0, rx_ring->size);
1487 	rx_ring->wr_p = 0;
1488 	rx_ring->rd_p = 0;
1489 }
1490 
1491 /**
1492  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1493  * @dp:		NFP Net data path struct
1494  * @rx_ring:	RX ring to remove buffers from
1495  *
1496  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1497  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1498  * to restore required ring geometry.
1499  */
1500 static void
1501 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1502 			  struct nfp_net_rx_ring *rx_ring)
1503 {
1504 	unsigned int i;
1505 
1506 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1507 		/* NULL skb can only happen when initial filling of the ring
1508 		 * fails to allocate enough buffers and calls here to free
1509 		 * already allocated ones.
1510 		 */
1511 		if (!rx_ring->rxbufs[i].frag)
1512 			continue;
1513 
1514 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1515 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1516 		rx_ring->rxbufs[i].dma_addr = 0;
1517 		rx_ring->rxbufs[i].frag = NULL;
1518 	}
1519 }
1520 
1521 /**
1522  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1523  * @dp:		NFP Net data path struct
1524  * @rx_ring:	RX ring to remove buffers from
1525  */
1526 static int
1527 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1528 			   struct nfp_net_rx_ring *rx_ring)
1529 {
1530 	struct nfp_net_rx_buf *rxbufs;
1531 	unsigned int i;
1532 
1533 	rxbufs = rx_ring->rxbufs;
1534 
1535 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1536 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1537 		if (!rxbufs[i].frag) {
1538 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1539 			return -ENOMEM;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1548  * @dp:	     NFP Net data path struct
1549  * @rx_ring: RX ring to fill
1550  */
1551 static void
1552 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1553 			      struct nfp_net_rx_ring *rx_ring)
1554 {
1555 	unsigned int i;
1556 
1557 	for (i = 0; i < rx_ring->cnt - 1; i++)
1558 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1559 				    rx_ring->rxbufs[i].dma_addr);
1560 }
1561 
1562 /**
1563  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1564  * @flags: RX descriptor flags field in CPU byte order
1565  */
1566 static int nfp_net_rx_csum_has_errors(u16 flags)
1567 {
1568 	u16 csum_all_checked, csum_all_ok;
1569 
1570 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1571 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1572 
1573 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1574 }
1575 
1576 /**
1577  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1578  * @dp:  NFP Net data path struct
1579  * @r_vec: per-ring structure
1580  * @rxd: Pointer to RX descriptor
1581  * @meta: Parsed metadata prepend
1582  * @skb: Pointer to SKB
1583  */
1584 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1585 			    struct nfp_net_r_vector *r_vec,
1586 			    struct nfp_net_rx_desc *rxd,
1587 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1588 {
1589 	skb_checksum_none_assert(skb);
1590 
1591 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1592 		return;
1593 
1594 	if (meta->csum_type) {
1595 		skb->ip_summed = meta->csum_type;
1596 		skb->csum = meta->csum;
1597 		u64_stats_update_begin(&r_vec->rx_sync);
1598 		r_vec->hw_csum_rx_complete++;
1599 		u64_stats_update_end(&r_vec->rx_sync);
1600 		return;
1601 	}
1602 
1603 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1604 		u64_stats_update_begin(&r_vec->rx_sync);
1605 		r_vec->hw_csum_rx_error++;
1606 		u64_stats_update_end(&r_vec->rx_sync);
1607 		return;
1608 	}
1609 
1610 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1611 	 * L4 headers were successfully parsed. FW will always report zero UDP
1612 	 * checksum as CSUM_OK.
1613 	 */
1614 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1615 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1616 		__skb_incr_checksum_unnecessary(skb);
1617 		u64_stats_update_begin(&r_vec->rx_sync);
1618 		r_vec->hw_csum_rx_ok++;
1619 		u64_stats_update_end(&r_vec->rx_sync);
1620 	}
1621 
1622 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1623 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1624 		__skb_incr_checksum_unnecessary(skb);
1625 		u64_stats_update_begin(&r_vec->rx_sync);
1626 		r_vec->hw_csum_rx_inner_ok++;
1627 		u64_stats_update_end(&r_vec->rx_sync);
1628 	}
1629 }
1630 
1631 static void
1632 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1633 		 unsigned int type, __be32 *hash)
1634 {
1635 	if (!(netdev->features & NETIF_F_RXHASH))
1636 		return;
1637 
1638 	switch (type) {
1639 	case NFP_NET_RSS_IPV4:
1640 	case NFP_NET_RSS_IPV6:
1641 	case NFP_NET_RSS_IPV6_EX:
1642 		meta->hash_type = PKT_HASH_TYPE_L3;
1643 		break;
1644 	default:
1645 		meta->hash_type = PKT_HASH_TYPE_L4;
1646 		break;
1647 	}
1648 
1649 	meta->hash = get_unaligned_be32(hash);
1650 }
1651 
1652 static void
1653 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1654 		      void *data, struct nfp_net_rx_desc *rxd)
1655 {
1656 	struct nfp_net_rx_hash *rx_hash = data;
1657 
1658 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1659 		return;
1660 
1661 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1662 			 &rx_hash->hash);
1663 }
1664 
1665 static bool
1666 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1667 		   void *data, void *pkt, unsigned int pkt_len, int meta_len)
1668 {
1669 	u32 meta_info;
1670 
1671 	meta_info = get_unaligned_be32(data);
1672 	data += 4;
1673 
1674 	while (meta_info) {
1675 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1676 		case NFP_NET_META_HASH:
1677 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1678 			nfp_net_set_hash(netdev, meta,
1679 					 meta_info & NFP_NET_META_FIELD_MASK,
1680 					 (__be32 *)data);
1681 			data += 4;
1682 			break;
1683 		case NFP_NET_META_MARK:
1684 			meta->mark = get_unaligned_be32(data);
1685 			data += 4;
1686 			break;
1687 		case NFP_NET_META_PORTID:
1688 			meta->portid = get_unaligned_be32(data);
1689 			data += 4;
1690 			break;
1691 		case NFP_NET_META_CSUM:
1692 			meta->csum_type = CHECKSUM_COMPLETE;
1693 			meta->csum =
1694 				(__force __wsum)__get_unaligned_cpu32(data);
1695 			data += 4;
1696 			break;
1697 		case NFP_NET_META_RESYNC_INFO:
1698 			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
1699 						      pkt_len))
1700 				return NULL;
1701 			data += sizeof(struct nfp_net_tls_resync_req);
1702 			break;
1703 		default:
1704 			return true;
1705 		}
1706 
1707 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1708 	}
1709 
1710 	return data != pkt;
1711 }
1712 
1713 static void
1714 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1715 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1716 		struct sk_buff *skb)
1717 {
1718 	u64_stats_update_begin(&r_vec->rx_sync);
1719 	r_vec->rx_drops++;
1720 	/* If we have both skb and rxbuf the replacement buffer allocation
1721 	 * must have failed, count this as an alloc failure.
1722 	 */
1723 	if (skb && rxbuf)
1724 		r_vec->rx_replace_buf_alloc_fail++;
1725 	u64_stats_update_end(&r_vec->rx_sync);
1726 
1727 	/* skb is build based on the frag, free_skb() would free the frag
1728 	 * so to be able to reuse it we need an extra ref.
1729 	 */
1730 	if (skb && rxbuf && skb->head == rxbuf->frag)
1731 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1732 	if (rxbuf)
1733 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1734 	if (skb)
1735 		dev_kfree_skb_any(skb);
1736 }
1737 
1738 static bool
1739 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1740 		   struct nfp_net_tx_ring *tx_ring,
1741 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1742 		   unsigned int pkt_len, bool *completed)
1743 {
1744 	unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
1745 	struct nfp_net_tx_buf *txbuf;
1746 	struct nfp_net_tx_desc *txd;
1747 	int wr_idx;
1748 
1749 	/* Reject if xdp_adjust_tail grow packet beyond DMA area */
1750 	if (pkt_len + dma_off > dma_map_sz)
1751 		return false;
1752 
1753 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1754 		if (!*completed) {
1755 			nfp_net_xdp_complete(tx_ring);
1756 			*completed = true;
1757 		}
1758 
1759 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1760 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1761 					NULL);
1762 			return false;
1763 		}
1764 	}
1765 
1766 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1767 
1768 	/* Stash the soft descriptor of the head then initialize it */
1769 	txbuf = &tx_ring->txbufs[wr_idx];
1770 
1771 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1772 
1773 	txbuf->frag = rxbuf->frag;
1774 	txbuf->dma_addr = rxbuf->dma_addr;
1775 	txbuf->fidx = -1;
1776 	txbuf->pkt_cnt = 1;
1777 	txbuf->real_len = pkt_len;
1778 
1779 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1780 				   pkt_len, DMA_BIDIRECTIONAL);
1781 
1782 	/* Build TX descriptor */
1783 	txd = &tx_ring->txds[wr_idx];
1784 	txd->offset_eop = PCIE_DESC_TX_EOP;
1785 	txd->dma_len = cpu_to_le16(pkt_len);
1786 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1787 	txd->data_len = cpu_to_le16(pkt_len);
1788 
1789 	txd->flags = 0;
1790 	txd->mss = 0;
1791 	txd->lso_hdrlen = 0;
1792 
1793 	tx_ring->wr_p++;
1794 	tx_ring->wr_ptr_add++;
1795 	return true;
1796 }
1797 
1798 /**
1799  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1800  * @rx_ring:   RX ring to receive from
1801  * @budget:    NAPI budget
1802  *
1803  * Note, this function is separated out from the napi poll function to
1804  * more cleanly separate packet receive code from other bookkeeping
1805  * functions performed in the napi poll function.
