1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 65 #include <linux/ktime.h> 66 67 #include <net/pkt_cls.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_net_ctrl.h" 72 #include "nfp_net.h" 73 74 /** 75 * nfp_net_get_fw_version() - Read and parse the FW version 76 * @fw_ver: Output fw_version structure to read to 77 * @ctrl_bar: Mapped address of the control BAR 78 */ 79 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 80 void __iomem *ctrl_bar) 81 { 82 u32 reg; 83 84 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 85 put_unaligned_le32(reg, fw_ver); 86 } 87 88 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 89 { 90 return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 91 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 92 dp->rx_dma_dir); 93 } 94 95 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 96 { 97 dma_unmap_single(dp->dev, dma_addr, 98 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 99 dp->rx_dma_dir); 100 } 101 102 /* Firmware reconfig 103 * 104 * Firmware reconfig may take a while so we have two versions of it - 105 * synchronous and asynchronous (posted). All synchronous callers are holding 106 * RTNL so we don't have to worry about serializing them. 107 */ 108 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 109 { 110 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 111 /* ensure update is written before pinging HW */ 112 nn_pci_flush(nn); 113 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 114 } 115 116 /* Pass 0 as update to run posted reconfigs. */ 117 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 118 { 119 update |= nn->reconfig_posted; 120 nn->reconfig_posted = 0; 121 122 nfp_net_reconfig_start(nn, update); 123 124 nn->reconfig_timer_active = true; 125 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 126 } 127 128 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 129 { 130 u32 reg; 131 132 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 133 if (reg == 0) 134 return true; 135 if (reg & NFP_NET_CFG_UPDATE_ERR) { 136 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 137 return true; 138 } else if (last_check) { 139 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 140 return true; 141 } 142 143 return false; 144 } 145 146 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 147 { 148 bool timed_out = false; 149 150 /* Poll update field, waiting for NFP to ack the config */ 151 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 152 msleep(1); 153 timed_out = time_is_before_eq_jiffies(deadline); 154 } 155 156 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 157 return -EIO; 158 159 return timed_out ? -EIO : 0; 160 } 161 162 static void nfp_net_reconfig_timer(unsigned long data) 163 { 164 struct nfp_net *nn = (void *)data; 165 166 spin_lock_bh(&nn->reconfig_lock); 167 168 nn->reconfig_timer_active = false; 169 170 /* If sync caller is present it will take over from us */ 171 if (nn->reconfig_sync_present) 172 goto done; 173 174 /* Read reconfig status and report errors */ 175 nfp_net_reconfig_check_done(nn, true); 176 177 if (nn->reconfig_posted) 178 nfp_net_reconfig_start_async(nn, 0); 179 done: 180 spin_unlock_bh(&nn->reconfig_lock); 181 } 182 183 /** 184 * nfp_net_reconfig_post() - Post async reconfig request 185 * @nn: NFP Net device to reconfigure 186 * @update: The value for the update field in the BAR config 187 * 188 * Record FW reconfiguration request. Reconfiguration will be kicked off 189 * whenever reconfiguration machinery is idle. Multiple requests can be 190 * merged together! 191 */ 192 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 193 { 194 spin_lock_bh(&nn->reconfig_lock); 195 196 /* Sync caller will kick off async reconf when it's done, just post */ 197 if (nn->reconfig_sync_present) { 198 nn->reconfig_posted |= update; 199 goto done; 200 } 201 202 /* Opportunistically check if the previous command is done */ 203 if (!nn->reconfig_timer_active || 204 nfp_net_reconfig_check_done(nn, false)) 205 nfp_net_reconfig_start_async(nn, update); 206 else 207 nn->reconfig_posted |= update; 208 done: 209 spin_unlock_bh(&nn->reconfig_lock); 210 } 211 212 /** 213 * nfp_net_reconfig() - Reconfigure the firmware 214 * @nn: NFP Net device to reconfigure 215 * @update: The value for the update field in the BAR config 216 * 217 * Write the update word to the BAR and ping the reconfig queue. The 218 * poll until the firmware has acknowledged the update by zeroing the 219 * update word. 220 * 221 * Return: Negative errno on error, 0 on success 222 */ 223 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 224 { 225 bool cancelled_timer = false; 226 u32 pre_posted_requests; 227 int ret; 228 229 spin_lock_bh(&nn->reconfig_lock); 230 231 nn->reconfig_sync_present = true; 232 233 if (nn->reconfig_timer_active) { 234 del_timer(&nn->reconfig_timer); 235 nn->reconfig_timer_active = false; 236 cancelled_timer = true; 237 } 238 pre_posted_requests = nn->reconfig_posted; 239 nn->reconfig_posted = 0; 240 241 spin_unlock_bh(&nn->reconfig_lock); 242 243 if (cancelled_timer) 244 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 245 246 /* Run the posted reconfigs which were issued before we started */ 247 if (pre_posted_requests) { 248 nfp_net_reconfig_start(nn, pre_posted_requests); 249 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 250 } 251 252 nfp_net_reconfig_start(nn, update); 253 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 254 255 spin_lock_bh(&nn->reconfig_lock); 256 257 if (nn->reconfig_posted) 258 nfp_net_reconfig_start_async(nn, 0); 259 260 nn->reconfig_sync_present = false; 261 262 spin_unlock_bh(&nn->reconfig_lock); 263 264 return ret; 265 } 266 267 /* Interrupt configuration and handling 268 */ 269 270 /** 271 * nfp_net_irq_unmask() - Unmask automasked interrupt 272 * @nn: NFP Network structure 273 * @entry_nr: MSI-X table entry 274 * 275 * Clear the ICR for the IRQ entry. 276 */ 277 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 278 { 279 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 280 nn_pci_flush(nn); 281 } 282 283 /** 284 * nfp_net_irqs_alloc() - allocates MSI-X irqs 285 * @pdev: PCI device structure 286 * @irq_entries: Array to be initialized and used to hold the irq entries 287 * @min_irqs: Minimal acceptable number of interrupts 288 * @wanted_irqs: Target number of interrupts to allocate 289 * 290 * Return: Number of irqs obtained or 0 on error. 291 */ 292 unsigned int 293 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 294 unsigned int min_irqs, unsigned int wanted_irqs) 295 { 296 unsigned int i; 297 int got_irqs; 298 299 for (i = 0; i < wanted_irqs; i++) 300 irq_entries[i].entry = i; 301 302 got_irqs = pci_enable_msix_range(pdev, irq_entries, 303 min_irqs, wanted_irqs); 304 if (got_irqs < 0) { 305 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 306 min_irqs, wanted_irqs, got_irqs); 307 return 0; 308 } 309 310 if (got_irqs < wanted_irqs) 311 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 312 wanted_irqs, got_irqs); 313 314 return got_irqs; 315 } 316 317 /** 318 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 319 * @nn: NFP Network structure 320 * @irq_entries: Table of allocated interrupts 321 * @n: Size of @irq_entries (number of entries to grab) 322 * 323 * After interrupts are allocated with nfp_net_irqs_alloc() this function 324 * should be called to assign them to a specific netdev (port). 325 */ 326 void 327 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 328 unsigned int n) 329 { 330 struct nfp_net_dp *dp = &nn->dp; 331 332 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 333 dp->num_r_vecs = nn->max_r_vecs; 334 335 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 336 337 if (dp->num_rx_rings > dp->num_r_vecs || 338 dp->num_tx_rings > dp->num_r_vecs) 339 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 340 dp->num_rx_rings, dp->num_tx_rings, 341 dp->num_r_vecs); 342 343 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 344 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 345 dp->num_stack_tx_rings = dp->num_tx_rings; 346 } 347 348 /** 349 * nfp_net_irqs_disable() - Disable interrupts 350 * @pdev: PCI device structure 351 * 352 * Undoes what @nfp_net_irqs_alloc() does. 353 */ 354 void nfp_net_irqs_disable(struct pci_dev *pdev) 355 { 356 pci_disable_msix(pdev); 357 } 358 359 /** 360 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 361 * @irq: Interrupt 362 * @data: Opaque data structure 363 * 364 * Return: Indicate if the interrupt has been handled. 365 */ 366 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 367 { 368 struct nfp_net_r_vector *r_vec = data; 369 370 napi_schedule_irqoff(&r_vec->napi); 371 372 /* The FW auto-masks any interrupt, either via the MASK bit in 373 * the MSI-X table or via the per entry ICR field. So there 374 * is no need to disable interrupts here. 375 */ 376 return IRQ_HANDLED; 377 } 378 379 bool nfp_net_link_changed_read_clear(struct nfp_net *nn) 380 { 381 unsigned long flags; 382 bool ret; 383 384 spin_lock_irqsave(&nn->link_status_lock, flags); 385 ret = nn->link_changed; 386 nn->link_changed = false; 387 spin_unlock_irqrestore(&nn->link_status_lock, flags); 388 389 return ret; 390 } 391 392 /** 393 * nfp_net_read_link_status() - Reread link status from control BAR 394 * @nn: NFP Network structure 395 */ 396 static void nfp_net_read_link_status(struct nfp_net *nn) 397 { 398 unsigned long flags; 399 bool link_up; 400 u32 sts; 401 402 spin_lock_irqsave(&nn->link_status_lock, flags); 403 404 sts = nn_readl(nn, NFP_NET_CFG_STS); 405 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 406 407 if (nn->link_up == link_up) 408 goto out; 409 410 nn->link_up = link_up; 411 nn->link_changed = true; 412 413 if (nn->link_up) { 414 netif_carrier_on(nn->dp.netdev); 415 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 416 } else { 417 netif_carrier_off(nn->dp.netdev); 418 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 419 } 420 out: 421 spin_unlock_irqrestore(&nn->link_status_lock, flags); 422 } 423 424 /** 425 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 426 * @irq: Interrupt 427 * @data: Opaque data structure 428 * 429 * Return: Indicate if the interrupt has been handled. 430 */ 431 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 432 { 433 struct nfp_net *nn = data; 434 struct msix_entry *entry; 435 436 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 437 438 nfp_net_read_link_status(nn); 439 440 nfp_net_irq_unmask(nn, entry->entry); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * nfp_net_irq_exn() - Interrupt service routine for exceptions 447 * @irq: Interrupt 448 * @data: Opaque data structure 449 * 450 * Return: Indicate if the interrupt has been handled. 