1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38 
39 #include <net/switchdev.h>
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "nfp_app.h"
44 #include "nfp_net_ctrl.h"
45 #include "nfp_net.h"
46 #include "nfp_net_sriov.h"
47 #include "nfp_port.h"
48 
49 /**
50  * nfp_net_get_fw_version() - Read and parse the FW version
51  * @fw_ver:	Output fw_version structure to read to
52  * @ctrl_bar:	Mapped address of the control BAR
53  */
54 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
55 			    void __iomem *ctrl_bar)
56 {
57 	u32 reg;
58 
59 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
60 	put_unaligned_le32(reg, fw_ver);
61 }
62 
63 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
64 {
65 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
66 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
67 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
68 }
69 
70 static void
71 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
72 {
73 	dma_sync_single_for_device(dp->dev, dma_addr,
74 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
75 				   dp->rx_dma_dir);
76 }
77 
78 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
79 {
80 	dma_unmap_single_attrs(dp->dev, dma_addr,
81 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
82 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
83 }
84 
85 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
86 				    unsigned int len)
87 {
88 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
89 				len, dp->rx_dma_dir);
90 }
91 
92 /* Firmware reconfig
93  *
94  * Firmware reconfig may take a while so we have two versions of it -
95  * synchronous and asynchronous (posted).  All synchronous callers are holding
96  * RTNL so we don't have to worry about serializing them.
97  */
98 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
99 {
100 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
101 	/* ensure update is written before pinging HW */
102 	nn_pci_flush(nn);
103 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
104 }
105 
106 /* Pass 0 as update to run posted reconfigs. */
107 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
108 {
109 	update |= nn->reconfig_posted;
110 	nn->reconfig_posted = 0;
111 
112 	nfp_net_reconfig_start(nn, update);
113 
114 	nn->reconfig_timer_active = true;
115 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
116 }
117 
118 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
119 {
120 	u32 reg;
121 
122 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
123 	if (reg == 0)
124 		return true;
125 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
126 		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
127 		return true;
128 	} else if (last_check) {
129 		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
130 		return true;
131 	}
132 
133 	return false;
134 }
135 
136 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
137 {
138 	bool timed_out = false;
139 
140 	/* Poll update field, waiting for NFP to ack the config */
141 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
142 		msleep(1);
143 		timed_out = time_is_before_eq_jiffies(deadline);
144 	}
145 
146 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
147 		return -EIO;
148 
149 	return timed_out ? -EIO : 0;
150 }
151 
152 static void nfp_net_reconfig_timer(struct timer_list *t)
153 {
154 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
155 
156 	spin_lock_bh(&nn->reconfig_lock);
157 
158 	nn->reconfig_timer_active = false;
159 
160 	/* If sync caller is present it will take over from us */
161 	if (nn->reconfig_sync_present)
162 		goto done;
163 
164 	/* Read reconfig status and report errors */
165 	nfp_net_reconfig_check_done(nn, true);
166 
167 	if (nn->reconfig_posted)
168 		nfp_net_reconfig_start_async(nn, 0);
169 done:
170 	spin_unlock_bh(&nn->reconfig_lock);
171 }
172 
173 /**
174  * nfp_net_reconfig_post() - Post async reconfig request
175  * @nn:      NFP Net device to reconfigure
176  * @update:  The value for the update field in the BAR config
177  *
178  * Record FW reconfiguration request.  Reconfiguration will be kicked off
179  * whenever reconfiguration machinery is idle.  Multiple requests can be
180  * merged together!
181  */
182 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
183 {
184 	spin_lock_bh(&nn->reconfig_lock);
185 
186 	/* Sync caller will kick off async reconf when it's done, just post */
187 	if (nn->reconfig_sync_present) {
188 		nn->reconfig_posted |= update;
189 		goto done;
190 	}
191 
192 	/* Opportunistically check if the previous command is done */
193 	if (!nn->reconfig_timer_active ||
194 	    nfp_net_reconfig_check_done(nn, false))
195 		nfp_net_reconfig_start_async(nn, update);
196 	else
197 		nn->reconfig_posted |= update;
198 done:
199 	spin_unlock_bh(&nn->reconfig_lock);
200 }
201 
202 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
203 {
204 	bool cancelled_timer = false;
205 	u32 pre_posted_requests;
206 
207 	spin_lock_bh(&nn->reconfig_lock);
208 
209 	nn->reconfig_sync_present = true;
210 
211 	if (nn->reconfig_timer_active) {
212 		nn->reconfig_timer_active = false;
213 		cancelled_timer = true;
214 	}
215 	pre_posted_requests = nn->reconfig_posted;
216 	nn->reconfig_posted = 0;
217 
218 	spin_unlock_bh(&nn->reconfig_lock);
219 
220 	if (cancelled_timer) {
221 		del_timer_sync(&nn->reconfig_timer);
222 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
223 	}
224 
225 	/* Run the posted reconfigs which were issued before we started */
226 	if (pre_posted_requests) {
227 		nfp_net_reconfig_start(nn, pre_posted_requests);
228 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
229 	}
230 }
231 
232 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
233 {
234 	nfp_net_reconfig_sync_enter(nn);
235 
236 	spin_lock_bh(&nn->reconfig_lock);
237 	nn->reconfig_sync_present = false;
238 	spin_unlock_bh(&nn->reconfig_lock);
239 }
240 
241 /**
242  * nfp_net_reconfig() - Reconfigure the firmware
243  * @nn:      NFP Net device to reconfigure
244  * @update:  The value for the update field in the BAR config
245  *
246  * Write the update word to the BAR and ping the reconfig queue.  The
247  * poll until the firmware has acknowledged the update by zeroing the
248  * update word.
249  *
250  * Return: Negative errno on error, 0 on success
251  */
252 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
253 {
254 	int ret;
255 
256 	nfp_net_reconfig_sync_enter(nn);
257 
258 	nfp_net_reconfig_start(nn, update);
259 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
260 
261 	spin_lock_bh(&nn->reconfig_lock);
262 
263 	if (nn->reconfig_posted)
264 		nfp_net_reconfig_start_async(nn, 0);
265 
266 	nn->reconfig_sync_present = false;
267 
268 	spin_unlock_bh(&nn->reconfig_lock);
269 
270 	return ret;
271 }
272 
273 /**
274  * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
275  * @nn:        NFP Net device to reconfigure
276  * @mbox_cmd:  The value for the mailbox command
277  *
278  * Helper function for mailbox updates
279  *
280  * Return: Negative errno on error, 0 on success
281  */
282 int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
283 {
284 	u32 mbox = nn->tlv_caps.mbox_off;
285 	int ret;
286 
287 	if (!nfp_net_has_mbox(&nn->tlv_caps)) {
288 		nn_err(nn, "no mailbox present, command: %u\n", mbox_cmd);
289 		return -EIO;
290 	}
291 
292 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
293 
294 	ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
295 	if (ret) {
296 		nn_err(nn, "Mailbox update error\n");
297 		return ret;
298 	}
299 
300 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
301 }
302 
303 /* Interrupt configuration and handling
304  */
305 
306 /**
307  * nfp_net_irq_unmask() - Unmask automasked interrupt
308  * @nn:       NFP Network structure
309  * @entry_nr: MSI-X table entry
310  *
311  * Clear the ICR for the IRQ entry.
312  */
313 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
314 {
315 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
316 	nn_pci_flush(nn);
317 }
318 
319 /**
320  * nfp_net_irqs_alloc() - allocates MSI-X irqs
321  * @pdev:        PCI device structure
322  * @irq_entries: Array to be initialized and used to hold the irq entries
323  * @min_irqs:    Minimal acceptable number of interrupts
324  * @wanted_irqs: Target number of interrupts to allocate
325  *
326  * Return: Number of irqs obtained or 0 on error.
327  */
328 unsigned int
329 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
330 		   unsigned int min_irqs, unsigned int wanted_irqs)
331 {
332 	unsigned int i;
333 	int got_irqs;
334 
335 	for (i = 0; i < wanted_irqs; i++)
336 		irq_entries[i].entry = i;
337 
338 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
339 					 min_irqs, wanted_irqs);
340 	if (got_irqs < 0) {
341 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
342 			min_irqs, wanted_irqs, got_irqs);
343 		return 0;
344 	}
345 
346 	if (got_irqs < wanted_irqs)
347 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
348 			 wanted_irqs, got_irqs);
349 
350 	return got_irqs;
351 }
352 
353 /**
354  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
355  * @nn:		 NFP Network structure
356  * @irq_entries: Table of allocated interrupts
357  * @n:		 Size of @irq_entries (number of entries to grab)
358  *
359  * After interrupts are allocated with nfp_net_irqs_alloc() this function
360  * should be called to assign them to a specific netdev (port).
361  */
362 void
363 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
364 		    unsigned int n)
365 {
366 	struct nfp_net_dp *dp = &nn->dp;
367 
368 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
369 	dp->num_r_vecs = nn->max_r_vecs;
370 
371 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
372 
373 	if (dp->num_rx_rings > dp->num_r_vecs ||
374 	    dp->num_tx_rings > dp->num_r_vecs)
375 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
376 			 dp->num_rx_rings, dp->num_tx_rings,
377 			 dp->num_r_vecs);
378 
379 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
380 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
381 	dp->num_stack_tx_rings = dp->num_tx_rings;
382 }
383 
384 /**
385  * nfp_net_irqs_disable() - Disable interrupts
386  * @pdev:        PCI device structure
387  *
388  * Undoes what @nfp_net_irqs_alloc() does.
389  */
390 void nfp_net_irqs_disable(struct pci_dev *pdev)
391 {
392 	pci_disable_msix(pdev);
393 }
394 
395 /**
396  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
397  * @irq:      Interrupt
398  * @data:     Opaque data structure
399  *
400  * Return: Indicate if the interrupt has been handled.
401  */
402 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
403 {
404 	struct nfp_net_r_vector *r_vec = data;
405 
406 	napi_schedule_irqoff(&r_vec->napi);
407 
408 	/* The FW auto-masks any interrupt, either via the MASK bit in
409 	 * the MSI-X table or via the per entry ICR field.  So there
410 	 * is no need to disable interrupts here.
411 	 */
412 	return IRQ_HANDLED;
413 }
414 
415 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
416 {
417 	struct nfp_net_r_vector *r_vec = data;
418 
419 	tasklet_schedule(&r_vec->tasklet);
420 
421 	return IRQ_HANDLED;
422 }
423 
424 /**
425  * nfp_net_read_link_status() - Reread link status from control BAR
426  * @nn:       NFP Network structure
427  */
428 static void nfp_net_read_link_status(struct nfp_net *nn)
429 {
430 	unsigned long flags;
431 	bool link_up;
432 	u32 sts;
433 
434 	spin_lock_irqsave(&nn->link_status_lock, flags);
435 
436 	sts = nn_readl(nn, NFP_NET_CFG_STS);
437 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
438 
439 	if (nn->link_up == link_up)
440 		goto out;
441 
442 	nn->link_up = link_up;
443 	if (nn->port)
444 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
445 
446 	if (nn->link_up) {
447 		netif_carrier_on(nn->dp.netdev);
448 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
449 	} else {
450 		netif_carrier_off(nn->dp.netdev);
451 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
452 	}
453 out:
454 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
455 }
456 
457 /**
458  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
459  * @irq:      Interrupt
460  * @data:     Opaque data structure
461  *
462  * Return: Indicate if the interrupt has been handled.
463  */
464 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
465 {
466 	struct nfp_net *nn = data;
467 	struct msix_entry *entry;
468 
469 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
470 
471 	nfp_net_read_link_status(nn);
472 
473 	nfp_net_irq_unmask(nn, entry->entry);
474 
475 	return IRQ_HANDLED;
476 }
477 
478 /**
479  * nfp_net_irq_exn() - Interrupt service routine for exceptions
480  * @irq:      Interrupt
481  * @data:     Opaque data structure
482  *
483  * Return: Indicate if the interrupt has been handled.
484  */
485 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
486 {
487 	struct nfp_net *nn = data;
488 
489 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
490 	/* XXX TO BE IMPLEMENTED */
491 	return IRQ_HANDLED;
492 }
493 
494 /**
495  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
496  * @tx_ring:  TX ring structure
497  * @r_vec:    IRQ vector servicing this ring
498  * @idx:      Ring index
499  * @is_xdp:   Is this an XDP TX ring?
