1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/vxlan.h> 40 41 #include "nfpcore/nfp_nsp.h" 42 #include "nfp_app.h" 43 #include "nfp_net_ctrl.h" 44 #include "nfp_net.h" 45 #include "nfp_net_sriov.h" 46 #include "nfp_port.h" 47 48 /** 49 * nfp_net_get_fw_version() - Read and parse the FW version 50 * @fw_ver: Output fw_version structure to read to 51 * @ctrl_bar: Mapped address of the control BAR 52 */ 53 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 54 void __iomem *ctrl_bar) 55 { 56 u32 reg; 57 58 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 59 put_unaligned_le32(reg, fw_ver); 60 } 61 62 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 63 { 64 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 65 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 66 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 67 } 68 69 static void 70 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 71 { 72 dma_sync_single_for_device(dp->dev, dma_addr, 73 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 74 dp->rx_dma_dir); 75 } 76 77 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 78 { 79 dma_unmap_single_attrs(dp->dev, dma_addr, 80 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 81 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 82 } 83 84 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 85 unsigned int len) 86 { 87 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 88 len, dp->rx_dma_dir); 89 } 90 91 /* Firmware reconfig 92 * 93 * Firmware reconfig may take a while so we have two versions of it - 94 * synchronous and asynchronous (posted). All synchronous callers are holding 95 * RTNL so we don't have to worry about serializing them. 96 */ 97 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 98 { 99 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 100 /* ensure update is written before pinging HW */ 101 nn_pci_flush(nn); 102 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 103 nn->reconfig_in_progress_update = update; 104 } 105 106 /* Pass 0 as update to run posted reconfigs. */ 107 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 108 { 109 update |= nn->reconfig_posted; 110 nn->reconfig_posted = 0; 111 112 nfp_net_reconfig_start(nn, update); 113 114 nn->reconfig_timer_active = true; 115 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 116 } 117 118 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 119 { 120 u32 reg; 121 122 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 123 if (reg == 0) 124 return true; 125 if (reg & NFP_NET_CFG_UPDATE_ERR) { 126 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 127 reg, nn->reconfig_in_progress_update, 128 nn_readl(nn, NFP_NET_CFG_CTRL)); 129 return true; 130 } else if (last_check) { 131 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 132 reg, nn->reconfig_in_progress_update, 133 nn_readl(nn, NFP_NET_CFG_CTRL)); 134 return true; 135 } 136 137 return false; 138 } 139 140 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 141 { 142 bool timed_out = false; 143 144 /* Poll update field, waiting for NFP to ack the config */ 145 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 146 msleep(1); 147 timed_out = time_is_before_eq_jiffies(deadline); 148 } 149 150 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 151 return -EIO; 152 153 return timed_out ? -EIO : 0; 154 } 155 156 static void nfp_net_reconfig_timer(struct timer_list *t) 157 { 158 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 159 160 spin_lock_bh(&nn->reconfig_lock); 161 162 nn->reconfig_timer_active = false; 163 164 /* If sync caller is present it will take over from us */ 165 if (nn->reconfig_sync_present) 166 goto done; 167 168 /* Read reconfig status and report errors */ 169 nfp_net_reconfig_check_done(nn, true); 170 171 if (nn->reconfig_posted) 172 nfp_net_reconfig_start_async(nn, 0); 173 done: 174 spin_unlock_bh(&nn->reconfig_lock); 175 } 176 177 /** 178 * nfp_net_reconfig_post() - Post async reconfig request 179 * @nn: NFP Net device to reconfigure 180 * @update: The value for the update field in the BAR config 181 * 182 * Record FW reconfiguration request. Reconfiguration will be kicked off 183 * whenever reconfiguration machinery is idle. Multiple requests can be 184 * merged together! 185 */ 186 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 187 { 188 spin_lock_bh(&nn->reconfig_lock); 189 190 /* Sync caller will kick off async reconf when it's done, just post */ 191 if (nn->reconfig_sync_present) { 192 nn->reconfig_posted |= update; 193 goto done; 194 } 195 196 /* Opportunistically check if the previous command is done */ 197 if (!nn->reconfig_timer_active || 198 nfp_net_reconfig_check_done(nn, false)) 199 nfp_net_reconfig_start_async(nn, update); 200 else 201 nn->reconfig_posted |= update; 202 done: 203 spin_unlock_bh(&nn->reconfig_lock); 204 } 205 206 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 207 { 208 bool cancelled_timer = false; 209 u32 pre_posted_requests; 210 211 spin_lock_bh(&nn->reconfig_lock); 212 213 nn->reconfig_sync_present = true; 214 215 if (nn->reconfig_timer_active) { 216 nn->reconfig_timer_active = false; 217 cancelled_timer = true; 218 } 219 pre_posted_requests = nn->reconfig_posted; 220 nn->reconfig_posted = 0; 221 222 spin_unlock_bh(&nn->reconfig_lock); 223 224 if (cancelled_timer) { 225 del_timer_sync(&nn->reconfig_timer); 226 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 227 } 228 229 /* Run the posted reconfigs which were issued before we started */ 230 if (pre_posted_requests) { 231 nfp_net_reconfig_start(nn, pre_posted_requests); 232 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 233 } 234 } 235 236 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 237 { 238 nfp_net_reconfig_sync_enter(nn); 239 240 spin_lock_bh(&nn->reconfig_lock); 241 nn->reconfig_sync_present = false; 242 spin_unlock_bh(&nn->reconfig_lock); 243 } 244 245 /** 246 * nfp_net_reconfig() - Reconfigure the firmware 247 * @nn: NFP Net device to reconfigure 248 * @update: The value for the update field in the BAR config 249 * 250 * Write the update word to the BAR and ping the reconfig queue. The 251 * poll until the firmware has acknowledged the update by zeroing the 252 * update word. 253 * 254 * Return: Negative errno on error, 0 on success 255 */ 256 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 257 { 258 int ret; 259 260 nfp_net_reconfig_sync_enter(nn); 261 262 nfp_net_reconfig_start(nn, update); 263 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 264 265 spin_lock_bh(&nn->reconfig_lock); 266 267 if (nn->reconfig_posted) 268 nfp_net_reconfig_start_async(nn, 0); 269 270 nn->reconfig_sync_present = false; 271 272 spin_unlock_bh(&nn->reconfig_lock); 273 274 return ret; 275 } 276 277 /** 278 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 279 * @nn: NFP Net device to reconfigure 280 * @mbox_cmd: The value for the mailbox command 281 * 282 * Helper function for mailbox updates 283 * 284 * Return: Negative errno on error, 0 on success 285 */ 286 int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 287 { 288 u32 mbox = nn->tlv_caps.mbox_off; 289 int ret; 290 291 if (!nfp_net_has_mbox(&nn->tlv_caps)) { 292 nn_err(nn, "no mailbox present, command: %u\n", mbox_cmd); 293 return -EIO; 294 } 295 296 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 297 298 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 299 if (ret) { 300 nn_err(nn, "Mailbox update error\n"); 301 return ret; 302 } 303 304 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 305 } 306 307 /* Interrupt configuration and handling 308 */ 309 310 /** 311 * nfp_net_irq_unmask() - Unmask automasked interrupt 312 * @nn: NFP Network structure 313 * @entry_nr: MSI-X table entry 314 * 315 * Clear the ICR for the IRQ entry. 316 */ 317 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 318 { 319 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 320 nn_pci_flush(nn); 321 } 322 323 /** 324 * nfp_net_irqs_alloc() - allocates MSI-X irqs 325 * @pdev: PCI device structure 326 * @irq_entries: Array to be initialized and used to hold the irq entries 327 * @min_irqs: Minimal acceptable number of interrupts 328 * @wanted_irqs: Target number of interrupts to allocate 329 * 330 * Return: Number of irqs obtained or 0 on error. 331 */ 332 unsigned int 333 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 334 unsigned int min_irqs, unsigned int wanted_irqs) 335 { 336 unsigned int i; 337 int got_irqs; 338 339 for (i = 0; i < wanted_irqs; i++) 340 irq_entries[i].entry = i; 341 342 got_irqs = pci_enable_msix_range(pdev, irq_entries, 343 min_irqs, wanted_irqs); 344 if (got_irqs < 0) { 345 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 346 min_irqs, wanted_irqs, got_irqs); 347 return 0; 348 } 349 350 if (got_irqs < wanted_irqs) 351 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 352 wanted_irqs, got_irqs); 353 354 return got_irqs; 355 } 356 357 /** 358 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 359 * @nn: NFP Network structure 360 * @irq_entries: Table of allocated interrupts 361 * @n: Size of @irq_entries (number of entries to grab) 362 * 363 * After interrupts are allocated with nfp_net_irqs_alloc() this function 364 * should be called to assign them to a specific netdev (port). 365 */ 366 void 367 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 368 unsigned int n) 369 { 370 struct nfp_net_dp *dp = &nn->dp; 371 372 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 373 dp->num_r_vecs = nn->max_r_vecs; 374 375 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 376 377 if (dp->num_rx_rings > dp->num_r_vecs || 378 dp->num_tx_rings > dp->num_r_vecs) 379 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 380 dp->num_rx_rings, dp->num_tx_rings, 381 dp->num_r_vecs); 382 383 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 384 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 385 dp->num_stack_tx_rings = dp->num_tx_rings; 386 } 387 388 /** 389 * nfp_net_irqs_disable() - Disable interrupts 390 * @pdev: PCI device structure 391 * 392 * Undoes what @nfp_net_irqs_alloc() does. 393 */ 394 void nfp_net_irqs_disable(struct pci_dev *pdev) 395 { 396 pci_disable_msix(pdev); 397 } 398 399 /** 400 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 401 * @irq: Interrupt 402 * @data: Opaque data structure 403 * 404 * Return: Indicate if the interrupt has been handled. 405 */ 406 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 407 { 408 struct nfp_net_r_vector *r_vec = data; 409 410 napi_schedule_irqoff(&r_vec->napi); 411 412 /* The FW auto-masks any interrupt, either via the MASK bit in 413 * the MSI-X table or via the per entry ICR field. So there 414 * is no need to disable interrupts here. 415 */ 416 return IRQ_HANDLED; 417 } 418 419 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 420 { 421 struct nfp_net_r_vector *r_vec = data; 422 423 tasklet_schedule(&r_vec->tasklet); 424 425 return IRQ_HANDLED; 426 } 427 428 /** 429 * nfp_net_read_link_status() - Reread link status from control BAR 430 * @nn: NFP Network structure 431 */ 432 static void nfp_net_read_link_status(struct nfp_net *nn) 433 { 434 unsigned long flags; 435 bool link_up; 436 u32 sts; 437 438 spin_lock_irqsave(&nn->link_status_lock, flags); 439 440 sts = nn_readl(nn, NFP_NET_CFG_STS); 441 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 442 443 if (nn->link_up == link_up) 444 goto out; 445 446 nn->link_up = link_up; 447 if (nn->port) 448 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 449 450 if (nn->link_up) { 451 netif_carrier_on(nn->dp.netdev); 452 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 453 } else { 454 netif_carrier_off(nn->dp.netdev); 455 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 456 } 457 out: 458 spin_unlock_irqrestore(&nn->link_status_lock, flags); 459 } 460 461 /** 462 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 463 * @irq: Interrupt 464 * @data: Opaque data structure 465 * 466 * Return: Indicate if the interrupt has been handled. 467 */ 468 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 469 { 470 struct nfp_net *nn = data; 471 struct msix_entry *entry; 472 473 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 474 475 nfp_net_read_link_status(nn); 476 477 nfp_net_irq_unmask(nn, entry->entry); 478 479 return IRQ_HANDLED; 480 } 481 482 /** 483 * nfp_net_irq_exn() - Interrupt service routine for exceptions 484 * @irq: Interrupt 485 * @data: Opaque data structure 486 * 487 * Return: Indicate if the interrupt has been handled. 