451 */ 452 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 453 { 454 struct nfp_net *nn = data; 455 456 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 457 /* XXX TO BE IMPLEMENTED */ 458 return IRQ_HANDLED; 459 } 460 461 /** 462 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 463 * @tx_ring: TX ring structure 464 * @r_vec: IRQ vector servicing this ring 465 * @idx: Ring index 466 */ 467 static void 468 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 469 struct nfp_net_r_vector *r_vec, unsigned int idx) 470 { 471 struct nfp_net *nn = r_vec->nfp_net; 472 473 tx_ring->idx = idx; 474 tx_ring->r_vec = r_vec; 475 476 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 477 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 478 } 479 480 /** 481 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 482 * @rx_ring: RX ring structure 483 * @r_vec: IRQ vector servicing this ring 484 * @idx: Ring index 485 */ 486 static void 487 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 488 struct nfp_net_r_vector *r_vec, unsigned int idx) 489 { 490 struct nfp_net *nn = r_vec->nfp_net; 491 492 rx_ring->idx = idx; 493 rx_ring->r_vec = r_vec; 494 495 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 496 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 497 } 498 499 /** 500 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 501 * @netdev: netdev structure 502 */ 503 static void nfp_net_vecs_init(struct net_device *netdev) 504 { 505 struct nfp_net *nn = netdev_priv(netdev); 506 struct nfp_net_r_vector *r_vec; 507 int r; 508 509 nn->lsc_handler = nfp_net_irq_lsc; 510 nn->exn_handler = nfp_net_irq_exn; 511 512 for (r = 0; r < nn->max_r_vecs; r++) { 513 struct msix_entry *entry; 514 515 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 516 517 r_vec = &nn->r_vecs[r]; 518 r_vec->nfp_net = nn; 519 r_vec->handler = nfp_net_irq_rxtx; 520 r_vec->irq_entry = entry->entry; 521 r_vec->irq_vector = entry->vector; 522 523 cpumask_set_cpu(r, &r_vec->affinity_mask); 524 } 525 } 526 527 /** 528 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 529 * @nn: NFP Network structure 530 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 531 * @format: printf-style format to construct the interrupt name 532 * @name: Pointer to allocated space for interrupt name 533 * @name_sz: Size of space for interrupt name 534 * @vector_idx: Index of MSI-X vector used for this interrupt 535 * @handler: IRQ handler to register for this interrupt 536 */ 537 static int 538 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 539 const char *format, char *name, size_t name_sz, 540 unsigned int vector_idx, irq_handler_t handler) 541 { 542 struct msix_entry *entry; 543 int err; 544 545 entry = &nn->irq_entries[vector_idx]; 546 547 snprintf(name, name_sz, format, netdev_name(nn->dp.netdev)); 548 err = request_irq(entry->vector, handler, 0, name, nn); 549 if (err) { 550 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 551 entry->vector, err); 552 return err; 553 } 554 nn_writeb(nn, ctrl_offset, entry->entry); 555 556 return 0; 557 } 558 559 /** 560 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 561 * @nn: NFP Network structure 562 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 563 * @vector_idx: Index of MSI-X vector used for this interrupt 564 */ 565 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 566 unsigned int vector_idx) 567 { 568 nn_writeb(nn, ctrl_offset, 0xff); 569 free_irq(nn->irq_entries[vector_idx].vector, nn); 570 } 571 572 /* Transmit 573 * 574 * One queue controller peripheral queue is used for transmit. The 575 * driver en-queues packets for transmit by advancing the write 576 * pointer. The device indicates that packets have transmitted by 577 * advancing the read pointer. The driver maintains a local copy of 578 * the read and write pointer in @struct nfp_net_tx_ring. The driver 579 * keeps @wr_p in sync with the queue controller write pointer and can 580 * determine how many packets have been transmitted by comparing its 581 * copy of the read pointer @rd_p with the read pointer maintained by 582 * the queue controller peripheral. 583 */ 584 585 /** 586 * nfp_net_tx_full() - Check if the TX ring is full 587 * @tx_ring: TX ring to check 588 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 589 * 590 * This function checks, based on the *host copy* of read/write 591 * pointer if a given TX ring is full. The real TX queue may have 592 * some newly made available slots. 593 * 594 * Return: True if the ring is full. 595 */ 596 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 597 { 598 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 599 } 600 601 /* Wrappers for deciding when to stop and restart TX queues */ 602 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 603 { 604 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 605 } 606 607 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 608 { 609 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 610 } 611 612 /** 613 * nfp_net_tx_ring_stop() - stop tx ring 614 * @nd_q: netdev queue 615 * @tx_ring: driver tx queue structure 616 * 617 * Safely stop TX ring. Remember that while we are running .start_xmit() 618 * someone else may be cleaning the TX ring completions so we need to be 619 * extra careful here. 620 */ 621 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 622 struct nfp_net_tx_ring *tx_ring) 623 { 624 netif_tx_stop_queue(nd_q); 625 626 /* We can race with the TX completion out of NAPI so recheck */ 627 smp_mb(); 628 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 629 netif_tx_start_queue(nd_q); 630 } 631 632 /** 633 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 634 * @r_vec: per-ring structure 635 * @txbuf: Pointer to driver soft TX descriptor 636 * @txd: Pointer to HW TX descriptor 637 * @skb: Pointer to SKB 638 * 639 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 640 * Return error on packet header greater than maximum supported LSO header size. 641 */ 642 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 643 struct nfp_net_tx_buf *txbuf, 644 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 645 { 646 u32 hdrlen; 647 u16 mss; 648 649 if (!skb_is_gso(skb)) 650 return; 651 652 if (!skb->encapsulation) 653 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 654 else 655 hdrlen = skb_inner_transport_header(skb) - skb->data + 656 inner_tcp_hdrlen(skb); 657 658 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 659 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 660 661 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 662 txd->l4_offset = hdrlen; 663 txd->mss = cpu_to_le16(mss); 664 txd->flags |= PCIE_DESC_TX_LSO; 665 666 u64_stats_update_begin(&r_vec->tx_sync); 667 r_vec->tx_lso++; 668 u64_stats_update_end(&r_vec->tx_sync); 669 } 670 671 /** 672 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 673 * @dp: NFP Net data path struct 674 * @r_vec: per-ring structure 675 * @txbuf: Pointer to driver soft TX descriptor 676 * @txd: Pointer to TX descriptor 677 * @skb: Pointer to SKB 678 * 679 * This function sets the TX checksum flags in the TX descriptor based 680 * on the configuration and the protocol of the packet to be transmitted. 681 */ 682 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 683 struct nfp_net_r_vector *r_vec, 684 struct nfp_net_tx_buf *txbuf, 685 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 686 { 687 struct ipv6hdr *ipv6h; 688 struct iphdr *iph; 689 u8 l4_hdr; 690 691 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 692 return; 693 694 if (skb->ip_summed != CHECKSUM_PARTIAL) 695 return; 696 697 txd->flags |= PCIE_DESC_TX_CSUM; 698 if (skb->encapsulation) 699 txd->flags |= PCIE_DESC_TX_ENCAP; 700 701 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 702 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 703 704 if (iph->version == 4) { 705 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 706 l4_hdr = iph->protocol; 707 } else if (ipv6h->version == 6) { 708 l4_hdr = ipv6h->nexthdr; 709 } else { 710 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 711 return; 712 } 713 714 switch (l4_hdr) { 715 case IPPROTO_TCP: 716 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 717 break; 718 case IPPROTO_UDP: 719 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 720 break; 721 default: 722 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 723 return; 724 } 725 726 u64_stats_update_begin(&r_vec->tx_sync); 727 if (skb->encapsulation) 728 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 729 else 730 r_vec->hw_csum_tx += txbuf->pkt_cnt; 731 u64_stats_update_end(&r_vec->tx_sync); 732 } 733 734 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 735 { 736 wmb(); 737 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 738 tx_ring->wr_ptr_add = 0; 739 } 740 741 /** 742 * nfp_net_tx() - Main transmit entry point 743 * @skb: SKB to transmit 744 * @netdev: netdev structure 745 * 746 * Return: NETDEV_TX_OK on success. 747 */ 748 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 749 { 750 struct nfp_net *nn = netdev_priv(netdev); 751 const struct skb_frag_struct *frag; 752 struct nfp_net_tx_desc *txd, txdg; 753 struct nfp_net_tx_ring *tx_ring; 754 struct nfp_net_r_vector *r_vec; 755 struct nfp_net_tx_buf *txbuf; 756 struct netdev_queue *nd_q; 757 struct nfp_net_dp *dp; 758 dma_addr_t dma_addr; 759 unsigned int fsize; 760 int f, nr_frags; 761 int wr_idx; 762 u16 qidx; 763 764 dp = &nn->dp; 765 qidx = skb_get_queue_mapping(skb); 766 tx_ring = &dp->tx_rings[qidx]; 767 r_vec = tx_ring->r_vec; 768 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 769 770 nr_frags = skb_shinfo(skb)->nr_frags; 771 772 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 773 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 774 qidx, tx_ring->wr_p, tx_ring->rd_p); 775 netif_tx_stop_queue(nd_q); 776 nfp_net_tx_xmit_more_flush(tx_ring); 777 u64_stats_update_begin(&r_vec->tx_sync); 778 r_vec->tx_busy++; 779 u64_stats_update_end(&r_vec->tx_sync); 780 return NETDEV_TX_BUSY; 781 } 782 783 /* Start with the head skbuf */ 784 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 785 DMA_TO_DEVICE); 786 if (dma_mapping_error(dp->dev, dma_addr)) 787 goto err_free; 788 789 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1); 790 791 /* Stash the soft descriptor of the head then initialize it */ 792 txbuf = &tx_ring->txbufs[wr_idx]; 793 txbuf->skb = skb; 794 txbuf->dma_addr = dma_addr; 795 txbuf->fidx = -1; 796 txbuf->pkt_cnt = 1; 797 txbuf->real_len = skb->len; 798 799 /* Build TX descriptor */ 800 txd = &tx_ring->txds[wr_idx]; 801 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; 802 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 803 nfp_desc_set_dma_addr(txd, dma_addr); 804 txd->data_len = cpu_to_le16(skb->len); 805 806 txd->flags = 0; 807 txd->mss = 0; 808 txd->l4_offset = 0; 809 810 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 811 812 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 813 814 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 815 txd->flags |= PCIE_DESC_TX_VLAN; 816 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 817 } 818 819 /* Gather DMA */ 820 if (nr_frags > 0) { 821 /* all descs must match except for in addr, length and eop */ 822 txdg = *txd; 823 824 for (f = 0; f < nr_frags; f++) { 825 frag = &skb_shinfo(skb)->frags[f]; 826 fsize = skb_frag_size(frag); 827 828 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 829 fsize, DMA_TO_DEVICE); 830 if (dma_mapping_error(dp->dev, dma_addr)) 831 goto err_unmap; 832 833 wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1); 834 tx_ring->txbufs[wr_idx].skb = skb; 835 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 836 tx_ring->txbufs[wr_idx].fidx = f; 837 838 txd = &tx_ring->txds[wr_idx]; 839 *txd = txdg; 840 txd->dma_len = cpu_to_le16(fsize); 841 nfp_desc_set_dma_addr(txd, dma_addr); 842 txd->offset_eop = 843 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 844 } 845 846 u64_stats_update_begin(&r_vec->tx_sync); 847 r_vec->tx_gather++; 848 u64_stats_update_end(&r_vec->tx_sync); 849 } 850 851 netdev_tx_sent_queue(nd_q, txbuf->real_len); 852 853 tx_ring->wr_p += nr_frags + 1; 854 if (nfp_net_tx_ring_should_stop(tx_ring)) 855 nfp_net_tx_ring_stop(nd_q, tx_ring); 856 857 tx_ring->wr_ptr_add += nr_frags + 1; 858 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 859 nfp_net_tx_xmit_more_flush(tx_ring); 860 861 skb_tx_timestamp(skb); 862 863 return NETDEV_TX_OK; 864 865 err_unmap: 866 --f; 867 while (f >= 0) { 868 frag = &skb_shinfo(skb)->frags[f]; 869 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 870 skb_frag_size(frag), DMA_TO_DEVICE); 871 tx_ring->txbufs[wr_idx].skb = NULL; 872 tx_ring->txbufs[wr_idx].dma_addr = 0; 873 tx_ring->txbufs[wr_idx].fidx = -2; 874 wr_idx = wr_idx - 1; 875 if (wr_idx < 0) 876 wr_idx += tx_ring->cnt; 877 } 878 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 879 skb_headlen(skb), DMA_TO_DEVICE); 880 tx_ring->txbufs[wr_idx].skb = NULL; 881 tx_ring->txbufs[wr_idx].dma_addr = 0; 882 tx_ring->txbufs[wr_idx].fidx = -2; 883 err_free: 884 