1806  *
1807  * Return: Number of packets received.
1808  */
1809 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1810 {
1811 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1812 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1813 	struct nfp_net_tx_ring *tx_ring;
1814 	struct bpf_prog *xdp_prog;
1815 	bool xdp_tx_cmpl = false;
1816 	unsigned int true_bufsz;
1817 	struct sk_buff *skb;
1818 	int pkts_polled = 0;
1819 	struct xdp_buff xdp;
1820 	int idx;
1821 
1822 	xdp_prog = READ_ONCE(dp->xdp_prog);
1823 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1824 	xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
1825 		      &rx_ring->xdp_rxq);
1826 	tx_ring = r_vec->xdp_ring;
1827 
1828 	while (pkts_polled < budget) {
1829 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1830 		struct nfp_net_rx_buf *rxbuf;
1831 		struct nfp_net_rx_desc *rxd;
1832 		struct nfp_meta_parsed meta;
1833 		bool redir_egress = false;
1834 		struct net_device *netdev;
1835 		dma_addr_t new_dma_addr;
1836 		u32 meta_len_xdp = 0;
1837 		void *new_frag;
1838 
1839 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1840 
1841 		rxd = &rx_ring->rxds[idx];
1842 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1843 			break;
1844 
1845 		/* Memory barrier to ensure that we won't do other reads
1846 		 * before the DD bit.
1847 		 */
1848 		dma_rmb();
1849 
1850 		memset(&meta, 0, sizeof(meta));
1851 
1852 		rx_ring->rd_p++;
1853 		pkts_polled++;
1854 
1855 		rxbuf =	&rx_ring->rxbufs[idx];
1856 		/*         < meta_len >
1857 		 *  <-- [rx_offset] -->
1858 		 *  ---------------------------------------------------------
1859 		 * | [XX] |  metadata  |             packet           | XXXX |
1860 		 *  ---------------------------------------------------------
1861 		 *         <---------------- data_len --------------->
1862 		 *
1863 		 * The rx_offset is fixed for all packets, the meta_len can vary
1864 		 * on a packet by packet basis. If rx_offset is set to zero
1865 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1866 		 * buffer and is immediately followed by the packet (no [XX]).
1867 		 */
1868 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1869 		data_len = le16_to_cpu(rxd->rxd.data_len);
1870 		pkt_len = data_len - meta_len;
1871 
1872 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1873 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1874 			pkt_off += meta_len;
1875 		else
1876 			pkt_off += dp->rx_offset;
1877 		meta_off = pkt_off - meta_len;
1878 
1879 		/* Stats update */
1880 		u64_stats_update_begin(&r_vec->rx_sync);
1881 		r_vec->rx_pkts++;
1882 		r_vec->rx_bytes += pkt_len;
1883 		u64_stats_update_end(&r_vec->rx_sync);
1884 
1885 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1886 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1887 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1888 				   meta_len);
1889 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1890 			continue;
1891 		}
1892 
1893 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1894 					data_len);
1895 
1896 		if (!dp->chained_metadata_format) {
1897 			nfp_net_set_hash_desc(dp->netdev, &meta,
1898 					      rxbuf->frag + meta_off, rxd);
1899 		} else if (meta_len) {
1900 			if (unlikely(nfp_net_parse_meta(dp->netdev, &meta,
1901 							rxbuf->frag + meta_off,
1902 							rxbuf->frag + pkt_off,
1903 							pkt_len, meta_len))) {
1904 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1905 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1906 						NULL);
1907 				continue;
1908 			}
1909 		}
1910 
1911 		if (xdp_prog && !meta.portid) {
1912 			void *orig_data = rxbuf->frag + pkt_off;
1913 			unsigned int dma_off;
1914 			int act;
1915 
1916 			xdp_prepare_buff(&xdp,
1917 					 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
1918 					 pkt_off - NFP_NET_RX_BUF_HEADROOM,
1919 					 pkt_len, true);
1920 
1921 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1922 
1923 			pkt_len = xdp.data_end - xdp.data;
1924 			pkt_off += xdp.data - orig_data;
1925 
1926 			switch (act) {
1927 			case XDP_PASS:
1928 				meta_len_xdp = xdp.data - xdp.data_meta;
1929 				break;
1930 			case XDP_TX:
1931 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1932 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1933 								 tx_ring, rxbuf,
1934 								 dma_off,
1935 								 pkt_len,
1936 								 &xdp_tx_cmpl)))
1937 					trace_xdp_exception(dp->netdev,
1938 							    xdp_prog, act);
1939 				continue;
1940 			default:
1941 				bpf_warn_invalid_xdp_action(act);
1942 				fallthrough;
1943 			case XDP_ABORTED:
1944 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1945 				fallthrough;
1946 			case XDP_DROP:
1947 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1948 						    rxbuf->dma_addr);
1949 				continue;
1950 			}
1951 		}
1952 
1953 		if (likely(!meta.portid)) {
1954 			netdev = dp->netdev;
1955 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1956 			struct nfp_net *nn = netdev_priv(dp->netdev);
1957 
1958 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1959 					    pkt_len);
1960 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1961 					    rxbuf->dma_addr);
1962 			continue;
1963 		} else {
1964 			struct nfp_net *nn;
1965 
1966 			nn = netdev_priv(dp->netdev);
1967 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1968 						 &redir_egress);
1969 			if (unlikely(!netdev)) {
1970 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1971 						NULL);
1972 				continue;
1973 			}
1974 
1975 			if (nfp_netdev_is_nfp_repr(netdev))
1976 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1977 		}
1978 
1979 		skb = build_skb(rxbuf->frag, true_bufsz);
1980 		if (unlikely(!skb)) {
1981 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1982 			continue;
1983 		}
1984 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1985 		if (unlikely(!new_frag)) {
1986 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1987 			continue;
1988 		}
1989 
1990 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1991 
1992 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1993 
1994 		skb_reserve(skb, pkt_off);
1995 		skb_put(skb, pkt_len);
1996 
1997 		skb->mark = meta.mark;
1998 		skb_set_hash(skb, meta.hash, meta.hash_type);
1999 
2000 		skb_record_rx_queue(skb, rx_ring->idx);
2001 		skb->protocol = eth_type_trans(skb, netdev);
2002 
2003 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
2004 
2005 #ifdef CONFIG_TLS_DEVICE
2006 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
2007 			skb->decrypted = true;
2008 			u64_stats_update_begin(&r_vec->rx_sync);
2009 			r_vec->hw_tls_rx++;
2010 			u64_stats_update_end(&r_vec->rx_sync);
2011 		}
2012 #endif
2013 
2014 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2015 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2016 					       le16_to_cpu(rxd->rxd.vlan));
2017 		if (meta_len_xdp)
2018 			skb_metadata_set(skb, meta_len_xdp);
2019 
2020 		if (likely(!redir_egress)) {
2021 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
2022 		} else {
2023 			skb->dev = netdev;
2024 			skb_reset_network_header(skb);
2025 			__skb_push(skb, ETH_HLEN);
2026 			dev_queue_xmit(skb);
2027 		}
2028 	}
2029 
2030 	if (xdp_prog) {
2031 		if (tx_ring->wr_ptr_add)
2032 			nfp_net_tx_xmit_more_flush(tx_ring);
2033 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2034 			 !xdp_tx_cmpl)
2035 			if (!nfp_net_xdp_complete(tx_ring))
2036 				pkts_polled = budget;
2037 	}
2038 
2039 	return pkts_polled;
2040 }
2041 
2042 /**
2043  * nfp_net_poll() - napi poll function
2044  * @napi:    NAPI structure
2045  * @budget:  NAPI budget
2046  *
2047  * Return: number of packets polled.