488 */ 489 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 490 { 491 struct nfp_net *nn = data; 492 493 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 494 /* XXX TO BE IMPLEMENTED */ 495 return IRQ_HANDLED; 496 } 497 498 /** 499 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 500 * @tx_ring: TX ring structure 501 * @r_vec: IRQ vector servicing this ring 502 * @idx: Ring index 503 * @is_xdp: Is this an XDP TX ring? 504 */ 505 static void 506 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 507 struct nfp_net_r_vector *r_vec, unsigned int idx, 508 bool is_xdp) 509 { 510 struct nfp_net *nn = r_vec->nfp_net; 511 512 tx_ring->idx = idx; 513 tx_ring->r_vec = r_vec; 514 tx_ring->is_xdp = is_xdp; 515 u64_stats_init(&tx_ring->r_vec->tx_sync); 516 517 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 518 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 519 } 520 521 /** 522 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 523 * @rx_ring: RX ring structure 524 * @r_vec: IRQ vector servicing this ring 525 * @idx: Ring index 526 */ 527 static void 528 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 529 struct nfp_net_r_vector *r_vec, unsigned int idx) 530 { 531 struct nfp_net *nn = r_vec->nfp_net; 532 533 rx_ring->idx = idx; 534 rx_ring->r_vec = r_vec; 535 u64_stats_init(&rx_ring->r_vec->rx_sync); 536 537 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 538 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 539 } 540 541 /** 542 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 543 * @nn: NFP Network structure 544 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 545 * @format: printf-style format to construct the interrupt name 546 * @name: Pointer to allocated space for interrupt name 547 * @name_sz: Size of space for interrupt name 548 * @vector_idx: Index of MSI-X vector used for this interrupt 549 * @handler: IRQ handler to register for this interrupt 550 */ 551 static int 552 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 553 const char *format, char *name, size_t name_sz, 554 unsigned int vector_idx, irq_handler_t handler) 555 { 556 struct msix_entry *entry; 557 int err; 558 559 entry = &nn->irq_entries[vector_idx]; 560 561 snprintf(name, name_sz, format, nfp_net_name(nn)); 562 err = request_irq(entry->vector, handler, 0, name, nn); 563 if (err) { 564 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 565 entry->vector, err); 566 return err; 567 } 568 nn_writeb(nn, ctrl_offset, entry->entry); 569 nfp_net_irq_unmask(nn, entry->entry); 570 571 return 0; 572 } 573 574 /** 575 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 576 * @nn: NFP Network structure 577 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 578 * @vector_idx: Index of MSI-X vector used for this interrupt 579 */ 580 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 581 unsigned int vector_idx) 582 { 583 nn_writeb(nn, ctrl_offset, 0xff); 584 nn_pci_flush(nn); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 /* Transmit 589 * 590 * One queue controller peripheral queue is used for transmit. The 591 * driver en-queues packets for transmit by advancing the write 592 * pointer. The device indicates that packets have transmitted by 593 * advancing the read pointer. The driver maintains a local copy of 594 * the read and write pointer in @struct nfp_net_tx_ring. The driver 595 * keeps @wr_p in sync with the queue controller write pointer and can 596 * determine how many packets have been transmitted by comparing its 597 * copy of the read pointer @rd_p with the read pointer maintained by 598 * the queue controller peripheral. 599 */ 600 601 /** 602 * nfp_net_tx_full() - Check if the TX ring is full 603 * @tx_ring: TX ring to check 604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 605 * 606 * This function checks, based on the *host copy* of read/write 607 * pointer if a given TX ring is full. The real TX queue may have 608 * some newly made available slots. 609 * 610 * Return: True if the ring is full. 611 */ 612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 613 { 614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 615 } 616 617 /* Wrappers for deciding when to stop and restart TX queues */ 618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 619 { 620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 621 } 622 623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 624 { 625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 626 } 627 628 /** 629 * nfp_net_tx_ring_stop() - stop tx ring 630 * @nd_q: netdev queue 631 * @tx_ring: driver tx queue structure 632 * 633 * Safely stop TX ring. Remember that while we are running .start_xmit() 634 * someone else may be cleaning the TX ring completions so we need to be 635 * extra careful here. 636 */ 637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 638 struct nfp_net_tx_ring *tx_ring) 639 { 640 netif_tx_stop_queue(nd_q); 641 642 /* We can race with the TX completion out of NAPI so recheck */ 643 smp_mb(); 644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 645 netif_tx_start_queue(nd_q); 646 } 647 648 /** 649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 650 * @r_vec: per-ring structure 651 * @txbuf: Pointer to driver soft TX descriptor 652 * @txd: Pointer to HW TX descriptor 653 * @skb: Pointer to SKB 654 * @md_bytes: Prepend length 655 * 656 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 657 * Return error on packet header greater than maximum supported LSO header size. 658 */ 659 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 660 struct nfp_net_tx_buf *txbuf, 661 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 662 u32 md_bytes) 663 { 664 u32 l3_offset, l4_offset, hdrlen; 665 u16 mss; 666 667 if (!skb_is_gso(skb)) 668 return; 669 670 if (!skb->encapsulation) { 671 l3_offset = skb_network_offset(skb); 672 l4_offset = skb_transport_offset(skb); 673 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 674 } else { 675 l3_offset = skb_inner_network_offset(skb); 676 l4_offset = skb_inner_transport_offset(skb); 677 hdrlen = skb_inner_transport_header(skb) - skb->data + 678 inner_tcp_hdrlen(skb); 679 } 680 681 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 682 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 683 684 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 685 txd->l3_offset = l3_offset - md_bytes; 686 txd->l4_offset = l4_offset - md_bytes; 687 txd->lso_hdrlen = hdrlen - md_bytes; 688 txd->mss = cpu_to_le16(mss); 689 txd->flags |= PCIE_DESC_TX_LSO; 690 691 u64_stats_update_begin(&r_vec->tx_sync); 692 r_vec->tx_lso++; 693 u64_stats_update_end(&r_vec->tx_sync); 694 } 695 696 /** 697 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 698 * @dp: NFP Net data path struct 699 * @r_vec: per-ring structure 700 * @txbuf: Pointer to driver soft TX descriptor 701 * @txd: Pointer to TX descriptor 702 * @skb: Pointer to SKB 703 * 704 * This function sets the TX checksum flags in the TX descriptor based 705 * on the configuration and the protocol of the packet to be transmitted. 706 */ 707 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 708 struct nfp_net_r_vector *r_vec, 709 struct nfp_net_tx_buf *txbuf, 710 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 711 { 712 struct ipv6hdr *ipv6h; 713 struct iphdr *iph; 714 u8 l4_hdr; 715 716 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 717 return; 718 719 if (skb->ip_summed != CHECKSUM_PARTIAL) 720 return; 721 722 txd->flags |= PCIE_DESC_TX_CSUM; 723 if (skb->encapsulation) 724 txd->flags |= PCIE_DESC_TX_ENCAP; 725 726 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 727 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 728 729 if (iph->version == 4) { 730 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 731 l4_hdr = iph->protocol; 732 } else if (ipv6h->version == 6) { 733 l4_hdr = ipv6h->nexthdr; 734 } else { 735 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 736 return; 737 } 738 739 switch (l4_hdr) { 740 case IPPROTO_TCP: 741 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 742 break; 743 case IPPROTO_UDP: 744 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 745 break; 746 default: 747 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 748 return; 749 } 750 751 u64_stats_update_begin(&r_vec->tx_sync); 752 if (skb->encapsulation) 753 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 754 else 755 r_vec->hw_csum_tx += txbuf->pkt_cnt; 756 u64_stats_update_end(&r_vec->tx_sync); 757 } 758 759 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 760 { 761 wmb(); 762 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 763 tx_ring->wr_ptr_add = 0; 764 } 765 766 static int nfp_net_prep_port_id(struct sk_buff *skb) 767 { 768 struct metadata_dst *md_dst = skb_metadata_dst(skb); 769 unsigned char *data; 770 771 if (likely(!md_dst)) 772 return 0; 773 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 774 return 0; 775 776 if (unlikely(skb_cow_head(skb, 8))) 777 return -ENOMEM; 778 779 data = skb_push(skb, 8); 780 put_unaligned_be32(NFP_NET_META_PORTID, data); 781 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 782 783 return 8; 784 } 785 786 /** 787 * nfp_net_tx() - Main transmit entry point 788 * @skb: SKB to transmit 789 * @netdev: netdev structure 790 * 791 * Return: NETDEV_TX_OK on success. 792 */ 793 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 794 { 795 struct nfp_net *nn = netdev_priv(netdev); 796 const struct skb_frag_struct *frag; 797 int f, nr_frags, wr_idx, md_bytes; 798 struct nfp_net_tx_ring *tx_ring; 799 struct nfp_net_r_vector *r_vec; 800 struct nfp_net_tx_buf *txbuf; 801 struct nfp_net_tx_desc *txd; 802 struct netdev_queue *nd_q; 803 struct nfp_net_dp *dp; 804 dma_addr_t dma_addr; 805 unsigned int fsize; 806 u16 qidx; 807 808 dp = &nn->dp; 809 qidx = skb_get_queue_mapping(skb); 810 tx_ring = &dp->tx_rings[qidx]; 811 r_vec = tx_ring->r_vec; 812 813 nr_frags = skb_shinfo(skb)->nr_frags; 814 815 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 816 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 817 qidx, tx_ring->wr_p, tx_ring->rd_p); 818 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 819 netif_tx_stop_queue(nd_q); 820 nfp_net_tx_xmit_more_flush(tx_ring); 821 u64_stats_update_begin(&r_vec->tx_sync); 822 r_vec->tx_busy++; 823 u64_stats_update_end(&r_vec->tx_sync); 824 return NETDEV_TX_BUSY; 825 } 826 827 md_bytes = nfp_net_prep_port_id(skb); 828 if (unlikely(md_bytes < 0)) { 829 nfp_net_tx_xmit_more_flush(tx_ring); 830 dev_kfree_skb_any(skb); 831 return NETDEV_TX_OK; 832 } 833 834 /* Start with the head skbuf */ 835 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 836 DMA_TO_DEVICE); 837 if (dma_mapping_error(dp->dev, dma_addr)) 838 goto err_free; 839 840 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 841 842 /* Stash the soft descriptor of the head then initialize it */ 843 txbuf = &tx_ring->txbufs[wr_idx]; 844 txbuf->skb = skb; 845 txbuf->dma_addr = dma_addr; 846 txbuf->fidx = -1; 847 txbuf->pkt_cnt = 1; 848 txbuf->real_len = skb->len; 849 850 /* Build TX descriptor */ 851 txd = &tx_ring->txds[wr_idx]; 852 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 853 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 854 nfp_desc_set_dma_addr(txd, dma_addr); 855 txd->data_len = cpu_to_le16(skb->len); 856 857 txd->flags = 0; 858 txd->mss = 0; 859 txd->lso_hdrlen = 0; 860 861 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 862 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 863 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 864 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 865 txd->flags |= PCIE_DESC_TX_VLAN; 866 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 867 } 868 869 /* Gather DMA */ 870 if (nr_frags > 0) { 871 __le64 second_half; 872 873 /* all descs must match except for in addr, length and eop */ 874 second_half = txd->vals8[1]; 875 876 for (f = 0; f < nr_frags; f++) { 877 frag = &skb_shinfo(skb)->frags[f]; 878 fsize = skb_frag_size(frag); 879 880 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 881 fsize, DMA_TO_DEVICE); 882 if (dma_mapping_error(dp->dev, dma_addr)) 883 goto err_unmap; 884 885 wr_idx = D_IDX(tx_ring, wr_idx + 1); 886 tx_ring->txbufs[wr_idx].skb = skb; 887 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 888 tx_ring->txbufs[wr_idx].fidx = f; 889 890 txd = &tx_ring->txds[wr_idx]; 891 txd->dma_len = cpu_to_le16(fsize); 892 nfp_desc_set_dma_addr(txd, dma_addr); 893 txd->offset_eop = md_bytes | 894 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 895 txd->vals8[1] = second_half; 896 } 897 898 u64_stats_update_begin(&r_vec->tx_sync); 899 r_vec->tx_gather++; 900 u64_stats_update_end(&r_vec->tx_sync); 901 } 902 903 skb_tx_timestamp(skb); 904 905 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 906 907 tx_ring->wr_p += nr_frags + 1; 908 if (nfp_net_tx_ring_should_stop(tx_ring)) 909 nfp_net_tx_ring_stop(nd_q, tx_ring); 910 911 tx_ring->wr_ptr_add += nr_frags + 1; 912 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, skb->xmit_more)) 913 nfp_net_tx_xmit_more_flush(tx_ring); 914 915 return NETDEV_TX_OK; 916 917 err_unmap: 918 while (--f >= 0) { 919 frag = &skb_shinfo(skb)->frags[f]; 920 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 921 skb_frag_size(frag), DMA_TO_DEVICE); 922 tx_ring->txbufs[wr_idx].skb = NULL; 923 tx_ring->txbufs[wr_idx].dma_addr = 0; 924 tx_ring->txbufs[wr_idx].fidx = -2; 925 wr_idx = wr_idx - 1; 926 if (wr_idx < 0) 927 wr_idx += tx_ring->cnt; 928 } 929 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 930 skb_headlen(skb), DMA_TO_DEVICE); 931 tx_ring->txbufs[wr_idx].skb = NULL; 932 tx_ring->txbufs[wr_idx].dma_addr = 0; 933 tx_ring->txbufs[wr_idx].fidx = -2; 934 err_free: 935 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 936 nfp_net_tx_xmit_more_flush(tx_ring); 937 u64_stats_update_begin(&r_vec->tx_sync); 938 r_vec->tx_errors++; 939 u64_stats_update_end(&r_vec->tx_sync); 940 dev_kfree_skb_any(skb); 941 return NETDEV_TX_OK; 942 } 943 944 /** 945 * nfp_net_tx_complete() - Handled completed TX packets 946 * @tx_ring: TX ring structure 947 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 948 */ 949 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 950 { 951 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 952 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 953 struct netdev_queue *nd_q; 954 u32 done_pkts = 0, done_bytes = 0; 955 u32 qcp_rd_p; 956 int todo; 957 958 if (tx_ring->wr_p == tx_ring->rd_p) 959 return; 960 961 /* Work out how many descriptors have been transmitted */ 962 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 963 964 if (qcp_rd_p == tx_ring->qcp_rd_p) 965 return; 966 967 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 968 969 while (todo--) { 970 const struct skb_frag_struct *frag; 971 struct nfp_net_tx_buf *tx_buf; 972 struct sk_buff *skb; 973 int fidx, nr_frags; 974 int idx; 975 976 idx = D_IDX(tx_ring, tx_ring->rd_p++); 977 tx_buf = &tx_ring->txbufs[idx]; 978 979 skb = tx_buf->skb; 980 if (!skb) 981 continue; 982 983 nr_frags = skb_shinfo(skb)->nr_frags; 984 fidx = tx_buf->fidx; 985 986 if (fidx == -1) { 987 /* unmap head */ 988 dma_unmap_single(dp->dev, tx_buf->dma_addr, 989 skb_headlen(skb), DMA_TO_DEVICE); 990 991 done_pkts += tx_buf->pkt_cnt; 992 done_bytes += tx_buf->real_len; 993 } else { 994 /* unmap fragment */ 995 frag = &skb_shinfo(skb)->frags[fidx]; 996 dma_unmap_page(dp->dev, tx_buf->dma_addr, 997 skb_frag_size(frag), DMA_TO_DEVICE); 998 } 999 1000 /* check for last gather fragment */ 1001 if (fidx == nr_frags - 1) 1002 napi_consume_skb(skb, budget); 1003 1004 tx_buf->dma_addr = 0; 1005 tx_buf->skb = NULL; 1006 tx_buf->fidx = -2; 1007 } 1008 1009 tx_ring->qcp_rd_p = qcp_rd_p; 1010 1011 u64_stats_update_begin(&r_vec->tx_sync); 1012 r_vec->tx_bytes += done_bytes; 1013 r_vec->tx_pkts += done_pkts; 1014 u64_stats_update_end(&r_vec->tx_sync); 1015 1016 if (!dp->netdev) 1017 return; 1018 1019 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1020 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1021 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1022 /* Make sure TX thread will see updated tx_ring->rd_p */ 1023 smp_mb(); 1024 1025 if (unlikely(netif_tx_queue_stopped(nd_q))) 1026 netif_tx_wake_queue(nd_q); 1027 } 1028 1029 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1030 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1031 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1032 } 1033 1034 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1035 { 1036 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1037 u32 done_pkts = 0, done_bytes = 0; 1038 bool done_all; 1039 int idx, todo; 1040 u32 qcp_rd_p; 1041 1042 /* Work out how many descriptors have been transmitted */ 1043 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1044 1045 if (qcp_rd_p == tx_ring->qcp_rd_p) 1046 return true; 1047 1048 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1049 1050 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1051 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1052 1053 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1054 1055 done_pkts = todo; 1056 while (todo--) { 1057 idx = D_IDX(tx_ring, tx_ring->rd_p); 1058 tx_ring->rd_p++; 1059 1060 done_bytes += tx_ring->txbufs[idx].real_len; 1061 } 1062 1063 u64_stats_update_begin(&r_vec->tx_sync); 1064 r_vec->tx_bytes += done_bytes; 1065 r_vec->tx_pkts += done_pkts; 1066 u64_stats_update_end(&r_vec->tx_sync); 1067 1068 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1069 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1070 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1071 1072 return done_all; 1073 } 1074 1075 /** 1076 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1077 * @dp: NFP Net data path struct 1078 * @tx_ring: TX ring structure 1079 * 1080 * Assumes that the device is stopped, must be idempotent. 