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 885 nfp_net_tx_xmit_more_flush(tx_ring); 886 u64_stats_update_begin(&r_vec->tx_sync); 887 r_vec->tx_errors++; 888 u64_stats_update_end(&r_vec->tx_sync); 889 dev_kfree_skb_any(skb); 890 return NETDEV_TX_OK; 891 } 892 893 /** 894 * nfp_net_tx_complete() - Handled completed TX packets 895 * @tx_ring: TX ring structure 896 * 897 * Return: Number of completed TX descriptors 898 */ 899 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 900 { 901 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 902 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 903 const struct skb_frag_struct *frag; 904 struct netdev_queue *nd_q; 905 u32 done_pkts = 0, done_bytes = 0; 906 struct sk_buff *skb; 907 int todo, nr_frags; 908 u32 qcp_rd_p; 909 int fidx; 910 int idx; 911 912 /* Work out how many descriptors have been transmitted */ 913 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 914 915 if (qcp_rd_p == tx_ring->qcp_rd_p) 916 return; 917 918 if (qcp_rd_p > tx_ring->qcp_rd_p) 919 todo = qcp_rd_p - tx_ring->qcp_rd_p; 920 else 921 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 922 923 while (todo--) { 924 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 925 tx_ring->rd_p++; 926 927 skb = tx_ring->txbufs[idx].skb; 928 if (!skb) 929 continue; 930 931 nr_frags = skb_shinfo(skb)->nr_frags; 932 fidx = tx_ring->txbufs[idx].fidx; 933 934 if (fidx == -1) { 935 /* unmap head */ 936 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 937 skb_headlen(skb), DMA_TO_DEVICE); 938 939 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 940 done_bytes += tx_ring->txbufs[idx].real_len; 941 } else { 942 /* unmap fragment */ 943 frag = &skb_shinfo(skb)->frags[fidx]; 944 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 945 skb_frag_size(frag), DMA_TO_DEVICE); 946 } 947 948 /* check for last gather fragment */ 949 if (fidx == nr_frags - 1) 950 dev_kfree_skb_any(skb); 951 952 tx_ring->txbufs[idx].dma_addr = 0; 953 tx_ring->txbufs[idx].skb = NULL; 954 tx_ring->txbufs[idx].fidx = -2; 955 } 956 957 tx_ring->qcp_rd_p = qcp_rd_p; 958 959 u64_stats_update_begin(&r_vec->tx_sync); 960 r_vec->tx_bytes += done_bytes; 961 r_vec->tx_pkts += done_pkts; 962 u64_stats_update_end(&r_vec->tx_sync); 963 964 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 965 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 966 if (nfp_net_tx_ring_should_wake(tx_ring)) { 967 /* Make sure TX thread will see updated tx_ring->rd_p */ 968 smp_mb(); 969 970 if (unlikely(netif_tx_queue_stopped(nd_q))) 971 netif_tx_wake_queue(nd_q); 972 } 973 974 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 975 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 976 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 977 } 978 979 static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 980 { 981 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 982 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 983 u32 done_pkts = 0, done_bytes = 0; 984 int idx, todo; 985 u32 qcp_rd_p; 986 987 /* Work out how many descriptors have been transmitted */ 988 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 989 990 if (qcp_rd_p == tx_ring->qcp_rd_p) 991 return; 992 993 if (qcp_rd_p > tx_ring->qcp_rd_p) 994 todo = qcp_rd_p - tx_ring->qcp_rd_p; 995 else 996 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 997 998 while (todo--) { 999 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 1000 tx_ring->rd_p++; 1001 1002 if (!tx_ring->txbufs[idx].frag) 1003 continue; 1004 1005 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr); 1006 __free_page(virt_to_page(tx_ring->txbufs[idx].frag)); 1007 1008 done_pkts++; 1009 done_bytes += tx_ring->txbufs[idx].real_len; 1010 1011 tx_ring->txbufs[idx].dma_addr = 0; 1012 tx_ring->txbufs[idx].frag = NULL; 1013 tx_ring->txbufs[idx].fidx = -2; 1014 } 1015 1016 tx_ring->qcp_rd_p = qcp_rd_p; 1017 1018 u64_stats_update_begin(&r_vec->tx_sync); 1019 r_vec->tx_bytes += done_bytes; 1020 r_vec->tx_pkts += done_pkts; 1021 u64_stats_update_end(&r_vec->tx_sync); 1022 1023 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1024 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1025 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1026 } 1027 1028 /** 1029 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1030 * @dp: NFP Net data path struct 1031 * @tx_ring: TX ring structure 1032 * 1033 * Assumes that the device is stopped 1034 */ 1035 static void 1036 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1037 { 1038 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1039 const struct skb_frag_struct *frag; 1040 struct netdev_queue *nd_q; 1041 1042 while (tx_ring->rd_p != tx_ring->wr_p) { 1043 struct nfp_net_tx_buf *tx_buf; 1044 int idx; 1045 1046 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 1047 tx_buf = &tx_ring->txbufs[idx]; 1048 1049 if (tx_ring == r_vec->xdp_ring) { 1050 nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr); 1051 __free_page(virt_to_page(tx_ring->txbufs[idx].frag)); 1052 } else { 1053 struct sk_buff *skb = tx_ring->txbufs[idx].skb; 1054 int nr_frags = skb_shinfo(skb)->nr_frags; 1055 1056 if (tx_buf->fidx == -1) { 1057 /* unmap head */ 1058 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1059 skb_headlen(skb), 1060 DMA_TO_DEVICE); 1061 } else { 1062 /* unmap fragment */ 1063 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1064 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1065 skb_frag_size(frag), 1066 DMA_TO_DEVICE); 1067 } 1068 1069 /* check for last gather fragment */ 1070 if (tx_buf->fidx == nr_frags - 1) 1071 dev_kfree_skb_any(skb); 1072 } 1073 1074 tx_buf->dma_addr = 0; 1075 tx_buf->skb = NULL; 1076 tx_buf->fidx = -2; 1077 1078 tx_ring->qcp_rd_p++; 1079 tx_ring->rd_p++; 1080 } 1081 1082 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1083 tx_ring->wr_p = 0; 1084 tx_ring->rd_p = 0; 1085 tx_ring->qcp_rd_p = 0; 1086 tx_ring->wr_ptr_add = 0; 1087 1088 if (tx_ring == r_vec->xdp_ring) 1089 return; 1090 1091 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1092 netdev_tx_reset_queue(nd_q); 1093 } 1094 1095 static void nfp_net_tx_timeout(struct net_device *netdev) 1096 { 1097 struct nfp_net *nn = netdev_priv(netdev); 1098 int i; 1099 1100 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1101 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1102 continue; 1103 nn_warn(nn, "TX timeout on ring: %d\n", i); 1104 } 1105 nn_warn(nn, "TX watchdog timeout\n"); 1106 } 1107 1108 /* Receive processing 1109 */ 1110 static unsigned int 1111 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1112 { 1113 unsigned int fl_bufsz; 1114 1115 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1116 fl_bufsz += dp->rx_dma_off; 1117 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1118 fl_bufsz += NFP_NET_MAX_PREPEND; 1119 else 1120 fl_bufsz += dp->rx_offset; 1121 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1122 1123 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1124 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1125 1126 return fl_bufsz; 1127 } 1128 1129 static void 1130 nfp_net_free_frag(void *frag, bool xdp) 1131 { 1132 if (!xdp) 1133 skb_free_frag(frag); 1134 else 1135 __free_page(virt_to_page(frag)); 1136 } 1137 1138 /** 1139 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1140 * @dp: NFP Net data path struct 1141 * @rx_ring: RX ring structure of the skb 1142 * @dma_addr: Pointer to storage for DMA address (output param) 1143 * 1144 * This function will allcate a new page frag, map it for DMA. 1145 * 1146 * Return: allocated page frag or NULL on failure. 1147 */ 1148 static void * 1149 nfp_net_rx_alloc_one(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1150 dma_addr_t *dma_addr) 1151 { 1152 void *frag; 1153 1154 if (!dp->xdp_prog) 1155 frag = netdev_alloc_frag(dp->fl_bufsz); 1156 else 1157 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD)); 1158 if (!frag) { 1159 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1160 return NULL; 1161 } 1162 1163 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1164 if (dma_mapping_error(dp->dev, *dma_addr)) { 1165 nfp_net_free_frag(frag, dp->xdp_prog); 1166 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1167 return NULL; 1168 } 1169 1170 return frag; 1171 } 1172 1173 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1174 { 1175 void *frag; 1176 1177 if (!dp->xdp_prog) 1178 frag = napi_alloc_frag(dp->fl_bufsz); 1179 else 1180 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD)); 1181 if (!frag) { 1182 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1183 return NULL; 1184 } 1185 1186 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1187 if (dma_mapping_error(dp->dev, *dma_addr)) { 1188 nfp_net_free_frag(frag, dp->xdp_prog); 1189 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1190 return NULL; 1191 } 1192 1193 return frag; 1194 } 1195 1196 /** 1197 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1198 * @dp: NFP Net data path struct 1199 * @rx_ring: RX ring structure 1200 * @frag: page fragment buffer 1201 * @dma_addr: DMA address of skb mapping 1202 */ 1203 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1204 struct nfp_net_rx_ring *rx_ring, 1205 void *frag, dma_addr_t dma_addr) 1206 { 1207 unsigned int wr_idx; 1208 1209 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1); 1210 1211 /* Stash SKB and DMA address away */ 1212 rx_ring->rxbufs[wr_idx].frag = frag; 1213 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1214 1215 /* Fill freelist descriptor */ 1216 rx_ring->rxds[wr_idx].fld.reserved = 0; 1217 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1218 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1219 dma_addr + dp->rx_dma_off); 1220 1221 rx_ring->wr_p++; 1222 rx_ring->wr_ptr_add++; 1223 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { 1224 /* Update write pointer of the freelist queue. Make 1225 * sure all writes are flushed before telling the hardware. 1226 */ 1227 wmb(); 1228 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); 1229 rx_ring->wr_ptr_add = 0; 1230 } 1231 } 1232 1233 /** 1234 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1235 * @rx_ring: RX ring structure 1236 * 1237 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1238 * (i.e. device was not enabled)! 1239 */ 1240 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1241 { 1242 unsigned int wr_idx, last_idx; 1243 1244 /* Move the empty entry to the end of the list */ 1245 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1); 1246 last_idx = rx_ring->cnt - 1; 1247 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1248 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1249 rx_ring->rxbufs[last_idx].dma_addr = 0; 1250 rx_ring->rxbufs[last_idx].frag = NULL; 1251 1252 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1253 rx_ring->wr_p = 0; 1254 rx_ring->rd_p = 0; 1255 rx_ring->wr_ptr_add = 0; 1256 } 1257 1258 /** 1259 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1260 * @dp: NFP Net data path struct 1261 * @rx_ring: RX ring to remove buffers from 1262 * 1263 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1264 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1265 * to restore required ring geometry. 