1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 #include <linux/vmalloc.h> 65 #include <linux/ktime.h> 66 67 #include <net/switchdev.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_app.h" 72 #include "nfp_net_ctrl.h" 73 #include "nfp_net.h" 74 #include "nfp_net_sriov.h" 75 #include "nfp_port.h" 76 77 /** 78 * nfp_net_get_fw_version() - Read and parse the FW version 79 * @fw_ver: Output fw_version structure to read to 80 * @ctrl_bar: Mapped address of the control BAR 81 */ 82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 83 void __iomem *ctrl_bar) 84 { 85 u32 reg; 86 87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 88 put_unaligned_le32(reg, fw_ver); 89 } 90 91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 92 { 93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 96 } 97 98 static void 99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 100 { 101 dma_sync_single_for_device(dp->dev, dma_addr, 102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 103 dp->rx_dma_dir); 104 } 105 106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 107 { 108 dma_unmap_single_attrs(dp->dev, dma_addr, 109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 111 } 112 113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 114 unsigned int len) 115 { 116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 117 len, dp->rx_dma_dir); 118 } 119 120 /* Firmware reconfig 121 * 122 * Firmware reconfig may take a while so we have two versions of it - 123 * synchronous and asynchronous (posted). All synchronous callers are holding 124 * RTNL so we don't have to worry about serializing them. 125 */ 126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 127 { 128 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 129 /* ensure update is written before pinging HW */ 130 nn_pci_flush(nn); 131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 132 } 133 134 /* Pass 0 as update to run posted reconfigs. */ 135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 136 { 137 update |= nn->reconfig_posted; 138 nn->reconfig_posted = 0; 139 140 nfp_net_reconfig_start(nn, update); 141 142 nn->reconfig_timer_active = true; 143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 144 } 145 146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 147 { 148 u32 reg; 149 150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 151 if (reg == 0) 152 return true; 153 if (reg & NFP_NET_CFG_UPDATE_ERR) { 154 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 155 return true; 156 } else if (last_check) { 157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 158 return true; 159 } 160 161 return false; 162 } 163 164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 165 { 166 bool timed_out = false; 167 168 /* Poll update field, waiting for NFP to ack the config */ 169 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 170 msleep(1); 171 timed_out = time_is_before_eq_jiffies(deadline); 172 } 173 174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 175 return -EIO; 176 177 return timed_out ? -EIO : 0; 178 } 179 180 static void nfp_net_reconfig_timer(unsigned long data) 181 { 182 struct nfp_net *nn = (void *)data; 183 184 spin_lock_bh(&nn->reconfig_lock); 185 186 nn->reconfig_timer_active = false; 187 188 /* If sync caller is present it will take over from us */ 189 if (nn->reconfig_sync_present) 190 goto done; 191 192 /* Read reconfig status and report errors */ 193 nfp_net_reconfig_check_done(nn, true); 194 195 if (nn->reconfig_posted) 196 nfp_net_reconfig_start_async(nn, 0); 197 done: 198 spin_unlock_bh(&nn->reconfig_lock); 199 } 200 201 /** 202 * nfp_net_reconfig_post() - Post async reconfig request 203 * @nn: NFP Net device to reconfigure 204 * @update: The value for the update field in the BAR config 205 * 206 * Record FW reconfiguration request. Reconfiguration will be kicked off 207 * whenever reconfiguration machinery is idle. Multiple requests can be 208 * merged together! 209 */ 210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 211 { 212 spin_lock_bh(&nn->reconfig_lock); 213 214 /* Sync caller will kick off async reconf when it's done, just post */ 215 if (nn->reconfig_sync_present) { 216 nn->reconfig_posted |= update; 217 goto done; 218 } 219 220 /* Opportunistically check if the previous command is done */ 221 if (!nn->reconfig_timer_active || 222 nfp_net_reconfig_check_done(nn, false)) 223 nfp_net_reconfig_start_async(nn, update); 224 else 225 nn->reconfig_posted |= update; 226 done: 227 spin_unlock_bh(&nn->reconfig_lock); 228 } 229 230 /** 231 * nfp_net_reconfig() - Reconfigure the firmware 232 * @nn: NFP Net device to reconfigure 233 * @update: The value for the update field in the BAR config 234 * 235 * Write the update word to the BAR and ping the reconfig queue. The 236 * poll until the firmware has acknowledged the update by zeroing the 237 * update word. 238 * 239 * Return: Negative errno on error, 0 on success 240 */ 241 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 242 { 243 bool cancelled_timer = false; 244 u32 pre_posted_requests; 245 int ret; 246 247 spin_lock_bh(&nn->reconfig_lock); 248 249 nn->reconfig_sync_present = true; 250 251 if (nn->reconfig_timer_active) { 252 del_timer(&nn->reconfig_timer); 253 nn->reconfig_timer_active = false; 254 cancelled_timer = true; 255 } 256 pre_posted_requests = nn->reconfig_posted; 257 nn->reconfig_posted = 0; 258 259 spin_unlock_bh(&nn->reconfig_lock); 260 261 if (cancelled_timer) 262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 263 264 /* Run the posted reconfigs which were issued before we started */ 265 if (pre_posted_requests) { 266 nfp_net_reconfig_start(nn, pre_posted_requests); 267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 268 } 269 270 nfp_net_reconfig_start(nn, update); 271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 272 273 spin_lock_bh(&nn->reconfig_lock); 274 275 if (nn->reconfig_posted) 276 nfp_net_reconfig_start_async(nn, 0); 277 278 nn->reconfig_sync_present = false; 279 280 spin_unlock_bh(&nn->reconfig_lock); 281 282 return ret; 283 } 284 285 /** 286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 287 * @nn: NFP Net device to reconfigure 288 * @mbox_cmd: The value for the mailbox command 289 * 290 * Helper function for mailbox updates 291 * 292 * Return: Negative errno on error, 0 on success 293 */ 294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 295 { 296 int ret; 297 298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd); 299 300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 301 if (ret) { 302 nn_err(nn, "Mailbox update error\n"); 303 return ret; 304 } 305 306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET); 307 } 308 309 /* Interrupt configuration and handling 310 */ 311 312 /** 313 * nfp_net_irq_unmask() - Unmask automasked interrupt 314 * @nn: NFP Network structure 315 * @entry_nr: MSI-X table entry 316 * 317 * Clear the ICR for the IRQ entry. 318 */ 319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 320 { 321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 322 nn_pci_flush(nn); 323 } 324 325 /** 326 * nfp_net_irqs_alloc() - allocates MSI-X irqs 327 * @pdev: PCI device structure 328 * @irq_entries: Array to be initialized and used to hold the irq entries 329 * @min_irqs: Minimal acceptable number of interrupts 330 * @wanted_irqs: Target number of interrupts to allocate 331 * 332 * Return: Number of irqs obtained or 0 on error. 333 */ 334 unsigned int 335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 336 unsigned int min_irqs, unsigned int wanted_irqs) 337 { 338 unsigned int i; 339 int got_irqs; 340 341 for (i = 0; i < wanted_irqs; i++) 342 irq_entries[i].entry = i; 343 344 got_irqs = pci_enable_msix_range(pdev, irq_entries, 345 min_irqs, wanted_irqs); 346 if (got_irqs < 0) { 347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 348 min_irqs, wanted_irqs, got_irqs); 349 return 0; 350 } 351 352 if (got_irqs < wanted_irqs) 353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 354 wanted_irqs, got_irqs); 355 356 return got_irqs; 357 } 358 359 /** 360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 361 * @nn: NFP Network structure 362 * @irq_entries: Table of allocated interrupts 363 * @n: Size of @irq_entries (number of entries to grab) 364 * 365 * After interrupts are allocated with nfp_net_irqs_alloc() this function 366 * should be called to assign them to a specific netdev (port). 367 */ 368 void 369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 370 unsigned int n) 371 { 372 struct nfp_net_dp *dp = &nn->dp; 373 374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 375 dp->num_r_vecs = nn->max_r_vecs; 376 377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 378 379 if (dp->num_rx_rings > dp->num_r_vecs || 380 dp->num_tx_rings > dp->num_r_vecs) 381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 382 dp->num_rx_rings, dp->num_tx_rings, 383 dp->num_r_vecs); 384 385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 387 dp->num_stack_tx_rings = dp->num_tx_rings; 388 } 389 390 /** 391 * nfp_net_irqs_disable() - Disable interrupts 392 * @pdev: PCI device structure 393 * 394 * Undoes what @nfp_net_irqs_alloc() does. 395 */ 396 void nfp_net_irqs_disable(struct pci_dev *pdev) 397 { 398 pci_disable_msix(pdev); 399 } 400 401 /** 402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 403 * @irq: Interrupt 404 * @data: Opaque data structure 405 * 406 * Return: Indicate if the interrupt has been handled. 407 */ 408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 409 { 410 struct nfp_net_r_vector *r_vec = data; 411 412 napi_schedule_irqoff(&r_vec->napi); 413 414 /* The FW auto-masks any interrupt, either via the MASK bit in 415 * the MSI-X table or via the per entry ICR field. So there 416 * is no need to disable interrupts here. 417 */ 418 return IRQ_HANDLED; 419 } 420 421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 422 { 423 struct nfp_net_r_vector *r_vec = data; 424 425 tasklet_schedule(&r_vec->tasklet); 426 427 return IRQ_HANDLED; 428 } 429 430 /** 431 * nfp_net_read_link_status() - Reread link status from control BAR 432 * @nn: NFP Network structure 433 */ 434 static void nfp_net_read_link_status(struct nfp_net *nn) 435 { 436 unsigned long flags; 437 bool link_up; 438 u32 sts; 439 440 spin_lock_irqsave(&nn->link_status_lock, flags); 441 442 sts = nn_readl(nn, NFP_NET_CFG_STS); 443 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 444 445 if (nn->link_up == link_up) 446 goto out; 447 448 nn->link_up = link_up; 449 if (nn->port) 450 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 451 452 if (nn->link_up) { 453 netif_carrier_on(nn->dp.netdev); 454 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 455 } else { 456 netif_carrier_off(nn->dp.netdev); 457 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 458 } 459 out: 460 spin_unlock_irqrestore(&nn->link_status_lock, flags); 461 } 462 463 /** 464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 465 * @irq: Interrupt 466 * @data: Opaque data structure 467 * 468 * Return: Indicate if the interrupt has been handled. 469 */ 470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 471 { 472 struct nfp_net *nn = data; 473 struct msix_entry *entry; 474 475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 476 477 nfp_net_read_link_status(nn); 478 479 nfp_net_irq_unmask(nn, entry->entry); 480 481 return IRQ_HANDLED; 482 } 483 484 /** 485 * nfp_net_irq_exn() - Interrupt service routine for exceptions 486 * @irq: Interrupt 487 * @data: Opaque data structure 488 * 489 * Return: Indicate if the interrupt has been handled. 490 */ 491 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 492 { 493 struct nfp_net *nn = data; 494 495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 496 /* XXX TO BE IMPLEMENTED */ 497 return IRQ_HANDLED; 498 } 499 500 /** 501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 502 * @tx_ring: TX ring structure 503 * @r_vec: IRQ vector servicing this ring 504 * @idx: Ring index 505 * @is_xdp: Is this an XDP TX ring? 506 */ 507 static void 508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 509 struct nfp_net_r_vector *r_vec, unsigned int idx, 510 bool is_xdp) 511 { 512 struct nfp_net *nn = r_vec->nfp_net; 513 514 tx_ring->idx = idx; 515 tx_ring->r_vec = r_vec; 516 tx_ring->is_xdp = is_xdp; 517 u64_stats_init(&tx_ring->r_vec->tx_sync); 518 519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 521 } 522 523 /** 524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 525 * @rx_ring: RX ring structure 526 * @r_vec: IRQ vector servicing this ring 527 * @idx: Ring index 528 */ 529 static void 530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 531 struct nfp_net_r_vector *r_vec, unsigned int idx) 532 { 533 struct nfp_net *nn = r_vec->nfp_net; 534 535 rx_ring->idx = idx; 536 rx_ring->r_vec = r_vec; 537 u64_stats_init(&rx_ring->r_vec->rx_sync); 538 539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 541 } 542 543 /** 544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 545 * @nn: NFP Network structure 546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 547 * @format: printf-style format to construct the interrupt name 548 * @name: Pointer to allocated space for interrupt name 549 * @name_sz: Size of space for interrupt name 550 * @vector_idx: Index of MSI-X vector used for this interrupt 551 * @handler: IRQ handler to register for this interrupt 552 */ 553 static int 554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 555 const char *format, char *name, size_t name_sz, 556 unsigned int vector_idx, irq_handler_t handler) 557 { 558 struct msix_entry *entry; 559 int err; 560 561 entry = &nn->irq_entries[vector_idx]; 562 563 snprintf(name, name_sz, format, nfp_net_name(nn)); 564 err = request_irq(entry->vector, handler, 0, name, nn); 565 if (err) { 566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 567 entry->vector, err); 568 return err; 569 } 570 nn_writeb(nn, ctrl_offset, entry->entry); 571 572 return 0; 573 } 574 575 /** 576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 577 * @nn: NFP Network structure 578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 579 * @vector_idx: Index of MSI-X vector used for this interrupt 580 */ 581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 582 unsigned int vector_idx) 583 { 584 nn_writeb(nn, ctrl_offset, 0xff); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 /* Transmit 589 * 590 * One queue controller peripheral queue is used for transmit. The 591 * driver en-queues packets for transmit by advancing the write 592 * pointer. The device indicates that packets have transmitted by 593 * advancing the read pointer. The driver maintains a local copy of 594 * the read and write pointer in @struct nfp_net_tx_ring. The driver 595 * keeps @wr_p in sync with the queue controller write pointer and can 596 * determine how many packets have been transmitted by comparing its 597 * copy of the read pointer @rd_p with the read pointer maintained by 598 * the queue controller peripheral. 