1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 #include "crypto/fw.h" 51 52 /** 53 * nfp_net_get_fw_version() - Read and parse the FW version 54 * @fw_ver: Output fw_version structure to read to 55 * @ctrl_bar: Mapped address of the control BAR 56 */ 57 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 58 void __iomem *ctrl_bar) 59 { 60 u32 reg; 61 62 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 63 put_unaligned_le32(reg, fw_ver); 64 } 65 66 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 67 { 68 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 69 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 70 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 71 } 72 73 static void 74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 75 { 76 dma_sync_single_for_device(dp->dev, dma_addr, 77 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 78 dp->rx_dma_dir); 79 } 80 81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 82 { 83 dma_unmap_single_attrs(dp->dev, dma_addr, 84 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 85 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 86 } 87 88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 89 unsigned int len) 90 { 91 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 92 len, dp->rx_dma_dir); 93 } 94 95 /* Firmware reconfig 96 * 97 * Firmware reconfig may take a while so we have two versions of it - 98 * synchronous and asynchronous (posted). All synchronous callers are holding 99 * RTNL so we don't have to worry about serializing them. 100 */ 101 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 102 { 103 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 104 /* ensure update is written before pinging HW */ 105 nn_pci_flush(nn); 106 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 107 nn->reconfig_in_progress_update = update; 108 } 109 110 /* Pass 0 as update to run posted reconfigs. */ 111 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 112 { 113 update |= nn->reconfig_posted; 114 nn->reconfig_posted = 0; 115 116 nfp_net_reconfig_start(nn, update); 117 118 nn->reconfig_timer_active = true; 119 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 120 } 121 122 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 123 { 124 u32 reg; 125 126 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 127 if (reg == 0) 128 return true; 129 if (reg & NFP_NET_CFG_UPDATE_ERR) { 130 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 131 reg, nn->reconfig_in_progress_update, 132 nn_readl(nn, NFP_NET_CFG_CTRL)); 133 return true; 134 } else if (last_check) { 135 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 136 reg, nn->reconfig_in_progress_update, 137 nn_readl(nn, NFP_NET_CFG_CTRL)); 138 return true; 139 } 140 141 return false; 142 } 143 144 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 145 { 146 bool timed_out = false; 147 int i; 148 149 /* Poll update field, waiting for NFP to ack the config. 150 * Do an opportunistic wait-busy loop, afterward sleep. 151 */ 152 for (i = 0; i < 50; i++) { 153 if (nfp_net_reconfig_check_done(nn, false)) 154 return false; 155 udelay(4); 156 } 157 158 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 159 usleep_range(250, 500); 160 timed_out = time_is_before_eq_jiffies(deadline); 161 } 162 163 return timed_out; 164 } 165 166 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 167 { 168 if (__nfp_net_reconfig_wait(nn, deadline)) 169 return -EIO; 170 171 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 172 return -EIO; 173 174 return 0; 175 } 176 177 static void nfp_net_reconfig_timer(struct timer_list *t) 178 { 179 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 180 181 spin_lock_bh(&nn->reconfig_lock); 182 183 nn->reconfig_timer_active = false; 184 185 /* If sync caller is present it will take over from us */ 186 if (nn->reconfig_sync_present) 187 goto done; 188 189 /* Read reconfig status and report errors */ 190 nfp_net_reconfig_check_done(nn, true); 191 192 if (nn->reconfig_posted) 193 nfp_net_reconfig_start_async(nn, 0); 194 done: 195 spin_unlock_bh(&nn->reconfig_lock); 196 } 197 198 /** 199 * nfp_net_reconfig_post() - Post async reconfig request 200 * @nn: NFP Net device to reconfigure 201 * @update: The value for the update field in the BAR config 202 * 203 * Record FW reconfiguration request. Reconfiguration will be kicked off 204 * whenever reconfiguration machinery is idle. Multiple requests can be 205 * merged together! 206 */ 207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 208 { 209 spin_lock_bh(&nn->reconfig_lock); 210 211 /* Sync caller will kick off async reconf when it's done, just post */ 212 if (nn->reconfig_sync_present) { 213 nn->reconfig_posted |= update; 214 goto done; 215 } 216 217 /* Opportunistically check if the previous command is done */ 218 if (!nn->reconfig_timer_active || 219 nfp_net_reconfig_check_done(nn, false)) 220 nfp_net_reconfig_start_async(nn, update); 221 else 222 nn->reconfig_posted |= update; 223 done: 224 spin_unlock_bh(&nn->reconfig_lock); 225 } 226 227 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 228 { 229 bool cancelled_timer = false; 230 u32 pre_posted_requests; 231 232 spin_lock_bh(&nn->reconfig_lock); 233 234 WARN_ON(nn->reconfig_sync_present); 235 nn->reconfig_sync_present = true; 236 237 if (nn->reconfig_timer_active) { 238 nn->reconfig_timer_active = false; 239 cancelled_timer = true; 240 } 241 pre_posted_requests = nn->reconfig_posted; 242 nn->reconfig_posted = 0; 243 244 spin_unlock_bh(&nn->reconfig_lock); 245 246 if (cancelled_timer) { 247 del_timer_sync(&nn->reconfig_timer); 248 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 249 } 250 251 /* Run the posted reconfigs which were issued before we started */ 252 if (pre_posted_requests) { 253 nfp_net_reconfig_start(nn, pre_posted_requests); 254 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 255 } 256 } 257 258 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 259 { 260 nfp_net_reconfig_sync_enter(nn); 261 262 spin_lock_bh(&nn->reconfig_lock); 263 nn->reconfig_sync_present = false; 264 spin_unlock_bh(&nn->reconfig_lock); 265 } 266 267 /** 268 * __nfp_net_reconfig() - Reconfigure the firmware 269 * @nn: NFP Net device to reconfigure 270 * @update: The value for the update field in the BAR config 271 * 272 * Write the update word to the BAR and ping the reconfig queue. The 273 * poll until the firmware has acknowledged the update by zeroing the 274 * update word. 275 * 276 * Return: Negative errno on error, 0 on success 277 */ 278 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 279 { 280 int ret; 281 282 nfp_net_reconfig_sync_enter(nn); 283 284 nfp_net_reconfig_start(nn, update); 285 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 286 287 spin_lock_bh(&nn->reconfig_lock); 288 289 if (nn->reconfig_posted) 290 nfp_net_reconfig_start_async(nn, 0); 291 292 nn->reconfig_sync_present = false; 293 294 spin_unlock_bh(&nn->reconfig_lock); 295 296 return ret; 297 } 298 299 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 300 { 301 int ret; 302 303 nn_ctrl_bar_lock(nn); 304 ret = __nfp_net_reconfig(nn, update); 305 nn_ctrl_bar_unlock(nn); 306 307 return ret; 308 } 309 310 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 311 { 312 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 313 nn_err(nn, "mailbox too small for %u of data (%u)\n", 314 data_size, nn->tlv_caps.mbox_len); 315 return -EIO; 316 } 317 318 nn_ctrl_bar_lock(nn); 319 return 0; 320 } 321 322 /** 323 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 324 * @nn: NFP Net device to reconfigure 325 * @mbox_cmd: The value for the mailbox command 326 * 327 * Helper function for mailbox updates 328 * 329 * Return: Negative errno on error, 0 on success 330 */ 331 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 332 { 333 u32 mbox = nn->tlv_caps.mbox_off; 334 int ret; 335 336 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 337 338 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 339 if (ret) { 340 nn_err(nn, "Mailbox update error\n"); 341 return ret; 342 } 343 344 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 345 } 346 347 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 348 { 349 u32 mbox = nn->tlv_caps.mbox_off; 350 351 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 352 353 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 354 } 355 356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 357 { 358 u32 mbox = nn->tlv_caps.mbox_off; 359 360 nfp_net_reconfig_wait_posted(nn); 361 362 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 363 } 364 365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 366 { 367 int ret; 368 369 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 370 nn_ctrl_bar_unlock(nn); 371 return ret; 372 } 373 374 /* Interrupt configuration and handling 375 */ 376 377 /** 378 * nfp_net_irq_unmask() - Unmask automasked interrupt 379 * @nn: NFP Network structure 380 * @entry_nr: MSI-X table entry 381 * 382 * Clear the ICR for the IRQ entry. 383 */ 384 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 385 { 386 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 387 nn_pci_flush(nn); 388 } 389 390 /** 391 * nfp_net_irqs_alloc() - allocates MSI-X irqs 392 * @pdev: PCI device structure 393 * @irq_entries: Array to be initialized and used to hold the irq entries 394 * @min_irqs: Minimal acceptable number of interrupts 395 * @wanted_irqs: Target number of interrupts to allocate 396 * 397 * Return: Number of irqs obtained or 0 on error. 398 */ 399 unsigned int 400 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 401 unsigned int min_irqs, unsigned int wanted_irqs) 402 { 403 unsigned int i; 404 int got_irqs; 405 406 for (i = 0; i < wanted_irqs; i++) 407 irq_entries[i].entry = i; 408 409 got_irqs = pci_enable_msix_range(pdev, irq_entries, 410 min_irqs, wanted_irqs); 411 if (got_irqs < 0) { 412 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 413 min_irqs, wanted_irqs, got_irqs); 414 return 0; 415 } 416 417 if (got_irqs < wanted_irqs) 418 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 419 wanted_irqs, got_irqs); 420 421 return got_irqs; 422 } 423 424 /** 425 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 426 * @nn: NFP Network structure 427 * @irq_entries: Table of allocated interrupts 428 * @n: Size of @irq_entries (number of entries to grab) 429 * 430 * After interrupts are allocated with nfp_net_irqs_alloc() this function 431 * should be called to assign them to a specific netdev (port). 432 */ 433 void 434 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 435 unsigned int n) 436 { 437 struct nfp_net_dp *dp = &nn->dp; 438 439 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 440 dp->num_r_vecs = nn->max_r_vecs; 441 442 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 443 444 if (dp->num_rx_rings > dp->num_r_vecs || 445 dp->num_tx_rings > dp->num_r_vecs) 446 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 447 dp->num_rx_rings, dp->num_tx_rings, 448 dp->num_r_vecs); 449 450 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 451 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 452 dp->num_stack_tx_rings = dp->num_tx_rings; 453 } 454 455 /** 456 * nfp_net_irqs_disable() - Disable interrupts 457 * @pdev: PCI device structure 458 * 459 * Undoes what @nfp_net_irqs_alloc() does. 460 */ 461 void nfp_net_irqs_disable(struct pci_dev *pdev) 462 { 463 pci_disable_msix(pdev); 464 } 465 466 /** 467 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 468 * @irq: Interrupt 469 * @data: Opaque data structure 470 * 471 * Return: Indicate if the interrupt has been handled. 472 */ 473 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 474 { 475 struct nfp_net_r_vector *r_vec = data; 476 477 /* Currently we cannot tell if it's a rx or tx interrupt, 478 * since dim does not need accurate event_ctr to calculate, 479 * we just use this counter for both rx and tx dim. 480 */ 481 r_vec->event_ctr++; 482 483 napi_schedule_irqoff(&r_vec->napi); 484 485 /* The FW auto-masks any interrupt, either via the MASK bit in 486 * the MSI-X table or via the per entry ICR field. So there 487 * is no need to disable interrupts here. 488 */ 489 return IRQ_HANDLED; 490 } 491 492 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 493 { 494 struct nfp_net_r_vector *r_vec = data; 495 496 tasklet_schedule(&r_vec->tasklet); 497 498 return IRQ_HANDLED; 499 } 500 501 /** 502 * nfp_net_read_link_status() - Reread link status from control BAR 503 * @nn: NFP Network structure 504 */ 505 static void nfp_net_read_link_status(struct nfp_net *nn) 506 { 507 unsigned long flags; 508 bool link_up; 509 u32 sts; 510 511 spin_lock_irqsave(&nn->link_status_lock, flags); 512 513 sts = nn_readl(nn, NFP_NET_CFG_STS); 514 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 515 516 if (nn->link_up == link_up) 517 goto out; 518 519 nn->link_up = link_up; 520 if (nn->port) 521 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 522 523 if (nn->link_up) { 524 netif_carrier_on(nn->dp.netdev); 525 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 526 } else { 527 netif_carrier_off(nn->dp.netdev); 528 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 529 } 530 out: 531 spin_unlock_irqrestore(&nn->link_status_lock, flags); 532 } 533 534 /** 535 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 536 * @irq: Interrupt 537 * @data: Opaque data structure 538 * 539 * Return: Indicate if the interrupt has been handled. 540 */ 541 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 542 { 543 struct nfp_net *nn = data; 544 struct msix_entry *entry; 545 546 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 547 548 nfp_net_read_link_status(nn); 549 550 nfp_net_irq_unmask(nn, entry->entry); 551 552 return IRQ_HANDLED; 553 } 554 555 /** 556 * nfp_net_irq_exn() - Interrupt service routine for exceptions 557 * @irq: Interrupt 558 * @data: Opaque data structure 559 * 560 * Return: Indicate if the interrupt has been handled. 