1081 */ 1082 static void 1083 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1084 { 1085 const struct skb_frag_struct *frag; 1086 struct netdev_queue *nd_q; 1087 1088 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1089 struct nfp_net_tx_buf *tx_buf; 1090 struct sk_buff *skb; 1091 int idx, nr_frags; 1092 1093 idx = D_IDX(tx_ring, tx_ring->rd_p); 1094 tx_buf = &tx_ring->txbufs[idx]; 1095 1096 skb = tx_ring->txbufs[idx].skb; 1097 nr_frags = skb_shinfo(skb)->nr_frags; 1098 1099 if (tx_buf->fidx == -1) { 1100 /* unmap head */ 1101 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1102 skb_headlen(skb), DMA_TO_DEVICE); 1103 } else { 1104 /* unmap fragment */ 1105 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1106 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1107 skb_frag_size(frag), DMA_TO_DEVICE); 1108 } 1109 1110 /* check for last gather fragment */ 1111 if (tx_buf->fidx == nr_frags - 1) 1112 dev_kfree_skb_any(skb); 1113 1114 tx_buf->dma_addr = 0; 1115 tx_buf->skb = NULL; 1116 tx_buf->fidx = -2; 1117 1118 tx_ring->qcp_rd_p++; 1119 tx_ring->rd_p++; 1120 } 1121 1122 memset(tx_ring->txds, 0, tx_ring->size); 1123 tx_ring->wr_p = 0; 1124 tx_ring->rd_p = 0; 1125 tx_ring->qcp_rd_p = 0; 1126 tx_ring->wr_ptr_add = 0; 1127 1128 if (tx_ring->is_xdp || !dp->netdev) 1129 return; 1130 1131 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1132 netdev_tx_reset_queue(nd_q); 1133 } 1134 1135 static void nfp_net_tx_timeout(struct net_device *netdev) 1136 { 1137 struct nfp_net *nn = netdev_priv(netdev); 1138 int i; 1139 1140 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1141 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1142 continue; 1143 nn_warn(nn, "TX timeout on ring: %d\n", i); 1144 } 1145 nn_warn(nn, "TX watchdog timeout\n"); 1146 } 1147 1148 /* Receive processing 1149 */ 1150 static unsigned int 1151 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1152 { 1153 unsigned int fl_bufsz; 1154 1155 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1156 fl_bufsz += dp->rx_dma_off; 1157 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1158 fl_bufsz += NFP_NET_MAX_PREPEND; 1159 else 1160 fl_bufsz += dp->rx_offset; 1161 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1162 1163 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1164 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1165 1166 return fl_bufsz; 1167 } 1168 1169 static void 1170 nfp_net_free_frag(void *frag, bool xdp) 1171 { 1172 if (!xdp) 1173 skb_free_frag(frag); 1174 else 1175 __free_page(virt_to_page(frag)); 1176 } 1177 1178 /** 1179 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1180 * @dp: NFP Net data path struct 1181 * @dma_addr: Pointer to storage for DMA address (output param) 1182 * 1183 * This function will allcate a new page frag, map it for DMA. 1184 * 1185 * Return: allocated page frag or NULL on failure. 1186 */ 1187 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1188 { 1189 void *frag; 1190 1191 if (!dp->xdp_prog) { 1192 frag = netdev_alloc_frag(dp->fl_bufsz); 1193 } else { 1194 struct page *page; 1195 1196 page = alloc_page(GFP_KERNEL); 1197 frag = page ? page_address(page) : NULL; 1198 } 1199 if (!frag) { 1200 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1201 return NULL; 1202 } 1203 1204 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1205 if (dma_mapping_error(dp->dev, *dma_addr)) { 1206 nfp_net_free_frag(frag, dp->xdp_prog); 1207 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1208 return NULL; 1209 } 1210 1211 return frag; 1212 } 1213 1214 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1215 { 1216 void *frag; 1217 1218 if (!dp->xdp_prog) { 1219 frag = napi_alloc_frag(dp->fl_bufsz); 1220 if (unlikely(!frag)) 1221 return NULL; 1222 } else { 1223 struct page *page; 1224 1225 page = dev_alloc_page(); 1226 if (unlikely(!page)) 1227 return NULL; 1228 frag = page_address(page); 1229 } 1230 1231 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1232 if (dma_mapping_error(dp->dev, *dma_addr)) { 1233 nfp_net_free_frag(frag, dp->xdp_prog); 1234 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1235 return NULL; 1236 } 1237 1238 return frag; 1239 } 1240 1241 /** 1242 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1243 * @dp: NFP Net data path struct 1244 * @rx_ring: RX ring structure 1245 * @frag: page fragment buffer 1246 * @dma_addr: DMA address of skb mapping 1247 */ 1248 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1249 struct nfp_net_rx_ring *rx_ring, 1250 void *frag, dma_addr_t dma_addr) 1251 { 1252 unsigned int wr_idx; 1253 1254 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1255 1256 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1257 1258 /* Stash SKB and DMA address away */ 1259 rx_ring->rxbufs[wr_idx].frag = frag; 1260 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1261 1262 /* Fill freelist descriptor */ 1263 rx_ring->rxds[wr_idx].fld.reserved = 0; 1264 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1265 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1266 dma_addr + dp->rx_dma_off); 1267 1268 rx_ring->wr_p++; 1269 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1270 /* Update write pointer of the freelist queue. Make 1271 * sure all writes are flushed before telling the hardware. 1272 */ 1273 wmb(); 1274 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1275 } 1276 } 1277 1278 /** 1279 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1280 * @rx_ring: RX ring structure 1281 * 1282 * Assumes that the device is stopped, must be idempotent. 1283 */ 1284 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1285 { 1286 unsigned int wr_idx, last_idx; 1287 1288 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1289 * kept at cnt - 1 FL bufs. 1290 */ 1291 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1292 return; 1293 1294 /* Move the empty entry to the end of the list */ 1295 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1296 last_idx = rx_ring->cnt - 1; 1297 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1298 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1299 rx_ring->rxbufs[last_idx].dma_addr = 0; 1300 rx_ring->rxbufs[last_idx].frag = NULL; 1301 1302 memset(rx_ring->rxds, 0, rx_ring->size); 1303 rx_ring->wr_p = 0; 1304 rx_ring->rd_p = 0; 1305 } 1306 1307 /** 1308 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1309 * @dp: NFP Net data path struct 1310 * @rx_ring: RX ring to remove buffers from 1311 * 1312 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1313 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1314 * to restore required ring geometry. 1315 */ 1316 static void 1317 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1318 struct nfp_net_rx_ring *rx_ring) 1319 { 1320 unsigned int i; 1321 1322 for (i = 0; i < rx_ring->cnt - 1; i++) { 1323 /* NULL skb can only happen when initial filling of the ring 1324 * fails to allocate enough buffers and calls here to free 1325 * already allocated ones. 1326 */ 1327 if (!rx_ring->rxbufs[i].frag) 1328 continue; 1329 1330 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1331 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1332 rx_ring->rxbufs[i].dma_addr = 0; 1333 rx_ring->rxbufs[i].frag = NULL; 1334 } 1335 } 1336 1337 /** 1338 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1339 * @dp: NFP Net data path struct 1340 * @rx_ring: RX ring to remove buffers from 1341 */ 1342 static int 1343 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1344 struct nfp_net_rx_ring *rx_ring) 1345 { 1346 struct nfp_net_rx_buf *rxbufs; 1347 unsigned int i; 1348 1349 rxbufs = rx_ring->rxbufs; 1350 1351 for (i = 0; i < rx_ring->cnt - 1; i++) { 1352 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1353 if (!rxbufs[i].frag) { 1354 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1355 return -ENOMEM; 1356 } 1357 } 1358 1359 return 0; 1360 } 1361 1362 /** 1363 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1364 * @dp: NFP Net data path struct 1365 * @rx_ring: RX ring to fill 1366 */ 1367 static void 1368 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1369 struct nfp_net_rx_ring *rx_ring) 1370 { 1371 unsigned int i; 1372 1373 for (i = 0; i < rx_ring->cnt - 1; i++) 1374 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1375 rx_ring->rxbufs[i].dma_addr); 1376 } 1377 1378 /** 1379 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1380 * @flags: RX descriptor flags field in CPU byte order 1381 */ 1382 static int nfp_net_rx_csum_has_errors(u16 flags) 1383 { 1384 u16 csum_all_checked, csum_all_ok; 1385 1386 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1387 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1388 1389 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1390 } 1391 1392 /** 1393 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1394 * @dp: NFP Net data path struct 1395 * @r_vec: per-ring structure 1396 * @rxd: Pointer to RX descriptor 1397 * @meta: Parsed metadata prepend 1398 * @skb: Pointer to SKB 1399 */ 1400 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1401 struct nfp_net_r_vector *r_vec, 1402 struct nfp_net_rx_desc *rxd, 1403 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1404 { 1405 skb_checksum_none_assert(skb); 1406 1407 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1408 return; 1409 1410 if (meta->csum_type) { 1411 skb->ip_summed = meta->csum_type; 1412 skb->csum = meta->csum; 1413 u64_stats_update_begin(&r_vec->rx_sync); 1414 r_vec->hw_csum_rx_complete++; 1415 u64_stats_update_end(&r_vec->rx_sync); 1416 return; 1417 } 1418 1419 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1420 u64_stats_update_begin(&r_vec->rx_sync); 1421 r_vec->hw_csum_rx_error++; 1422 u64_stats_update_end(&r_vec->rx_sync); 1423 return; 1424 } 1425 1426 /* Assume that the firmware will never report inner CSUM_OK unless outer 1427 * L4 headers were successfully parsed. FW will always report zero UDP 1428 * checksum as CSUM_OK. 1429 */ 1430 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1431 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1432 __skb_incr_checksum_unnecessary(skb); 1433 u64_stats_update_begin(&r_vec->rx_sync); 1434 r_vec->hw_csum_rx_ok++; 1435 u64_stats_update_end(&r_vec->rx_sync); 1436 } 1437 1438 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1439 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1440 __skb_incr_checksum_unnecessary(skb); 1441 u64_stats_update_begin(&r_vec->rx_sync); 1442 r_vec->hw_csum_rx_inner_ok++; 1443 u64_stats_update_end(&r_vec->rx_sync); 1444 } 1445 } 1446 1447 static void 1448 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1449 unsigned int type, __be32 *hash) 1450 { 1451 if (!(netdev->features & NETIF_F_RXHASH)) 1452 return; 1453 1454 switch (type) { 1455 case NFP_NET_RSS_IPV4: 1456 case NFP_NET_RSS_IPV6: 1457 case NFP_NET_RSS_IPV6_EX: 1458 meta->hash_type = PKT_HASH_TYPE_L3; 1459 break; 1460 default: 1461 meta->hash_type = PKT_HASH_TYPE_L4; 1462 break; 1463 } 1464 1465 meta->hash = get_unaligned_be32(hash); 1466 } 1467 1468 static void 1469 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1470 void *data, struct nfp_net_rx_desc *rxd) 1471 { 1472 struct nfp_net_rx_hash *rx_hash = data; 1473 1474 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1475 return; 1476 1477 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1478 &rx_hash->hash); 1479 } 1480 1481 static void * 1482 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1483 void *data, int meta_len) 1484 { 1485 u32 meta_info; 1486 1487 meta_info = get_unaligned_be32(data); 1488 data += 4; 1489 1490 while (meta_info) { 1491 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1492 case NFP_NET_META_HASH: 1493 meta_info >>= NFP_NET_META_FIELD_SIZE; 1494 nfp_net_set_hash(netdev, meta, 1495 meta_info & NFP_NET_META_FIELD_MASK, 1496 (__be32 *)data); 1497 data += 4; 1498 break; 1499 case NFP_NET_META_MARK: 1500 meta->mark = get_unaligned_be32(data); 1501 data += 4; 1502 break; 1503 case NFP_NET_META_PORTID: 1504 meta->portid = get_unaligned_be32(data); 1505 data += 4; 1506 break; 1507 case NFP_NET_META_CSUM: 1508 meta->csum_type = CHECKSUM_COMPLETE; 1509 meta->csum = 1510 (__force __wsum)__get_unaligned_cpu32(data); 1511 data += 4; 1512 break; 1513 default: 1514 return NULL; 1515 } 1516 1517 meta_info >>= NFP_NET_META_FIELD_SIZE; 1518 } 1519 1520 return data; 1521 } 1522 1523 static void 1524 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1525 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1526 struct sk_buff *skb) 1527 { 1528 u64_stats_update_begin(&r_vec->rx_sync); 1529 r_vec->rx_drops++; 1530 /* If we have both skb and rxbuf the replacement buffer allocation 1531 * must have failed, count this as an alloc failure. 