599 */ 600 601 /** 602 * nfp_net_tx_full() - Check if the TX ring is full 603 * @tx_ring: TX ring to check 604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 605 * 606 * This function checks, based on the *host copy* of read/write 607 * pointer if a given TX ring is full. The real TX queue may have 608 * some newly made available slots. 609 * 610 * Return: True if the ring is full. 611 */ 612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 613 { 614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 615 } 616 617 /* Wrappers for deciding when to stop and restart TX queues */ 618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 619 { 620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 621 } 622 623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 624 { 625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 626 } 627 628 /** 629 * nfp_net_tx_ring_stop() - stop tx ring 630 * @nd_q: netdev queue 631 * @tx_ring: driver tx queue structure 632 * 633 * Safely stop TX ring. Remember that while we are running .start_xmit() 634 * someone else may be cleaning the TX ring completions so we need to be 635 * extra careful here. 636 */ 637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 638 struct nfp_net_tx_ring *tx_ring) 639 { 640 netif_tx_stop_queue(nd_q); 641 642 /* We can race with the TX completion out of NAPI so recheck */ 643 smp_mb(); 644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 645 netif_tx_start_queue(nd_q); 646 } 647 648 /** 649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 650 * @r_vec: per-ring structure 651 * @txbuf: Pointer to driver soft TX descriptor 652 * @txd: Pointer to HW TX descriptor 653 * @skb: Pointer to SKB 654 * 655 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 656 * Return error on packet header greater than maximum supported LSO header size. 657 */ 658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 659 struct nfp_net_tx_buf *txbuf, 660 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 661 { 662 u32 hdrlen; 663 u16 mss; 664 665 if (!skb_is_gso(skb)) 666 return; 667 668 if (!skb->encapsulation) { 669 txd->l3_offset = skb_network_offset(skb); 670 txd->l4_offset = skb_transport_offset(skb); 671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 672 } else { 673 txd->l3_offset = skb_inner_network_offset(skb); 674 txd->l4_offset = skb_inner_transport_offset(skb); 675 hdrlen = skb_inner_transport_header(skb) - skb->data + 676 inner_tcp_hdrlen(skb); 677 } 678 679 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 680 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 681 682 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 683 txd->lso_hdrlen = hdrlen; 684 txd->mss = cpu_to_le16(mss); 685 txd->flags |= PCIE_DESC_TX_LSO; 686 687 u64_stats_update_begin(&r_vec->tx_sync); 688 r_vec->tx_lso++; 689 u64_stats_update_end(&r_vec->tx_sync); 690 } 691 692 /** 693 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 694 * @dp: NFP Net data path struct 695 * @r_vec: per-ring structure 696 * @txbuf: Pointer to driver soft TX descriptor 697 * @txd: Pointer to TX descriptor 698 * @skb: Pointer to SKB 699 * 700 * This function sets the TX checksum flags in the TX descriptor based 701 * on the configuration and the protocol of the packet to be transmitted. 702 */ 703 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 704 struct nfp_net_r_vector *r_vec, 705 struct nfp_net_tx_buf *txbuf, 706 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 707 { 708 struct ipv6hdr *ipv6h; 709 struct iphdr *iph; 710 u8 l4_hdr; 711 712 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 713 return; 714 715 if (skb->ip_summed != CHECKSUM_PARTIAL) 716 return; 717 718 txd->flags |= PCIE_DESC_TX_CSUM; 719 if (skb->encapsulation) 720 txd->flags |= PCIE_DESC_TX_ENCAP; 721 722 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 723 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 724 725 if (iph->version == 4) { 726 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 727 l4_hdr = iph->protocol; 728 } else if (ipv6h->version == 6) { 729 l4_hdr = ipv6h->nexthdr; 730 } else { 731 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 732 return; 733 } 734 735 switch (l4_hdr) { 736 case IPPROTO_TCP: 737 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 738 break; 739 case IPPROTO_UDP: 740 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 741 break; 742 default: 743 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 744 return; 745 } 746 747 u64_stats_update_begin(&r_vec->tx_sync); 748 if (skb->encapsulation) 749 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 750 else 751 r_vec->hw_csum_tx += txbuf->pkt_cnt; 752 u64_stats_update_end(&r_vec->tx_sync); 753 } 754 755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 756 { 757 wmb(); 758 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 759 tx_ring->wr_ptr_add = 0; 760 } 761 762 static int nfp_net_prep_port_id(struct sk_buff *skb) 763 { 764 struct metadata_dst *md_dst = skb_metadata_dst(skb); 765 unsigned char *data; 766 767 if (likely(!md_dst)) 768 return 0; 769 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 770 return 0; 771 772 if (unlikely(skb_cow_head(skb, 8))) 773 return -ENOMEM; 774 775 data = skb_push(skb, 8); 776 put_unaligned_be32(NFP_NET_META_PORTID, data); 777 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 778 779 return 8; 780 } 781 782 /** 783 * nfp_net_tx() - Main transmit entry point 784 * @skb: SKB to transmit 785 * @netdev: netdev structure 786 * 787 * Return: NETDEV_TX_OK on success. 788 */ 789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 790 { 791 struct nfp_net *nn = netdev_priv(netdev); 792 const struct skb_frag_struct *frag; 793 struct nfp_net_tx_desc *txd, txdg; 794 int f, nr_frags, wr_idx, md_bytes; 795 struct nfp_net_tx_ring *tx_ring; 796 struct nfp_net_r_vector *r_vec; 797 struct nfp_net_tx_buf *txbuf; 798 struct netdev_queue *nd_q; 799 struct nfp_net_dp *dp; 800 dma_addr_t dma_addr; 801 unsigned int fsize; 802 u16 qidx; 803 804 dp = &nn->dp; 805 qidx = skb_get_queue_mapping(skb); 806 tx_ring = &dp->tx_rings[qidx]; 807 r_vec = tx_ring->r_vec; 808 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 809 810 nr_frags = skb_shinfo(skb)->nr_frags; 811 812 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 813 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 814 qidx, tx_ring->wr_p, tx_ring->rd_p); 815 netif_tx_stop_queue(nd_q); 816 nfp_net_tx_xmit_more_flush(tx_ring); 817 u64_stats_update_begin(&r_vec->tx_sync); 818 r_vec->tx_busy++; 819 u64_stats_update_end(&r_vec->tx_sync); 820 return NETDEV_TX_BUSY; 821 } 822 823 md_bytes = nfp_net_prep_port_id(skb); 824 if (unlikely(md_bytes < 0)) { 825 nfp_net_tx_xmit_more_flush(tx_ring); 826 dev_kfree_skb_any(skb); 827 return NETDEV_TX_OK; 828 } 829 830 /* Start with the head skbuf */ 831 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 832 DMA_TO_DEVICE); 833 if (dma_mapping_error(dp->dev, dma_addr)) 834 goto err_free; 835 836 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 837 838 /* Stash the soft descriptor of the head then initialize it */ 839 txbuf = &tx_ring->txbufs[wr_idx]; 840 txbuf->skb = skb; 841 txbuf->dma_addr = dma_addr; 842 txbuf->fidx = -1; 843 txbuf->pkt_cnt = 1; 844 txbuf->real_len = skb->len; 845 846 /* Build TX descriptor */ 847 txd = &tx_ring->txds[wr_idx]; 848 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 849 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 850 nfp_desc_set_dma_addr(txd, dma_addr); 851 txd->data_len = cpu_to_le16(skb->len); 852 853 txd->flags = 0; 854 txd->mss = 0; 855 txd->lso_hdrlen = 0; 856 857 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 858 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 859 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 860 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 861 txd->flags |= PCIE_DESC_TX_VLAN; 862 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 863 } 864 865 /* Gather DMA */ 866 if (nr_frags > 0) { 867 /* all descs must match except for in addr, length and eop */ 868 txdg = *txd; 869 870 for (f = 0; f < nr_frags; f++) { 871 frag = &skb_shinfo(skb)->frags[f]; 872 fsize = skb_frag_size(frag); 873 874 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 875 fsize, DMA_TO_DEVICE); 876 if (dma_mapping_error(dp->dev, dma_addr)) 877 goto err_unmap; 878 879 wr_idx = D_IDX(tx_ring, wr_idx + 1); 880 tx_ring->txbufs[wr_idx].skb = skb; 881 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 882 tx_ring->txbufs[wr_idx].fidx = f; 883 884 txd = &tx_ring->txds[wr_idx]; 885 *txd = txdg; 886 txd->dma_len = cpu_to_le16(fsize); 887 nfp_desc_set_dma_addr(txd, dma_addr); 888 txd->offset_eop |= 889 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 890 } 891 892 u64_stats_update_begin(&r_vec->tx_sync); 893 r_vec->tx_gather++; 894 u64_stats_update_end(&r_vec->tx_sync); 895 } 896 897 netdev_tx_sent_queue(nd_q, txbuf->real_len); 898 899 skb_tx_timestamp(skb); 900 901 tx_ring->wr_p += nr_frags + 1; 902 if (nfp_net_tx_ring_should_stop(tx_ring)) 903 nfp_net_tx_ring_stop(nd_q, tx_ring); 904 905 tx_ring->wr_ptr_add += nr_frags + 1; 906 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 907 nfp_net_tx_xmit_more_flush(tx_ring); 908 909 return NETDEV_TX_OK; 910 911 err_unmap: 912 while (--f >= 0) { 913 frag = &skb_shinfo(skb)->frags[f]; 914 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 915 skb_frag_size(frag), DMA_TO_DEVICE); 916 tx_ring->txbufs[wr_idx].skb = NULL; 917 tx_ring->txbufs[wr_idx].dma_addr = 0; 918 tx_ring->txbufs[wr_idx].fidx = -2; 919 wr_idx = wr_idx - 1; 920 if (wr_idx < 0) 921 wr_idx += tx_ring->cnt; 922 } 923 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 924 skb_headlen(skb), DMA_TO_DEVICE); 925 tx_ring->txbufs[wr_idx].skb = NULL; 926 tx_ring->txbufs[wr_idx].dma_addr = 0; 927 tx_ring->txbufs[wr_idx].fidx = -2; 928 err_free: 929 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 930 nfp_net_tx_xmit_more_flush(tx_ring); 931 u64_stats_update_begin(&r_vec->tx_sync); 932 r_vec->tx_errors++; 933 u64_stats_update_end(&r_vec->tx_sync); 934 dev_kfree_skb_any(skb); 935 return NETDEV_TX_OK; 936 } 937 938 /** 939 * nfp_net_tx_complete() - Handled completed TX packets 940 * @tx_ring: TX ring structure 941 * 942 * Return: Number of completed TX descriptors 943 */ 944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 945 { 946 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 947 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 948 const struct skb_frag_struct *frag; 949 struct netdev_queue *nd_q; 950 u32 done_pkts = 0, done_bytes = 0; 951 struct sk_buff *skb; 952 int todo, nr_frags; 953 u32 qcp_rd_p; 954 int fidx; 955 int idx; 956 957 if (tx_ring->wr_p == tx_ring->rd_p) 958 return; 959 960 /* Work out how many descriptors have been transmitted */ 961 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 962 963 if (qcp_rd_p == tx_ring->qcp_rd_p) 964 return; 965 966 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 967 968 while (todo--) { 969 idx = D_IDX(tx_ring, tx_ring->rd_p++); 970 971 skb = tx_ring->txbufs[idx].skb; 972 if (!skb) 973 continue; 974 975 nr_frags = skb_shinfo(skb)->nr_frags; 976 fidx = tx_ring->txbufs[idx].fidx; 977 978 if (fidx == -1) { 979 /* unmap head */ 980 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 981 skb_headlen(skb), DMA_TO_DEVICE); 982 983 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 984 done_bytes += tx_ring->txbufs[idx].real_len; 985 } else { 986 /* unmap fragment */ 987 frag = &skb_shinfo(skb)->frags[fidx]; 988 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 989 skb_frag_size(frag), DMA_TO_DEVICE); 990 } 991 992 /* check for last gather fragment */ 993 if (fidx == nr_frags - 1) 994 dev_consume_skb_any(skb); 995 996 tx_ring->txbufs[idx].dma_addr = 0; 997 tx_ring->txbufs[idx].skb = NULL; 998 tx_ring->txbufs[idx].fidx = -2; 999 } 1000 1001 tx_ring->qcp_rd_p = qcp_rd_p; 1002 1003 u64_stats_update_begin(&r_vec->tx_sync); 1004 r_vec->tx_bytes += done_bytes; 1005 r_vec->tx_pkts += done_pkts; 1006 u64_stats_update_end(&r_vec->tx_sync); 1007 1008 if (!dp->netdev) 1009 return; 1010 1011 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1012 