500  */
501 static void
502 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
503 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
504 		     bool is_xdp)
505 {
506 	struct nfp_net *nn = r_vec->nfp_net;
507 
508 	tx_ring->idx = idx;
509 	tx_ring->r_vec = r_vec;
510 	tx_ring->is_xdp = is_xdp;
511 	u64_stats_init(&tx_ring->r_vec->tx_sync);
512 
513 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
514 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
515 }
516 
517 /**
518  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
519  * @rx_ring:  RX ring structure
520  * @r_vec:    IRQ vector servicing this ring
521  * @idx:      Ring index
522  */
523 static void
524 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
525 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
526 {
527 	struct nfp_net *nn = r_vec->nfp_net;
528 
529 	rx_ring->idx = idx;
530 	rx_ring->r_vec = r_vec;
531 	u64_stats_init(&rx_ring->r_vec->rx_sync);
532 
533 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
534 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
535 }
536 
537 /**
538  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
539  * @nn:		NFP Network structure
540  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
541  * @format:	printf-style format to construct the interrupt name
542  * @name:	Pointer to allocated space for interrupt name
543  * @name_sz:	Size of space for interrupt name
544  * @vector_idx:	Index of MSI-X vector used for this interrupt
545  * @handler:	IRQ handler to register for this interrupt
546  */
547 static int
548 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
549 			const char *format, char *name, size_t name_sz,
550 			unsigned int vector_idx, irq_handler_t handler)
551 {
552 	struct msix_entry *entry;
553 	int err;
554 
555 	entry = &nn->irq_entries[vector_idx];
556 
557 	snprintf(name, name_sz, format, nfp_net_name(nn));
558 	err = request_irq(entry->vector, handler, 0, name, nn);
559 	if (err) {
560 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
561 		       entry->vector, err);
562 		return err;
563 	}
564 	nn_writeb(nn, ctrl_offset, entry->entry);
565 	nfp_net_irq_unmask(nn, entry->entry);
566 
567 	return 0;
568 }
569 
570 /**
571  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
572  * @nn:		NFP Network structure
573  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
574  * @vector_idx:	Index of MSI-X vector used for this interrupt
575  */
576 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
577 				 unsigned int vector_idx)
578 {
579 	nn_writeb(nn, ctrl_offset, 0xff);
580 	nn_pci_flush(nn);
581 	free_irq(nn->irq_entries[vector_idx].vector, nn);
582 }
583 
584 /* Transmit
585  *
586  * One queue controller peripheral queue is used for transmit.  The
587  * driver en-queues packets for transmit by advancing the write
588  * pointer.  The device indicates that packets have transmitted by
589  * advancing the read pointer.  The driver maintains a local copy of
590  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
591  * keeps @wr_p in sync with the queue controller write pointer and can
592  * determine how many packets have been transmitted by comparing its
593  * copy of the read pointer @rd_p with the read pointer maintained by
594  * the queue controller peripheral.
595  */
596 
597 /**
598  * nfp_net_tx_full() - Check if the TX ring is full
599  * @tx_ring: TX ring to check
600  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
601  *
602  * This function checks, based on the *host copy* of read/write
603  * pointer if a given TX ring is full.  The real TX queue may have
604  * some newly made available slots.
605  *
606  * Return: True if the ring is full.
607  */
608 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
609 {
610 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
611 }
612 
613 /* Wrappers for deciding when to stop and restart TX queues */
614 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
615 {
616 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
617 }
618 
619 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
620 {
621 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
622 }
623 
624 /**
625  * nfp_net_tx_ring_stop() - stop tx ring
626  * @nd_q:    netdev queue
627  * @tx_ring: driver tx queue structure
628  *
629  * Safely stop TX ring.  Remember that while we are running .start_xmit()
630  * someone else may be cleaning the TX ring completions so we need to be
631  * extra careful here.
632  */
633 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
634 				 struct nfp_net_tx_ring *tx_ring)
635 {
636 	netif_tx_stop_queue(nd_q);
637 
638 	/* We can race with the TX completion out of NAPI so recheck */
639 	smp_mb();
640 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
641 		netif_tx_start_queue(nd_q);
642 }
643 
644 /**
645  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
646  * @r_vec: per-ring structure
647  * @txbuf: Pointer to driver soft TX descriptor
648  * @txd: Pointer to HW TX descriptor
649  * @skb: Pointer to SKB
650  * @md_bytes: Prepend length
651  *
652  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
653  * Return error on packet header greater than maximum supported LSO header size.
654  */
655 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
656 			   struct nfp_net_tx_buf *txbuf,
657 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
658 			   u32 md_bytes)
659 {
660 	u32 l3_offset, l4_offset, hdrlen;
661 	u16 mss;
662 
663 	if (!skb_is_gso(skb))
664 		return;
665 
666 	if (!skb->encapsulation) {
667 		l3_offset = skb_network_offset(skb);
668 		l4_offset = skb_transport_offset(skb);
669 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
670 	} else {
671 		l3_offset = skb_inner_network_offset(skb);
672 		l4_offset = skb_inner_transport_offset(skb);
673 		hdrlen = skb_inner_transport_header(skb) - skb->data +
674 			inner_tcp_hdrlen(skb);
675 	}
676 
677 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
678 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
679 
680 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
681 	txd->l3_offset = l3_offset - md_bytes;
682 	txd->l4_offset = l4_offset - md_bytes;
683 	txd->lso_hdrlen = hdrlen - md_bytes;
684 	txd->mss = cpu_to_le16(mss);
685 	txd->flags |= PCIE_DESC_TX_LSO;
686 
687 	u64_stats_update_begin(&r_vec->tx_sync);
688 	r_vec->tx_lso++;
689 	u64_stats_update_end(&r_vec->tx_sync);
690 }
691 
692 /**
693  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
694  * @dp:  NFP Net data path struct
695  * @r_vec: per-ring structure
696  * @txbuf: Pointer to driver soft TX descriptor
697  * @txd: Pointer to TX descriptor
698  * @skb: Pointer to SKB
699  *
700  * This function sets the TX checksum flags in the TX descriptor based
701  * on the configuration and the protocol of the packet to be transmitted.
702  */
703 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
704 			    struct nfp_net_r_vector *r_vec,
705 			    struct nfp_net_tx_buf *txbuf,
706 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
707 {
708 	struct ipv6hdr *ipv6h;
709 	struct iphdr *iph;
710 	u8 l4_hdr;
711 
712 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
713 		return;
714 
715 	if (skb->ip_summed != CHECKSUM_PARTIAL)
716 		return;
717 
718 	txd->flags |= PCIE_DESC_TX_CSUM;
719 	if (skb->encapsulation)
720 		txd->flags |= PCIE_DESC_TX_ENCAP;
721 
722 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
723 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
724 
725 	if (iph->version == 4) {
726 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
727 		l4_hdr = iph->protocol;
728 	} else if (ipv6h->version == 6) {
729 		l4_hdr = ipv6h->nexthdr;
730 	} else {
731 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
732 		return;
733 	}
734 
735 	switch (l4_hdr) {
736 	case IPPROTO_TCP:
737 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
738 		break;
739 	case IPPROTO_UDP:
740 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
741 		break;
742 	default:
743 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
744 		return;
745 	}
746 
747 	u64_stats_update_begin(&r_vec->tx_sync);
748 	if (skb->encapsulation)
749 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
750 	else
751 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
752 	u64_stats_update_end(&r_vec->tx_sync);
753 }
754 
755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
756 {
757 	wmb();
758 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
759 	tx_ring->wr_ptr_add = 0;
760 }
761 
762 static int nfp_net_prep_port_id(struct sk_buff *skb)
763 {
764 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
765 	unsigned char *data;
766 
767 	if (likely(!md_dst))
768 		return 0;
769 	if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
770 		return 0;
771 
772 	if (unlikely(skb_cow_head(skb, 8)))
773 		return -ENOMEM;
774 
775 	data = skb_push(skb, 8);
776 	put_unaligned_be32(NFP_NET_META_PORTID, data);
777 	put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
778 
779 	return 8;
780 }
781 
782 /**
783  * nfp_net_tx() - Main transmit entry point
784  * @skb:    SKB to transmit
785  * @netdev: netdev structure
786  *
787  * Return: NETDEV_TX_OK on success.
788  */
789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
790 {
791 	struct nfp_net *nn = netdev_priv(netdev);
792 	const struct skb_frag_struct *frag;
793 	int f, nr_frags, wr_idx, md_bytes;
794 	struct nfp_net_tx_ring *tx_ring;
795 	struct nfp_net_r_vector *r_vec;
796 	struct nfp_net_tx_buf *txbuf;
797 	struct nfp_net_tx_desc *txd;
798 	struct netdev_queue *nd_q;
799 	struct nfp_net_dp *dp;
800 	dma_addr_t dma_addr;
801 	unsigned int fsize;
802 	u16 qidx;
803 
804 	dp = &nn->dp;
805 	qidx = skb_get_queue_mapping(skb);
806 	tx_ring = &dp->tx_rings[qidx];
807 	r_vec = tx_ring->r_vec;
808 
809 	nr_frags = skb_shinfo(skb)->nr_frags;
810 
811 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
812 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
813 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
814 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
815 		netif_tx_stop_queue(nd_q);
816 		nfp_net_tx_xmit_more_flush(tx_ring);
817 		u64_stats_update_begin(&r_vec->tx_sync);
818 		r_vec->tx_busy++;
819 		u64_stats_update_end(&r_vec->tx_sync);
820 		return NETDEV_TX_BUSY;
821 	}
822 
823 	md_bytes = nfp_net_prep_port_id(skb);
824 	if (unlikely(md_bytes < 0)) {
825 		nfp_net_tx_xmit_more_flush(tx_ring);
826 		dev_kfree_skb_any(skb);
827 		return NETDEV_TX_OK;
828 	}
829 
830 	/* Start with the head skbuf */
831 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
832 				  DMA_TO_DEVICE);
833 	if (dma_mapping_error(dp->dev, dma_addr))
834 		goto err_free;
835 
836 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
837 
838 	/* Stash the soft descriptor of the head then initialize it */
839 	txbuf = &tx_ring->txbufs[wr_idx];
840 	txbuf->skb = skb;
841 	txbuf->dma_addr = dma_addr;
842 	txbuf->fidx = -1;
843 	txbuf->pkt_cnt = 1;
844 	txbuf->real_len = skb->len;
845 
846 	/* Build TX descriptor */
847 	txd = &tx_ring->txds[wr_idx];
848 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
849 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
850 	nfp_desc_set_dma_addr(txd, dma_addr);
851 	txd->data_len = cpu_to_le16(skb->len);
852 
853 	txd->flags = 0;
854 	txd->mss = 0;
855 	txd->lso_hdrlen = 0;
856 
857 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
858 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
859 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
860 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
861 		txd->flags |= PCIE_DESC_TX_VLAN;
862 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
863 	}
864 
865 	/* Gather DMA */
866 	if (nr_frags > 0) {
867 		__le64 second_half;
868 
869 		/* all descs must match except for in addr, length and eop */
870 		second_half = txd->vals8[1];
871 
872 		for (f = 0; f < nr_frags; f++) {
873 			frag = &skb_shinfo(skb)->frags[f];
874 			fsize = skb_frag_size(frag);
875 
876 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
877 						    fsize, DMA_TO_DEVICE);
878 			if (dma_mapping_error(dp->dev, dma_addr))
879 				goto err_unmap;
880 
881 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
882 			tx_ring->txbufs[wr_idx].skb = skb;
883 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
884 			tx_ring->txbufs[wr_idx].fidx = f;
885 
886 			txd = &tx_ring->txds[wr_idx];
887 			txd->dma_len = cpu_to_le16(fsize);
888 			nfp_desc_set_dma_addr(txd, dma_addr);
889 			txd->offset_eop = md_bytes |
890 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
891 			txd->vals8[1] = second_half;
892 		}
893 
894 		u64_stats_update_begin(&r_vec->tx_sync);
895 		r_vec->tx_gather++;
896 		u64_stats_update_end(&r_vec->tx_sync);
897 	}
898 
899 	skb_tx_timestamp(skb);
900 
901 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
902 
903 	tx_ring->wr_p += nr_frags + 1;
904 	if (nfp_net_tx_ring_should_stop(tx_ring))
905 		nfp_net_tx_ring_stop(nd_q, tx_ring);
906 
907 	tx_ring->wr_ptr_add += nr_frags + 1;
908 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, skb->xmit_more))
909 		nfp_net_tx_xmit_more_flush(tx_ring);
910 
911 	return NETDEV_TX_OK;
912 
913 err_unmap:
914 	while (--f >= 0) {
915 		frag = &skb_shinfo(skb)->frags[f];
916 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
917 			       skb_frag_size(frag), DMA_TO_DEVICE);
918 		tx_ring->txbufs[wr_idx].skb = NULL;
919 		tx_ring->txbufs[wr_idx].dma_addr = 0;
920 		tx_ring->txbufs[wr_idx].fidx = -2;
921 		wr_idx = wr_idx - 1;
922 		if (wr_idx < 0)
923 			wr_idx += tx_ring->cnt;
924 	}
925 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
926 			 skb_headlen(skb), DMA_TO_DEVICE);
927 	tx_ring->txbufs[wr_idx].skb = NULL;
928 	tx_ring->txbufs[wr_idx].dma_addr = 0;
929 	tx_ring->txbufs[wr_idx].fidx = -2;
930 err_free:
931 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
932 	nfp_net_tx_xmit_more_flush(tx_ring);
933 	u64_stats_update_begin(&r_vec->tx_sync);
934 	r_vec->tx_errors++;
935 	u64_stats_update_end(&r_vec->tx_sync);
936 	dev_kfree_skb_any(skb);
937 	return NETDEV_TX_OK;
938 }
939 
940 /**
941  * nfp_net_tx_complete() - Handled completed TX packets
942  * @tx_ring:	TX ring structure
943  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
944  */
945 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
946 {
947 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
948 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
949 	struct netdev_queue *nd_q;
950 	u32 done_pkts = 0, done_bytes = 0;
951 	u32 qcp_rd_p;
952 	int todo;
953 
954 	if (tx_ring->wr_p == tx_ring->rd_p)
955 		return;
956 
957 	/* Work out how many descriptors have been transmitted */
958 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
959 
960 	if (qcp_rd_p == tx_ring->qcp_rd_p)
961 		return;
962 
963 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
964 
965 	while (todo--) {
966 		const struct skb_frag_struct *frag;
967 		struct nfp_net_tx_buf *tx_buf;
968 		struct sk_buff *skb;
969 		int fidx, nr_frags;
970 		int idx;
971 
972 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
973 		tx_buf = &tx_ring->txbufs[idx];
974 
975 		skb = tx_buf->skb;
976 		if (!skb)
977 			continue;
978 
979 		nr_frags = skb_shinfo(skb)->nr_frags;
980 		fidx = tx_buf->fidx;
981 
982 		if (fidx == -1) {
983 			/* unmap head */
984 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
985 					 skb_headlen(skb), DMA_TO_DEVICE);
986 
987 			done_pkts += tx_buf->pkt_cnt;
988 			done_bytes += tx_buf->real_len;
989 		} else {
990 			/* unmap fragment */
991 			frag = &skb_shinfo(skb)->frags[fidx];
992 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
993 				       skb_frag_size(frag), DMA_TO_DEVICE);
994 		}
995 
996 		/* check for last gather fragment */
997 		if (fidx == nr_frags - 1)
998 			napi_consume_skb(skb, budget);
999 
1000 		tx_buf->dma_addr = 0;
1001 		tx_buf->skb = NULL;
1002 		tx_buf->fidx = -2;
1003 	}
1004 
1005 	tx_ring->qcp_rd_p = qcp_rd_p;
1006 
1007 	u64_stats_update_begin(&r_vec->tx_sync);
1008 	r_vec->tx_bytes += done_bytes;
1009 	r_vec->tx_pkts += done_pkts;
1010 	u64_stats_update_end(&r_vec->tx_sync);
1011 
1012 	if (!dp->netdev)
1013 		return;
1014 
1015 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1016 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1017 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1018 		/* Make sure TX thread will see updated tx_ring->rd_p */
1019 		smp_mb();
1020 
1021 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1022 			netif_tx_wake_queue(nd_q);
1023 	}
1024 
1025 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1026 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1027 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1028 }
1029 
1030 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1031 {
1032 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1033 	u32 done_pkts = 0, done_bytes = 0;
1034 	bool done_all;
1035 	int idx, todo;
1036 	u32 qcp_rd_p;
1037 
1038 	/* Work out how many descriptors have been transmitted */
1039 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1040 
1041 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1042 		return true;
1043 
1044 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1045 
1046 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1047 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1048 
1049 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1050 
1051 	done_pkts = todo;
1052 	while (todo--) {
1053 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1054 		tx_ring->rd_p++;
1055 
1056 		done_bytes += tx_ring->txbufs[idx].real_len;
1057 	}
1058 
1059 	u64_stats_update_begin(&r_vec->tx_sync);
1060 	r_vec->tx_bytes += done_bytes;
1061 	r_vec->tx_pkts += done_pkts;
1062 	u64_stats_update_end(&r_vec->tx_sync);
1063 
1064 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1065 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1066 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1067 
1068 	return done_all;
1069 }
1070 
1071 /**
1072  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1073  * @dp:		NFP Net data path struct
1074  * @tx_ring:	TX ring structure
1075  *
1076  * Assumes that the device is stopped, must be idempotent.
