1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/lockdep.h>
27 #include <linux/mm.h>
28 #include <linux/overflow.h>
29 #include <linux/page_ref.h>
30 #include <linux/pci.h>
31 #include <linux/pci_regs.h>
32 #include <linux/msi.h>
33 #include <linux/ethtool.h>
34 #include <linux/log2.h>
35 #include <linux/if_vlan.h>
36 #include <linux/random.h>
37 #include <linux/vmalloc.h>
38 #include <linux/ktime.h>
39 
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "nfp_app.h"
44 #include "nfp_net_ctrl.h"
45 #include "nfp_net.h"
46 #include "nfp_net_sriov.h"
47 #include "nfp_port.h"
48 
49 /**
50  * nfp_net_get_fw_version() - Read and parse the FW version
51  * @fw_ver:	Output fw_version structure to read to
52  * @ctrl_bar:	Mapped address of the control BAR
53  */
54 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
55 			    void __iomem *ctrl_bar)
56 {
57 	u32 reg;
58 
59 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
60 	put_unaligned_le32(reg, fw_ver);
61 }
62 
63 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
64 {
65 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
66 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
67 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
68 }
69 
70 static void
71 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
72 {
73 	dma_sync_single_for_device(dp->dev, dma_addr,
74 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
75 				   dp->rx_dma_dir);
76 }
77 
78 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
79 {
80 	dma_unmap_single_attrs(dp->dev, dma_addr,
81 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
82 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
83 }
84 
85 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
86 				    unsigned int len)
87 {
88 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
89 				len, dp->rx_dma_dir);
90 }
91 
92 /* Firmware reconfig
93  *
94  * Firmware reconfig may take a while so we have two versions of it -
95  * synchronous and asynchronous (posted).  All synchronous callers are holding
96  * RTNL so we don't have to worry about serializing them.
97  */
98 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
99 {
100 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
101 	/* ensure update is written before pinging HW */
102 	nn_pci_flush(nn);
103 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
104 	nn->reconfig_in_progress_update = update;
105 }
106 
107 /* Pass 0 as update to run posted reconfigs. */
108 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
109 {
110 	update |= nn->reconfig_posted;
111 	nn->reconfig_posted = 0;
112 
113 	nfp_net_reconfig_start(nn, update);
114 
115 	nn->reconfig_timer_active = true;
116 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
117 }
118 
119 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
120 {
121 	u32 reg;
122 
123 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
124 	if (reg == 0)
125 		return true;
126 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
127 		nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
128 		       reg, nn->reconfig_in_progress_update,
129 		       nn_readl(nn, NFP_NET_CFG_CTRL));
130 		return true;
131 	} else if (last_check) {
132 		nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
133 		       reg, nn->reconfig_in_progress_update,
134 		       nn_readl(nn, NFP_NET_CFG_CTRL));
135 		return true;
136 	}
137 
138 	return false;
139 }
140 
141 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
142 {
143 	bool timed_out = false;
144 	int i;
145 
146 	/* Poll update field, waiting for NFP to ack the config.
147 	 * Do an opportunistic wait-busy loop, afterward sleep.
148 	 */
149 	for (i = 0; i < 50; i++) {
150 		if (nfp_net_reconfig_check_done(nn, false))
151 			return false;
152 		udelay(4);
153 	}
154 
155 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
156 		usleep_range(250, 500);
157 		timed_out = time_is_before_eq_jiffies(deadline);
158 	}
159 
160 	return timed_out;
161 }
162 
163 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
164 {
165 	if (__nfp_net_reconfig_wait(nn, deadline))
166 		return -EIO;
167 
168 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
169 		return -EIO;
170 
171 	return 0;
172 }
173 
174 static void nfp_net_reconfig_timer(struct timer_list *t)
175 {
176 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
177 
178 	spin_lock_bh(&nn->reconfig_lock);
179 
180 	nn->reconfig_timer_active = false;
181 
182 	/* If sync caller is present it will take over from us */
183 	if (nn->reconfig_sync_present)
184 		goto done;
185 
186 	/* Read reconfig status and report errors */
187 	nfp_net_reconfig_check_done(nn, true);
188 
189 	if (nn->reconfig_posted)
190 		nfp_net_reconfig_start_async(nn, 0);
191 done:
192 	spin_unlock_bh(&nn->reconfig_lock);
193 }
194 
195 /**
196  * nfp_net_reconfig_post() - Post async reconfig request
197  * @nn:      NFP Net device to reconfigure
198  * @update:  The value for the update field in the BAR config
199  *
200  * Record FW reconfiguration request.  Reconfiguration will be kicked off
201  * whenever reconfiguration machinery is idle.  Multiple requests can be
202  * merged together!
203  */
204 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
205 {
206 	spin_lock_bh(&nn->reconfig_lock);
207 
208 	/* Sync caller will kick off async reconf when it's done, just post */
209 	if (nn->reconfig_sync_present) {
210 		nn->reconfig_posted |= update;
211 		goto done;
212 	}
213 
214 	/* Opportunistically check if the previous command is done */
215 	if (!nn->reconfig_timer_active ||
216 	    nfp_net_reconfig_check_done(nn, false))
217 		nfp_net_reconfig_start_async(nn, update);
218 	else
219 		nn->reconfig_posted |= update;
220 done:
221 	spin_unlock_bh(&nn->reconfig_lock);
222 }
223 
224 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
225 {
226 	bool cancelled_timer = false;
227 	u32 pre_posted_requests;
228 
229 	spin_lock_bh(&nn->reconfig_lock);
230 
231 	nn->reconfig_sync_present = true;
232 
233 	if (nn->reconfig_timer_active) {
234 		nn->reconfig_timer_active = false;
235 		cancelled_timer = true;
236 	}
237 	pre_posted_requests = nn->reconfig_posted;
238 	nn->reconfig_posted = 0;
239 
240 	spin_unlock_bh(&nn->reconfig_lock);
241 
242 	if (cancelled_timer) {
243 		del_timer_sync(&nn->reconfig_timer);
244 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
245 	}
246 
247 	/* Run the posted reconfigs which were issued before we started */
248 	if (pre_posted_requests) {
249 		nfp_net_reconfig_start(nn, pre_posted_requests);
250 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
251 	}
252 }
253 
254 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
255 {
256 	nfp_net_reconfig_sync_enter(nn);
257 
258 	spin_lock_bh(&nn->reconfig_lock);
259 	nn->reconfig_sync_present = false;
260 	spin_unlock_bh(&nn->reconfig_lock);
261 }
262 
263 /**
264  * __nfp_net_reconfig() - Reconfigure the firmware
265  * @nn:      NFP Net device to reconfigure
266  * @update:  The value for the update field in the BAR config
267  *
268  * Write the update word to the BAR and ping the reconfig queue.  The
269  * poll until the firmware has acknowledged the update by zeroing the
270  * update word.
271  *
272  * Return: Negative errno on error, 0 on success
273  */
274 static int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
275 {
276 	int ret;
277 
278 	lockdep_assert_held(&nn->bar_lock);
279 
280 	nfp_net_reconfig_sync_enter(nn);
281 
282 	nfp_net_reconfig_start(nn, update);
283 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
284 
285 	spin_lock_bh(&nn->reconfig_lock);
286 
287 	if (nn->reconfig_posted)
288 		nfp_net_reconfig_start_async(nn, 0);
289 
290 	nn->reconfig_sync_present = false;
291 
292 	spin_unlock_bh(&nn->reconfig_lock);
293 
294 	return ret;
295 }
296 
297 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
298 {
299 	int ret;
300 
301 	nn_ctrl_bar_lock(nn);
302 	ret = __nfp_net_reconfig(nn, update);
303 	nn_ctrl_bar_unlock(nn);
304 
305 	return ret;
306 }
307 
308 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
309 {
310 	if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
311 		nn_err(nn, "mailbox too small for %u of data (%u)\n",
312 		       data_size, nn->tlv_caps.mbox_len);
313 		return -EIO;
314 	}
315 
316 	nn_ctrl_bar_lock(nn);
317 	return 0;
318 }
319 
320 /**
321  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
322  * @nn:        NFP Net device to reconfigure
323  * @mbox_cmd:  The value for the mailbox command
324  *
325  * Helper function for mailbox updates
326  *
327  * Return: Negative errno on error, 0 on success
328  */
329 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
330 {
331 	u32 mbox = nn->tlv_caps.mbox_off;
332 	int ret;
333 
334 	lockdep_assert_held(&nn->bar_lock);
335 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
336 
337 	ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
338 	if (ret) {
339 		nn_err(nn, "Mailbox update error\n");
340 		return ret;
341 	}
342 
343 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
344 }
345 
346 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
347 {
348 	int ret;
349 
350 	ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
351 	nn_ctrl_bar_unlock(nn);
352 	return ret;
353 }
354 
355 /* Interrupt configuration and handling
356  */
357 
358 /**
359  * nfp_net_irq_unmask() - Unmask automasked interrupt
360  * @nn:       NFP Network structure
361  * @entry_nr: MSI-X table entry
362  *
363  * Clear the ICR for the IRQ entry.
364  */
365 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
366 {
367 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
368 	nn_pci_flush(nn);
369 }
370 
371 /**
372  * nfp_net_irqs_alloc() - allocates MSI-X irqs
373  * @pdev:        PCI device structure
374  * @irq_entries: Array to be initialized and used to hold the irq entries
375  * @min_irqs:    Minimal acceptable number of interrupts
376  * @wanted_irqs: Target number of interrupts to allocate
377  *
378  * Return: Number of irqs obtained or 0 on error.
379  */
380 unsigned int
381 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
382 		   unsigned int min_irqs, unsigned int wanted_irqs)
383 {
384 	unsigned int i;
385 	int got_irqs;
386 
387 	for (i = 0; i < wanted_irqs; i++)
388 		irq_entries[i].entry = i;
389 
390 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
391 					 min_irqs, wanted_irqs);
392 	if (got_irqs < 0) {
393 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
394 			min_irqs, wanted_irqs, got_irqs);
395 		return 0;
396 	}
397 
398 	if (got_irqs < wanted_irqs)
399 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
400 			 wanted_irqs, got_irqs);
401 
402 	return got_irqs;
403 }
404 
405 /**
406  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
407  * @nn:		 NFP Network structure
408  * @irq_entries: Table of allocated interrupts
409  * @n:		 Size of @irq_entries (number of entries to grab)
410  *
411  * After interrupts are allocated with nfp_net_irqs_alloc() this function
412  * should be called to assign them to a specific netdev (port).
413  */
414 void
415 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
416 		    unsigned int n)
417 {
418 	struct nfp_net_dp *dp = &nn->dp;
419 
420 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
421 	dp->num_r_vecs = nn->max_r_vecs;
422 
423 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
424 
425 	if (dp->num_rx_rings > dp->num_r_vecs ||
426 	    dp->num_tx_rings > dp->num_r_vecs)
427 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
428 			 dp->num_rx_rings, dp->num_tx_rings,
429 			 dp->num_r_vecs);
430 
431 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
432 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
433 	dp->num_stack_tx_rings = dp->num_tx_rings;
434 }
435 
436 /**
437  * nfp_net_irqs_disable() - Disable interrupts
438  * @pdev:        PCI device structure
439  *
440  * Undoes what @nfp_net_irqs_alloc() does.
441  */
442 void nfp_net_irqs_disable(struct pci_dev *pdev)
443 {
444 	pci_disable_msix(pdev);
445 }
446 
447 /**
448  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
449  * @irq:      Interrupt
450  * @data:     Opaque data structure
451  *
452  * Return: Indicate if the interrupt has been handled.
453  */
454 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
455 {
456 	struct nfp_net_r_vector *r_vec = data;
457 
458 	napi_schedule_irqoff(&r_vec->napi);
459 
460 	/* The FW auto-masks any interrupt, either via the MASK bit in
461 	 * the MSI-X table or via the per entry ICR field.  So there
462 	 * is no need to disable interrupts here.
463 	 */
464 	return IRQ_HANDLED;
465 }
466 
467 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
468 {
469 	struct nfp_net_r_vector *r_vec = data;
470 
471 	tasklet_schedule(&r_vec->tasklet);
472 
473 	return IRQ_HANDLED;
474 }
475 
476 /**
477  * nfp_net_read_link_status() - Reread link status from control BAR
478  * @nn:       NFP Network structure
479  */
480 static void nfp_net_read_link_status(struct nfp_net *nn)
481 {
482 	unsigned long flags;
483 	bool link_up;
484 	u32 sts;
485 
486 	spin_lock_irqsave(&nn->link_status_lock, flags);
487 
488 	sts = nn_readl(nn, NFP_NET_CFG_STS);
489 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
490 
491 	if (nn->link_up == link_up)
492 		goto out;
493 
494 	nn->link_up = link_up;
495 	if (nn->port)
496 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
497 
498 	if (nn->link_up) {
499 		netif_carrier_on(nn->dp.netdev);
500 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
501 	} else {
502 		netif_carrier_off(nn->dp.netdev);
503 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
504 	}
505 out:
506 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
507 }
508 
509 /**
510  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
511  * @irq:      Interrupt
512  * @data:     Opaque data structure
513  *
514  * Return: Indicate if the interrupt has been handled.
515  */
516 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
517 {
518 	struct nfp_net *nn = data;
519 	struct msix_entry *entry;
520 
521 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
522 
523 	nfp_net_read_link_status(nn);
524 
525 	nfp_net_irq_unmask(nn, entry->entry);
526 
527 	return IRQ_HANDLED;
528 }
529 
530 /**
531  * nfp_net_irq_exn() - Interrupt service routine for exceptions
532  * @irq:      Interrupt
533  * @data:     Opaque data structure
534  *
535  * Return: Indicate if the interrupt has been handled.