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1013 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1014 /* Make sure TX thread will see updated tx_ring->rd_p */ 1015 smp_mb(); 1016 1017 if (unlikely(netif_tx_queue_stopped(nd_q))) 1018 netif_tx_wake_queue(nd_q); 1019 } 1020 1021 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1022 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1023 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1024 } 1025 1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1027 { 1028 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1029 u32 done_pkts = 0, done_bytes = 0; 1030 bool done_all; 1031 int idx, todo; 1032 u32 qcp_rd_p; 1033 1034 /* Work out how many descriptors have been transmitted */ 1035 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1036 1037 if (qcp_rd_p == tx_ring->qcp_rd_p) 1038 return true; 1039 1040 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1041 1042 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1043 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1044 1045 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1046 1047 done_pkts = todo; 1048 while (todo--) { 1049 idx = D_IDX(tx_ring, tx_ring->rd_p); 1050 tx_ring->rd_p++; 1051 1052 done_bytes += tx_ring->txbufs[idx].real_len; 1053 } 1054 1055 u64_stats_update_begin(&r_vec->tx_sync); 1056 r_vec->tx_bytes += done_bytes; 1057 r_vec->tx_pkts += done_pkts; 1058 u64_stats_update_end(&r_vec->tx_sync); 1059 1060 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1061 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1062 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1063 1064 return done_all; 1065 } 1066 1067 /** 1068 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1069 * @dp: NFP Net data path struct 1070 * @tx_ring: TX ring structure 1071 * 1072 * Assumes that the device is stopped 1073 */ 1074 static void 1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1076 { 1077 const struct skb_frag_struct *frag; 1078 struct netdev_queue *nd_q; 1079 1080 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1081 struct nfp_net_tx_buf *tx_buf; 1082 struct sk_buff *skb; 1083 int idx, nr_frags; 1084 1085 idx = D_IDX(tx_ring, tx_ring->rd_p); 1086 tx_buf = &tx_ring->txbufs[idx]; 1087 1088 skb = tx_ring->txbufs[idx].skb; 1089 nr_frags = skb_shinfo(skb)->nr_frags; 1090 1091 if (tx_buf->fidx == -1) { 1092 /* unmap head */ 1093 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1094 skb_headlen(skb), DMA_TO_DEVICE); 1095 } else { 1096 /* unmap fragment */ 1097 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1098 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1099 skb_frag_size(frag), DMA_TO_DEVICE); 1100 } 1101 1102 /* check for last gather fragment */ 1103 if (tx_buf->fidx == nr_frags - 1) 1104 dev_kfree_skb_any(skb); 1105 1106 tx_buf->dma_addr = 0; 1107 tx_buf->skb = NULL; 1108 tx_buf->fidx = -2; 1109 1110 tx_ring->qcp_rd_p++; 1111 tx_ring->rd_p++; 1112 } 1113 1114 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1115 tx_ring->wr_p = 0; 1116 tx_ring->rd_p = 0; 1117 tx_ring->qcp_rd_p = 0; 1118 tx_ring->wr_ptr_add = 0; 1119 1120 if (tx_ring->is_xdp || !dp->netdev) 1121 return; 1122 1123 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1124 netdev_tx_reset_queue(nd_q); 1125 } 1126 1127 static void nfp_net_tx_timeout(struct net_device *netdev) 1128 { 1129 struct nfp_net *nn = netdev_priv(netdev); 1130 int i; 1131 1132 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1133 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1134 continue; 1135 nn_warn(nn, "TX timeout on ring: %d\n", i); 1136 } 1137 nn_warn(nn, "TX watchdog timeout\n"); 1138 } 1139 1140 /* Receive processing 1141 */ 1142 static unsigned int 1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1144 { 1145 unsigned int fl_bufsz; 1146 1147 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1148 fl_bufsz += dp->rx_dma_off; 1149 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1150 fl_bufsz += NFP_NET_MAX_PREPEND; 1151 else 1152 fl_bufsz += dp->rx_offset; 1153 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1154 1155 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1156 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1157 1158 return fl_bufsz; 1159 } 1160 1161 static void 1162 nfp_net_free_frag(void *frag, bool xdp) 1163 { 1164 if (!xdp) 1165 skb_free_frag(frag); 1166 else 1167 __free_page(virt_to_page(frag)); 1168 } 1169 1170 /** 1171 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1172 * @dp: NFP Net data path struct 1173 * @dma_addr: Pointer to storage for DMA address (output param) 1174 * 1175 * This function will allcate a new page frag, map it for DMA. 1176 * 1177 * Return: allocated page frag or NULL on failure. 1178 */ 1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1180 { 1181 void *frag; 1182 1183 if (!dp->xdp_prog) { 1184 frag = netdev_alloc_frag(dp->fl_bufsz); 1185 } else { 1186 struct page *page; 1187 1188 page = alloc_page(GFP_KERNEL | __GFP_COLD); 1189 frag = page ? page_address(page) : NULL; 1190 } 1191 if (!frag) { 1192 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1193 return NULL; 1194 } 1195 1196 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1197 if (dma_mapping_error(dp->dev, *dma_addr)) { 1198 nfp_net_free_frag(frag, dp->xdp_prog); 1199 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1200 return NULL; 1201 } 1202 1203 return frag; 1204 } 1205 1206 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1207 { 1208 void *frag; 1209 1210 if (!dp->xdp_prog) { 1211 frag = napi_alloc_frag(dp->fl_bufsz); 1212 } else { 1213 struct page *page; 1214 1215 page = alloc_page(GFP_ATOMIC | __GFP_COLD); 1216 frag = page ? page_address(page) : NULL; 1217 } 1218 if (!frag) { 1219 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1220 return NULL; 1221 } 1222 1223 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1224 if (dma_mapping_error(dp->dev, *dma_addr)) { 1225 nfp_net_free_frag(frag, dp->xdp_prog); 1226 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1227 return NULL; 1228 } 1229 1230 return frag; 1231 } 1232 1233 /** 1234 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1235 * @dp: NFP Net data path struct 1236 * @rx_ring: RX ring structure 1237 * @frag: page fragment buffer 1238 * @dma_addr: DMA address of skb mapping 1239 */ 1240 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1241 struct nfp_net_rx_ring *rx_ring, 1242 void *frag, dma_addr_t dma_addr) 1243 { 1244 unsigned int wr_idx; 1245 1246 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1247 1248 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1249 1250 /* Stash SKB and DMA address away */ 1251 rx_ring->rxbufs[wr_idx].frag = frag; 1252 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1253 1254 /* Fill freelist descriptor */ 1255 rx_ring->rxds[wr_idx].fld.reserved = 0; 1256 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1257 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1258 dma_addr + dp->rx_dma_off); 1259 1260 rx_ring->wr_p++; 1261 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1262 /* Update write pointer of the freelist queue. Make 1263 * sure all writes are flushed before telling the hardware. 1264 */ 1265 wmb(); 1266 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1267 } 1268 } 1269 1270 /** 1271 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1272 * @rx_ring: RX ring structure 1273 * 1274 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1275 * (i.e. device was not enabled)! 1276 */ 1277 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1278 { 1279 unsigned int wr_idx, last_idx; 1280 1281 /* Move the empty entry to the end of the list */ 1282 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1283 last_idx = rx_ring->cnt - 1; 1284 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1285 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1286 rx_ring->rxbufs[last_idx].dma_addr = 0; 1287 rx_ring->rxbufs[last_idx].frag = NULL; 1288 1289 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1290 rx_ring->wr_p = 0; 1291 rx_ring->rd_p = 0; 1292 } 1293 1294 /** 1295 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1296 * @dp: NFP Net data path struct 1297 * @rx_ring: RX ring to remove buffers from 1298 * 1299 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1300 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1301 * to restore required ring geometry. 1302 */ 1303 static void 1304 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1305 struct nfp_net_rx_ring *rx_ring) 1306 { 1307 unsigned int i; 1308 1309 for (i = 0; i < rx_ring->cnt - 1; i++) { 1310 /* NULL skb can only happen when initial filling of the ring 1311 * fails to allocate enough buffers and calls here to free 1312 * already allocated ones. 1313 */ 1314 if (!rx_ring->rxbufs[i].frag) 1315 continue; 1316 1317 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1318 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1319 rx_ring->rxbufs[i].dma_addr = 0; 1320 rx_ring->rxbufs[i].frag = NULL; 1321 } 1322 } 1323 1324 /** 1325 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1326 * @dp: NFP Net data path struct 1327 * @rx_ring: RX ring to remove buffers from 1328 */ 1329 static int 1330 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1331 struct nfp_net_rx_ring *rx_ring) 1332 { 1333 struct nfp_net_rx_buf *rxbufs; 1334 unsigned int i; 1335 1336 rxbufs = rx_ring->rxbufs; 1337 1338 for (i = 0; i < rx_ring->cnt - 1; i++) { 1339 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1340 if (!rxbufs[i].frag) { 1341 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1342 return -ENOMEM; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1351 * @dp: NFP Net data path struct 1352 * @rx_ring: RX ring to fill 1353 */ 1354 static void 1355 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1356 struct nfp_net_rx_ring *rx_ring) 1357 { 1358 unsigned int i; 1359 1360 for (i = 0; i < rx_ring->cnt - 1; i++) 1361 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1362 rx_ring->rxbufs[i].dma_addr); 1363 } 1364 1365 /** 1366 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1367 * @flags: RX descriptor flags field in CPU byte order 1368 */ 1369 static int nfp_net_rx_csum_has_errors(u16 flags) 1370 { 1371 u16 csum_all_checked, csum_all_ok; 1372 1373 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1374 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1375 1376 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1377 } 1378 1379 /** 1380 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1381 * @dp: NFP Net data path struct 1382 * @r_vec: per-ring structure 1383 * @rxd: Pointer to RX descriptor 1384 * @meta: Parsed metadata prepend 1385 * @skb: Pointer to SKB 1386 */ 1387 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1388 struct nfp_net_r_vector *r_vec, 1389 struct nfp_net_rx_desc *rxd, 1390 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1391 { 1392 skb_checksum_none_assert(skb); 1393 1394 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1395 return; 1396 1397 if (meta->csum_type) { 1398 skb->ip_summed = meta->csum_type; 1399 skb->csum = meta->csum; 1400 u64_stats_update_begin(&r_vec->rx_sync); 1401 r_vec->hw_csum_rx_ok++; 1402 u64_stats_update_end(&r_vec->rx_sync); 1403 return; 1404 } 1405 1406 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1407 u64_stats_update_begin(&r_vec->rx_sync); 1408 r_vec->hw_csum_rx_error++; 1409 u64_stats_update_end(&r_vec->rx_sync); 1410 return; 1411 } 1412 1413 /* Assume that the firmware will never report inner CSUM_OK unless outer 1414 * L4 headers were successfully parsed. FW will always report zero UDP 1415 * checksum as CSUM_OK. 1416 */ 1417 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1418 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1419 __skb_incr_checksum_unnecessary(skb); 1420 u64_stats_update_begin(&r_vec->rx_sync); 1421 r_vec->hw_csum_rx_ok++; 1422 u64_stats_update_end(&r_vec->rx_sync); 1423 } 1424 1425 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1426 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1427 __skb_incr_checksum_unnecessary(skb); 1428 u64_stats_update_begin(&r_vec->rx_sync); 1429 r_vec->hw_csum_rx_inner_ok++; 1430 u64_stats_update_end(&r_vec->rx_sync); 1431 } 1432 } 1433 1434 static void 1435 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1436 unsigned int type, __be32 *hash) 1437 { 1438 if (!