1532 */ 1533 if (skb && rxbuf) 1534 r_vec->rx_replace_buf_alloc_fail++; 1535 u64_stats_update_end(&r_vec->rx_sync); 1536 1537 /* skb is build based on the frag, free_skb() would free the frag 1538 * so to be able to reuse it we need an extra ref. 1539 */ 1540 if (skb && rxbuf && skb->head == rxbuf->frag) 1541 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1542 if (rxbuf) 1543 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1544 if (skb) 1545 dev_kfree_skb_any(skb); 1546 } 1547 1548 static bool 1549 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1550 struct nfp_net_tx_ring *tx_ring, 1551 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1552 unsigned int pkt_len, bool *completed) 1553 { 1554 struct nfp_net_tx_buf *txbuf; 1555 struct nfp_net_tx_desc *txd; 1556 int wr_idx; 1557 1558 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1559 if (!*completed) { 1560 nfp_net_xdp_complete(tx_ring); 1561 *completed = true; 1562 } 1563 1564 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1565 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1566 NULL); 1567 return false; 1568 } 1569 } 1570 1571 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1572 1573 /* Stash the soft descriptor of the head then initialize it */ 1574 txbuf = &tx_ring->txbufs[wr_idx]; 1575 1576 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1577 1578 txbuf->frag = rxbuf->frag; 1579 txbuf->dma_addr = rxbuf->dma_addr; 1580 txbuf->fidx = -1; 1581 txbuf->pkt_cnt = 1; 1582 txbuf->real_len = pkt_len; 1583 1584 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1585 pkt_len, DMA_BIDIRECTIONAL); 1586 1587 /* Build TX descriptor */ 1588 txd = &tx_ring->txds[wr_idx]; 1589 txd->offset_eop = PCIE_DESC_TX_EOP; 1590 txd->dma_len = cpu_to_le16(pkt_len); 1591 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1592 txd->data_len = cpu_to_le16(pkt_len); 1593 1594 txd->flags = 0; 1595 txd->mss = 0; 1596 txd->lso_hdrlen = 0; 1597 1598 tx_ring->wr_p++; 1599 tx_ring->wr_ptr_add++; 1600 return true; 1601 } 1602 1603 /** 1604 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1605 * @rx_ring: RX ring to receive from 1606 * @budget: NAPI budget 1607 * 1608 * Note, this function is separated out from the napi poll function to 1609 * more cleanly separate packet receive code from other bookkeeping 1610 * functions performed in the napi poll function. 1611 * 1612 * Return: Number of packets received. 1613 */ 1614 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1615 { 1616 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1617 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1618 struct nfp_net_tx_ring *tx_ring; 1619 struct bpf_prog *xdp_prog; 1620 bool xdp_tx_cmpl = false; 1621 unsigned int true_bufsz; 1622 struct sk_buff *skb; 1623 int pkts_polled = 0; 1624 struct xdp_buff xdp; 1625 int idx; 1626 1627 rcu_read_lock(); 1628 xdp_prog = READ_ONCE(dp->xdp_prog); 1629 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1630 xdp.rxq = &rx_ring->xdp_rxq; 1631 tx_ring = r_vec->xdp_ring; 1632 1633 while (pkts_polled < budget) { 1634 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1635 struct nfp_net_rx_buf *rxbuf; 1636 struct nfp_net_rx_desc *rxd; 1637 struct nfp_meta_parsed meta; 1638 struct net_device *netdev; 1639 dma_addr_t new_dma_addr; 1640 u32 meta_len_xdp = 0; 1641 void *new_frag; 1642 1643 idx = D_IDX(rx_ring, rx_ring->rd_p); 1644 1645 rxd = &rx_ring->rxds[idx]; 1646 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1647 break; 1648 1649 /* Memory barrier to ensure that we won't do other reads 1650 * before the DD bit. 1651 */ 1652 dma_rmb(); 1653 1654 memset(&meta, 0, sizeof(meta)); 1655 1656 rx_ring->rd_p++; 1657 pkts_polled++; 1658 1659 rxbuf = &rx_ring->rxbufs[idx]; 1660 /* < meta_len > 1661 * <-- [rx_offset] --> 1662 * --------------------------------------------------------- 1663 * | [XX] | metadata | packet | XXXX | 1664 * --------------------------------------------------------- 1665 * <---------------- data_len ---------------> 1666 * 1667 * The rx_offset is fixed for all packets, the meta_len can vary 1668 * on a packet by packet basis. If rx_offset is set to zero 1669 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1670 * buffer and is immediately followed by the packet (no [XX]). 1671 */ 1672 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1673 data_len = le16_to_cpu(rxd->rxd.data_len); 1674 pkt_len = data_len - meta_len; 1675 1676 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1677 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1678 pkt_off += meta_len; 1679 else 1680 pkt_off += dp->rx_offset; 1681 meta_off = pkt_off - meta_len; 1682 1683 /* Stats update */ 1684 u64_stats_update_begin(&r_vec->rx_sync); 1685 r_vec->rx_pkts++; 1686 r_vec->rx_bytes += pkt_len; 1687 u64_stats_update_end(&r_vec->rx_sync); 1688 1689 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1690 (dp->rx_offset && meta_len > dp->rx_offset))) { 1691 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1692 meta_len); 1693 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1694 continue; 1695 } 1696 1697 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1698 data_len); 1699 1700 if (!dp->chained_metadata_format) { 1701 nfp_net_set_hash_desc(dp->netdev, &meta, 1702 rxbuf->frag + meta_off, rxd); 1703 } else if (meta_len) { 1704 void *end; 1705 1706 end = nfp_net_parse_meta(dp->netdev, &meta, 1707 rxbuf->frag + meta_off, 1708 meta_len); 1709 if (unlikely(end != rxbuf->frag + pkt_off)) { 1710 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1711 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1712 NULL); 1713 continue; 1714 } 1715 } 1716 1717 if (xdp_prog && !meta.portid) { 1718 void *orig_data = rxbuf->frag + pkt_off; 1719 unsigned int dma_off; 1720 int act; 1721 1722 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1723 xdp.data = orig_data; 1724 xdp.data_meta = orig_data; 1725 xdp.data_end = orig_data + pkt_len; 1726 1727 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1728 1729 pkt_len = xdp.data_end - xdp.data; 1730 pkt_off += xdp.data - orig_data; 1731 1732 switch (act) { 1733 case XDP_PASS: 1734 meta_len_xdp = xdp.data - xdp.data_meta; 1735 break; 1736 case XDP_TX: 1737 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1738 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1739 tx_ring, rxbuf, 1740 dma_off, 1741 pkt_len, 1742 &xdp_tx_cmpl))) 1743 trace_xdp_exception(dp->netdev, 1744 xdp_prog, act); 1745 continue; 1746 default: 1747 bpf_warn_invalid_xdp_action(act); 1748 /* fall through */ 1749 case XDP_ABORTED: 1750 trace_xdp_exception(dp->netdev, xdp_prog, act); 1751 /* fall through */ 1752 case XDP_DROP: 1753 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1754 rxbuf->dma_addr); 1755 continue; 1756 } 1757 } 1758 1759 if (likely(!meta.portid)) { 1760 netdev = dp->netdev; 1761 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1762 struct nfp_net *nn = netdev_priv(dp->netdev); 1763 1764 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1765 pkt_len); 1766 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1767 rxbuf->dma_addr); 1768 continue; 1769 } else { 1770 struct nfp_net *nn; 1771 1772 nn = netdev_priv(dp->netdev); 1773 netdev = nfp_app_repr_get(nn->app, meta.portid); 1774 if (unlikely(!netdev)) { 1775 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1776 NULL); 1777 continue; 1778 } 1779 nfp_repr_inc_rx_stats(netdev, pkt_len); 1780 } 1781 1782 skb = build_skb(rxbuf->frag, true_bufsz); 1783 if (unlikely(!skb)) { 1784 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1785 continue; 1786 } 1787 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1788 if (unlikely(!new_frag)) { 1789 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1790 continue; 1791 } 1792 1793 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1794 1795 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1796 1797 skb_reserve(skb, pkt_off); 1798 skb_put(skb, pkt_len); 1799 1800 skb->mark = meta.mark; 1801 skb_set_hash(skb, meta.hash, meta.hash_type); 1802 1803 skb_record_rx_queue(skb, rx_ring->idx); 1804 skb->protocol = eth_type_trans(skb, netdev); 1805 1806 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1807 1808 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1809 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1810 le16_to_cpu(rxd->rxd.vlan)); 1811 if (meta_len_xdp) 1812 skb_metadata_set(skb, meta_len_xdp); 1813 1814 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1815 } 1816 1817 if (xdp_prog) { 1818 if (tx_ring->wr_ptr_add) 1819 nfp_net_tx_xmit_more_flush(tx_ring); 1820 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1821 !xdp_tx_cmpl) 1822 if (!nfp_net_xdp_complete(tx_ring)) 1823 pkts_polled = budget; 1824 } 1825 rcu_read_unlock(); 1826 1827 return pkts_polled; 1828 } 1829 1830 /** 1831 * nfp_net_poll() - napi poll function 1832 * @napi: NAPI structure 1833 * @budget: NAPI budget 1834 * 1835 * Return: number of packets polled. 1836 */ 1837 static int nfp_net_poll(struct napi_struct *napi, int budget) 1838 { 1839 struct nfp_net_r_vector *r_vec = 1840 container_of(napi, struct nfp_net_r_vector, napi); 1841 unsigned int pkts_polled = 0; 1842 1843 if (r_vec->tx_ring) 1844 nfp_net_tx_complete(r_vec->tx_ring, budget); 1845 if (r_vec->rx_ring) 1846 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1847 1848 if (pkts_polled < budget) 1849 if (napi_complete_done(napi, pkts_polled)) 1850 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1851 1852 return pkts_polled; 1853 } 1854 1855 /* Control device data path 1856 */ 1857 1858 static bool 1859 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1860 struct sk_buff *skb, bool old) 1861 { 1862 unsigned int real_len = skb->len, meta_len = 0; 1863 struct nfp_net_tx_ring *tx_ring; 1864 struct nfp_net_tx_buf *txbuf; 1865 struct nfp_net_tx_desc *txd; 1866 struct nfp_net_dp *dp; 1867 dma_addr_t dma_addr; 1868 int wr_idx; 1869 1870 dp = &r_vec->nfp_net->dp; 1871 tx_ring = r_vec->tx_ring; 1872 1873 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1874 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1875 goto err_free; 1876 } 1877 1878 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1879 u64_stats_update_begin(&r_vec->tx_sync); 1880 r_vec->tx_busy++; 1881 u64_stats_update_end(&r_vec->tx_sync); 1882 if (!old) 1883 __skb_queue_tail(&r_vec->queue, skb); 1884 else 1885 __skb_queue_head(&r_vec->queue, skb); 1886 return true; 1887 } 1888 1889 if (nfp_app_ctrl_has_meta(nn->app)) { 1890 if (unlikely(skb_headroom(skb) < 8)) { 1891 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1892 goto err_free; 1893 } 1894 meta_len = 8; 1895 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1896 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1897 } 1898 1899 /* Start with the head skbuf */ 1900 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1901 DMA_TO_DEVICE); 1902 if (dma_mapping_error(dp->dev, dma_addr)) 1903 goto err_dma_warn; 1904 1905 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1906 1907 /* Stash the soft descriptor of the head then initialize it */ 1908 txbuf = &tx_ring->txbufs[wr_idx]; 1909 txbuf->skb = skb; 1910 txbuf->dma_addr = dma_addr; 1911 txbuf->fidx = -1; 1912 txbuf->pkt_cnt = 1; 1913 txbuf->real_len = real_len; 1914 1915 /* Build TX descriptor */ 1916 txd = &tx_ring->txds[wr_idx]; 1917 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1918 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1919 nfp_desc_set_dma_addr(txd, dma_addr); 1920 txd->data_len = cpu_to_le16(skb->len); 1921 1922 txd->flags = 0; 1923 txd->mss = 0; 1924 txd->lso_hdrlen = 0; 1925 1926 tx_ring->wr_p++; 1927 tx_ring->wr_ptr_add++; 1928 nfp_net_tx_xmit_more_flush(tx_ring); 1929 1930 return false; 1931 1932 err_dma_warn: 1933 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1934 err_free: 1935 u64_stats_update_begin(&r_vec->tx_sync); 1936 r_vec->tx_errors++; 1937 u64_stats_update_end(&r_vec->tx_sync); 1938 dev_kfree_skb_any(skb); 1939 return false; 1940 } 1941 1942 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1943 { 1944 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1945 1946 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 1947 } 1948 1949 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1950 { 1951 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1952 bool ret; 1953 1954 spin_lock_bh(&r_vec->lock); 1955 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1956 spin_unlock_bh(&r_vec->lock); 1957 1958 return ret; 1959 } 1960 1961 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1962 { 1963 struct sk_buff *skb; 1964 1965 while ((skb = __skb_dequeue(&r_vec->queue))) 1966 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1967 return; 1968 } 1969 1970 static bool 1971 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1972 { 1973 u32 meta_type, meta_tag; 1974 1975 if (!nfp_app_ctrl_has_meta(nn->app)) 1976 return !meta_len; 1977 1978 if (meta_len != 8) 1979 return false; 1980 1981 meta_type = get_unaligned_be32(data); 1982 meta_tag = get_unaligned_be32(data + 4); 1983 1984 return (meta_type == NFP_NET_META_PORTID && 1985 meta_tag == NFP_META_PORT_ID_CTRL); 1986 } 1987 1988 static bool 1989 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1990 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1991 { 1992 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1993 struct nfp_net_rx_buf *rxbuf; 1994 struct nfp_net_rx_desc *rxd; 1995 dma_addr_t new_dma_addr; 1996 struct sk_buff *skb; 1997 void *new_frag; 1998 int idx; 1999 2000 idx = D_IDX(rx_ring, rx_ring->rd_p); 2001 2002 rxd = &rx_ring->rxds[idx]; 2003 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2004 return false; 2005 2006 /* Memory