561 */ 562 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 563 { 564 struct nfp_net *nn = data; 565 566 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 567 /* XXX TO BE IMPLEMENTED */ 568 return IRQ_HANDLED; 569 } 570 571 /** 572 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 573 * @tx_ring: TX ring structure 574 * @r_vec: IRQ vector servicing this ring 575 * @idx: Ring index 576 * @is_xdp: Is this an XDP TX ring? 577 */ 578 static void 579 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 580 struct nfp_net_r_vector *r_vec, unsigned int idx, 581 bool is_xdp) 582 { 583 struct nfp_net *nn = r_vec->nfp_net; 584 585 tx_ring->idx = idx; 586 tx_ring->r_vec = r_vec; 587 tx_ring->is_xdp = is_xdp; 588 u64_stats_init(&tx_ring->r_vec->tx_sync); 589 590 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 591 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 592 } 593 594 /** 595 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 596 * @rx_ring: RX ring structure 597 * @r_vec: IRQ vector servicing this ring 598 * @idx: Ring index 599 */ 600 static void 601 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 602 struct nfp_net_r_vector *r_vec, unsigned int idx) 603 { 604 struct nfp_net *nn = r_vec->nfp_net; 605 606 rx_ring->idx = idx; 607 rx_ring->r_vec = r_vec; 608 u64_stats_init(&rx_ring->r_vec->rx_sync); 609 610 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 611 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 612 } 613 614 /** 615 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 616 * @nn: NFP Network structure 617 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 618 * @format: printf-style format to construct the interrupt name 619 * @name: Pointer to allocated space for interrupt name 620 * @name_sz: Size of space for interrupt name 621 * @vector_idx: Index of MSI-X vector used for this interrupt 622 * @handler: IRQ handler to register for this interrupt 623 */ 624 static int 625 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 626 const char *format, char *name, size_t name_sz, 627 unsigned int vector_idx, irq_handler_t handler) 628 { 629 struct msix_entry *entry; 630 int err; 631 632 entry = &nn->irq_entries[vector_idx]; 633 634 snprintf(name, name_sz, format, nfp_net_name(nn)); 635 err = request_irq(entry->vector, handler, 0, name, nn); 636 if (err) { 637 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 638 entry->vector, err); 639 return err; 640 } 641 nn_writeb(nn, ctrl_offset, entry->entry); 642 nfp_net_irq_unmask(nn, entry->entry); 643 644 return 0; 645 } 646 647 /** 648 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 649 * @nn: NFP Network structure 650 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 651 * @vector_idx: Index of MSI-X vector used for this interrupt 652 */ 653 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 654 unsigned int vector_idx) 655 { 656 nn_writeb(nn, ctrl_offset, 0xff); 657 nn_pci_flush(nn); 658 free_irq(nn->irq_entries[vector_idx].vector, nn); 659 } 660 661 /* Transmit 662 * 663 * One queue controller peripheral queue is used for transmit. The 664 * driver en-queues packets for transmit by advancing the write 665 * pointer. The device indicates that packets have transmitted by 666 * advancing the read pointer. The driver maintains a local copy of 667 * the read and write pointer in @struct nfp_net_tx_ring. The driver 668 * keeps @wr_p in sync with the queue controller write pointer and can 669 * determine how many packets have been transmitted by comparing its 670 * copy of the read pointer @rd_p with the read pointer maintained by 671 * the queue controller peripheral. 672 */ 673 674 /** 675 * nfp_net_tx_full() - Check if the TX ring is full 676 * @tx_ring: TX ring to check 677 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 678 * 679 * This function checks, based on the *host copy* of read/write 680 * pointer if a given TX ring is full. The real TX queue may have 681 * some newly made available slots. 682 * 683 * Return: True if the ring is full. 684 */ 685 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 686 { 687 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 688 } 689 690 /* Wrappers for deciding when to stop and restart TX queues */ 691 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 692 { 693 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 694 } 695 696 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 697 { 698 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 699 } 700 701 /** 702 * nfp_net_tx_ring_stop() - stop tx ring 703 * @nd_q: netdev queue 704 * @tx_ring: driver tx queue structure 705 * 706 * Safely stop TX ring. Remember that while we are running .start_xmit() 707 * someone else may be cleaning the TX ring completions so we need to be 708 * extra careful here. 709 */ 710 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 711 struct nfp_net_tx_ring *tx_ring) 712 { 713 netif_tx_stop_queue(nd_q); 714 715 /* We can race with the TX completion out of NAPI so recheck */ 716 smp_mb(); 717 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 718 netif_tx_start_queue(nd_q); 719 } 720 721 /** 722 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 723 * @r_vec: per-ring structure 724 * @txbuf: Pointer to driver soft TX descriptor 725 * @txd: Pointer to HW TX descriptor 726 * @skb: Pointer to SKB 727 * @md_bytes: Prepend length 728 * 729 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 730 * Return error on packet header greater than maximum supported LSO header size. 731 */ 732 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 733 struct nfp_net_tx_buf *txbuf, 734 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 735 u32 md_bytes) 736 { 737 u32 l3_offset, l4_offset, hdrlen; 738 u16 mss; 739 740 if (!skb_is_gso(skb)) 741 return; 742 743 if (!skb->encapsulation) { 744 l3_offset = skb_network_offset(skb); 745 l4_offset = skb_transport_offset(skb); 746 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 747 } else { 748 l3_offset = skb_inner_network_offset(skb); 749 l4_offset = skb_inner_transport_offset(skb); 750 hdrlen = skb_inner_transport_header(skb) - skb->data + 751 inner_tcp_hdrlen(skb); 752 } 753 754 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 755 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 756 757 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 758 txd->l3_offset = l3_offset - md_bytes; 759 txd->l4_offset = l4_offset - md_bytes; 760 txd->lso_hdrlen = hdrlen - md_bytes; 761 txd->mss = cpu_to_le16(mss); 762 txd->flags |= PCIE_DESC_TX_LSO; 763 764 u64_stats_update_begin(&r_vec->tx_sync); 765 r_vec->tx_lso++; 766 u64_stats_update_end(&r_vec->tx_sync); 767 } 768 769 /** 770 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 771 * @dp: NFP Net data path struct 772 * @r_vec: per-ring structure 773 * @txbuf: Pointer to driver soft TX descriptor 774 * @txd: Pointer to TX descriptor 775 * @skb: Pointer to SKB 776 * 777 * This function sets the TX checksum flags in the TX descriptor based 778 * on the configuration and the protocol of the packet to be transmitted. 779 */ 780 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 781 struct nfp_net_r_vector *r_vec, 782 struct nfp_net_tx_buf *txbuf, 783 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 784 { 785 struct ipv6hdr *ipv6h; 786 struct iphdr *iph; 787 u8 l4_hdr; 788 789 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 790 return; 791 792 if (skb->ip_summed != CHECKSUM_PARTIAL) 793 return; 794 795 txd->flags |= PCIE_DESC_TX_CSUM; 796 if (skb->encapsulation) 797 txd->flags |= PCIE_DESC_TX_ENCAP; 798 799 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 800 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 801 802 if (iph->version == 4) { 803 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 804 l4_hdr = iph->protocol; 805 } else if (ipv6h->version == 6) { 806 l4_hdr = ipv6h->nexthdr; 807 } else { 808 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 809 return; 810 } 811 812 switch (l4_hdr) { 813 case IPPROTO_TCP: 814 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 815 break; 816 case IPPROTO_UDP: 817 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 818 break; 819 default: 820 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 821 return; 822 } 823 824 u64_stats_update_begin(&r_vec->tx_sync); 825 if (skb->encapsulation) 826 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 827 else 828 r_vec->hw_csum_tx += txbuf->pkt_cnt; 829 u64_stats_update_end(&r_vec->tx_sync); 830 } 831 832 static struct sk_buff * 833 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 834 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 835 { 836 #ifdef CONFIG_TLS_DEVICE 837 struct nfp_net_tls_offload_ctx *ntls; 838 struct sk_buff *nskb; 839 bool resync_pending; 840 u32 datalen, seq; 841 842 if (likely(!dp->ktls_tx)) 843 return skb; 844 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 845 return skb; 846 847 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 848 seq = ntohl(tcp_hdr(skb)->seq); 849 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 850 resync_pending = tls_offload_tx_resync_pending(skb->sk); 851 if (unlikely(resync_pending || ntls->next_seq != seq)) { 852 /* Pure ACK out of order already */ 853 if (!datalen) 854 return skb; 855 856 u64_stats_update_begin(&r_vec->tx_sync); 857 r_vec->tls_tx_fallback++; 858 u64_stats_update_end(&r_vec->tx_sync); 859 860 nskb = tls_encrypt_skb(skb); 861 if (!nskb) { 862 u64_stats_update_begin(&r_vec->tx_sync); 863 r_vec->tls_tx_no_fallback++; 864 u64_stats_update_end(&r_vec->tx_sync); 865 return NULL; 866 } 867 /* encryption wasn't necessary */ 868 if (nskb == skb) 869 return skb; 870 /* we don't re-check ring space */ 871 if (unlikely(skb_is_nonlinear(nskb))) { 872 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 873 u64_stats_update_begin(&r_vec->tx_sync); 874 r_vec->tx_errors++; 875 u64_stats_update_end(&r_vec->tx_sync); 876 dev_kfree_skb_any(nskb); 877 return NULL; 878 } 879 880 /* jump forward, a TX may have gotten lost, need to sync TX */ 881 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 882 tls_offload_tx_resync_request(nskb->sk, seq, 883 ntls->next_seq); 884 885 *nr_frags = 0; 886 return nskb; 887 } 888 889 if (datalen) { 890 u64_stats_update_begin(&r_vec->tx_sync); 891 if (!skb_is_gso(skb)) 892 r_vec->hw_tls_tx++; 893 else 894 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 895 u64_stats_update_end(&r_vec->tx_sync); 896 } 897 898 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 899 ntls->next_seq += datalen; 900 #endif 901 return skb; 902 } 903 904 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 905 { 906 #ifdef CONFIG_TLS_DEVICE 907 struct nfp_net_tls_offload_ctx *ntls; 908 u32 datalen, seq; 909 910 if (!tls_handle) 911 return; 912 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 913 return; 914 915 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 916 seq = ntohl(tcp_hdr(skb)->seq); 917 918 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 919 if (ntls->next_seq == seq + datalen) 920 ntls->next_seq = seq; 921 else 922 WARN_ON_ONCE(1); 923 #endif 924 } 925 926 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 927 { 928 wmb(); 929 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 930 tx_ring->wr_ptr_add = 0; 931 } 932 933 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 934 { 935 struct metadata_dst *md_dst = skb_metadata_dst(skb); 936 unsigned char *data; 937 u32 meta_id = 0; 938 int md_bytes; 939 940 if (likely(!md_dst && !tls_handle)) 941 return 0; 942 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 943 if (!tls_handle) 944 return 0; 945 md_dst = NULL; 946 } 947 948 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 949 950 if (unlikely(skb_cow_head(skb, md_bytes))) 951 return -ENOMEM; 952 953 meta_id = 0; 954 data = skb_push(skb, md_bytes) + md_bytes; 955 if (md_dst) { 956 data -= 4; 957 put_unaligned_be32(md_dst->u.port_info.port_id, data); 958 meta_id = NFP_NET_META_PORTID; 959 } 960 if (tls_handle) { 961 /* conn handle is opaque, we just use u64 to be able to quickly 962 * compare it to zero 963 */ 964 data -= 8; 965 memcpy(data, &tls_handle, sizeof(tls_handle)); 966 meta_id <<= NFP_NET_META_FIELD_SIZE; 967 meta_id |= NFP_NET_META_CONN_HANDLE; 968 } 969 970 data -= 4; 971 put_unaligned_be32(meta_id, data); 972 973 return md_bytes; 974 } 975 976 /** 977 * nfp_net_tx() - Main transmit entry point 978 * @skb: SKB to transmit 979 * @netdev: netdev structure 980 * 981 * Return: NETDEV_TX_OK on success. 982 */ 983 static netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 984 { 985 struct nfp_net *nn = netdev_priv(netdev); 986 const skb_frag_t *frag; 987 int f, nr_frags, wr_idx, md_bytes; 988 struct nfp_net_tx_ring *tx_ring; 989 struct nfp_net_r_vector *r_vec; 990 struct nfp_net_tx_buf *txbuf; 991 struct nfp_net_tx_desc *txd; 992 struct netdev_queue *nd_q; 993 struct nfp_net_dp *dp; 994 dma_addr_t dma_addr; 995 unsigned int fsize; 996 u64 tls_handle = 0; 997 u16 qidx; 998 999 dp = &nn->dp; 1000 qidx = skb_get_queue_mapping(skb); 1001 tx_ring = &dp->tx_rings[qidx]; 1002 r_vec = tx_ring->r_vec; 1003 1004 nr_frags = skb_shinfo(skb)->nr_frags; 1005 1006 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 1007 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 1008 qidx, tx_ring->wr_p, tx_ring->rd_p); 1009 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 1010 netif_tx_stop_queue(nd_q); 1011 nfp_net_tx_xmit_more_flush(tx_ring); 1012 u64_stats_update_begin(&r_vec->tx_sync); 1013 r_vec->tx_busy++; 1014 u64_stats_update_end(&r_vec->tx_sync); 1015 return NETDEV_TX_BUSY; 1016 } 1017 1018 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 1019 if (unlikely(!skb)) { 1020 nfp_net_tx_xmit_more_flush(tx_ring); 1021 return NETDEV_TX_OK; 1022 } 1023 1024 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 1025 if (unlikely(md_bytes < 0)) 1026 goto err_flush; 1027 1028 /* Start with the head skbuf */ 1029 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1030 DMA_TO_DEVICE); 1031 if (dma_mapping_error(dp->dev, dma_addr)) 1032 goto err_dma_err; 1033 1034 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1035 1036 /* Stash the soft descriptor of the head then initialize it */ 1037 txbuf = &tx_ring->txbufs[wr_idx]; 1038 txbuf->skb = skb; 1039 txbuf->dma_addr = dma_addr; 1040 txbuf->fidx = -1; 1041 txbuf->pkt_cnt = 1; 1042 txbuf->real_len = skb->len; 1043 1044 /* Build TX descriptor */ 1045 txd = &tx_ring->txds[wr_idx]; 1046 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1047 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1048 nfp_desc_set_dma_addr(txd, dma_addr); 1049 txd->data_len = cpu_to_le16(skb->len); 1050 1051 txd->flags = 0; 1052 txd->mss = 0; 1053 txd->lso_hdrlen = 0; 1054 1055 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1056 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1057 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1058 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1059 txd->flags |= PCIE_DESC_TX_VLAN; 1060 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1061 } 1062 1063 /* Gather DMA */ 1064 if (nr_frags > 0) { 1065 __le64 second_half; 1066 1067 /* all descs must match except for in addr, length and eop */ 1068 second_half = txd->vals8[1]; 1069 1070 for (f = 0; f < nr_frags; f++) { 1071 frag = &skb_shinfo(skb)->frags[f]; 1072 fsize = skb_frag_size(frag); 1073 1074 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1075 fsize, DMA_TO_DEVICE); 1076 if (dma_mapping_error(dp->dev, dma_addr)) 1077 goto err_unmap; 1078 1079 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1080 tx_ring->txbufs[wr_idx].skb = skb; 1081 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1082 tx_ring->txbufs[wr_idx].fidx = f; 1083 1084 txd = &tx_ring->txds[wr_idx]; 1085 txd->dma_len = cpu_to_le16(fsize); 1086 nfp_desc_set_dma_addr(txd, dma_addr); 1087 txd->offset_eop = md_bytes | 1088 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1089 txd->vals8[1] = second_half; 1090 } 1091 1092 u64_stats_update_begin(&r_vec->tx_sync); 1093 r_vec->tx_gather++; 1094 u64_stats_update_end(&r_vec->tx_sync); 1095 } 1096 1097 skb_tx_timestamp(skb); 1098 1099 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1100 1101 tx_ring->wr_p += nr_frags + 1; 1102 if (nfp_net_tx_ring_should_stop(tx_ring)) 1103 