1266 */ 1267 static void 1268 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1269 struct nfp_net_rx_ring *rx_ring) 1270 { 1271 unsigned int i; 1272 1273 for (i = 0; i < rx_ring->cnt - 1; i++) { 1274 /* NULL skb can only happen when initial filling of the ring 1275 * fails to allocate enough buffers and calls here to free 1276 * already allocated ones. 1277 */ 1278 if (!rx_ring->rxbufs[i].frag) 1279 continue; 1280 1281 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1282 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1283 rx_ring->rxbufs[i].dma_addr = 0; 1284 rx_ring->rxbufs[i].frag = NULL; 1285 } 1286 } 1287 1288 /** 1289 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1290 * @dp: NFP Net data path struct 1291 * @rx_ring: RX ring to remove buffers from 1292 */ 1293 static int 1294 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1295 struct nfp_net_rx_ring *rx_ring) 1296 { 1297 struct nfp_net_rx_buf *rxbufs; 1298 unsigned int i; 1299 1300 rxbufs = rx_ring->rxbufs; 1301 1302 for (i = 0; i < rx_ring->cnt - 1; i++) { 1303 rxbufs[i].frag = 1304 nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr); 1305 if (!rxbufs[i].frag) { 1306 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1307 return -ENOMEM; 1308 } 1309 } 1310 1311 return 0; 1312 } 1313 1314 /** 1315 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1316 * @dp: NFP Net data path struct 1317 * @rx_ring: RX ring to fill 1318 */ 1319 static void 1320 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1321 struct nfp_net_rx_ring *rx_ring) 1322 { 1323 unsigned int i; 1324 1325 for (i = 0; i < rx_ring->cnt - 1; i++) 1326 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1327 rx_ring->rxbufs[i].dma_addr); 1328 } 1329 1330 /** 1331 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1332 * @flags: RX descriptor flags field in CPU byte order 1333 */ 1334 static int nfp_net_rx_csum_has_errors(u16 flags) 1335 { 1336 u16 csum_all_checked, csum_all_ok; 1337 1338 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1339 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1340 1341 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1342 } 1343 1344 /** 1345 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1346 * @dp: NFP Net data path struct 1347 * @r_vec: per-ring structure 1348 * @rxd: Pointer to RX descriptor 1349 * @skb: Pointer to SKB 1350 */ 1351 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1352 struct nfp_net_r_vector *r_vec, 1353 struct nfp_net_rx_desc *rxd, struct sk_buff *skb) 1354 { 1355 skb_checksum_none_assert(skb); 1356 1357 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1358 return; 1359 1360 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1361 u64_stats_update_begin(&r_vec->rx_sync); 1362 r_vec->hw_csum_rx_error++; 1363 u64_stats_update_end(&r_vec->rx_sync); 1364 return; 1365 } 1366 1367 /* Assume that the firmware will never report inner CSUM_OK unless outer 1368 * L4 headers were successfully parsed. FW will always report zero UDP 1369 * checksum as CSUM_OK. 1370 */ 1371 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1372 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1373 __skb_incr_checksum_unnecessary(skb); 1374 u64_stats_update_begin(&r_vec->rx_sync); 1375 r_vec->hw_csum_rx_ok++; 1376 u64_stats_update_end(&r_vec->rx_sync); 1377 } 1378 1379 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1380 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1381 __skb_incr_checksum_unnecessary(skb); 1382 u64_stats_update_begin(&r_vec->rx_sync); 1383 r_vec->hw_csum_rx_inner_ok++; 1384 u64_stats_update_end(&r_vec->rx_sync); 1385 } 1386 } 1387 1388 static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb, 1389 unsigned int type, __be32 *hash) 1390 { 1391 if (!(netdev->features & NETIF_F_RXHASH)) 1392 return; 1393 1394 switch (type) { 1395 case NFP_NET_RSS_IPV4: 1396 case NFP_NET_RSS_IPV6: 1397 case NFP_NET_RSS_IPV6_EX: 1398 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3); 1399 break; 1400 default: 1401 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4); 1402 break; 1403 } 1404 } 1405 1406 static void 1407 nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb, 1408 void *data, struct nfp_net_rx_desc *rxd) 1409 { 1410 struct nfp_net_rx_hash *rx_hash = data; 1411 1412 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1413 return; 1414 1415 nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type), 1416 &rx_hash->hash); 1417 } 1418 1419 static void * 1420 nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb, 1421 void *data, int meta_len) 1422 { 1423 u32 meta_info; 1424 1425 meta_info = get_unaligned_be32(data); 1426 data += 4; 1427 1428 while (meta_info) { 1429 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1430 case NFP_NET_META_HASH: 1431 meta_info >>= NFP_NET_META_FIELD_SIZE; 1432 nfp_net_set_hash(netdev, skb, 1433 meta_info & NFP_NET_META_FIELD_MASK, 1434 (__be32 *)data); 1435 data += 4; 1436 break; 1437 case NFP_NET_META_MARK: 1438 skb->mark = get_unaligned_be32(data); 1439 data += 4; 1440 break; 1441 default: 1442 return NULL; 1443 } 1444 1445 meta_info >>= NFP_NET_META_FIELD_SIZE; 1446 } 1447 1448 return data; 1449 } 1450 1451 static void 1452 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1453 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1454 struct sk_buff *skb) 1455 { 1456 u64_stats_update_begin(&r_vec->rx_sync); 1457 r_vec->rx_drops++; 1458 u64_stats_update_end(&r_vec->rx_sync); 1459 1460 /* skb is build based on the frag, free_skb() would free the frag 1461 * so to be able to reuse it we need an extra ref. 1462 */ 1463 if (skb && rxbuf && skb->head == rxbuf->frag) 1464 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1465 if (rxbuf) 1466 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1467 if (skb) 1468 dev_kfree_skb_any(skb); 1469 } 1470 1471 static bool 1472 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1473 struct nfp_net_tx_ring *tx_ring, 1474 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1475 unsigned int pkt_len) 1476 { 1477 struct nfp_net_tx_buf *txbuf; 1478 struct nfp_net_tx_desc *txd; 1479 dma_addr_t new_dma_addr; 1480 void *new_frag; 1481 int wr_idx; 1482 1483 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1484 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL); 1485 return false; 1486 } 1487 1488 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1489 if (unlikely(!new_frag)) { 1490 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL); 1491 return false; 1492 } 1493 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1494 1495 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1); 1496 1497 /* Stash the soft descriptor of the head then initialize it */ 1498 txbuf = &tx_ring->txbufs[wr_idx]; 1499 txbuf->frag = rxbuf->frag; 1500 txbuf->dma_addr = rxbuf->dma_addr; 1501 txbuf->fidx = -1; 1502 txbuf->pkt_cnt = 1; 1503 txbuf->real_len = pkt_len; 1504 1505 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1506 pkt_len, DMA_BIDIRECTIONAL); 1507 1508 /* Build TX descriptor */ 1509 txd = &tx_ring->txds[wr_idx]; 1510 txd->offset_eop = PCIE_DESC_TX_EOP; 1511 txd->dma_len = cpu_to_le16(pkt_len); 1512 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1513 txd->data_len = cpu_to_le16(pkt_len); 1514 1515 txd->flags = 0; 1516 txd->mss = 0; 1517 txd->l4_offset = 0; 1518 1519 tx_ring->wr_p++; 1520 tx_ring->wr_ptr_add++; 1521 return true; 1522 } 1523 1524 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start, 1525 unsigned int *off, unsigned int *len) 1526 { 1527 struct xdp_buff xdp; 1528 void *orig_data; 1529 int ret; 1530 1531 xdp.data_hard_start = hard_start; 1532 xdp.data = data + *off; 1533 xdp.data_end = data + *off + *len; 1534 1535 orig_data = xdp.data; 1536 ret = bpf_prog_run_xdp(prog, &xdp); 1537 1538 *len -= xdp.data - orig_data; 1539 *off += xdp.data - orig_data; 1540 1541 return ret; 1542 } 1543 1544 /** 1545 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1546 * @rx_ring: RX ring to receive from 1547 * @budget: NAPI budget 1548 * 1549 * Note, this function is separated out from the napi poll function to 1550 * more cleanly separate packet receive code from other bookkeeping 1551 * functions performed in the napi poll function. 1552 * 1553 * Return: Number of packets received. 1554 */ 1555 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1556 { 1557 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1558 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1559 struct nfp_net_tx_ring *tx_ring; 1560 struct bpf_prog *xdp_prog; 1561 unsigned int true_bufsz; 1562 struct sk_buff *skb; 1563 int pkts_polled = 0; 1564 int idx; 1565 1566 rcu_read_lock(); 1567 xdp_prog = READ_ONCE(dp->xdp_prog); 1568 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1569 tx_ring = r_vec->xdp_ring; 1570 1571 while (pkts_polled < budget) { 1572 unsigned int meta_len, data_len, data_off, pkt_len; 1573 u8 meta_prepend[NFP_NET_MAX_PREPEND]; 1574 struct nfp_net_rx_buf *rxbuf; 1575 struct nfp_net_rx_desc *rxd; 1576 dma_addr_t new_dma_addr; 1577 void *new_frag; 1578 u8 *meta; 1579 1580 idx = rx_ring->rd_p & (rx_ring->cnt - 1); 1581 1582 rxd = &rx_ring->rxds[idx]; 1583 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1584 break; 1585 1586 /* Memory barrier to ensure that we won't do other reads 1587 * before the DD bit. 1588 */ 1589 dma_rmb(); 1590 1591 rx_ring->rd_p++; 1592 pkts_polled++; 1593 1594 rxbuf = &rx_ring->rxbufs[idx]; 1595 /* < meta_len > 1596 * <-- [rx_offset] --> 1597 * --------------------------------------------------------- 1598 * | [XX] | metadata | packet | XXXX | 1599 * --------------------------------------------------------- 1600 * <---------------- data_len ---------------> 1601 * 1602 * The rx_offset is fixed for all packets, the meta_len can vary 1603 * on a packet by packet basis. If rx_offset is set to zero 1604 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1605 * buffer and is immediately followed by the packet (no [XX]). 1606 */ 1607 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1608 data_len = le16_to_cpu(rxd->rxd.data_len); 1609 pkt_len = data_len - meta_len; 1610 1611 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1612 data_off = NFP_NET_RX_BUF_HEADROOM + meta_len; 1613 else 1614 data_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_offset; 1615 data_off += dp->rx_dma_off; 1616 1617 /* Stats update */ 1618 u64_stats_update_begin(&r_vec->rx_sync); 1619 r_vec->rx_pkts++; 1620 r_vec->rx_bytes += pkt_len; 1621 u64_stats_update_end(&r_vec->rx_sync); 1622 1623 /* Pointer to start of metadata */ 1624 meta = rxbuf->frag + data_off - meta_len; 1625 1626 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1627 (dp->rx_offset && meta_len > dp->rx_offset))) { 1628 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1629 meta_len); 1630 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1631 continue; 1632 } 1633 1634 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1635 dp->bpf_offload_xdp)) { 1636 unsigned int dma_off; 1637 void *hard_start; 1638 int act; 1639 1640 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1641 dma_off = data_off - NFP_NET_RX_BUF_HEADROOM; 1642 dma_sync_single_for_cpu(dp->dev, rxbuf->dma_addr, 1643 dma_off + pkt_len, 1644 DMA_BIDIRECTIONAL); 1645 1646 /* Move prepend out of the way */ 1647 if (xdp_prog->xdp_adjust_head) { 1648 memcpy(meta_prepend, meta, meta_len); 1649 meta = meta_prepend; 1650 } 1651 1652 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start, 1653 &data_off, &pkt_len); 1654 switch (act) { 1655 case XDP_PASS: 1656 break; 1657 case XDP_TX: 1658 dma_off = data_off - NFP_NET_RX_BUF_HEADROOM; 1659 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1660 tx_ring, rxbuf, 1661 dma_off, 1662 pkt_len))) 1663 trace_xdp_exception(dp->netdev, 1664 xdp_prog, act); 1665 continue; 1666 default: 1667 bpf_warn_invalid_xdp_action(act); 1668 case XDP_ABORTED: 1669 trace_xdp_exception(dp->netdev, xdp_prog, act); 1670 case XDP_DROP: 1671 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1672 rxbuf->dma_addr); 1673 continue; 1674 } 1675 } 1676 1677 skb = build_skb(rxbuf->frag, true_bufsz); 1678 if (unlikely(!skb)) { 1679 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1680 continue; 1681 } 1682 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1683 if (unlikely(!new_frag)) { 1684 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1685 continue; 1686 } 1687 1688 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1689 1690 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1691 1692 skb_reserve(skb, data_off); 1693 skb_put(skb, pkt_len); 1694 1695 if (!dp->chained_metadata_format) { 1696 nfp_net_set_hash_desc(dp->netdev, skb, meta, rxd); 1697 } else if (meta_len) { 1698 void *end; 1699 1700 end = nfp_net_parse_meta(dp->netdev, skb, meta, 1701 meta_len); 1702 if (unlikely(end != meta + meta_len)) { 1703 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1704 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1705 continue; 1706 } 1707 } 1708 1709 skb_record_rx_queue(skb, rx_ring->idx); 1710 skb->protocol = eth_type_trans(skb, dp->netdev); 1711 1712 nfp_net_rx_csum(dp, r_vec, rxd, skb); 1713 1714 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1715 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1716 le16_to_cpu(rxd->rxd.vlan)); 1717 1718 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1719 } 1720 1721 if (xdp_prog && tx_ring->wr_ptr_add) 1722 nfp_net_tx_xmit_more_flush(tx_ring); 1723 rcu_read_unlock(); 1724 1725 return pkts_polled; 1726 } 1727 1728 /** 1729 * nfp_net_poll() - napi poll function 1730 * @napi: NAPI structure 1731 * @budget: NAPI budget 1732 * 1733 * Return: number of packets polled. 