(netdev->features & NETIF_F_RXHASH)) 1439 return; 1440 1441 switch (type) { 1442 case NFP_NET_RSS_IPV4: 1443 case NFP_NET_RSS_IPV6: 1444 case NFP_NET_RSS_IPV6_EX: 1445 meta->hash_type = PKT_HASH_TYPE_L3; 1446 break; 1447 default: 1448 meta->hash_type = PKT_HASH_TYPE_L4; 1449 break; 1450 } 1451 1452 meta->hash = get_unaligned_be32(hash); 1453 } 1454 1455 static void 1456 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1457 void *data, struct nfp_net_rx_desc *rxd) 1458 { 1459 struct nfp_net_rx_hash *rx_hash = data; 1460 1461 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1462 return; 1463 1464 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1465 &rx_hash->hash); 1466 } 1467 1468 static void * 1469 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1470 void *data, int meta_len) 1471 { 1472 u32 meta_info; 1473 1474 meta_info = get_unaligned_be32(data); 1475 data += 4; 1476 1477 while (meta_info) { 1478 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1479 case NFP_NET_META_HASH: 1480 meta_info >>= NFP_NET_META_FIELD_SIZE; 1481 nfp_net_set_hash(netdev, meta, 1482 meta_info & NFP_NET_META_FIELD_MASK, 1483 (__be32 *)data); 1484 data += 4; 1485 break; 1486 case NFP_NET_META_MARK: 1487 meta->mark = get_unaligned_be32(data); 1488 data += 4; 1489 break; 1490 case NFP_NET_META_PORTID: 1491 meta->portid = get_unaligned_be32(data); 1492 data += 4; 1493 break; 1494 case NFP_NET_META_CSUM: 1495 meta->csum_type = CHECKSUM_COMPLETE; 1496 meta->csum = 1497 (__force __wsum)__get_unaligned_cpu32(data); 1498 data += 4; 1499 break; 1500 default: 1501 return NULL; 1502 } 1503 1504 meta_info >>= NFP_NET_META_FIELD_SIZE; 1505 } 1506 1507 return data; 1508 } 1509 1510 static void 1511 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1512 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1513 struct sk_buff *skb) 1514 { 1515 u64_stats_update_begin(&r_vec->rx_sync); 1516 r_vec->rx_drops++; 1517 u64_stats_update_end(&r_vec->rx_sync); 1518 1519 /* skb is build based on the frag, free_skb() would free the frag 1520 * so to be able to reuse it we need an extra ref. 1521 */ 1522 if (skb && rxbuf && skb->head == rxbuf->frag) 1523 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1524 if (rxbuf) 1525 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1526 if (skb) 1527 dev_kfree_skb_any(skb); 1528 } 1529 1530 static bool 1531 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1532 struct nfp_net_tx_ring *tx_ring, 1533 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1534 unsigned int pkt_len, bool *completed) 1535 { 1536 struct nfp_net_tx_buf *txbuf; 1537 struct nfp_net_tx_desc *txd; 1538 int wr_idx; 1539 1540 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1541 if (!*completed) { 1542 nfp_net_xdp_complete(tx_ring); 1543 *completed = true; 1544 } 1545 1546 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1547 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1548 NULL); 1549 return false; 1550 } 1551 } 1552 1553 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1554 1555 /* Stash the soft descriptor of the head then initialize it */ 1556 txbuf = &tx_ring->txbufs[wr_idx]; 1557 1558 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1559 1560 txbuf->frag = rxbuf->frag; 1561 txbuf->dma_addr = rxbuf->dma_addr; 1562 txbuf->fidx = -1; 1563 txbuf->pkt_cnt = 1; 1564 txbuf->real_len = pkt_len; 1565 1566 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1567 pkt_len, DMA_BIDIRECTIONAL); 1568 1569 /* Build TX descriptor */ 1570 txd = &tx_ring->txds[wr_idx]; 1571 txd->offset_eop = PCIE_DESC_TX_EOP; 1572 txd->dma_len = cpu_to_le16(pkt_len); 1573 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1574 txd->data_len = cpu_to_le16(pkt_len); 1575 1576 txd->flags = 0; 1577 txd->mss = 0; 1578 txd->lso_hdrlen = 0; 1579 1580 tx_ring->wr_p++; 1581 tx_ring->wr_ptr_add++; 1582 return true; 1583 } 1584 1585 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start, 1586 unsigned int *off, unsigned int *len) 1587 { 1588 struct xdp_buff xdp; 1589 void *orig_data; 1590 int ret; 1591 1592 xdp.data_hard_start = hard_start; 1593 xdp.data = data + *off; 1594 xdp.data_end = data + *off + *len; 1595 1596 orig_data = xdp.data; 1597 ret = bpf_prog_run_xdp(prog, &xdp); 1598 1599 *len -= xdp.data - orig_data; 1600 *off += xdp.data - orig_data; 1601 1602 return ret; 1603 } 1604 1605 /** 1606 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1607 * @rx_ring: RX ring to receive from 1608 * @budget: NAPI budget 1609 * 1610 * Note, this function is separated out from the napi poll function to 1611 * more cleanly separate packet receive code from other bookkeeping 1612 * functions performed in the napi poll function. 1613 * 1614 * Return: Number of packets received. 1615 */ 1616 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1617 { 1618 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1619 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1620 struct nfp_net_tx_ring *tx_ring; 1621 struct bpf_prog *xdp_prog; 1622 bool xdp_tx_cmpl = false; 1623 unsigned int true_bufsz; 1624 struct sk_buff *skb; 1625 int pkts_polled = 0; 1626 int idx; 1627 1628 rcu_read_lock(); 1629 xdp_prog = READ_ONCE(dp->xdp_prog); 1630 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1631 tx_ring = r_vec->xdp_ring; 1632 1633 while (pkts_polled < budget) { 1634 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1635 struct nfp_net_rx_buf *rxbuf; 1636 struct nfp_net_rx_desc *rxd; 1637 struct nfp_meta_parsed meta; 1638 struct net_device *netdev; 1639 dma_addr_t new_dma_addr; 1640 void *new_frag; 1641 1642 idx = D_IDX(rx_ring, rx_ring->rd_p); 1643 1644 rxd = &rx_ring->rxds[idx]; 1645 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1646 break; 1647 1648 /* Memory barrier to ensure that we won't do other reads 1649 * before the DD bit. 1650 */ 1651 dma_rmb(); 1652 1653 memset(&meta, 0, sizeof(meta)); 1654 1655 rx_ring->rd_p++; 1656 pkts_polled++; 1657 1658 rxbuf = &rx_ring->rxbufs[idx]; 1659 /* < meta_len > 1660 * <-- [rx_offset] --> 1661 * --------------------------------------------------------- 1662 * | [XX] | metadata | packet | XXXX | 1663 * --------------------------------------------------------- 1664 * <---------------- data_len ---------------> 1665 * 1666 * The rx_offset is fixed for all packets, the meta_len can vary 1667 * on a packet by packet basis. If rx_offset is set to zero 1668 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1669 * buffer and is immediately followed by the packet (no [XX]). 1670 */ 1671 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1672 data_len = le16_to_cpu(rxd->rxd.data_len); 1673 pkt_len = data_len - meta_len; 1674 1675 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1676 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1677 pkt_off += meta_len; 1678 else 1679 pkt_off += dp->rx_offset; 1680 meta_off = pkt_off - meta_len; 1681 1682 /* Stats update */ 1683 u64_stats_update_begin(&r_vec->rx_sync); 1684 r_vec->rx_pkts++; 1685 r_vec->rx_bytes += pkt_len; 1686 u64_stats_update_end(&r_vec->rx_sync); 1687 1688 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1689 (dp->rx_offset && meta_len > dp->rx_offset))) { 1690 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1691 meta_len); 1692 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1693 continue; 1694 } 1695 1696 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1697 data_len); 1698 1699 if (!dp->chained_metadata_format) { 1700 nfp_net_set_hash_desc(dp->netdev, &meta, 1701 rxbuf->frag + meta_off, rxd); 1702 } else if (meta_len) { 1703 void *end; 1704 1705 end = nfp_net_parse_meta(dp->netdev, &meta, 1706 rxbuf->frag + meta_off, 1707 meta_len); 1708 if (unlikely(end != rxbuf->frag + pkt_off)) { 1709 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1710 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1711 NULL); 1712 continue; 1713 } 1714 } 1715 1716 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1717 dp->bpf_offload_xdp) && !meta.portid) { 1718 unsigned int dma_off; 1719 void *hard_start; 1720 int act; 1721 1722 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1723 1724 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start, 1725 &pkt_off, &pkt_len); 1726 switch (act) { 1727 case XDP_PASS: 1728 break; 1729 case XDP_TX: 1730 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1731 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1732 tx_ring, rxbuf, 1733 dma_off, 1734 pkt_len, 1735 &xdp_tx_cmpl))) 1736 trace_xdp_exception(dp->netdev, 1737 xdp_prog, act); 1738 continue; 1739 default: 1740 bpf_warn_invalid_xdp_action(act); 1741 /* fall through */ 1742 case XDP_ABORTED: 1743 trace_xdp_exception(dp->netdev, xdp_prog, act); 1744 /* fall through */ 1745 case XDP_DROP: 1746 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1747 rxbuf->dma_addr); 1748 continue; 1749 } 1750 } 1751 1752 skb = build_skb(rxbuf->frag, true_bufsz); 1753 if (unlikely(!skb)) { 1754 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1755 continue; 1756 } 1757 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1758 if (unlikely(!new_frag)) { 1759 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1760 continue; 1761 } 1762 1763 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1764 1765 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1766 1767 if (likely(!meta.portid)) { 1768 netdev = dp->netdev; 1769 } else { 1770 struct nfp_net *nn; 1771 1772 nn = netdev_priv(dp->netdev); 1773 netdev = nfp_app_repr_get(nn->app, meta.portid); 1774 if (unlikely(!netdev)) { 1775 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1776 continue; 1777 } 1778 nfp_repr_inc_rx_stats(netdev, pkt_len); 1779 } 1780 1781 skb_reserve(skb, pkt_off); 1782 skb_put(skb, pkt_len); 1783 1784 skb->mark = meta.mark; 1785 skb_set_hash(skb, meta.hash, meta.hash_type); 1786 1787 skb_record_rx_queue(skb, rx_ring->idx); 1788 skb->protocol = eth_type_trans(skb, netdev); 1789 1790 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1791 1792 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1793 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1794 le16_to_cpu(rxd->rxd.vlan)); 1795 1796 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1797 } 1798 1799 if (xdp_prog) { 1800 if (tx_ring->wr_ptr_add) 1801 nfp_net_tx_xmit_more_flush(tx_ring); 1802 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1803 !xdp_tx_cmpl) 1804 if (!nfp_net_xdp_complete(tx_ring)) 1805 pkts_polled = budget; 1806 } 1807 rcu_read_unlock(); 1808 1809 return pkts_polled; 1810 } 1811 1812 /** 1813 * nfp_net_poll() - napi poll function 1814 * @napi: NAPI structure 1815 * @budget: NAPI budget 1816 * 1817 * Return: number of packets polled. 1818 */ 1819 static int nfp_net_poll(struct napi_struct *napi, int budget) 1820 { 1821 struct nfp_net_r_vector *r_vec = 1822 container_of(napi, struct nfp_net_r_vector, napi); 1823 unsigned int pkts_polled = 0; 1824 1825 if (r_vec->tx_ring) 1826 nfp_net_tx_complete(r_vec->tx_ring); 1827 if (r_vec->rx_ring) 1828 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1829 1830 if (pkts_polled < budget) 1831 if (napi_complete_done(napi, pkts_polled)) 1832 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1833 1834 return pkts_polled; 1835 } 1836 1837 /* Control device data path 1838 */ 1839 1840 static bool 1841 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1842 struct sk_buff *skb, bool old) 1843 { 1844 unsigned int real_len = skb->len, meta_len = 0; 1845 struct nfp_net_tx_ring *tx_ring; 1846 struct nfp_net_tx_buf *txbuf; 1847 struct nfp_net_tx_desc *txd; 1848 struct nfp_net_dp *dp; 1849 dma_addr_t dma_addr; 1850 int wr_idx; 1851 1852 dp = &r_vec->nfp_net->dp; 1853 tx_ring = r_vec->tx_ring; 1854 1855 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1856 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1857 goto err_free; 1858 } 1859 1860 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1861 u64_stats_update_begin(&r_vec->tx_sync); 1862 r_vec->tx_busy++; 1863 u64_stats_update_end(&r_vec->tx_sync); 1864 if (!old) 1865 __skb_queue_tail(&r_vec->queue, skb); 1866 else 1867 __skb_queue_head(&r_vec->queue, skb); 1868 return true; 1869 } 1870 1871 if (nfp_app_ctrl_has_meta(nn->app)) { 1872 if (unlikely(skb_headroom(skb) < 8)) { 1873 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1874 goto err_free; 1875 } 1876 meta_len = 8; 1877 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1878 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1879 } 1880 1881 /* Start with the head skbuf */ 1882 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1883 DMA_TO_DEVICE); 1884 if (dma_mapping_error(dp->dev, dma_addr)) 1885 goto err_dma_warn; 1886 1887 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1888 1889 /* Stash the soft descriptor of the head then initialize it */ 1890 txbuf = &tx_ring->txbufs[wr_idx]; 1891 txbuf->skb = skb; 1892 txbuf->dma_addr = dma_addr; 1893 txbuf->fidx = -1; 1894 txbuf->pkt_cnt = 1; 1895 txbuf->real_len = real_len; 1896 1897 /* Build TX descriptor */ 1898 txd = &tx_ring->txds[wr_idx]; 1899 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1900 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1901 nfp_desc_set_dma_addr(txd, dma_addr); 1902 txd->data_len = cpu_to_le16(skb->len); 1903 1904 txd->flags = 0; 1905 txd->mss = 0; 1906 txd->lso_hdrlen = 0; 1907 1908 tx_ring->wr_p++; 1909 tx_ring->wr_ptr_add++; 1910 nfp_net_tx_xmit_more_flush(tx_ring); 1911 1912 return false; 1913 1914 err_dma_warn: 1915 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1916 err_free: 1917 u64_stats_update_begin(&r_vec->tx_sync); 1918 r_vec->tx_errors++; 1919 u64_stats_update_end(&r_vec->tx_sync); 1920 dev_kfree_skb_any(skb); 1921 return false; 1922 } 1923 1924 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1925 { 1926 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1927 bool ret; 1928 1929 spin_lock_bh(&r_vec->lock); 1930 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1931 spin_unlock_bh(&r_vec->lock); 1932 1933 return ret; 1934 } 1935 1936 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1937 { 1938 struct sk_buff *skb; 1939 1940 while ((skb = __skb_dequeue(&r_vec->queue))) 1941 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1942 return; 1943 } 1944 1945 static bool 1946 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1947 { 1948 u32 meta_type, meta_tag; 1949 1950 if (!nfp_app_ctrl_has_meta(nn->app)) 1951 return !meta_len; 1952 1953 if (meta_len != 8) 1954 return false; 1955 1956 meta_type = get_unaligned_be32(data); 1957 meta_tag = get_unaligned_be32(data + 4); 1958 1959 return (meta_type == NFP_NET_META_PORTID && 1960 meta_tag == NFP_META_PORT_ID_CTRL); 1961 } 1962 1963 static bool 1964 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1965 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1966 { 1967 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1968 struct nfp_net_rx_buf *rxbuf; 1969 struct nfp_net_rx_desc *rxd; 1970 dma_addr_t new_dma_addr; 1971 struct sk_buff *skb; 1972 void *new_frag; 1973 int idx; 1974 1975 idx = D_IDX(rx_ring, rx_ring->rd_p); 1976 1977 rxd = &rx_ring->rxds[idx]; 1978 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1979 return false; 1980 1981 /* Memory barrier to ensure that we won't do other reads 1982 * before the DD bit. 1983 */ 1984 dma_rmb(); 1985 1986 rx_ring->rd_p++; 1987 1988 rxbuf = &rx_ring->rxbufs[idx]; 1989 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1990 data_len = le16_to_cpu(rxd->rxd.data_len); 1991 pkt_len = data_len - meta_len; 1992 1993 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1994 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1995 pkt_off += meta_len; 1996 else 1997 pkt_off += dp->rx_offset; 1998 meta_off = pkt_off - meta_len; 1999 2000 /* Stats update */ 2001 u64_stats_update_begin(&r_vec->rx_sync); 2002 r_vec->rx_pkts++; 2003 r_vec->rx_bytes += pkt_len; 2004 u64_stats_update_end(&r_vec->rx_sync); 2005 2006 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2007 2008 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2009 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2010 meta_len); 2011 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2012 return true; 2013 } 2014 2015 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2016 if (unlikely(!skb)) { 2017 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2018 return true; 2019 } 2020 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2021 if (unlikely(!new_frag)) { 2022 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2023 return true; 2024 } 2025 2026 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2027 2028 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2029 2030 skb_reserve(skb, pkt_off); 2031 skb_put(skb, pkt_len); 2032 2033 nfp_app_ctrl_rx(nn->app, skb); 2034 2035 return true; 2036 } 2037 2038 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2039 { 2040 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2041 struct nfp_net *nn = r_vec->nfp_net; 2042 struct nfp_net_dp *dp = &nn->dp; 2043 2044 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring)) 2045 continue; 2046 } 2047 2048 static void nfp_ctrl_poll(unsigned long arg) 2049 { 2050 struct nfp_net_r_vector *r_vec = (void *)arg; 2051 2052 spin_lock_bh(&r_vec->lock); 2053 nfp_net_tx_complete(r_vec->tx_ring); 2054 __nfp_ctrl_tx_queued(r_vec); 2055 spin_unlock_bh(&r_vec->lock); 2056 2057 nfp_ctrl_rx(r_vec); 2058 2059 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2060 } 2061 2062 /* Setup and Configuration 2063 */ 2064 2065 /** 2066 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2067 * @nn: NFP Network structure 2068 */ 2069 static void nfp_net_vecs_init(struct nfp_net *nn) 2070 { 2071 struct nfp_net_r_vector *r_vec; 2072 int r; 2073 2074 nn->lsc_handler = nfp_net_irq_lsc; 2075 nn->exn_handler = nfp_net_irq_exn; 2076 2077 for (r = 0; r < nn->max_r_vecs; r++) { 2078 struct msix_entry *entry; 2079 2080 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2081 2082 r_vec = &nn->r_vecs[r]; 2083 r_vec->nfp_net = nn; 2084 r_vec->irq_entry = entry->entry; 2085 r_vec->irq_vector = entry->vector; 2086 2087 if (nn->dp.netdev) { 2088 r_vec->handler = nfp_net_irq_rxtx; 2089 } else { 2090 r_vec->handler = nfp_ctrl_irq_rxtx; 2091 2092 __skb_queue_head_init(&r_vec->queue); 2093 spin_lock_init(&r_vec->lock); 2094 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2095 (unsigned long)r_vec); 2096 tasklet_disable(&r_vec->tasklet); 2097 } 2098 2099 cpumask_set_cpu(r, &r_vec->affinity_mask); 2100 } 2101 } 2102 2103 /** 2104 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2105 * @tx_ring: TX ring to free 2106 */ 2107 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2108 { 2109 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2110 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2111 2112 kfree(tx_ring->txbufs); 2113 2114 if (tx_ring->txds) 2115 dma_free_coherent(dp->dev, tx_ring->size, 2116 tx_ring->txds, tx_ring->dma); 2117 2118 tx_ring->cnt = 0; 2119 tx_ring->txbufs = NULL; 2120 tx_ring->txds = NULL; 2121 tx_ring->dma = 0; 2122 tx_ring->size = 0; 2123 } 2124 2125 /** 2126 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2127 * @dp: NFP Net data path struct 2128 * @tx_ring: TX Ring structure to allocate 2129 * 2130 * Return: 0 on success, negative errno otherwise. 2131 */ 2132 static int 2133 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2134 { 2135 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2136 int sz; 2137 2138 tx_ring->cnt = dp->txd_cnt; 2139 2140 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 2141 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2142 &tx_ring->dma, GFP_KERNEL); 2143 if (!tx_ring->txds) 2144 goto err_alloc; 2145 2146 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 2147 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 2148 if (!tx_ring->txbufs) 2149 goto err_alloc; 2150 2151 if (!tx_ring->is_xdp && dp->netdev) 2152 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2153 tx_ring->idx); 2154 2155 return 0; 2156 2157 err_alloc: 2158 nfp_net_tx_ring_free(tx_ring); 2159 return -ENOMEM; 2160 } 2161 2162 static void 2163 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2164 struct nfp_net_tx_ring *tx_ring) 2165 { 2166 unsigned int i; 2167 2168 if (!tx_ring->is_xdp) 2169 return; 2170 2171 for (i = 0; i < tx_ring->cnt; i++) { 2172 if (!tx_ring->txbufs[i].frag) 2173 return; 2174 2175 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2176 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2177 } 2178 } 2179 2180 static int 2181 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2182 struct nfp_net_tx_ring *tx_ring) 2183 { 2184 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2185 unsigned int i; 2186 2187 if (!tx_ring->is_xdp) 2188 return 0; 2189 2190 for (i = 0; i < tx_ring->cnt; i++) { 2191 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2192 if (!txbufs[i].frag) { 2193 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2194 return -ENOMEM; 2195 } 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2202 { 2203 unsigned int r; 2204 2205 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2206 GFP_KERNEL); 2207 if (!dp->tx_rings) 2208 return -ENOMEM; 2209 2210 for (r = 0; r < dp->num_tx_rings; r++) { 2211 int bias = 0; 2212 2213 if (r >= dp->num_stack_tx_rings) 2214 bias = dp->num_stack_tx_rings; 2215 2216 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2217 r, bias); 2218 2219 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2220 goto err_free_prev; 2221 2222 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2223 goto err_free_ring; 2224 } 2225 2226 return 0; 2227 2228 err_free_prev: 2229 while (r--) { 2230 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2231 err_free_ring: 2232 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2233 } 2234 kfree(dp->tx_rings); 2235 return -ENOMEM; 2236 } 2237 2238 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2239 { 2240 unsigned int r; 2241 2242 for (r = 0; r < dp->num_tx_rings; r++) { 2243 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2244 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2245 } 2246 2247 kfree(dp->tx_rings); 2248 } 2249 2250 /** 2251 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2252 * @rx_ring: RX ring to free 2253 */ 2254 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2255 { 2256 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2257 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2258 2259 kfree(rx_ring->rxbufs); 2260 2261 if (rx_ring->rxds) 2262 dma_free_coherent(dp->dev, rx_ring->size, 2263 rx_ring->rxds, rx_ring->dma); 2264 2265 rx_ring->cnt = 0; 2266 rx_ring->rxbufs = NULL; 2267 rx_ring->rxds = NULL; 2268 rx_ring->dma = 0; 2269 rx_ring->size = 0; 2270 } 2271 2272 /** 2273 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2274 * @dp: NFP Net data path struct 2275 * @rx_ring: RX ring to allocate 2276 * 2277 * Return: 0 on success, negative errno otherwise. 2278 */ 2279 static int 2280 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2281 { 2282 int sz; 2283 2284 rx_ring->cnt = dp->rxd_cnt; 2285 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 2286 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2287 &rx_ring->dma, GFP_KERNEL); 2288 if (!rx_ring->rxds) 2289 goto err_alloc; 2290 2291 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 2292 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 2293 if (!rx_ring->rxbufs) 2294 goto err_alloc; 2295 2296 return 0; 2297 2298 err_alloc: 2299 nfp_net_rx_ring_free(rx_ring); 2300 return -ENOMEM; 2301 } 2302 2303 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2304 { 2305 unsigned int r; 2306 2307 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2308 GFP_KERNEL); 2309 if (!dp->rx_rings) 2310 return -ENOMEM; 2311 2312 for (r = 0; r < dp->num_rx_rings; r++) { 2313 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2314 2315 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2316 goto err_free_prev; 2317 2318 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2319 goto err_free_ring; 2320 } 2321 2322 return 0; 2323 2324 err_free_prev: 2325 while (r--) { 2326 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2327 err_free_ring: 2328 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2329 } 2330 kfree(dp->rx_rings); 2331 return -ENOMEM; 2332 } 2333 2334 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2335 { 2336 unsigned int r; 2337 2338 for (r = 0; r < dp->num_rx_rings; r++) { 2339 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2340 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2341 } 2342 2343 kfree(dp->rx_rings); 2344 } 2345 2346 static void 2347 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2348 struct nfp_net_r_vector *r_vec, int idx) 2349 { 2350 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2351 r_vec->tx_ring = 2352 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2353 2354 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2355 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2356 } 2357 2358 static int 2359 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2360 int idx) 2361 { 2362 int err; 2363 2364 /* Setup NAPI */ 2365 if (nn->dp.netdev) 2366 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2367 nfp_net_poll, NAPI_POLL_WEIGHT); 2368 else 2369 tasklet_enable(&r_vec->tasklet); 2370 2371 snprintf(r_vec->name, sizeof(r_vec->name), 2372 "%s-rxtx-%d", nfp_net_name(nn), idx); 2373 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2374 r_vec); 2375 if (err) { 2376 if (nn->dp.netdev) 2377 netif_napi_del(&r_vec->napi); 2378 else 2379 tasklet_disable(&r_vec->tasklet); 2380 2381 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2382 return err; 2383 } 2384 disable_irq(r_vec->irq_vector); 2385 2386 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2387 2388 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2389 r_vec->irq_entry); 2390 2391 return 0; 2392 } 2393 2394 static void 2395 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2396 { 2397 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2398 if (nn->dp.netdev) 2399 netif_napi_del(&r_vec->napi); 2400 else 2401 tasklet_disable(&r_vec->tasklet); 2402 2403 free_irq(r_vec->irq_vector, r_vec); 2404 } 2405 2406 /** 2407 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2408 * @nn: NFP Net device to reconfigure 2409 */ 2410 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2411 { 2412 int i; 2413 2414 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2415 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2416 get_unaligned_le32(nn->rss_itbl + i)); 2417 } 2418 2419 /** 2420 * nfp_net_rss_write_key() - Write RSS hash key to device 2421 * @nn: NFP Net device to reconfigure 2422 */ 2423 void nfp_net_rss_write_key(struct nfp_net *nn) 2424 { 2425 int i; 2426 2427 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2428 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2429 get_unaligned_le32(nn->rss_key + i)); 2430 } 2431 2432 /** 2433 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2434 * @nn: NFP Net device to reconfigure 2435 */ 2436 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2437 { 2438 u8 i; 2439 u32 factor; 2440 u32 value; 2441 2442 /* Compute factor used to convert coalesce '_usecs' parameters to 2443 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2444 * count. 