nfp_net_tx_ring_stop(nd_q, tx_ring); 1104 1105 tx_ring->wr_ptr_add += nr_frags + 1; 1106 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1107 nfp_net_tx_xmit_more_flush(tx_ring); 1108 1109 return NETDEV_TX_OK; 1110 1111 err_unmap: 1112 while (--f >= 0) { 1113 frag = &skb_shinfo(skb)->frags[f]; 1114 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1115 skb_frag_size(frag), DMA_TO_DEVICE); 1116 tx_ring->txbufs[wr_idx].skb = NULL; 1117 tx_ring->txbufs[wr_idx].dma_addr = 0; 1118 tx_ring->txbufs[wr_idx].fidx = -2; 1119 wr_idx = wr_idx - 1; 1120 if (wr_idx < 0) 1121 wr_idx += tx_ring->cnt; 1122 } 1123 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1124 skb_headlen(skb), DMA_TO_DEVICE); 1125 tx_ring->txbufs[wr_idx].skb = NULL; 1126 tx_ring->txbufs[wr_idx].dma_addr = 0; 1127 tx_ring->txbufs[wr_idx].fidx = -2; 1128 err_dma_err: 1129 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1130 err_flush: 1131 nfp_net_tx_xmit_more_flush(tx_ring); 1132 u64_stats_update_begin(&r_vec->tx_sync); 1133 r_vec->tx_errors++; 1134 u64_stats_update_end(&r_vec->tx_sync); 1135 nfp_net_tls_tx_undo(skb, tls_handle); 1136 dev_kfree_skb_any(skb); 1137 return NETDEV_TX_OK; 1138 } 1139 1140 /** 1141 * nfp_net_tx_complete() - Handled completed TX packets 1142 * @tx_ring: TX ring structure 1143 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1144 */ 1145 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1146 { 1147 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1148 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1149 struct netdev_queue *nd_q; 1150 u32 done_pkts = 0, done_bytes = 0; 1151 u32 qcp_rd_p; 1152 int todo; 1153 1154 if (tx_ring->wr_p == tx_ring->rd_p) 1155 return; 1156 1157 /* Work out how many descriptors have been transmitted */ 1158 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1159 1160 if (qcp_rd_p == tx_ring->qcp_rd_p) 1161 return; 1162 1163 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1164 1165 while (todo--) { 1166 const skb_frag_t *frag; 1167 struct nfp_net_tx_buf *tx_buf; 1168 struct sk_buff *skb; 1169 int fidx, nr_frags; 1170 int idx; 1171 1172 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1173 tx_buf = &tx_ring->txbufs[idx]; 1174 1175 skb = tx_buf->skb; 1176 if (!skb) 1177 continue; 1178 1179 nr_frags = skb_shinfo(skb)->nr_frags; 1180 fidx = tx_buf->fidx; 1181 1182 if (fidx == -1) { 1183 /* unmap head */ 1184 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1185 skb_headlen(skb), DMA_TO_DEVICE); 1186 1187 done_pkts += tx_buf->pkt_cnt; 1188 done_bytes += tx_buf->real_len; 1189 } else { 1190 /* unmap fragment */ 1191 frag = &skb_shinfo(skb)->frags[fidx]; 1192 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1193 skb_frag_size(frag), DMA_TO_DEVICE); 1194 } 1195 1196 /* check for last gather fragment */ 1197 if (fidx == nr_frags - 1) 1198 napi_consume_skb(skb, budget); 1199 1200 tx_buf->dma_addr = 0; 1201 tx_buf->skb = NULL; 1202 tx_buf->fidx = -2; 1203 } 1204 1205 tx_ring->qcp_rd_p = qcp_rd_p; 1206 1207 u64_stats_update_begin(&r_vec->tx_sync); 1208 r_vec->tx_bytes += done_bytes; 1209 r_vec->tx_pkts += done_pkts; 1210 u64_stats_update_end(&r_vec->tx_sync); 1211 1212 if (!dp->netdev) 1213 return; 1214 1215 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1216 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1217 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1218 /* Make sure TX thread will see updated tx_ring->rd_p */ 1219 smp_mb(); 1220 1221 if (unlikely(netif_tx_queue_stopped(nd_q))) 1222 netif_tx_wake_queue(nd_q); 1223 } 1224 1225 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1226 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1227 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1228 } 1229 1230 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1231 { 1232 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1233 u32 done_pkts = 0, done_bytes = 0; 1234 bool done_all; 1235 int idx, todo; 1236 u32 qcp_rd_p; 1237 1238 /* Work out how many descriptors have been transmitted */ 1239 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1240 1241 if (qcp_rd_p == tx_ring->qcp_rd_p) 1242 return true; 1243 1244 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1245 1246 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1247 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1248 1249 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1250 1251 done_pkts = todo; 1252 while (todo--) { 1253 idx = D_IDX(tx_ring, tx_ring->rd_p); 1254 tx_ring->rd_p++; 1255 1256 done_bytes += tx_ring->txbufs[idx].real_len; 1257 } 1258 1259 u64_stats_update_begin(&r_vec->tx_sync); 1260 r_vec->tx_bytes += done_bytes; 1261 r_vec->tx_pkts += done_pkts; 1262 u64_stats_update_end(&r_vec->tx_sync); 1263 1264 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1265 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1266 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1267 1268 return done_all; 1269 } 1270 1271 /** 1272 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1273 * @dp: NFP Net data path struct 1274 * @tx_ring: TX ring structure 1275 * 1276 * Assumes that the device is stopped, must be idempotent. 1277 */ 1278 static void 1279 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1280 { 1281 const skb_frag_t *frag; 1282 struct netdev_queue *nd_q; 1283 1284 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1285 struct nfp_net_tx_buf *tx_buf; 1286 struct sk_buff *skb; 1287 int idx, nr_frags; 1288 1289 idx = D_IDX(tx_ring, tx_ring->rd_p); 1290 tx_buf = &tx_ring->txbufs[idx]; 1291 1292 skb = tx_ring->txbufs[idx].skb; 1293 nr_frags = skb_shinfo(skb)->nr_frags; 1294 1295 if (tx_buf->fidx == -1) { 1296 /* unmap head */ 1297 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1298 skb_headlen(skb), DMA_TO_DEVICE); 1299 } else { 1300 /* unmap fragment */ 1301 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1302 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1303 skb_frag_size(frag), DMA_TO_DEVICE); 1304 } 1305 1306 /* check for last gather fragment */ 1307 if (tx_buf->fidx == nr_frags - 1) 1308 dev_kfree_skb_any(skb); 1309 1310 tx_buf->dma_addr = 0; 1311 tx_buf->skb = NULL; 1312 tx_buf->fidx = -2; 1313 1314 tx_ring->qcp_rd_p++; 1315 tx_ring->rd_p++; 1316 } 1317 1318 memset(tx_ring->txds, 0, tx_ring->size); 1319 tx_ring->wr_p = 0; 1320 tx_ring->rd_p = 0; 1321 tx_ring->qcp_rd_p = 0; 1322 tx_ring->wr_ptr_add = 0; 1323 1324 if (tx_ring->is_xdp || !dp->netdev) 1325 return; 1326 1327 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1328 netdev_tx_reset_queue(nd_q); 1329 } 1330 1331 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 1332 { 1333 struct nfp_net *nn = netdev_priv(netdev); 1334 1335 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 1336 } 1337 1338 /* Receive processing 1339 */ 1340 static unsigned int 1341 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1342 { 1343 unsigned int fl_bufsz; 1344 1345 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1346 fl_bufsz += dp->rx_dma_off; 1347 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1348 fl_bufsz += NFP_NET_MAX_PREPEND; 1349 else 1350 fl_bufsz += dp->rx_offset; 1351 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1352 1353 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1354 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1355 1356 return fl_bufsz; 1357 } 1358 1359 static void 1360 nfp_net_free_frag(void *frag, bool xdp) 1361 { 1362 if (!xdp) 1363 skb_free_frag(frag); 1364 else 1365 __free_page(virt_to_page(frag)); 1366 } 1367 1368 /** 1369 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1370 * @dp: NFP Net data path struct 1371 * @dma_addr: Pointer to storage for DMA address (output param) 1372 * 1373 * This function will allcate a new page frag, map it for DMA. 1374 * 1375 * Return: allocated page frag or NULL on failure. 1376 */ 1377 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1378 { 1379 void *frag; 1380 1381 if (!dp->xdp_prog) { 1382 frag = netdev_alloc_frag(dp->fl_bufsz); 1383 } else { 1384 struct page *page; 1385 1386 page = alloc_page(GFP_KERNEL); 1387 frag = page ? page_address(page) : NULL; 1388 } 1389 if (!frag) { 1390 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1391 return NULL; 1392 } 1393 1394 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1395 if (dma_mapping_error(dp->dev, *dma_addr)) { 1396 nfp_net_free_frag(frag, dp->xdp_prog); 1397 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1398 return NULL; 1399 } 1400 1401 return frag; 1402 } 1403 1404 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1405 { 1406 void *frag; 1407 1408 if (!dp->xdp_prog) { 1409 frag = napi_alloc_frag(dp->fl_bufsz); 1410 if (unlikely(!frag)) 1411 return NULL; 1412 } else { 1413 struct page *page; 1414 1415 page = dev_alloc_page(); 1416 if (unlikely(!page)) 1417 return NULL; 1418 frag = page_address(page); 1419 } 1420 1421 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1422 if (dma_mapping_error(dp->dev, *dma_addr)) { 1423 nfp_net_free_frag(frag, dp->xdp_prog); 1424 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1425 return NULL; 1426 } 1427 1428 return frag; 1429 } 1430 1431 /** 1432 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1433 * @dp: NFP Net data path struct 1434 * @rx_ring: RX ring structure 1435 * @frag: page fragment buffer 1436 * @dma_addr: DMA address of skb mapping 1437 */ 1438 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1439 struct nfp_net_rx_ring *rx_ring, 1440 void *frag, dma_addr_t dma_addr) 1441 { 1442 unsigned int wr_idx; 1443 1444 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1445 1446 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1447 1448 /* Stash SKB and DMA address away */ 1449 rx_ring->rxbufs[wr_idx].frag = frag; 1450 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1451 1452 /* Fill freelist descriptor */ 1453 rx_ring->rxds[wr_idx].fld.reserved = 0; 1454 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1455 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1456 dma_addr + dp->rx_dma_off); 1457 1458 rx_ring->wr_p++; 1459 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1460 /* Update write pointer of the freelist queue. Make 1461 * sure all writes are flushed before telling the hardware. 1462 */ 1463 wmb(); 1464 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1465 } 1466 } 1467 1468 /** 1469 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1470 * @rx_ring: RX ring structure 1471 * 1472 * Assumes that the device is stopped, must be idempotent. 1473 */ 1474 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1475 { 1476 unsigned int wr_idx, last_idx; 1477 1478 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1479 * kept at cnt - 1 FL bufs. 1480 */ 1481 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1482 return; 1483 1484 /* Move the empty entry to the end of the list */ 1485 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1486 last_idx = rx_ring->cnt - 1; 1487 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1488 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1489 rx_ring->rxbufs[last_idx].dma_addr = 0; 1490 rx_ring->rxbufs[last_idx].frag = NULL; 1491 1492 memset(rx_ring->rxds, 0, rx_ring->size); 1493 rx_ring->wr_p = 0; 1494 rx_ring->rd_p = 0; 1495 } 1496 1497 /** 1498 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1499 * @dp: NFP Net data path struct 1500 * @rx_ring: RX ring to remove buffers from 1501 * 1502 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1503 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1504 * to restore required ring geometry. 1505 */ 1506 static void 1507 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1508 struct nfp_net_rx_ring *rx_ring) 1509 { 1510 unsigned int i; 1511 1512 for (i = 0; i < rx_ring->cnt - 1; i++) { 1513 /* NULL skb can only happen when initial filling of the ring 1514 * fails to allocate enough buffers and calls here to free 1515 * already allocated ones. 1516 */ 1517 if (!rx_ring->rxbufs[i].frag) 1518 continue; 1519 1520 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1521 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1522 rx_ring->rxbufs[i].dma_addr = 0; 1523 rx_ring->rxbufs[i].frag = NULL; 1524 } 1525 } 1526 1527 /** 1528 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1529 * @dp: NFP Net data path struct 1530 * @rx_ring: RX ring to remove buffers from 1531 */ 1532 static int 1533 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1534 struct nfp_net_rx_ring *rx_ring) 1535 { 1536 struct nfp_net_rx_buf *rxbufs; 1537 unsigned int i; 1538 1539 rxbufs = rx_ring->rxbufs; 1540 1541 for (i = 0; i < rx_ring->cnt - 1; i++) { 1542 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1543 if (!rxbufs[i].frag) { 1544 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1545 return -ENOMEM; 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 /** 1553 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1554 * @dp: NFP Net data path struct 1555 * @rx_ring: RX ring to fill 1556 */ 1557 static void 1558 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1559 struct nfp_net_rx_ring *rx_ring) 1560 { 1561 unsigned int i; 1562 1563 for (i = 0; i < rx_ring->cnt - 1; i++) 1564 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1565 rx_ring->rxbufs[i].dma_addr); 1566 } 1567 1568 /** 1569 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1570 * @flags: RX descriptor flags field in CPU byte order 1571 */ 1572 static int nfp_net_rx_csum_has_errors(u16 flags) 1573 { 1574 u16 csum_all_checked, csum_all_ok; 1575 1576 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1577 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1578 1579 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1580 } 1581 1582 /** 1583 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1584 * @dp: NFP Net data path struct 1585 * @r_vec: per-ring structure 1586 * @rxd: Pointer to RX descriptor 1587 * @meta: Parsed metadata prepend 1588 * @skb: Pointer to SKB 1589 */ 1590 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1591 struct nfp_net_r_vector *r_vec, 1592 struct nfp_net_rx_desc *rxd, 1593 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1594 { 1595 skb_checksum_none_assert(skb); 1596 1597 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1598 return; 1599 1600 if (meta->csum_type) { 1601 skb->ip_summed = meta->csum_type; 1602 skb->csum = meta->csum; 1603 u64_stats_update_begin(&r_vec->rx_sync); 1604 r_vec->hw_csum_rx_complete++; 1605 u64_stats_update_end(&r_vec->rx_sync); 1606 return; 1607 } 1608 1609 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1610 u64_stats_update_begin(&r_vec->rx_sync); 1611 r_vec->hw_csum_rx_error++; 1612 u64_stats_update_end(&r_vec->rx_sync); 1613 return; 1614 } 1615 1616 /* Assume that the firmware will never report inner CSUM_OK unless outer 1617 * L4 headers were successfully parsed. FW will always report zero UDP 1618 * checksum as CSUM_OK. 1619 */ 1620 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1621 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1622 __skb_incr_checksum_unnecessary(skb); 1623 u64_stats_update_begin(&r_vec->rx_sync); 1624 r_vec->hw_csum_rx_ok++; 1625 u64_stats_update_end(&r_vec->rx_sync); 1626 } 1627 1628 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1629 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1630 __skb_incr_checksum_unnecessary(skb); 1631 u64_stats_update_begin(&r_vec->rx_sync); 1632 r_vec->hw_csum_rx_inner_ok++; 1633 u64_stats_update_end(&r_vec->rx_sync); 1634 } 1635 } 1636 1637 static void 1638 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1639 unsigned int type, __be32 *hash) 1640 { 1641 if (!