2048  */
2049 static int nfp_net_poll(struct napi_struct *napi, int budget)
2050 {
2051 	struct nfp_net_r_vector *r_vec =
2052 		container_of(napi, struct nfp_net_r_vector, napi);
2053 	unsigned int pkts_polled = 0;
2054 
2055 	if (r_vec->tx_ring)
2056 		nfp_net_tx_complete(r_vec->tx_ring, budget);
2057 	if (r_vec->rx_ring)
2058 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2059 
2060 	if (pkts_polled < budget)
2061 		if (napi_complete_done(napi, pkts_polled))
2062 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2063 
2064 	return pkts_polled;
2065 }
2066 
2067 /* Control device data path
2068  */
2069 
2070 static bool
2071 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2072 		struct sk_buff *skb, bool old)
2073 {
2074 	unsigned int real_len = skb->len, meta_len = 0;
2075 	struct nfp_net_tx_ring *tx_ring;
2076 	struct nfp_net_tx_buf *txbuf;
2077 	struct nfp_net_tx_desc *txd;
2078 	struct nfp_net_dp *dp;
2079 	dma_addr_t dma_addr;
2080 	int wr_idx;
2081 
2082 	dp = &r_vec->nfp_net->dp;
2083 	tx_ring = r_vec->tx_ring;
2084 
2085 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2086 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2087 		goto err_free;
2088 	}
2089 
2090 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2091 		u64_stats_update_begin(&r_vec->tx_sync);
2092 		r_vec->tx_busy++;
2093 		u64_stats_update_end(&r_vec->tx_sync);
2094 		if (!old)
2095 			__skb_queue_tail(&r_vec->queue, skb);
2096 		else
2097 			__skb_queue_head(&r_vec->queue, skb);
2098 		return true;
2099 	}
2100 
2101 	if (nfp_app_ctrl_has_meta(nn->app)) {
2102 		if (unlikely(skb_headroom(skb) < 8)) {
2103 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2104 			goto err_free;
2105 		}
2106 		meta_len = 8;
2107 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2108 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2109 	}
2110 
2111 	/* Start with the head skbuf */
2112 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2113 				  DMA_TO_DEVICE);
2114 	if (dma_mapping_error(dp->dev, dma_addr))
2115 		goto err_dma_warn;
2116 
2117 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2118 
2119 	/* Stash the soft descriptor of the head then initialize it */
2120 	txbuf = &tx_ring->txbufs[wr_idx];
2121 	txbuf->skb = skb;
2122 	txbuf->dma_addr = dma_addr;
2123 	txbuf->fidx = -1;
2124 	txbuf->pkt_cnt = 1;
2125 	txbuf->real_len = real_len;
2126 
2127 	/* Build TX descriptor */
2128 	txd = &tx_ring->txds[wr_idx];
2129 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2130 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
2131 	nfp_desc_set_dma_addr(txd, dma_addr);
2132 	txd->data_len = cpu_to_le16(skb->len);
2133 
2134 	txd->flags = 0;
2135 	txd->mss = 0;
2136 	txd->lso_hdrlen = 0;
2137 
2138 	tx_ring->wr_p++;
2139 	tx_ring->wr_ptr_add++;
2140 	nfp_net_tx_xmit_more_flush(tx_ring);
2141 
2142 	return false;
2143 
2144 err_dma_warn:
2145 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2146 err_free:
2147 	u64_stats_update_begin(&r_vec->tx_sync);
2148 	r_vec->tx_errors++;
2149 	u64_stats_update_end(&r_vec->tx_sync);
2150 	dev_kfree_skb_any(skb);
2151 	return false;
2152 }
2153 
2154 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2155 {
2156 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2157 
2158 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2159 }
2160 
2161 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2162 {
2163 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2164 	bool ret;
2165 
2166 	spin_lock_bh(&r_vec->lock);
2167 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2168 	spin_unlock_bh(&r_vec->lock);
2169 
2170 	return ret;
2171 }
2172 
2173 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2174 {
2175 	struct sk_buff *skb;
2176 
2177 	while ((skb = __skb_dequeue(&r_vec->queue)))
2178 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2179 			return;
2180 }
2181 
2182 static bool
2183 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2184 {
2185 	u32 meta_type, meta_tag;
2186 
2187 	if (!nfp_app_ctrl_has_meta(nn->app))
2188 		return !meta_len;
2189 
2190 	if (meta_len != 8)
2191 		return false;
2192 
2193 	meta_type = get_unaligned_be32(data);
2194 	meta_tag = get_unaligned_be32(data + 4);
2195 
2196 	return (meta_type == NFP_NET_META_PORTID &&
2197 		meta_tag == NFP_META_PORT_ID_CTRL);
2198 }
2199 
2200 static bool
2201 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2202 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2203 {
2204 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2205 	struct nfp_net_rx_buf *rxbuf;
2206 	struct nfp_net_rx_desc *rxd;
2207 	dma_addr_t new_dma_addr;
2208 	struct sk_buff *skb;
2209 	void *new_frag;
2210 	int idx;
2211 
2212 	idx = D_IDX(rx_ring, rx_ring->rd_p);
2213 
2214 	rxd = &rx_ring->rxds[idx];
2215 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2216 		return false;
2217 
2218 	/* Memory barrier to ensure that we won't do other reads
2219 	 * before the DD bit.
2220 	 */
2221 	dma_rmb();
2222 
2223 	rx_ring->rd_p++;
2224 
2225 	rxbuf =	&rx_ring->rxbufs[idx];
2226 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2227 	data_len = le16_to_cpu(rxd->rxd.data_len);
2228 	pkt_len = data_len - meta_len;
2229 
2230 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2231 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2232 		pkt_off += meta_len;
2233 	else
2234 		pkt_off += dp->rx_offset;
2235 	meta_off = pkt_off - meta_len;
2236 
2237 	/* Stats update */
2238 	u64_stats_update_begin(&r_vec->rx_sync);
2239 	r_vec->rx_pkts++;
2240 	r_vec->rx_bytes += pkt_len;
2241 	u64_stats_update_end(&r_vec->rx_sync);
2242 
2243 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2244 
2245 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2246 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2247 			   meta_len);
2248 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2249 		return true;
2250 	}
2251 
2252 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2253 	if (unlikely(!skb)) {
2254 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2255 		return true;
2256 	}
2257 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2258 	if (unlikely(!new_frag)) {
2259 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2260 		return true;
2261 	}
2262 
2263 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2264 
2265 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2266 
2267 	skb_reserve(skb, pkt_off);
2268 	skb_put(skb, pkt_len);
2269 
2270 	nfp_app_ctrl_rx(nn->app, skb);
2271 
2272 	return true;
2273 }
2274 
2275 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2276 {
2277 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2278 	struct nfp_net *nn = r_vec->nfp_net;
2279 	struct nfp_net_dp *dp = &nn->dp;
2280 	unsigned int budget = 512;
2281 
2282 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2283 		continue;
2284 
2285 	return budget;
2286 }
2287 
2288 static void nfp_ctrl_poll(struct tasklet_struct *t)
2289 {
2290 	struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
2291 
2292 	spin_lock(&r_vec->lock);
2293 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2294 	__nfp_ctrl_tx_queued(r_vec);
2295 	spin_unlock(&r_vec->lock);
2296 
2297 	if (nfp_ctrl_rx(r_vec)) {
2298 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2299 	} else {
2300 		tasklet_schedule(&r_vec->tasklet);
2301 		nn_dp_warn(&r_vec->nfp_net->dp,
2302 			   "control message budget exceeded!\n");
2303 	}
2304 }
2305 
2306 /* Setup and Configuration
2307  */
2308 
2309 /**
2310  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2311  * @nn:		NFP Network structure
2312  */
2313 static void nfp_net_vecs_init(struct nfp_net *nn)
2314 {
2315 	struct nfp_net_r_vector *r_vec;
2316 	int r;
2317 
2318 	nn->lsc_handler = nfp_net_irq_lsc;
2319 	nn->exn_handler = nfp_net_irq_exn;
2320 
2321 	for (r = 0; r < nn->max_r_vecs; r++) {
2322 		struct msix_entry *entry;
2323 
2324 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2325 
2326 		r_vec = &nn->r_vecs[r];
2327 		r_vec->nfp_net = nn;
2328 		r_vec->irq_entry = entry->entry;
2329 		r_vec->irq_vector = entry->vector;
2330 
2331 		if (nn->dp.netdev) {
2332 			r_vec->handler = nfp_net_irq_rxtx;
2333 		} else {
2334 			r_vec->handler = nfp_ctrl_irq_rxtx;
2335 
2336 			__skb_queue_head_init(&r_vec->queue);
2337 			spin_lock_init(&r_vec->lock);
2338 			tasklet_setup(&r_vec->tasklet, nfp_ctrl_poll);
2339 			tasklet_disable(&r_vec->tasklet);
2340 		}
2341 
2342 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2343 	}
2344 }
2345 
2346 /**
2347  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2348  * @tx_ring:   TX ring to free
2349  */
2350 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2351 {
2352 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2353 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2354 
2355 	kvfree(tx_ring->txbufs);
2356 
2357 	if (tx_ring->txds)
2358 		dma_free_coherent(dp->dev, tx_ring->size,
2359 				  tx_ring->txds, tx_ring->dma);
2360 
2361 	tx_ring->cnt = 0;
2362 	tx_ring->txbufs = NULL;
2363 	tx_ring->txds = NULL;
2364 	tx_ring->dma = 0;
2365 	tx_ring->size = 0;
2366 }
2367 
2368 /**
2369  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2370  * @dp:        NFP Net data path struct
2371  * @tx_ring:   TX Ring structure to allocate
2372  *
2373  * Return: 0 on success, negative errno otherwise.