2445 */ 2446 factor = nn->me_freq_mhz / 16; 2447 2448 /* copy RX interrupt coalesce parameters */ 2449 value = (nn->rx_coalesce_max_frames << 16) | 2450 (factor * nn->rx_coalesce_usecs); 2451 for (i = 0; i < nn->dp.num_rx_rings; i++) 2452 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2453 2454 /* copy TX interrupt coalesce parameters */ 2455 value = (nn->tx_coalesce_max_frames << 16) | 2456 (factor * nn->tx_coalesce_usecs); 2457 for (i = 0; i < nn->dp.num_tx_rings; i++) 2458 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2459 } 2460 2461 /** 2462 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2463 * @nn: NFP Net device to reconfigure 2464 * @addr: MAC address to write 2465 * 2466 * Writes the MAC address from the netdev to the device control BAR. Does not 2467 * perform the required reconfig. We do a bit of byte swapping dance because 2468 * firmware is LE. 2469 */ 2470 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2471 { 2472 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2473 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2474 } 2475 2476 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2477 { 2478 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2479 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2480 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2481 2482 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2483 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2484 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2485 } 2486 2487 /** 2488 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2489 * @nn: NFP Net device to reconfigure 2490 */ 2491 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2492 { 2493 u32 new_ctrl, update; 2494 unsigned int r; 2495 int err; 2496 2497 new_ctrl = nn->dp.ctrl; 2498 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2499 update = NFP_NET_CFG_UPDATE_GEN; 2500 update |= NFP_NET_CFG_UPDATE_MSIX; 2501 update |= NFP_NET_CFG_UPDATE_RING; 2502 2503 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2504 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2505 2506 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2507 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2508 2509 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2510 err = nfp_net_reconfig(nn, update); 2511 if (err) 2512 nn_err(nn, "Could not disable device: %d\n", err); 2513 2514 for (r = 0; r < nn->dp.num_rx_rings; r++) 2515 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2516 for (r = 0; r < nn->dp.num_tx_rings; r++) 2517 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2518 for (r = 0; r < nn->dp.num_r_vecs; r++) 2519 nfp_net_vec_clear_ring_data(nn, r); 2520 2521 nn->dp.ctrl = new_ctrl; 2522 } 2523 2524 static void 2525 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2526 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2527 { 2528 /* Write the DMA address, size and MSI-X info to the device */ 2529 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2530 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2531 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2532 } 2533 2534 static void 2535 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2536 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2537 { 2538 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2539 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2540 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2541 } 2542 2543 /** 2544 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2545 * @nn: NFP Net device to reconfigure 2546 */ 2547 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2548 { 2549 u32 bufsz, new_ctrl, update = 0; 2550 unsigned int r; 2551 int err; 2552 2553 new_ctrl = nn->dp.ctrl; 2554 2555 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2556 nfp_net_rss_write_key(nn); 2557 nfp_net_rss_write_itbl(nn); 2558 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2559 update |= NFP_NET_CFG_UPDATE_RSS; 2560 } 2561 2562 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2563 nfp_net_coalesce_write_cfg(nn); 2564 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2565 } 2566 2567 for (r = 0; r < nn->dp.num_tx_rings; r++) 2568 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2569 for (r = 0; r < nn->dp.num_rx_rings; r++) 2570 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2571 2572 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2573 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2574 2575 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2576 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2577 2578 if (nn->dp.netdev) 2579 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2580 2581 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2582 2583 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2584 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2585 2586 /* Enable device */ 2587 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2588 update |= NFP_NET_CFG_UPDATE_GEN; 2589 update |= NFP_NET_CFG_UPDATE_MSIX; 2590 update |= NFP_NET_CFG_UPDATE_RING; 2591 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2592 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2593 2594 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2595 err = nfp_net_reconfig(nn, update); 2596 if (err) { 2597 nfp_net_clear_config_and_disable(nn); 2598 return err; 2599 } 2600 2601 nn->dp.ctrl = new_ctrl; 2602 2603 for (r = 0; r < nn->dp.num_rx_rings; r++) 2604 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2605 2606 /* Since reconfiguration requests while NFP is down are ignored we 2607 * have to wipe the entire VXLAN configuration and reinitialize it. 2608 */ 2609 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2610 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2611 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2612 udp_tunnel_get_rx_info(nn->dp.netdev); 2613 } 2614 2615 return 0; 2616 } 2617 2618 /** 2619 * nfp_net_close_stack() - Quiesce the stack (part of close) 2620 * @nn: NFP Net device to reconfigure 2621 */ 2622 static void nfp_net_close_stack(struct nfp_net *nn) 2623 { 2624 unsigned int r; 2625 2626 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2627 netif_carrier_off(nn->dp.netdev); 2628 nn->link_up = false; 2629 2630 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2631 disable_irq(nn->r_vecs[r].irq_vector); 2632 napi_disable(&nn->r_vecs[r].napi); 2633 } 2634 2635 netif_tx_disable(nn->dp.netdev); 2636 } 2637 2638 /** 2639 * nfp_net_close_free_all() - Free all runtime resources 2640 * @nn: NFP Net device to reconfigure 2641 */ 2642 static void nfp_net_close_free_all(struct nfp_net *nn) 2643 { 2644 unsigned int r; 2645 2646 nfp_net_tx_rings_free(&nn->dp); 2647 nfp_net_rx_rings_free(&nn->dp); 2648 2649 for (r = 0; r < nn->dp.num_r_vecs; r++) 2650 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2651 2652 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2653 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2654 } 2655 2656 /** 2657 * nfp_net_netdev_close() - Called when the device is downed 2658 * @netdev: netdev structure 2659 */ 2660 static int nfp_net_netdev_close(struct net_device *netdev) 2661 { 2662 struct nfp_net *nn = netdev_priv(netdev); 2663 2664 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2665 */ 2666 nfp_net_close_stack(nn); 2667 2668 /* Step 2: Tell NFP 2669 */ 2670 nfp_net_clear_config_and_disable(nn); 2671 nfp_port_configure(netdev, false); 2672 2673 /* Step 3: Free resources 2674 */ 2675 nfp_net_close_free_all(nn); 2676 2677 nn_dbg(nn, "%s down", netdev->name); 2678 return 0; 2679 } 2680 2681 void nfp_ctrl_close(struct nfp_net *nn) 2682 { 2683 int r; 2684 2685 rtnl_lock(); 2686 2687 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2688 disable_irq(nn->r_vecs[r].irq_vector); 2689 tasklet_disable(&nn->r_vecs[r].tasklet); 2690 } 2691 2692 nfp_net_clear_config_and_disable(nn); 2693 2694 nfp_net_close_free_all(nn); 2695 2696 rtnl_unlock(); 2697 } 2698 2699 /** 2700 * nfp_net_open_stack() - Start the device from stack's perspective 2701 * @nn: NFP Net device to reconfigure 2702 */ 2703 static void nfp_net_open_stack(struct nfp_net *nn) 2704 { 2705 unsigned int r; 2706 2707 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2708 napi_enable(&nn->r_vecs[r].napi); 2709 enable_irq(nn->r_vecs[r].irq_vector); 2710 } 2711 2712 netif_tx_wake_all_queues(nn->dp.netdev); 2713 2714 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2715 nfp_net_read_link_status(nn); 2716 } 2717 2718 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2719 { 2720 int err, r; 2721 2722 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2723 nn->exn_name, sizeof(nn->exn_name), 2724 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2725 if (err) 2726 return err; 2727 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2728 nn->lsc_name, sizeof(nn->lsc_name), 2729 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2730 if (err) 2731 goto err_free_exn; 2732 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2733 2734 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2735 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2736 if (err) 2737 goto err_cleanup_vec_p; 2738 } 2739 2740 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2741 if (err) 2742 goto err_cleanup_vec; 2743 2744 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2745 if (err) 2746 goto err_free_rx_rings; 2747 2748 for (r = 0; r < nn->max_r_vecs; r++) 2749 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2750 2751 return 0; 2752 2753 err_free_rx_rings: 2754 nfp_net_rx_rings_free(&nn->dp); 2755 err_cleanup_vec: 2756 r = nn->dp.num_r_vecs; 2757 err_cleanup_vec_p: 2758 while (r--) 2759 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2760 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2761 err_free_exn: 2762 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2763 return err; 2764 } 2765 2766 static int nfp_net_netdev_open(struct net_device *netdev) 2767 { 2768 struct nfp_net *nn = netdev_priv(netdev); 2769 int err; 2770 2771 /* Step 1: Allocate resources for rings and the like 2772 * - Request interrupts 2773 * - Allocate RX and TX ring resources 2774 * - Setup initial RSS table 2775 */ 2776 err = nfp_net_open_alloc_all(nn); 2777 if (err) 2778 return err; 2779 2780 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2781 if (err) 2782 goto err_free_all; 2783 2784 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2785 if (err) 2786 goto err_free_all; 2787 2788 /* Step 2: Configure the NFP 2789 * - Ifup the physical interface if it exists 2790 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2791 * - Write MAC address (in case it changed) 2792 * - Set the MTU 2793 * - Set the Freelist buffer size 2794 * - Enable the FW 2795 */ 2796 err = nfp_port_configure(netdev, true); 2797 if (err) 2798 goto err_free_all; 2799 2800 err = nfp_net_set_config_and_enable(nn); 2801 if (err) 2802 goto err_port_disable; 2803 2804 /* Step 3: Enable for kernel 2805 * - put some freelist descriptors on each RX ring 2806 * - enable NAPI on each ring 2807 * - enable all TX queues 2808 * - set link state 2809 */ 2810 nfp_net_open_stack(nn); 2811 2812 return 0; 2813 2814 err_port_disable: 2815 nfp_port_configure(netdev, false); 2816 err_free_all: 2817 nfp_net_close_free_all(nn); 2818 return err; 2819 } 2820 2821 int nfp_ctrl_open(struct nfp_net *nn) 2822 { 2823 int err, r; 2824 2825 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2826 rtnl_lock(); 2827 2828 err = nfp_net_open_alloc_all(nn); 2829 if (err) 2830 goto err_unlock; 2831 2832 err = nfp_net_set_config_and_enable(nn); 2833 if (err) 2834 goto err_free_all; 2835 2836 for (r = 0; r < nn->dp.num_r_vecs; r++) 2837 enable_irq(nn->r_vecs[r].irq_vector); 2838 2839 rtnl_unlock(); 2840 2841 return 0; 2842 2843 err_free_all: 2844 nfp_net_close_free_all(nn); 2845 err_unlock: 2846 rtnl_unlock(); 2847 return err; 2848 } 2849 2850 static void nfp_net_set_rx_mode(struct net_device *netdev) 2851 { 2852 struct nfp_net *nn = netdev_priv(netdev); 2853 u32 new_ctrl; 2854 2855 new_ctrl = nn->dp.ctrl; 2856 2857 if (netdev->flags & IFF_PROMISC) { 2858 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2859 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2860 else 2861 nn_warn(nn, "FW does not support promiscuous mode\n"); 2862 } else { 2863 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2864 } 2865 2866 if (new_ctrl == nn->dp.ctrl) 2867 return; 2868 2869 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2870 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2871 2872 nn->dp.ctrl = new_ctrl; 2873 } 2874 2875 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2876 { 2877 int i; 2878 2879 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2880 nn->rss_itbl[i] = 2881 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2882 } 2883 2884 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2885 { 2886 struct nfp_net_dp new_dp = *dp; 2887 2888 *dp = nn->dp; 2889 nn->dp = new_dp; 2890 2891 nn->dp.netdev->mtu = new_dp.mtu; 2892 2893 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2894 nfp_net_rss_init_itbl(nn); 2895 } 2896 2897 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2898 { 2899 unsigned int r; 2900 int err; 2901 2902 nfp_net_dp_swap(nn, dp); 2903 2904 for (r = 0; r < nn->max_r_vecs; r++) 2905 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2906 2907 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2908 if (err) 2909 return err; 2910 2911 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2912 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2913 nn->dp.num_stack_tx_rings); 2914 if (err) 2915 return err; 2916 } 2917 2918 return nfp_net_set_config_and_enable(nn); 2919 } 2920 2921 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2922 { 2923 struct nfp_net_dp *new; 2924 2925 new = kmalloc(sizeof(*new), GFP_KERNEL); 2926 if (!new) 2927 return NULL; 2928 2929 *new = nn->dp; 2930 2931 /* Clear things which need to be recomputed */ 2932 new->fl_bufsz = 0; 2933 new->tx_rings = NULL; 2934 new->rx_rings = NULL; 2935 new->num_r_vecs = 0; 2936 new->num_stack_tx_rings = 0; 2937 2938 return new; 2939 } 2940 2941 static int 2942 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2943 struct netlink_ext_ack *extack) 2944 { 2945 /* XDP-enabled tests */ 2946 if (!dp->xdp_prog) 2947 return 0; 2948 if (dp->fl_bufsz > PAGE_SIZE) { 2949 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2950 return -EINVAL; 2951 } 2952 if (dp->num_tx_rings > nn->max_tx_rings) { 2953 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2954 return -EINVAL; 2955 } 2956 2957 return 0; 2958 } 2959 2960 