(netdev->features & NETIF_F_RXHASH)) 1642 return; 1643 1644 switch (type) { 1645 case NFP_NET_RSS_IPV4: 1646 case NFP_NET_RSS_IPV6: 1647 case NFP_NET_RSS_IPV6_EX: 1648 meta->hash_type = PKT_HASH_TYPE_L3; 1649 break; 1650 default: 1651 meta->hash_type = PKT_HASH_TYPE_L4; 1652 break; 1653 } 1654 1655 meta->hash = get_unaligned_be32(hash); 1656 } 1657 1658 static void 1659 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1660 void *data, struct nfp_net_rx_desc *rxd) 1661 { 1662 struct nfp_net_rx_hash *rx_hash = data; 1663 1664 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1665 return; 1666 1667 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1668 &rx_hash->hash); 1669 } 1670 1671 static bool 1672 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1673 void *data, void *pkt, unsigned int pkt_len, int meta_len) 1674 { 1675 u32 meta_info; 1676 1677 meta_info = get_unaligned_be32(data); 1678 data += 4; 1679 1680 while (meta_info) { 1681 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1682 case NFP_NET_META_HASH: 1683 meta_info >>= NFP_NET_META_FIELD_SIZE; 1684 nfp_net_set_hash(netdev, meta, 1685 meta_info & NFP_NET_META_FIELD_MASK, 1686 (__be32 *)data); 1687 data += 4; 1688 break; 1689 case NFP_NET_META_MARK: 1690 meta->mark = get_unaligned_be32(data); 1691 data += 4; 1692 break; 1693 case NFP_NET_META_PORTID: 1694 meta->portid = get_unaligned_be32(data); 1695 data += 4; 1696 break; 1697 case NFP_NET_META_CSUM: 1698 meta->csum_type = CHECKSUM_COMPLETE; 1699 meta->csum = 1700 (__force __wsum)__get_unaligned_cpu32(data); 1701 data += 4; 1702 break; 1703 case NFP_NET_META_RESYNC_INFO: 1704 if (nfp_net_tls_rx_resync_req(netdev, data, pkt, 1705 pkt_len)) 1706 return false; 1707 data += sizeof(struct nfp_net_tls_resync_req); 1708 break; 1709 default: 1710 return true; 1711 } 1712 1713 meta_info >>= NFP_NET_META_FIELD_SIZE; 1714 } 1715 1716 return data != pkt; 1717 } 1718 1719 static void 1720 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1721 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1722 struct sk_buff *skb) 1723 { 1724 u64_stats_update_begin(&r_vec->rx_sync); 1725 r_vec->rx_drops++; 1726 /* If we have both skb and rxbuf the replacement buffer allocation 1727 * must have failed, count this as an alloc failure. 1728 */ 1729 if (skb && rxbuf) 1730 r_vec->rx_replace_buf_alloc_fail++; 1731 u64_stats_update_end(&r_vec->rx_sync); 1732 1733 /* skb is build based on the frag, free_skb() would free the frag 1734 * so to be able to reuse it we need an extra ref. 1735 */ 1736 if (skb && rxbuf && skb->head == rxbuf->frag) 1737 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1738 if (rxbuf) 1739 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1740 if (skb) 1741 dev_kfree_skb_any(skb); 1742 } 1743 1744 static bool 1745 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1746 struct nfp_net_tx_ring *tx_ring, 1747 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1748 unsigned int pkt_len, bool *completed) 1749 { 1750 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; 1751 struct nfp_net_tx_buf *txbuf; 1752 struct nfp_net_tx_desc *txd; 1753 int wr_idx; 1754 1755 /* Reject if xdp_adjust_tail grow packet beyond DMA area */ 1756 if (pkt_len + dma_off > dma_map_sz) 1757 return false; 1758 1759 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1760 if (!*completed) { 1761 nfp_net_xdp_complete(tx_ring); 1762 *completed = true; 1763 } 1764 1765 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1766 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1767 NULL); 1768 return false; 1769 } 1770 } 1771 1772 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1773 1774 /* Stash the soft descriptor of the head then initialize it */ 1775 txbuf = &tx_ring->txbufs[wr_idx]; 1776 1777 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1778 1779 txbuf->frag = rxbuf->frag; 1780 txbuf->dma_addr = rxbuf->dma_addr; 1781 txbuf->fidx = -1; 1782 txbuf->pkt_cnt = 1; 1783 txbuf->real_len = pkt_len; 1784 1785 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1786 pkt_len, DMA_BIDIRECTIONAL); 1787 1788 /* Build TX descriptor */ 1789 txd = &tx_ring->txds[wr_idx]; 1790 txd->offset_eop = PCIE_DESC_TX_EOP; 1791 txd->dma_len = cpu_to_le16(pkt_len); 1792 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1793 txd->data_len = cpu_to_le16(pkt_len); 1794 1795 txd->flags = 0; 1796 txd->mss = 0; 1797 txd->lso_hdrlen = 0; 1798 1799 tx_ring->wr_p++; 1800 tx_ring->wr_ptr_add++; 1801 return true; 1802 } 1803 1804 /** 1805 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1806 * @rx_ring: RX ring to receive from 1807 * @budget: NAPI budget 1808 * 1809 * Note, this function is separated out from the napi poll function to 1810 * more cleanly separate packet receive code from other bookkeeping 1811 * functions performed in the napi poll function. 1812 * 1813 * Return: Number of packets received. 1814 */ 1815 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1816 { 1817 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1818 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1819 struct nfp_net_tx_ring *tx_ring; 1820 struct bpf_prog *xdp_prog; 1821 bool xdp_tx_cmpl = false; 1822 unsigned int true_bufsz; 1823 struct sk_buff *skb; 1824 int pkts_polled = 0; 1825 struct xdp_buff xdp; 1826 int idx; 1827 1828 xdp_prog = READ_ONCE(dp->xdp_prog); 1829 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1830 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, 1831 &rx_ring->xdp_rxq); 1832 tx_ring = r_vec->xdp_ring; 1833 1834 while (pkts_polled < budget) { 1835 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1836 struct nfp_net_rx_buf *rxbuf; 1837 struct nfp_net_rx_desc *rxd; 1838 struct nfp_meta_parsed meta; 1839 bool redir_egress = false; 1840 struct net_device *netdev; 1841 dma_addr_t new_dma_addr; 1842 u32 meta_len_xdp = 0; 1843 void *new_frag; 1844 1845 idx = D_IDX(rx_ring, rx_ring->rd_p); 1846 1847 rxd = &rx_ring->rxds[idx]; 1848 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1849 break; 1850 1851 /* Memory barrier to ensure that we won't do other reads 1852 * before the DD bit. 1853 */ 1854 dma_rmb(); 1855 1856 memset(&meta, 0, sizeof(meta)); 1857 1858 rx_ring->rd_p++; 1859 pkts_polled++; 1860 1861 rxbuf = &rx_ring->rxbufs[idx]; 1862 /* < meta_len > 1863 * <-- [rx_offset] --> 1864 * --------------------------------------------------------- 1865 * | [XX] | metadata | packet | XXXX | 1866 * --------------------------------------------------------- 1867 * <---------------- data_len ---------------> 1868 * 1869 * The rx_offset is fixed for all packets, the meta_len can vary 1870 * on a packet by packet basis. If rx_offset is set to zero 1871 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1872 * buffer and is immediately followed by the packet (no [XX]). 1873 */ 1874 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1875 data_len = le16_to_cpu(rxd->rxd.data_len); 1876 pkt_len = data_len - meta_len; 1877 1878 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1879 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1880 pkt_off += meta_len; 1881 else 1882 pkt_off += dp->rx_offset; 1883 meta_off = pkt_off - meta_len; 1884 1885 /* Stats update */ 1886 u64_stats_update_begin(&r_vec->rx_sync); 1887 r_vec->rx_pkts++; 1888 r_vec->rx_bytes += pkt_len; 1889 u64_stats_update_end(&r_vec->rx_sync); 1890 1891 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1892 (dp->rx_offset && meta_len > dp->rx_offset))) { 1893 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1894 meta_len); 1895 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1896 continue; 1897 } 1898 1899 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1900 data_len); 1901 1902 if (!dp->chained_metadata_format) { 1903 nfp_net_set_hash_desc(dp->netdev, &meta, 1904 rxbuf->frag + meta_off, rxd); 1905 } else if (meta_len) { 1906 if (unlikely(nfp_net_parse_meta(dp->netdev, &meta, 1907 rxbuf->frag + meta_off, 1908 rxbuf->frag + pkt_off, 1909 pkt_len, meta_len))) { 1910 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1911 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1912 NULL); 1913 continue; 1914 } 1915 } 1916 1917 if (xdp_prog && !meta.portid) { 1918 void *orig_data = rxbuf->frag + pkt_off; 1919 unsigned int dma_off; 1920 int act; 1921 1922 xdp_prepare_buff(&xdp, 1923 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, 1924 pkt_off - NFP_NET_RX_BUF_HEADROOM, 1925 pkt_len, true); 1926 1927 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1928 1929 pkt_len = xdp.data_end - xdp.data; 1930 pkt_off += xdp.data - orig_data; 1931 1932 switch (act) { 1933 case XDP_PASS: 1934 meta_len_xdp = xdp.data - xdp.data_meta; 1935 break; 1936 case XDP_TX: 1937 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1938 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1939 tx_ring, rxbuf, 1940 dma_off, 1941 pkt_len, 1942 &xdp_tx_cmpl))) 1943 trace_xdp_exception(dp->netdev, 1944 xdp_prog, act); 1945 continue; 1946 default: 1947 bpf_warn_invalid_xdp_action(act); 1948 fallthrough; 1949 case XDP_ABORTED: 1950 trace_xdp_exception(dp->netdev, xdp_prog, act); 1951 fallthrough; 1952 case XDP_DROP: 1953 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1954 rxbuf->dma_addr); 1955 continue; 1956 } 1957 } 1958 1959 if (likely(!meta.portid)) { 1960 netdev = dp->netdev; 1961 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1962 struct nfp_net *nn = netdev_priv(dp->netdev); 1963 1964 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1965 pkt_len); 1966 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1967 rxbuf->dma_addr); 1968 continue; 1969 } else { 1970 struct nfp_net *nn; 1971 1972 nn = netdev_priv(dp->netdev); 1973 netdev = nfp_app_dev_get(nn->app, meta.portid, 1974 &redir_egress); 1975 if (unlikely(!netdev)) { 1976 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1977 NULL); 1978 continue; 1979 } 1980 1981 if (nfp_netdev_is_nfp_repr(netdev)) 1982 nfp_repr_inc_rx_stats(netdev, pkt_len); 1983 } 1984 1985 skb = build_skb(rxbuf->frag, true_bufsz); 1986 if (unlikely(!skb)) { 1987 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1988 continue; 1989 } 1990 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1991 if (unlikely(!new_frag)) { 1992 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1993 continue; 1994 } 1995 1996 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1997 1998 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1999 2000 skb_reserve(skb, pkt_off); 2001 skb_put(skb, pkt_len); 2002 2003 skb->mark = meta.mark; 2004 skb_set_hash(skb, meta.hash, meta.hash_type); 2005 2006 skb_record_rx_queue(skb, rx_ring->idx); 2007 skb->protocol = eth_type_trans(skb, netdev); 2008 2009 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 2010 2011 #ifdef CONFIG_TLS_DEVICE 2012 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 2013 skb->decrypted = true; 2014 u64_stats_update_begin(&r_vec->rx_sync); 2015 r_vec->hw_tls_rx++; 2016 u64_stats_update_end(&r_vec->rx_sync); 2017 } 2018 #endif 2019 2020 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 2021 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2022 le16_to_cpu(rxd->rxd.vlan)); 2023 if (meta_len_xdp) 2024 skb_metadata_set(skb, meta_len_xdp); 2025 2026 if (likely(!redir_egress)) { 2027 napi_gro_receive(&rx_ring->r_vec->napi, skb); 2028 } else { 2029 skb->dev = netdev; 2030 skb_reset_network_header(skb); 2031 __skb_push(skb, ETH_HLEN); 2032 dev_queue_xmit(skb); 2033 } 2034 } 2035 2036 if (xdp_prog) { 2037 if (tx_ring->wr_ptr_add) 2038 nfp_net_tx_xmit_more_flush(tx_ring); 2039 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2040 !xdp_tx_cmpl) 2041 if (!nfp_net_xdp_complete(tx_ring)) 2042 pkts_polled = budget; 2043 } 2044 2045 return pkts_polled; 2046 } 2047 2048 /** 2049 * nfp_net_poll() - napi poll function 2050 * @napi: NAPI structure 2051 * @budget: NAPI budget 2052 * 2053 * Return: number of packets polled. 2054 */ 2055 static int nfp_net_poll(struct napi_struct *napi, int budget) 2056 { 2057 struct nfp_net_r_vector *r_vec = 2058 container_of(napi, struct nfp_net_r_vector, napi); 2059 unsigned int pkts_polled = 0; 2060 2061 if (r_vec->tx_ring) 2062 nfp_net_tx_complete(r_vec->tx_ring, budget); 2063 if (r_vec->rx_ring) 2064 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2065 2066 if (pkts_polled < budget) 2067 if (napi_complete_done(napi, pkts_polled)) 2068 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2069 2070 if (r_vec->nfp_net->rx_coalesce_adapt_on) { 2071 struct dim_sample dim_sample = {}; 2072 unsigned int start; 2073 u64 pkts, bytes; 2074 2075 do { 2076 start = u64_stats_fetch_begin(&r_vec->rx_sync); 2077 pkts = r_vec->rx_pkts; 2078 bytes = r_vec->rx_bytes; 2079 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 2080 2081 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 2082 net_dim(&r_vec->rx_dim, dim_sample); 2083 } 2084 2085 if (r_vec->nfp_net->tx_coalesce_adapt_on) { 2086 struct dim_sample dim_sample = {}; 2087 unsigned int start; 2088 u64 pkts, bytes; 2089 2090 do { 2091 start = u64_stats_fetch_begin(&r_vec->tx_sync); 2092 pkts = r_vec->tx_pkts; 2093 bytes = r_vec->tx_bytes; 2094 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 2095 2096 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 2097 net_dim(&r_vec->tx_dim, dim_sample); 2098 } 2099 2100 return pkts_polled; 2101 } 2102 2103 /* Control device data path 2104 */ 2105 2106 static bool 2107 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2108 struct sk_buff *skb, bool old) 2109 { 2110 unsigned int real_len = skb->len, meta_len = 0; 2111 struct nfp_net_tx_ring *tx_ring; 2112 struct nfp_net_tx_buf *txbuf; 2113 struct nfp_net_tx_desc *txd; 2114 struct nfp_net_dp *dp; 2115 dma_addr_t dma_addr; 2116 int wr_idx; 2117 2118 dp = &r_vec->nfp_net->dp; 2119 tx_ring = r_vec->tx_ring; 2120 2121 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2122 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2123 goto err_free; 2124 } 2125 2126 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2127 u64_stats_update_begin(&r_vec->tx_sync); 2128 r_vec->tx_busy++; 2129 u64_stats_update_end(&r_vec->tx_sync); 2130 if (!old) 2131 __skb_queue_tail(&r_vec->queue, skb); 2132 else 2133 __skb_queue_head(&r_vec->queue, skb); 2134 return true; 2135 } 2136 2137 if (nfp_app_ctrl_has_meta(nn->app)) { 2138 if (unlikely(skb_headroom(skb) < 8)) { 2139 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2140 goto err_free; 2141 } 2142 meta_len = 8; 2143 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2144 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2145 } 2146 2147 /* Start with the head skbuf */ 2148 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2149 DMA_TO_DEVICE); 2150 if (dma_mapping_error(dp->dev, dma_addr)) 2151 goto err_dma_warn; 2152 2153 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2154 2155 /* Stash the soft descriptor of the head then initialize it */ 2156 txbuf = &tx_ring->txbufs[wr_idx]; 2157 txbuf->skb = skb; 2158 txbuf->dma_addr = dma_addr; 2159 txbuf->fidx = -1; 2160 txbuf->pkt_cnt = 1; 2161 txbuf->real_len = real_len; 2162 2163 /* Build TX descriptor */ 2164 txd = &tx_ring->txds[wr_idx]; 2165 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2166 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2167 nfp_desc_set_dma_addr(txd, dma_addr); 2168 txd->data_len = cpu_to_le16(skb->len); 2169 2170 txd->flags = 0; 2171 txd->mss = 0; 2172 txd->lso_hdrlen = 0; 2173 2174 tx_ring->wr_p++; 2175 tx_ring->wr_ptr_add++; 2176 nfp_net_tx_xmit_more_flush(tx_ring); 2177 2178 return false; 2179 2180 err_dma_warn: 2181 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2182 err_free: 2183 u64_stats_update_begin(&r_vec->tx_sync); 2184 r_vec->tx_errors++; 2185 u64_stats_update_end(&r_vec->tx_sync); 2186 dev_kfree_skb_any(skb); 2187 return false; 2188 } 2189 2190 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2191 { 2192 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2193 2194 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2195 } 2196 2197 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2198 { 2199 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2200 bool ret; 2201 2202 spin_lock_bh(&r_vec->lock); 2203 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2204 spin_unlock_bh(&r_vec->lock); 2205 2206 return ret; 2207 } 2208 2209 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2210 { 2211 struct sk_buff *skb; 2212 2213 while ((skb = __skb_dequeue(&r_vec->queue))) 2214 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2215 return; 2216 } 2217 2218 static bool 2219 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2220 { 2221 u32 meta_type, meta_tag; 2222 2223 if (!nfp_app_ctrl_has_meta(nn->app)) 2224 return !meta_len; 2225 2226 if (meta_len != 8) 2227 return false; 2228 2229 meta_type = get_unaligned_be32(data); 2230 meta_tag = get_unaligned_be32(data + 4); 2231 2232 return (meta_type == NFP_NET_META_PORTID && 2233 meta_tag == NFP_META_PORT_ID_CTRL); 2234 } 2235 2236 static bool 2237 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2238 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2239 { 2240 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2241 struct nfp_net_rx_buf *rxbuf; 2242 struct nfp_net_rx_desc *rxd; 2243 dma_addr_t new_dma_addr; 2244 struct sk_buff *skb; 2245 void *new_frag; 2246 int idx; 2247 2248 idx = D_IDX(rx_ring, rx_ring->rd_p); 2249 2250 rxd = &rx_ring->rxds[idx]; 2251 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2252 return false; 2253 2254 /* Memory barrier to ensure that we won't do other reads 2255 * before the DD bit. 2256 */ 2257 dma_rmb(); 2258 2259 rx_ring->rd_p++; 2260 2261 rxbuf = &rx_ring->rxbufs[idx]; 2262 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2263 data_len = le16_to_cpu(rxd->rxd.data_len); 2264 pkt_len = data_len - meta_len; 2265 2266 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2267 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2268 pkt_off += meta_len; 2269 else 2270 pkt_off += dp->rx_offset; 2271 meta_off = pkt_off - meta_len; 2272 2273 /* Stats update */ 2274 u64_stats_update_begin(&r_vec->rx_sync); 2275 r_vec->rx_pkts++; 2276 r_vec->rx_bytes += pkt_len; 2277 u64_stats_update_end(&r_vec->rx_sync); 2278 2279 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2280 2281 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2282 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2283 meta_len); 2284 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2285 return true; 2286 } 2287 2288 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2289 if (unlikely(!skb)) { 2290 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2291 return true; 2292 } 2293 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2294 if (unlikely(!new_frag)) { 2295 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2296 return true; 2297 } 2298 2299 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2300 2301 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2302 2303 skb_reserve(skb, pkt_off); 2304 skb_put(skb, pkt_len); 2305 2306 nfp_app_ctrl_rx(nn->app, skb); 2307 2308 return true; 2309 } 2310 2311 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2312 { 2313 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2314 struct nfp_net *nn = r_vec->nfp_net; 2315 struct nfp_net_dp *dp = &nn->dp; 2316 unsigned int budget = 512; 2317 2318 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2319 continue; 2320 2321 return budget; 2322 } 2323 2324 static void nfp_ctrl_poll(struct tasklet_struct *t) 2325 { 2326 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); 2327 2328 spin_lock(&r_vec->lock); 2329 nfp_net_tx_complete(r_vec->tx_ring, 0); 2330 __nfp_ctrl_tx_queued(r_vec); 2331 spin_unlock(&r_vec->lock); 2332 2333 if (nfp_ctrl_rx(r_vec)) { 2334 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2335 } else { 2336 tasklet_schedule(&r_vec->tasklet); 2337 nn_dp_warn(&r_vec->nfp_net->dp, 2338 "control message budget exceeded!\n"); 2339 } 2340 } 2341 2342 /* Setup and Configuration 2343 */ 2344 2345 /** 2346 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2347 * @nn: NFP Network structure 2348 */ 2349 static void nfp_net_vecs_init(struct nfp_net *nn) 2350 { 2351 struct nfp_net_r_vector *r_vec; 2352 int r; 2353 2354 nn->lsc_handler = nfp_net_irq_lsc; 2355 nn->exn_handler = nfp_net_irq_exn; 2356 2357 for (r = 0; r < nn->max_r_vecs; r++) { 2358 struct msix_entry *entry; 2359 2360 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2361 2362 r_vec = &nn->r_vecs[r]; 2363 r_vec->nfp_net = nn; 2364 r_vec->irq_entry = entry->entry; 2365 r_vec->irq_vector = entry->vector; 2366 2367 if (nn->dp.netdev) { 2368 r_vec->handler = nfp_net_irq_rxtx; 2369 } else { 2370 r_vec->handler = nfp_ctrl_irq_rxtx; 2371 2372 __skb_queue_head_init(&r_vec->queue); 2373 spin_lock_init(&r_vec->lock); 2374 tasklet_setup(&r_vec->tasklet, nfp_ctrl_poll); 2375 tasklet_disable(&r_vec->tasklet); 2376 } 2377 2378 cpumask_set_cpu(r, &r_vec->affinity_mask); 2379 } 2380 } 2381 2382 /** 2383 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2384 * @tx_ring: TX ring to free 2385 */ 2386 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2387 { 2388 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2389 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2390 2391 kvfree(tx_ring->txbufs); 2392 2393 if (tx_ring->txds) 2394 dma_free_coherent(dp->dev, tx_ring->size, 2395 tx_ring->txds, tx_ring->dma); 2396 2397 tx_ring->cnt = 0; 2398 tx_ring->txbufs = NULL; 2399 tx_ring->txds = NULL; 2400 tx_ring->dma = 0; 2401 tx_ring->size = 0; 2402 } 2403 2404 /** 2405 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2406 * @dp: NFP Net data path struct 2407 * @tx_ring: TX Ring structure to allocate 2408 * 2409 * Return: 0 on success, negative errno otherwise. 2410 */ 2411 static int 2412 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2413 { 2414 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2415 2416 tx_ring->cnt = dp->txd_cnt; 2417 2418 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2419 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2420 &tx_ring->dma, 2421 GFP_KERNEL | __GFP_NOWARN); 2422 if (!tx_ring->txds) { 2423 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2424 tx_ring->cnt); 2425 goto err_alloc; 2426 } 2427 2428 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2429 GFP_KERNEL); 2430 if (!tx_ring->txbufs) 2431 goto err_alloc; 2432 2433 if (!tx_ring->is_xdp && dp->netdev) 2434 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2435 tx_ring->idx); 2436 2437 return 0; 2438 2439 err_alloc: 2440 nfp_net_tx_ring_free(tx_ring); 2441 return -ENOMEM; 2442 } 2443 2444 static void 2445 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2446 struct nfp_net_tx_ring *tx_ring) 2447 { 2448 unsigned int i; 2449 2450 if (!tx_ring->is_xdp) 2451 return; 2452 2453 for (i = 0; i < tx_ring->cnt; i++) { 2454 if (!tx_ring->txbufs[i].frag) 2455 return; 2456 2457 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2458 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2459 } 2460 } 2461 2462 static int 2463 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2464 struct nfp_net_tx_ring *tx_ring) 2465 { 2466 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2467 unsigned int i; 2468 2469 if (!tx_ring->is_xdp) 2470 return 0; 2471 2472 for (i = 0; i < tx_ring->cnt; i++) { 2473 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2474 if (!txbufs[i].frag) { 2475 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2476 return -ENOMEM; 2477 } 2478 } 2479 2480 return 0; 2481 } 2482 2483 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2484 { 2485 unsigned int r; 2486 2487 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2488 GFP_KERNEL); 2489 if (!dp->tx_rings) 2490 return -ENOMEM; 2491 2492 for (r = 0; r < dp->num_tx_rings; r++) { 2493 int bias = 0; 2494 2495 if (r >= dp->num_stack_tx_rings) 2496 bias = dp->num_stack_tx_rings; 2497 2498 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2499 r, bias); 2500 2501 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2502 goto err_free_prev; 2503 2504 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2505 goto err_free_ring; 2506 } 2507 2508 return 0; 2509 2510 err_free_prev: 2511 while (r--) { 2512 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2513 err_free_ring: 2514 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2515 } 2516 kfree(dp->tx_rings); 2517 return -ENOMEM; 2518 } 2519 2520 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2521 { 2522 unsigned int r; 2523 2524 for (r = 0; r < dp->num_tx_rings; r++) { 2525 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2526 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2527 } 2528 2529 kfree(dp->tx_rings); 2530 } 2531 2532 /** 2533 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2534 * @rx_ring: RX ring to free 2535 */ 2536 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2537 { 2538 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2539 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2540 2541 if (dp->netdev) 2542 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2543 kvfree(rx_ring->rxbufs); 2544 2545 if (rx_ring->rxds) 2546 dma_free_coherent(dp->dev, rx_ring->size, 2547 rx_ring->rxds, rx_ring->dma); 2548 2549 rx_ring->cnt = 0; 2550 rx_ring->rxbufs = NULL; 2551 rx_ring->rxds = NULL; 2552 rx_ring->dma = 0; 2553 rx_ring->size = 0; 2554 } 2555 2556 /** 2557 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2558 * @dp: NFP Net data path struct 2559 * @rx_ring: RX ring to allocate 2560 * 2561 * Return: 0 on success, negative errno otherwise. 2562 */ 2563 static int 2564 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2565 { 2566 int err; 2567 2568 if (dp->netdev) { 2569 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2570 rx_ring->idx, rx_ring->r_vec->napi.napi_id); 2571 if (err < 0) 2572 return err; 2573 } 2574 2575 rx_ring->cnt = dp->rxd_cnt; 2576 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2577 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2578 &rx_ring->dma, 2579 GFP_KERNEL | __GFP_NOWARN); 2580 if (!rx_ring->rxds) { 2581 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2582 rx_ring->cnt); 2583 goto err_alloc; 2584 } 2585 2586 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2587 GFP_KERNEL); 2588 if (!rx_ring->rxbufs) 2589 goto err_alloc; 2590 2591 return 0; 2592 2593 err_alloc: 2594 nfp_net_rx_ring_free(rx_ring); 2595 return -ENOMEM; 2596 } 2597 2598 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2599 { 2600 unsigned int r; 2601 2602 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2603 GFP_KERNEL); 2604 if (!dp->rx_rings) 2605 return -ENOMEM; 2606 2607 for (r = 0; r < dp->num_rx_rings; r++) { 2608 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2609 2610 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2611 goto err_free_prev; 2612 2613 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2614 goto err_free_ring; 2615 } 2616 2617 return 0; 2618 2619 err_free_prev: 2620 while (r--) { 2621 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2622 err_free_ring: 2623 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2624 } 2625 kfree(dp->rx_rings); 2626 return -ENOMEM; 2627 } 2628 2629 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2630 { 2631 unsigned int r; 2632 2633 for (r = 0; r < dp->num_rx_rings; r++) { 2634 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2635 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2636 } 2637 2638 kfree(dp->rx_rings); 2639 } 2640 2641 static void 2642 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2643 struct nfp_net_r_vector *r_vec, int idx) 2644 { 2645 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2646 r_vec->tx_ring = 2647 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2648 2649 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2650 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2651 } 2652 2653 static int 2654 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2655 int idx) 2656 { 2657 int err; 2658 2659 /* Setup NAPI */ 2660 if (nn->dp.netdev) 2661 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2662 nfp_net_poll, NAPI_POLL_WEIGHT); 2663 else 2664 tasklet_enable(&r_vec->tasklet); 2665 2666 snprintf(r_vec->name, sizeof(r_vec->name), 2667 "%s-rxtx-%d", nfp_net_name(nn), idx); 2668 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2669 r_vec); 2670 if (err) { 2671 if (nn->dp.netdev) 2672 netif_napi_del(&r_vec->napi); 2673 else 2674 tasklet_disable(&r_vec->tasklet); 2675 2676 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2677 return err; 2678 } 2679 disable_irq(r_vec->irq_vector); 2680 2681 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2682 2683 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2684 r_vec->irq_entry); 2685 2686 return 0; 2687 } 2688 2689 static void 2690 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2691 { 2692 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2693 if (nn->dp.netdev) 2694 netif_napi_del(&r_vec->napi); 2695 else 2696 tasklet_disable(&r_vec->tasklet); 2697 2698 free_irq(r_vec->irq_vector, r_vec); 2699 } 2700 2701 /** 2702 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2703 * @nn: NFP Net device to reconfigure 2704 */ 2705 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2706 { 2707 int i; 2708 2709 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2710 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2711 get_unaligned_le32(nn->rss_itbl + i)); 2712 } 2713 2714 /** 2715 * nfp_net_rss_write_key() - Write RSS hash key to device 2716 * @nn: NFP Net device to reconfigure 2717 */ 2718 void nfp_net_rss_write_key(struct nfp_net *nn) 2719 { 2720 int i; 2721 2722 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2723 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2724 get_unaligned_le32(nn->rss_key + i)); 2725 } 2726 2727 /** 2728 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2729 * @nn: NFP Net device to reconfigure 2730 */ 2731 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2732 { 2733 u8 i; 2734 u32 factor; 2735 u32 value; 2736 2737 /* Compute factor used to convert coalesce '_usecs' parameters to 2738 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2739 * count. 