536  */
537 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
538 {
539 	struct nfp_net *nn = data;
540 
541 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
542 	/* XXX TO BE IMPLEMENTED */
543 	return IRQ_HANDLED;
544 }
545 
546 /**
547  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
548  * @tx_ring:  TX ring structure
549  * @r_vec:    IRQ vector servicing this ring
550  * @idx:      Ring index
551  * @is_xdp:   Is this an XDP TX ring?
552  */
553 static void
554 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
555 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
556 		     bool is_xdp)
557 {
558 	struct nfp_net *nn = r_vec->nfp_net;
559 
560 	tx_ring->idx = idx;
561 	tx_ring->r_vec = r_vec;
562 	tx_ring->is_xdp = is_xdp;
563 	u64_stats_init(&tx_ring->r_vec->tx_sync);
564 
565 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
566 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
567 }
568 
569 /**
570  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
571  * @rx_ring:  RX ring structure
572  * @r_vec:    IRQ vector servicing this ring
573  * @idx:      Ring index
574  */
575 static void
576 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
577 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
578 {
579 	struct nfp_net *nn = r_vec->nfp_net;
580 
581 	rx_ring->idx = idx;
582 	rx_ring->r_vec = r_vec;
583 	u64_stats_init(&rx_ring->r_vec->rx_sync);
584 
585 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
586 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
587 }
588 
589 /**
590  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
591  * @nn:		NFP Network structure
592  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
593  * @format:	printf-style format to construct the interrupt name
594  * @name:	Pointer to allocated space for interrupt name
595  * @name_sz:	Size of space for interrupt name
596  * @vector_idx:	Index of MSI-X vector used for this interrupt
597  * @handler:	IRQ handler to register for this interrupt
598  */
599 static int
600 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
601 			const char *format, char *name, size_t name_sz,
602 			unsigned int vector_idx, irq_handler_t handler)
603 {
604 	struct msix_entry *entry;
605 	int err;
606 
607 	entry = &nn->irq_entries[vector_idx];
608 
609 	snprintf(name, name_sz, format, nfp_net_name(nn));
610 	err = request_irq(entry->vector, handler, 0, name, nn);
611 	if (err) {
612 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
613 		       entry->vector, err);
614 		return err;
615 	}
616 	nn_writeb(nn, ctrl_offset, entry->entry);
617 	nfp_net_irq_unmask(nn, entry->entry);
618 
619 	return 0;
620 }
621 
622 /**
623  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
624  * @nn:		NFP Network structure
625  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
626  * @vector_idx:	Index of MSI-X vector used for this interrupt
627  */
628 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
629 				 unsigned int vector_idx)
630 {
631 	nn_writeb(nn, ctrl_offset, 0xff);
632 	nn_pci_flush(nn);
633 	free_irq(nn->irq_entries[vector_idx].vector, nn);
634 }
635 
636 /* Transmit
637  *
638  * One queue controller peripheral queue is used for transmit.  The
639  * driver en-queues packets for transmit by advancing the write
640  * pointer.  The device indicates that packets have transmitted by
641  * advancing the read pointer.  The driver maintains a local copy of
642  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
643  * keeps @wr_p in sync with the queue controller write pointer and can
644  * determine how many packets have been transmitted by comparing its
645  * copy of the read pointer @rd_p with the read pointer maintained by
646  * the queue controller peripheral.
647  */
648 
649 /**
650  * nfp_net_tx_full() - Check if the TX ring is full
651  * @tx_ring: TX ring to check
652  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
653  *
654  * This function checks, based on the *host copy* of read/write
655  * pointer if a given TX ring is full.  The real TX queue may have
656  * some newly made available slots.
657  *
658  * Return: True if the ring is full.
659  */
660 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
661 {
662 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
663 }
664 
665 /* Wrappers for deciding when to stop and restart TX queues */
666 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
667 {
668 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
669 }
670 
671 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
672 {
673 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
674 }
675 
676 /**
677  * nfp_net_tx_ring_stop() - stop tx ring
678  * @nd_q:    netdev queue
679  * @tx_ring: driver tx queue structure
680  *
681  * Safely stop TX ring.  Remember that while we are running .start_xmit()
682  * someone else may be cleaning the TX ring completions so we need to be
683  * extra careful here.
684  */
685 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
686 				 struct nfp_net_tx_ring *tx_ring)
687 {
688 	netif_tx_stop_queue(nd_q);
689 
690 	/* We can race with the TX completion out of NAPI so recheck */
691 	smp_mb();
692 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
693 		netif_tx_start_queue(nd_q);
694 }
695 
696 /**
697  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
698  * @r_vec: per-ring structure
699  * @txbuf: Pointer to driver soft TX descriptor
700  * @txd: Pointer to HW TX descriptor
701  * @skb: Pointer to SKB
702  * @md_bytes: Prepend length
703  *
704  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
705  * Return error on packet header greater than maximum supported LSO header size.
706  */
707 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
708 			   struct nfp_net_tx_buf *txbuf,
709 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
710 			   u32 md_bytes)
711 {
712 	u32 l3_offset, l4_offset, hdrlen;
713 	u16 mss;
714 
715 	if (!skb_is_gso(skb))
716 		return;
717 
718 	if (!skb->encapsulation) {
719 		l3_offset = skb_network_offset(skb);
720 		l4_offset = skb_transport_offset(skb);
721 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
722 	} else {
723 		l3_offset = skb_inner_network_offset(skb);
724 		l4_offset = skb_inner_transport_offset(skb);
725 		hdrlen = skb_inner_transport_header(skb) - skb->data +
726 			inner_tcp_hdrlen(skb);
727 	}
728 
729 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
730 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
731 
732 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
733 	txd->l3_offset = l3_offset - md_bytes;
734 	txd->l4_offset = l4_offset - md_bytes;
735 	txd->lso_hdrlen = hdrlen - md_bytes;
736 	txd->mss = cpu_to_le16(mss);
737 	txd->flags |= PCIE_DESC_TX_LSO;
738 
739 	u64_stats_update_begin(&r_vec->tx_sync);
740 	r_vec->tx_lso++;
741 	u64_stats_update_end(&r_vec->tx_sync);
742 }
743 
744 /**
745  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
746  * @dp:  NFP Net data path struct
747  * @r_vec: per-ring structure
748  * @txbuf: Pointer to driver soft TX descriptor
749  * @txd: Pointer to TX descriptor
750  * @skb: Pointer to SKB
751  *
752  * This function sets the TX checksum flags in the TX descriptor based
753  * on the configuration and the protocol of the packet to be transmitted.
754  */
755 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
756 			    struct nfp_net_r_vector *r_vec,
757 			    struct nfp_net_tx_buf *txbuf,
758 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
759 {
760 	struct ipv6hdr *ipv6h;
761 	struct iphdr *iph;
762 	u8 l4_hdr;
763 
764 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
765 		return;
766 
767 	if (skb->ip_summed != CHECKSUM_PARTIAL)
768 		return;
769 
770 	txd->flags |= PCIE_DESC_TX_CSUM;
771 	if (skb->encapsulation)
772 		txd->flags |= PCIE_DESC_TX_ENCAP;
773 
774 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
775 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
776 
777 	if (iph->version == 4) {
778 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
779 		l4_hdr = iph->protocol;
780 	} else if (ipv6h->version == 6) {
781 		l4_hdr = ipv6h->nexthdr;
782 	} else {
783 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
784 		return;
785 	}
786 
787 	switch (l4_hdr) {
788 	case IPPROTO_TCP:
789 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
790 		break;
791 	case IPPROTO_UDP:
792 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
793 		break;
794 	default:
795 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
796 		return;
797 	}
798 
799 	u64_stats_update_begin(&r_vec->tx_sync);
800 	if (skb->encapsulation)
801 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
802 	else
803 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
804 	u64_stats_update_end(&r_vec->tx_sync);
805 }
806 
807 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
808 {
809 	wmb();
810 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
811 	tx_ring->wr_ptr_add = 0;
812 }
813 
814 static int nfp_net_prep_port_id(struct sk_buff *skb)
815 {
816 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
817 	unsigned char *data;
818 
819 	if (likely(!md_dst))
820 		return 0;
821 	if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
822 		return 0;
823 
824 	if (unlikely(skb_cow_head(skb, 8)))
825 		return -ENOMEM;
826 
827 	data = skb_push(skb, 8);
828 	put_unaligned_be32(NFP_NET_META_PORTID, data);
829 	put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
830 
831 	return 8;
832 }
833 
834 /**
835  * nfp_net_tx() - Main transmit entry point
836  * @skb:    SKB to transmit
837  * @netdev: netdev structure
838  *
839  * Return: NETDEV_TX_OK on success.
840  */
841 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
842 {
843 	struct nfp_net *nn = netdev_priv(netdev);
844 	const struct skb_frag_struct *frag;
845 	int f, nr_frags, wr_idx, md_bytes;
846 	struct nfp_net_tx_ring *tx_ring;
847 	struct nfp_net_r_vector *r_vec;
848 	struct nfp_net_tx_buf *txbuf;
849 	struct nfp_net_tx_desc *txd;
850 	struct netdev_queue *nd_q;
851 	struct nfp_net_dp *dp;
852 	dma_addr_t dma_addr;
853 	unsigned int fsize;
854 	u16 qidx;
855 
856 	dp = &nn->dp;
857 	qidx = skb_get_queue_mapping(skb);
858 	tx_ring = &dp->tx_rings[qidx];
859 	r_vec = tx_ring->r_vec;
860 
861 	nr_frags = skb_shinfo(skb)->nr_frags;
862 
863 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
864 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
865 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
866 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
867 		netif_tx_stop_queue(nd_q);
868 		nfp_net_tx_xmit_more_flush(tx_ring);
869 		u64_stats_update_begin(&r_vec->tx_sync);
870 		r_vec->tx_busy++;
871 		u64_stats_update_end(&r_vec->tx_sync);
872 		return NETDEV_TX_BUSY;
873 	}
874 
875 	md_bytes = nfp_net_prep_port_id(skb);
876 	if (unlikely(md_bytes < 0)) {
877 		nfp_net_tx_xmit_more_flush(tx_ring);
878 		dev_kfree_skb_any(skb);
879 		return NETDEV_TX_OK;
880 	}
881 
882 	/* Start with the head skbuf */
883 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
884 				  DMA_TO_DEVICE);
885 	if (dma_mapping_error(dp->dev, dma_addr))
886 		goto err_free;
887 
888 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
889 
890 	/* Stash the soft descriptor of the head then initialize it */
891 	txbuf = &tx_ring->txbufs[wr_idx];
892 	txbuf->skb = skb;
893 	txbuf->dma_addr = dma_addr;
894 	txbuf->fidx = -1;
895 	txbuf->pkt_cnt = 1;
896 	txbuf->real_len = skb->len;
897 
898 	/* Build TX descriptor */
899 	txd = &tx_ring->txds[wr_idx];
900 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
901 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
902 	nfp_desc_set_dma_addr(txd, dma_addr);
903 	txd->data_len = cpu_to_le16(skb->len);
904 
905 	txd->flags = 0;
906 	txd->mss = 0;
907 	txd->lso_hdrlen = 0;
908 
909 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
910 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
911 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
912 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
913 		txd->flags |= PCIE_DESC_TX_VLAN;
914 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
915 	}
916 
917 	/* Gather DMA */
918 	if (nr_frags > 0) {
919 		__le64 second_half;
920 
921 		/* all descs must match except for in addr, length and eop */
922 		second_half = txd->vals8[1];
923 
924 		for (f = 0; f < nr_frags; f++) {
925 			frag = &skb_shinfo(skb)->frags[f];
926 			fsize = skb_frag_size(frag);
927 
928 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
929 						    fsize, DMA_TO_DEVICE);
930 			if (dma_mapping_error(dp->dev, dma_addr))
931 				goto err_unmap;
932 
933 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
934 			tx_ring->txbufs[wr_idx].skb = skb;
935 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
936 			tx_ring->txbufs[wr_idx].fidx = f;
937 
938 			txd = &tx_ring->txds[wr_idx];
939 			txd->dma_len = cpu_to_le16(fsize);
940 			nfp_desc_set_dma_addr(txd, dma_addr);
941 			txd->offset_eop = md_bytes |
942 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
943 			txd->vals8[1] = second_half;
944 		}
945 
946 		u64_stats_update_begin(&r_vec->tx_sync);
947 		r_vec->tx_gather++;
948 		u64_stats_update_end(&r_vec->tx_sync);
949 	}
950 
951 	skb_tx_timestamp(skb);
952 
953 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
954 
955 	tx_ring->wr_p += nr_frags + 1;
956 	if (nfp_net_tx_ring_should_stop(tx_ring))
957 		nfp_net_tx_ring_stop(nd_q, tx_ring);
958 
959 	tx_ring->wr_ptr_add += nr_frags + 1;
960 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
961 		nfp_net_tx_xmit_more_flush(tx_ring);
962 
963 	return NETDEV_TX_OK;
964 
965 err_unmap:
966 	while (--f >= 0) {
967 		frag = &skb_shinfo(skb)->frags[f];
968 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
969 			       skb_frag_size(frag), DMA_TO_DEVICE);
970 		tx_ring->txbufs[wr_idx].skb = NULL;
971 		tx_ring->txbufs[wr_idx].dma_addr = 0;
972 		tx_ring->txbufs[wr_idx].fidx = -2;
973 		wr_idx = wr_idx - 1;
974 		if (wr_idx < 0)
975 			wr_idx += tx_ring->cnt;
976 	}
977 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
978 			 skb_headlen(skb), DMA_TO_DEVICE);
979 	tx_ring->txbufs[wr_idx].skb = NULL;
980 	tx_ring->txbufs[wr_idx].dma_addr = 0;
981 	tx_ring->txbufs[wr_idx].fidx = -2;
982 err_free:
983 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
984 	nfp_net_tx_xmit_more_flush(tx_ring);
985 	u64_stats_update_begin(&r_vec->tx_sync);
986 	r_vec->tx_errors++;
987 	u64_stats_update_end(&r_vec->tx_sync);
988 	dev_kfree_skb_any(skb);
989 	return NETDEV_TX_OK;
990 }
991 
992 /**
993  * nfp_net_tx_complete() - Handled completed TX packets
994  * @tx_ring:	TX ring structure
995  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
996  */
997 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
998 {
999 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1000 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1001 	struct netdev_queue *nd_q;
1002 	u32 done_pkts = 0, done_bytes = 0;
1003 	u32 qcp_rd_p;
1004 	int todo;
1005 
1006 	if (tx_ring->wr_p == tx_ring->rd_p)
1007 		return;
1008 
1009 	/* Work out how many descriptors have been transmitted */
1010 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1011 
1012 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1013 		return;
1014 
1015 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1016 
1017 	while (todo--) {
1018 		const struct skb_frag_struct *frag;
1019 		struct nfp_net_tx_buf *tx_buf;
1020 		struct sk_buff *skb;
1021 		int fidx, nr_frags;
1022 		int idx;
1023 
1024 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
1025 		tx_buf = &tx_ring->txbufs[idx];
1026 
1027 		skb = tx_buf->skb;
1028 		if (!skb)
1029 			continue;
1030 
1031 		nr_frags = skb_shinfo(skb)->nr_frags;
1032 		fidx = tx_buf->fidx;
1033 
1034 		if (fidx == -1) {
1035 			/* unmap head */
1036 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1037 					 skb_headlen(skb), DMA_TO_DEVICE);
1038 
1039 			done_pkts += tx_buf->pkt_cnt;
1040 			done_bytes += tx_buf->real_len;
1041 		} else {
1042 			/* unmap fragment */
1043 			frag = &skb_shinfo(skb)->frags[fidx];
1044 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1045 				       skb_frag_size(frag), DMA_TO_DEVICE);
1046 		}
1047 
1048 		/* check for last gather fragment */
1049 		if (fidx == nr_frags - 1)
1050 			napi_consume_skb(skb, budget);
1051 
1052 		tx_buf->dma_addr = 0;
1053 		tx_buf->skb = NULL;
1054 		tx_buf->fidx = -2;
1055 	}
1056 
1057 	tx_ring->qcp_rd_p = qcp_rd_p;
1058 
1059 	u64_stats_update_begin(&r_vec->tx_sync);
1060 	r_vec->tx_bytes += done_bytes;
1061 	r_vec->tx_pkts += done_pkts;
1062 	u64_stats_update_end(&r_vec->tx_sync);
1063 
1064 	if (!dp->netdev)
1065 		return;
1066 
1067 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1068 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1069 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1070 		/* Make sure TX thread will see updated tx_ring->rd_p */
1071 		smp_mb();
1072 
1073 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1074 			netif_tx_wake_queue(nd_q);
1075 	}
1076 
1077 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1078 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1079 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1080 }
1081 
1082 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1083 {
1084 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1085 	u32 done_pkts = 0, done_bytes = 0;
1086 	bool done_all;
1087 	int idx, todo;
1088 	u32 qcp_rd_p;
1089 
1090 	/* Work out how many descriptors have been transmitted */
1091 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1092 
1093 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1094 		return true;
1095 
1096 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1097 
1098 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1099 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1100 
1101 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1102 
1103 	done_pkts = todo;
1104 	while (todo--) {
1105 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1106 		tx_ring->rd_p++;
1107 
1108 		done_bytes += tx_ring->txbufs[idx].real_len;
1109 	}
1110 
1111 	u64_stats_update_begin(&r_vec->tx_sync);
1112 	r_vec->tx_bytes += done_bytes;
1113 	r_vec->tx_pkts += done_pkts;
1114 	u64_stats_update_end(&r_vec->tx_sync);
1115 
1116 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1117 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1118 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1119 
1120 	return done_all;
1121 }
1122 
1123 /**
1124  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1125  * @dp:		NFP Net data path struct
1126  * @tx_ring:	TX ring structure
1127  *
1128  * Assumes that the device is stopped, must be idempotent.