barrier to ensure that we won't do other reads 2007 * before the DD bit. 2008 */ 2009 dma_rmb(); 2010 2011 rx_ring->rd_p++; 2012 2013 rxbuf = &rx_ring->rxbufs[idx]; 2014 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2015 data_len = le16_to_cpu(rxd->rxd.data_len); 2016 pkt_len = data_len - meta_len; 2017 2018 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2019 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2020 pkt_off += meta_len; 2021 else 2022 pkt_off += dp->rx_offset; 2023 meta_off = pkt_off - meta_len; 2024 2025 /* Stats update */ 2026 u64_stats_update_begin(&r_vec->rx_sync); 2027 r_vec->rx_pkts++; 2028 r_vec->rx_bytes += pkt_len; 2029 u64_stats_update_end(&r_vec->rx_sync); 2030 2031 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2032 2033 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2034 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2035 meta_len); 2036 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2037 return true; 2038 } 2039 2040 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2041 if (unlikely(!skb)) { 2042 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2043 return true; 2044 } 2045 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2046 if (unlikely(!new_frag)) { 2047 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2048 return true; 2049 } 2050 2051 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2052 2053 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2054 2055 skb_reserve(skb, pkt_off); 2056 skb_put(skb, pkt_len); 2057 2058 nfp_app_ctrl_rx(nn->app, skb); 2059 2060 return true; 2061 } 2062 2063 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2064 { 2065 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2066 struct nfp_net *nn = r_vec->nfp_net; 2067 struct nfp_net_dp *dp = &nn->dp; 2068 unsigned int budget = 512; 2069 2070 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2071 continue; 2072 2073 return budget; 2074 } 2075 2076 static void nfp_ctrl_poll(unsigned long arg) 2077 { 2078 struct nfp_net_r_vector *r_vec = (void *)arg; 2079 2080 spin_lock(&r_vec->lock); 2081 nfp_net_tx_complete(r_vec->tx_ring, 0); 2082 __nfp_ctrl_tx_queued(r_vec); 2083 spin_unlock(&r_vec->lock); 2084 2085 if (nfp_ctrl_rx(r_vec)) { 2086 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2087 } else { 2088 tasklet_schedule(&r_vec->tasklet); 2089 nn_dp_warn(&r_vec->nfp_net->dp, 2090 "control message budget exceeded!\n"); 2091 } 2092 } 2093 2094 /* Setup and Configuration 2095 */ 2096 2097 /** 2098 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2099 * @nn: NFP Network structure 2100 */ 2101 static void nfp_net_vecs_init(struct nfp_net *nn) 2102 { 2103 struct nfp_net_r_vector *r_vec; 2104 int r; 2105 2106 nn->lsc_handler = nfp_net_irq_lsc; 2107 nn->exn_handler = nfp_net_irq_exn; 2108 2109 for (r = 0; r < nn->max_r_vecs; r++) { 2110 struct msix_entry *entry; 2111 2112 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2113 2114 r_vec = &nn->r_vecs[r]; 2115 r_vec->nfp_net = nn; 2116 r_vec->irq_entry = entry->entry; 2117 r_vec->irq_vector = entry->vector; 2118 2119 if (nn->dp.netdev) { 2120 r_vec->handler = nfp_net_irq_rxtx; 2121 } else { 2122 r_vec->handler = nfp_ctrl_irq_rxtx; 2123 2124 __skb_queue_head_init(&r_vec->queue); 2125 spin_lock_init(&r_vec->lock); 2126 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2127 (unsigned long)r_vec); 2128 tasklet_disable(&r_vec->tasklet); 2129 } 2130 2131 cpumask_set_cpu(r, &r_vec->affinity_mask); 2132 } 2133 } 2134 2135 /** 2136 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2137 * @tx_ring: TX ring to free 2138 */ 2139 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2140 { 2141 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2142 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2143 2144 kvfree(tx_ring->txbufs); 2145 2146 if (tx_ring->txds) 2147 dma_free_coherent(dp->dev, tx_ring->size, 2148 tx_ring->txds, tx_ring->dma); 2149 2150 tx_ring->cnt = 0; 2151 tx_ring->txbufs = NULL; 2152 tx_ring->txds = NULL; 2153 tx_ring->dma = 0; 2154 tx_ring->size = 0; 2155 } 2156 2157 /** 2158 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2159 * @dp: NFP Net data path struct 2160 * @tx_ring: TX Ring structure to allocate 2161 * 2162 * Return: 0 on success, negative errno otherwise. 2163 */ 2164 static int 2165 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2166 { 2167 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2168 2169 tx_ring->cnt = dp->txd_cnt; 2170 2171 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2172 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2173 &tx_ring->dma, 2174 GFP_KERNEL | __GFP_NOWARN); 2175 if (!tx_ring->txds) { 2176 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2177 tx_ring->cnt); 2178 goto err_alloc; 2179 } 2180 2181 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2182 GFP_KERNEL); 2183 if (!tx_ring->txbufs) 2184 goto err_alloc; 2185 2186 if (!tx_ring->is_xdp && dp->netdev) 2187 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2188 tx_ring->idx); 2189 2190 return 0; 2191 2192 err_alloc: 2193 nfp_net_tx_ring_free(tx_ring); 2194 return -ENOMEM; 2195 } 2196 2197 static void 2198 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2199 struct nfp_net_tx_ring *tx_ring) 2200 { 2201 unsigned int i; 2202 2203 if (!tx_ring->is_xdp) 2204 return; 2205 2206 for (i = 0; i < tx_ring->cnt; i++) { 2207 if (!tx_ring->txbufs[i].frag) 2208 return; 2209 2210 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2211 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2212 } 2213 } 2214 2215 static int 2216 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2217 struct nfp_net_tx_ring *tx_ring) 2218 { 2219 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2220 unsigned int i; 2221 2222 if (!tx_ring->is_xdp) 2223 return 0; 2224 2225 for (i = 0; i < tx_ring->cnt; i++) { 2226 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2227 if (!txbufs[i].frag) { 2228 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2229 return -ENOMEM; 2230 } 2231 } 2232 2233 return 0; 2234 } 2235 2236 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2237 { 2238 unsigned int r; 2239 2240 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2241 GFP_KERNEL); 2242 if (!dp->tx_rings) 2243 return -ENOMEM; 2244 2245 for (r = 0; r < dp->num_tx_rings; r++) { 2246 int bias = 0; 2247 2248 if (r >= dp->num_stack_tx_rings) 2249 bias = dp->num_stack_tx_rings; 2250 2251 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2252 r, bias); 2253 2254 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2255 goto err_free_prev; 2256 2257 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2258 goto err_free_ring; 2259 } 2260 2261 return 0; 2262 2263 err_free_prev: 2264 while (r--) { 2265 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2266 err_free_ring: 2267 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2268 } 2269 kfree(dp->tx_rings); 2270 return -ENOMEM; 2271 } 2272 2273 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2274 { 2275 unsigned int r; 2276 2277 for (r = 0; r < dp->num_tx_rings; r++) { 2278 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2279 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2280 } 2281 2282 kfree(dp->tx_rings); 2283 } 2284 2285 /** 2286 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2287 * @rx_ring: RX ring to free 2288 */ 2289 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2290 { 2291 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2292 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2293 2294 if (dp->netdev) 2295 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2296 kvfree(rx_ring->rxbufs); 2297 2298 if (rx_ring->rxds) 2299 dma_free_coherent(dp->dev, rx_ring->size, 2300 rx_ring->rxds, rx_ring->dma); 2301 2302 rx_ring->cnt = 0; 2303 rx_ring->rxbufs = NULL; 2304 rx_ring->rxds = NULL; 2305 rx_ring->dma = 0; 2306 rx_ring->size = 0; 2307 } 2308 2309 /** 2310 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2311 * @dp: NFP Net data path struct 2312 * @rx_ring: RX ring to allocate 2313 * 2314 * Return: 0 on success, negative errno otherwise. 2315 */ 2316 static int 2317 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2318 { 2319 int err; 2320 2321 if (dp->netdev) { 2322 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2323 rx_ring->idx); 2324 if (err < 0) 2325 return err; 2326 } 2327 2328 rx_ring->cnt = dp->rxd_cnt; 2329 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2330 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2331 &rx_ring->dma, 2332 GFP_KERNEL | __GFP_NOWARN); 2333 if (!rx_ring->rxds) { 2334 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2335 rx_ring->cnt); 2336 goto err_alloc; 2337 } 2338 2339 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2340 GFP_KERNEL); 2341 if (!rx_ring->rxbufs) 2342 goto err_alloc; 2343 2344 return 0; 2345 2346 err_alloc: 2347 nfp_net_rx_ring_free(rx_ring); 2348 return -ENOMEM; 2349 } 2350 2351 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2352 { 2353 unsigned int r; 2354 2355 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2356 GFP_KERNEL); 2357 if (!dp->rx_rings) 2358 return -ENOMEM; 2359 2360 for (r = 0; r < dp->num_rx_rings; r++) { 2361 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2362 2363 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2364 goto err_free_prev; 2365 2366 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2367 goto err_free_ring; 2368 } 2369 2370 return 0; 2371 2372 err_free_prev: 2373 while (r--) { 2374 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2375 err_free_ring: 2376 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2377 } 2378 kfree(dp->rx_rings); 2379 return -ENOMEM; 2380 } 2381 2382 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2383 { 2384 unsigned int r; 2385 2386 for (r = 0; r < dp->num_rx_rings; r++) { 2387 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2388 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2389 } 2390 2391 kfree(dp->rx_rings); 2392 } 2393 2394 static void 2395 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2396 struct nfp_net_r_vector *r_vec, int idx) 2397 { 2398 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2399 r_vec->tx_ring = 2400 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2401 2402 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2403 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2404 } 2405 2406 static int 2407 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2408 int idx) 2409 { 2410 int err; 2411 2412 /* Setup NAPI */ 2413 if (nn->dp.netdev) 2414 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2415 nfp_net_poll, NAPI_POLL_WEIGHT); 2416 else 2417 tasklet_enable(&r_vec->tasklet); 2418 2419 snprintf(r_vec->name, sizeof(r_vec->name), 2420 "%s-rxtx-%d", nfp_net_name(nn), idx); 2421 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2422 r_vec); 2423 if (err) { 2424 if (nn->dp.netdev) 2425 netif_napi_del(&r_vec->napi); 2426 else 2427 tasklet_disable(&r_vec->tasklet); 2428 2429 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2430 return err; 2431 } 2432 disable_irq(r_vec->irq_vector); 2433 2434 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2435 2436 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2437 r_vec->irq_entry); 2438 2439 return 0; 2440 } 2441 2442 static void 2443 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2444 { 2445 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2446 if (nn->dp.netdev) 2447 netif_napi_del(&r_vec->napi); 2448 else 2449 tasklet_disable(&r_vec->tasklet); 2450 2451 free_irq(r_vec->irq_vector, r_vec); 2452 } 2453 2454 /** 2455 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2456 * @nn: NFP Net device to reconfigure 2457 */ 2458 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2459 { 2460 int i; 2461 2462 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2463 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2464 get_unaligned_le32(nn->rss_itbl + i)); 2465 } 2466 2467 /** 2468 * nfp_net_rss_write_key() - Write RSS hash key to device 2469 * @nn: NFP Net device to reconfigure 2470 */ 2471 void nfp_net_rss_write_key(struct nfp_net *nn) 2472 { 2473 int i; 2474 2475 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2476 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2477 get_unaligned_le32(nn->rss_key + i)); 2478 } 2479 2480 /** 2481 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2482 * @nn: NFP Net device to reconfigure 2483 */ 2484 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2485 { 2486 u8 i; 2487 u32 factor; 2488 u32 value; 2489 2490 /* Compute factor used to convert coalesce '_usecs' parameters to 2491 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2492 * count. 2493 */ 2494 factor = nn->tlv_caps.me_freq_mhz / 16; 2495 2496 /* copy RX interrupt coalesce parameters */ 2497 value = (nn->rx_coalesce_max_frames << 16) | 2498 (factor * nn->rx_coalesce_usecs); 2499 for (i = 0; i < nn->dp.num_rx_rings; i++) 2500 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2501 2502 /* copy TX interrupt coalesce parameters */ 2503 value = (nn->tx_coalesce_max_frames << 16) | 2504 (factor * nn->tx_coalesce_usecs); 2505 for (i = 0; i < nn->dp.num_tx_rings; i++) 2506 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2507 } 2508 2509 /** 2510 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2511 * @nn: NFP Net device to reconfigure 2512 * @addr: MAC address to write 2513 * 2514 * Writes the MAC address from the netdev to the device control BAR. Does not 2515 * perform the required reconfig. We do a bit of byte swapping dance because 2516 * firmware is LE. 2517 */ 2518 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2519 { 2520 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2521 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2522 } 2523 2524 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2525 { 2526 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2527 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2528 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2529 2530 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2531 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2532 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2533 } 2534 2535 /** 2536 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2537 * @nn: NFP Net device to reconfigure 2538 * 2539 * Warning: must be fully idempotent. 