1077  */
1078 static void
1079 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1080 {
1081 	const struct skb_frag_struct *frag;
1082 	struct netdev_queue *nd_q;
1083 
1084 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1085 		struct nfp_net_tx_buf *tx_buf;
1086 		struct sk_buff *skb;
1087 		int idx, nr_frags;
1088 
1089 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1090 		tx_buf = &tx_ring->txbufs[idx];
1091 
1092 		skb = tx_ring->txbufs[idx].skb;
1093 		nr_frags = skb_shinfo(skb)->nr_frags;
1094 
1095 		if (tx_buf->fidx == -1) {
1096 			/* unmap head */
1097 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1098 					 skb_headlen(skb), DMA_TO_DEVICE);
1099 		} else {
1100 			/* unmap fragment */
1101 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1102 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1103 				       skb_frag_size(frag), DMA_TO_DEVICE);
1104 		}
1105 
1106 		/* check for last gather fragment */
1107 		if (tx_buf->fidx == nr_frags - 1)
1108 			dev_kfree_skb_any(skb);
1109 
1110 		tx_buf->dma_addr = 0;
1111 		tx_buf->skb = NULL;
1112 		tx_buf->fidx = -2;
1113 
1114 		tx_ring->qcp_rd_p++;
1115 		tx_ring->rd_p++;
1116 	}
1117 
1118 	memset(tx_ring->txds, 0, tx_ring->size);
1119 	tx_ring->wr_p = 0;
1120 	tx_ring->rd_p = 0;
1121 	tx_ring->qcp_rd_p = 0;
1122 	tx_ring->wr_ptr_add = 0;
1123 
1124 	if (tx_ring->is_xdp || !dp->netdev)
1125 		return;
1126 
1127 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1128 	netdev_tx_reset_queue(nd_q);
1129 }
1130 
1131 static void nfp_net_tx_timeout(struct net_device *netdev)
1132 {
1133 	struct nfp_net *nn = netdev_priv(netdev);
1134 	int i;
1135 
1136 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1137 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1138 			continue;
1139 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1140 	}
1141 	nn_warn(nn, "TX watchdog timeout\n");
1142 }
1143 
1144 /* Receive processing
1145  */
1146 static unsigned int
1147 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1148 {
1149 	unsigned int fl_bufsz;
1150 
1151 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1152 	fl_bufsz += dp->rx_dma_off;
1153 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1154 		fl_bufsz += NFP_NET_MAX_PREPEND;
1155 	else
1156 		fl_bufsz += dp->rx_offset;
1157 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1158 
1159 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1160 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1161 
1162 	return fl_bufsz;
1163 }
1164 
1165 static void
1166 nfp_net_free_frag(void *frag, bool xdp)
1167 {
1168 	if (!xdp)
1169 		skb_free_frag(frag);
1170 	else
1171 		__free_page(virt_to_page(frag));
1172 }
1173 
1174 /**
1175  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1176  * @dp:		NFP Net data path struct
1177  * @dma_addr:	Pointer to storage for DMA address (output param)
1178  *
1179  * This function will allcate a new page frag, map it for DMA.
1180  *
1181  * Return: allocated page frag or NULL on failure.
1182  */
1183 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1184 {
1185 	void *frag;
1186 
1187 	if (!dp->xdp_prog) {
1188 		frag = netdev_alloc_frag(dp->fl_bufsz);
1189 	} else {
1190 		struct page *page;
1191 
1192 		page = alloc_page(GFP_KERNEL);
1193 		frag = page ? page_address(page) : NULL;
1194 	}
1195 	if (!frag) {
1196 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1197 		return NULL;
1198 	}
1199 
1200 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1201 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1202 		nfp_net_free_frag(frag, dp->xdp_prog);
1203 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1204 		return NULL;
1205 	}
1206 
1207 	return frag;
1208 }
1209 
1210 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1211 {
1212 	void *frag;
1213 
1214 	if (!dp->xdp_prog) {
1215 		frag = napi_alloc_frag(dp->fl_bufsz);
1216 		if (unlikely(!frag))
1217 			return NULL;
1218 	} else {
1219 		struct page *page;
1220 
1221 		page = dev_alloc_page();
1222 		if (unlikely(!page))
1223 			return NULL;
1224 		frag = page_address(page);
1225 	}
1226 
1227 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1228 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1229 		nfp_net_free_frag(frag, dp->xdp_prog);
1230 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1231 		return NULL;
1232 	}
1233 
1234 	return frag;
1235 }
1236 
1237 /**
1238  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1239  * @dp:		NFP Net data path struct
1240  * @rx_ring:	RX ring structure
1241  * @frag:	page fragment buffer
1242  * @dma_addr:	DMA address of skb mapping
1243  */
1244 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1245 				struct nfp_net_rx_ring *rx_ring,
1246 				void *frag, dma_addr_t dma_addr)
1247 {
1248 	unsigned int wr_idx;
1249 
1250 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1251 
1252 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1253 
1254 	/* Stash SKB and DMA address away */
1255 	rx_ring->rxbufs[wr_idx].frag = frag;
1256 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1257 
1258 	/* Fill freelist descriptor */
1259 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1260 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1261 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1262 			      dma_addr + dp->rx_dma_off);
1263 
1264 	rx_ring->wr_p++;
1265 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1266 		/* Update write pointer of the freelist queue. Make
1267 		 * sure all writes are flushed before telling the hardware.
1268 		 */
1269 		wmb();
1270 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1271 	}
1272 }
1273 
1274 /**
1275  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1276  * @rx_ring:	RX ring structure
1277  *
1278  * Assumes that the device is stopped, must be idempotent.
1279  */
1280 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1281 {
1282 	unsigned int wr_idx, last_idx;
1283 
1284 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1285 	 * kept at cnt - 1 FL bufs.
1286 	 */
1287 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1288 		return;
1289 
1290 	/* Move the empty entry to the end of the list */
1291 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1292 	last_idx = rx_ring->cnt - 1;
1293 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1294 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1295 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1296 	rx_ring->rxbufs[last_idx].frag = NULL;
1297 
1298 	memset(rx_ring->rxds, 0, rx_ring->size);
1299 	rx_ring->wr_p = 0;
1300 	rx_ring->rd_p = 0;
1301 }
1302 
1303 /**
1304  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1305  * @dp:		NFP Net data path struct
1306  * @rx_ring:	RX ring to remove buffers from
1307  *
1308  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1309  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1310  * to restore required ring geometry.
1311  */
1312 static void
1313 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1314 			  struct nfp_net_rx_ring *rx_ring)
1315 {
1316 	unsigned int i;
1317 
1318 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1319 		/* NULL skb can only happen when initial filling of the ring
1320 		 * fails to allocate enough buffers and calls here to free
1321 		 * already allocated ones.
1322 		 */
1323 		if (!rx_ring->rxbufs[i].frag)
1324 			continue;
1325 
1326 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1327 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1328 		rx_ring->rxbufs[i].dma_addr = 0;
1329 		rx_ring->rxbufs[i].frag = NULL;
1330 	}
1331 }
1332 
1333 /**
1334  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1335  * @dp:		NFP Net data path struct
1336  * @rx_ring:	RX ring to remove buffers from
1337  */
1338 static int
1339 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1340 			   struct nfp_net_rx_ring *rx_ring)
1341 {
1342 	struct nfp_net_rx_buf *rxbufs;
1343 	unsigned int i;
1344 
1345 	rxbufs = rx_ring->rxbufs;
1346 
1347 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1348 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1349 		if (!rxbufs[i].frag) {
1350 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1351 			return -ENOMEM;
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /**
1359  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1360  * @dp:	     NFP Net data path struct
1361  * @rx_ring: RX ring to fill
1362  */
1363 static void
1364 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1365 			      struct nfp_net_rx_ring *rx_ring)
1366 {
1367 	unsigned int i;
1368 
1369 	for (i = 0; i < rx_ring->cnt - 1; i++)
1370 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1371 				    rx_ring->rxbufs[i].dma_addr);
1372 }
1373 
1374 /**
1375  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1376  * @flags: RX descriptor flags field in CPU byte order
1377  */
1378 static int nfp_net_rx_csum_has_errors(u16 flags)
1379 {
1380 	u16 csum_all_checked, csum_all_ok;
1381 
1382 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1383 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1384 
1385 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1386 }
1387 
1388 /**
1389  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1390  * @dp:  NFP Net data path struct
1391  * @r_vec: per-ring structure
1392  * @rxd: Pointer to RX descriptor
1393  * @meta: Parsed metadata prepend
1394  * @skb: Pointer to SKB
1395  */
1396 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1397 			    struct nfp_net_r_vector *r_vec,
1398 			    struct nfp_net_rx_desc *rxd,
1399 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1400 {
1401 	skb_checksum_none_assert(skb);
1402 
1403 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1404 		return;
1405 
1406 	if (meta->csum_type) {
1407 		skb->ip_summed = meta->csum_type;
1408 		skb->csum = meta->csum;
1409 		u64_stats_update_begin(&r_vec->rx_sync);
1410 		r_vec->hw_csum_rx_complete++;
1411 		u64_stats_update_end(&r_vec->rx_sync);
1412 		return;
1413 	}
1414 
1415 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1416 		u64_stats_update_begin(&r_vec->rx_sync);
1417 		r_vec->hw_csum_rx_error++;
1418 		u64_stats_update_end(&r_vec->rx_sync);
1419 		return;
1420 	}
1421 
1422 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1423 	 * L4 headers were successfully parsed. FW will always report zero UDP
1424 	 * checksum as CSUM_OK.