1129  */
1130 static void
1131 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1132 {
1133 	const struct skb_frag_struct *frag;
1134 	struct netdev_queue *nd_q;
1135 
1136 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1137 		struct nfp_net_tx_buf *tx_buf;
1138 		struct sk_buff *skb;
1139 		int idx, nr_frags;
1140 
1141 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1142 		tx_buf = &tx_ring->txbufs[idx];
1143 
1144 		skb = tx_ring->txbufs[idx].skb;
1145 		nr_frags = skb_shinfo(skb)->nr_frags;
1146 
1147 		if (tx_buf->fidx == -1) {
1148 			/* unmap head */
1149 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1150 					 skb_headlen(skb), DMA_TO_DEVICE);
1151 		} else {
1152 			/* unmap fragment */
1153 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1154 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1155 				       skb_frag_size(frag), DMA_TO_DEVICE);
1156 		}
1157 
1158 		/* check for last gather fragment */
1159 		if (tx_buf->fidx == nr_frags - 1)
1160 			dev_kfree_skb_any(skb);
1161 
1162 		tx_buf->dma_addr = 0;
1163 		tx_buf->skb = NULL;
1164 		tx_buf->fidx = -2;
1165 
1166 		tx_ring->qcp_rd_p++;
1167 		tx_ring->rd_p++;
1168 	}
1169 
1170 	memset(tx_ring->txds, 0, tx_ring->size);
1171 	tx_ring->wr_p = 0;
1172 	tx_ring->rd_p = 0;
1173 	tx_ring->qcp_rd_p = 0;
1174 	tx_ring->wr_ptr_add = 0;
1175 
1176 	if (tx_ring->is_xdp || !dp->netdev)
1177 		return;
1178 
1179 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1180 	netdev_tx_reset_queue(nd_q);
1181 }
1182 
1183 static void nfp_net_tx_timeout(struct net_device *netdev)
1184 {
1185 	struct nfp_net *nn = netdev_priv(netdev);
1186 	int i;
1187 
1188 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1189 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1190 			continue;
1191 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1192 	}
1193 	nn_warn(nn, "TX watchdog timeout\n");
1194 }
1195 
1196 /* Receive processing
1197  */
1198 static unsigned int
1199 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1200 {
1201 	unsigned int fl_bufsz;
1202 
1203 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1204 	fl_bufsz += dp->rx_dma_off;
1205 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1206 		fl_bufsz += NFP_NET_MAX_PREPEND;
1207 	else
1208 		fl_bufsz += dp->rx_offset;
1209 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1210 
1211 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1212 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1213 
1214 	return fl_bufsz;
1215 }
1216 
1217 static void
1218 nfp_net_free_frag(void *frag, bool xdp)
1219 {
1220 	if (!xdp)
1221 		skb_free_frag(frag);
1222 	else
1223 		__free_page(virt_to_page(frag));
1224 }
1225 
1226 /**
1227  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1228  * @dp:		NFP Net data path struct
1229  * @dma_addr:	Pointer to storage for DMA address (output param)
1230  *
1231  * This function will allcate a new page frag, map it for DMA.
1232  *
1233  * Return: allocated page frag or NULL on failure.
1234  */
1235 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1236 {
1237 	void *frag;
1238 
1239 	if (!dp->xdp_prog) {
1240 		frag = netdev_alloc_frag(dp->fl_bufsz);
1241 	} else {
1242 		struct page *page;
1243 
1244 		page = alloc_page(GFP_KERNEL);
1245 		frag = page ? page_address(page) : NULL;
1246 	}
1247 	if (!frag) {
1248 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1249 		return NULL;
1250 	}
1251 
1252 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1253 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1254 		nfp_net_free_frag(frag, dp->xdp_prog);
1255 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1256 		return NULL;
1257 	}
1258 
1259 	return frag;
1260 }
1261 
1262 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1263 {
1264 	void *frag;
1265 
1266 	if (!dp->xdp_prog) {
1267 		frag = napi_alloc_frag(dp->fl_bufsz);
1268 		if (unlikely(!frag))
1269 			return NULL;
1270 	} else {
1271 		struct page *page;
1272 
1273 		page = dev_alloc_page();
1274 		if (unlikely(!page))
1275 			return NULL;
1276 		frag = page_address(page);
1277 	}
1278 
1279 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1280 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1281 		nfp_net_free_frag(frag, dp->xdp_prog);
1282 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1283 		return NULL;
1284 	}
1285 
1286 	return frag;
1287 }
1288 
1289 /**
1290  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1291  * @dp:		NFP Net data path struct
1292  * @rx_ring:	RX ring structure
1293  * @frag:	page fragment buffer
1294  * @dma_addr:	DMA address of skb mapping
1295  */
1296 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1297 				struct nfp_net_rx_ring *rx_ring,
1298 				void *frag, dma_addr_t dma_addr)
1299 {
1300 	unsigned int wr_idx;
1301 
1302 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1303 
1304 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1305 
1306 	/* Stash SKB and DMA address away */
1307 	rx_ring->rxbufs[wr_idx].frag = frag;
1308 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1309 
1310 	/* Fill freelist descriptor */
1311 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1312 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1313 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1314 			      dma_addr + dp->rx_dma_off);
1315 
1316 	rx_ring->wr_p++;
1317 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1318 		/* Update write pointer of the freelist queue. Make
1319 		 * sure all writes are flushed before telling the hardware.
1320 		 */
1321 		wmb();
1322 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1323 	}
1324 }
1325 
1326 /**
1327  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1328  * @rx_ring:	RX ring structure
1329  *
1330  * Assumes that the device is stopped, must be idempotent.
1331  */
1332 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1333 {
1334 	unsigned int wr_idx, last_idx;
1335 
1336 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1337 	 * kept at cnt - 1 FL bufs.
1338 	 */
1339 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1340 		return;
1341 
1342 	/* Move the empty entry to the end of the list */
1343 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1344 	last_idx = rx_ring->cnt - 1;
1345 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1346 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1347 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1348 	rx_ring->rxbufs[last_idx].frag = NULL;
1349 
1350 	memset(rx_ring->rxds, 0, rx_ring->size);
1351 	rx_ring->wr_p = 0;
1352 	rx_ring->rd_p = 0;
1353 }
1354 
1355 /**
1356  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1357  * @dp:		NFP Net data path struct
1358  * @rx_ring:	RX ring to remove buffers from
1359  *
1360  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1361  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1362  * to restore required ring geometry.
1363  */
1364 static void
1365 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1366 			  struct nfp_net_rx_ring *rx_ring)
1367 {
1368 	unsigned int i;
1369 
1370 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1371 		/* NULL skb can only happen when initial filling of the ring
1372 		 * fails to allocate enough buffers and calls here to free
1373 		 * already allocated ones.
1374 		 */
1375 		if (!rx_ring->rxbufs[i].frag)
1376 			continue;
1377 
1378 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1379 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1380 		rx_ring->rxbufs[i].dma_addr = 0;
1381 		rx_ring->rxbufs[i].frag = NULL;
1382 	}
1383 }
1384 
1385 /**
1386  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1387  * @dp:		NFP Net data path struct
1388  * @rx_ring:	RX ring to remove buffers from
1389  */
1390 static int
1391 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1392 			   struct nfp_net_rx_ring *rx_ring)
1393 {
1394 	struct nfp_net_rx_buf *rxbufs;
1395 	unsigned int i;
1396 
1397 	rxbufs = rx_ring->rxbufs;
1398 
1399 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1400 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1401 		if (!rxbufs[i].frag) {
1402 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1403 			return -ENOMEM;
1404 		}
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1412  * @dp:	     NFP Net data path struct
1413  * @rx_ring: RX ring to fill
1414  */
1415 static void
1416 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1417 			      struct nfp_net_rx_ring *rx_ring)
1418 {
1419 	unsigned int i;
1420 
1421 	for (i = 0; i < rx_ring->cnt - 1; i++)
1422 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1423 				    rx_ring->rxbufs[i].dma_addr);
1424 }
1425 
1426 /**
1427  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1428  * @flags: RX descriptor flags field in CPU byte order
1429  */
1430 static int nfp_net_rx_csum_has_errors(u16 flags)
1431 {
1432 	u16 csum_all_checked, csum_all_ok;
1433 
1434 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1435 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1436 
1437 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1438 }
1439 
1440 /**
1441  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1442  * @dp:  NFP Net data path struct
1443  * @r_vec: per-ring structure
1444  * @rxd: Pointer to RX descriptor
1445  * @meta: Parsed metadata prepend
1446  * @skb: Pointer to SKB
1447  */
1448 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1449 			    struct nfp_net_r_vector *r_vec,
1450 			    struct nfp_net_rx_desc *rxd,
1451 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1452 {
1453 	skb_checksum_none_assert(skb);
1454 
1455 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1456 		return;
1457 
1458 	if (meta->csum_type) {
1459 		skb->ip_summed = meta->csum_type;
1460 		skb->csum = meta->csum;
1461 		u64_stats_update_begin(&r_vec->rx_sync);
1462 		r_vec->hw_csum_rx_complete++;
1463 		u64_stats_update_end(&r_vec->rx_sync);
1464 		return;
1465 	}
1466 
1467 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1468 		u64_stats_update_begin(&r_vec->rx_sync);
1469 		r_vec->hw_csum_rx_error++;
1470 		u64_stats_update_end(&r_vec->rx_sync);
1471 		return;
1472 	}
1473 
1474 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1475 	 * L4 headers were successfully parsed. FW will always report zero UDP
1476 	 * checksum as CSUM_OK.