1734 */ 1735 static int nfp_net_poll(struct napi_struct *napi, int budget) 1736 { 1737 struct nfp_net_r_vector *r_vec = 1738 container_of(napi, struct nfp_net_r_vector, napi); 1739 unsigned int pkts_polled = 0; 1740 1741 if (r_vec->tx_ring) 1742 nfp_net_tx_complete(r_vec->tx_ring); 1743 if (r_vec->rx_ring) { 1744 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1745 if (r_vec->xdp_ring) 1746 nfp_net_xdp_complete(r_vec->xdp_ring); 1747 } 1748 1749 if (pkts_polled < budget) 1750 if (napi_complete_done(napi, pkts_polled)) 1751 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1752 1753 return pkts_polled; 1754 } 1755 1756 /* Setup and Configuration 1757 */ 1758 1759 /** 1760 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 1761 * @tx_ring: TX ring to free 1762 */ 1763 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 1764 { 1765 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1766 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1767 1768 kfree(tx_ring->txbufs); 1769 1770 if (tx_ring->txds) 1771 dma_free_coherent(dp->dev, tx_ring->size, 1772 tx_ring->txds, tx_ring->dma); 1773 1774 tx_ring->cnt = 0; 1775 tx_ring->txbufs = NULL; 1776 tx_ring->txds = NULL; 1777 tx_ring->dma = 0; 1778 tx_ring->size = 0; 1779 } 1780 1781 /** 1782 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 1783 * @dp: NFP Net data path struct 1784 * @tx_ring: TX Ring structure to allocate 1785 * @is_xdp: True if ring will be used for XDP 1786 * 1787 * Return: 0 on success, negative errno otherwise. 1788 */ 1789 static int 1790 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring, 1791 bool is_xdp) 1792 { 1793 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1794 int sz; 1795 1796 tx_ring->cnt = dp->txd_cnt; 1797 1798 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 1799 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 1800 &tx_ring->dma, GFP_KERNEL); 1801 if (!tx_ring->txds) 1802 goto err_alloc; 1803 1804 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 1805 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 1806 if (!tx_ring->txbufs) 1807 goto err_alloc; 1808 1809 if (!is_xdp) 1810 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 1811 tx_ring->idx); 1812 1813 return 0; 1814 1815 err_alloc: 1816 nfp_net_tx_ring_free(tx_ring); 1817 return -ENOMEM; 1818 } 1819 1820 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 1821 { 1822 unsigned int r; 1823 1824 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 1825 GFP_KERNEL); 1826 if (!dp->tx_rings) 1827 return -ENOMEM; 1828 1829 for (r = 0; r < dp->num_tx_rings; r++) { 1830 int bias = 0; 1831 1832 if (r >= dp->num_stack_tx_rings) 1833 bias = dp->num_stack_tx_rings; 1834 1835 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 1836 r); 1837 1838 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r], bias)) 1839 goto err_free_prev; 1840 } 1841 1842 return 0; 1843 1844 err_free_prev: 1845 while (r--) 1846 nfp_net_tx_ring_free(&dp->tx_rings[r]); 1847 kfree(dp->tx_rings); 1848 return -ENOMEM; 1849 } 1850 1851 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 1852 { 1853 unsigned int r; 1854 1855 for (r = 0; r < dp->num_tx_rings; r++) 1856 nfp_net_tx_ring_free(&dp->tx_rings[r]); 1857 1858 kfree(dp->tx_rings); 1859 } 1860 1861 /** 1862 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 1863 * @rx_ring: RX ring to free 1864 */ 1865 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 1866 { 1867 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1868 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1869 1870 kfree(rx_ring->rxbufs); 1871 1872 if (rx_ring->rxds) 1873 dma_free_coherent(dp->dev, rx_ring->size, 1874 rx_ring->rxds, rx_ring->dma); 1875 1876 rx_ring->cnt = 0; 1877 rx_ring->rxbufs = NULL; 1878 rx_ring->rxds = NULL; 1879 rx_ring->dma = 0; 1880 rx_ring->size = 0; 1881 } 1882 1883 /** 1884 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 1885 * @dp: NFP Net data path struct 1886 * @rx_ring: RX ring to allocate 1887 * 1888 * Return: 0 on success, negative errno otherwise. 1889 */ 1890 static int 1891 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 1892 { 1893 int sz; 1894 1895 rx_ring->cnt = dp->rxd_cnt; 1896 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 1897 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 1898 &rx_ring->dma, GFP_KERNEL); 1899 if (!rx_ring->rxds) 1900 goto err_alloc; 1901 1902 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 1903 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 1904 if (!rx_ring->rxbufs) 1905 goto err_alloc; 1906 1907 return 0; 1908 1909 err_alloc: 1910 nfp_net_rx_ring_free(rx_ring); 1911 return -ENOMEM; 1912 } 1913 1914 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 1915 { 1916 unsigned int r; 1917 1918 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 1919 GFP_KERNEL); 1920 if (!dp->rx_rings) 1921 return -ENOMEM; 1922 1923 for (r = 0; r < dp->num_rx_rings; r++) { 1924 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 1925 1926 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 1927 goto err_free_prev; 1928 1929 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 1930 goto err_free_ring; 1931 } 1932 1933 return 0; 1934 1935 err_free_prev: 1936 while (r--) { 1937 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 1938 err_free_ring: 1939 nfp_net_rx_ring_free(&dp->rx_rings[r]); 1940 } 1941 kfree(dp->rx_rings); 1942 return -ENOMEM; 1943 } 1944 1945 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 1946 { 1947 unsigned int r; 1948 1949 for (r = 0; r < dp->num_rx_rings; r++) { 1950 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 1951 nfp_net_rx_ring_free(&dp->rx_rings[r]); 1952 } 1953 1954 kfree(dp->rx_rings); 1955 } 1956 1957 static void 1958 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 1959 struct nfp_net_r_vector *r_vec, int idx) 1960 { 1961 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 1962 r_vec->tx_ring = 1963 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 1964 1965 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 1966 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 1967 } 1968 1969 static int 1970 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1971 int idx) 1972 { 1973 int err; 1974 1975 /* Setup NAPI */ 1976 netif_napi_add(nn->dp.netdev, &r_vec->napi, 1977 nfp_net_poll, NAPI_POLL_WEIGHT); 1978 1979 snprintf(r_vec->name, sizeof(r_vec->name), 1980 "%s-rxtx-%d", nn->dp.netdev->name, idx); 1981 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 1982 r_vec); 1983 if (err) { 1984 netif_napi_del(&r_vec->napi); 1985 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 1986 return err; 1987 } 1988 disable_irq(r_vec->irq_vector); 1989 1990 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 1991 1992 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 1993 r_vec->irq_entry); 1994 1995 return 0; 1996 } 1997 1998 static void 1999 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2000 { 2001 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2002 netif_napi_del(&r_vec->napi); 2003 free_irq(r_vec->irq_vector, r_vec); 2004 } 2005 2006 /** 2007 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2008 * @nn: NFP Net device to reconfigure 2009 */ 2010 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2011 { 2012 int i; 2013 2014 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2015 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2016 get_unaligned_le32(nn->rss_itbl + i)); 2017 } 2018 2019 /** 2020 * nfp_net_rss_write_key() - Write RSS hash key to device 2021 * @nn: NFP Net device to reconfigure 2022 */ 2023 void nfp_net_rss_write_key(struct nfp_net *nn) 2024 { 2025 int i; 2026 2027 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2028 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2029 get_unaligned_le32(nn->rss_key + i)); 2030 } 2031 2032 /** 2033 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2034 * @nn: NFP Net device to reconfigure 2035 */ 2036 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2037 { 2038 u8 i; 2039 u32 factor; 2040 u32 value; 2041 2042 /* Compute factor used to convert coalesce '_usecs' parameters to 2043 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2044 * count. 2045 */ 2046 factor = nn->me_freq_mhz / 16; 2047 2048 /* copy RX interrupt coalesce parameters */ 2049 value = (nn->rx_coalesce_max_frames << 16) | 2050 (factor * nn->rx_coalesce_usecs); 2051 for (i = 0; i < nn->dp.num_rx_rings; i++) 2052 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2053 2054 /* copy TX interrupt coalesce parameters */ 2055 value = (nn->tx_coalesce_max_frames << 16) | 2056 (factor * nn->tx_coalesce_usecs); 2057 for (i = 0; i < nn->dp.num_tx_rings; i++) 2058 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2059 } 2060 2061 /** 2062 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2063 * @nn: NFP Net device to reconfigure 2064 * 2065 * Writes the MAC address from the netdev to the device control BAR. Does not 2066 * perform the required reconfig. We do a bit of byte swapping dance because 2067 * firmware is LE. 2068 */ 2069 static void nfp_net_write_mac_addr(struct nfp_net *nn) 2070 { 2071 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, 2072 get_unaligned_be32(nn->dp.netdev->dev_addr)); 2073 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, 2074 get_unaligned_be16(nn->dp.netdev->dev_addr + 4)); 2075 } 2076 2077 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2078 { 2079 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2080 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2081 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2082 2083 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2084 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2085 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2086 } 2087 2088 /** 2089 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2090 * @nn: NFP Net device to reconfigure 2091 */ 2092 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2093 { 2094 u32 new_ctrl, update; 2095 unsigned int r; 2096 int err; 2097 2098 new_ctrl = nn->dp.ctrl; 2099 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2100 update = NFP_NET_CFG_UPDATE_GEN; 2101 update |= NFP_NET_CFG_UPDATE_MSIX; 2102 update |= NFP_NET_CFG_UPDATE_RING; 2103 2104 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2105 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2106 2107 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2108 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2109 2110 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2111 err = nfp_net_reconfig(nn, update); 2112 if (err) 2113 nn_err(nn, "Could not disable device: %d\n", err); 2114 2115 for (r = 0; r < nn->dp.num_rx_rings; r++) 2116 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2117 for (r = 0; r < nn->dp.num_tx_rings; r++) 2118 