1425 	 */
1426 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1427 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1428 		__skb_incr_checksum_unnecessary(skb);
1429 		u64_stats_update_begin(&r_vec->rx_sync);
1430 		r_vec->hw_csum_rx_ok++;
1431 		u64_stats_update_end(&r_vec->rx_sync);
1432 	}
1433 
1434 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1435 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1436 		__skb_incr_checksum_unnecessary(skb);
1437 		u64_stats_update_begin(&r_vec->rx_sync);
1438 		r_vec->hw_csum_rx_inner_ok++;
1439 		u64_stats_update_end(&r_vec->rx_sync);
1440 	}
1441 }
1442 
1443 static void
1444 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1445 		 unsigned int type, __be32 *hash)
1446 {
1447 	if (!(netdev->features & NETIF_F_RXHASH))
1448 		return;
1449 
1450 	switch (type) {
1451 	case NFP_NET_RSS_IPV4:
1452 	case NFP_NET_RSS_IPV6:
1453 	case NFP_NET_RSS_IPV6_EX:
1454 		meta->hash_type = PKT_HASH_TYPE_L3;
1455 		break;
1456 	default:
1457 		meta->hash_type = PKT_HASH_TYPE_L4;
1458 		break;
1459 	}
1460 
1461 	meta->hash = get_unaligned_be32(hash);
1462 }
1463 
1464 static void
1465 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1466 		      void *data, struct nfp_net_rx_desc *rxd)
1467 {
1468 	struct nfp_net_rx_hash *rx_hash = data;
1469 
1470 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1471 		return;
1472 
1473 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1474 			 &rx_hash->hash);
1475 }
1476 
1477 static void *
1478 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1479 		   void *data, int meta_len)
1480 {
1481 	u32 meta_info;
1482 
1483 	meta_info = get_unaligned_be32(data);
1484 	data += 4;
1485 
1486 	while (meta_info) {
1487 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1488 		case NFP_NET_META_HASH:
1489 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1490 			nfp_net_set_hash(netdev, meta,
1491 					 meta_info & NFP_NET_META_FIELD_MASK,
1492 					 (__be32 *)data);
1493 			data += 4;
1494 			break;
1495 		case NFP_NET_META_MARK:
1496 			meta->mark = get_unaligned_be32(data);
1497 			data += 4;
1498 			break;
1499 		case NFP_NET_META_PORTID:
1500 			meta->portid = get_unaligned_be32(data);
1501 			data += 4;
1502 			break;
1503 		case NFP_NET_META_CSUM:
1504 			meta->csum_type = CHECKSUM_COMPLETE;
1505 			meta->csum =
1506 				(__force __wsum)__get_unaligned_cpu32(data);
1507 			data += 4;
1508 			break;
1509 		default:
1510 			return NULL;
1511 		}
1512 
1513 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1514 	}
1515 
1516 	return data;
1517 }
1518 
1519 static void
1520 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1521 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1522 		struct sk_buff *skb)
1523 {
1524 	u64_stats_update_begin(&r_vec->rx_sync);
1525 	r_vec->rx_drops++;
1526 	/* If we have both skb and rxbuf the replacement buffer allocation
1527 	 * must have failed, count this as an alloc failure.
1528 	 */
1529 	if (skb && rxbuf)
1530 		r_vec->rx_replace_buf_alloc_fail++;
1531 	u64_stats_update_end(&r_vec->rx_sync);
1532 
1533 	/* skb is build based on the frag, free_skb() would free the frag
1534 	 * so to be able to reuse it we need an extra ref.
1535 	 */
1536 	if (skb && rxbuf && skb->head == rxbuf->frag)
1537 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1538 	if (rxbuf)
1539 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1540 	if (skb)
1541 		dev_kfree_skb_any(skb);
1542 }
1543 
1544 static bool
1545 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1546 		   struct nfp_net_tx_ring *tx_ring,
1547 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1548 		   unsigned int pkt_len, bool *completed)
1549 {
1550 	struct nfp_net_tx_buf *txbuf;
1551 	struct nfp_net_tx_desc *txd;
1552 	int wr_idx;
1553 
1554 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1555 		if (!*completed) {
1556 			nfp_net_xdp_complete(tx_ring);
1557 			*completed = true;
1558 		}
1559 
1560 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1561 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1562 					NULL);
1563 			return false;
1564 		}
1565 	}
1566 
1567 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1568 
1569 	/* Stash the soft descriptor of the head then initialize it */
1570 	txbuf = &tx_ring->txbufs[wr_idx];
1571 
1572 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1573 
1574 	txbuf->frag = rxbuf->frag;
1575 	txbuf->dma_addr = rxbuf->dma_addr;
1576 	txbuf->fidx = -1;
1577 	txbuf->pkt_cnt = 1;
1578 	txbuf->real_len = pkt_len;
1579 
1580 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1581 				   pkt_len, DMA_BIDIRECTIONAL);
1582 
1583 	/* Build TX descriptor */
1584 	txd = &tx_ring->txds[wr_idx];
1585 	txd->offset_eop = PCIE_DESC_TX_EOP;
1586 	txd->dma_len = cpu_to_le16(pkt_len);
1587 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1588 	txd->data_len = cpu_to_le16(pkt_len);
1589 
1590 	txd->flags = 0;
1591 	txd->mss = 0;
1592 	txd->lso_hdrlen = 0;
1593 
1594 	tx_ring->wr_p++;
1595 	tx_ring->wr_ptr_add++;
1596 	return true;
1597 }
1598 
1599 /**
1600  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1601  * @rx_ring:   RX ring to receive from
1602  * @budget:    NAPI budget
1603  *
1604  * Note, this function is separated out from the napi poll function to
1605  * more cleanly separate packet receive code from other bookkeeping
1606  * functions performed in the napi poll function.
1607  *
1608  * Return: Number of packets received.
1609  */
1610 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1611 {
1612 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1613 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1614 	struct nfp_net_tx_ring *tx_ring;
1615 	struct bpf_prog *xdp_prog;
1616 	bool xdp_tx_cmpl = false;
1617 	unsigned int true_bufsz;
1618 	struct sk_buff *skb;
1619 	int pkts_polled = 0;
1620 	struct xdp_buff xdp;
1621 	int idx;
1622 
1623 	rcu_read_lock();
1624 	xdp_prog = READ_ONCE(dp->xdp_prog);
1625 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1626 	xdp.rxq = &rx_ring->xdp_rxq;
1627 	tx_ring = r_vec->xdp_ring;
1628 
1629 	while (pkts_polled < budget) {
1630 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1631 		struct nfp_net_rx_buf *rxbuf;
1632 		struct nfp_net_rx_desc *rxd;
1633 		struct nfp_meta_parsed meta;
1634 		struct net_device *netdev;
1635 		dma_addr_t new_dma_addr;
1636 		u32 meta_len_xdp = 0;
1637 		void *new_frag;
1638 
1639 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1640 
1641 		rxd = &rx_ring->rxds[idx];
1642 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1643 			break;
1644 
1645 		/* Memory barrier to ensure that we won't do other reads
1646 		 * before the DD bit.
1647 		 */
1648 		dma_rmb();
1649 
1650 		memset(&meta, 0, sizeof(meta));
1651 
1652 		rx_ring->rd_p++;
1653 		pkts_polled++;
1654 
1655 		rxbuf =	&rx_ring->rxbufs[idx];
1656 		/*         < meta_len >
1657 		 *  <-- [rx_offset] -->
1658 		 *  ---------------------------------------------------------
1659 		 * | [XX] |  metadata  |             packet           | XXXX |
1660 		 *  ---------------------------------------------------------
1661 		 *         <---------------- data_len --------------->
1662 		 *
1663 		 * The rx_offset is fixed for all packets, the meta_len can vary
1664 		 * on a packet by packet basis. If rx_offset is set to zero
1665 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1666 		 * buffer and is immediately followed by the packet (no [XX]).
1667 		 */
1668 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1669 		data_len = le16_to_cpu(rxd->rxd.data_len);
1670 		pkt_len = data_len - meta_len;
1671 
1672 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1673 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1674 			pkt_off += meta_len;
1675 		else
1676 			pkt_off += dp->rx_offset;
1677 		meta_off = pkt_off - meta_len;
1678 
1679 		/* Stats update */
1680 		u64_stats_update_begin(&r_vec->rx_sync);
1681 		r_vec->rx_pkts++;
1682 		r_vec->rx_bytes += pkt_len;
1683 		u64_stats_update_end(&r_vec->rx_sync);
1684 
1685 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1686 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1687 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1688 				   meta_len);
1689 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1690 			continue;
1691 		}
1692 
1693 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1694 					data_len);
1695 
1696 		if (!dp->chained_metadata_format) {
1697 			nfp_net_set_hash_desc(dp->netdev, &meta,
1698 					      rxbuf->frag + meta_off, rxd);
1699 		} else if (meta_len) {
1700 			void *end;
1701 
1702 			end = nfp_net_parse_meta(dp->netdev, &meta,
1703 						 rxbuf->frag + meta_off,
1704 						 meta_len);
1705 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1706 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1707 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1708 						NULL);
1709 				continue;
1710 			}
1711 		}
1712 
1713 		if (xdp_prog && !meta.portid) {
1714 			void *orig_data = rxbuf->frag + pkt_off;
1715 			unsigned int dma_off;
1716 			int act;
1717 
1718 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1719 			xdp.data = orig_data;
1720 			xdp.data_meta = orig_data;
1721 			xdp.data_end = orig_data + pkt_len;
1722 
1723 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1724 
1725 			pkt_len = xdp.data_end - xdp.data;
1726 			pkt_off += xdp.data - orig_data;
1727 
1728 			switch (act) {
1729 			case XDP_PASS:
1730 				meta_len_xdp = xdp.data - xdp.data_meta;
1731 				break;
1732 			case XDP_TX:
1733 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1734 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1735 								 tx_ring, rxbuf,
1736 								 dma_off,
1737 								 pkt_len,
1738 								 &xdp_tx_cmpl)))
1739 					trace_xdp_exception(dp->netdev,
1740 							    xdp_prog, act);
1741 				continue;
1742 			default:
1743 				bpf_warn_invalid_xdp_action(act);
1744 				/* fall through */
1745 			case XDP_ABORTED:
1746 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1747 				/* fall through */
1748 			case XDP_DROP:
1749 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1750 						    rxbuf->dma_addr);
1751 				continue;
1752 			}
1753 		}
1754 
1755 		if (likely(!meta.portid)) {
1756 			netdev = dp->netdev;
1757 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1758 			struct nfp_net *nn = netdev_priv(dp->netdev);
1759 
1760 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1761 					    pkt_len);
1762 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1763 					    rxbuf->dma_addr);
1764 			continue;
1765 		} else {
1766 			struct nfp_net *nn;
1767 
1768 			nn = netdev_priv(dp->netdev);
1769 			netdev = nfp_app_repr_get(nn->app, meta.portid);
1770 			if (unlikely(!netdev)) {
1771 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1772 						NULL);
1773 				continue;
1774 			}
1775 			nfp_repr_inc_rx_stats(netdev, pkt_len);
1776 		}
1777 
1778 		skb = build_skb(rxbuf->frag, true_bufsz);
1779 		if (unlikely(!skb)) {
1780 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1781 			continue;
1782 		}
1783 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1784 		if (unlikely(!new_frag)) {
1785 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1786 			continue;
1787 		}
1788 
1789 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1790 
1791 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1792 
1793 		skb_reserve(skb, pkt_off);
1794 		skb_put(skb, pkt_len);
1795 
1796 		skb->mark = meta.mark;
1797 		skb_set_hash(skb, meta.hash, meta.hash_type);
1798 
1799 		skb_record_rx_queue(skb, rx_ring->idx);
1800 		skb->protocol = eth_type_trans(skb, netdev);
1801 
1802 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1803 
1804 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1805 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1806 					       le16_to_cpu(rxd->rxd.vlan));
1807 		if (meta_len_xdp)
1808 			skb_metadata_set(skb, meta_len_xdp);
1809 
1810 		napi_gro_receive(&rx_ring->r_vec->napi, skb);
1811 	}
1812 
1813 	if (xdp_prog) {
1814 		if (tx_ring->wr_ptr_add)
1815 			nfp_net_tx_xmit_more_flush(tx_ring);
1816 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1817 			 !xdp_tx_cmpl)
1818 			if (!nfp_net_xdp_complete(tx_ring))
1819 				pkts_polled = budget;
1820 	}
1821 	rcu_read_unlock();
1822 
1823 	return pkts_polled;
1824 }
1825 
1826 /**
1827  * nfp_net_poll() - napi poll function
1828  * @napi:    NAPI structure
1829  * @budget:  NAPI budget
1830  *
1831  * Return: number of packets polled.