2540 */ 2541 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2542 { 2543 u32 new_ctrl, update; 2544 unsigned int r; 2545 int err; 2546 2547 new_ctrl = nn->dp.ctrl; 2548 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2549 update = NFP_NET_CFG_UPDATE_GEN; 2550 update |= NFP_NET_CFG_UPDATE_MSIX; 2551 update |= NFP_NET_CFG_UPDATE_RING; 2552 2553 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2554 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2555 2556 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2557 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2558 2559 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2560 err = nfp_net_reconfig(nn, update); 2561 if (err) 2562 nn_err(nn, "Could not disable device: %d\n", err); 2563 2564 for (r = 0; r < nn->dp.num_rx_rings; r++) 2565 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2566 for (r = 0; r < nn->dp.num_tx_rings; r++) 2567 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2568 for (r = 0; r < nn->dp.num_r_vecs; r++) 2569 nfp_net_vec_clear_ring_data(nn, r); 2570 2571 nn->dp.ctrl = new_ctrl; 2572 } 2573 2574 static void 2575 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2576 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2577 { 2578 /* Write the DMA address, size and MSI-X info to the device */ 2579 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2580 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2581 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2582 } 2583 2584 static void 2585 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2586 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2587 { 2588 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2589 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2590 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2591 } 2592 2593 /** 2594 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2595 * @nn: NFP Net device to reconfigure 2596 */ 2597 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2598 { 2599 u32 bufsz, new_ctrl, update = 0; 2600 unsigned int r; 2601 int err; 2602 2603 new_ctrl = nn->dp.ctrl; 2604 2605 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2606 nfp_net_rss_write_key(nn); 2607 nfp_net_rss_write_itbl(nn); 2608 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2609 update |= NFP_NET_CFG_UPDATE_RSS; 2610 } 2611 2612 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2613 nfp_net_coalesce_write_cfg(nn); 2614 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2615 } 2616 2617 for (r = 0; r < nn->dp.num_tx_rings; r++) 2618 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2619 for (r = 0; r < nn->dp.num_rx_rings; r++) 2620 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2621 2622 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2623 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2624 2625 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2626 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2627 2628 if (nn->dp.netdev) 2629 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2630 2631 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2632 2633 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2634 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2635 2636 /* Enable device */ 2637 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2638 update |= NFP_NET_CFG_UPDATE_GEN; 2639 update |= NFP_NET_CFG_UPDATE_MSIX; 2640 update |= NFP_NET_CFG_UPDATE_RING; 2641 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2642 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2643 2644 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2645 err = nfp_net_reconfig(nn, update); 2646 if (err) { 2647 nfp_net_clear_config_and_disable(nn); 2648 return err; 2649 } 2650 2651 nn->dp.ctrl = new_ctrl; 2652 2653 for (r = 0; r < nn->dp.num_rx_rings; r++) 2654 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2655 2656 /* Since reconfiguration requests while NFP is down are ignored we 2657 * have to wipe the entire VXLAN configuration and reinitialize it. 2658 */ 2659 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2660 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2661 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2662 udp_tunnel_get_rx_info(nn->dp.netdev); 2663 } 2664 2665 return 0; 2666 } 2667 2668 /** 2669 * nfp_net_close_stack() - Quiesce the stack (part of close) 2670 * @nn: NFP Net device to reconfigure 2671 */ 2672 static void nfp_net_close_stack(struct nfp_net *nn) 2673 { 2674 unsigned int r; 2675 2676 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2677 netif_carrier_off(nn->dp.netdev); 2678 nn->link_up = false; 2679 2680 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2681 disable_irq(nn->r_vecs[r].irq_vector); 2682 napi_disable(&nn->r_vecs[r].napi); 2683 } 2684 2685 netif_tx_disable(nn->dp.netdev); 2686 } 2687 2688 /** 2689 * nfp_net_close_free_all() - Free all runtime resources 2690 * @nn: NFP Net device to reconfigure 2691 */ 2692 static void nfp_net_close_free_all(struct nfp_net *nn) 2693 { 2694 unsigned int r; 2695 2696 nfp_net_tx_rings_free(&nn->dp); 2697 nfp_net_rx_rings_free(&nn->dp); 2698 2699 for (r = 0; r < nn->dp.num_r_vecs; r++) 2700 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2701 2702 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2703 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2704 } 2705 2706 /** 2707 * nfp_net_netdev_close() - Called when the device is downed 2708 * @netdev: netdev structure 2709 */ 2710 static int nfp_net_netdev_close(struct net_device *netdev) 2711 { 2712 struct nfp_net *nn = netdev_priv(netdev); 2713 2714 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2715 */ 2716 nfp_net_close_stack(nn); 2717 2718 /* Step 2: Tell NFP 2719 */ 2720 nfp_net_clear_config_and_disable(nn); 2721 nfp_port_configure(netdev, false); 2722 2723 /* Step 3: Free resources 2724 */ 2725 nfp_net_close_free_all(nn); 2726 2727 nn_dbg(nn, "%s down", netdev->name); 2728 return 0; 2729 } 2730 2731 void nfp_ctrl_close(struct nfp_net *nn) 2732 { 2733 int r; 2734 2735 rtnl_lock(); 2736 2737 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2738 disable_irq(nn->r_vecs[r].irq_vector); 2739 tasklet_disable(&nn->r_vecs[r].tasklet); 2740 } 2741 2742 nfp_net_clear_config_and_disable(nn); 2743 2744 nfp_net_close_free_all(nn); 2745 2746 rtnl_unlock(); 2747 } 2748 2749 /** 2750 * nfp_net_open_stack() - Start the device from stack's perspective 2751 * @nn: NFP Net device to reconfigure 2752 */ 2753 static void nfp_net_open_stack(struct nfp_net *nn) 2754 { 2755 unsigned int r; 2756 2757 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2758 napi_enable(&nn->r_vecs[r].napi); 2759 enable_irq(nn->r_vecs[r].irq_vector); 2760 } 2761 2762 netif_tx_wake_all_queues(nn->dp.netdev); 2763 2764 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2765 nfp_net_read_link_status(nn); 2766 } 2767 2768 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2769 { 2770 int err, r; 2771 2772 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2773 nn->exn_name, sizeof(nn->exn_name), 2774 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2775 if (err) 2776 return err; 2777 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2778 nn->lsc_name, sizeof(nn->lsc_name), 2779 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2780 if (err) 2781 goto err_free_exn; 2782 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2783 2784 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2785 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2786 if (err) 2787 goto err_cleanup_vec_p; 2788 } 2789 2790 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2791 if (err) 2792 goto err_cleanup_vec; 2793 2794 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2795 if (err) 2796 goto err_free_rx_rings; 2797 2798 for (r = 0; r < nn->max_r_vecs; r++) 2799 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2800 2801 return 0; 2802 2803 err_free_rx_rings: 2804 nfp_net_rx_rings_free(&nn->dp); 2805 err_cleanup_vec: 2806 r = nn->dp.num_r_vecs; 2807 err_cleanup_vec_p: 2808 while (r--) 2809 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2810 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2811 err_free_exn: 2812 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2813 return err; 2814 } 2815 2816 static int nfp_net_netdev_open(struct net_device *netdev) 2817 { 2818 struct nfp_net *nn = netdev_priv(netdev); 2819 int err; 2820 2821 /* Step 1: Allocate resources for rings and the like 2822 * - Request interrupts 2823 * - Allocate RX and TX ring resources 2824 * - Setup initial RSS table 2825 */ 2826 err = nfp_net_open_alloc_all(nn); 2827 if (err) 2828 return err; 2829 2830 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2831 if (err) 2832 goto err_free_all; 2833 2834 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2835 if (err) 2836 goto err_free_all; 2837 2838 /* Step 2: Configure the NFP 2839 * - Ifup the physical interface if it exists 2840 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2841 * - Write MAC address (in case it changed) 2842 * - Set the MTU 2843 * - Set the Freelist buffer size 2844 * - Enable the FW 2845 */ 2846 err = nfp_port_configure(netdev, true); 2847 if (err) 2848 goto err_free_all; 2849 2850 err = nfp_net_set_config_and_enable(nn); 2851 if (err) 2852 goto err_port_disable; 2853 2854 /* Step 3: Enable for kernel 2855 * - put some freelist descriptors on each RX ring 2856 * - enable NAPI on each ring 2857 * - enable all TX queues 2858 * - set link state 2859 */ 2860 nfp_net_open_stack(nn); 2861 2862 return 0; 2863 2864 err_port_disable: 2865 nfp_port_configure(netdev, false); 2866 err_free_all: 2867 nfp_net_close_free_all(nn); 2868 return err; 2869 } 2870 2871 int nfp_ctrl_open(struct nfp_net *nn) 2872 { 2873 int err, r; 2874 2875 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2876 rtnl_lock(); 2877 2878 err = nfp_net_open_alloc_all(nn); 2879 if (err) 2880 goto err_unlock; 2881 2882 err = nfp_net_set_config_and_enable(nn); 2883 if (err) 2884 goto err_free_all; 2885 2886 for (r = 0; r < nn->dp.num_r_vecs; r++) 2887 enable_irq(nn->r_vecs[r].irq_vector); 2888 2889 rtnl_unlock(); 2890 2891 return 0; 2892 2893 err_free_all: 2894 nfp_net_close_free_all(nn); 2895 err_unlock: 2896 rtnl_unlock(); 2897 return err; 2898 } 2899 2900 static void nfp_net_set_rx_mode(struct net_device *netdev) 2901 { 2902 struct nfp_net *nn = netdev_priv(netdev); 2903 u32 new_ctrl; 2904 2905 new_ctrl = nn->dp.ctrl; 2906 2907 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 2908 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 2909 else 2910 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 2911 2912 if (netdev->flags & IFF_PROMISC) { 2913 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2914 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2915 else 2916 nn_warn(nn, "FW does not support promiscuous mode\n"); 2917 } else { 2918 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2919 } 2920 2921 if (new_ctrl == nn->dp.ctrl) 2922 return; 2923 2924 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2925 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2926 2927 nn->dp.ctrl = new_ctrl; 2928 } 2929 2930 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2931 { 2932 int i; 2933 2934 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2935 nn->rss_itbl[i] = 2936 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2937 } 2938 2939 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2940 { 2941 struct nfp_net_dp new_dp = *dp; 2942 2943 *dp = nn->dp; 2944 nn->dp = new_dp; 2945 2946 nn->dp.netdev->mtu = new_dp.mtu; 2947 2948 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2949 nfp_net_rss_init_itbl(nn); 2950 } 2951 2952 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2953 { 2954 unsigned int r; 2955 int err; 2956 2957 nfp_net_dp_swap(nn, dp); 2958 2959 for (r = 0; r < nn->max_r_vecs; r++) 2960 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2961 2962 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2963 if (err) 2964 return err; 2965 2966 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2967 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2968 nn->dp.num_stack_tx_rings); 2969 if (err) 2970 return err; 2971 } 2972 2973 return nfp_net_set_config_and_enable(nn); 2974 } 2975 2976 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2977 { 2978 struct nfp_net_dp *new; 2979 2980 new = kmalloc(sizeof(*new), GFP_KERNEL); 2981 if (!new) 2982 return NULL; 2983 2984 *new = nn->dp; 2985 2986 /* Clear things which need to be recomputed */ 2987 new->fl_bufsz = 0; 2988 new->tx_rings = NULL; 2989 new->rx_rings = NULL; 2990 new->num_r_vecs = 0; 2991 new->num_stack_tx_rings = 0; 2992 2993 return new; 2994 } 2995 2996 static int 2997 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2998 struct netlink_ext_ack *extack) 2999 { 3000 /* XDP-enabled tests */ 3001 if (!dp->xdp_prog) 3002 return 0; 3003 if (dp->fl_bufsz > PAGE_SIZE) { 3004 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3005 return -EINVAL; 3006 } 3007 if (dp->num_tx_rings > nn->max_tx_rings) { 3008 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3009 return -EINVAL; 3010 } 3011 3012 return 0; 3013 } 3014 3015 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3016 struct netlink_ext_ack *extack) 3017 { 3018 int r, err; 3019 3020 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3021 3022 dp->num_stack_tx_rings = dp->num_tx_rings; 3023 if (dp->xdp_prog) 3024 dp->num_stack_tx_rings -= dp->num_rx_rings; 3025 3026 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3027 3028 err = nfp_net_check_config(nn, dp, extack); 3029 if (err) 3030 goto exit_free_dp; 3031 3032 if (!netif_running(dp->netdev)) { 3033 nfp_net_dp_swap(nn, dp); 3034 err = 0; 3035 goto exit_free_dp; 3036 } 3037 3038 /* Prepare new rings */ 3039 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3040 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3041 if (err) { 3042 dp->num_r_vecs = r; 3043 goto err_cleanup_vecs; 3044 } 