2740 */ 2741 factor = nn->tlv_caps.me_freq_mhz / 16; 2742 2743 /* copy RX interrupt coalesce parameters */ 2744 value = (nn->rx_coalesce_max_frames << 16) | 2745 (factor * nn->rx_coalesce_usecs); 2746 for (i = 0; i < nn->dp.num_rx_rings; i++) 2747 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2748 2749 /* copy TX interrupt coalesce parameters */ 2750 value = (nn->tx_coalesce_max_frames << 16) | 2751 (factor * nn->tx_coalesce_usecs); 2752 for (i = 0; i < nn->dp.num_tx_rings; i++) 2753 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2754 } 2755 2756 /** 2757 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2758 * @nn: NFP Net device to reconfigure 2759 * @addr: MAC address to write 2760 * 2761 * Writes the MAC address from the netdev to the device control BAR. Does not 2762 * perform the required reconfig. We do a bit of byte swapping dance because 2763 * firmware is LE. 2764 */ 2765 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2766 { 2767 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2768 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2769 } 2770 2771 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2772 { 2773 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2774 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2775 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2776 2777 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2778 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2779 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2780 } 2781 2782 /** 2783 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2784 * @nn: NFP Net device to reconfigure 2785 * 2786 * Warning: must be fully idempotent. 2787 */ 2788 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2789 { 2790 u32 new_ctrl, update; 2791 unsigned int r; 2792 int err; 2793 2794 new_ctrl = nn->dp.ctrl; 2795 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2796 update = NFP_NET_CFG_UPDATE_GEN; 2797 update |= NFP_NET_CFG_UPDATE_MSIX; 2798 update |= NFP_NET_CFG_UPDATE_RING; 2799 2800 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2801 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2802 2803 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2804 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2805 2806 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2807 err = nfp_net_reconfig(nn, update); 2808 if (err) 2809 nn_err(nn, "Could not disable device: %d\n", err); 2810 2811 for (r = 0; r < nn->dp.num_rx_rings; r++) 2812 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2813 for (r = 0; r < nn->dp.num_tx_rings; r++) 2814 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2815 for (r = 0; r < nn->dp.num_r_vecs; r++) 2816 nfp_net_vec_clear_ring_data(nn, r); 2817 2818 nn->dp.ctrl = new_ctrl; 2819 } 2820 2821 static void 2822 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2823 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2824 { 2825 /* Write the DMA address, size and MSI-X info to the device */ 2826 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2827 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2828 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2829 } 2830 2831 static void 2832 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2833 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2834 { 2835 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2836 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2837 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2838 } 2839 2840 /** 2841 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2842 * @nn: NFP Net device to reconfigure 2843 */ 2844 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2845 { 2846 u32 bufsz, new_ctrl, update = 0; 2847 unsigned int r; 2848 int err; 2849 2850 new_ctrl = nn->dp.ctrl; 2851 2852 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2853 nfp_net_rss_write_key(nn); 2854 nfp_net_rss_write_itbl(nn); 2855 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2856 update |= NFP_NET_CFG_UPDATE_RSS; 2857 } 2858 2859 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2860 nfp_net_coalesce_write_cfg(nn); 2861 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2862 } 2863 2864 for (r = 0; r < nn->dp.num_tx_rings; r++) 2865 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2866 for (r = 0; r < nn->dp.num_rx_rings; r++) 2867 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2868 2869 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2870 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2871 2872 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2873 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2874 2875 if (nn->dp.netdev) 2876 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2877 2878 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2879 2880 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2881 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2882 2883 /* Enable device */ 2884 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2885 update |= NFP_NET_CFG_UPDATE_GEN; 2886 update |= NFP_NET_CFG_UPDATE_MSIX; 2887 update |= NFP_NET_CFG_UPDATE_RING; 2888 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2889 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2890 2891 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2892 err = nfp_net_reconfig(nn, update); 2893 if (err) { 2894 nfp_net_clear_config_and_disable(nn); 2895 return err; 2896 } 2897 2898 nn->dp.ctrl = new_ctrl; 2899 2900 for (r = 0; r < nn->dp.num_rx_rings; r++) 2901 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2902 2903 return 0; 2904 } 2905 2906 /** 2907 * nfp_net_close_stack() - Quiesce the stack (part of close) 2908 * @nn: NFP Net device to reconfigure 2909 */ 2910 static void nfp_net_close_stack(struct nfp_net *nn) 2911 { 2912 struct nfp_net_r_vector *r_vec; 2913 unsigned int r; 2914 2915 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2916 netif_carrier_off(nn->dp.netdev); 2917 nn->link_up = false; 2918 2919 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2920 r_vec = &nn->r_vecs[r]; 2921 2922 disable_irq(r_vec->irq_vector); 2923 napi_disable(&r_vec->napi); 2924 2925 if (r_vec->rx_ring) 2926 cancel_work_sync(&r_vec->rx_dim.work); 2927 2928 if (r_vec->tx_ring) 2929 cancel_work_sync(&r_vec->tx_dim.work); 2930 } 2931 2932 netif_tx_disable(nn->dp.netdev); 2933 } 2934 2935 /** 2936 * nfp_net_close_free_all() - Free all runtime resources 2937 * @nn: NFP Net device to reconfigure 2938 */ 2939 static void nfp_net_close_free_all(struct nfp_net *nn) 2940 { 2941 unsigned int r; 2942 2943 nfp_net_tx_rings_free(&nn->dp); 2944 nfp_net_rx_rings_free(&nn->dp); 2945 2946 for (r = 0; r < nn->dp.num_r_vecs; r++) 2947 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2948 2949 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2950 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2951 } 2952 2953 /** 2954 * nfp_net_netdev_close() - Called when the device is downed 2955 * @netdev: netdev structure 2956 */ 2957 static int nfp_net_netdev_close(struct net_device *netdev) 2958 { 2959 struct nfp_net *nn = netdev_priv(netdev); 2960 2961 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2962 */ 2963 nfp_net_close_stack(nn); 2964 2965 /* Step 2: Tell NFP 2966 */ 2967 nfp_net_clear_config_and_disable(nn); 2968 nfp_port_configure(netdev, false); 2969 2970 /* Step 3: Free resources 2971 */ 2972 nfp_net_close_free_all(nn); 2973 2974 nn_dbg(nn, "%s down", netdev->name); 2975 return 0; 2976 } 2977 2978 void nfp_ctrl_close(struct nfp_net *nn) 2979 { 2980 int r; 2981 2982 rtnl_lock(); 2983 2984 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2985 disable_irq(nn->r_vecs[r].irq_vector); 2986 tasklet_disable(&nn->r_vecs[r].tasklet); 2987 } 2988 2989 nfp_net_clear_config_and_disable(nn); 2990 2991 nfp_net_close_free_all(nn); 2992 2993 rtnl_unlock(); 2994 } 2995 2996 static void nfp_net_rx_dim_work(struct work_struct *work) 2997 { 2998 struct nfp_net_r_vector *r_vec; 2999 unsigned int factor, value; 3000 struct dim_cq_moder moder; 3001 struct nfp_net *nn; 3002 struct dim *dim; 3003 3004 dim = container_of(work, struct dim, work); 3005 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 3006 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 3007 nn = r_vec->nfp_net; 3008 3009 /* Compute factor used to convert coalesce '_usecs' parameters to 3010 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 3011 * count. 3012 */ 3013 factor = nn->tlv_caps.me_freq_mhz / 16; 3014 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 3015 return; 3016 3017 /* copy RX interrupt coalesce parameters */ 3018 value = (moder.pkts << 16) | (factor * moder.usec); 3019 rtnl_lock(); 3020 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 3021 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 3022 rtnl_unlock(); 3023 3024 dim->state = DIM_START_MEASURE; 3025 } 3026 3027 static void nfp_net_tx_dim_work(struct work_struct *work) 3028 { 3029 struct nfp_net_r_vector *r_vec; 3030 unsigned int factor, value; 3031 struct dim_cq_moder moder; 3032 struct nfp_net *nn; 3033 struct dim *dim; 3034 3035 dim = container_of(work, struct dim, work); 3036 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 3037 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 3038 nn = r_vec->nfp_net; 3039 3040 /* Compute factor used to convert coalesce '_usecs' parameters to 3041 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 3042 * count. 3043 */ 3044 factor = nn->tlv_caps.me_freq_mhz / 16; 3045 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts)) 3046 return; 3047 3048 /* copy TX interrupt coalesce parameters */ 3049 value = (moder.pkts << 16) | (factor * moder.usec); 3050 rtnl_lock(); 3051 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 3052 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 3053 rtnl_unlock(); 3054 3055 dim->state = DIM_START_MEASURE; 3056 } 3057 3058 /** 3059 * nfp_net_open_stack() - Start the device from stack's perspective 3060 * @nn: NFP Net device to reconfigure 3061 */ 3062 static void nfp_net_open_stack(struct nfp_net *nn) 3063 { 3064 struct nfp_net_r_vector *r_vec; 3065 unsigned int r; 3066 3067 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3068 r_vec = &nn->r_vecs[r]; 3069 3070 if (r_vec->rx_ring) { 3071 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 3072 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 3073 } 3074 3075 if (r_vec->tx_ring) { 3076 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 3077 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 3078 } 3079 3080 napi_enable(&r_vec->napi); 3081 enable_irq(r_vec->irq_vector); 3082 } 3083 3084 netif_tx_wake_all_queues(nn->dp.netdev); 3085 3086 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 3087 nfp_net_read_link_status(nn); 3088 } 3089 3090 static int nfp_net_open_alloc_all(struct nfp_net *nn) 3091 { 3092 int err, r; 3093 3094 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 3095 nn->exn_name, sizeof(nn->exn_name), 3096 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 3097 if (err) 3098 return err; 3099 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 3100 nn->lsc_name, sizeof(nn->lsc_name), 3101 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 3102 if (err) 3103 goto err_free_exn; 3104 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 3105 3106 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3107 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3108 if (err) 3109 goto err_cleanup_vec_p; 3110 } 3111 3112 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 3113 if (err) 3114 goto err_cleanup_vec; 3115 3116 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 3117 if (err) 3118 goto err_free_rx_rings; 3119 3120 for (r = 0; r < nn->max_r_vecs; r++) 3121 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3122 3123 return 0; 3124 3125 err_free_rx_rings: 3126 nfp_net_rx_rings_free(&nn->dp); 3127 err_cleanup_vec: 3128 r = nn->dp.num_r_vecs; 3129 err_cleanup_vec_p: 3130 while (r--) 3131 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3132 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 3133 err_free_exn: 3134 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 3135 return err; 3136 } 3137 3138 static int nfp_net_netdev_open(struct net_device *netdev) 3139 { 3140 struct nfp_net *nn = netdev_priv(netdev); 3141 int err; 3142 3143 /* Step 1: Allocate resources for rings and the like 3144 * - Request interrupts 3145 * - Allocate RX and TX ring resources 3146 * - Setup initial RSS table 3147 */ 3148 err = nfp_net_open_alloc_all(nn); 3149 if (err) 3150 return err; 3151 3152 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3153 if (err) 3154 goto err_free_all; 3155 3156 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3157 if (err) 3158 goto err_free_all; 3159 3160 /* Step 2: Configure the NFP 3161 * - Ifup the physical interface if it exists 3162 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3163 * - Write MAC address (in case it changed) 3164 * - Set the MTU 3165 * - Set the Freelist buffer size 3166 * - Enable the FW 3167 */ 3168 err = nfp_port_configure(netdev, true); 3169 if (err) 3170 goto err_free_all; 3171 3172 err = nfp_net_set_config_and_enable(nn); 3173 if (err) 3174 goto err_port_disable; 3175 3176 /* Step 3: Enable for kernel 3177 * - put some freelist descriptors on each RX ring 3178 * - enable NAPI on each ring 3179 * - enable all TX queues 3180 * - set link state 3181 */ 3182 nfp_net_open_stack(nn); 3183 3184 return 0; 3185 3186 err_port_disable: 3187 nfp_port_configure(netdev, false); 3188 err_free_all: 3189 nfp_net_close_free_all(nn); 3190 return err; 3191 } 3192 3193 int nfp_ctrl_open(struct nfp_net *nn) 3194 { 3195 int err, r; 3196 3197 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3198 rtnl_lock(); 3199 3200 err = nfp_net_open_alloc_all(nn); 3201 if (err) 3202 goto err_unlock; 3203 3204 err = nfp_net_set_config_and_enable(nn); 3205 if (err) 3206 goto err_free_all; 3207 3208 for (r = 0; r < nn->dp.num_r_vecs; r++) 3209 enable_irq(nn->r_vecs[r].irq_vector); 3210 3211 rtnl_unlock(); 3212 3213 return 0; 3214 3215 err_free_all: 3216 nfp_net_close_free_all(nn); 3217 err_unlock: 3218 rtnl_unlock(); 3219 return err; 3220 } 3221 3222 static void nfp_net_set_rx_mode(struct net_device *netdev) 3223 { 3224 struct nfp_net *nn = netdev_priv(netdev); 3225 u32 new_ctrl; 3226 3227 new_ctrl = nn->dp.ctrl; 3228 3229 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3230 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3231 else 3232 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3233 3234 if (netdev->flags & IFF_PROMISC) { 3235 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3236 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3237 else 3238 nn_warn(nn, "FW does not support promiscuous