1832  */
1833 static int nfp_net_poll(struct napi_struct *napi, int budget)
1834 {
1835 	struct nfp_net_r_vector *r_vec =
1836 		container_of(napi, struct nfp_net_r_vector, napi);
1837 	unsigned int pkts_polled = 0;
1838 
1839 	if (r_vec->tx_ring)
1840 		nfp_net_tx_complete(r_vec->tx_ring, budget);
1841 	if (r_vec->rx_ring)
1842 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1843 
1844 	if (pkts_polled < budget)
1845 		if (napi_complete_done(napi, pkts_polled))
1846 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1847 
1848 	return pkts_polled;
1849 }
1850 
1851 /* Control device data path
1852  */
1853 
1854 static bool
1855 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1856 		struct sk_buff *skb, bool old)
1857 {
1858 	unsigned int real_len = skb->len, meta_len = 0;
1859 	struct nfp_net_tx_ring *tx_ring;
1860 	struct nfp_net_tx_buf *txbuf;
1861 	struct nfp_net_tx_desc *txd;
1862 	struct nfp_net_dp *dp;
1863 	dma_addr_t dma_addr;
1864 	int wr_idx;
1865 
1866 	dp = &r_vec->nfp_net->dp;
1867 	tx_ring = r_vec->tx_ring;
1868 
1869 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1870 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1871 		goto err_free;
1872 	}
1873 
1874 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1875 		u64_stats_update_begin(&r_vec->tx_sync);
1876 		r_vec->tx_busy++;
1877 		u64_stats_update_end(&r_vec->tx_sync);
1878 		if (!old)
1879 			__skb_queue_tail(&r_vec->queue, skb);
1880 		else
1881 			__skb_queue_head(&r_vec->queue, skb);
1882 		return true;
1883 	}
1884 
1885 	if (nfp_app_ctrl_has_meta(nn->app)) {
1886 		if (unlikely(skb_headroom(skb) < 8)) {
1887 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1888 			goto err_free;
1889 		}
1890 		meta_len = 8;
1891 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1892 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1893 	}
1894 
1895 	/* Start with the head skbuf */
1896 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1897 				  DMA_TO_DEVICE);
1898 	if (dma_mapping_error(dp->dev, dma_addr))
1899 		goto err_dma_warn;
1900 
1901 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1902 
1903 	/* Stash the soft descriptor of the head then initialize it */
1904 	txbuf = &tx_ring->txbufs[wr_idx];
1905 	txbuf->skb = skb;
1906 	txbuf->dma_addr = dma_addr;
1907 	txbuf->fidx = -1;
1908 	txbuf->pkt_cnt = 1;
1909 	txbuf->real_len = real_len;
1910 
1911 	/* Build TX descriptor */
1912 	txd = &tx_ring->txds[wr_idx];
1913 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1914 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1915 	nfp_desc_set_dma_addr(txd, dma_addr);
1916 	txd->data_len = cpu_to_le16(skb->len);
1917 
1918 	txd->flags = 0;
1919 	txd->mss = 0;
1920 	txd->lso_hdrlen = 0;
1921 
1922 	tx_ring->wr_p++;
1923 	tx_ring->wr_ptr_add++;
1924 	nfp_net_tx_xmit_more_flush(tx_ring);
1925 
1926 	return false;
1927 
1928 err_dma_warn:
1929 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1930 err_free:
1931 	u64_stats_update_begin(&r_vec->tx_sync);
1932 	r_vec->tx_errors++;
1933 	u64_stats_update_end(&r_vec->tx_sync);
1934 	dev_kfree_skb_any(skb);
1935 	return false;
1936 }
1937 
1938 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1939 {
1940 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1941 
1942 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
1943 }
1944 
1945 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1946 {
1947 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1948 	bool ret;
1949 
1950 	spin_lock_bh(&r_vec->lock);
1951 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1952 	spin_unlock_bh(&r_vec->lock);
1953 
1954 	return ret;
1955 }
1956 
1957 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1958 {
1959 	struct sk_buff *skb;
1960 
1961 	while ((skb = __skb_dequeue(&r_vec->queue)))
1962 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1963 			return;
1964 }
1965 
1966 static bool
1967 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1968 {
1969 	u32 meta_type, meta_tag;
1970 
1971 	if (!nfp_app_ctrl_has_meta(nn->app))
1972 		return !meta_len;
1973 
1974 	if (meta_len != 8)
1975 		return false;
1976 
1977 	meta_type = get_unaligned_be32(data);
1978 	meta_tag = get_unaligned_be32(data + 4);
1979 
1980 	return (meta_type == NFP_NET_META_PORTID &&
1981 		meta_tag == NFP_META_PORT_ID_CTRL);
1982 }
1983 
1984 static bool
1985 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1986 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1987 {
1988 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1989 	struct nfp_net_rx_buf *rxbuf;
1990 	struct nfp_net_rx_desc *rxd;
1991 	dma_addr_t new_dma_addr;
1992 	struct sk_buff *skb;
1993 	void *new_frag;
1994 	int idx;
1995 
1996 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1997 
1998 	rxd = &rx_ring->rxds[idx];
1999 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2000 		return false;
2001 
2002 	/* Memory barrier to ensure that we won't do other reads
2003 	 * before the DD bit.
2004 	 */
2005 	dma_rmb();
2006 
2007 	rx_ring->rd_p++;
2008 
2009 	rxbuf =	&rx_ring->rxbufs[idx];
2010 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2011 	data_len = le16_to_cpu(rxd->rxd.data_len);
2012 	pkt_len = data_len - meta_len;
2013 
2014 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2015 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2016 		pkt_off += meta_len;
2017 	else
2018 		pkt_off += dp->rx_offset;
2019 	meta_off = pkt_off - meta_len;
2020 
2021 	/* Stats update */
2022 	u64_stats_update_begin(&r_vec->rx_sync);
2023 	r_vec->rx_pkts++;
2024 	r_vec->rx_bytes += pkt_len;
2025 	u64_stats_update_end(&r_vec->rx_sync);
2026 
2027 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2028 
2029 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2030 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2031 			   meta_len);
2032 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2033 		return true;
2034 	}
2035 
2036 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2037 	if (unlikely(!skb)) {
2038 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2039 		return true;
2040 	}
2041 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2042 	if (unlikely(!new_frag)) {
2043 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2044 		return true;
2045 	}
2046 
2047 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2048 
2049 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2050 
2051 	skb_reserve(skb, pkt_off);
2052 	skb_put(skb, pkt_len);
2053 
2054 	nfp_app_ctrl_rx(nn->app, skb);
2055 
2056 	return true;
2057 }
2058 
2059 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2060 {
2061 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2062 	struct nfp_net *nn = r_vec->nfp_net;
2063 	struct nfp_net_dp *dp = &nn->dp;
2064 	unsigned int budget = 512;
2065 
2066 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2067 		continue;
2068 
2069 	return budget;
2070 }
2071 
2072 static void nfp_ctrl_poll(unsigned long arg)
2073 {
2074 	struct nfp_net_r_vector *r_vec = (void *)arg;
2075 
2076 	spin_lock(&r_vec->lock);
2077 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2078 	__nfp_ctrl_tx_queued(r_vec);
2079 	spin_unlock(&r_vec->lock);
2080 
2081 	if (nfp_ctrl_rx(r_vec)) {
2082 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2083 	} else {
2084 		tasklet_schedule(&r_vec->tasklet);
2085 		nn_dp_warn(&r_vec->nfp_net->dp,
2086 			   "control message budget exceeded!\n");
2087 	}
2088 }
2089 
2090 /* Setup and Configuration
2091  */
2092 
2093 /**
2094  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2095  * @nn:		NFP Network structure
2096  */
2097 static void nfp_net_vecs_init(struct nfp_net *nn)
2098 {
2099 	struct nfp_net_r_vector *r_vec;
2100 	int r;
2101 
2102 	nn->lsc_handler = nfp_net_irq_lsc;
2103 	nn->exn_handler = nfp_net_irq_exn;
2104 
2105 	for (r = 0; r < nn->max_r_vecs; r++) {
2106 		struct msix_entry *entry;
2107 
2108 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2109 
2110 		r_vec = &nn->r_vecs[r];
2111 		r_vec->nfp_net = nn;
2112 		r_vec->irq_entry = entry->entry;
2113 		r_vec->irq_vector = entry->vector;
2114 
2115 		if (nn->dp.netdev) {
2116 			r_vec->handler = nfp_net_irq_rxtx;
2117 		} else {
2118 			r_vec->handler = nfp_ctrl_irq_rxtx;
2119 
2120 			__skb_queue_head_init(&r_vec->queue);
2121 			spin_lock_init(&r_vec->lock);
2122 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2123 				     (unsigned long)r_vec);
2124 			tasklet_disable(&r_vec->tasklet);
2125 		}
2126 
2127 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2128 	}
2129 }
2130 
2131 /**
2132  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2133  * @tx_ring:   TX ring to free
2134  */
2135 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2136 {
2137 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2138 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2139 
2140 	kvfree(tx_ring->txbufs);
2141 
2142 	if (tx_ring->txds)
2143 		dma_free_coherent(dp->dev, tx_ring->size,
2144 				  tx_ring->txds, tx_ring->dma);
2145 
2146 	tx_ring->cnt = 0;
2147 	tx_ring->txbufs = NULL;
2148 	tx_ring->txds = NULL;
2149 	tx_ring->dma = 0;
2150 	tx_ring->size = 0;
2151 }
2152 
2153 /**
2154  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2155  * @dp:        NFP Net data path struct
2156  * @tx_ring:   TX Ring structure to allocate
2157  *
2158  * Return: 0 on success, negative errno otherwise.
2159  */
2160 static int
2161 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2162 {
2163 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2164 
2165 	tx_ring->cnt = dp->txd_cnt;
2166 
2167 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2168 	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2169 					    &tx_ring->dma,
2170 					    GFP_KERNEL | __GFP_NOWARN);
2171 	if (!tx_ring->txds) {
2172 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2173 			    tx_ring->cnt);
2174 		goto err_alloc;
2175 	}
2176 
2177 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2178 				   GFP_KERNEL);
2179 	if (!tx_ring->txbufs)
2180 		goto err_alloc;
2181 
2182 	if (!tx_ring->is_xdp && dp->netdev)
2183 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2184 				    tx_ring->idx);
2185 
2186 	return 0;
2187 
2188 err_alloc:
2189 	nfp_net_tx_ring_free(tx_ring);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void
2194 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2195 			  struct nfp_net_tx_ring *tx_ring)
2196 {
2197 	unsigned int i;
2198 
2199 	if (!tx_ring->is_xdp)
2200 		return;
2201 
2202 	for (i = 0; i < tx_ring->cnt; i++) {
2203 		if (!tx_ring->txbufs[i].frag)
2204 			return;
2205 
2206 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2207 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2208 	}
2209 }
2210 
2211 static int
2212 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2213 			   struct nfp_net_tx_ring *tx_ring)
2214 {
2215 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2216 	unsigned int i;
2217 
2218 	if (!tx_ring->is_xdp)
2219 		return 0;
2220 
2221 	for (i = 0; i < tx_ring->cnt; i++) {
2222 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2223 		if (!txbufs[i].frag) {
2224 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2225 			return -ENOMEM;
2226 		}
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2233 {
2234 	unsigned int r;
2235 
2236 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2237 			       GFP_KERNEL);
2238 	if (!dp->tx_rings)
2239 		return -ENOMEM;
2240 
2241 	for (r = 0; r < dp->num_tx_rings; r++) {
2242 		int bias = 0;
2243 
2244 		if (r >= dp->num_stack_tx_rings)
2245 			bias = dp->num_stack_tx_rings;
2246 
2247 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2248 				     r, bias);
2249 
2250 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2251 			goto err_free_prev;
2252 
2253 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2254 			goto err_free_ring;
2255 	}
2256 
2257 	return 0;
2258 
2259 err_free_prev:
2260 	while (r--) {
2261 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2262 err_free_ring:
2263 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2264 	}
2265 	kfree(dp->tx_rings);
2266 	return -ENOMEM;
2267 }
2268 
2269 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2270 {
2271 	unsigned int r;
2272 
2273 	for (r = 0; r < dp->num_tx_rings; r++) {
2274 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2275 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2276 	}
2277 
2278 	kfree(dp->tx_rings);
2279 }
2280 
2281 /**
2282  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2283  * @rx_ring:  RX ring to free
2284  */
2285 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2286 {
2287 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2288 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2289 
2290 	if (dp->netdev)
2291 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2292 	kvfree(rx_ring->rxbufs);
2293 
2294 	if (rx_ring->rxds)
2295 		dma_free_coherent(dp->dev, rx_ring->size,
2296 				  rx_ring->rxds, rx_ring->dma);
2297 
2298 	rx_ring->cnt = 0;
2299 	rx_ring->rxbufs = NULL;
2300 	rx_ring->rxds = NULL;
2301 	rx_ring->dma = 0;
2302 	rx_ring->size = 0;
2303 }
2304 
2305 /**
2306  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2307  * @dp:	      NFP Net data path struct
2308  * @rx_ring:  RX ring to allocate
2309  *
2310  * Return: 0 on success, negative errno otherwise.
2311  */
2312 static int
2313 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2314 {
2315 	int err;
2316 
2317 	if (dp->netdev) {
2318 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2319 				       rx_ring->idx);
2320 		if (err < 0)
2321 			return err;
2322 	}
2323 
2324 	rx_ring->cnt = dp->rxd_cnt;
2325 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2326 	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2327 					    &rx_ring->dma,
2328 					    GFP_KERNEL | __GFP_NOWARN);
2329 	if (!rx_ring->rxds) {
2330 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2331 			    rx_ring->cnt);
2332 		goto err_alloc;
2333 	}
2334 
2335 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2336 				   GFP_KERNEL);
2337 	if (!rx_ring->rxbufs)
2338 		goto err_alloc;
2339 
2340 	return 0;
2341 
2342 err_alloc:
2343 	nfp_net_rx_ring_free(rx_ring);
2344 	return -ENOMEM;
2345 }
2346 
2347 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2348 {
2349 	unsigned int r;
2350 
2351 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2352 			       GFP_KERNEL);
2353 	if (!dp->rx_rings)
2354 		return -ENOMEM;
2355 
2356 	for (r = 0; r < dp->num_rx_rings; r++) {
2357 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2358 
2359 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2360 			goto err_free_prev;
2361 
2362 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2363 			goto err_free_ring;
2364 	}
2365 
2366 	return 0;
2367 
2368 err_free_prev:
2369 	while (r--) {
2370 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2371 err_free_ring:
2372 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2373 	}
2374 	kfree(dp->rx_rings);
2375 	return -ENOMEM;
2376 }
2377 
2378 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2379 {
2380 	unsigned int r;
2381 
2382 	for (r = 0; r < dp->num_rx_rings; r++) {
2383 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2384 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2385 	}
2386 
2387 	kfree(dp->rx_rings);
2388 }
2389 
2390 static void
2391 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2392 			    struct nfp_net_r_vector *r_vec, int idx)
2393 {
2394 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2395 	r_vec->tx_ring =
2396 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2397 
2398 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2399 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2400 }
2401 
2402 static int
2403 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2404 		       int idx)
2405 {
2406 	int err;
2407 
2408 	/* Setup NAPI */
2409 	if (nn->dp.netdev)
2410 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2411 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2412 	else
2413 		tasklet_enable(&r_vec->tasklet);
2414 
2415 	snprintf(r_vec->name, sizeof(r_vec->name),
2416 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2417 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2418 			  r_vec);
2419 	if (err) {
2420 		if (nn->dp.netdev)
2421 			netif_napi_del(&r_vec->napi);
2422 		else
2423 			tasklet_disable(&r_vec->tasklet);
2424 
2425 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2426 		return err;
2427 	}
2428 	disable_irq(r_vec->irq_vector);
2429 
2430 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2431 
2432 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2433 	       r_vec->irq_entry);
2434 
2435 	return 0;
2436 }
2437 
2438 static void
2439 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2440 {
2441 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2442 	if (nn->dp.netdev)
2443 		netif_napi_del(&r_vec->napi);
2444 	else
2445 		tasklet_disable(&r_vec->tasklet);
2446 
2447 	free_irq(r_vec->irq_vector, r_vec);
2448 }
2449 
2450 /**
2451  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2452  * @nn:      NFP Net device to reconfigure
2453  */
2454 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2455 {
2456 	int i;
2457 
2458 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2459 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2460 			  get_unaligned_le32(nn->rss_itbl + i));
2461 }
2462 
2463 /**
2464  * nfp_net_rss_write_key() - Write RSS hash key to device
2465  * @nn:      NFP Net device to reconfigure
2466  */
2467 void nfp_net_rss_write_key(struct nfp_net *nn)
2468 {
2469 	int i;
2470 
2471 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2472 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2473 			  get_unaligned_le32(nn->rss_key + i));
2474 }
2475 
2476 /**
2477  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2478  * @nn:      NFP Net device to reconfigure
2479  */
2480 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2481 {
2482 	u8 i;
2483 	u32 factor;
2484 	u32 value;
2485 
2486 	/* Compute factor used to convert coalesce '_usecs' parameters to
2487 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2488 	 * count.