2374  */
2375 static int
2376 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2377 {
2378 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2379 
2380 	tx_ring->cnt = dp->txd_cnt;
2381 
2382 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2383 	tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2384 					   &tx_ring->dma,
2385 					   GFP_KERNEL | __GFP_NOWARN);
2386 	if (!tx_ring->txds) {
2387 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2388 			    tx_ring->cnt);
2389 		goto err_alloc;
2390 	}
2391 
2392 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2393 				   GFP_KERNEL);
2394 	if (!tx_ring->txbufs)
2395 		goto err_alloc;
2396 
2397 	if (!tx_ring->is_xdp && dp->netdev)
2398 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2399 				    tx_ring->idx);
2400 
2401 	return 0;
2402 
2403 err_alloc:
2404 	nfp_net_tx_ring_free(tx_ring);
2405 	return -ENOMEM;
2406 }
2407 
2408 static void
2409 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2410 			  struct nfp_net_tx_ring *tx_ring)
2411 {
2412 	unsigned int i;
2413 
2414 	if (!tx_ring->is_xdp)
2415 		return;
2416 
2417 	for (i = 0; i < tx_ring->cnt; i++) {
2418 		if (!tx_ring->txbufs[i].frag)
2419 			return;
2420 
2421 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2422 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2423 	}
2424 }
2425 
2426 static int
2427 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2428 			   struct nfp_net_tx_ring *tx_ring)
2429 {
2430 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2431 	unsigned int i;
2432 
2433 	if (!tx_ring->is_xdp)
2434 		return 0;
2435 
2436 	for (i = 0; i < tx_ring->cnt; i++) {
2437 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2438 		if (!txbufs[i].frag) {
2439 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2440 			return -ENOMEM;
2441 		}
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2448 {
2449 	unsigned int r;
2450 
2451 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2452 			       GFP_KERNEL);
2453 	if (!dp->tx_rings)
2454 		return -ENOMEM;
2455 
2456 	for (r = 0; r < dp->num_tx_rings; r++) {
2457 		int bias = 0;
2458 
2459 		if (r >= dp->num_stack_tx_rings)
2460 			bias = dp->num_stack_tx_rings;
2461 
2462 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2463 				     r, bias);
2464 
2465 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2466 			goto err_free_prev;
2467 
2468 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2469 			goto err_free_ring;
2470 	}
2471 
2472 	return 0;
2473 
2474 err_free_prev:
2475 	while (r--) {
2476 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2477 err_free_ring:
2478 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2479 	}
2480 	kfree(dp->tx_rings);
2481 	return -ENOMEM;
2482 }
2483 
2484 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2485 {
2486 	unsigned int r;
2487 
2488 	for (r = 0; r < dp->num_tx_rings; r++) {
2489 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2490 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2491 	}
2492 
2493 	kfree(dp->tx_rings);
2494 }
2495 
2496 /**
2497  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2498  * @rx_ring:  RX ring to free
2499  */
2500 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2501 {
2502 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2503 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2504 
2505 	if (dp->netdev)
2506 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2507 	kvfree(rx_ring->rxbufs);
2508 
2509 	if (rx_ring->rxds)
2510 		dma_free_coherent(dp->dev, rx_ring->size,
2511 				  rx_ring->rxds, rx_ring->dma);
2512 
2513 	rx_ring->cnt = 0;
2514 	rx_ring->rxbufs = NULL;
2515 	rx_ring->rxds = NULL;
2516 	rx_ring->dma = 0;
2517 	rx_ring->size = 0;
2518 }
2519 
2520 /**
2521  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2522  * @dp:	      NFP Net data path struct
2523  * @rx_ring:  RX ring to allocate
2524  *
2525  * Return: 0 on success, negative errno otherwise.
2526  */
2527 static int
2528 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2529 {
2530 	int err;
2531 
2532 	if (dp->netdev) {
2533 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2534 				       rx_ring->idx, rx_ring->r_vec->napi.napi_id);
2535 		if (err < 0)
2536 			return err;
2537 	}
2538 
2539 	rx_ring->cnt = dp->rxd_cnt;
2540 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2541 	rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2542 					   &rx_ring->dma,
2543 					   GFP_KERNEL | __GFP_NOWARN);
2544 	if (!rx_ring->rxds) {
2545 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2546 			    rx_ring->cnt);
2547 		goto err_alloc;
2548 	}
2549 
2550 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2551 				   GFP_KERNEL);
2552 	if (!rx_ring->rxbufs)
2553 		goto err_alloc;
2554 
2555 	return 0;
2556 
2557 err_alloc:
2558 	nfp_net_rx_ring_free(rx_ring);
2559 	return -ENOMEM;
2560 }
2561 
2562 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2563 {
2564 	unsigned int r;
2565 
2566 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2567 			       GFP_KERNEL);
2568 	if (!dp->rx_rings)
2569 		return -ENOMEM;
2570 
2571 	for (r = 0; r < dp->num_rx_rings; r++) {
2572 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2573 
2574 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2575 			goto err_free_prev;
2576 
2577 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2578 			goto err_free_ring;
2579 	}
2580 
2581 	return 0;
2582 
2583 err_free_prev:
2584 	while (r--) {
2585 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2586 err_free_ring:
2587 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2588 	}
2589 	kfree(dp->rx_rings);
2590 	return -ENOMEM;
2591 }
2592 
2593 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2594 {
2595 	unsigned int r;
2596 
2597 	for (r = 0; r < dp->num_rx_rings; r++) {
2598 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2599 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2600 	}
2601 
2602 	kfree(dp->rx_rings);
2603 }
2604 
2605 static void
2606 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2607 			    struct nfp_net_r_vector *r_vec, int idx)
2608 {
2609 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2610 	r_vec->tx_ring =
2611 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2612 
2613 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2614 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2615 }
2616 
2617 static int
2618 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2619 		       int idx)
2620 {
2621 	int err;
2622 
2623 	/* Setup NAPI */
2624 	if (nn->dp.netdev)
2625 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2626 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2627 	else
2628 		tasklet_enable(&r_vec->tasklet);
2629 
2630 	snprintf(r_vec->name, sizeof(r_vec->name),
2631 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2632 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2633 			  r_vec);
2634 	if (err) {
2635 		if (nn->dp.netdev)
2636 			netif_napi_del(&r_vec->napi);
2637 		else
2638 			tasklet_disable(&r_vec->tasklet);
2639 
2640 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2641 		return err;
2642 	}
2643 	disable_irq(r_vec->irq_vector);
2644 
2645 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2646 
2647 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2648 	       r_vec->irq_entry);
2649 
2650 	return 0;
2651 }
2652 
2653 static void
2654 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2655 {
2656 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2657 	if (nn->dp.netdev)
2658 		netif_napi_del(&r_vec->napi);
2659 	else
2660 		tasklet_disable(&r_vec->tasklet);
2661 
2662 	free_irq(r_vec->irq_vector, r_vec);
2663 }
2664 
2665 /**
2666  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2667  * @nn:      NFP Net device to reconfigure
2668  */
2669 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2670 {
2671 	int i;
2672 
2673 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2674 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2675 			  get_unaligned_le32(nn->rss_itbl + i));
2676 }
2677 
2678 /**
2679  * nfp_net_rss_write_key() - Write RSS hash key to device
2680  * @nn:      NFP Net device to reconfigure
2681  */
2682 void nfp_net_rss_write_key(struct nfp_net *nn)
2683 {
2684 	int i;
2685 
2686 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2687 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2688 			  get_unaligned_le32(nn->rss_key + i));
2689 }
2690 
2691 /**
2692  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2693  * @nn:      NFP Net device to reconfigure
2694  */
2695 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2696 {
2697 	u8 i;
2698 	u32 factor;
2699 	u32 value;
2700 
2701 	/* Compute factor used to convert coalesce '_usecs' parameters to
2702 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2703 	 * count.
2704 	 */
2705 	factor = nn->tlv_caps.me_freq_mhz / 16;
2706 
2707 	/* copy RX interrupt coalesce parameters */
2708 	value = (nn->rx_coalesce_max_frames << 16) |
2709 		(factor * nn->rx_coalesce_usecs);
2710 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2711 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2712 
2713 	/* copy TX interrupt coalesce parameters */
2714 	value = (nn->tx_coalesce_max_frames << 16) |
2715 		(factor * nn->tx_coalesce_usecs);
2716 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2717 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2718 }
2719 
2720 /**
2721  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2722  * @nn:      NFP Net device to reconfigure
2723  * @addr:    MAC address to write
2724  *
2725  * Writes the MAC address from the netdev to the device control BAR.  Does not
2726  * perform the required reconfig.  We do a bit of byte swapping dance because
2727  * firmware is LE.
2728  */
2729 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2730 {
2731 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2732 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2733 }
2734 
2735 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2736 {
2737 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2738 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2739 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2740 
2741 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2742 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2743 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2744 }
2745 
2746 /**
2747  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2748  * @nn:      NFP Net device to reconfigure
2749  *
2750  * Warning: must be fully idempotent.