mode\n"); 3239 } else { 3240 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3241 } 3242 3243 if (new_ctrl == nn->dp.ctrl) 3244 return; 3245 3246 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3247 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3248 3249 nn->dp.ctrl = new_ctrl; 3250 } 3251 3252 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3253 { 3254 int i; 3255 3256 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3257 nn->rss_itbl[i] = 3258 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3259 } 3260 3261 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3262 { 3263 struct nfp_net_dp new_dp = *dp; 3264 3265 *dp = nn->dp; 3266 nn->dp = new_dp; 3267 3268 nn->dp.netdev->mtu = new_dp.mtu; 3269 3270 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3271 nfp_net_rss_init_itbl(nn); 3272 } 3273 3274 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3275 { 3276 unsigned int r; 3277 int err; 3278 3279 nfp_net_dp_swap(nn, dp); 3280 3281 for (r = 0; r < nn->max_r_vecs; r++) 3282 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3283 3284 err = netif_set_real_num_queues(nn->dp.netdev, 3285 nn->dp.num_stack_tx_rings, 3286 nn->dp.num_rx_rings); 3287 if (err) 3288 return err; 3289 3290 return nfp_net_set_config_and_enable(nn); 3291 } 3292 3293 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3294 { 3295 struct nfp_net_dp *new; 3296 3297 new = kmalloc(sizeof(*new), GFP_KERNEL); 3298 if (!new) 3299 return NULL; 3300 3301 *new = nn->dp; 3302 3303 /* Clear things which need to be recomputed */ 3304 new->fl_bufsz = 0; 3305 new->tx_rings = NULL; 3306 new->rx_rings = NULL; 3307 new->num_r_vecs = 0; 3308 new->num_stack_tx_rings = 0; 3309 3310 return new; 3311 } 3312 3313 static int 3314 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3315 struct netlink_ext_ack *extack) 3316 { 3317 /* XDP-enabled tests */ 3318 if (!dp->xdp_prog) 3319 return 0; 3320 if (dp->fl_bufsz > PAGE_SIZE) { 3321 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3322 return -EINVAL; 3323 } 3324 if (dp->num_tx_rings > nn->max_tx_rings) { 3325 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3326 return -EINVAL; 3327 } 3328 3329 return 0; 3330 } 3331 3332 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3333 struct netlink_ext_ack *extack) 3334 { 3335 int r, err; 3336 3337 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3338 3339 dp->num_stack_tx_rings = dp->num_tx_rings; 3340 if (dp->xdp_prog) 3341 dp->num_stack_tx_rings -= dp->num_rx_rings; 3342 3343 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3344 3345 err = nfp_net_check_config(nn, dp, extack); 3346 if (err) 3347 goto exit_free_dp; 3348 3349 if (!netif_running(dp->netdev)) { 3350 nfp_net_dp_swap(nn, dp); 3351 err = 0; 3352 goto exit_free_dp; 3353 } 3354 3355 /* Prepare new rings */ 3356 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3357 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3358 if (err) { 3359 dp->num_r_vecs = r; 3360 goto err_cleanup_vecs; 3361 } 3362 } 3363 3364 err = nfp_net_rx_rings_prepare(nn, dp); 3365 if (err) 3366 goto err_cleanup_vecs; 3367 3368 err = nfp_net_tx_rings_prepare(nn, dp); 3369 if (err) 3370 goto err_free_rx; 3371 3372 /* Stop device, swap in new rings, try to start the firmware */ 3373 nfp_net_close_stack(nn); 3374 nfp_net_clear_config_and_disable(nn); 3375 3376 err = nfp_net_dp_swap_enable(nn, dp); 3377 if (err) { 3378 int err2; 3379 3380 nfp_net_clear_config_and_disable(nn); 3381 3382 /* Try with old configuration and old rings */ 3383 err2 = nfp_net_dp_swap_enable(nn, dp); 3384 if (err2) 3385 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3386 err, err2); 3387 } 3388 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3389 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3390 3391 nfp_net_rx_rings_free(dp); 3392 nfp_net_tx_rings_free(dp); 3393 3394 nfp_net_open_stack(nn); 3395 exit_free_dp: 3396 kfree(dp); 3397 3398 return err; 3399 3400 err_free_rx: 3401 nfp_net_rx_rings_free(dp); 3402 err_cleanup_vecs: 3403 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3404 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3405 kfree(dp); 3406 return err; 3407 } 3408 3409 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3410 { 3411 struct nfp_net *nn = netdev_priv(netdev); 3412 struct nfp_net_dp *dp; 3413 int err; 3414 3415 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3416 if (err) 3417 return err; 3418 3419 dp = nfp_net_clone_dp(nn); 3420 if (!dp) 3421 return -ENOMEM; 3422 3423 dp->mtu = new_mtu; 3424 3425 return nfp_net_ring_reconfig(nn, dp, NULL); 3426 } 3427 3428 static int 3429 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3430 { 3431 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3432 struct nfp_net *nn = netdev_priv(netdev); 3433 int err; 3434 3435 /* Priority tagged packets with vlan id 0 are processed by the 3436 * NFP as untagged packets 3437 */ 3438 if (!vid) 3439 return 0; 3440 3441 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3442 if (err) 3443 return err; 3444 3445 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3446 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3447 ETH_P_8021Q); 3448 3449 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3450 } 3451 3452 static int 3453 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3454 { 3455 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3456 struct nfp_net *nn = netdev_priv(netdev); 3457 int err; 3458 3459 /* Priority tagged packets with vlan id 0 are processed by the 3460 * NFP as untagged packets 3461 */ 3462 if (!vid) 3463 return 0; 3464 3465 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3466 if (err) 3467 return err; 3468 3469 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3470 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3471 ETH_P_8021Q); 3472 3473 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3474 } 3475 3476 static void nfp_net_stat64(struct net_device *netdev, 3477 struct rtnl_link_stats64 *stats) 3478 { 3479 struct nfp_net *nn = netdev_priv(netdev); 3480 int r; 3481 3482 /* Collect software stats */ 3483 for (r = 0; r < nn->max_r_vecs; r++) { 3484 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3485 u64 data[3]; 3486 unsigned int start; 3487 3488 do { 3489 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3490 data[0] = r_vec->rx_pkts; 3491 data[1] = r_vec->rx_bytes; 3492 data[2] = r_vec->rx_drops; 3493 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3494 stats->rx_packets += data[0]; 3495 stats->rx_bytes += data[1]; 3496 stats->rx_dropped += data[2]; 3497 3498 do { 3499 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3500 data[0] = r_vec->tx_pkts; 3501 data[1] = r_vec->tx_bytes; 3502 data[2] = r_vec->tx_errors; 3503 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3504 stats->tx_packets += data[0]; 3505 stats->tx_bytes += data[1]; 3506 stats->tx_errors += data[2]; 3507 } 3508 3509 /* Add in device stats */ 3510 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3511 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3512 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3513 3514 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3515 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3516 } 3517 3518 static int nfp_net_set_features(struct net_device *netdev, 3519 netdev_features_t features) 3520 { 3521 netdev_features_t changed = netdev->features ^ features; 3522 struct nfp_net *nn = netdev_priv(netdev); 3523 u32 new_ctrl; 3524 int err; 3525 3526 /* Assume this is not called with features we have not advertised */ 3527 3528 new_ctrl = nn->dp.ctrl; 3529 3530 if (changed & NETIF_F_RXCSUM) { 3531 if (features & NETIF_F_RXCSUM) 3532 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3533 else 3534 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3535 } 3536 3537 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3538 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3539 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3540 else 3541 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3542 } 3543 3544 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3545 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3546 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3547 NFP_NET_CFG_CTRL_LSO; 3548 else 3549 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3550 } 3551 3552 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3553 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3554 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3555 else 3556 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3557 } 3558 3559 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3560 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3561 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3562 else 3563 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3564 } 3565 3566 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3567 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3568 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3569 else 3570 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3571 } 3572 3573 if (changed & NETIF_F_SG) { 3574 if (features & NETIF_F_SG) 3575 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3576 else 3577 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3578 } 3579 3580 err = nfp_port_set_features(netdev, features); 3581 if (err) 3582 return err; 3583 3584 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3585 netdev->features, features, changed); 3586 3587 if (new_ctrl == nn->dp.ctrl) 3588 return 0; 3589 3590 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3591 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3592 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3593 if (err) 3594 return err; 3595 3596 nn->dp.ctrl = new_ctrl; 3597 3598 return 0; 3599 } 3600 3601 static netdev_features_t 3602 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3603 netdev_features_t features) 3604 { 3605 u8 l4_hdr; 3606 3607 /* We can't do TSO over double tagged packets (802.1AD) */ 3608 features &= vlan_features_check(skb, features); 3609 3610 if (!skb->encapsulation) 3611 return features; 3612 3613 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3614 if (skb_is_gso(skb)) { 3615 u32 hdrlen; 3616 3617 hdrlen = skb_inner_transport_header(skb) - skb->data + 3618 inner_tcp_hdrlen(skb); 3619 3620 /* Assume worst case scenario of having longest possible 3621 * metadata prepend - 8B 3622 */ 3623 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3624 features &= ~NETIF_F_GSO_MASK; 3625 } 3626 3627 /* VXLAN/GRE check */ 3628 switch (vlan_get_protocol(skb)) { 3629 case htons(ETH_P_IP): 3630 l4_hdr = ip_hdr(skb)->protocol; 3631 break; 3632 case htons(ETH_P_IPV6): 3633 l4_hdr = ipv6_hdr(skb)->nexthdr; 3634 break; 3635 default: 3636 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3637 } 3638 3639 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3640 skb->inner_protocol != htons(ETH_P_TEB) || 3641 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3642 (l4_hdr == IPPROTO_UDP && 3643 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3644 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3645 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3646 3647 return features; 3648 } 3649 3650 static int 3651 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3652 { 3653 struct nfp_net *nn = netdev_priv(netdev); 3654 int n; 3655 3656 /* If port is defined, devlink_port is registered and devlink core 3657 * is taking care of name formatting. 3658 */ 3659 if (nn->port) 3660 return -EOPNOTSUPP; 3661 3662 if (nn->dp.is_vf || nn->vnic_no_name) 3663 return -EOPNOTSUPP; 3664 3665 n = snprintf(name, len, "n%d", nn->id); 3666 if (n >= len) 3667 return -EINVAL; 3668 3669 return 0; 3670 } 3671 3672 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3673 { 3674 struct bpf_prog *prog = bpf->prog; 3675 struct nfp_net_dp *dp; 3676 int err; 3677 3678 if (!prog == !nn->dp.xdp_prog) { 3679 WRITE_ONCE(nn->dp.xdp_prog, prog); 3680 xdp_attachment_setup(&nn->xdp, bpf); 3681 return 0; 3682 } 3683 3684 dp = nfp_net_clone_dp(nn); 3685 if (!dp) 3686 return -ENOMEM; 3687 3688 dp->xdp_prog = prog; 3689 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3690 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3691 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3692 3693 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3694 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3695 if (err) 3696 return err; 3697 3698 xdp_attachment_setup(&nn->xdp, bpf); 3699 return 0; 3700 } 3701 3702 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3703 { 3704 int err; 3705 3706 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3707 if (err) 3708 return err; 3709 3710 xdp_attachment_setup(&nn->xdp_hw, bpf); 3711 return 0; 3712 } 3713 3714 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3715 { 3716 struct nfp_net *nn = netdev_priv(netdev); 3717 3718 switch (xdp->command) { 3719 case XDP_SETUP_PROG: 3720 return nfp_net_xdp_setup_drv(nn, xdp); 3721 case XDP_SETUP_PROG_HW: 3722 return nfp_net_xdp_setup_hw(nn, xdp); 3723 default: 3724 return nfp_app_bpf(nn->app, nn, xdp); 3725 } 3726 } 3727 3728 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3729 { 3730 struct nfp_net *nn = netdev_priv(netdev); 3731 struct sockaddr *saddr = addr; 3732 int err; 3733 3734 err = eth_prepare_mac_addr_change(netdev, addr); 3735 if (err) 3736 return err; 3737 3738 nfp_net_write_mac_addr(nn, saddr->sa_data); 3739 3740 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3741 if (err) 3742 return err; 3743 3744 eth_commit_mac_addr_change(netdev, addr); 3745 3746 return 0; 3747 } 3748 3749 const struct net_device_ops nfp_net_netdev_ops = { 3750 .ndo_init = nfp_app_ndo_init, 3751 .ndo_uninit = nfp_app_ndo_uninit, 3752 .ndo_open = nfp_net_netdev_open, 3753 .ndo_stop = nfp_net_netdev_close, 3754 .ndo_start_xmit = nfp_net_tx, 3755 .ndo_get_stats64 = nfp_net_stat64, 3756 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3757 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3758 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3759 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3760 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3761 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3762 .ndo_get_vf_config = nfp_app_get_vf_config, 3763 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3764 .ndo_setup_tc = nfp_port_setup_tc, 3765 .ndo_tx_timeout = nfp_net_tx_timeout, 3766 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3767 .ndo_change_mtu = nfp_net_change_mtu, 3768 .ndo_set_mac_address = nfp_net_set_mac_address, 3769 .ndo_set_features = nfp_net_set_features, 3770 .ndo_features_check = nfp_net_features_check, 3771 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3772 .ndo_bpf = nfp_net_xdp, 3773 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3774 }; 3775 3776 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 3777 { 3778 struct nfp_net *nn = netdev_priv(netdev); 3779 int i; 3780 3781 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3782 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 3783 struct