2489 	 */
2490 	factor = nn->tlv_caps.me_freq_mhz / 16;
2491 
2492 	/* copy RX interrupt coalesce parameters */
2493 	value = (nn->rx_coalesce_max_frames << 16) |
2494 		(factor * nn->rx_coalesce_usecs);
2495 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2496 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2497 
2498 	/* copy TX interrupt coalesce parameters */
2499 	value = (nn->tx_coalesce_max_frames << 16) |
2500 		(factor * nn->tx_coalesce_usecs);
2501 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2502 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2503 }
2504 
2505 /**
2506  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2507  * @nn:      NFP Net device to reconfigure
2508  * @addr:    MAC address to write
2509  *
2510  * Writes the MAC address from the netdev to the device control BAR.  Does not
2511  * perform the required reconfig.  We do a bit of byte swapping dance because
2512  * firmware is LE.
2513  */
2514 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2515 {
2516 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2517 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2518 }
2519 
2520 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2521 {
2522 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2523 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2524 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2525 
2526 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2527 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2528 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2529 }
2530 
2531 /**
2532  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2533  * @nn:      NFP Net device to reconfigure
2534  *
2535  * Warning: must be fully idempotent.
2536  */
2537 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2538 {
2539 	u32 new_ctrl, update;
2540 	unsigned int r;
2541 	int err;
2542 
2543 	new_ctrl = nn->dp.ctrl;
2544 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2545 	update = NFP_NET_CFG_UPDATE_GEN;
2546 	update |= NFP_NET_CFG_UPDATE_MSIX;
2547 	update |= NFP_NET_CFG_UPDATE_RING;
2548 
2549 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2550 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2551 
2552 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2553 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2554 
2555 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2556 	err = nfp_net_reconfig(nn, update);
2557 	if (err)
2558 		nn_err(nn, "Could not disable device: %d\n", err);
2559 
2560 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2561 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2562 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2563 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2564 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2565 		nfp_net_vec_clear_ring_data(nn, r);
2566 
2567 	nn->dp.ctrl = new_ctrl;
2568 }
2569 
2570 static void
2571 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2572 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2573 {
2574 	/* Write the DMA address, size and MSI-X info to the device */
2575 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2576 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2577 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2578 }
2579 
2580 static void
2581 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2582 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2583 {
2584 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2585 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2586 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2587 }
2588 
2589 /**
2590  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2591  * @nn:      NFP Net device to reconfigure
2592  */
2593 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2594 {
2595 	u32 bufsz, new_ctrl, update = 0;
2596 	unsigned int r;
2597 	int err;
2598 
2599 	new_ctrl = nn->dp.ctrl;
2600 
2601 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2602 		nfp_net_rss_write_key(nn);
2603 		nfp_net_rss_write_itbl(nn);
2604 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2605 		update |= NFP_NET_CFG_UPDATE_RSS;
2606 	}
2607 
2608 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2609 		nfp_net_coalesce_write_cfg(nn);
2610 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2611 	}
2612 
2613 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2614 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2615 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2616 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2617 
2618 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2619 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2620 
2621 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2622 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2623 
2624 	if (nn->dp.netdev)
2625 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2626 
2627 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2628 
2629 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2630 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2631 
2632 	/* Enable device */
2633 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2634 	update |= NFP_NET_CFG_UPDATE_GEN;
2635 	update |= NFP_NET_CFG_UPDATE_MSIX;
2636 	update |= NFP_NET_CFG_UPDATE_RING;
2637 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2638 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2639 
2640 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2641 	err = nfp_net_reconfig(nn, update);
2642 	if (err) {
2643 		nfp_net_clear_config_and_disable(nn);
2644 		return err;
2645 	}
2646 
2647 	nn->dp.ctrl = new_ctrl;
2648 
2649 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2650 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2651 
2652 	/* Since reconfiguration requests while NFP is down are ignored we
2653 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2654 	 */
2655 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2656 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2657 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2658 		udp_tunnel_get_rx_info(nn->dp.netdev);
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 /**
2665  * nfp_net_close_stack() - Quiesce the stack (part of close)
2666  * @nn:	     NFP Net device to reconfigure
2667  */
2668 static void nfp_net_close_stack(struct nfp_net *nn)
2669 {
2670 	unsigned int r;
2671 
2672 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2673 	netif_carrier_off(nn->dp.netdev);
2674 	nn->link_up = false;
2675 
2676 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2677 		disable_irq(nn->r_vecs[r].irq_vector);
2678 		napi_disable(&nn->r_vecs[r].napi);
2679 	}
2680 
2681 	netif_tx_disable(nn->dp.netdev);
2682 }
2683 
2684 /**
2685  * nfp_net_close_free_all() - Free all runtime resources
2686  * @nn:      NFP Net device to reconfigure
2687  */
2688 static void nfp_net_close_free_all(struct nfp_net *nn)
2689 {
2690 	unsigned int r;
2691 
2692 	nfp_net_tx_rings_free(&nn->dp);
2693 	nfp_net_rx_rings_free(&nn->dp);
2694 
2695 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2696 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2697 
2698 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2699 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2700 }
2701 
2702 /**
2703  * nfp_net_netdev_close() - Called when the device is downed
2704  * @netdev:      netdev structure
2705  */
2706 static int nfp_net_netdev_close(struct net_device *netdev)
2707 {
2708 	struct nfp_net *nn = netdev_priv(netdev);
2709 
2710 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2711 	 */
2712 	nfp_net_close_stack(nn);
2713 
2714 	/* Step 2: Tell NFP
2715 	 */
2716 	nfp_net_clear_config_and_disable(nn);
2717 	nfp_port_configure(netdev, false);
2718 
2719 	/* Step 3: Free resources
2720 	 */
2721 	nfp_net_close_free_all(nn);
2722 
2723 	nn_dbg(nn, "%s down", netdev->name);
2724 	return 0;
2725 }
2726 
2727 void nfp_ctrl_close(struct nfp_net *nn)
2728 {
2729 	int r;
2730 
2731 	rtnl_lock();
2732 
2733 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2734 		disable_irq(nn->r_vecs[r].irq_vector);
2735 		tasklet_disable(&nn->r_vecs[r].tasklet);
2736 	}
2737 
2738 	nfp_net_clear_config_and_disable(nn);
2739 
2740 	nfp_net_close_free_all(nn);
2741 
2742 	rtnl_unlock();
2743 }
2744 
2745 /**
2746  * nfp_net_open_stack() - Start the device from stack's perspective
2747  * @nn:      NFP Net device to reconfigure
2748  */
2749 static void nfp_net_open_stack(struct nfp_net *nn)
2750 {
2751 	unsigned int r;
2752 
2753 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2754 		napi_enable(&nn->r_vecs[r].napi);
2755 		enable_irq(nn->r_vecs[r].irq_vector);
2756 	}
2757 
2758 	netif_tx_wake_all_queues(nn->dp.netdev);
2759 
2760 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2761 	nfp_net_read_link_status(nn);
2762 }
2763 
2764 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2765 {
2766 	int err, r;
2767 
2768 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2769 				      nn->exn_name, sizeof(nn->exn_name),
2770 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2771 	if (err)
2772 		return err;
2773 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2774 				      nn->lsc_name, sizeof(nn->lsc_name),
2775 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2776 	if (err)
2777 		goto err_free_exn;
2778 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2779 
2780 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2781 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2782 		if (err)
2783 			goto err_cleanup_vec_p;
2784 	}
2785 
2786 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2787 	if (err)
2788 		goto err_cleanup_vec;
2789 
2790 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2791 	if (err)
2792 		goto err_free_rx_rings;
2793 
2794 	for (r = 0; r < nn->max_r_vecs; r++)
2795 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2796 
2797 	return 0;
2798 
2799 err_free_rx_rings:
2800 	nfp_net_rx_rings_free(&nn->dp);
2801 err_cleanup_vec:
2802 	r = nn->dp.num_r_vecs;
2803 err_cleanup_vec_p:
2804 	while (r--)
2805 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2806 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2807 err_free_exn:
2808 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2809 	return err;
2810 }
2811 
2812 static int nfp_net_netdev_open(struct net_device *netdev)
2813 {
2814 	struct nfp_net *nn = netdev_priv(netdev);
2815 	int err;
2816 
2817 	/* Step 1: Allocate resources for rings and the like
2818 	 * - Request interrupts
2819 	 * - Allocate RX and TX ring resources
2820 	 * - Setup initial RSS table
2821 	 */
2822 	err = nfp_net_open_alloc_all(nn);
2823 	if (err)
2824 		return err;
2825 
2826 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2827 	if (err)
2828 		goto err_free_all;
2829 
2830 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2831 	if (err)
2832 		goto err_free_all;
2833 
2834 	/* Step 2: Configure the NFP
2835 	 * - Ifup the physical interface if it exists
2836 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2837 	 * - Write MAC address (in case it changed)
2838 	 * - Set the MTU
2839 	 * - Set the Freelist buffer size
2840 	 * - Enable the FW
2841 	 */
2842 	err = nfp_port_configure(netdev, true);
2843 	if (err)
2844 		goto err_free_all;
2845 
2846 	err = nfp_net_set_config_and_enable(nn);
2847 	if (err)
2848 		goto err_port_disable;
2849 
2850 	/* Step 3: Enable for kernel
2851 	 * - put some freelist descriptors on each RX ring
2852 	 * - enable NAPI on each ring
2853 	 * - enable all TX queues
2854 	 * - set link state
2855 	 */
2856 	nfp_net_open_stack(nn);
2857 
2858 	return 0;
2859 
2860 err_port_disable:
2861 	nfp_port_configure(netdev, false);
2862 err_free_all:
2863 	nfp_net_close_free_all(nn);
2864 	return err;
2865 }
2866 
2867 int nfp_ctrl_open(struct nfp_net *nn)
2868 {
2869 	int err, r;
2870 
2871 	/* ring dumping depends on vNICs being opened/closed under rtnl */
2872 	rtnl_lock();
2873 
2874 	err = nfp_net_open_alloc_all(nn);
2875 	if (err)
2876 		goto err_unlock;
2877 
2878 	err = nfp_net_set_config_and_enable(nn);
2879 	if (err)
2880 		goto err_free_all;
2881 
2882 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2883 		enable_irq(nn->r_vecs[r].irq_vector);
2884 
2885 	rtnl_unlock();
2886 
2887 	return 0;
2888 
2889 err_free_all:
2890 	nfp_net_close_free_all(nn);
2891 err_unlock:
2892 	rtnl_unlock();
2893 	return err;
2894 }
2895 
2896 static void nfp_net_set_rx_mode(struct net_device *netdev)
2897 {
2898 	struct nfp_net *nn = netdev_priv(netdev);
2899 	u32 new_ctrl;
2900 
2901 	new_ctrl = nn->dp.ctrl;
2902 
2903 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
2904 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
2905 	else
2906 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
2907 
2908 	if (netdev->flags & IFF_PROMISC) {
2909 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2910 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2911 		else
2912 			nn_warn(nn, "FW does not support promiscuous mode\n");
2913 	} else {
2914 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2915 	}
2916 
2917 	if (new_ctrl == nn->dp.ctrl)
2918 		return;
2919 
2920 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2921 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2922 
2923 	nn->dp.ctrl = new_ctrl;
2924 }
2925 
2926 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2927 {
2928 	int i;
2929 
2930 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
2931 		nn->rss_itbl[i] =
2932 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2933 }
2934 
2935 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2936 {
2937 	struct nfp_net_dp new_dp = *dp;
2938 
2939 	*dp = nn->dp;
2940 	nn->dp = new_dp;
2941 
2942 	nn->dp.netdev->mtu = new_dp.mtu;
2943 
2944 	if (!netif_is_rxfh_configured(nn->dp.netdev))
2945 		nfp_net_rss_init_itbl(nn);
2946 }
2947 
2948 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2949 {
2950 	unsigned int r;
2951 	int err;
2952 
2953 	nfp_net_dp_swap(nn, dp);
2954 
2955 	for (r = 0; r <	nn->max_r_vecs; r++)
2956 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2957 
2958 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2959 	if (err)
2960 		return err;
2961 
2962 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2963 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
2964 						   nn->dp.num_stack_tx_rings);
2965 		if (err)
2966 			return err;
2967 	}
2968 
2969 	return nfp_net_set_config_and_enable(nn);
2970 }
2971 
2972 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2973 {
2974 	struct nfp_net_dp *new;
2975 
2976 	new = kmalloc(sizeof(*new), GFP_KERNEL);
2977 	if (!new)
2978 		return NULL;
2979 
2980 	*new = nn->dp;
2981 
2982 	/* Clear things which need to be recomputed */
2983 	new->fl_bufsz = 0;
2984 	new->tx_rings = NULL;
2985 	new->rx_rings = NULL;
2986 	new->num_r_vecs = 0;
2987 	new->num_stack_tx_rings = 0;
2988 
2989 	return new;
2990 }
2991 
2992 static int
2993 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2994 		     struct netlink_ext_ack *extack)
2995 {
2996 	/* XDP-enabled tests */
2997 	if (!dp->xdp_prog)
2998 		return 0;
2999 	if (dp->fl_bufsz > PAGE_SIZE) {
3000 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3001 		return -EINVAL;
3002 	}
3003 	if (dp->num_tx_rings > nn->max_tx_rings) {
3004 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3005 		return -EINVAL;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3012 			  struct netlink_ext_ack *extack)
3013 {
3014 	int r, err;
3015 
3016 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3017 
3018 	dp->num_stack_tx_rings = dp->num_tx_rings;
3019 	if (dp->xdp_prog)
3020 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3021 
3022 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3023 
3024 	err = nfp_net_check_config(nn, dp, extack);
3025 	if (err)
3026 		goto exit_free_dp;
3027 
3028 	if (!netif_running(dp->netdev)) {
3029 		nfp_net_dp_swap(nn, dp);
3030 		err = 0;
3031 		goto exit_free_dp;
3032 	}
3033 
3034 	/* Prepare new rings */
3035 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3036 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3037 		if (err) {
3038 			dp->num_r_vecs = r;
3039 			goto err_cleanup_vecs;
3040 		}
3041 	}
3042 
3043 	err = nfp_net_rx_rings_prepare(nn, dp);
3044 	if (err)
3045 		goto err_cleanup_vecs;
3046 
3047 	err = nfp_net_tx_rings_prepare(nn, dp);
3048 	if (err)
3049 		goto err_free_rx;
3050 
3051 	/* Stop device, swap in new rings, try to start the firmware */
3052 	nfp_net_close_stack(nn);
3053 	nfp_net_clear_config_and_disable(nn);
3054 
3055 	err = nfp_net_dp_swap_enable(nn, dp);
3056 	if (err) {
3057 		int err2;
3058 
3059 		nfp_net_clear_config_and_disable(nn);