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2961 struct netlink_ext_ack *extack) 2962 { 2963 int r, err; 2964 2965 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2966 2967 dp->num_stack_tx_rings = dp->num_tx_rings; 2968 if (dp->xdp_prog) 2969 dp->num_stack_tx_rings -= dp->num_rx_rings; 2970 2971 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2972 2973 err = nfp_net_check_config(nn, dp, extack); 2974 if (err) 2975 goto exit_free_dp; 2976 2977 if (!netif_running(dp->netdev)) { 2978 nfp_net_dp_swap(nn, dp); 2979 err = 0; 2980 goto exit_free_dp; 2981 } 2982 2983 /* Prepare new rings */ 2984 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2985 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2986 if (err) { 2987 dp->num_r_vecs = r; 2988 goto err_cleanup_vecs; 2989 } 2990 } 2991 2992 err = nfp_net_rx_rings_prepare(nn, dp); 2993 if (err) 2994 goto err_cleanup_vecs; 2995 2996 err = nfp_net_tx_rings_prepare(nn, dp); 2997 if (err) 2998 goto err_free_rx; 2999 3000 /* Stop device, swap in new rings, try to start the firmware */ 3001 nfp_net_close_stack(nn); 3002 nfp_net_clear_config_and_disable(nn); 3003 3004 err = nfp_net_dp_swap_enable(nn, dp); 3005 if (err) { 3006 int err2; 3007 3008 nfp_net_clear_config_and_disable(nn); 3009 3010 /* Try with old configuration and old rings */ 3011 err2 = nfp_net_dp_swap_enable(nn, dp); 3012 if (err2) 3013 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3014 err, err2); 3015 } 3016 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3017 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3018 3019 nfp_net_rx_rings_free(dp); 3020 nfp_net_tx_rings_free(dp); 3021 3022 nfp_net_open_stack(nn); 3023 exit_free_dp: 3024 kfree(dp); 3025 3026 return err; 3027 3028 err_free_rx: 3029 nfp_net_rx_rings_free(dp); 3030 err_cleanup_vecs: 3031 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3032 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3033 kfree(dp); 3034 return err; 3035 } 3036 3037 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3038 { 3039 struct nfp_net *nn = netdev_priv(netdev); 3040 struct nfp_net_dp *dp; 3041 3042 dp = nfp_net_clone_dp(nn); 3043 if (!dp) 3044 return -ENOMEM; 3045 3046 dp->mtu = new_mtu; 3047 3048 return nfp_net_ring_reconfig(nn, dp, NULL); 3049 } 3050 3051 static int 3052 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3053 { 3054 struct nfp_net *nn = netdev_priv(netdev); 3055 3056 /* Priority tagged packets with vlan id 0 are processed by the 3057 * NFP as untagged packets 3058 */ 3059 if (!vid) 3060 return 0; 3061 3062 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3063 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3064 3065 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3066 } 3067 3068 static int 3069 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3070 { 3071 struct nfp_net *nn = netdev_priv(netdev); 3072 3073 /* Priority tagged packets with vlan id 0 are processed by the 3074 * NFP as untagged packets 3075 */ 3076 if (!vid) 3077 return 0; 3078 3079 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3080 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3081 3082 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3083 } 3084 3085 static void nfp_net_stat64(struct net_device *netdev, 3086 struct rtnl_link_stats64 *stats) 3087 { 3088 struct nfp_net *nn = netdev_priv(netdev); 3089 int r; 3090 3091 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3092 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3093 u64 data[3]; 3094 unsigned int start; 3095 3096 do { 3097 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3098 data[0] = r_vec->rx_pkts; 3099 data[1] = r_vec->rx_bytes; 3100 data[2] = r_vec->rx_drops; 3101 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3102 stats->rx_packets += data[0]; 3103 stats->rx_bytes += data[1]; 3104 stats->rx_dropped += data[2]; 3105 3106 do { 3107 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3108 data[0] = r_vec->tx_pkts; 3109 data[1] = r_vec->tx_bytes; 3110 data[2] = r_vec->tx_errors; 3111 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3112 stats->tx_packets += data[0]; 3113 stats->tx_bytes += data[1]; 3114 stats->tx_errors += data[2]; 3115 } 3116 } 3117 3118 static int nfp_net_set_features(struct net_device *netdev, 3119 netdev_features_t features) 3120 { 3121 netdev_features_t changed = netdev->features ^ features; 3122 struct nfp_net *nn = netdev_priv(netdev); 3123 u32 new_ctrl; 3124 int err; 3125 3126 /* Assume this is not called with features we have not advertised */ 3127 3128 new_ctrl = nn->dp.ctrl; 3129 3130 if (changed & NETIF_F_RXCSUM) { 3131 if (features & NETIF_F_RXCSUM) 3132 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3133 else 3134 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3135 } 3136 3137 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3138 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3139 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3140 else 3141 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3142 } 3143 3144 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3145 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3146 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3147 NFP_NET_CFG_CTRL_LSO; 3148 else 3149 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3150 } 3151 3152 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3153 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3154 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3155 else 3156 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3157 } 3158 3159 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3160 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3161 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3162 else 3163 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3164 } 3165 3166 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3167 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3168 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3169 else 3170 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3171 } 3172 3173 if (changed & NETIF_F_SG) { 3174 if (features & NETIF_F_SG) 3175 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3176 else 3177 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3178 } 3179 3180 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) { 3181 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 3182 return -EBUSY; 3183 } 3184 3185 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3186 netdev->features, features, changed); 3187 3188 if (new_ctrl == nn->dp.ctrl) 3189 return 0; 3190 3191 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3192 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3193 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3194 if (err) 3195 return err; 3196 3197 nn->dp.ctrl = new_ctrl; 3198 3199 return 0; 3200 } 3201 3202 static netdev_features_t 3203 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3204 netdev_features_t features) 3205 { 3206 u8 l4_hdr; 3207 3208 /* We can't do TSO over double tagged packets (802.1AD) */ 3209 features &= vlan_features_check(skb, features); 3210 3211 if (!skb->encapsulation) 3212 return features; 3213 3214 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3215 if (skb_is_gso(skb)) { 3216 u32 hdrlen; 3217 3218 hdrlen = skb_inner_transport_header(skb) - skb->data + 3219 inner_tcp_hdrlen(skb); 3220 3221 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3222 features &= ~NETIF_F_GSO_MASK; 3223 } 3224 3225 /* VXLAN/GRE check */ 3226 switch (vlan_get_protocol(skb)) { 3227 case htons(ETH_P_IP): 3228 l4_hdr = ip_hdr(skb)->protocol; 3229 break; 3230 case htons(ETH_P_IPV6): 3231 l4_hdr = ipv6_hdr(skb)->nexthdr; 3232 break; 3233 default: 3234 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3235 } 3236 3237 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3238 skb->inner_protocol != htons(ETH_P_TEB) || 3239 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3240 (l4_hdr == IPPROTO_UDP && 3241 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3242 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3243 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3244 3245 return features; 3246 } 3247 3248 /** 3249 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3250 * @nn: NFP Net device to reconfigure 3251 * @idx: Index into the port table where new port should be written 3252 * @port: UDP port to configure (pass zero to remove VXLAN port) 3253 */ 3254 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3255 { 3256 int i; 3257 3258 nn->vxlan_ports[idx] = port; 3259 3260 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3261 return; 3262 3263 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3264 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3265 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3266 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3267 be16_to_cpu(nn->vxlan_ports[i])); 3268 3269 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3270 } 3271 3272 /** 3273 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3274 * @nn: NFP Network structure 3275 * @port: UDP port to look for 3276 * 3277 * Return: if the port is already in the table -- it's position; 3278 * if the port is not in the table -- free position to use; 3279 * if the table is full -- -ENOSPC. 3280 */ 3281 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3282 { 3283 int i, free_idx = -ENOSPC; 3284 3285 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3286 if (nn->vxlan_ports[i] == port) 3287 return i; 3288 if (!nn->vxlan_usecnt[i]) 3289 free_idx = i; 3290 } 3291 3292 return free_idx; 3293 } 3294 3295 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3296 struct udp_tunnel_info *ti) 3297 { 3298 struct nfp_net *nn = netdev_priv(netdev); 3299 int idx; 3300 3301 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3302 return; 3303 3304 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3305 if (idx == -ENOSPC) 3306 return; 3307 3308 if (!nn->vxlan_usecnt[idx]++) 3309 nfp_net_set_vxlan_port(nn, idx, ti->port); 3310 } 3311 3312 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3313 struct udp_tunnel_info *ti) 3314 { 3315 struct nfp_net *nn = netdev_priv(netdev); 3316 int idx; 3317 3318 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3319 return; 3320 3321 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3322 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3323 return; 3324 3325 if (!--nn->vxlan_usecnt[idx]) 3326 nfp_net_set_vxlan_port(nn, idx, 0); 3327 } 3328 3329 static int 3330 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog, 3331 struct netlink_ext_ack *extack) 3332 { 3333 struct nfp_net_dp *dp; 3334 3335 if (!prog == !nn->dp.xdp_prog) { 3336 WRITE_ONCE(nn->dp.xdp_prog, prog); 3337 return 0; 3338 } 3339 3340 dp = nfp_net_clone_dp(nn); 3341 if (!dp) 3342 return -ENOMEM; 3343 3344 dp->xdp_prog = prog; 3345 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3346 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3347 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3348 3349 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3350 return nfp_net_ring_reconfig(nn, dp, extack); 3351 } 3352 3353 static int 3354 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags, 3355 struct netlink_ext_ack *extack) 3356 { 3357 struct bpf_prog *drv_prog, *offload_prog; 3358 int err; 3359 3360 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES) 3361 return -EBUSY; 3362 3363 /* Load both when no flags set to allow easy activation of driver path 3364 * when program is replaced by one which can't be offloaded. 