2751  */
2752 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2753 {
2754 	u32 new_ctrl, update;
2755 	unsigned int r;
2756 	int err;
2757 
2758 	new_ctrl = nn->dp.ctrl;
2759 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2760 	update = NFP_NET_CFG_UPDATE_GEN;
2761 	update |= NFP_NET_CFG_UPDATE_MSIX;
2762 	update |= NFP_NET_CFG_UPDATE_RING;
2763 
2764 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2765 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2766 
2767 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2768 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2769 
2770 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2771 	err = nfp_net_reconfig(nn, update);
2772 	if (err)
2773 		nn_err(nn, "Could not disable device: %d\n", err);
2774 
2775 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2776 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2777 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2778 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2779 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2780 		nfp_net_vec_clear_ring_data(nn, r);
2781 
2782 	nn->dp.ctrl = new_ctrl;
2783 }
2784 
2785 static void
2786 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2787 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2788 {
2789 	/* Write the DMA address, size and MSI-X info to the device */
2790 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2791 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2792 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2793 }
2794 
2795 static void
2796 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2797 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2798 {
2799 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2800 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2801 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2802 }
2803 
2804 /**
2805  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2806  * @nn:      NFP Net device to reconfigure
2807  */
2808 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2809 {
2810 	u32 bufsz, new_ctrl, update = 0;
2811 	unsigned int r;
2812 	int err;
2813 
2814 	new_ctrl = nn->dp.ctrl;
2815 
2816 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2817 		nfp_net_rss_write_key(nn);
2818 		nfp_net_rss_write_itbl(nn);
2819 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2820 		update |= NFP_NET_CFG_UPDATE_RSS;
2821 	}
2822 
2823 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2824 		nfp_net_coalesce_write_cfg(nn);
2825 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2826 	}
2827 
2828 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2829 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2830 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2831 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2832 
2833 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2834 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2835 
2836 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2837 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2838 
2839 	if (nn->dp.netdev)
2840 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2841 
2842 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2843 
2844 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2845 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2846 
2847 	/* Enable device */
2848 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2849 	update |= NFP_NET_CFG_UPDATE_GEN;
2850 	update |= NFP_NET_CFG_UPDATE_MSIX;
2851 	update |= NFP_NET_CFG_UPDATE_RING;
2852 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2853 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2854 
2855 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2856 	err = nfp_net_reconfig(nn, update);
2857 	if (err) {
2858 		nfp_net_clear_config_and_disable(nn);
2859 		return err;
2860 	}
2861 
2862 	nn->dp.ctrl = new_ctrl;
2863 
2864 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2865 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2866 
2867 	return 0;
2868 }
2869 
2870 /**
2871  * nfp_net_close_stack() - Quiesce the stack (part of close)
2872  * @nn:	     NFP Net device to reconfigure
2873  */
2874 static void nfp_net_close_stack(struct nfp_net *nn)
2875 {
2876 	unsigned int r;
2877 
2878 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2879 	netif_carrier_off(nn->dp.netdev);
2880 	nn->link_up = false;
2881 
2882 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2883 		disable_irq(nn->r_vecs[r].irq_vector);
2884 		napi_disable(&nn->r_vecs[r].napi);
2885 	}
2886 
2887 	netif_tx_disable(nn->dp.netdev);
2888 }
2889 
2890 /**
2891  * nfp_net_close_free_all() - Free all runtime resources
2892  * @nn:      NFP Net device to reconfigure
2893  */
2894 static void nfp_net_close_free_all(struct nfp_net *nn)
2895 {
2896 	unsigned int r;
2897 
2898 	nfp_net_tx_rings_free(&nn->dp);
2899 	nfp_net_rx_rings_free(&nn->dp);
2900 
2901 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2902 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2903 
2904 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2905 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2906 }
2907 
2908 /**
2909  * nfp_net_netdev_close() - Called when the device is downed
2910  * @netdev:      netdev structure
2911  */
2912 static int nfp_net_netdev_close(struct net_device *netdev)
2913 {
2914 	struct nfp_net *nn = netdev_priv(netdev);
2915 
2916 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2917 	 */
2918 	nfp_net_close_stack(nn);
2919 
2920 	/* Step 2: Tell NFP
2921 	 */
2922 	nfp_net_clear_config_and_disable(nn);
2923 	nfp_port_configure(netdev, false);
2924 
2925 	/* Step 3: Free resources
2926 	 */
2927 	nfp_net_close_free_all(nn);
2928 
2929 	nn_dbg(nn, "%s down", netdev->name);
2930 	return 0;
2931 }
2932 
2933 void nfp_ctrl_close(struct nfp_net *nn)
2934 {
2935 	int r;
2936 
2937 	rtnl_lock();
2938 
2939 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2940 		disable_irq(nn->r_vecs[r].irq_vector);
2941 		tasklet_disable(&nn->r_vecs[r].tasklet);
2942 	}
2943 
2944 	nfp_net_clear_config_and_disable(nn);
2945 
2946 	nfp_net_close_free_all(nn);
2947 
2948 	rtnl_unlock();
2949 }
2950 
2951 /**
2952  * nfp_net_open_stack() - Start the device from stack's perspective
2953  * @nn:      NFP Net device to reconfigure
2954  */
2955 static void nfp_net_open_stack(struct nfp_net *nn)
2956 {
2957 	unsigned int r;
2958 
2959 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2960 		napi_enable(&nn->r_vecs[r].napi);
2961 		enable_irq(nn->r_vecs[r].irq_vector);
2962 	}
2963 
2964 	netif_tx_wake_all_queues(nn->dp.netdev);
2965 
2966 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2967 	nfp_net_read_link_status(nn);
2968 }
2969 
2970 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2971 {
2972 	int err, r;
2973 
2974 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2975 				      nn->exn_name, sizeof(nn->exn_name),
2976 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2977 	if (err)
2978 		return err;
2979 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2980 				      nn->lsc_name, sizeof(nn->lsc_name),
2981 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2982 	if (err)
2983 		goto err_free_exn;
2984 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2985 
2986 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2987 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2988 		if (err)
2989 			goto err_cleanup_vec_p;
2990 	}
2991 
2992 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2993 	if (err)
2994 		goto err_cleanup_vec;
2995 
2996 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2997 	if (err)
2998 		goto err_free_rx_rings;
2999 
3000 	for (r = 0; r < nn->max_r_vecs; r++)
3001 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3002 
3003 	return 0;
3004 
3005 err_free_rx_rings:
3006 	nfp_net_rx_rings_free(&nn->dp);
3007 err_cleanup_vec:
3008 	r = nn->dp.num_r_vecs;
3009 err_cleanup_vec_p:
3010 	while (r--)
3011 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3012 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3013 err_free_exn:
3014 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3015 	return err;
3016 }
3017 
3018 static int nfp_net_netdev_open(struct net_device *netdev)
3019 {
3020 	struct nfp_net *nn = netdev_priv(netdev);
3021 	int err;
3022 
3023 	/* Step 1: Allocate resources for rings and the like
3024 	 * - Request interrupts
3025 	 * - Allocate RX and TX ring resources
3026 	 * - Setup initial RSS table
3027 	 */
3028 	err = nfp_net_open_alloc_all(nn);
3029 	if (err)
3030 		return err;
3031 
3032 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3033 	if (err)
3034 		goto err_free_all;
3035 
3036 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3037 	if (err)
3038 		goto err_free_all;
3039 
3040 	/* Step 2: Configure the NFP
3041 	 * - Ifup the physical interface if it exists
3042 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3043 	 * - Write MAC address (in case it changed)
3044 	 * - Set the MTU
3045 	 * - Set the Freelist buffer size
3046 	 * - Enable the FW
3047 	 */
3048 	err = nfp_port_configure(netdev, true);
3049 	if (err)
3050 		goto err_free_all;
3051 
3052 	err = nfp_net_set_config_and_enable(nn);
3053 	if (err)
3054 		goto err_port_disable;
3055 
3056 	/* Step 3: Enable for kernel
3057 	 * - put some freelist descriptors on each RX ring
3058 	 * - enable NAPI on each ring
3059 	 * - enable all TX queues
3060 	 * - set link state
3061 	 */
3062 	nfp_net_open_stack(nn);
3063 
3064 	return 0;
3065 
3066 err_port_disable:
3067 	nfp_port_configure(netdev, false);
3068 err_free_all:
3069 	nfp_net_close_free_all(nn);
3070 	return err;
3071 }
3072 
3073 int nfp_ctrl_open(struct nfp_net *nn)
3074 {
3075 	int err, r;
3076 
3077 	/* ring dumping depends on vNICs being opened/closed under rtnl */
3078 	rtnl_lock();
3079 
3080 	err = nfp_net_open_alloc_all(nn);
3081 	if (err)
3082 		goto err_unlock;
3083 
3084 	err = nfp_net_set_config_and_enable(nn);
3085 	if (err)
3086 		goto err_free_all;
3087 
3088 	for (r = 0; r < nn->dp.num_r_vecs; r++)
3089 		enable_irq(nn->r_vecs[r].irq_vector);
3090 
3091 	rtnl_unlock();
3092 
3093 	return 0;
3094 
3095 err_free_all:
3096 	nfp_net_close_free_all(nn);
3097 err_unlock:
3098 	rtnl_unlock();
3099 	return err;
3100 }
3101 
3102 static void nfp_net_set_rx_mode(struct net_device *netdev)
3103 {
3104 	struct nfp_net *nn = netdev_priv(netdev);
3105 	u32 new_ctrl;
3106 
3107 	new_ctrl = nn->dp.ctrl;
3108 
3109 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3110 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3111 	else
3112 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3113 
3114 	if (netdev->flags & IFF_PROMISC) {
3115 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3116 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3117 		else
3118 			nn_warn(nn, "FW does not support promiscuous mode\n");
3119 	} else {
3120 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3121 	}
3122 
3123 	if (new_ctrl == nn->dp.ctrl)
3124 		return;
3125 
3126 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3127 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3128 
3129 	nn->dp.ctrl = new_ctrl;
3130 }
3131 
3132 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3133 {
3134 	int i;
3135 
3136 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
3137 		nn->rss_itbl[i] =
3138 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3139 }
3140 
3141 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3142 {