3060 
3061 		/* Try with old configuration and old rings */
3062 		err2 = nfp_net_dp_swap_enable(nn, dp);
3063 		if (err2)
3064 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3065 			       err, err2);
3066 	}
3067 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3068 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3069 
3070 	nfp_net_rx_rings_free(dp);
3071 	nfp_net_tx_rings_free(dp);
3072 
3073 	nfp_net_open_stack(nn);
3074 exit_free_dp:
3075 	kfree(dp);
3076 
3077 	return err;
3078 
3079 err_free_rx:
3080 	nfp_net_rx_rings_free(dp);
3081 err_cleanup_vecs:
3082 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3083 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3084 	kfree(dp);
3085 	return err;
3086 }
3087 
3088 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3089 {
3090 	struct nfp_net *nn = netdev_priv(netdev);
3091 	struct nfp_net_dp *dp;
3092 	int err;
3093 
3094 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3095 	if (err)
3096 		return err;
3097 
3098 	dp = nfp_net_clone_dp(nn);
3099 	if (!dp)
3100 		return -ENOMEM;
3101 
3102 	dp->mtu = new_mtu;
3103 
3104 	return nfp_net_ring_reconfig(nn, dp, NULL);
3105 }
3106 
3107 static int
3108 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3109 {
3110 	struct nfp_net *nn = netdev_priv(netdev);
3111 
3112 	/* Priority tagged packets with vlan id 0 are processed by the
3113 	 * NFP as untagged packets
3114 	 */
3115 	if (!vid)
3116 		return 0;
3117 
3118 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3119 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3120 		  ETH_P_8021Q);
3121 
3122 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3123 }
3124 
3125 static int
3126 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3127 {
3128 	struct nfp_net *nn = netdev_priv(netdev);
3129 
3130 	/* Priority tagged packets with vlan id 0 are processed by the
3131 	 * NFP as untagged packets
3132 	 */
3133 	if (!vid)
3134 		return 0;
3135 
3136 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3137 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3138 		  ETH_P_8021Q);
3139 
3140 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3141 }
3142 
3143 static void nfp_net_stat64(struct net_device *netdev,
3144 			   struct rtnl_link_stats64 *stats)
3145 {
3146 	struct nfp_net *nn = netdev_priv(netdev);
3147 	int r;
3148 
3149 	/* Collect software stats */
3150 	for (r = 0; r < nn->max_r_vecs; r++) {
3151 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3152 		u64 data[3];
3153 		unsigned int start;
3154 
3155 		do {
3156 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3157 			data[0] = r_vec->rx_pkts;
3158 			data[1] = r_vec->rx_bytes;
3159 			data[2] = r_vec->rx_drops;
3160 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3161 		stats->rx_packets += data[0];
3162 		stats->rx_bytes += data[1];
3163 		stats->rx_dropped += data[2];
3164 
3165 		do {
3166 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3167 			data[0] = r_vec->tx_pkts;
3168 			data[1] = r_vec->tx_bytes;
3169 			data[2] = r_vec->tx_errors;
3170 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3171 		stats->tx_packets += data[0];
3172 		stats->tx_bytes += data[1];
3173 		stats->tx_errors += data[2];
3174 	}
3175 
3176 	/* Add in device stats */
3177 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3178 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3179 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3180 
3181 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3182 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3183 }
3184 
3185 static int nfp_net_set_features(struct net_device *netdev,
3186 				netdev_features_t features)
3187 {
3188 	netdev_features_t changed = netdev->features ^ features;
3189 	struct nfp_net *nn = netdev_priv(netdev);
3190 	u32 new_ctrl;
3191 	int err;
3192 
3193 	/* Assume this is not called with features we have not advertised */
3194 
3195 	new_ctrl = nn->dp.ctrl;
3196 
3197 	if (changed & NETIF_F_RXCSUM) {
3198 		if (features & NETIF_F_RXCSUM)
3199 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3200 		else
3201 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3202 	}
3203 
3204 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3205 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3206 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3207 		else
3208 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3209 	}
3210 
3211 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3212 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3213 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3214 					      NFP_NET_CFG_CTRL_LSO;
3215 		else
3216 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3217 	}
3218 
3219 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3220 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3221 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3222 		else
3223 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3224 	}
3225 
3226 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3227 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3228 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3229 		else
3230 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3231 	}
3232 
3233 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3234 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3235 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3236 		else
3237 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3238 	}
3239 
3240 	if (changed & NETIF_F_SG) {
3241 		if (features & NETIF_F_SG)
3242 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3243 		else
3244 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3245 	}
3246 
3247 	err = nfp_port_set_features(netdev, features);
3248 	if (err)
3249 		return err;
3250 
3251 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3252 	       netdev->features, features, changed);
3253 
3254 	if (new_ctrl == nn->dp.ctrl)
3255 		return 0;
3256 
3257 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3258 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3259 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3260 	if (err)
3261 		return err;
3262 
3263 	nn->dp.ctrl = new_ctrl;
3264 
3265 	return 0;
3266 }
3267 
3268 static netdev_features_t
3269 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3270 		       netdev_features_t features)
3271 {
3272 	u8 l4_hdr;
3273 
3274 	/* We can't do TSO over double tagged packets (802.1AD) */
3275 	features &= vlan_features_check(skb, features);
3276 
3277 	if (!skb->encapsulation)
3278 		return features;
3279 
3280 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3281 	if (skb_is_gso(skb)) {
3282 		u32 hdrlen;
3283 
3284 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3285 			inner_tcp_hdrlen(skb);
3286 
3287 		/* Assume worst case scenario of having longest possible
3288 		 * metadata prepend - 8B
3289 		 */
3290 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3291 			features &= ~NETIF_F_GSO_MASK;
3292 	}
3293 
3294 	/* VXLAN/GRE check */
3295 	switch (vlan_get_protocol(skb)) {
3296 	case htons(ETH_P_IP):
3297 		l4_hdr = ip_hdr(skb)->protocol;
3298 		break;
3299 	case htons(ETH_P_IPV6):
3300 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3301 		break;
3302 	default:
3303 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3304 	}
3305 
3306 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3307 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3308 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3309 	    (l4_hdr == IPPROTO_UDP &&
3310 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3311 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3312 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3313 
3314 	return features;
3315 }
3316 
3317 static int
3318 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3319 {
3320 	struct nfp_net *nn = netdev_priv(netdev);
3321 	int n;
3322 
3323 	if (nn->port)
3324 		return nfp_port_get_phys_port_name(netdev, name, len);
3325 
3326 	if (nn->dp.is_vf || nn->vnic_no_name)
3327 		return -EOPNOTSUPP;
3328 
3329 	n = snprintf(name, len, "n%d", nn->id);
3330 	if (n >= len)
3331 		return -EINVAL;
3332 
3333 	return 0;
3334 }
3335 
3336 /**
3337  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3338  * @nn:   NFP Net device to reconfigure
3339  * @idx:  Index into the port table where new port should be written
3340  * @port: UDP port to configure (pass zero to remove VXLAN port)
3341  */
3342 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3343 {
3344 	int i;
3345 
3346 	nn->vxlan_ports[idx] = port;
3347 
3348 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3349 		return;
3350 
3351 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3352 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3353 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3354 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3355 			  be16_to_cpu(nn->vxlan_ports[i]));
3356 
3357 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3358 }
3359 
3360 /**
3361  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3362  * @nn:   NFP Network structure
3363  * @port: UDP port to look for
3364  *
3365  * Return: if the port is already in the table -- it's position;
3366  *	   if the port is not in the table -- free position to use;
3367  *	   if the table is full -- -ENOSPC.
3368  */
3369 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3370 {
3371 	int i, free_idx = -ENOSPC;
3372 
3373 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3374 		if (nn->vxlan_ports[i] == port)
3375 			return i;
3376 		if (!nn->vxlan_usecnt[i])
3377 			free_idx = i;
3378 	}
3379 
3380 	return free_idx;
3381 }
3382 
3383 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3384 				   struct udp_tunnel_info *ti)
3385 {
3386 	struct nfp_net *nn = netdev_priv(netdev);
3387 	int idx;
3388 
3389 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3390 		return;
3391 
3392 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3393 	if (idx == -ENOSPC)
3394 		return;
3395 
3396 	if (!nn->vxlan_usecnt[idx]++)
3397 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3398 }
3399 
3400 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3401 				   struct udp_tunnel_info *ti)
3402 {
3403 	struct nfp_net *nn = netdev_priv(netdev);
3404 	int idx;
3405 
3406 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3407 		return;
3408 
3409 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3410 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3411 		return;
3412 
3413 	if (!--nn->vxlan_usecnt[idx])
3414 		nfp_net_set_vxlan_port(nn, idx, 0);
3415 }
3416 
3417 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3418 {
3419 	struct bpf_prog *prog = bpf->prog;
3420 	struct nfp_net_dp *dp;
3421 	int err;
3422 
3423 	if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3424 		return -EBUSY;
3425 
3426 	if (!prog == !nn->dp.xdp_prog) {
3427 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3428 		xdp_attachment_setup(&nn->xdp, bpf);
3429 		return 0;
3430 	}
3431 
3432 	dp = nfp_net_clone_dp(nn);
3433 	if (!dp)
3434 		return -ENOMEM;
3435 
3436 	dp->xdp_prog = prog;
3437 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3438 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3439 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3440 
3441 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3442 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3443 	if (err)
3444 		return err;
3445 
3446 	xdp_attachment_setup(&nn->xdp, bpf);
3447 	return 0;
3448 }
3449 
3450 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3451 {
3452 	int err;
3453 
3454 	if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3455 		return -EBUSY;
3456 
3457 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3458 	if (err)
3459 		return err;
3460 
3461 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3462 	return 0;
3463 }
3464 
3465 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3466 {
3467 	struct nfp_net *nn = netdev_priv(netdev);
3468 
3469 	switch (xdp->command) {
3470 	case XDP_SETUP_PROG:
3471 		return nfp_net_xdp_setup_drv(nn, xdp);
3472 	case XDP_SETUP_PROG_HW:
3473 		return nfp_net_xdp_setup_hw(nn, xdp);
3474 	case XDP_QUERY_PROG:
3475 		return xdp_attachment_query(&nn->xdp, xdp);
3476 	case XDP_QUERY_PROG_HW:
3477 		return xdp_attachment_query(&nn->xdp_hw, xdp);
3478 	default:
3479 		return nfp_app_bpf(nn->app, nn, xdp);
3480 	}
3481 }
3482 
3483 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3484 {
3485 	struct nfp_net *nn = netdev_priv(netdev);
3486 	struct sockaddr *saddr = addr;
3487 	int err;
3488 
3489 	err = eth_prepare_mac_addr_change(netdev, addr);
3490 	if (err)
3491 		return err;
3492 
3493 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3494 
3495 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3496 	if (err)
3497 		return err;
3498 
3499 	eth_commit_mac_addr_change(netdev, addr);
3500 
3501 	return 0;
3502 }
3503 
3504 const struct net_device_ops nfp_net_netdev_ops = {
3505 	.ndo_init		= nfp_app_ndo_init,
3506 	.ndo_uninit		= nfp_app_ndo_uninit,
3507 	.ndo_open		= nfp_net_netdev_open,
3508 	.ndo_stop		= nfp_net_netdev_close,
3509 	.ndo_start_xmit		= nfp_net_tx,
3510 	.ndo_get_stats64	= nfp_net_stat64,
3511 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3512 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3513 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3514 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3515 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3516 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3517 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3518 	.ndo_setup_tc		= nfp_port_setup_tc,
3519 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3520 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3521 	.ndo_change_mtu		= nfp_net_change_mtu,
3522 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3523 	.ndo_set_features	= nfp_net_set_features,
3524 	.ndo_features_check	= nfp_net_features_check,
3525 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3526 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3527 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3528 	.ndo_bpf		= nfp_net_xdp,
3529 };
3530 
3531 /**
3532  * nfp_net_info() - Print general info about the NIC
3533  * @nn:      NFP Net device to reconfigure
3534  */
3535 void nfp_net_info(struct nfp_net *nn)
3536 {
3537 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3538 		nn->dp.is_vf ? "VF " : "",
3539 		nn->dp.num_tx_rings, nn->max_tx_rings,
3540 		nn->dp.num_rx_rings, nn->max_rx_rings);
3541 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3542 		nn->fw_ver.resv, nn->fw_ver.class,
3543 		nn->fw_ver.major, nn->fw_ver.minor,
3544 		nn->max_mtu);
3545 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3546 		nn->cap,
3547 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3548 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3549 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3550 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3551 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3552 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3553 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3554 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3555 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3556 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3557 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3558 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3559 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3560 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3561 		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3562 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3563 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3564 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3565 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3566 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3567 						      "RXCSUM_COMPLETE " : "",
3568 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3569 		nfp_app_extra_cap(nn->app, nn));
3570 }
3571 
3572 /**
3573  * nfp_net_alloc() - Allocate netdev and related structure
3574  * @pdev:         PCI device
3575  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3576  * @needs_netdev: Whether to allocate a netdev for this vNIC
3577  * @max_tx_rings: Maximum number of TX rings supported by device
3578  * @max_rx_rings: Maximum number of RX rings supported by device
3579  *
3580  * This function allocates a netdev device and fills in the initial
3581  * part of the @struct nfp_net structure.  In case of control device
3582  * nfp_net structure is allocated without the netdev.