3365 */ 3366 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog; 3367 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog; 3368 3369 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack); 3370 if (err) 3371 return err; 3372 3373 err = nfp_app_xdp_offload(nn->app, nn, offload_prog); 3374 if (err && flags & XDP_FLAGS_HW_MODE) 3375 return err; 3376 3377 if (nn->xdp_prog) 3378 bpf_prog_put(nn->xdp_prog); 3379 nn->xdp_prog = prog; 3380 nn->xdp_flags = flags; 3381 3382 return 0; 3383 } 3384 3385 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 3386 { 3387 struct nfp_net *nn = netdev_priv(netdev); 3388 3389 switch (xdp->command) { 3390 case XDP_SETUP_PROG: 3391 case XDP_SETUP_PROG_HW: 3392 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags, 3393 xdp->extack); 3394 case XDP_QUERY_PROG: 3395 xdp->prog_attached = !!nn->xdp_prog; 3396 if (nn->dp.bpf_offload_xdp) 3397 xdp->prog_attached = XDP_ATTACHED_HW; 3398 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0; 3399 return 0; 3400 default: 3401 return -EINVAL; 3402 } 3403 } 3404 3405 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3406 { 3407 struct nfp_net *nn = netdev_priv(netdev); 3408 struct sockaddr *saddr = addr; 3409 int err; 3410 3411 err = eth_prepare_mac_addr_change(netdev, addr); 3412 if (err) 3413 return err; 3414 3415 nfp_net_write_mac_addr(nn, saddr->sa_data); 3416 3417 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3418 if (err) 3419 return err; 3420 3421 eth_commit_mac_addr_change(netdev, addr); 3422 3423 return 0; 3424 } 3425 3426 const struct net_device_ops nfp_net_netdev_ops = { 3427 .ndo_open = nfp_net_netdev_open, 3428 .ndo_stop = nfp_net_netdev_close, 3429 .ndo_start_xmit = nfp_net_tx, 3430 .ndo_get_stats64 = nfp_net_stat64, 3431 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3432 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3433 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3434 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3435 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3436 .ndo_get_vf_config = nfp_app_get_vf_config, 3437 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3438 .ndo_setup_tc = nfp_port_setup_tc, 3439 .ndo_tx_timeout = nfp_net_tx_timeout, 3440 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3441 .ndo_change_mtu = nfp_net_change_mtu, 3442 .ndo_set_mac_address = nfp_net_set_mac_address, 3443 .ndo_set_features = nfp_net_set_features, 3444 .ndo_features_check = nfp_net_features_check, 3445 .ndo_get_phys_port_name = nfp_port_get_phys_port_name, 3446 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3447 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3448 .ndo_xdp = nfp_net_xdp, 3449 }; 3450 3451 /** 3452 * nfp_net_info() - Print general info about the NIC 3453 * @nn: NFP Net device to reconfigure 3454 */ 3455 void nfp_net_info(struct nfp_net *nn) 3456 { 3457 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3458 nn->dp.is_vf ? "VF " : "", 3459 nn->dp.num_tx_rings, nn->max_tx_rings, 3460 nn->dp.num_rx_rings, nn->max_rx_rings); 3461 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3462 nn->fw_ver.resv, nn->fw_ver.class, 3463 nn->fw_ver.major, nn->fw_ver.minor, 3464 nn->max_mtu); 3465 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3466 nn->cap, 3467 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3468 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3469 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3470 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3471 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3472 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3473 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3474 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3475 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3476 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3477 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3478 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3479 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3480 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3481 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3482 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3483 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3484 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3485 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3486 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3487 "RXCSUM_COMPLETE " : "", 3488 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3489 nfp_app_extra_cap(nn->app, nn)); 3490 } 3491 3492 /** 3493 * nfp_net_alloc() - Allocate netdev and related structure 3494 * @pdev: PCI device 3495 * @needs_netdev: Whether to allocate a netdev for this vNIC 3496 * @max_tx_rings: Maximum number of TX rings supported by device 3497 * @max_rx_rings: Maximum number of RX rings supported by device 3498 * 3499 * This function allocates a netdev device and fills in the initial 3500 * part of the @struct nfp_net structure. In case of control device 3501 * nfp_net structure is allocated without the netdev. 3502 * 3503 * Return: NFP Net device structure, or ERR_PTR on error. 3504 */ 3505 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3506 unsigned int max_tx_rings, 3507 unsigned int max_rx_rings) 3508 { 3509 struct nfp_net *nn; 3510 3511 if (needs_netdev) { 3512 struct net_device *netdev; 3513 3514 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3515 max_tx_rings, max_rx_rings); 3516 if (!netdev) 3517 return ERR_PTR(-ENOMEM); 3518 3519 SET_NETDEV_DEV(netdev, &pdev->dev); 3520 nn = netdev_priv(netdev); 3521 nn->dp.netdev = netdev; 3522 } else { 3523 nn = vzalloc(sizeof(*nn)); 3524 if (!nn) 3525 return ERR_PTR(-ENOMEM); 3526 } 3527 3528 nn->dp.dev = &pdev->dev; 3529 nn->pdev = pdev; 3530 3531 nn->max_tx_rings = max_tx_rings; 3532 nn->max_rx_rings = max_rx_rings; 3533 3534 nn->dp.num_tx_rings = min_t(unsigned int, 3535 max_tx_rings, num_online_cpus()); 3536 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3537 netif_get_num_default_rss_queues()); 3538 3539 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3540 nn->dp.num_r_vecs = min_t(unsigned int, 3541 nn->dp.num_r_vecs, num_online_cpus()); 3542 3543 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3544 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3545 3546 spin_lock_init(&nn->reconfig_lock); 3547 spin_lock_init(&nn->link_status_lock); 3548 3549 setup_timer(&nn->reconfig_timer, 3550 nfp_net_reconfig_timer, (unsigned long)nn); 3551 3552 return nn; 3553 } 3554 3555 /** 3556 * nfp_net_free() - Undo what @nfp_net_alloc() did 3557 * @nn: NFP Net device to reconfigure 3558 */ 3559 void nfp_net_free(struct nfp_net *nn) 3560 { 3561 if (nn->xdp_prog) 3562 bpf_prog_put(nn->xdp_prog); 3563 3564 if (nn->dp.netdev) 3565 free_netdev(nn->dp.netdev); 3566 else 3567 vfree(nn); 3568 } 3569 3570 /** 3571 * nfp_net_rss_key_sz() - Get current size of the RSS key 3572 * @nn: NFP Net device instance 3573 * 3574 * Return: size of the RSS key for currently selected hash function. 3575 */ 3576 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3577 { 3578 switch (nn->rss_hfunc) { 3579 case ETH_RSS_HASH_TOP: 3580 return NFP_NET_CFG_RSS_KEY_SZ; 3581 case ETH_RSS_HASH_XOR: 3582 return 0; 3583 case ETH_RSS_HASH_CRC32: 3584 return 4; 3585 } 3586 3587 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3588 return 0; 3589 } 3590 3591 /** 3592 * nfp_net_rss_init() - Set the initial RSS parameters 3593 * @nn: NFP Net device to reconfigure 3594 */ 3595 static void nfp_net_rss_init(struct nfp_net *nn) 3596 { 3597 unsigned long func_bit, rss_cap_hfunc; 3598 u32 reg; 3599 3600 /* Read the RSS function capability and select first supported func */ 3601 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3602 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3603 if (!rss_cap_hfunc) 3604 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3605 NFP_NET_CFG_RSS_TOEPLITZ); 3606 3607 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3608 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3609 dev_warn(nn->dp.dev, 3610 "Bad RSS config, defaulting to Toeplitz hash\n"); 3611 func_bit = ETH_RSS_HASH_TOP_BIT; 3612 } 3613 nn->rss_hfunc = 1 << func_bit; 3614 3615 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3616 3617 nfp_net_rss_init_itbl(nn); 3618 3619 /* Enable IPv4/IPv6 TCP by default */ 3620 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3621 NFP_NET_CFG_RSS_IPV6_TCP | 3622 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3623 NFP_NET_CFG_RSS_MASK; 3624 } 3625 3626 /** 3627 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3628 * @nn: NFP Net device to reconfigure 3629 */ 3630 static void nfp_net_irqmod_init(struct nfp_net *nn) 3631 { 3632 nn->rx_coalesce_usecs = 50; 3633 nn->rx_coalesce_max_frames = 64; 3634 nn->tx_coalesce_usecs = 50; 3635 nn->tx_coalesce_max_frames = 64; 3636 } 3637 3638 static void nfp_net_netdev_init(struct nfp_net *nn) 3639 { 3640 struct net_device *netdev = nn->dp.netdev; 3641 3642 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3643 3644 netdev->mtu = nn->dp.mtu; 3645 3646 /* Advertise/enable offloads based on capabilities 3647 * 3648 * Note: netdev->features show the currently enabled features 3649 * and netdev->hw_features advertises which features are 3650 * supported. By default we enable most features. 3651 */ 3652 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3653 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3654 3655 netdev->hw_features = NETIF_F_HIGHDMA; 3656 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3657 netdev->hw_features |= NETIF_F_RXCSUM; 3658 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3659 } 3660 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3661 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3662 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3663 } 3664 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3665 netdev->hw_features |= NETIF_F_SG; 3666 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3667 } 3668 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3669 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3670 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3671 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3672 NFP_NET_CFG_CTRL_LSO; 3673 } 3674 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3675 netdev->hw_features |= NETIF_F_RXHASH; 3676 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3677 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3678 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3679 netdev->hw_features |= NETIF_F_GSO_GRE | 3680 NETIF_F_GSO_UDP_TUNNEL; 3681 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3682 3683 netdev->hw_enc_features = netdev->hw_features; 3684 } 3685 3686 netdev->vlan_features = netdev->hw_features; 3687 3688 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3689 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3690 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3691 } 3692 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3693 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3694 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3695 } else { 3696 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3697 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3698 } 3699 } 3700 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3701 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3702 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3703 } 3704 3705 netdev->features = netdev->hw_features; 3706 3707 if (nfp_app_has_tc(nn->app)) 3708 netdev->hw_features |= NETIF_F_HW_TC; 3709 3710 /* Advertise but disable TSO by default. */ 3711 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3712 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3713 3714 /* Finalise the netdev setup */ 3715 netdev->netdev_ops = &nfp_net_netdev_ops; 3716 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3717 3718 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3719 3720 /* MTU range: 68 - hw-specific max */ 3721 netdev->min_mtu = ETH_MIN_MTU; 3722 netdev->max_mtu = nn->max_mtu; 3723 3724 netif_carrier_off(netdev); 3725 3726 nfp_net_set_ethtool_ops(netdev); 3727 } 3728 3729 /** 3730 * nfp_net_init() - Initialise/finalise the nfp_net structure 3731 * @nn: NFP Net device structure 3732 * 3733 * Return: 0 on success or negative errno on error. 3734 */ 3735 int nfp_net_init(struct nfp_net *nn) 3736 { 3737 int err; 3738 3739 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3740 3741 /* Get some of the read-only fields from the BAR */ 3742 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3743 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3744 3745 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3746 * we allow use of non-chained metadata if RSS(v1) is the only 3747 * advertised capability requiring metadata. 3748 */ 3749 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3750 !nn->dp.netdev || 3751 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3752 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3753 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3754 * it has the same meaning as RSSv2. 3755 */ 3756 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3757 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3758 3759 /* Determine RX packet/metadata boundary offset */ 3760 if (nn->fw_ver.major >= 2) { 3761 u32 reg; 3762 3763 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3764 if (reg > NFP_NET_MAX_PREPEND) { 3765 nn_err(nn, "Invalid rx offset: %d\n", reg); 3766 return -EINVAL; 3767 } 3768 nn->dp.rx_offset = reg; 3769 } else { 3770 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3771 } 3772 3773 /* Set default MTU and Freelist buffer size */ 3774 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3775 nn->dp.mtu = nn->max_mtu; 3776 else 3777 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3778 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3779 3780 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3781 nfp_net_rss_init(nn); 3782 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3783 NFP_NET_CFG_CTRL_RSS; 3784 } 3785 3786 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3787 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3788 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3789 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3790 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3791 3792 /* Allow IRQ moderation, if supported */ 3793 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3794 nfp_net_irqmod_init(nn); 3795 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3796 } 3797 3798 if (nn->dp.netdev) 3799 nfp_net_netdev_init(nn); 3800 3801 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3802 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3803 3804 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3805 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3806 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3807 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3808 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3809 NFP_NET_CFG_UPDATE_GEN); 3810 if (err) 3811 return err; 3812 3813 nfp_net_vecs_init(nn); 3814 3815 if (!nn->dp.netdev) 3816 return 0; 3817 return register_netdev(nn->dp.netdev); 3818 } 3819 3820 /** 3821 * nfp_net_clean() - Undo what nfp_net_init() did. 3822 * @nn: NFP Net device structure 3823 */ 3824 void nfp_net_clean(struct nfp_net *nn) 3825 { 3826 if (!nn->dp.netdev) 3827 return; 3828 3829 unregister_netdev(nn->dp.netdev); 3830 } 3831