1477 	 */
1478 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1479 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1480 		__skb_incr_checksum_unnecessary(skb);
1481 		u64_stats_update_begin(&r_vec->rx_sync);
1482 		r_vec->hw_csum_rx_ok++;
1483 		u64_stats_update_end(&r_vec->rx_sync);
1484 	}
1485 
1486 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1487 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1488 		__skb_incr_checksum_unnecessary(skb);
1489 		u64_stats_update_begin(&r_vec->rx_sync);
1490 		r_vec->hw_csum_rx_inner_ok++;
1491 		u64_stats_update_end(&r_vec->rx_sync);
1492 	}
1493 }
1494 
1495 static void
1496 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1497 		 unsigned int type, __be32 *hash)
1498 {
1499 	if (!(netdev->features & NETIF_F_RXHASH))
1500 		return;
1501 
1502 	switch (type) {
1503 	case NFP_NET_RSS_IPV4:
1504 	case NFP_NET_RSS_IPV6:
1505 	case NFP_NET_RSS_IPV6_EX:
1506 		meta->hash_type = PKT_HASH_TYPE_L3;
1507 		break;
1508 	default:
1509 		meta->hash_type = PKT_HASH_TYPE_L4;
1510 		break;
1511 	}
1512 
1513 	meta->hash = get_unaligned_be32(hash);
1514 }
1515 
1516 static void
1517 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1518 		      void *data, struct nfp_net_rx_desc *rxd)
1519 {
1520 	struct nfp_net_rx_hash *rx_hash = data;
1521 
1522 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1523 		return;
1524 
1525 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1526 			 &rx_hash->hash);
1527 }
1528 
1529 static void *
1530 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1531 		   void *data, int meta_len)
1532 {
1533 	u32 meta_info;
1534 
1535 	meta_info = get_unaligned_be32(data);
1536 	data += 4;
1537 
1538 	while (meta_info) {
1539 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1540 		case NFP_NET_META_HASH:
1541 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1542 			nfp_net_set_hash(netdev, meta,
1543 					 meta_info & NFP_NET_META_FIELD_MASK,
1544 					 (__be32 *)data);
1545 			data += 4;
1546 			break;
1547 		case NFP_NET_META_MARK:
1548 			meta->mark = get_unaligned_be32(data);
1549 			data += 4;
1550 			break;
1551 		case NFP_NET_META_PORTID:
1552 			meta->portid = get_unaligned_be32(data);
1553 			data += 4;
1554 			break;
1555 		case NFP_NET_META_CSUM:
1556 			meta->csum_type = CHECKSUM_COMPLETE;
1557 			meta->csum =
1558 				(__force __wsum)__get_unaligned_cpu32(data);
1559 			data += 4;
1560 			break;
1561 		default:
1562 			return NULL;
1563 		}
1564 
1565 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1566 	}
1567 
1568 	return data;
1569 }
1570 
1571 static void
1572 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1573 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1574 		struct sk_buff *skb)
1575 {
1576 	u64_stats_update_begin(&r_vec->rx_sync);
1577 	r_vec->rx_drops++;
1578 	/* If we have both skb and rxbuf the replacement buffer allocation
1579 	 * must have failed, count this as an alloc failure.
1580 	 */
1581 	if (skb && rxbuf)
1582 		r_vec->rx_replace_buf_alloc_fail++;
1583 	u64_stats_update_end(&r_vec->rx_sync);
1584 
1585 	/* skb is build based on the frag, free_skb() would free the frag
1586 	 * so to be able to reuse it we need an extra ref.
1587 	 */
1588 	if (skb && rxbuf && skb->head == rxbuf->frag)
1589 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1590 	if (rxbuf)
1591 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1592 	if (skb)
1593 		dev_kfree_skb_any(skb);
1594 }
1595 
1596 static bool
1597 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1598 		   struct nfp_net_tx_ring *tx_ring,
1599 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1600 		   unsigned int pkt_len, bool *completed)
1601 {
1602 	struct nfp_net_tx_buf *txbuf;
1603 	struct nfp_net_tx_desc *txd;
1604 	int wr_idx;
1605 
1606 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1607 		if (!*completed) {
1608 			nfp_net_xdp_complete(tx_ring);
1609 			*completed = true;
1610 		}
1611 
1612 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1613 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1614 					NULL);
1615 			return false;
1616 		}
1617 	}
1618 
1619 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1620 
1621 	/* Stash the soft descriptor of the head then initialize it */
1622 	txbuf = &tx_ring->txbufs[wr_idx];
1623 
1624 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1625 
1626 	txbuf->frag = rxbuf->frag;
1627 	txbuf->dma_addr = rxbuf->dma_addr;
1628 	txbuf->fidx = -1;
1629 	txbuf->pkt_cnt = 1;
1630 	txbuf->real_len = pkt_len;
1631 
1632 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1633 				   pkt_len, DMA_BIDIRECTIONAL);
1634 
1635 	/* Build TX descriptor */
1636 	txd = &tx_ring->txds[wr_idx];
1637 	txd->offset_eop = PCIE_DESC_TX_EOP;
1638 	txd->dma_len = cpu_to_le16(pkt_len);
1639 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1640 	txd->data_len = cpu_to_le16(pkt_len);
1641 
1642 	txd->flags = 0;
1643 	txd->mss = 0;
1644 	txd->lso_hdrlen = 0;
1645 
1646 	tx_ring->wr_p++;
1647 	tx_ring->wr_ptr_add++;
1648 	return true;
1649 }
1650 
1651 /**
1652  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1653  * @rx_ring:   RX ring to receive from
1654  * @budget:    NAPI budget
1655  *
1656  * Note, this function is separated out from the napi poll function to
1657  * more cleanly separate packet receive code from other bookkeeping
1658  * functions performed in the napi poll function.
1659  *
1660  * Return: Number of packets received.
1661  */
1662 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1663 {
1664 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1665 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1666 	struct nfp_net_tx_ring *tx_ring;
1667 	struct bpf_prog *xdp_prog;
1668 	bool xdp_tx_cmpl = false;
1669 	unsigned int true_bufsz;
1670 	struct sk_buff *skb;
1671 	int pkts_polled = 0;
1672 	struct xdp_buff xdp;
1673 	int idx;
1674 
1675 	rcu_read_lock();
1676 	xdp_prog = READ_ONCE(dp->xdp_prog);
1677 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1678 	xdp.rxq = &rx_ring->xdp_rxq;
1679 	tx_ring = r_vec->xdp_ring;
1680 
1681 	while (pkts_polled < budget) {
1682 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1683 		struct nfp_net_rx_buf *rxbuf;
1684 		struct nfp_net_rx_desc *rxd;
1685 		struct nfp_meta_parsed meta;
1686 		bool redir_egress = false;
1687 		struct net_device *netdev;
1688 		dma_addr_t new_dma_addr;
1689 		u32 meta_len_xdp = 0;
1690 		void *new_frag;
1691 
1692 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1693 
1694 		rxd = &rx_ring->rxds[idx];
1695 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1696 			break;
1697 
1698 		/* Memory barrier to ensure that we won't do other reads
1699 		 * before the DD bit.
1700 		 */
1701 		dma_rmb();
1702 
1703 		memset(&meta, 0, sizeof(meta));
1704 
1705 		rx_ring->rd_p++;
1706 		pkts_polled++;
1707 
1708 		rxbuf =	&rx_ring->rxbufs[idx];
1709 		/*         < meta_len >
1710 		 *  <-- [rx_offset] -->
1711 		 *  ---------------------------------------------------------
1712 		 * | [XX] |  metadata  |             packet           | XXXX |
1713 		 *  ---------------------------------------------------------
1714 		 *         <---------------- data_len --------------->
1715 		 *
1716 		 * The rx_offset is fixed for all packets, the meta_len can vary
1717 		 * on a packet by packet basis. If rx_offset is set to zero
1718 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1719 		 * buffer and is immediately followed by the packet (no [XX]).
1720 		 */
1721 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1722 		data_len = le16_to_cpu(rxd->rxd.data_len);
1723 		pkt_len = data_len - meta_len;
1724 
1725 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1726 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1727 			pkt_off += meta_len;
1728 		else
1729 			pkt_off += dp->rx_offset;
1730 		meta_off = pkt_off - meta_len;
1731 
1732 		/* Stats update */
1733 		u64_stats_update_begin(&r_vec->rx_sync);
1734 		r_vec->rx_pkts++;
1735 		r_vec->rx_bytes += pkt_len;
1736 		u64_stats_update_end(&r_vec->rx_sync);
1737 
1738 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1739 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1740 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1741 				   meta_len);
1742 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1743 			continue;
1744 		}
1745 
1746 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1747 					data_len);
1748 
1749 		if (!dp->chained_metadata_format) {
1750 			nfp_net_set_hash_desc(dp->netdev, &meta,
1751 					      rxbuf->frag + meta_off, rxd);
1752 		} else if (meta_len) {
1753 			void *end;
1754 
1755 			end = nfp_net_parse_meta(dp->netdev, &meta,
1756 						 rxbuf->frag + meta_off,
1757 						 meta_len);
1758 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1759 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1760 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1761 						NULL);
1762 				continue;
1763 			}
1764 		}
1765 
1766 		if (xdp_prog && !meta.portid) {
1767 			void *orig_data = rxbuf->frag + pkt_off;
1768 			unsigned int dma_off;
1769 			int act;
1770 
1771 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1772 			xdp.data = orig_data;
1773 			xdp.data_meta = orig_data;
1774 			xdp.data_end = orig_data + pkt_len;
1775 
1776 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1777 
1778 			pkt_len = xdp.data_end - xdp.data;
1779 			pkt_off += xdp.data - orig_data;
1780 
1781 			switch (act) {
1782 			case XDP_PASS:
1783 				meta_len_xdp = xdp.data - xdp.data_meta;
1784 				break;
1785 			case XDP_TX:
1786 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1787 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1788 								 tx_ring, rxbuf,
1789 								 dma_off,
1790 								 pkt_len,
1791 								 &xdp_tx_cmpl)))
1792 					trace_xdp_exception(dp->netdev,
1793 							    xdp_prog, act);
1794 				continue;
1795 			default:
1796 				bpf_warn_invalid_xdp_action(act);
1797 				/* fall through */
1798 			case XDP_ABORTED:
1799 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1800 				/* fall through */
1801 			case XDP_DROP:
1802 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1803 						    rxbuf->dma_addr);
1804 				continue;
1805 			}
1806 		}
1807 
1808 		if (likely(!meta.portid)) {
1809 			netdev = dp->netdev;
1810 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1811 			struct nfp_net *nn = netdev_priv(dp->netdev);
1812 
1813 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1814 					    pkt_len);
1815 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1816 					    rxbuf->dma_addr);
1817 			continue;
1818 		} else {
1819 			struct nfp_net *nn;
1820 
1821 			nn = netdev_priv(dp->netdev);
1822 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1823 						 &redir_egress);
1824 			if (unlikely(!netdev)) {
1825 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1826 						NULL);
1827 				continue;
1828 			}
1829 
1830 			if (nfp_netdev_is_nfp_repr(netdev))
1831 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1832 		}
1833 
1834 		skb = build_skb(rxbuf->frag, true_bufsz);
1835 		if (unlikely(!skb)) {
1836 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1837 			continue;
1838 		}
1839 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1840 		if (unlikely(!new_frag)) {
1841 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1842 			continue;
1843 		}
1844 
1845 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1846 
1847 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1848 
1849 		skb_reserve(skb, pkt_off);
1850 		skb_put(skb, pkt_len);
1851 
1852 		skb->mark = meta.mark;
1853 		skb_set_hash(skb, meta.hash, meta.hash_type);
1854 
1855 		skb_record_rx_queue(skb, rx_ring->idx);
1856 		skb->protocol = eth_type_trans(skb, netdev);
1857 
1858 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1859 
1860 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1861 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1862 					       le16_to_cpu(rxd->rxd.vlan));
1863 		if (meta_len_xdp)
1864 			skb_metadata_set(skb, meta_len_xdp);
1865 
1866 		if (likely(!redir_egress)) {
1867 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1868 		} else {
1869 			skb->dev = netdev;
1870 			__skb_push(skb, ETH_HLEN);
1871 			dev_queue_xmit(skb);
1872 		}
1873 	}
1874 
1875 	if (xdp_prog) {
1876 		if (tx_ring->wr_ptr_add)
1877 			nfp_net_tx_xmit_more_flush(tx_ring);
1878 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1879 			 !xdp_tx_cmpl)
1880 			if (!nfp_net_xdp_complete(tx_ring))
1881 				pkts_polled = budget;
1882 	}
1883 	rcu_read_unlock();
1884 
1885 	return pkts_polled;
1886 }
1887 
1888 /**
1889  * nfp_net_poll() - napi poll function
1890  * @napi:    NAPI structure
1891  * @budget:  NAPI budget
1892  *
1893  * Return: number of packets polled.