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2119 for (r = 0; r < nn->dp.num_r_vecs; r++) 2120 nfp_net_vec_clear_ring_data(nn, r); 2121 2122 nn->dp.ctrl = new_ctrl; 2123 } 2124 2125 static void 2126 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2127 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2128 { 2129 /* Write the DMA address, size and MSI-X info to the device */ 2130 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2131 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2132 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2133 } 2134 2135 static void 2136 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2137 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2138 { 2139 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2140 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2141 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2142 } 2143 2144 /** 2145 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2146 * @nn: NFP Net device to reconfigure 2147 */ 2148 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2149 { 2150 u32 new_ctrl, update = 0; 2151 unsigned int r; 2152 int err; 2153 2154 new_ctrl = nn->dp.ctrl; 2155 2156 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 2157 nfp_net_rss_write_key(nn); 2158 nfp_net_rss_write_itbl(nn); 2159 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2160 update |= NFP_NET_CFG_UPDATE_RSS; 2161 } 2162 2163 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2164 nfp_net_coalesce_write_cfg(nn); 2165 2166 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2167 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2168 } 2169 2170 for (r = 0; r < nn->dp.num_tx_rings; r++) 2171 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2172 for (r = 0; r < nn->dp.num_rx_rings; r++) 2173 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2174 2175 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2176 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2177 2178 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2179 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2180 2181 nfp_net_write_mac_addr(nn); 2182 2183 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu); 2184 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, 2185 nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA); 2186 2187 /* Enable device */ 2188 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2189 update |= NFP_NET_CFG_UPDATE_GEN; 2190 update |= NFP_NET_CFG_UPDATE_MSIX; 2191 update |= NFP_NET_CFG_UPDATE_RING; 2192 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2193 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2194 2195 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2196 err = nfp_net_reconfig(nn, update); 2197 if (err) { 2198 nfp_net_clear_config_and_disable(nn); 2199 return err; 2200 } 2201 2202 nn->dp.ctrl = new_ctrl; 2203 2204 for (r = 0; r < nn->dp.num_rx_rings; r++) 2205 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2206 2207 /* Since reconfiguration requests while NFP is down are ignored we 2208 * have to wipe the entire VXLAN configuration and reinitialize it. 2209 */ 2210 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2211 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2212 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2213 udp_tunnel_get_rx_info(nn->dp.netdev); 2214 } 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * nfp_net_open_stack() - Start the device from stack's perspective 2221 * @nn: NFP Net device to reconfigure 2222 */ 2223 static void nfp_net_open_stack(struct nfp_net *nn) 2224 { 2225 unsigned int r; 2226 2227 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2228 napi_enable(&nn->r_vecs[r].napi); 2229 enable_irq(nn->r_vecs[r].irq_vector); 2230 } 2231 2232 netif_tx_wake_all_queues(nn->dp.netdev); 2233 2234 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2235 nfp_net_read_link_status(nn); 2236 } 2237 2238 static int nfp_net_netdev_open(struct net_device *netdev) 2239 { 2240 struct nfp_net *nn = netdev_priv(netdev); 2241 int err, r; 2242 2243 /* Step 1: Allocate resources for rings and the like 2244 * - Request interrupts 2245 * - Allocate RX and TX ring resources 2246 * - Setup initial RSS table 2247 */ 2248 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2249 nn->exn_name, sizeof(nn->exn_name), 2250 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2251 if (err) 2252 return err; 2253 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2254 nn->lsc_name, sizeof(nn->lsc_name), 2255 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2256 if (err) 2257 goto err_free_exn; 2258 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2259 2260 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2261 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2262 if (err) 2263 goto err_cleanup_vec_p; 2264 } 2265 2266 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2267 if (err) 2268 goto err_cleanup_vec; 2269 2270 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2271 if (err) 2272 goto err_free_rx_rings; 2273 2274 for (r = 0; r < nn->max_r_vecs; r++) 2275 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2276 2277 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2278 if (err) 2279 goto err_free_rings; 2280 2281 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2282 if (err) 2283 goto err_free_rings; 2284 2285 /* Step 2: Configure the NFP 2286 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2287 * - Write MAC address (in case it changed) 2288 * - Set the MTU 2289 * - Set the Freelist buffer size 2290 * - Enable the FW 2291 */ 2292 err = nfp_net_set_config_and_enable(nn); 2293 if (err) 2294 goto err_free_rings; 2295 2296 /* Step 3: Enable for kernel 2297 * - put some freelist descriptors on each RX ring 2298 * - enable NAPI on each ring 2299 * - enable all TX queues 2300 * - set link state 2301 */ 2302 nfp_net_open_stack(nn); 2303 2304 return 0; 2305 2306 err_free_rings: 2307 nfp_net_tx_rings_free(&nn->dp); 2308 err_free_rx_rings: 2309 nfp_net_rx_rings_free(&nn->dp); 2310 err_cleanup_vec: 2311 r = nn->dp.num_r_vecs; 2312 err_cleanup_vec_p: 2313 while (r--) 2314 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2315 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2316 err_free_exn: 2317 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2318 return err; 2319 } 2320 2321 /** 2322 * nfp_net_close_stack() - Quiescent the stack (part of close) 2323 * @nn: NFP Net device to reconfigure 2324 */ 2325 static void nfp_net_close_stack(struct nfp_net *nn) 2326 { 2327 unsigned int r; 2328 2329 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2330 netif_carrier_off(nn->dp.netdev); 2331 nn->link_up = false; 2332 2333 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2334 disable_irq(nn->r_vecs[r].irq_vector); 2335 napi_disable(&nn->r_vecs[r].napi); 2336 } 2337 2338 netif_tx_disable(nn->dp.netdev); 2339 } 2340 2341 /** 2342 * nfp_net_close_free_all() - Free all runtime resources 2343 * @nn: NFP Net device to reconfigure 2344 */ 2345 static void nfp_net_close_free_all(struct nfp_net *nn) 2346 { 2347 unsigned int r; 2348 2349 for (r = 0; r < nn->dp.num_rx_rings; r++) { 2350 nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]); 2351 nfp_net_rx_ring_free(&nn->dp.rx_rings[r]); 2352 } 2353 for (r = 0; r < nn->dp.num_tx_rings; r++) 2354 nfp_net_tx_ring_free(&nn->dp.tx_rings[r]); 2355 for (r = 0; r < nn->dp.num_r_vecs; r++) 2356 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2357 2358 kfree(nn->dp.rx_rings); 2359 kfree(nn->dp.tx_rings); 2360 2361 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2362 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2363 } 2364 2365 /** 2366 * nfp_net_netdev_close() - Called when the device is downed 2367 * @netdev: netdev structure 2368 */ 2369 static int nfp_net_netdev_close(struct net_device *netdev) 2370 { 2371 struct nfp_net *nn = netdev_priv(netdev); 2372 2373 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2374 */ 2375 nfp_net_close_stack(nn); 2376 2377 /* Step 2: Tell NFP 2378 */ 2379 nfp_net_clear_config_and_disable(nn); 2380 2381 /* Step 3: Free resources 2382 */ 2383 nfp_net_close_free_all(nn); 2384 2385 nn_dbg(nn, "%s down", netdev->name); 2386 return 0; 2387 } 2388 2389 static void nfp_net_set_rx_mode(struct net_device *netdev) 2390 { 2391 struct nfp_net *nn = netdev_priv(netdev); 2392 u32 new_ctrl; 2393 2394 new_ctrl = nn->dp.ctrl; 2395 2396 if (netdev->flags & IFF_PROMISC) { 2397 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2398 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2399 else 2400 nn_warn(nn, "FW does not support promiscuous mode\n"); 2401 } else { 2402 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2403 } 2404 2405 if (new_ctrl == nn->dp.ctrl) 2406 return; 2407 2408 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2409 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2410 2411 nn->dp.ctrl = new_ctrl; 2412 } 2413 2414 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2415 { 2416 int i; 2417 2418 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2419 nn->rss_itbl[i] = 2420 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2421 } 2422 2423 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2424 { 2425 struct nfp_net_dp new_dp = *dp; 2426 2427 *dp = nn->dp; 2428 nn->dp = new_dp; 2429 2430 nn->dp.netdev->mtu = new_dp.mtu; 2431 2432 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2433 nfp_net_rss_init_itbl(nn); 2434 } 2435 2436 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2437 { 2438 unsigned int r; 2439 int err; 2440 2441 nfp_net_dp_swap(nn, dp); 2442 2443 for (r = 0; r < nn->max_r_vecs; r++) 2444 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2445 2446 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2447 if (err) 2448 return err; 2449 2450 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2451 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2452 nn->dp.num_stack_tx_rings); 2453 if (err) 2454 return err; 2455 } 2456 2457 return nfp_net_set_config_and_enable(nn); 2458 } 2459 2460 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2461 { 2462 struct nfp_net_dp *new; 2463 2464 new = kmalloc(sizeof(*new), GFP_KERNEL); 2465 if (!new) 2466 return NULL; 2467 2468 *new = nn->dp; 2469 2470 /* Clear things which need to be recomputed */ 2471 new->fl_bufsz = 0; 2472 new->tx_rings = NULL; 2473 new->rx_rings = NULL; 2474 new->num_r_vecs = 0; 2475 new->num_stack_tx_rings = 0; 2476 2477 return new; 2478 } 2479 2480 static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp) 2481 { 2482 /* XDP-enabled tests */ 2483 if (!dp->xdp_prog) 2484 return 0; 2485 if (dp->fl_bufsz > PAGE_SIZE) { 2486 nn_warn(nn, "MTU too large w/ XDP enabled\n"); 2487 return -EINVAL; 2488 } 2489 if (dp->num_tx_rings > nn->max_tx_rings) { 2490 nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n"); 2491 return -EINVAL; 2492 } 2493 2494 return 0; 2495 } 2496 2497 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp) 2498 { 2499 int r, err; 2500 2501 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2502 2503 dp->num_stack_tx_rings = dp->num_tx_rings; 2504 if (dp->xdp_prog) 2505 dp->num_stack_tx_rings -= dp->num_rx_rings; 2506 2507 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2508 2509 err = nfp_net_check_config(nn, dp); 2510 if (err) 2511 goto exit_free_dp; 2512 2513 if (!netif_running(dp->netdev)) { 2514 nfp_net_dp_swap(nn, dp); 2515 err = 0; 2516 goto exit_free_dp; 2517 } 2518 2519 /* Prepare new rings */ 2520 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2521 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2522 if (err) { 2523 dp->num_r_vecs = r; 2524 goto err_cleanup_vecs; 2525 } 2526 } 2527 2528 err = nfp_net_rx_rings_prepare(nn, dp); 2529 if (err) 2530 goto err_cleanup_vecs; 2531 2532 err = nfp_net_tx_rings_prepare(nn, dp); 2533 if (err) 2534 goto err_free_rx; 2535 2536 /* Stop device, swap in new rings, try to start the