3143 	struct nfp_net_dp new_dp = *dp;
3144 
3145 	*dp = nn->dp;
3146 	nn->dp = new_dp;
3147 
3148 	nn->dp.netdev->mtu = new_dp.mtu;
3149 
3150 	if (!netif_is_rxfh_configured(nn->dp.netdev))
3151 		nfp_net_rss_init_itbl(nn);
3152 }
3153 
3154 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3155 {
3156 	unsigned int r;
3157 	int err;
3158 
3159 	nfp_net_dp_swap(nn, dp);
3160 
3161 	for (r = 0; r <	nn->max_r_vecs; r++)
3162 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3163 
3164 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3165 	if (err)
3166 		return err;
3167 
3168 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3169 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
3170 						   nn->dp.num_stack_tx_rings);
3171 		if (err)
3172 			return err;
3173 	}
3174 
3175 	return nfp_net_set_config_and_enable(nn);
3176 }
3177 
3178 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3179 {
3180 	struct nfp_net_dp *new;
3181 
3182 	new = kmalloc(sizeof(*new), GFP_KERNEL);
3183 	if (!new)
3184 		return NULL;
3185 
3186 	*new = nn->dp;
3187 
3188 	/* Clear things which need to be recomputed */
3189 	new->fl_bufsz = 0;
3190 	new->tx_rings = NULL;
3191 	new->rx_rings = NULL;
3192 	new->num_r_vecs = 0;
3193 	new->num_stack_tx_rings = 0;
3194 
3195 	return new;
3196 }
3197 
3198 static int
3199 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3200 		     struct netlink_ext_ack *extack)
3201 {
3202 	/* XDP-enabled tests */
3203 	if (!dp->xdp_prog)
3204 		return 0;
3205 	if (dp->fl_bufsz > PAGE_SIZE) {
3206 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3207 		return -EINVAL;
3208 	}
3209 	if (dp->num_tx_rings > nn->max_tx_rings) {
3210 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3211 		return -EINVAL;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3218 			  struct netlink_ext_ack *extack)
3219 {
3220 	int r, err;
3221 
3222 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3223 
3224 	dp->num_stack_tx_rings = dp->num_tx_rings;
3225 	if (dp->xdp_prog)
3226 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3227 
3228 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3229 
3230 	err = nfp_net_check_config(nn, dp, extack);
3231 	if (err)
3232 		goto exit_free_dp;
3233 
3234 	if (!netif_running(dp->netdev)) {
3235 		nfp_net_dp_swap(nn, dp);
3236 		err = 0;
3237 		goto exit_free_dp;
3238 	}
3239 
3240 	/* Prepare new rings */
3241 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3242 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3243 		if (err) {
3244 			dp->num_r_vecs = r;
3245 			goto err_cleanup_vecs;
3246 		}
3247 	}
3248 
3249 	err = nfp_net_rx_rings_prepare(nn, dp);
3250 	if (err)
3251 		goto err_cleanup_vecs;
3252 
3253 	err = nfp_net_tx_rings_prepare(nn, dp);
3254 	if (err)
3255 		goto err_free_rx;
3256 
3257 	/* Stop device, swap in new rings, try to start the firmware */
3258 	nfp_net_close_stack(nn);
3259 	nfp_net_clear_config_and_disable(nn);
3260 
3261 	err = nfp_net_dp_swap_enable(nn, dp);
3262 	if (err) {
3263 		int err2;
3264 
3265 		nfp_net_clear_config_and_disable(nn);
3266 
3267 		/* Try with old configuration and old rings */
3268 		err2 = nfp_net_dp_swap_enable(nn, dp);
3269 		if (err2)
3270 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3271 			       err, err2);
3272 	}
3273 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3274 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3275 
3276 	nfp_net_rx_rings_free(dp);
3277 	nfp_net_tx_rings_free(dp);
3278 
3279 	nfp_net_open_stack(nn);
3280 exit_free_dp:
3281 	kfree(dp);
3282 
3283 	return err;
3284 
3285 err_free_rx:
3286 	nfp_net_rx_rings_free(dp);
3287 err_cleanup_vecs:
3288 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3289 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3290 	kfree(dp);
3291 	return err;
3292 }
3293 
3294 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3295 {
3296 	struct nfp_net *nn = netdev_priv(netdev);
3297 	struct nfp_net_dp *dp;
3298 	int err;
3299 
3300 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3301 	if (err)
3302 		return err;
3303 
3304 	dp = nfp_net_clone_dp(nn);
3305 	if (!dp)
3306 		return -ENOMEM;
3307 
3308 	dp->mtu = new_mtu;
3309 
3310 	return nfp_net_ring_reconfig(nn, dp, NULL);
3311 }
3312 
3313 static int
3314 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3315 {
3316 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3317 	struct nfp_net *nn = netdev_priv(netdev);
3318 	int err;
3319 
3320 	/* Priority tagged packets with vlan id 0 are processed by the
3321 	 * NFP as untagged packets
3322 	 */
3323 	if (!vid)
3324 		return 0;
3325 
3326 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3327 	if (err)
3328 		return err;
3329 
3330 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3331 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3332 		  ETH_P_8021Q);
3333 
3334 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3335 }
3336 
3337 static int
3338 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3339 {
3340 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3341 	struct nfp_net *nn = netdev_priv(netdev);
3342 	int err;
3343 
3344 	/* Priority tagged packets with vlan id 0 are processed by the
3345 	 * NFP as untagged packets
3346 	 */
3347 	if (!vid)
3348 		return 0;
3349 
3350 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3351 	if (err)
3352 		return err;
3353 
3354 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3355 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3356 		  ETH_P_8021Q);
3357 
3358 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3359 }
3360 
3361 static void nfp_net_stat64(struct net_device *netdev,
3362 			   struct rtnl_link_stats64 *stats)
3363 {
3364 	struct nfp_net *nn = netdev_priv(netdev);
3365 	int r;
3366 
3367 	/* Collect software stats */
3368 	for (r = 0; r < nn->max_r_vecs; r++) {
3369 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3370 		u64 data[3];
3371 		unsigned int start;
3372 
3373 		do {
3374 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3375 			data[0] = r_vec->rx_pkts;
3376 			data[1] = r_vec->rx_bytes;
3377 			data[2] = r_vec->rx_drops;
3378 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3379 		stats->rx_packets += data[0];
3380 		stats->rx_bytes += data[1];
3381 		stats->rx_dropped += data[2];
3382 
3383 		do {
3384 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3385 			data[0] = r_vec->tx_pkts;
3386 			data[1] = r_vec->tx_bytes;
3387 			data[2] = r_vec->tx_errors;
3388 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3389 		stats->tx_packets += data[0];
3390 		stats->tx_bytes += data[1];
3391 		stats->tx_errors += data[2];
3392 	}
3393 
3394 	/* Add in device stats */
3395 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3396 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3397 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3398 
3399 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3400 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3401 }
3402 
3403 static int nfp_net_set_features(struct net_device *netdev,
3404 				netdev_features_t features)
3405 {
3406 	netdev_features_t changed = netdev->features ^ features;
3407 	struct nfp_net *nn = netdev_priv(netdev);
3408 	u32 new_ctrl;
3409 	int err;
3410 
3411 	/* Assume this is not called with features we have not advertised */
3412 
3413 	new_ctrl = nn->dp.ctrl;
3414 
3415 	if (changed & NETIF_F_RXCSUM) {
3416 		if (features & NETIF_F_RXCSUM)
3417 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3418 		else
3419 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3420 	}
3421 
3422 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3423 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3424 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3425 		else
3426 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3427 	}
3428 
3429 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3430 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3431 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3432 					      NFP_NET_CFG_CTRL_LSO;
3433 		else
3434 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3435 	}
3436 
3437 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3438 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3439 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3440 		else
3441 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3442 	}
3443 
3444 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3445 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3446 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3447 		else
3448 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3449 	}
3450 
3451 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3452 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3453 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3454 		else
3455 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3456 	}
3457 
3458 	if (changed & NETIF_F_SG) {
3459 		if (features & NETIF_F_SG)
3460 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3461 		else
3462 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3463 	}
3464 
3465 	err = nfp_port_set_features(netdev, features);
3466 	if (err)
3467 		return err;
3468 
3469 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3470 	       netdev->features, features, changed);
3471 
3472 	if (new_ctrl == nn->dp.ctrl)
3473 		return 0;
3474 
3475 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3476 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3477 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3478 	if (err)
3479 		return err;
3480 
3481 	nn->dp.ctrl = new_ctrl;
3482 
3483 	return 0;
3484 }
3485 
3486 static netdev_features_t
3487 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3488 		       netdev_features_t features)
3489 {
3490 	u8 l4_hdr;
3491 
3492 	/* We can't do TSO over double tagged packets (802.1AD) */
3493 	features &= vlan_features_check(skb, features);
3494 
3495 	if (!skb->encapsulation)
3496 		return features;
3497 
3498 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3499 	if (skb_is_gso(skb)) {
3500 		u32 hdrlen;
3501 
3502 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3503 			inner_tcp_hdrlen(skb);
3504 
3505 		/* Assume worst case scenario of having longest possible
3506 		 * metadata prepend - 8B
3507 		 */
3508 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3509 			features &= ~NETIF_F_GSO_MASK;
3510 	}
3511 
3512 	/* VXLAN/GRE check */
3513 	switch (vlan_get_protocol(skb)) {
3514 	case htons(ETH_P_IP):
3515 		l4_hdr = ip_hdr(skb)->protocol;
3516 		break;
3517 	case htons(ETH_P_IPV6):
3518 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3519 		break;
3520 	default:
3521 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3522 	}
3523 
3524 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3525 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3526 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3527 	    (l4_hdr == IPPROTO_UDP &&
3528 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3529 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3530 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3531 
3532 	return features;
3533 }
3534 
3535 static int
3536 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3537 {
3538 	struct nfp_net *nn = netdev_priv(netdev);
3539 	int n;
3540 
3541 	/* If port is defined, devlink_port is registered and devlink core
3542 	 * is taking care of name formatting.