3583  *
3584  * Return: NFP Net device structure, or ERR_PTR on error.
3585  */
3586 struct nfp_net *
3587 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3588 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3589 {
3590 	struct nfp_net *nn;
3591 	int err;
3592 
3593 	if (needs_netdev) {
3594 		struct net_device *netdev;
3595 
3596 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3597 					    max_tx_rings, max_rx_rings);
3598 		if (!netdev)
3599 			return ERR_PTR(-ENOMEM);
3600 
3601 		SET_NETDEV_DEV(netdev, &pdev->dev);
3602 		nn = netdev_priv(netdev);
3603 		nn->dp.netdev = netdev;
3604 	} else {
3605 		nn = vzalloc(sizeof(*nn));
3606 		if (!nn)
3607 			return ERR_PTR(-ENOMEM);
3608 	}
3609 
3610 	nn->dp.dev = &pdev->dev;
3611 	nn->dp.ctrl_bar = ctrl_bar;
3612 	nn->pdev = pdev;
3613 
3614 	nn->max_tx_rings = max_tx_rings;
3615 	nn->max_rx_rings = max_rx_rings;
3616 
3617 	nn->dp.num_tx_rings = min_t(unsigned int,
3618 				    max_tx_rings, num_online_cpus());
3619 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3620 				 netif_get_num_default_rss_queues());
3621 
3622 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3623 	nn->dp.num_r_vecs = min_t(unsigned int,
3624 				  nn->dp.num_r_vecs, num_online_cpus());
3625 
3626 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3627 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3628 
3629 	spin_lock_init(&nn->reconfig_lock);
3630 	spin_lock_init(&nn->link_status_lock);
3631 
3632 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3633 
3634 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3635 				     &nn->tlv_caps);
3636 	if (err)
3637 		goto err_free_nn;
3638 
3639 	return nn;
3640 
3641 err_free_nn:
3642 	if (nn->dp.netdev)
3643 		free_netdev(nn->dp.netdev);
3644 	else
3645 		vfree(nn);
3646 	return ERR_PTR(err);
3647 }
3648 
3649 /**
3650  * nfp_net_free() - Undo what @nfp_net_alloc() did
3651  * @nn:      NFP Net device to reconfigure
3652  */
3653 void nfp_net_free(struct nfp_net *nn)
3654 {
3655 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3656 	if (nn->dp.netdev)
3657 		free_netdev(nn->dp.netdev);
3658 	else
3659 		vfree(nn);
3660 }
3661 
3662 /**
3663  * nfp_net_rss_key_sz() - Get current size of the RSS key
3664  * @nn:		NFP Net device instance
3665  *
3666  * Return: size of the RSS key for currently selected hash function.
3667  */
3668 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3669 {
3670 	switch (nn->rss_hfunc) {
3671 	case ETH_RSS_HASH_TOP:
3672 		return NFP_NET_CFG_RSS_KEY_SZ;
3673 	case ETH_RSS_HASH_XOR:
3674 		return 0;
3675 	case ETH_RSS_HASH_CRC32:
3676 		return 4;
3677 	}
3678 
3679 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3680 	return 0;
3681 }
3682 
3683 /**
3684  * nfp_net_rss_init() - Set the initial RSS parameters
3685  * @nn:	     NFP Net device to reconfigure
3686  */
3687 static void nfp_net_rss_init(struct nfp_net *nn)
3688 {
3689 	unsigned long func_bit, rss_cap_hfunc;
3690 	u32 reg;
3691 
3692 	/* Read the RSS function capability and select first supported func */
3693 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3694 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3695 	if (!rss_cap_hfunc)
3696 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3697 					  NFP_NET_CFG_RSS_TOEPLITZ);
3698 
3699 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3700 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3701 		dev_warn(nn->dp.dev,
3702 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3703 		func_bit = ETH_RSS_HASH_TOP_BIT;
3704 	}
3705 	nn->rss_hfunc = 1 << func_bit;
3706 
3707 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3708 
3709 	nfp_net_rss_init_itbl(nn);
3710 
3711 	/* Enable IPv4/IPv6 TCP by default */
3712 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3713 		      NFP_NET_CFG_RSS_IPV6_TCP |
3714 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3715 		      NFP_NET_CFG_RSS_MASK;
3716 }
3717 
3718 /**
3719  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3720  * @nn:	     NFP Net device to reconfigure
3721  */
3722 static void nfp_net_irqmod_init(struct nfp_net *nn)
3723 {
3724 	nn->rx_coalesce_usecs      = 50;
3725 	nn->rx_coalesce_max_frames = 64;
3726 	nn->tx_coalesce_usecs      = 50;
3727 	nn->tx_coalesce_max_frames = 64;
3728 }
3729 
3730 static void nfp_net_netdev_init(struct nfp_net *nn)
3731 {
3732 	struct net_device *netdev = nn->dp.netdev;
3733 
3734 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3735 
3736 	netdev->mtu = nn->dp.mtu;
3737 
3738 	/* Advertise/enable offloads based on capabilities
3739 	 *
3740 	 * Note: netdev->features show the currently enabled features
3741 	 * and netdev->hw_features advertises which features are
3742 	 * supported.  By default we enable most features.
3743 	 */
3744 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3745 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3746 
3747 	netdev->hw_features = NETIF_F_HIGHDMA;
3748 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3749 		netdev->hw_features |= NETIF_F_RXCSUM;
3750 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3751 	}
3752 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3753 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3754 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3755 	}
3756 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3757 		netdev->hw_features |= NETIF_F_SG;
3758 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3759 	}
3760 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3761 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3762 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3763 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3764 					 NFP_NET_CFG_CTRL_LSO;
3765 	}
3766 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3767 		netdev->hw_features |= NETIF_F_RXHASH;
3768 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
3769 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3770 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
3771 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
3772 	}
3773 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3774 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3775 			netdev->hw_features |= NETIF_F_GSO_GRE;
3776 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
3777 	}
3778 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
3779 		netdev->hw_enc_features = netdev->hw_features;
3780 
3781 	netdev->vlan_features = netdev->hw_features;
3782 
3783 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3784 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3785 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3786 	}
3787 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3788 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3789 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3790 		} else {
3791 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3792 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3793 		}
3794 	}
3795 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3796 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3797 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3798 	}
3799 
3800 	netdev->features = netdev->hw_features;
3801 
3802 	if (nfp_app_has_tc(nn->app) && nn->port)
3803 		netdev->hw_features |= NETIF_F_HW_TC;
3804 
3805 	/* Advertise but disable TSO by default. */
3806 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3807 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3808 
3809 	/* Finalise the netdev setup */
3810 	netdev->netdev_ops = &nfp_net_netdev_ops;
3811 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3812 
3813 	SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3814 
3815 	/* MTU range: 68 - hw-specific max */
3816 	netdev->min_mtu = ETH_MIN_MTU;
3817 	netdev->max_mtu = nn->max_mtu;
3818 
3819 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
3820 
3821 	netif_carrier_off(netdev);
3822 
3823 	nfp_net_set_ethtool_ops(netdev);
3824 }
3825 
3826 static int nfp_net_read_caps(struct nfp_net *nn)
3827 {
3828 	/* Get some of the read-only fields from the BAR */
3829 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3830 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3831 
3832 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3833 	 * we allow use of non-chained metadata if RSS(v1) is the only
3834 	 * advertised capability requiring metadata.
3835 	 */
3836 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3837 					 !nn->dp.netdev ||
3838 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3839 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3840 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3841 	 * it has the same meaning as RSSv2.
3842 	 */
3843 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3844 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3845 
3846 	/* Determine RX packet/metadata boundary offset */
3847 	if (nn->fw_ver.major >= 2) {
3848 		u32 reg;
3849 
3850 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3851 		if (reg > NFP_NET_MAX_PREPEND) {
3852 			nn_err(nn, "Invalid rx offset: %d\n", reg);
3853 			return -EINVAL;
3854 		}
3855 		nn->dp.rx_offset = reg;
3856 	} else {
3857 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3858 	}
3859 
3860 	/* For control vNICs mask out the capabilities app doesn't want. */
3861 	if (!nn->dp.netdev)
3862 		nn->cap &= nn->app->type->ctrl_cap_mask;
3863 
3864 	return 0;
3865 }
3866 
3867 /**
3868  * nfp_net_init() - Initialise/finalise the nfp_net structure
3869  * @nn:		NFP Net device structure
3870  *
3871  * Return: 0 on success or negative errno on error.
3872  */
3873 int nfp_net_init(struct nfp_net *nn)
3874 {
3875 	int err;
3876 
3877 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3878 
3879 	err = nfp_net_read_caps(nn);
3880 	if (err)
3881 		return err;
3882 
3883 	/* Set default MTU and Freelist buffer size */
3884 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
3885 		if (nn->app->ctrl_mtu <= nn->max_mtu) {
3886 			nn->dp.mtu = nn->app->ctrl_mtu;
3887 		} else {
3888 			if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX)
3889 				nn_warn(nn, "app requested MTU above max supported %u > %u\n",
3890 					nn->app->ctrl_mtu, nn->max_mtu);
3891 			nn->dp.mtu = nn->max_mtu;
3892 		}
3893 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
3894 		nn->dp.mtu = nn->max_mtu;
3895 	} else {
3896 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3897 	}
3898 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3899 
3900 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
3901 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
3902 
3903 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3904 		nfp_net_rss_init(nn);
3905 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3906 					 NFP_NET_CFG_CTRL_RSS;
3907 	}
3908 
3909 	/* Allow L2 Broadcast and Multicast through by default, if supported */
3910 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3911 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3912 
3913 	/* Allow IRQ moderation, if supported */
3914 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3915 		nfp_net_irqmod_init(nn);
3916 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3917 	}
3918 
3919 	if (nn->dp.netdev)
3920 		nfp_net_netdev_init(nn);
3921 
3922 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
3923 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3924 
3925 	/* Make sure the FW knows the netdev is supposed to be disabled here */
3926 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3927 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3928 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3929 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3930 				   NFP_NET_CFG_UPDATE_GEN);
3931 	if (err)
3932 		return err;
3933 
3934 	nfp_net_vecs_init(nn);
3935 
3936 	if (!nn->dp.netdev)
3937 		return 0;
3938 	return register_netdev(nn->dp.netdev);
3939 }
3940 
3941 /**
3942  * nfp_net_clean() - Undo what nfp_net_init() did.
3943  * @nn:		NFP Net device structure
3944  */
3945 void nfp_net_clean(struct nfp_net *nn)
3946 {
3947 	if (!nn->dp.netdev)
3948 		return;
3949 
3950 	unregister_netdev(nn->dp.netdev);
3951 	nfp_net_reconfig_wait_posted(nn);
3952 }
3953