1894  */
1895 static int nfp_net_poll(struct napi_struct *napi, int budget)
1896 {
1897 	struct nfp_net_r_vector *r_vec =
1898 		container_of(napi, struct nfp_net_r_vector, napi);
1899 	unsigned int pkts_polled = 0;
1900 
1901 	if (r_vec->tx_ring)
1902 		nfp_net_tx_complete(r_vec->tx_ring, budget);
1903 	if (r_vec->rx_ring)
1904 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1905 
1906 	if (pkts_polled < budget)
1907 		if (napi_complete_done(napi, pkts_polled))
1908 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1909 
1910 	return pkts_polled;
1911 }
1912 
1913 /* Control device data path
1914  */
1915 
1916 static bool
1917 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1918 		struct sk_buff *skb, bool old)
1919 {
1920 	unsigned int real_len = skb->len, meta_len = 0;
1921 	struct nfp_net_tx_ring *tx_ring;
1922 	struct nfp_net_tx_buf *txbuf;
1923 	struct nfp_net_tx_desc *txd;
1924 	struct nfp_net_dp *dp;
1925 	dma_addr_t dma_addr;
1926 	int wr_idx;
1927 
1928 	dp = &r_vec->nfp_net->dp;
1929 	tx_ring = r_vec->tx_ring;
1930 
1931 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1932 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1933 		goto err_free;
1934 	}
1935 
1936 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1937 		u64_stats_update_begin(&r_vec->tx_sync);
1938 		r_vec->tx_busy++;
1939 		u64_stats_update_end(&r_vec->tx_sync);
1940 		if (!old)
1941 			__skb_queue_tail(&r_vec->queue, skb);
1942 		else
1943 			__skb_queue_head(&r_vec->queue, skb);
1944 		return true;
1945 	}
1946 
1947 	if (nfp_app_ctrl_has_meta(nn->app)) {
1948 		if (unlikely(skb_headroom(skb) < 8)) {
1949 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1950 			goto err_free;
1951 		}
1952 		meta_len = 8;
1953 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1954 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1955 	}
1956 
1957 	/* Start with the head skbuf */
1958 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1959 				  DMA_TO_DEVICE);
1960 	if (dma_mapping_error(dp->dev, dma_addr))
1961 		goto err_dma_warn;
1962 
1963 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1964 
1965 	/* Stash the soft descriptor of the head then initialize it */
1966 	txbuf = &tx_ring->txbufs[wr_idx];
1967 	txbuf->skb = skb;
1968 	txbuf->dma_addr = dma_addr;
1969 	txbuf->fidx = -1;
1970 	txbuf->pkt_cnt = 1;
1971 	txbuf->real_len = real_len;
1972 
1973 	/* Build TX descriptor */
1974 	txd = &tx_ring->txds[wr_idx];
1975 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1976 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1977 	nfp_desc_set_dma_addr(txd, dma_addr);
1978 	txd->data_len = cpu_to_le16(skb->len);
1979 
1980 	txd->flags = 0;
1981 	txd->mss = 0;
1982 	txd->lso_hdrlen = 0;
1983 
1984 	tx_ring->wr_p++;
1985 	tx_ring->wr_ptr_add++;
1986 	nfp_net_tx_xmit_more_flush(tx_ring);
1987 
1988 	return false;
1989 
1990 err_dma_warn:
1991 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1992 err_free:
1993 	u64_stats_update_begin(&r_vec->tx_sync);
1994 	r_vec->tx_errors++;
1995 	u64_stats_update_end(&r_vec->tx_sync);
1996 	dev_kfree_skb_any(skb);
1997 	return false;
1998 }
1999 
2000 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2001 {
2002 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2003 
2004 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2005 }
2006 
2007 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2008 {
2009 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2010 	bool ret;
2011 
2012 	spin_lock_bh(&r_vec->lock);
2013 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2014 	spin_unlock_bh(&r_vec->lock);
2015 
2016 	return ret;
2017 }
2018 
2019 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2020 {
2021 	struct sk_buff *skb;
2022 
2023 	while ((skb = __skb_dequeue(&r_vec->queue)))
2024 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2025 			return;
2026 }
2027 
2028 static bool
2029 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2030 {
2031 	u32 meta_type, meta_tag;
2032 
2033 	if (!nfp_app_ctrl_has_meta(nn->app))
2034 		return !meta_len;
2035 
2036 	if (meta_len != 8)
2037 		return false;
2038 
2039 	meta_type = get_unaligned_be32(data);
2040 	meta_tag = get_unaligned_be32(data + 4);
2041 
2042 	return (meta_type == NFP_NET_META_PORTID &&
2043 		meta_tag == NFP_META_PORT_ID_CTRL);
2044 }
2045 
2046 static bool
2047 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2048 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2049 {
2050 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2051 	struct nfp_net_rx_buf *rxbuf;
2052 	struct nfp_net_rx_desc *rxd;
2053 	dma_addr_t new_dma_addr;
2054 	struct sk_buff *skb;
2055 	void *new_frag;
2056 	int idx;
2057 
2058 	idx = D_IDX(rx_ring, rx_ring->rd_p);
2059 
2060 	rxd = &rx_ring->rxds[idx];
2061 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2062 		return false;
2063 
2064 	/* Memory barrier to ensure that we won't do other reads
2065 	 * before the DD bit.
2066 	 */
2067 	dma_rmb();
2068 
2069 	rx_ring->rd_p++;
2070 
2071 	rxbuf =	&rx_ring->rxbufs[idx];
2072 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2073 	data_len = le16_to_cpu(rxd->rxd.data_len);
2074 	pkt_len = data_len - meta_len;
2075 
2076 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2077 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2078 		pkt_off += meta_len;
2079 	else
2080 		pkt_off += dp->rx_offset;
2081 	meta_off = pkt_off - meta_len;
2082 
2083 	/* Stats update */
2084 	u64_stats_update_begin(&r_vec->rx_sync);
2085 	r_vec->rx_pkts++;
2086 	r_vec->rx_bytes += pkt_len;
2087 	u64_stats_update_end(&r_vec->rx_sync);
2088 
2089 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2090 
2091 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2092 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2093 			   meta_len);
2094 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2095 		return true;
2096 	}
2097 
2098 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2099 	if (unlikely(!skb)) {
2100 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2101 		return true;
2102 	}
2103 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2104 	if (unlikely(!new_frag)) {
2105 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2106 		return true;
2107 	}
2108 
2109 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2110 
2111 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2112 
2113 	skb_reserve(skb, pkt_off);
2114 	skb_put(skb, pkt_len);
2115 
2116 	nfp_app_ctrl_rx(nn->app, skb);
2117 
2118 	return true;
2119 }
2120 
2121 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2122 {
2123 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2124 	struct nfp_net *nn = r_vec->nfp_net;
2125 	struct nfp_net_dp *dp = &nn->dp;
2126 	unsigned int budget = 512;
2127 
2128 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2129 		continue;
2130 
2131 	return budget;
2132 }
2133 
2134 static void nfp_ctrl_poll(unsigned long arg)
2135 {
2136 	struct nfp_net_r_vector *r_vec = (void *)arg;
2137 
2138 	spin_lock(&r_vec->lock);
2139 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2140 	__nfp_ctrl_tx_queued(r_vec);
2141 	spin_unlock(&r_vec->lock);
2142 
2143 	if (nfp_ctrl_rx(r_vec)) {
2144 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2145 	} else {
2146 		tasklet_schedule(&r_vec->tasklet);
2147 		nn_dp_warn(&r_vec->nfp_net->dp,
2148 			   "control message budget exceeded!\n");
2149 	}
2150 }
2151 
2152 /* Setup and Configuration
2153  */
2154 
2155 /**
2156  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2157  * @nn:		NFP Network structure
2158  */
2159 static void nfp_net_vecs_init(struct nfp_net *nn)
2160 {
2161 	struct nfp_net_r_vector *r_vec;
2162 	int r;
2163 
2164 	nn->lsc_handler = nfp_net_irq_lsc;
2165 	nn->exn_handler = nfp_net_irq_exn;
2166 
2167 	for (r = 0; r < nn->max_r_vecs; r++) {
2168 		struct msix_entry *entry;
2169 
2170 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2171 
2172 		r_vec = &nn->r_vecs[r];
2173 		r_vec->nfp_net = nn;
2174 		r_vec->irq_entry = entry->entry;
2175 		r_vec->irq_vector = entry->vector;
2176 
2177 		if (nn->dp.netdev) {
2178 			r_vec->handler = nfp_net_irq_rxtx;
2179 		} else {
2180 			r_vec->handler = nfp_ctrl_irq_rxtx;
2181 
2182 			__skb_queue_head_init(&r_vec->queue);
2183 			spin_lock_init(&r_vec->lock);
2184 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2185 				     (unsigned long)r_vec);
2186 			tasklet_disable(&r_vec->tasklet);
2187 		}
2188 
2189 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2190 	}
2191 }
2192 
2193 /**
2194  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2195  * @tx_ring:   TX ring to free
2196  */
2197 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2198 {
2199 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2200 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2201 
2202 	kvfree(tx_ring->txbufs);
2203 
2204 	if (tx_ring->txds)
2205 		dma_free_coherent(dp->dev, tx_ring->size,
2206 				  tx_ring->txds, tx_ring->dma);
2207 
2208 	tx_ring->cnt = 0;
2209 	tx_ring->txbufs = NULL;
2210 	tx_ring->txds = NULL;
2211 	tx_ring->dma = 0;
2212 	tx_ring->size = 0;
2213 }
2214 
2215 /**
2216  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2217  * @dp:        NFP Net data path struct
2218  * @tx_ring:   TX Ring structure to allocate
2219  *
2220  * Return: 0 on success, negative errno otherwise.
2221  */
2222 static int
2223 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2224 {
2225 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2226 
2227 	tx_ring->cnt = dp->txd_cnt;
2228 
2229 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2230 	tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2231 					   &tx_ring->dma,
2232 					   GFP_KERNEL | __GFP_NOWARN);
2233 	if (!tx_ring->txds) {
2234 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2235 			    tx_ring->cnt);
2236 		goto err_alloc;
2237 	}
2238 
2239 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2240 				   GFP_KERNEL);
2241 	if (!tx_ring->txbufs)
2242 		goto err_alloc;
2243 
2244 	if (!tx_ring->is_xdp && dp->netdev)
2245 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2246 				    tx_ring->idx);
2247 
2248 	return 0;
2249 
2250 err_alloc:
2251 	nfp_net_tx_ring_free(tx_ring);
2252 	return -ENOMEM;
2253 }
2254 
2255 static void
2256 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2257 			  struct nfp_net_tx_ring *tx_ring)
2258 {
2259 	unsigned int i;
2260 
2261 	if (!tx_ring->is_xdp)
2262 		return;
2263 
2264 	for (i = 0; i < tx_ring->cnt; i++) {
2265 		if (!tx_ring->txbufs[i].frag)
2266 			return;
2267 
2268 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2269 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2270 	}
2271 }
2272 
2273 static int
2274 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2275 			   struct nfp_net_tx_ring *tx_ring)
2276 {
2277 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2278 	unsigned int i;
2279 
2280 	if (!tx_ring->is_xdp)
2281 		return 0;
2282 
2283 	for (i = 0; i < tx_ring->cnt; i++) {
2284 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2285 		if (!txbufs[i].frag) {
2286 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2287 			return -ENOMEM;
2288 		}
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2295 {
2296 	unsigned int r;
2297 
2298 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2299 			       GFP_KERNEL);
2300 	if (!dp->tx_rings)
2301 		return -ENOMEM;
2302 
2303 	for (r = 0; r < dp->num_tx_rings; r++) {
2304 		int bias = 0;
2305 
2306 		if (r >= dp->num_stack_tx_rings)
2307 			bias = dp->num_stack_tx_rings;
2308 
2309 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2310 				     r, bias);
2311 
2312 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2313 			goto err_free_prev;
2314 
2315 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2316 			goto err_free_ring;
2317 	}
2318 
2319 	return 0;
2320 
2321 err_free_prev:
2322 	while (r--) {
2323 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2324 err_free_ring:
2325 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2326 	}
2327 	kfree(dp->tx_rings);
2328 	return -ENOMEM;
2329 }
2330 
2331 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2332 {
2333 	unsigned int r;
2334 
2335 	for (r = 0; r < dp->num_tx_rings; r++) {
2336 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2337 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2338 	}
2339 
2340 	kfree(dp->tx_rings);
2341 }
2342 
2343 /**
2344  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2345  * @rx_ring:  RX ring to free
2346  */
2347 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2348 {
2349 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2350 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2351 
2352 	if (dp->netdev)
2353 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2354 	kvfree(rx_ring->rxbufs);
2355 
2356 	if (rx_ring->rxds)
2357 		dma_free_coherent(dp->dev, rx_ring->size,
2358 				  rx_ring->rxds, rx_ring->dma);
2359 
2360 	rx_ring->cnt = 0;
2361 	rx_ring->rxbufs = NULL;
2362 	rx_ring->rxds = NULL;
2363 	rx_ring->dma = 0;
2364 	rx_ring->size = 0;
2365 }
2366 
2367 /**
2368  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2369  * @dp:	      NFP Net data path struct
2370  * @rx_ring:  RX ring to allocate
2371  *
2372  * Return: 0 on success, negative errno otherwise.