udp_tunnel_info ti0, ti1; 3784 3785 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 3786 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 3787 3788 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 3789 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 3790 } 3791 3792 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 3793 } 3794 3795 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 3796 .sync_table = nfp_udp_tunnel_sync, 3797 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 3798 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 3799 .tables = { 3800 { 3801 .n_entries = NFP_NET_N_VXLAN_PORTS, 3802 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 3803 }, 3804 }, 3805 }; 3806 3807 /** 3808 * nfp_net_info() - Print general info about the NIC 3809 * @nn: NFP Net device to reconfigure 3810 */ 3811 void nfp_net_info(struct nfp_net *nn) 3812 { 3813 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3814 nn->dp.is_vf ? "VF " : "", 3815 nn->dp.num_tx_rings, nn->max_tx_rings, 3816 nn->dp.num_rx_rings, nn->max_rx_rings); 3817 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3818 nn->fw_ver.resv, nn->fw_ver.class, 3819 nn->fw_ver.major, nn->fw_ver.minor, 3820 nn->max_mtu); 3821 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3822 nn->cap, 3823 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3824 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3825 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3826 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3827 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3828 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3829 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3830 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3831 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3832 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3833 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3834 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3835 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3836 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3837 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3838 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3839 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3840 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3841 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3842 "RXCSUM_COMPLETE " : "", 3843 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3844 nfp_app_extra_cap(nn->app, nn)); 3845 } 3846 3847 /** 3848 * nfp_net_alloc() - Allocate netdev and related structure 3849 * @pdev: PCI device 3850 * @ctrl_bar: PCI IOMEM with vNIC config memory 3851 * @needs_netdev: Whether to allocate a netdev for this vNIC 3852 * @max_tx_rings: Maximum number of TX rings supported by device 3853 * @max_rx_rings: Maximum number of RX rings supported by device 3854 * 3855 * This function allocates a netdev device and fills in the initial 3856 * part of the @struct nfp_net structure. In case of control device 3857 * nfp_net structure is allocated without the netdev. 3858 * 3859 * Return: NFP Net device structure, or ERR_PTR on error. 3860 */ 3861 struct nfp_net * 3862 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3863 unsigned int max_tx_rings, unsigned int max_rx_rings) 3864 { 3865 struct nfp_net *nn; 3866 int err; 3867 3868 if (needs_netdev) { 3869 struct net_device *netdev; 3870 3871 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3872 max_tx_rings, max_rx_rings); 3873 if (!netdev) 3874 return ERR_PTR(-ENOMEM); 3875 3876 SET_NETDEV_DEV(netdev, &pdev->dev); 3877 nn = netdev_priv(netdev); 3878 nn->dp.netdev = netdev; 3879 } else { 3880 nn = vzalloc(sizeof(*nn)); 3881 if (!nn) 3882 return ERR_PTR(-ENOMEM); 3883 } 3884 3885 nn->dp.dev = &pdev->dev; 3886 nn->dp.ctrl_bar = ctrl_bar; 3887 nn->pdev = pdev; 3888 3889 nn->max_tx_rings = max_tx_rings; 3890 nn->max_rx_rings = max_rx_rings; 3891 3892 nn->dp.num_tx_rings = min_t(unsigned int, 3893 max_tx_rings, num_online_cpus()); 3894 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3895 netif_get_num_default_rss_queues()); 3896 3897 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3898 nn->dp.num_r_vecs = min_t(unsigned int, 3899 nn->dp.num_r_vecs, num_online_cpus()); 3900 3901 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3902 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3903 3904 sema_init(&nn->bar_lock, 1); 3905 3906 spin_lock_init(&nn->reconfig_lock); 3907 spin_lock_init(&nn->link_status_lock); 3908 3909 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3910 3911 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3912 &nn->tlv_caps); 3913 if (err) 3914 goto err_free_nn; 3915 3916 err = nfp_ccm_mbox_alloc(nn); 3917 if (err) 3918 goto err_free_nn; 3919 3920 return nn; 3921 3922 err_free_nn: 3923 if (nn->dp.netdev) 3924 free_netdev(nn->dp.netdev); 3925 else 3926 vfree(nn); 3927 return ERR_PTR(err); 3928 } 3929 3930 /** 3931 * nfp_net_free() - Undo what @nfp_net_alloc() did 3932 * @nn: NFP Net device to reconfigure 3933 */ 3934 void nfp_net_free(struct nfp_net *nn) 3935 { 3936 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3937 nfp_ccm_mbox_free(nn); 3938 3939 if (nn->dp.netdev) 3940 free_netdev(nn->dp.netdev); 3941 else 3942 vfree(nn); 3943 } 3944 3945 /** 3946 * nfp_net_rss_key_sz() - Get current size of the RSS key 3947 * @nn: NFP Net device instance 3948 * 3949 * Return: size of the RSS key for currently selected hash function. 3950 */ 3951 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3952 { 3953 switch (nn->rss_hfunc) { 3954 case ETH_RSS_HASH_TOP: 3955 return NFP_NET_CFG_RSS_KEY_SZ; 3956 case ETH_RSS_HASH_XOR: 3957 return 0; 3958 case ETH_RSS_HASH_CRC32: 3959 return 4; 3960 } 3961 3962 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3963 return 0; 3964 } 3965 3966 /** 3967 * nfp_net_rss_init() - Set the initial RSS parameters 3968 * @nn: NFP Net device to reconfigure 3969 */ 3970 static void nfp_net_rss_init(struct nfp_net *nn) 3971 { 3972 unsigned long func_bit, rss_cap_hfunc; 3973 u32 reg; 3974 3975 /* Read the RSS function capability and select first supported func */ 3976 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3977 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3978 if (!rss_cap_hfunc) 3979 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3980 NFP_NET_CFG_RSS_TOEPLITZ); 3981 3982 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3983 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3984 dev_warn(nn->dp.dev, 3985 "Bad RSS config, defaulting to Toeplitz hash\n"); 3986 func_bit = ETH_RSS_HASH_TOP_BIT; 3987 } 3988 nn->rss_hfunc = 1 << func_bit; 3989 3990 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3991 3992 nfp_net_rss_init_itbl(nn); 3993 3994 /* Enable IPv4/IPv6 TCP by default */ 3995 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3996 NFP_NET_CFG_RSS_IPV6_TCP | 3997 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3998 NFP_NET_CFG_RSS_MASK; 3999 } 4000 4001 /** 4002 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 4003 * @nn: NFP Net device to reconfigure 4004 */ 4005 static void nfp_net_irqmod_init(struct nfp_net *nn) 4006 { 4007 nn->rx_coalesce_usecs = 50; 4008 nn->rx_coalesce_max_frames = 64; 4009 nn->tx_coalesce_usecs = 50; 4010 nn->tx_coalesce_max_frames = 64; 4011 4012 nn->rx_coalesce_adapt_on = true; 4013 nn->tx_coalesce_adapt_on = true; 4014 } 4015 4016 static void nfp_net_netdev_init(struct nfp_net *nn) 4017 { 4018 struct net_device *netdev = nn->dp.netdev; 4019 4020 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 4021 4022 netdev->mtu = nn->dp.mtu; 4023 4024 /* Advertise/enable offloads based on capabilities 4025 * 4026 * Note: netdev->features show the currently enabled features 4027 * and netdev->hw_features advertises which features are 4028 * supported. By default we enable most features. 4029 */ 4030 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 4031 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4032 4033 netdev->hw_features = NETIF_F_HIGHDMA; 4034 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 4035 netdev->hw_features |= NETIF_F_RXCSUM; 4036 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 4037 } 4038 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 4039 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4040 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 4041 } 4042 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 4043 netdev->hw_features |= NETIF_F_SG; 4044 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 4045 } 4046 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 4047 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4048 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4049 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 4050 NFP_NET_CFG_CTRL_LSO; 4051 } 4052 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 4053 netdev->hw_features |= NETIF_F_RXHASH; 4054 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 4055 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4056 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 4057 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 4058 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 4059 } 4060 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 4061 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4062 netdev->hw_features |= NETIF_F_GSO_GRE; 4063 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 4064 } 4065 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 4066 netdev->hw_enc_features = netdev->hw_features; 4067 4068 netdev->vlan_features = netdev->hw_features; 4069 4070 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 4071 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4072 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 4073 } 4074 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 4075 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4076 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 4077 } else { 4078 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4079 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 4080 } 4081 } 4082 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 4083 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4084 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 4085 } 4086 4087 netdev->features = netdev->hw_features; 4088 4089 if (nfp_app_has_tc(nn->app) && nn->port) 4090 netdev->hw_features |= NETIF_F_HW_TC; 4091 4092 /* Advertise but disable TSO by default. */ 4093 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 4094 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 4095 4096 /* Finalise the netdev setup */ 4097 netdev->netdev_ops = &nfp_net_netdev_ops; 4098 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 4099 4100 /* MTU range: 68 - hw-specific max */ 4101 netdev->min_mtu = ETH_MIN_MTU; 4102 netdev->max_mtu = nn->max_mtu; 4103 4104 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 4105 4106 netif_carrier_off(netdev); 4107 4108 nfp_net_set_ethtool_ops(netdev); 4109 } 4110 4111 static int nfp_net_read_caps(struct nfp_net *nn) 4112 { 4113 /* Get some of the read-only fields from the BAR */ 4114 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 4115 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 4116 4117 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4118 * we allow use of non-chained metadata if RSS(v1) is the only 4119 * advertised capability requiring metadata. 4120 */ 4121 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4122 !nn->dp.netdev || 4123 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4124 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4125 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4126 * it has the same meaning as RSSv2. 4127 */ 4128 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4129 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4130 4131 /* Determine RX packet/metadata boundary offset */ 4132 if (nn->fw_ver.major >= 2) { 4133 u32 reg; 4134 4135 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4136 if (reg > NFP_NET_MAX_PREPEND) { 4137 nn_err(nn, "Invalid rx offset: %d\n", reg); 4138 return -EINVAL; 4139 } 4140 nn->dp.rx_offset = reg; 4141 } else { 4142 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4143 } 4144 4145 /* For control vNICs mask out the capabilities app doesn't want. */ 4146 if (!nn->dp.netdev) 4147 nn->cap &= nn->app->type->ctrl_cap_mask; 4148 4149 return 0; 4150 } 4151 4152 /** 4153 * nfp_net_init() - Initialise/finalise the nfp_net structure 4154 * @nn: NFP Net device structure 4155 * 4156 * Return: 0 on success or negative errno on error. 4157 */ 4158 int nfp_net_init(struct nfp_net *nn) 4159 { 4160 int err; 4161 4162 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4163 4164 err = nfp_net_read_caps(nn); 4165 if (err) 4166 return err; 4167 4168 /* Set default MTU and Freelist buffer size */ 4169 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4170 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 4171 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4172 nn->dp.mtu = nn->max_mtu; 4173 } else { 4174 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4175 } 4176 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4177 4178 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4179 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4180 4181 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4182 nfp_net_rss_init(nn); 4183 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4184 NFP_NET_CFG_CTRL_RSS; 4185 } 4186 4187 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4188 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4189 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4190 4191 /* Allow IRQ moderation, if supported */ 4192 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4193 nfp_net_irqmod_init(nn); 4194 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4195 } 4196 4197 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4198 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4199 4200 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4201 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4202 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4203 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4204 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4205 NFP_NET_CFG_UPDATE_GEN); 4206 if (err) 4207 return err; 4208 4209 if (nn->dp.netdev) { 4210 nfp_net_netdev_init(nn); 4211 4212 err = nfp_ccm_mbox_init(nn); 4213 if (err) 4214 return err; 4215 4216 err = nfp_net_tls_init(nn); 4217 if (err) 4218 goto err_clean_mbox; 4219 } 4220 4221 nfp_net_vecs_init(nn); 4222 4223 if (!nn->dp.netdev) 4224 return 0; 4225 return register_netdev(nn->dp.netdev); 4226 4227 err_clean_mbox: 4228 nfp_ccm_mbox_clean(nn); 4229 return err; 4230 } 4231 4232 /** 4233 * nfp_net_clean() - Undo what nfp_net_init() did. 4234 * @nn: NFP Net device structure 4235 */ 4236 void nfp_net_clean(struct nfp_net *nn) 4237 { 4238 if (!nn->dp.netdev) 4239 return; 4240 4241 unregister_netdev(nn->dp.netdev); 4242 nfp_ccm_mbox_clean(nn); 4243 nfp_net_reconfig_wait_posted(nn); 4244 } 4245