firmware */ 2537 nfp_net_close_stack(nn); 2538 nfp_net_clear_config_and_disable(nn); 2539 2540 err = nfp_net_dp_swap_enable(nn, dp); 2541 if (err) { 2542 int err2; 2543 2544 nfp_net_clear_config_and_disable(nn); 2545 2546 /* Try with old configuration and old rings */ 2547 err2 = nfp_net_dp_swap_enable(nn, dp); 2548 if (err2) 2549 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2550 err, err2); 2551 } 2552 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 2553 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2554 2555 nfp_net_rx_rings_free(dp); 2556 nfp_net_tx_rings_free(dp); 2557 2558 nfp_net_open_stack(nn); 2559 exit_free_dp: 2560 kfree(dp); 2561 2562 return err; 2563 2564 err_free_rx: 2565 nfp_net_rx_rings_free(dp); 2566 err_cleanup_vecs: 2567 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 2568 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2569 kfree(dp); 2570 return err; 2571 } 2572 2573 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 2574 { 2575 struct nfp_net *nn = netdev_priv(netdev); 2576 struct nfp_net_dp *dp; 2577 2578 dp = nfp_net_clone_dp(nn); 2579 if (!dp) 2580 return -ENOMEM; 2581 2582 dp->mtu = new_mtu; 2583 2584 return nfp_net_ring_reconfig(nn, dp); 2585 } 2586 2587 static void nfp_net_stat64(struct net_device *netdev, 2588 struct rtnl_link_stats64 *stats) 2589 { 2590 struct nfp_net *nn = netdev_priv(netdev); 2591 int r; 2592 2593 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2594 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 2595 u64 data[3]; 2596 unsigned int start; 2597 2598 do { 2599 start = u64_stats_fetch_begin(&r_vec->rx_sync); 2600 data[0] = r_vec->rx_pkts; 2601 data[1] = r_vec->rx_bytes; 2602 data[2] = r_vec->rx_drops; 2603 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 2604 stats->rx_packets += data[0]; 2605 stats->rx_bytes += data[1]; 2606 stats->rx_dropped += data[2]; 2607 2608 do { 2609 start = u64_stats_fetch_begin(&r_vec->tx_sync); 2610 data[0] = r_vec->tx_pkts; 2611 data[1] = r_vec->tx_bytes; 2612 data[2] = r_vec->tx_errors; 2613 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 2614 stats->tx_packets += data[0]; 2615 stats->tx_bytes += data[1]; 2616 stats->tx_errors += data[2]; 2617 } 2618 } 2619 2620 static bool nfp_net_ebpf_capable(struct nfp_net *nn) 2621 { 2622 if (nn->cap & NFP_NET_CFG_CTRL_BPF && 2623 nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI) 2624 return true; 2625 return false; 2626 } 2627 2628 static int 2629 nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto, 2630 struct tc_to_netdev *tc) 2631 { 2632 struct nfp_net *nn = netdev_priv(netdev); 2633 2634 if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS)) 2635 return -ENOTSUPP; 2636 if (proto != htons(ETH_P_ALL)) 2637 return -ENOTSUPP; 2638 2639 if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) { 2640 if (!nn->dp.bpf_offload_xdp) 2641 return nfp_net_bpf_offload(nn, tc->cls_bpf); 2642 else 2643 return -EBUSY; 2644 } 2645 2646 return -EINVAL; 2647 } 2648 2649 static int nfp_net_set_features(struct net_device *netdev, 2650 netdev_features_t features) 2651 { 2652 netdev_features_t changed = netdev->features ^ features; 2653 struct nfp_net *nn = netdev_priv(netdev); 2654 u32 new_ctrl; 2655 int err; 2656 2657 /* Assume this is not called with features we have not advertised */ 2658 2659 new_ctrl = nn->dp.ctrl; 2660 2661 if (changed & NETIF_F_RXCSUM) { 2662 if (features & NETIF_F_RXCSUM) 2663 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2664 else 2665 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; 2666 } 2667 2668 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2669 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 2670 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2671 else 2672 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 2673 } 2674 2675 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 2676 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 2677 new_ctrl |= NFP_NET_CFG_CTRL_LSO; 2678 else 2679 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; 2680 } 2681 2682 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 2683 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2684 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2685 else 2686 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 2687 } 2688 2689 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 2690 if (features & NETIF_F_HW_VLAN_CTAG_TX) 2691 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2692 else 2693 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 2694 } 2695 2696 if (changed & NETIF_F_SG) { 2697 if (features & NETIF_F_SG) 2698 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 2699 else 2700 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 2701 } 2702 2703 if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) { 2704 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 2705 return -EBUSY; 2706 } 2707 2708 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 2709 netdev->features, features, changed); 2710 2711 if (new_ctrl == nn->dp.ctrl) 2712 return 0; 2713 2714 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 2715 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2716 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2717 if (err) 2718 return err; 2719 2720 nn->dp.ctrl = new_ctrl; 2721 2722 return 0; 2723 } 2724 2725 static netdev_features_t 2726 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 2727 netdev_features_t features) 2728 { 2729 u8 l4_hdr; 2730 2731 /* We can't do TSO over double tagged packets (802.1AD) */ 2732 features &= vlan_features_check(skb, features); 2733 2734 if (!skb->encapsulation) 2735 return features; 2736 2737 /* Ensure that inner L4 header offset fits into TX descriptor field */ 2738 if (skb_is_gso(skb)) { 2739 u32 hdrlen; 2740 2741 hdrlen = skb_inner_transport_header(skb) - skb->data + 2742 inner_tcp_hdrlen(skb); 2743 2744 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 2745 features &= ~NETIF_F_GSO_MASK; 2746 } 2747 2748 /* VXLAN/GRE check */ 2749 switch (vlan_get_protocol(skb)) { 2750 case htons(ETH_P_IP): 2751 l4_hdr = ip_hdr(skb)->protocol; 2752 break; 2753 case htons(ETH_P_IPV6): 2754 l4_hdr = ipv6_hdr(skb)->nexthdr; 2755 break; 2756 default: 2757 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2758 } 2759 2760 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 2761 skb->inner_protocol != htons(ETH_P_TEB) || 2762 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 2763 (l4_hdr == IPPROTO_UDP && 2764 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 2765 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 2766 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2767 2768 return features; 2769 } 2770 2771 static int 2772 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 2773 { 2774 struct nfp_net *nn = netdev_priv(netdev); 2775 int err; 2776 2777 if (!nn->eth_port) 2778 return -EOPNOTSUPP; 2779 2780 if (!nn->eth_port->is_split) 2781 err = snprintf(name, len, "p%d", nn->eth_port->label_port); 2782 else 2783 err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port, 2784 nn->eth_port->label_subport); 2785 if (err >= len) 2786 return -EINVAL; 2787 2788 return 0; 2789 } 2790 2791 /** 2792 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 2793 * @nn: NFP Net device to reconfigure 2794 * @idx: Index into the port table where new port should be written 2795 * @port: UDP port to configure (pass zero to remove VXLAN port) 2796 */ 2797 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 2798 { 2799 int i; 2800 2801 nn->vxlan_ports[idx] = port; 2802 2803 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 2804 return; 2805 2806 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2807 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 2808 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 2809 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 2810 be16_to_cpu(nn->vxlan_ports[i])); 2811 2812 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 2813 } 2814 2815 /** 2816 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 2817 * @nn: NFP Network structure 2818 * @port: UDP port to look for 2819 * 2820 * Return: if the port is already in the table -- it's position; 2821 * if the port is not in the table -- free position to use; 2822 * if the table is full -- -ENOSPC. 2823 */ 2824 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 2825 { 2826 int i, free_idx = -ENOSPC; 2827 2828 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 2829 if (nn->vxlan_ports[i] == port) 2830 return i; 2831 if (!nn->vxlan_usecnt[i]) 2832 free_idx = i; 2833 } 2834 2835 return free_idx; 2836 } 2837 2838 static void nfp_net_add_vxlan_port(struct net_device *netdev, 2839 struct udp_tunnel_info *ti) 2840 { 2841 struct nfp_net *nn = netdev_priv(netdev); 2842 int idx; 2843 2844 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2845 return; 2846 2847 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2848 if (idx == -ENOSPC) 2849 return; 2850 2851 if (!nn->vxlan_usecnt[idx]++) 2852 nfp_net_set_vxlan_port(nn, idx, ti->port); 2853 } 2854 2855 static void nfp_net_del_vxlan_port(struct net_device *netdev, 2856 struct udp_tunnel_info *ti) 2857 { 2858 struct nfp_net *nn = netdev_priv(netdev); 2859 int idx; 2860 2861 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2862 return; 2863 2864 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2865 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 2866 return; 2867 2868 if (!--nn->vxlan_usecnt[idx]) 2869 nfp_net_set_vxlan_port(nn, idx, 0); 2870 } 2871 2872 static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog) 2873 { 2874 struct tc_cls_bpf_offload cmd = { 2875 .prog = prog, 2876 }; 2877 int ret; 2878 2879 if (!nfp_net_ebpf_capable(nn)) 2880 return -EINVAL; 2881 2882 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) { 2883 if (!nn->dp.bpf_offload_xdp) 2884 return prog ? -EBUSY : 0; 2885 cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY; 2886 } else { 2887 if (!prog) 2888 return 0; 2889 cmd.command = TC_CLSBPF_ADD; 2890 } 2891 2892 ret = nfp_net_bpf_offload(nn, &cmd); 2893 /* Stop offload if replace not possible */ 2894 if (ret && cmd.command == TC_CLSBPF_REPLACE) 2895 nfp_net_xdp_offload(nn, NULL); 2896 nn->dp.bpf_offload_xdp = prog && !ret; 2897 return ret; 2898 } 2899 2900 static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog) 2901 { 2902 struct bpf_prog *old_prog = nn->dp.xdp_prog; 2903 struct nfp_net_dp *dp; 2904 int err; 2905 2906 if (!prog && !nn->dp.xdp_prog) 2907 return 0; 2908 if (prog && nn->dp.xdp_prog) { 2909 prog = xchg(&nn->dp.xdp_prog, prog); 2910 bpf_prog_put(prog); 2911 nfp_net_xdp_offload(nn, nn->dp.xdp_prog); 2912 return 0; 2913 } 2914 2915 dp = nfp_net_clone_dp(nn); 2916 if (!dp) 2917 return -ENOMEM; 2918 2919 dp->xdp_prog = prog; 2920 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 2921 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2922 if (prog) 2923 dp->rx_dma_off = XDP_PACKET_HEADROOM - 2924 (nn->dp.rx_offset ?: NFP_NET_MAX_PREPEND); 2925 else 2926 dp->rx_dma_off = 0; 2927 2928 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 2929 err = nfp_net_ring_reconfig(nn, dp); 2930 if (err) 2931 return err; 2932 2933 if (old_prog) 2934 bpf_prog_put(old_prog); 2935 2936 nfp_net_xdp_offload(nn, nn->dp.xdp_prog); 2937 2938 return 0; 2939 } 2940 2941 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 2942 { 2943 struct nfp_net *nn = netdev_priv(netdev); 2944 2945 switch (xdp->command) { 2946 case XDP_SETUP_PROG: 2947 return nfp_net_xdp_setup(nn, xdp->prog); 2948 case XDP_QUERY_PROG: 2949 xdp->prog_attached = !!nn->dp.xdp_prog; 2950 return 0; 2951 default: 2952 return -EINVAL; 2953 } 2954 } 2955 2956 static const struct net_device_ops nfp_net_netdev_ops = { 2957 .ndo_open = nfp_net_netdev_open, 2958 .ndo_stop = nfp_net_netdev_close, 2959 .ndo_start_xmit = nfp_net_tx, 2960 .ndo_get_stats64 = nfp_net_stat64, 2961 .ndo_setup_tc = nfp_net_setup_tc, 2962 .ndo_tx_timeout = nfp_net_tx_timeout, 2963 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2964 .ndo_change_mtu = nfp_net_change_mtu, 2965 .ndo_set_mac_address = eth_mac_addr, 2966 .ndo_set_features = nfp_net_set_features, 2967 .ndo_features_check = nfp_net_features_check, 2968 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2969 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 2970 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 2971 .ndo_xdp = nfp_net_xdp, 2972 }; 2973 2974 /** 2975 * nfp_net_info() - Print general info about the NIC 2976 * @nn: NFP Net device to reconfigure 2977 */ 2978 void nfp_net_info(struct nfp_net *nn) 2979 { 2980 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2981 nn->dp.is_vf ? "VF " : "", 2982 nn->dp.num_tx_rings, nn->max_tx_rings, 2983 nn->dp.num_rx_rings, nn->max_rx_rings); 2984 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2985 nn->fw_ver.resv, nn->fw_ver.class, 2986 nn->fw_ver.major, nn->fw_ver.minor, 2987 nn->max_mtu); 2988 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2989 nn->cap, 2990 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2991 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2992 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2993 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2994 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2995 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2996 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2997 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2998 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2999 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", 3000 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", 3001 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3002 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3003 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3004 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3005 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3006 nfp_net_ebpf_capable(nn) ? "BPF " : ""); 3007 } 3008 3009 /** 3010 * nfp_net_netdev_alloc() - Allocate netdev and related structure 3011 * @pdev: PCI device 3012 * @max_tx_rings: Maximum number of TX rings supported by device 3013 * @max_rx_rings: Maximum number of RX rings supported by device 3014 * 3015 * This function allocates a netdev device and fills in the initial 3016 * part of the @struct nfp_net structure. 3017 * 3018 * Return: NFP Net device structure, or ERR_PTR on error. 3019 */ 3020 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, 3021 unsigned int max_tx_rings, 3022 unsigned int max_rx_rings) 3023 { 3024 struct net_device *netdev; 3025 struct nfp_net *nn; 3026 3027 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3028 max_tx_rings, max_rx_rings); 3029 if (!netdev) 3030 return ERR_PTR(-ENOMEM); 3031 3032 SET_NETDEV_DEV(netdev, &pdev->dev); 3033 nn = netdev_priv(netdev); 3034 3035 nn->dp.netdev = netdev; 3036 nn->dp.dev = &pdev->dev; 3037 nn->pdev = pdev; 3038 3039 nn->max_tx_rings = max_tx_rings; 3040 nn->max_rx_rings = max_rx_rings; 3041 3042 nn->dp.num_tx_rings = min_t(unsigned int, 3043 max_tx_rings, num_online_cpus()); 3044 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3045 netif_get_num_default_rss_queues()); 3046 3047 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3048 nn->dp.num_r_vecs = min_t(unsigned int, 3049 nn->dp.num_r_vecs, num_online_cpus()); 3050 3051 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3052 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3053 3054 spin_lock_init(&nn->reconfig_lock); 3055 spin_lock_init(&nn->rx_filter_lock); 3056 spin_lock_init(&nn->link_status_lock); 3057 3058 setup_timer(&nn->reconfig_timer, 3059 nfp_net_reconfig_timer, (unsigned long)nn); 3060 setup_timer(&nn->rx_filter_stats_timer, 3061 nfp_net_filter_stats_timer, (unsigned long)nn); 3062 3063 return nn; 3064 } 3065 3066 /** 3067 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did 3068 * @nn: NFP Net device to reconfigure 3069 */ 3070 void nfp_net_netdev_free(struct nfp_net *nn) 3071 { 3072 free_netdev(nn->dp.netdev); 3073 } 3074 3075 /** 3076 * nfp_net_rss_key_sz() - Get current size of the RSS key 3077 * @nn: NFP Net device instance 3078 * 3079 * Return: size of the RSS key for currently selected hash function. 3080 */ 3081 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3082 { 3083 switch (nn->rss_hfunc) { 3084 case ETH_RSS_HASH_TOP: 3085 return NFP_NET_CFG_RSS_KEY_SZ; 3086 case ETH_RSS_HASH_XOR: 3087 return 0; 3088 case ETH_RSS_HASH_CRC32: 3089 return 4; 3090 } 3091 3092 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3093 return 0; 3094 } 3095 3096 /** 3097 * nfp_net_rss_init() - Set the initial RSS parameters 3098 * @nn: NFP Net device to reconfigure 3099 */ 3100 static void nfp_net_rss_init(struct nfp_net *nn) 3101 { 3102 unsigned long func_bit, rss_cap_hfunc; 3103 u32 reg; 3104 3105 /* Read the RSS function capability and select first supported func */ 3106 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3107 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3108 if (!rss_cap_hfunc) 3109 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3110 NFP_NET_CFG_RSS_TOEPLITZ); 3111 3112 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3113 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3114 dev_warn(nn->dp.dev, 3115 "Bad RSS config, defaulting to Toeplitz hash\n"); 3116 func_bit = ETH_RSS_HASH_TOP_BIT; 3117 } 3118 nn->rss_hfunc = 1 << func_bit; 3119 3120 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3121 3122 nfp_net_rss_init_itbl(nn); 3123 3124 /* Enable IPv4/IPv6 TCP by default */ 3125 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3126 NFP_NET_CFG_RSS_IPV6_TCP | 3127 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3128 NFP_NET_CFG_RSS_MASK; 3129 } 3130 3131 /** 3132 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3133 * @nn: NFP Net device to reconfigure 3134 */ 3135 static void nfp_net_irqmod_init(struct nfp_net *nn) 3136 { 3137 nn->rx_coalesce_usecs = 50; 3138 nn->rx_coalesce_max_frames = 64; 3139 nn->tx_coalesce_usecs = 50; 3140 nn->tx_coalesce_max_frames = 64; 3141 } 3142 3143 /** 3144 * nfp_net_netdev_init() - Initialise/finalise the netdev structure 3145 * @netdev: netdev structure 3146 * 3147 * Return: 0 on success or negative errno on error. 3148 */ 3149 int nfp_net_netdev_init(struct net_device *netdev) 3150 { 3151 struct nfp_net *nn = netdev_priv(netdev); 3152 int err; 3153 3154 /* XDP calls for 256 byte packet headroom which wouldn't fit in a u8. 3155 * We, however, reuse the metadata prepend space for XDP buffers which 3156 * is at least 1 byte long and as long as XDP headroom doesn't increase 3157 * above 256 the *extra* XDP headroom will fit on 8 bits. 3158 */ 3159 BUILD_BUG_ON(XDP_PACKET_HEADROOM > 256); 3160 3161 nn->dp.chained_metadata_format = nn->fw_ver.major > 3; 3162 3163 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3164 3165 /* Get some of the read-only fields from the BAR */ 3166 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3167 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3168 3169 nfp_net_write_mac_addr(nn); 3170 3171 /* Determine RX packet/metadata boundary offset */ 3172 if (nn->fw_ver.major >= 2) { 3173 u32 reg; 3174 3175 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3176 if (reg > NFP_NET_MAX_PREPEND) { 3177 nn_err(nn, "Invalid rx offset: %d\n", reg); 3178 return -EINVAL; 3179 } 3180 nn->dp.rx_offset = reg; 3181 } else { 3182 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3183 } 3184 3185 /* Set default MTU and Freelist buffer size */ 3186 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3187 netdev->mtu = nn->max_mtu; 3188 else 3189 netdev->mtu = NFP_NET_DEFAULT_MTU; 3190 nn->dp.mtu = netdev->mtu; 3191 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3192 3193 /* Advertise/enable offloads based on capabilities 3194 * 3195 * Note: netdev->features show the currently enabled features 3196 * and netdev->hw_features advertises which features are 3197 * supported. By default we enable most features. 3198 */ 3199 netdev->hw_features = NETIF_F_HIGHDMA; 3200 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { 3201 netdev->hw_features |= NETIF_F_RXCSUM; 3202 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 3203 } 3204 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3205 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3206 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3207 } 3208 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3209 netdev->hw_features |= NETIF_F_SG; 3210 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3211 } 3212 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { 3213 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3214 nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO; 3215 } 3216 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 3217 netdev->hw_features |= NETIF_F_RXHASH; 3218 nfp_net_rss_init(nn); 3219 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS; 3220 } 3221 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3222 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3223 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3224 netdev->hw_features |= NETIF_F_GSO_GRE | 3225 NETIF_F_GSO_UDP_TUNNEL; 3226 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3227 3228 netdev->hw_enc_features = netdev->hw_features; 3229 } 3230 3231 netdev->vlan_features = netdev->hw_features; 3232 3233 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3234 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3235 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3236 } 3237 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3238 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3239 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3240 } 3241 3242 netdev->features = netdev->hw_features; 3243 3244 if (nfp_net_ebpf_capable(nn)) 3245 netdev->hw_features |= NETIF_F_HW_TC; 3246 3247 /* Advertise but disable TSO by default. */ 3248 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3249 3250 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3251 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3252 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3253 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3254 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3255 3256 /* Allow IRQ moderation, if supported */ 3257 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3258 nfp_net_irqmod_init(nn); 3259 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3260 } 3261 3262 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3263 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3264 3265 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3266 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3267 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3268 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3269 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3270 NFP_NET_CFG_UPDATE_GEN); 3271 if (err) 3272 return err; 3273 3274 /* Finalise the netdev setup */ 3275 netdev->netdev_ops = &nfp_net_netdev_ops; 3276 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3277 3278 /* MTU range: 68 - hw-specific max */ 3279 netdev->min_mtu = ETH_MIN_MTU; 3280 netdev->max_mtu = nn->max_mtu; 3281 3282 netif_carrier_off(netdev); 3283 3284 nfp_net_set_ethtool_ops(netdev); 3285 nfp_net_vecs_init(netdev); 3286 3287 return register_netdev(netdev); 3288 } 3289 3290 /** 3291 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. 3292 * @netdev: netdev structure 3293 */ 3294 void nfp_net_netdev_clean(struct net_device *netdev) 3295 { 3296 struct nfp_net *nn = netdev_priv(netdev); 3297 3298 unregister_netdev(nn->dp.netdev); 3299 3300 if (nn->dp.xdp_prog) 3301 bpf_prog_put(nn->dp.xdp_prog); 3302 if (nn->dp.bpf_offload_xdp) 3303 nfp_net_xdp_offload(nn, NULL); 3304 } 3305