2373  */
2374 static int
2375 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2376 {
2377 	int err;
2378 
2379 	if (dp->netdev) {
2380 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2381 				       rx_ring->idx);
2382 		if (err < 0)
2383 			return err;
2384 	}
2385 
2386 	rx_ring->cnt = dp->rxd_cnt;
2387 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2388 	rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2389 					   &rx_ring->dma,
2390 					   GFP_KERNEL | __GFP_NOWARN);
2391 	if (!rx_ring->rxds) {
2392 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2393 			    rx_ring->cnt);
2394 		goto err_alloc;
2395 	}
2396 
2397 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2398 				   GFP_KERNEL);
2399 	if (!rx_ring->rxbufs)
2400 		goto err_alloc;
2401 
2402 	return 0;
2403 
2404 err_alloc:
2405 	nfp_net_rx_ring_free(rx_ring);
2406 	return -ENOMEM;
2407 }
2408 
2409 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2410 {
2411 	unsigned int r;
2412 
2413 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2414 			       GFP_KERNEL);
2415 	if (!dp->rx_rings)
2416 		return -ENOMEM;
2417 
2418 	for (r = 0; r < dp->num_rx_rings; r++) {
2419 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2420 
2421 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2422 			goto err_free_prev;
2423 
2424 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2425 			goto err_free_ring;
2426 	}
2427 
2428 	return 0;
2429 
2430 err_free_prev:
2431 	while (r--) {
2432 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2433 err_free_ring:
2434 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2435 	}
2436 	kfree(dp->rx_rings);
2437 	return -ENOMEM;
2438 }
2439 
2440 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2441 {
2442 	unsigned int r;
2443 
2444 	for (r = 0; r < dp->num_rx_rings; r++) {
2445 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2446 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2447 	}
2448 
2449 	kfree(dp->rx_rings);
2450 }
2451 
2452 static void
2453 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2454 			    struct nfp_net_r_vector *r_vec, int idx)
2455 {
2456 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2457 	r_vec->tx_ring =
2458 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2459 
2460 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2461 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2462 }
2463 
2464 static int
2465 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2466 		       int idx)
2467 {
2468 	int err;
2469 
2470 	/* Setup NAPI */
2471 	if (nn->dp.netdev)
2472 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2473 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2474 	else
2475 		tasklet_enable(&r_vec->tasklet);
2476 
2477 	snprintf(r_vec->name, sizeof(r_vec->name),
2478 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2479 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2480 			  r_vec);
2481 	if (err) {
2482 		if (nn->dp.netdev)
2483 			netif_napi_del(&r_vec->napi);
2484 		else
2485 			tasklet_disable(&r_vec->tasklet);
2486 
2487 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2488 		return err;
2489 	}
2490 	disable_irq(r_vec->irq_vector);
2491 
2492 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2493 
2494 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2495 	       r_vec->irq_entry);
2496 
2497 	return 0;
2498 }
2499 
2500 static void
2501 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2502 {
2503 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2504 	if (nn->dp.netdev)
2505 		netif_napi_del(&r_vec->napi);
2506 	else
2507 		tasklet_disable(&r_vec->tasklet);
2508 
2509 	free_irq(r_vec->irq_vector, r_vec);
2510 }
2511 
2512 /**
2513  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2514  * @nn:      NFP Net device to reconfigure
2515  */
2516 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2517 {
2518 	int i;
2519 
2520 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2521 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2522 			  get_unaligned_le32(nn->rss_itbl + i));
2523 }
2524 
2525 /**
2526  * nfp_net_rss_write_key() - Write RSS hash key to device
2527  * @nn:      NFP Net device to reconfigure
2528  */
2529 void nfp_net_rss_write_key(struct nfp_net *nn)
2530 {
2531 	int i;
2532 
2533 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2534 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2535 			  get_unaligned_le32(nn->rss_key + i));
2536 }
2537 
2538 /**
2539  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2540  * @nn:      NFP Net device to reconfigure
2541  */
2542 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2543 {
2544 	u8 i;
2545 	u32 factor;
2546 	u32 value;
2547 
2548 	/* Compute factor used to convert coalesce '_usecs' parameters to
2549 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2550 	 * count.
2551 	 */
2552 	factor = nn->tlv_caps.me_freq_mhz / 16;
2553 
2554 	/* copy RX interrupt coalesce parameters */
2555 	value = (nn->rx_coalesce_max_frames << 16) |
2556 		(factor * nn->rx_coalesce_usecs);
2557 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2558 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2559 
2560 	/* copy TX interrupt coalesce parameters */
2561 	value = (nn->tx_coalesce_max_frames << 16) |
2562 		(factor * nn->tx_coalesce_usecs);
2563 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2564 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2565 }
2566 
2567 /**
2568  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2569  * @nn:      NFP Net device to reconfigure
2570  * @addr:    MAC address to write
2571  *
2572  * Writes the MAC address from the netdev to the device control BAR.  Does not
2573  * perform the required reconfig.  We do a bit of byte swapping dance because
2574  * firmware is LE.
2575  */
2576 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2577 {
2578 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2579 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2580 }
2581 
2582 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2583 {
2584 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2585 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2586 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2587 
2588 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2589 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2590 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2591 }
2592 
2593 /**
2594  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2595  * @nn:      NFP Net device to reconfigure
2596  *
2597  * Warning: must be fully idempotent.
2598  */
2599 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2600 {
2601 	u32 new_ctrl, update;
2602 	unsigned int r;
2603 	int err;
2604 
2605 	new_ctrl = nn->dp.ctrl;
2606 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2607 	update = NFP_NET_CFG_UPDATE_GEN;
2608 	update |= NFP_NET_CFG_UPDATE_MSIX;
2609 	update |= NFP_NET_CFG_UPDATE_RING;
2610 
2611 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2612 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2613 
2614 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2615 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2616 
2617 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2618 	err = nfp_net_reconfig(nn, update);
2619 	if (err)
2620 		nn_err(nn, "Could not disable device: %d\n", err);
2621 
2622 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2623 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2624 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2625 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2626 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2627 		nfp_net_vec_clear_ring_data(nn, r);
2628 
2629 	nn->dp.ctrl = new_ctrl;
2630 }
2631 
2632 static void
2633 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2634 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2635 {
2636 	/* Write the DMA address, size and MSI-X info to the device */
2637 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2638 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2639 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2640 }
2641 
2642 static void
2643 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2644 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2645 {
2646 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2647 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2648 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2649 }
2650 
2651 /**
2652  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2653  * @nn:      NFP Net device to reconfigure
2654  */
2655 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2656 {
2657 	u32 bufsz, new_ctrl, update = 0;
2658 	unsigned int r;
2659 	int err;
2660 
2661 	new_ctrl = nn->dp.ctrl;
2662 
2663 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2664 		nfp_net_rss_write_key(nn);
2665 		nfp_net_rss_write_itbl(nn);
2666 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2667 		update |= NFP_NET_CFG_UPDATE_RSS;
2668 	}
2669 
2670 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2671 		nfp_net_coalesce_write_cfg(nn);
2672 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2673 	}
2674 
2675 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2676 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2677 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2678 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2679 
2680 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2681 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2682 
2683 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2684 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2685 
2686 	if (nn->dp.netdev)
2687 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2688 
2689 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2690 
2691 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2692 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2693 
2694 	/* Enable device */
2695 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2696 	update |= NFP_NET_CFG_UPDATE_GEN;
2697 	update |= NFP_NET_CFG_UPDATE_MSIX;
2698 	update |= NFP_NET_CFG_UPDATE_RING;
2699 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2700 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2701 
2702 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2703 	err = nfp_net_reconfig(nn, update);
2704 	if (err) {
2705 		nfp_net_clear_config_and_disable(nn);
2706 		return err;
2707 	}
2708 
2709 	nn->dp.ctrl = new_ctrl;
2710 
2711 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2712 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2713 
2714 	/* Since reconfiguration requests while NFP is down are ignored we
2715 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2716 	 */
2717 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2718 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2719 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2720 		udp_tunnel_get_rx_info(nn->dp.netdev);
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 /**
2727  * nfp_net_close_stack() - Quiesce the stack (part of close)
2728  * @nn:	     NFP Net device to reconfigure
2729  */
2730 static void nfp_net_close_stack(struct nfp_net *nn)
2731 {
2732 	unsigned int r;
2733 
2734 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2735 	netif_carrier_off(nn->dp.netdev);
2736 	nn->link_up = false;
2737 
2738 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2739 		disable_irq(nn->r_vecs[r].irq_vector);
2740 		napi_disable(&nn->r_vecs[r].napi);
2741 	}
2742 
2743 	netif_tx_disable(nn->dp.netdev);
2744 }
2745 
2746 /**
2747  * nfp_net_close_free_all() - Free all runtime resources
2748  * @nn:      NFP Net device to reconfigure
2749  */
2750 static void nfp_net_close_free_all(struct nfp_net *nn)
2751 {
2752 	unsigned int r;
2753 
2754 	nfp_net_tx_rings_free(&nn->dp);
2755 	nfp_net_rx_rings_free(&nn->dp);
2756 
2757 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2758 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2759 
2760 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2761 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2762 }
2763 
2764 /**
2765  * nfp_net_netdev_close() - Called when the device is downed
2766  * @netdev:      netdev structure
2767  */
2768 static int nfp_net_netdev_close(struct net_device *netdev)
2769 {
2770 	struct nfp_net *nn = netdev_priv(netdev);
2771 
2772 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2773 	 */
2774 	nfp_net_close_stack(nn);
2775 
2776 	/* Step 2: Tell NFP
2777 	 */
2778 	nfp_net_clear_config_and_disable(nn);
2779 	nfp_port_configure(netdev, false);
2780 
2781 	/* Step 3: Free resources
2782 	 */
2783 	nfp_net_close_free_all(nn);
2784 
2785 	nn_dbg(nn, "%s down", netdev->name);
2786 	return 0;
2787 }
2788 
2789 void nfp_ctrl_close(struct nfp_net *nn)
2790 {
2791 	int r;
2792 
2793 	rtnl_lock();
2794 
2795 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2796 		disable_irq(nn->r_vecs[r].irq_vector);
2797 		tasklet_disable(&nn->r_vecs[r].tasklet);
2798 	}
2799 
2800 	nfp_net_clear_config_and_disable(nn);
2801 
2802 	nfp_net_close_free_all(nn);
2803 
2804 	rtnl_unlock();
2805 }
2806 
2807 /**
2808  * nfp_net_open_stack() - Start the device from stack's perspective
2809  * @nn:      NFP Net device to reconfigure
2810  */
2811 static void nfp_net_open_stack(struct nfp_net *nn)
2812 {
2813 	unsigned int r;
2814 
2815 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2816 		napi_enable(&nn->r_vecs[r].napi);
2817 		enable_irq(nn->r_vecs[r].irq_vector);
2818 	}
2819 
2820 	netif_tx_wake_all_queues(nn->dp.netdev);
2821 
2822 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2823 	nfp_net_read_link_status(nn);
2824 }
2825 
2826 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2827 {
2828 	int err, r;
2829 
2830 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2831 				      nn->exn_name, sizeof(nn->exn_name),
2832 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2833 	if (err)
2834 		return err;
2835 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2836 				      nn->lsc_name, sizeof(nn->lsc_name),
2837 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2838 	if (err)
2839 		goto err_free_exn;
2840 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2841 
2842 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2843 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2844 		if (err)
2845 			goto err_cleanup_vec_p;
2846 	}
2847 
2848 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2849 	if (err)
2850 		goto err_cleanup_vec;
2851 
2852 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2853 	if (err)
2854 		goto err_free_rx_rings;
2855 
2856 	for (r = 0; r < nn->max_r_vecs; r++)
2857 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2858 
2859 	return 0;
2860 
2861 err_free_rx_rings:
2862 	nfp_net_rx_rings_free(&nn->dp);
2863 err_cleanup_vec:
2864 	r = nn->dp.num_r_vecs;
2865 err_cleanup_vec_p:
2866 	while (r--)
2867 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2868 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2869 err_free_exn:
2870 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2871 	return err;
2872 }
2873 
2874 static int nfp_net_netdev_open(struct net_device *netdev)
2875 {
2876 	struct nfp_net *nn = netdev_priv(netdev);
2877 	int err;
2878 
2879 	/* Step 1: Allocate resources for rings and the like
2880 	 * - Request interrupts
2881 	 * - Allocate RX and TX ring resources
2882 	 * - Setup initial RSS table
2883 	 */
2884 	err = nfp_net_open_alloc_all(nn);
2885 	if (err)
2886 		return err;
2887 
2888 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2889 	if (err)
2890 		goto err_free_all;
2891 