3543 	 */
3544 	if (nn->port)
3545 		return -EOPNOTSUPP;
3546 
3547 	if (nn->dp.is_vf || nn->vnic_no_name)
3548 		return -EOPNOTSUPP;
3549 
3550 	n = snprintf(name, len, "n%d", nn->id);
3551 	if (n >= len)
3552 		return -EINVAL;
3553 
3554 	return 0;
3555 }
3556 
3557 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3558 {
3559 	struct bpf_prog *prog = bpf->prog;
3560 	struct nfp_net_dp *dp;
3561 	int err;
3562 
3563 	if (!prog == !nn->dp.xdp_prog) {
3564 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3565 		xdp_attachment_setup(&nn->xdp, bpf);
3566 		return 0;
3567 	}
3568 
3569 	dp = nfp_net_clone_dp(nn);
3570 	if (!dp)
3571 		return -ENOMEM;
3572 
3573 	dp->xdp_prog = prog;
3574 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3575 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3576 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3577 
3578 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3579 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3580 	if (err)
3581 		return err;
3582 
3583 	xdp_attachment_setup(&nn->xdp, bpf);
3584 	return 0;
3585 }
3586 
3587 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3588 {
3589 	int err;
3590 
3591 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3592 	if (err)
3593 		return err;
3594 
3595 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3596 	return 0;
3597 }
3598 
3599 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3600 {
3601 	struct nfp_net *nn = netdev_priv(netdev);
3602 
3603 	switch (xdp->command) {
3604 	case XDP_SETUP_PROG:
3605 		return nfp_net_xdp_setup_drv(nn, xdp);
3606 	case XDP_SETUP_PROG_HW:
3607 		return nfp_net_xdp_setup_hw(nn, xdp);
3608 	default:
3609 		return nfp_app_bpf(nn->app, nn, xdp);
3610 	}
3611 }
3612 
3613 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3614 {
3615 	struct nfp_net *nn = netdev_priv(netdev);
3616 	struct sockaddr *saddr = addr;
3617 	int err;
3618 
3619 	err = eth_prepare_mac_addr_change(netdev, addr);
3620 	if (err)
3621 		return err;
3622 
3623 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3624 
3625 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3626 	if (err)
3627 		return err;
3628 
3629 	eth_commit_mac_addr_change(netdev, addr);
3630 
3631 	return 0;
3632 }
3633 
3634 const struct net_device_ops nfp_net_netdev_ops = {
3635 	.ndo_init		= nfp_app_ndo_init,
3636 	.ndo_uninit		= nfp_app_ndo_uninit,
3637 	.ndo_open		= nfp_net_netdev_open,
3638 	.ndo_stop		= nfp_net_netdev_close,
3639 	.ndo_start_xmit		= nfp_net_tx,
3640 	.ndo_get_stats64	= nfp_net_stat64,
3641 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3642 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3643 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3644 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3645 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3646 	.ndo_set_vf_trust	= nfp_app_set_vf_trust,
3647 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3648 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3649 	.ndo_setup_tc		= nfp_port_setup_tc,
3650 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3651 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3652 	.ndo_change_mtu		= nfp_net_change_mtu,
3653 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3654 	.ndo_set_features	= nfp_net_set_features,
3655 	.ndo_features_check	= nfp_net_features_check,
3656 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3657 	.ndo_bpf		= nfp_net_xdp,
3658 	.ndo_get_devlink_port	= nfp_devlink_get_devlink_port,
3659 };
3660 
3661 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
3662 {
3663 	struct nfp_net *nn = netdev_priv(netdev);
3664 	int i;
3665 
3666 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3667 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) {
3668 		struct udp_tunnel_info ti0, ti1;
3669 
3670 		udp_tunnel_nic_get_port(netdev, table, i, &ti0);
3671 		udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1);
3672 
3673 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port),
3674 			  be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port));
3675 	}
3676 
3677 	return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN);
3678 }
3679 
3680 static const struct udp_tunnel_nic_info nfp_udp_tunnels = {
3681 	.sync_table     = nfp_udp_tunnel_sync,
3682 	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
3683 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
3684 	.tables         = {
3685 		{
3686 			.n_entries      = NFP_NET_N_VXLAN_PORTS,
3687 			.tunnel_types   = UDP_TUNNEL_TYPE_VXLAN,
3688 		},
3689 	},
3690 };
3691 
3692 /**
3693  * nfp_net_info() - Print general info about the NIC
3694  * @nn:      NFP Net device to reconfigure
3695  */
3696 void nfp_net_info(struct nfp_net *nn)
3697 {
3698 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3699 		nn->dp.is_vf ? "VF " : "",
3700 		nn->dp.num_tx_rings, nn->max_tx_rings,
3701 		nn->dp.num_rx_rings, nn->max_rx_rings);
3702 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3703 		nn->fw_ver.resv, nn->fw_ver.class,
3704 		nn->fw_ver.major, nn->fw_ver.minor,
3705 		nn->max_mtu);
3706 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3707 		nn->cap,
3708 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3709 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3710 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3711 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3712 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3713 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3714 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3715 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3716 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3717 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3718 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3719 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3720 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3721 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3722 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3723 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3724 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3725 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3726 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3727 						      "RXCSUM_COMPLETE " : "",
3728 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3729 		nfp_app_extra_cap(nn->app, nn));
3730 }
3731 
3732 /**
3733  * nfp_net_alloc() - Allocate netdev and related structure
3734  * @pdev:         PCI device
3735  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3736  * @needs_netdev: Whether to allocate a netdev for this vNIC
3737  * @max_tx_rings: Maximum number of TX rings supported by device
3738  * @max_rx_rings: Maximum number of RX rings supported by device
3739  *
3740  * This function allocates a netdev device and fills in the initial
3741  * part of the @struct nfp_net structure.  In case of control device
3742  * nfp_net structure is allocated without the netdev.
3743  *
3744  * Return: NFP Net device structure, or ERR_PTR on error.
3745  */
3746 struct nfp_net *
3747 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3748 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3749 {
3750 	struct nfp_net *nn;
3751 	int err;
3752 
3753 	if (needs_netdev) {
3754 		struct net_device *netdev;
3755 
3756 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3757 					    max_tx_rings, max_rx_rings);
3758 		if (!netdev)
3759 			return ERR_PTR(-ENOMEM);
3760 
3761 		SET_NETDEV_DEV(netdev, &pdev->dev);
3762 		nn = netdev_priv(netdev);
3763 		nn->dp.netdev = netdev;
3764 	} else {
3765 		nn = vzalloc(sizeof(*nn));
3766 		if (!nn)
3767 			return ERR_PTR(-ENOMEM);
3768 	}
3769 
3770 	nn->dp.dev = &pdev->dev;
3771 	nn->dp.ctrl_bar = ctrl_bar;
3772 	nn->pdev = pdev;
3773 
3774 	nn->max_tx_rings = max_tx_rings;
3775 	nn->max_rx_rings = max_rx_rings;
3776 
3777 	nn->dp.num_tx_rings = min_t(unsigned int,
3778 				    max_tx_rings, num_online_cpus());
3779 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3780 				 netif_get_num_default_rss_queues());
3781 
3782 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3783 	nn->dp.num_r_vecs = min_t(unsigned int,
3784 				  nn->dp.num_r_vecs, num_online_cpus());
3785 
3786 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3787 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3788 
3789 	sema_init(&nn->bar_lock, 1);
3790 
3791 	spin_lock_init(&nn->reconfig_lock);
3792 	spin_lock_init(&nn->link_status_lock);
3793 
3794 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3795 
3796 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3797 				     &nn->tlv_caps);
3798 	if (err)
3799 		goto err_free_nn;
3800 
3801 	err = nfp_ccm_mbox_alloc(nn);
3802 	if (err)
3803 		goto err_free_nn;
3804 
3805 	return nn;
3806 
3807 err_free_nn:
3808 	if (nn->dp.netdev)
3809 		free_netdev(nn->dp.netdev);
3810 	else
3811 		vfree(nn);
3812 	return ERR_PTR(err);
3813 }
3814 
3815 /**
3816  * nfp_net_free() - Undo what @nfp_net_alloc() did
3817  * @nn:      NFP Net device to reconfigure
3818  */
3819 void nfp_net_free(struct nfp_net *nn)
3820 {
3821 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3822 	nfp_ccm_mbox_free(nn);
3823 
3824 	if (nn->dp.netdev)
3825 		free_netdev(nn->dp.netdev);
3826 	else
3827 		vfree(nn);
3828 }
3829 
3830 /**
3831  * nfp_net_rss_key_sz() - Get current size of the RSS key
3832  * @nn:		NFP Net device instance
3833  *
3834  * Return: size of the RSS key for currently selected hash function.