3045 } 3046 3047 err = nfp_net_rx_rings_prepare(nn, dp); 3048 if (err) 3049 goto err_cleanup_vecs; 3050 3051 err = nfp_net_tx_rings_prepare(nn, dp); 3052 if (err) 3053 goto err_free_rx; 3054 3055 /* Stop device, swap in new rings, try to start the firmware */ 3056 nfp_net_close_stack(nn); 3057 nfp_net_clear_config_and_disable(nn); 3058 3059 err = nfp_net_dp_swap_enable(nn, dp); 3060 if (err) { 3061 int err2; 3062 3063 nfp_net_clear_config_and_disable(nn); 3064 3065 /* Try with old configuration and old rings */ 3066 err2 = nfp_net_dp_swap_enable(nn, dp); 3067 if (err2) 3068 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3069 err, err2); 3070 } 3071 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3072 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3073 3074 nfp_net_rx_rings_free(dp); 3075 nfp_net_tx_rings_free(dp); 3076 3077 nfp_net_open_stack(nn); 3078 exit_free_dp: 3079 kfree(dp); 3080 3081 return err; 3082 3083 err_free_rx: 3084 nfp_net_rx_rings_free(dp); 3085 err_cleanup_vecs: 3086 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3087 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3088 kfree(dp); 3089 return err; 3090 } 3091 3092 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3093 { 3094 struct nfp_net *nn = netdev_priv(netdev); 3095 struct nfp_net_dp *dp; 3096 int err; 3097 3098 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3099 if (err) 3100 return err; 3101 3102 dp = nfp_net_clone_dp(nn); 3103 if (!dp) 3104 return -ENOMEM; 3105 3106 dp->mtu = new_mtu; 3107 3108 return nfp_net_ring_reconfig(nn, dp, NULL); 3109 } 3110 3111 static int 3112 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3113 { 3114 struct nfp_net *nn = netdev_priv(netdev); 3115 3116 /* Priority tagged packets with vlan id 0 are processed by the 3117 * NFP as untagged packets 3118 */ 3119 if (!vid) 3120 return 0; 3121 3122 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3123 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3124 ETH_P_8021Q); 3125 3126 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3127 } 3128 3129 static int 3130 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3131 { 3132 struct nfp_net *nn = netdev_priv(netdev); 3133 3134 /* Priority tagged packets with vlan id 0 are processed by the 3135 * NFP as untagged packets 3136 */ 3137 if (!vid) 3138 return 0; 3139 3140 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3141 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3142 ETH_P_8021Q); 3143 3144 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3145 } 3146 3147 static void nfp_net_stat64(struct net_device *netdev, 3148 struct rtnl_link_stats64 *stats) 3149 { 3150 struct nfp_net *nn = netdev_priv(netdev); 3151 int r; 3152 3153 /* Collect software stats */ 3154 for (r = 0; r < nn->max_r_vecs; r++) { 3155 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3156 u64 data[3]; 3157 unsigned int start; 3158 3159 do { 3160 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3161 data[0] = r_vec->rx_pkts; 3162 data[1] = r_vec->rx_bytes; 3163 data[2] = r_vec->rx_drops; 3164 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3165 stats->rx_packets += data[0]; 3166 stats->rx_bytes += data[1]; 3167 stats->rx_dropped += data[2]; 3168 3169 do { 3170 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3171 data[0] = r_vec->tx_pkts; 3172 data[1] = r_vec->tx_bytes; 3173 data[2] = r_vec->tx_errors; 3174 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3175 stats->tx_packets += data[0]; 3176 stats->tx_bytes += data[1]; 3177 stats->tx_errors += data[2]; 3178 } 3179 3180 /* Add in device stats */ 3181 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3182 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3183 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3184 3185 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3186 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3187 } 3188 3189 static int nfp_net_set_features(struct net_device *netdev, 3190 netdev_features_t features) 3191 { 3192 netdev_features_t changed = netdev->features ^ features; 3193 struct nfp_net *nn = netdev_priv(netdev); 3194 u32 new_ctrl; 3195 int err; 3196 3197 /* Assume this is not called with features we have not advertised */ 3198 3199 new_ctrl = nn->dp.ctrl; 3200 3201 if (changed & NETIF_F_RXCSUM) { 3202 if (features & NETIF_F_RXCSUM) 3203 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3204 else 3205 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3206 } 3207 3208 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3209 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3210 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3211 else 3212 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3213 } 3214 3215 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3216 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3217 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3218 NFP_NET_CFG_CTRL_LSO; 3219 else 3220 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3221 } 3222 3223 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3224 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3225 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3226 else 3227 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3228 } 3229 3230 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3231 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3232 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3233 else 3234 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3235 } 3236 3237 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3238 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3239 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3240 else 3241 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3242 } 3243 3244 if (changed & NETIF_F_SG) { 3245 if (features & NETIF_F_SG) 3246 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3247 else 3248 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3249 } 3250 3251 err = nfp_port_set_features(netdev, features); 3252 if (err) 3253 return err; 3254 3255 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3256 netdev->features, features, changed); 3257 3258 if (new_ctrl == nn->dp.ctrl) 3259 return 0; 3260 3261 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3262 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3263 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3264 if (err) 3265 return err; 3266 3267 nn->dp.ctrl = new_ctrl; 3268 3269 return 0; 3270 } 3271 3272 static netdev_features_t 3273 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3274 netdev_features_t features) 3275 { 3276 u8 l4_hdr; 3277 3278 /* We can't do TSO over double tagged packets (802.1AD) */ 3279 features &= vlan_features_check(skb, features); 3280 3281 if (!skb->encapsulation) 3282 return features; 3283 3284 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3285 if (skb_is_gso(skb)) { 3286 u32 hdrlen; 3287 3288 hdrlen = skb_inner_transport_header(skb) - skb->data + 3289 inner_tcp_hdrlen(skb); 3290 3291 /* Assume worst case scenario of having longest possible 3292 * metadata prepend - 8B 3293 */ 3294 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3295 features &= ~NETIF_F_GSO_MASK; 3296 } 3297 3298 /* VXLAN/GRE check */ 3299 switch (vlan_get_protocol(skb)) { 3300 case htons(ETH_P_IP): 3301 l4_hdr = ip_hdr(skb)->protocol; 3302 break; 3303 case htons(ETH_P_IPV6): 3304 l4_hdr = ipv6_hdr(skb)->nexthdr; 3305 break; 3306 default: 3307 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3308 } 3309 3310 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3311 skb->inner_protocol != htons(ETH_P_TEB) || 3312 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3313 (l4_hdr == IPPROTO_UDP && 3314 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3315 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3316 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3317 3318 return features; 3319 } 3320 3321 static int 3322 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3323 { 3324 struct nfp_net *nn = netdev_priv(netdev); 3325 int n; 3326 3327 if (nn->port) 3328 return nfp_port_get_phys_port_name(netdev, name, len); 3329 3330 if (nn->dp.is_vf || nn->vnic_no_name) 3331 return -EOPNOTSUPP; 3332 3333 n = snprintf(name, len, "n%d", nn->id); 3334 if (n >= len) 3335 return -EINVAL; 3336 3337 return 0; 3338 } 3339 3340 /** 3341 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3342 * @nn: NFP Net device to reconfigure 3343 * @idx: Index into the port table where new port should be written 3344 * @port: UDP port to configure (pass zero to remove VXLAN port) 3345 */ 3346 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3347 { 3348 int i; 3349 3350 nn->vxlan_ports[idx] = port; 3351 3352 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3353 return; 3354 3355 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3356 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3357 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3358 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3359 be16_to_cpu(nn->vxlan_ports[i])); 3360 3361 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3362 } 3363 3364 /** 3365 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3366 * @nn: NFP Network structure 3367 * @port: UDP port to look for 3368 * 3369 * Return: if the port is already in the table -- it's position; 3370 * if the port is not in the table -- free position to use; 3371 * if the table is full -- -ENOSPC. 3372 */ 3373 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3374 { 3375 int i, free_idx = -ENOSPC; 3376 3377 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3378 if (nn->vxlan_ports[i] == port) 3379 return i; 3380 if (!nn->vxlan_usecnt[i]) 3381 free_idx = i; 3382 } 3383 3384 return free_idx; 3385 } 3386 3387 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3388 struct udp_tunnel_info *ti) 3389 { 3390 struct nfp_net *nn = netdev_priv(netdev); 3391 int idx; 3392 3393 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3394 return; 3395 3396 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3397 if (idx == -ENOSPC) 3398 return; 3399 3400 if (!nn->vxlan_usecnt[idx]++) 3401 nfp_net_set_vxlan_port(nn, idx, ti->port); 3402 } 3403 3404 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3405 struct udp_tunnel_info *ti) 3406 { 3407 struct nfp_net *nn = netdev_priv(netdev); 3408 int idx; 3409 3410 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3411 return; 3412 3413 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3414 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3415 return; 3416 3417 if (!--nn->vxlan_usecnt[idx]) 3418 nfp_net_set_vxlan_port(nn, idx, 0); 3419 } 3420 3421 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3422 { 3423 struct bpf_prog *prog = bpf->prog; 3424 struct nfp_net_dp *dp; 3425 int err; 3426 3427 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3428 return -EBUSY; 3429 3430 if (!prog == !nn->dp.xdp_prog) { 3431 WRITE_ONCE(nn->dp.xdp_prog, prog); 3432 xdp_attachment_setup(&nn->xdp, bpf); 3433 return 0; 3434 } 3435 3436 dp = nfp_net_clone_dp(nn); 3437 if (!dp) 3438 return -ENOMEM; 3439 3440 dp->xdp_prog = prog; 3441 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3442 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3443 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3444 3445 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3446 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3447 if (err) 3448 return err; 3449 3450 xdp_attachment_setup(&nn->xdp, bpf); 3451 return 0; 3452 } 3453 3454 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3455 { 3456 int err; 3457 3458 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3459 return -EBUSY; 3460 3461 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3462 if (err) 3463 return err; 3464 3465 xdp_attachment_setup(&nn->xdp_hw, bpf); 3466 return 0; 3467 } 3468 3469 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3470 { 3471 struct nfp_net *nn = netdev_priv(netdev); 3472 3473 switch (xdp->command) { 3474 case XDP_SETUP_PROG: 3475 return nfp_net_xdp_setup_drv(nn, xdp); 3476 case XDP_SETUP_PROG_HW: 3477 return nfp_net_xdp_setup_hw(nn, xdp); 3478 case XDP_QUERY_PROG: 3479 return xdp_attachment_query(&nn->xdp, xdp); 3480 case XDP_QUERY_PROG_HW: 3481 return xdp_attachment_query(&nn->xdp_hw, xdp); 3482 default: 3483 return nfp_app_bpf(nn->app, nn, xdp); 3484 } 3485 } 3486 3487 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3488 { 3489 struct nfp_net *nn = netdev_priv(netdev); 3490 struct sockaddr *saddr = addr; 3491 int err; 3492 3493 err = eth_prepare_mac_addr_change(netdev, addr); 3494 if (err) 3495 return err; 3496 3497 nfp_net_write_mac_addr(nn, saddr->sa_data); 3498 3499 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3500 if (err) 3501 return err; 3502 3503 eth_commit_mac_addr_change(netdev, addr); 3504 3505 return 0; 3506 } 3507 3508 const struct net_device_ops nfp_net_netdev_ops = { 3509 .ndo_init = nfp_app_ndo_init, 3510 .ndo_uninit = nfp_app_ndo_uninit, 3511 .ndo_open = nfp_net_netdev_open, 3512 .ndo_stop = nfp_net_netdev_close, 3513 .ndo_start_xmit = nfp_net_tx, 3514 .ndo_get_stats64 = nfp_net_stat64, 3515 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3516 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3517 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3518 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3519 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3520 .ndo_get_vf_config = nfp_app_get_vf_config, 3521 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3522 .ndo_setup_tc = nfp_port_setup_tc, 3523 .ndo_tx_timeout = nfp_net_tx_timeout, 3524 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3525 .ndo_change_mtu = nfp_net_change_mtu, 3526 .ndo_set_mac_address = nfp_net_set_mac_address, 3527 .ndo_set_features = nfp_net_set_features, 3528 .ndo_features_check = nfp_net_features_check, 3529 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3530 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3531 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3532 .ndo_bpf = nfp_net_xdp, 3533 .ndo_get_port_parent_id = nfp_port_get_port_parent_id, 3534 .ndo_get_devlink = nfp_devlink_get_devlink, 3535 }; 3536 3537 /** 3538 * nfp_net_info() - Print general info about the NIC 3539 * @nn: NFP Net device to reconfigure 3540 */ 3541 void nfp_net_info(struct nfp_net *nn) 3542 { 3543 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3544 nn->dp.is_vf ? "VF " : "", 3545 nn->dp.num_tx_rings, nn->max_tx_rings, 3546 nn->dp.num_rx_rings, nn->max_rx_rings); 3547 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3548 nn->fw_ver.resv, nn->fw_ver.class, 3549 nn->fw_ver.major, nn->fw_ver.minor, 3550 nn->max_mtu); 3551 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3552 nn->cap, 3553 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3554 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3555 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3556 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3557 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3558 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3559 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3560 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3561 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3562 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3563 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3564 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3565 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3566 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3567 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3568 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3569 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3570 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3571 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3572 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3573 "RXCSUM_COMPLETE " : "", 3574 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3575 nfp_app_extra_cap(nn->app, nn)); 3576 } 3577 3578 /** 3579 * nfp_net_alloc() - Allocate netdev and related structure 3580 * @pdev: PCI device 3581 * @ctrl_bar: PCI IOMEM with vNIC config memory 3582 * @needs_netdev: Whether to allocate a netdev for this vNIC 3583 * @max_tx_rings: Maximum number of TX rings supported by device 3584 * @max_rx_rings: Maximum number of RX rings supported by device 3585 * 3586 * This function allocates a netdev device and fills in the initial 3587 * part of the @struct nfp_net structure. In case of control device 3588 * nfp_net structure is allocated without the netdev. 3589 * 3590 * Return: NFP Net device structure, or ERR_PTR on error. 3591 */ 3592 struct nfp_net * 3593 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3594 unsigned int max_tx_rings, unsigned int max_rx_rings) 3595 { 3596 struct nfp_net *nn; 3597 int err; 3598 3599 if (needs_netdev) { 3600 struct net_device *netdev; 3601 3602 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3603 max_tx_rings, max_rx_rings); 3604 if (!netdev) 3605 return ERR_PTR(-ENOMEM); 3606 3607 SET_NETDEV_DEV(netdev, &pdev->dev); 3608 nn = netdev_priv(netdev); 3609 nn->dp.netdev = netdev; 3610 } else { 3611 nn = vzalloc(sizeof(*nn)); 3612 if (!nn) 3613 return ERR_PTR(-ENOMEM); 3614 } 3615 3616 nn->dp.dev = &pdev->dev; 3617 nn->dp.ctrl_bar = ctrl_bar; 3618 nn->pdev = pdev; 3619 3620 nn->max_tx_rings = max_tx_rings; 3621 nn->max_rx_rings = max_rx_rings; 3622 3623 nn->dp.num_tx_rings = min_t(unsigned int, 3624 max_tx_rings, num_online_cpus()); 3625 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3626 netif_get_num_default_rss_queues()); 3627 3628 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3629 nn->dp.num_r_vecs = min_t(unsigned int, 3630 nn->dp.num_r_vecs, num_online_cpus()); 3631 3632 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3633 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3634 3635 spin_lock_init(&nn->reconfig_lock); 3636 spin_lock_init(&nn->link_status_lock); 3637 3638 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3639 3640 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3641 &nn->tlv_caps); 3642 if (err) 3643 goto err_free_nn; 3644 3645 return nn; 3646 3647 err_free_nn: 3648 if (nn->dp.netdev) 3649 free_netdev(nn->dp.netdev); 3650 else 3651 vfree(nn); 3652 return ERR_PTR(err); 3653 } 3654 3655 /** 3656 * nfp_net_free() - Undo what @nfp_net_alloc() did 3657 * @nn: NFP Net device to reconfigure 3658 */ 3659 void nfp_net_free(struct nfp_net *nn) 3660 { 3661 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3662 if (nn->dp.netdev) 3663 free_netdev(nn->dp.netdev); 3664 else 3665 vfree(nn); 3666 } 3667 3668 /** 3669 * nfp_net_rss_key_sz() - Get current size of the RSS key 3670 * @nn: NFP Net device instance 3671 * 3672 * Return: size of the RSS key for currently selected hash function. 3673 */ 3674 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3675 { 3676 switch (nn->rss_hfunc) { 3677 case ETH_RSS_HASH_TOP: 3678 return NFP_NET_CFG_RSS_KEY_SZ; 3679 case ETH_RSS_HASH_XOR: 3680 return 0; 3681 case ETH_RSS_HASH_CRC32: 3682 return 4; 3683 } 3684 3685 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3686 return 0; 3687 } 3688 3689 /** 3690 * nfp_net_rss_init() - Set the initial RSS parameters 3691 * @nn: NFP Net device to reconfigure 3692 */ 3693 static void nfp_net_rss_init(struct nfp_net *nn) 3694 { 3695 unsigned long func_bit, rss_cap_hfunc; 3696 u32 reg; 3697 3698 /* Read the RSS function capability and select first supported func */ 3699 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3700 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3701 if (!rss_cap_hfunc) 3702 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3703 NFP_NET_CFG_RSS_TOEPLITZ); 3704 3705 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3706 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3707 dev_warn(nn->dp.dev, 3708 "Bad RSS config, defaulting to Toeplitz hash\n"); 3709 func_bit = ETH_RSS_HASH_TOP_BIT; 3710 } 3711 nn->rss_hfunc = 1 << func_bit; 3712 3713 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3714 3715 nfp_net_rss_init_itbl(nn); 3716 3717 /* Enable IPv4/IPv6 TCP by default */ 3718 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3719 NFP_NET_CFG_RSS_IPV6_TCP | 3720 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3721 NFP_NET_CFG_RSS_MASK; 3722 } 3723 3724 /** 3725 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3726 * @nn: NFP Net device to reconfigure 3727 */ 3728 static void nfp_net_irqmod_init(struct nfp_net *nn) 3729 { 3730 nn->rx_coalesce_usecs = 50; 3731 nn->rx_coalesce_max_frames = 64; 3732 nn->tx_coalesce_usecs = 50; 3733 nn->tx_coalesce_max_frames = 64; 3734 } 3735 3736 static void nfp_net_netdev_init(struct nfp_net *nn) 3737 { 3738 struct net_device *netdev = nn->dp.netdev; 3739 3740 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3741 3742 netdev->mtu = nn->dp.mtu; 3743 3744 /* Advertise/enable offloads based on capabilities 3745 * 3746 * Note: netdev->features show the currently enabled features 3747 * and netdev->hw_features advertises which features are 3748 * supported. By default we enable most features. 3749 */ 3750 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3751 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3752 3753 netdev->hw_features = NETIF_F_HIGHDMA; 3754 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3755 netdev->hw_features |= NETIF_F_RXCSUM; 3756 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3757 } 3758 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3759 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3760 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3761 } 3762 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3763 netdev->hw_features |= NETIF_F_SG; 3764 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3765 } 3766 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3767 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3768 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3769 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3770 NFP_NET_CFG_CTRL_LSO; 3771 } 3772 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3773 netdev->hw_features |= NETIF_F_RXHASH; 3774 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 3775 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3776 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 3777 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 3778 } 3779 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3780 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3781 netdev->hw_features |= NETIF_F_GSO_GRE; 3782 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 3783 } 3784 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 3785 netdev->hw_enc_features = netdev->hw_features; 3786 3787 netdev->vlan_features = netdev->hw_features; 3788 3789 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3790 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3791 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3792 } 3793 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3794 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3795 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3796 } else { 3797 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3798 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3799 } 3800 } 3801 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3802 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3803 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3804 } 3805 3806 netdev->features = netdev->hw_features; 3807 3808 if (nfp_app_has_tc(nn->app) && nn->port) 3809 netdev->hw_features |= NETIF_F_HW_TC; 3810 3811 /* Advertise but disable TSO by default. */ 3812 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3813 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3814 3815 /* Finalise the netdev setup */ 3816 netdev->netdev_ops = &nfp_net_netdev_ops; 3817 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3818 3819 /* MTU range: 68 - hw-specific max */ 3820 netdev->min_mtu = ETH_MIN_MTU; 3821 netdev->max_mtu = nn->max_mtu; 3822 3823 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 3824 3825 netif_carrier_off(netdev); 3826 3827 nfp_net_set_ethtool_ops(netdev); 3828 } 3829 3830 static int nfp_net_read_caps(struct nfp_net *nn) 3831 { 3832 /* Get some of the read-only fields from the BAR */ 3833 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3834 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3835 3836 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3837 * we allow use of non-chained metadata if RSS(v1) is the only 3838 * advertised capability requiring metadata. 3839 */ 3840 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3841 !nn->dp.netdev || 3842 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3843 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3844 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3845 * it has the same meaning as RSSv2. 3846 */ 3847 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3848 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3849 3850 /* Determine RX packet/metadata boundary offset */ 3851 if (nn->fw_ver.major >= 2) { 3852 u32 reg; 3853 3854 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3855 if (reg > NFP_NET_MAX_PREPEND) { 3856 nn_err(nn, "Invalid rx offset: %d\n", reg); 3857 return -EINVAL; 3858 } 3859 nn->dp.rx_offset = reg; 3860 } else { 3861 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3862 } 3863 3864 /* For control vNICs mask out the capabilities app doesn't want. */ 3865 if (!nn->dp.netdev) 3866 nn->cap &= nn->app->type->ctrl_cap_mask; 3867 3868 return 0; 3869 } 3870 3871 /** 3872 * nfp_net_init() - Initialise/finalise the nfp_net structure 3873 * @nn: NFP Net device structure 3874 * 3875 * Return: 0 on success or negative errno on error. 3876 */ 3877 int nfp_net_init(struct nfp_net *nn) 3878 { 3879 int err; 3880 3881 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3882 3883 err = nfp_net_read_caps(nn); 3884 if (err) 3885 return err; 3886 3887 /* Set default MTU and Freelist buffer size */ 3888 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 3889 if (nn->app->ctrl_mtu <= nn->max_mtu) { 3890 nn->dp.mtu = nn->app->ctrl_mtu; 3891 } else { 3892 if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX) 3893 nn_warn(nn, "app requested MTU above max supported %u > %u\n", 3894 nn->app->ctrl_mtu, nn->max_mtu); 3895 nn->dp.mtu = nn->max_mtu; 3896 } 3897 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 3898 nn->dp.mtu = nn->max_mtu; 3899 } else { 3900 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3901 } 3902 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3903 3904 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 3905 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 3906 3907 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3908 nfp_net_rss_init(nn); 3909 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3910 NFP_NET_CFG_CTRL_RSS; 3911 } 3912 3913 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3914 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3915 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3916 3917 /* Allow IRQ moderation, if supported */ 3918 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3919 nfp_net_irqmod_init(nn); 3920 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3921 } 3922 3923 if (nn->dp.netdev) 3924 nfp_net_netdev_init(nn); 3925 3926 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3927 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3928 3929 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3930 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3931 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3932 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3933 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3934 NFP_NET_CFG_UPDATE_GEN); 3935 if (err) 3936 return err; 3937 3938 nfp_net_vecs_init(nn); 3939 3940 if (!nn->dp.netdev) 3941 return 0; 3942 return register_netdev(nn->dp.netdev); 3943 } 3944 3945 /** 3946 * nfp_net_clean() - Undo what nfp_net_init() did. 3947 * @nn: NFP Net device structure 3948 */ 3949 void nfp_net_clean(struct nfp_net *nn) 3950 { 3951 if (!nn->dp.netdev) 3952 return; 3953 3954 unregister_netdev(nn->dp.netdev); 3955 nfp_net_reconfig_wait_posted(nn); 3956 } 3957