2892 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2893 	if (err)
2894 		goto err_free_all;
2895 
2896 	/* Step 2: Configure the NFP
2897 	 * - Ifup the physical interface if it exists
2898 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2899 	 * - Write MAC address (in case it changed)
2900 	 * - Set the MTU
2901 	 * - Set the Freelist buffer size
2902 	 * - Enable the FW
2903 	 */
2904 	err = nfp_port_configure(netdev, true);
2905 	if (err)
2906 		goto err_free_all;
2907 
2908 	err = nfp_net_set_config_and_enable(nn);
2909 	if (err)
2910 		goto err_port_disable;
2911 
2912 	/* Step 3: Enable for kernel
2913 	 * - put some freelist descriptors on each RX ring
2914 	 * - enable NAPI on each ring
2915 	 * - enable all TX queues
2916 	 * - set link state
2917 	 */
2918 	nfp_net_open_stack(nn);
2919 
2920 	return 0;
2921 
2922 err_port_disable:
2923 	nfp_port_configure(netdev, false);
2924 err_free_all:
2925 	nfp_net_close_free_all(nn);
2926 	return err;
2927 }
2928 
2929 int nfp_ctrl_open(struct nfp_net *nn)
2930 {
2931 	int err, r;
2932 
2933 	/* ring dumping depends on vNICs being opened/closed under rtnl */
2934 	rtnl_lock();
2935 
2936 	err = nfp_net_open_alloc_all(nn);
2937 	if (err)
2938 		goto err_unlock;
2939 
2940 	err = nfp_net_set_config_and_enable(nn);
2941 	if (err)
2942 		goto err_free_all;
2943 
2944 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2945 		enable_irq(nn->r_vecs[r].irq_vector);
2946 
2947 	rtnl_unlock();
2948 
2949 	return 0;
2950 
2951 err_free_all:
2952 	nfp_net_close_free_all(nn);
2953 err_unlock:
2954 	rtnl_unlock();
2955 	return err;
2956 }
2957 
2958 static void nfp_net_set_rx_mode(struct net_device *netdev)
2959 {
2960 	struct nfp_net *nn = netdev_priv(netdev);
2961 	u32 new_ctrl;
2962 
2963 	new_ctrl = nn->dp.ctrl;
2964 
2965 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
2966 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
2967 	else
2968 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
2969 
2970 	if (netdev->flags & IFF_PROMISC) {
2971 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2972 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2973 		else
2974 			nn_warn(nn, "FW does not support promiscuous mode\n");
2975 	} else {
2976 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2977 	}
2978 
2979 	if (new_ctrl == nn->dp.ctrl)
2980 		return;
2981 
2982 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2983 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2984 
2985 	nn->dp.ctrl = new_ctrl;
2986 }
2987 
2988 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2989 {
2990 	int i;
2991 
2992 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
2993 		nn->rss_itbl[i] =
2994 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2995 }
2996 
2997 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2998 {
2999 	struct nfp_net_dp new_dp = *dp;
3000 
3001 	*dp = nn->dp;
3002 	nn->dp = new_dp;
3003 
3004 	nn->dp.netdev->mtu = new_dp.mtu;
3005 
3006 	if (!netif_is_rxfh_configured(nn->dp.netdev))
3007 		nfp_net_rss_init_itbl(nn);
3008 }
3009 
3010 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3011 {
3012 	unsigned int r;
3013 	int err;
3014 
3015 	nfp_net_dp_swap(nn, dp);
3016 
3017 	for (r = 0; r <	nn->max_r_vecs; r++)
3018 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3019 
3020 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3021 	if (err)
3022 		return err;
3023 
3024 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3025 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
3026 						   nn->dp.num_stack_tx_rings);
3027 		if (err)
3028 			return err;
3029 	}
3030 
3031 	return nfp_net_set_config_and_enable(nn);
3032 }
3033 
3034 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3035 {
3036 	struct nfp_net_dp *new;
3037 
3038 	new = kmalloc(sizeof(*new), GFP_KERNEL);
3039 	if (!new)
3040 		return NULL;
3041 
3042 	*new = nn->dp;
3043 
3044 	/* Clear things which need to be recomputed */
3045 	new->fl_bufsz = 0;
3046 	new->tx_rings = NULL;
3047 	new->rx_rings = NULL;
3048 	new->num_r_vecs = 0;
3049 	new->num_stack_tx_rings = 0;
3050 
3051 	return new;
3052 }
3053 
3054 static int
3055 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3056 		     struct netlink_ext_ack *extack)
3057 {
3058 	/* XDP-enabled tests */
3059 	if (!dp->xdp_prog)
3060 		return 0;
3061 	if (dp->fl_bufsz > PAGE_SIZE) {
3062 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3063 		return -EINVAL;
3064 	}
3065 	if (dp->num_tx_rings > nn->max_tx_rings) {
3066 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3067 		return -EINVAL;
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3074 			  struct netlink_ext_ack *extack)
3075 {
3076 	int r, err;
3077 
3078 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3079 
3080 	dp->num_stack_tx_rings = dp->num_tx_rings;
3081 	if (dp->xdp_prog)
3082 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3083 
3084 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3085 
3086 	err = nfp_net_check_config(nn, dp, extack);
3087 	if (err)
3088 		goto exit_free_dp;
3089 
3090 	if (!netif_running(dp->netdev)) {
3091 		nfp_net_dp_swap(nn, dp);
3092 		err = 0;
3093 		goto exit_free_dp;
3094 	}
3095 
3096 	/* Prepare new rings */
3097 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3098 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3099 		if (err) {
3100 			dp->num_r_vecs = r;
3101 			goto err_cleanup_vecs;
3102 		}
3103 	}
3104 
3105 	err = nfp_net_rx_rings_prepare(nn, dp);
3106 	if (err)
3107 		goto err_cleanup_vecs;
3108 
3109 	err = nfp_net_tx_rings_prepare(nn, dp);
3110 	if (err)
3111 		goto err_free_rx;
3112 
3113 	/* Stop device, swap in new rings, try to start the firmware */
3114 	nfp_net_close_stack(nn);
3115 	nfp_net_clear_config_and_disable(nn);
3116 
3117 	err = nfp_net_dp_swap_enable(nn, dp);
3118 	if (err) {
3119 		int err2;
3120 
3121 		nfp_net_clear_config_and_disable(nn);
3122 
3123 		/* Try with old configuration and old rings */
3124 		err2 = nfp_net_dp_swap_enable(nn, dp);
3125 		if (err2)
3126 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3127 			       err, err2);
3128 	}
3129 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3130 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3131 
3132 	nfp_net_rx_rings_free(dp);
3133 	nfp_net_tx_rings_free(dp);
3134 
3135 	nfp_net_open_stack(nn);
3136 exit_free_dp:
3137 	kfree(dp);
3138 
3139 	return err;
3140 
3141 err_free_rx:
3142 	nfp_net_rx_rings_free(dp);
3143 err_cleanup_vecs:
3144 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3145 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3146 	kfree(dp);
3147 	return err;
3148 }
3149 
3150 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3151 {
3152 	struct nfp_net *nn = netdev_priv(netdev);
3153 	struct nfp_net_dp *dp;
3154 	int err;
3155 
3156 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3157 	if (err)
3158 		return err;
3159 
3160 	dp = nfp_net_clone_dp(nn);
3161 	if (!dp)
3162 		return -ENOMEM;
3163 
3164 	dp->mtu = new_mtu;
3165 
3166 	return nfp_net_ring_reconfig(nn, dp, NULL);
3167 }
3168 
3169 static int
3170 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3171 {
3172 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3173 	struct nfp_net *nn = netdev_priv(netdev);
3174 	int err;
3175 
3176 	/* Priority tagged packets with vlan id 0 are processed by the
3177 	 * NFP as untagged packets
3178 	 */
3179 	if (!vid)
3180 		return 0;
3181 
3182 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3183 	if (err)
3184 		return err;
3185 
3186 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3187 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3188 		  ETH_P_8021Q);
3189 
3190 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3191 }
3192 
3193 static int
3194 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3195 {
3196 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3197 	struct nfp_net *nn = netdev_priv(netdev);
3198 	int err;
3199 
3200 	/* Priority tagged packets with vlan id 0 are processed by the
3201 	 * NFP as untagged packets
3202 	 */
3203 	if (!vid)
3204 		return 0;
3205 
3206 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3207 	if (err)
3208 		return err;
3209 
3210 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3211 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3212 		  ETH_P_8021Q);
3213 
3214 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3215 }
3216 
3217 static void nfp_net_stat64(struct net_device *netdev,
3218 			   struct rtnl_link_stats64 *stats)
3219 {
3220 	struct nfp_net *nn = netdev_priv(netdev);
3221 	int r;
3222 
3223 	/* Collect software stats */
3224 	for (r = 0; r < nn->max_r_vecs; r++) {
3225 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3226 		u64 data[3];
3227 		unsigned int start;
3228 
3229 		do {
3230 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3231 			data[0] = r_vec->rx_pkts;
3232 			data[1] = r_vec->rx_bytes;
3233 			data[2] = r_vec->rx_drops;
3234 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3235 		stats->rx_packets += data[0];
3236 		stats->rx_bytes += data[1];
3237 		stats->rx_dropped += data[2];
3238 
3239 		do {
3240 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3241 			data[0] = r_vec->tx_pkts;
3242 			data[1] = r_vec->tx_bytes;
3243 			data[2] = r_vec->tx_errors;
3244 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3245 		stats->tx_packets += data[0];
3246 		stats->tx_bytes += data[1];
3247 		stats->tx_errors += data[2];
3248 	}
3249 
3250 	/* Add in device stats */
3251 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3252 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3253 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3254 
3255 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3256 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3257 }
3258 
3259 static int nfp_net_set_features(struct net_device *netdev,
3260 				netdev_features_t features)
3261 {
3262 	netdev_features_t changed = netdev->features ^ features;
3263 	struct nfp_net *nn = netdev_priv(netdev);
3264 	u32 new_ctrl;
3265 	int err;
3266 
3267 	/* Assume this is not called with features we have not advertised */
3268 
3269 	new_ctrl = nn->dp.ctrl;
3270 
3271 	if (changed & NETIF_F_RXCSUM) {
3272 		if (features & NETIF_F_RXCSUM)
3273 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3274 		else
3275 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3276 	}
3277 
3278 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3279 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3280 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3281 		else
3282 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3283 	}
3284 
3285 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3286 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3287 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3288 					      NFP_NET_CFG_CTRL_LSO;
3289 		else
3290 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3291 	}
3292 
3293 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3294 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3295 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3296 		else
3297 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3298 	}
3299 
3300 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3301 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3302 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3303 		else
3304 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3305 	}
3306 
3307 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3308 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3309 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3310 		else
3311 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3312 	}
3313 
3314 	if (changed & NETIF_F_SG) {
3315 		if (features & NETIF_F_SG)
3316 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3317 		else
3318 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3319 	}
3320 
3321 	err = nfp_port_set_features(netdev, features);
3322 	if (err)
3323 		return err;
3324 
3325 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3326 	       netdev->features, features, changed);
3327 
3328 	if (new_ctrl == nn->dp.ctrl)
3329 		return 0;
3330 
3331 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3332 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3333 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3334 	if (err)
3335 		return err;
3336 
3337 	nn->dp.ctrl = new_ctrl;
3338 
3339 	return 0;
3340 }
3341 
3342 static netdev_features_t
3343 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3344 		       netdev_features_t features)
3345 {
3346 	u8 l4_hdr;
3347 
3348 	/* We can't do TSO over double tagged packets (802.1AD) */
3349 	features &= vlan_features_check(skb, features);
3350 
3351 	if (!skb->encapsulation)
3352 		return features;
3353 
3354 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3355 	if (skb_is_gso(skb)) {
3356 		u32 hdrlen;
3357 
3358 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3359 			inner_tcp_hdrlen(skb);
3360 
3361 		/* Assume worst case scenario of having longest possible
3362 		 * metadata prepend - 8B
3363 		 */
3364 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3365 			features &= ~NETIF_F_GSO_MASK;
3366 	}
3367 
3368 	/* VXLAN/GRE check */
3369 	switch (vlan_get_protocol(skb)) {
3370 	case htons(ETH_P_IP):
3371 		l4_hdr = ip_hdr(skb)->protocol;
3372 		break;
3373 	case htons(ETH_P_IPV6):
3374 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3375 		break;
3376 	default:
3377 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3378 	}
3379 
3380 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3381 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3382 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3383 	    (l4_hdr == IPPROTO_UDP &&
3384 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3385 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3386 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3387 
3388 	return features;
3389 }
3390 
3391 static int
3392 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3393 {
3394 	struct nfp_net *nn = netdev_priv(netdev);
3395 	int n;
3396 
3397 	/* If port is defined, devlink_port is registered and devlink core
3398 	 * is taking care of name formatting.
3399 	 */
3400 	if (nn->port)
3401 		return -EOPNOTSUPP;
3402 
3403 	if (nn->dp.is_vf || nn->vnic_no_name)
3404 		return -EOPNOTSUPP;
3405 
3406 	n = snprintf(name, len, "n%d", nn->id);
3407 	if (n >= len)
3408 		return -EINVAL;
3409 
3410 	return 0;
3411 }
3412 
3413 /**
3414  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3415  * @nn:   NFP Net device to reconfigure
3416  * @idx:  Index into the port table where new port should be written
3417  * @port: UDP port to configure (pass zero to remove VXLAN port)
3418  */
3419 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3420 {
3421 	int i;
3422 
3423 	nn->vxlan_ports[idx] = port;
3424 
3425 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3426 		return;
3427 
3428 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3429 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3430 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3431 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3432 			  be16_to_cpu(nn->vxlan_ports[i]));
3433 
3434 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3435 }
3436 
3437 /**
3438  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3439  * @nn:   NFP Network structure
3440  * @port: UDP port to look for
3441  *
3442  * Return: if the port is already in the table -- it's position;
3443  *	   if the port is not in the table -- free position to use;
3444  *	   if the table is full -- -ENOSPC.