3835  */
3836 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3837 {
3838 	switch (nn->rss_hfunc) {
3839 	case ETH_RSS_HASH_TOP:
3840 		return NFP_NET_CFG_RSS_KEY_SZ;
3841 	case ETH_RSS_HASH_XOR:
3842 		return 0;
3843 	case ETH_RSS_HASH_CRC32:
3844 		return 4;
3845 	}
3846 
3847 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3848 	return 0;
3849 }
3850 
3851 /**
3852  * nfp_net_rss_init() - Set the initial RSS parameters
3853  * @nn:	     NFP Net device to reconfigure
3854  */
3855 static void nfp_net_rss_init(struct nfp_net *nn)
3856 {
3857 	unsigned long func_bit, rss_cap_hfunc;
3858 	u32 reg;
3859 
3860 	/* Read the RSS function capability and select first supported func */
3861 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3862 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3863 	if (!rss_cap_hfunc)
3864 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3865 					  NFP_NET_CFG_RSS_TOEPLITZ);
3866 
3867 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3868 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3869 		dev_warn(nn->dp.dev,
3870 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3871 		func_bit = ETH_RSS_HASH_TOP_BIT;
3872 	}
3873 	nn->rss_hfunc = 1 << func_bit;
3874 
3875 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3876 
3877 	nfp_net_rss_init_itbl(nn);
3878 
3879 	/* Enable IPv4/IPv6 TCP by default */
3880 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3881 		      NFP_NET_CFG_RSS_IPV6_TCP |
3882 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3883 		      NFP_NET_CFG_RSS_MASK;
3884 }
3885 
3886 /**
3887  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3888  * @nn:	     NFP Net device to reconfigure
3889  */
3890 static void nfp_net_irqmod_init(struct nfp_net *nn)
3891 {
3892 	nn->rx_coalesce_usecs      = 50;
3893 	nn->rx_coalesce_max_frames = 64;
3894 	nn->tx_coalesce_usecs      = 50;
3895 	nn->tx_coalesce_max_frames = 64;
3896 }
3897 
3898 static void nfp_net_netdev_init(struct nfp_net *nn)
3899 {
3900 	struct net_device *netdev = nn->dp.netdev;
3901 
3902 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3903 
3904 	netdev->mtu = nn->dp.mtu;
3905 
3906 	/* Advertise/enable offloads based on capabilities
3907 	 *
3908 	 * Note: netdev->features show the currently enabled features
3909 	 * and netdev->hw_features advertises which features are
3910 	 * supported.  By default we enable most features.
3911 	 */
3912 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3913 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3914 
3915 	netdev->hw_features = NETIF_F_HIGHDMA;
3916 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3917 		netdev->hw_features |= NETIF_F_RXCSUM;
3918 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3919 	}
3920 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3921 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3922 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3923 	}
3924 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3925 		netdev->hw_features |= NETIF_F_SG;
3926 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3927 	}
3928 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3929 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3930 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3931 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3932 					 NFP_NET_CFG_CTRL_LSO;
3933 	}
3934 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3935 		netdev->hw_features |= NETIF_F_RXHASH;
3936 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
3937 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3938 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
3939 		netdev->udp_tunnel_nic_info = &nfp_udp_tunnels;
3940 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
3941 	}
3942 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3943 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3944 			netdev->hw_features |= NETIF_F_GSO_GRE;
3945 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
3946 	}
3947 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
3948 		netdev->hw_enc_features = netdev->hw_features;
3949 
3950 	netdev->vlan_features = netdev->hw_features;
3951 
3952 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3953 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3954 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3955 	}
3956 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3957 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3958 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3959 		} else {
3960 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3961 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3962 		}
3963 	}
3964 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3965 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3966 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3967 	}
3968 
3969 	netdev->features = netdev->hw_features;
3970 
3971 	if (nfp_app_has_tc(nn->app) && nn->port)
3972 		netdev->hw_features |= NETIF_F_HW_TC;
3973 
3974 	/* Advertise but disable TSO by default. */
3975 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3976 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3977 
3978 	/* Finalise the netdev setup */
3979 	netdev->netdev_ops = &nfp_net_netdev_ops;
3980 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3981 
3982 	/* MTU range: 68 - hw-specific max */
3983 	netdev->min_mtu = ETH_MIN_MTU;
3984 	netdev->max_mtu = nn->max_mtu;
3985 
3986 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
3987 
3988 	netif_carrier_off(netdev);
3989 
3990 	nfp_net_set_ethtool_ops(netdev);
3991 }
3992 
3993 static int nfp_net_read_caps(struct nfp_net *nn)
3994 {
3995 	/* Get some of the read-only fields from the BAR */
3996 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3997 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3998 
3999 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4000 	 * we allow use of non-chained metadata if RSS(v1) is the only
4001 	 * advertised capability requiring metadata.
4002 	 */
4003 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4004 					 !nn->dp.netdev ||
4005 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4006 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4007 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4008 	 * it has the same meaning as RSSv2.
4009 	 */
4010 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4011 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4012 
4013 	/* Determine RX packet/metadata boundary offset */
4014 	if (nn->fw_ver.major >= 2) {
4015 		u32 reg;
4016 
4017 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4018 		if (reg > NFP_NET_MAX_PREPEND) {
4019 			nn_err(nn, "Invalid rx offset: %d\n", reg);
4020 			return -EINVAL;
4021 		}
4022 		nn->dp.rx_offset = reg;
4023 	} else {
4024 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4025 	}
4026 
4027 	/* For control vNICs mask out the capabilities app doesn't want. */
4028 	if (!nn->dp.netdev)
4029 		nn->cap &= nn->app->type->ctrl_cap_mask;
4030 
4031 	return 0;
4032 }
4033 
4034 /**
4035  * nfp_net_init() - Initialise/finalise the nfp_net structure
4036  * @nn:		NFP Net device structure
4037  *
4038  * Return: 0 on success or negative errno on error.
4039  */
4040 int nfp_net_init(struct nfp_net *nn)
4041 {
4042 	int err;
4043 
4044 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4045 
4046 	err = nfp_net_read_caps(nn);
4047 	if (err)
4048 		return err;
4049 
4050 	/* Set default MTU and Freelist buffer size */
4051 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4052 		nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4053 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4054 		nn->dp.mtu = nn->max_mtu;
4055 	} else {
4056 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4057 	}
4058 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4059 
4060 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
4061 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4062 
4063 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4064 		nfp_net_rss_init(nn);
4065 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4066 					 NFP_NET_CFG_CTRL_RSS;
4067 	}
4068 
4069 	/* Allow L2 Broadcast and Multicast through by default, if supported */
4070 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4071 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4072 
4073 	/* Allow IRQ moderation, if supported */
4074 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4075 		nfp_net_irqmod_init(nn);
4076 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4077 	}
4078 
4079 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
4080 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4081 
4082 	/* Make sure the FW knows the netdev is supposed to be disabled here */
4083 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4084 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4085 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4086 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4087 				   NFP_NET_CFG_UPDATE_GEN);
4088 	if (err)
4089 		return err;
4090 
4091 	if (nn->dp.netdev) {
4092 		nfp_net_netdev_init(nn);
4093 
4094 		err = nfp_ccm_mbox_init(nn);
4095 		if (err)
4096 			return err;
4097 
4098 		err = nfp_net_tls_init(nn);
4099 		if (err)
4100 			goto err_clean_mbox;
4101 	}
4102 
4103 	nfp_net_vecs_init(nn);
4104 
4105 	if (!nn->dp.netdev)
4106 		return 0;
4107 	return register_netdev(nn->dp.netdev);
4108 
4109 err_clean_mbox:
4110 	nfp_ccm_mbox_clean(nn);
4111 	return err;
4112 }
4113 
4114 /**
4115  * nfp_net_clean() - Undo what nfp_net_init() did.
4116  * @nn:		NFP Net device structure
4117  */
4118 void nfp_net_clean(struct nfp_net *nn)
4119 {
4120 	if (!nn->dp.netdev)
4121 		return;
4122 
4123 	unregister_netdev(nn->dp.netdev);
4124 	nfp_ccm_mbox_clean(nn);
4125 	nfp_net_reconfig_wait_posted(nn);
4126 }
4127