3445  */
3446 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3447 {
3448 	int i, free_idx = -ENOSPC;
3449 
3450 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3451 		if (nn->vxlan_ports[i] == port)
3452 			return i;
3453 		if (!nn->vxlan_usecnt[i])
3454 			free_idx = i;
3455 	}
3456 
3457 	return free_idx;
3458 }
3459 
3460 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3461 				   struct udp_tunnel_info *ti)
3462 {
3463 	struct nfp_net *nn = netdev_priv(netdev);
3464 	int idx;
3465 
3466 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3467 		return;
3468 
3469 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3470 	if (idx == -ENOSPC)
3471 		return;
3472 
3473 	if (!nn->vxlan_usecnt[idx]++)
3474 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3475 }
3476 
3477 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3478 				   struct udp_tunnel_info *ti)
3479 {
3480 	struct nfp_net *nn = netdev_priv(netdev);
3481 	int idx;
3482 
3483 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3484 		return;
3485 
3486 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3487 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3488 		return;
3489 
3490 	if (!--nn->vxlan_usecnt[idx])
3491 		nfp_net_set_vxlan_port(nn, idx, 0);
3492 }
3493 
3494 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3495 {
3496 	struct bpf_prog *prog = bpf->prog;
3497 	struct nfp_net_dp *dp;
3498 	int err;
3499 
3500 	if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3501 		return -EBUSY;
3502 
3503 	if (!prog == !nn->dp.xdp_prog) {
3504 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3505 		xdp_attachment_setup(&nn->xdp, bpf);
3506 		return 0;
3507 	}
3508 
3509 	dp = nfp_net_clone_dp(nn);
3510 	if (!dp)
3511 		return -ENOMEM;
3512 
3513 	dp->xdp_prog = prog;
3514 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3515 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3516 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3517 
3518 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3519 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3520 	if (err)
3521 		return err;
3522 
3523 	xdp_attachment_setup(&nn->xdp, bpf);
3524 	return 0;
3525 }
3526 
3527 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3528 {
3529 	int err;
3530 
3531 	if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3532 		return -EBUSY;
3533 
3534 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3535 	if (err)
3536 		return err;
3537 
3538 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3539 	return 0;
3540 }
3541 
3542 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3543 {
3544 	struct nfp_net *nn = netdev_priv(netdev);
3545 
3546 	switch (xdp->command) {
3547 	case XDP_SETUP_PROG:
3548 		return nfp_net_xdp_setup_drv(nn, xdp);
3549 	case XDP_SETUP_PROG_HW:
3550 		return nfp_net_xdp_setup_hw(nn, xdp);
3551 	case XDP_QUERY_PROG:
3552 		return xdp_attachment_query(&nn->xdp, xdp);
3553 	case XDP_QUERY_PROG_HW:
3554 		return xdp_attachment_query(&nn->xdp_hw, xdp);
3555 	default:
3556 		return nfp_app_bpf(nn->app, nn, xdp);
3557 	}
3558 }
3559 
3560 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3561 {
3562 	struct nfp_net *nn = netdev_priv(netdev);
3563 	struct sockaddr *saddr = addr;
3564 	int err;
3565 
3566 	err = eth_prepare_mac_addr_change(netdev, addr);
3567 	if (err)
3568 		return err;
3569 
3570 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3571 
3572 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3573 	if (err)
3574 		return err;
3575 
3576 	eth_commit_mac_addr_change(netdev, addr);
3577 
3578 	return 0;
3579 }
3580 
3581 const struct net_device_ops nfp_net_netdev_ops = {
3582 	.ndo_init		= nfp_app_ndo_init,
3583 	.ndo_uninit		= nfp_app_ndo_uninit,
3584 	.ndo_open		= nfp_net_netdev_open,
3585 	.ndo_stop		= nfp_net_netdev_close,
3586 	.ndo_start_xmit		= nfp_net_tx,
3587 	.ndo_get_stats64	= nfp_net_stat64,
3588 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3589 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3590 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3591 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3592 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3593 	.ndo_set_vf_trust	= nfp_app_set_vf_trust,
3594 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3595 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3596 	.ndo_setup_tc		= nfp_port_setup_tc,
3597 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3598 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3599 	.ndo_change_mtu		= nfp_net_change_mtu,
3600 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3601 	.ndo_set_features	= nfp_net_set_features,
3602 	.ndo_features_check	= nfp_net_features_check,
3603 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3604 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3605 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3606 	.ndo_bpf		= nfp_net_xdp,
3607 	.ndo_get_devlink_port	= nfp_devlink_get_devlink_port,
3608 };
3609 
3610 /**
3611  * nfp_net_info() - Print general info about the NIC
3612  * @nn:      NFP Net device to reconfigure
3613  */
3614 void nfp_net_info(struct nfp_net *nn)
3615 {
3616 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3617 		nn->dp.is_vf ? "VF " : "",
3618 		nn->dp.num_tx_rings, nn->max_tx_rings,
3619 		nn->dp.num_rx_rings, nn->max_rx_rings);
3620 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3621 		nn->fw_ver.resv, nn->fw_ver.class,
3622 		nn->fw_ver.major, nn->fw_ver.minor,
3623 		nn->max_mtu);
3624 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3625 		nn->cap,
3626 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3627 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3628 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3629 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3630 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3631 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3632 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3633 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3634 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3635 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3636 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3637 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3638 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3639 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3640 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3641 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3642 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3643 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3644 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3645 						      "RXCSUM_COMPLETE " : "",
3646 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3647 		nfp_app_extra_cap(nn->app, nn));
3648 }
3649 
3650 /**
3651  * nfp_net_alloc() - Allocate netdev and related structure
3652  * @pdev:         PCI device
3653  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3654  * @needs_netdev: Whether to allocate a netdev for this vNIC
3655  * @max_tx_rings: Maximum number of TX rings supported by device
3656  * @max_rx_rings: Maximum number of RX rings supported by device
3657  *
3658  * This function allocates a netdev device and fills in the initial
3659  * part of the @struct nfp_net structure.  In case of control device
3660  * nfp_net structure is allocated without the netdev.
3661  *
3662  * Return: NFP Net device structure, or ERR_PTR on error.
3663  */
3664 struct nfp_net *
3665 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3666 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3667 {
3668 	struct nfp_net *nn;
3669 	int err;
3670 
3671 	if (needs_netdev) {
3672 		struct net_device *netdev;
3673 
3674 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3675 					    max_tx_rings, max_rx_rings);
3676 		if (!netdev)
3677 			return ERR_PTR(-ENOMEM);
3678 
3679 		SET_NETDEV_DEV(netdev, &pdev->dev);
3680 		nn = netdev_priv(netdev);
3681 		nn->dp.netdev = netdev;
3682 	} else {
3683 		nn = vzalloc(sizeof(*nn));
3684 		if (!nn)
3685 			return ERR_PTR(-ENOMEM);
3686 	}
3687 
3688 	nn->dp.dev = &pdev->dev;
3689 	nn->dp.ctrl_bar = ctrl_bar;
3690 	nn->pdev = pdev;
3691 
3692 	nn->max_tx_rings = max_tx_rings;
3693 	nn->max_rx_rings = max_rx_rings;
3694 
3695 	nn->dp.num_tx_rings = min_t(unsigned int,
3696 				    max_tx_rings, num_online_cpus());
3697 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3698 				 netif_get_num_default_rss_queues());
3699 
3700 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3701 	nn->dp.num_r_vecs = min_t(unsigned int,
3702 				  nn->dp.num_r_vecs, num_online_cpus());
3703 
3704 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3705 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3706 
3707 	mutex_init(&nn->bar_lock);
3708 
3709 	spin_lock_init(&nn->reconfig_lock);
3710 	spin_lock_init(&nn->link_status_lock);
3711 
3712 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3713 
3714 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3715 				     &nn->tlv_caps);
3716 	if (err)
3717 		goto err_free_nn;
3718 
3719 	return nn;
3720 
3721 err_free_nn:
3722 	if (nn->dp.netdev)
3723 		free_netdev(nn->dp.netdev);
3724 	else
3725 		vfree(nn);
3726 	return ERR_PTR(err);
3727 }
3728 
3729 /**
3730  * nfp_net_free() - Undo what @nfp_net_alloc() did
3731  * @nn:      NFP Net device to reconfigure
3732  */
3733 void nfp_net_free(struct nfp_net *nn)
3734 {
3735 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3736 
3737 	mutex_destroy(&nn->bar_lock);
3738 
3739 	if (nn->dp.netdev)
3740 		free_netdev(nn->dp.netdev);
3741 	else
3742 		vfree(nn);
3743 }
3744 
3745 /**
3746  * nfp_net_rss_key_sz() - Get current size of the RSS key
3747  * @nn:		NFP Net device instance
3748  *
3749  * Return: size of the RSS key for currently selected hash function.
3750  */
3751 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3752 {
3753 	switch (nn->rss_hfunc) {
3754 	case ETH_RSS_HASH_TOP:
3755 		return NFP_NET_CFG_RSS_KEY_SZ;
3756 	case ETH_RSS_HASH_XOR:
3757 		return 0;
3758 	case ETH_RSS_HASH_CRC32:
3759 		return 4;
3760 	}
3761 
3762 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3763 	return 0;
3764 }
3765 
3766 /**
3767  * nfp_net_rss_init() - Set the initial RSS parameters
3768  * @nn:	     NFP Net device to reconfigure
3769  */
3770 static void nfp_net_rss_init(struct nfp_net *nn)
3771 {
3772 	unsigned long func_bit, rss_cap_hfunc;
3773 	u32 reg;
3774 
3775 	/* Read the RSS function capability and select first supported func */
3776 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3777 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3778 	if (!rss_cap_hfunc)
3779 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3780 					  NFP_NET_CFG_RSS_TOEPLITZ);
3781 
3782 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3783 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3784 		dev_warn(nn->dp.dev,
3785 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3786 		func_bit = ETH_RSS_HASH_TOP_BIT;
3787 	}
3788 	nn->rss_hfunc = 1 << func_bit;
3789 
3790 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3791 
3792 	nfp_net_rss_init_itbl(nn);
3793 
3794 	/* Enable IPv4/IPv6 TCP by default */
3795 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3796 		      NFP_NET_CFG_RSS_IPV6_TCP |
3797 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3798 		      NFP_NET_CFG_RSS_MASK;
3799 }
3800 
3801 /**
3802  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3803  * @nn:	     NFP Net device to reconfigure
3804  */
3805 static void nfp_net_irqmod_init(struct nfp_net *nn)
3806 {
3807 	nn->rx_coalesce_usecs      = 50;
3808 	nn->rx_coalesce_max_frames = 64;
3809 	nn->tx_coalesce_usecs      = 50;
3810 	nn->tx_coalesce_max_frames = 64;
3811 }
3812 
3813 static void nfp_net_netdev_init(struct nfp_net *nn)
3814 {
3815 	struct net_device *netdev = nn->dp.netdev;
3816 
3817 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3818 
3819 	netdev->mtu = nn->dp.mtu;
3820 
3821 	/* Advertise/enable offloads based on capabilities
3822 	 *
3823 	 * Note: netdev->features show the currently enabled features
3824 	 * and netdev->hw_features advertises which features are
3825 	 * supported.  By default we enable most features.
3826 	 */
3827 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3828 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3829 
3830 	netdev->hw_features = NETIF_F_HIGHDMA;
3831 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3832 		netdev->hw_features |= NETIF_F_RXCSUM;
3833 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3834 	}
3835 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3836 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3837 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3838 	}
3839 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3840 		netdev->hw_features |= NETIF_F_SG;
3841 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3842 	}
3843 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3844 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3845 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3846 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3847 					 NFP_NET_CFG_CTRL_LSO;
3848 	}
3849 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3850 		netdev->hw_features |= NETIF_F_RXHASH;
3851 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
3852 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3853 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
3854 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
3855 	}
3856 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3857 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3858 			netdev->hw_features |= NETIF_F_GSO_GRE;
3859 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
3860 	}
3861 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
3862 		netdev->hw_enc_features = netdev->hw_features;
3863 
3864 	netdev->vlan_features = netdev->hw_features;
3865 
3866 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3867 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3868 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3869 	}
3870 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3871 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3872 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3873 		} else {
3874 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3875 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3876 		}
3877 	}
3878 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3879 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3880 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3881 	}
3882 
3883 	netdev->features = netdev->hw_features;
3884 
3885 	if (nfp_app_has_tc(nn->app) && nn->port)
3886 		netdev->hw_features |= NETIF_F_HW_TC;
3887 
3888 	/* Advertise but disable TSO by default. */
3889 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3890 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3891 
3892 	/* Finalise the netdev setup */
3893 	netdev->netdev_ops = &nfp_net_netdev_ops;
3894 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3895 
3896 	/* MTU range: 68 - hw-specific max */
3897 	netdev->min_mtu = ETH_MIN_MTU;
3898 	netdev->max_mtu = nn->max_mtu;
3899 
3900 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
3901 
3902 	netif_carrier_off(netdev);
3903 
3904 	nfp_net_set_ethtool_ops(netdev);
3905 }
3906 
3907 static int nfp_net_read_caps(struct nfp_net *nn)
3908 {
3909 	/* Get some of the read-only fields from the BAR */
3910 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3911 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3912 
3913 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3914 	 * we allow use of non-chained metadata if RSS(v1) is the only
3915 	 * advertised capability requiring metadata.
3916 	 */
3917 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3918 					 !nn->dp.netdev ||
3919 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3920 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3921 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3922 	 * it has the same meaning as RSSv2.
3923 	 */
3924 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3925 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3926 
3927 	/* Determine RX packet/metadata boundary offset */
3928 	if (nn->fw_ver.major >= 2) {
3929 		u32 reg;
3930 
3931 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3932 		if (reg > NFP_NET_MAX_PREPEND) {
3933 			nn_err(nn, "Invalid rx offset: %d\n", reg);
3934 			return -EINVAL;
3935 		}
3936 		nn->dp.rx_offset = reg;
3937 	} else {
3938 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3939 	}
3940 
3941 	/* For control vNICs mask out the capabilities app doesn't want. */
3942 	if (!nn->dp.netdev)
3943 		nn->cap &= nn->app->type->ctrl_cap_mask;
3944 
3945 	return 0;
3946 }
3947 
3948 /**
3949  * nfp_net_init() - Initialise/finalise the nfp_net structure
3950  * @nn:		NFP Net device structure
3951  *
3952  * Return: 0 on success or negative errno on error.
3953  */
3954 int nfp_net_init(struct nfp_net *nn)
3955 {
3956 	int err;
3957 
3958 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3959 
3960 	err = nfp_net_read_caps(nn);
3961 	if (err)
3962 		return err;
3963 
3964 	/* Set default MTU and Freelist buffer size */
3965 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
3966 		if (nn->app->ctrl_mtu <= nn->max_mtu) {
3967 			nn->dp.mtu = nn->app->ctrl_mtu;
3968 		} else {
3969 			if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX)
3970 				nn_warn(nn, "app requested MTU above max supported %u > %u\n",
3971 					nn->app->ctrl_mtu, nn->max_mtu);
3972 			nn->dp.mtu = nn->max_mtu;
3973 		}
3974 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
3975 		nn->dp.mtu = nn->max_mtu;
3976 	} else {
3977 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3978 	}
3979 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3980 
3981 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
3982 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
3983 
3984 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3985 		nfp_net_rss_init(nn);
3986 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3987 					 NFP_NET_CFG_CTRL_RSS;
3988 	}
3989 
3990 	/* Allow L2 Broadcast and Multicast through by default, if supported */
3991 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3992 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3993 
3994 	/* Allow IRQ moderation, if supported */
3995 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3996 		nfp_net_irqmod_init(nn);
3997 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3998 	}
3999 
4000 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
4001 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4002 
4003 	/* Make sure the FW knows the netdev is supposed to be disabled here */
4004 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4005 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4006 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4007 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4008 				   NFP_NET_CFG_UPDATE_GEN);
4009 	if (err)
4010 		return err;
4011 
4012 	if (nn->dp.netdev)
4013 		nfp_net_netdev_init(nn);
4014 
4015 	nfp_net_vecs_init(nn);
4016 
4017 	if (!nn->dp.netdev)
4018 		return 0;
4019 	return register_netdev(nn->dp.netdev);
4020 }
4021 
4022 /**
4023  * nfp_net_clean() - Undo what nfp_net_init() did.
4024  * @nn:		NFP Net device structure
4025  */
4026 void nfp_net_clean(struct nfp_net *nn)
4027 {
4028 	if (!nn->dp.netdev)
4029 		return;
4030 
4031 	unregister_netdev(nn->dp.netdev);
4032 	nfp_net_reconfig_wait_posted(nn);
4033 }
4034