1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 #include <linux/vmalloc.h> 65 #include <linux/ktime.h> 66 67 #include <net/switchdev.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_app.h" 72 #include "nfp_net_ctrl.h" 73 #include "nfp_net.h" 74 #include "nfp_net_sriov.h" 75 #include "nfp_port.h" 76 77 /** 78 * nfp_net_get_fw_version() - Read and parse the FW version 79 * @fw_ver: Output fw_version structure to read to 80 * @ctrl_bar: Mapped address of the control BAR 81 */ 82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 83 void __iomem *ctrl_bar) 84 { 85 u32 reg; 86 87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 88 put_unaligned_le32(reg, fw_ver); 89 } 90 91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 92 { 93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 96 } 97 98 static void 99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 100 { 101 dma_sync_single_for_device(dp->dev, dma_addr, 102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 103 dp->rx_dma_dir); 104 } 105 106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 107 { 108 dma_unmap_single_attrs(dp->dev, dma_addr, 109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 111 } 112 113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 114 unsigned int len) 115 { 116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 117 len, dp->rx_dma_dir); 118 } 119 120 /* Firmware reconfig 121 * 122 * Firmware reconfig may take a while so we have two versions of it - 123 * synchronous and asynchronous (posted). All synchronous callers are holding 124 * RTNL so we don't have to worry about serializing them. 125 */ 126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 127 { 128 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 129 /* ensure update is written before pinging HW */ 130 nn_pci_flush(nn); 131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 132 } 133 134 /* Pass 0 as update to run posted reconfigs. */ 135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 136 { 137 update |= nn->reconfig_posted; 138 nn->reconfig_posted = 0; 139 140 nfp_net_reconfig_start(nn, update); 141 142 nn->reconfig_timer_active = true; 143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 144 } 145 146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 147 { 148 u32 reg; 149 150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 151 if (reg == 0) 152 return true; 153 if (reg & NFP_NET_CFG_UPDATE_ERR) { 154 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 155 return true; 156 } else if (last_check) { 157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 158 return true; 159 } 160 161 return false; 162 } 163 164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 165 { 166 bool timed_out = false; 167 168 /* Poll update field, waiting for NFP to ack the config */ 169 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 170 msleep(1); 171 timed_out = time_is_before_eq_jiffies(deadline); 172 } 173 174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 175 return -EIO; 176 177 return timed_out ? -EIO : 0; 178 } 179 180 static void nfp_net_reconfig_timer(unsigned long data) 181 { 182 struct nfp_net *nn = (void *)data; 183 184 spin_lock_bh(&nn->reconfig_lock); 185 186 nn->reconfig_timer_active = false; 187 188 /* If sync caller is present it will take over from us */ 189 if (nn->reconfig_sync_present) 190 goto done; 191 192 /* Read reconfig status and report errors */ 193 nfp_net_reconfig_check_done(nn, true); 194 195 if (nn->reconfig_posted) 196 nfp_net_reconfig_start_async(nn, 0); 197 done: 198 spin_unlock_bh(&nn->reconfig_lock); 199 } 200 201 /** 202 * nfp_net_reconfig_post() - Post async reconfig request 203 * @nn: NFP Net device to reconfigure 204 * @update: The value for the update field in the BAR config 205 * 206 * Record FW reconfiguration request. Reconfiguration will be kicked off 207 * whenever reconfiguration machinery is idle. Multiple requests can be 208 * merged together! 209 */ 210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 211 { 212 spin_lock_bh(&nn->reconfig_lock); 213 214 /* Sync caller will kick off async reconf when it's done, just post */ 215 if (nn->reconfig_sync_present) { 216 nn->reconfig_posted |= update; 217 goto done; 218 } 219 220 /* Opportunistically check if the previous command is done */ 221 if (!nn->reconfig_timer_active || 222 nfp_net_reconfig_check_done(nn, false)) 223 nfp_net_reconfig_start_async(nn, update); 224 else 225 nn->reconfig_posted |= update; 226 done: 227 spin_unlock_bh(&nn->reconfig_lock); 228 } 229 230 /** 231 * nfp_net_reconfig() - Reconfigure the firmware 232 * @nn: NFP Net device to reconfigure 233 * @update: The value for the update field in the BAR config 234 * 235 * Write the update word to the BAR and ping the reconfig queue. The 236 * poll until the firmware has acknowledged the update by zeroing the 237 * update word. 238 * 239 * Return: Negative errno on error, 0 on success 240 */ 241 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 242 { 243 bool cancelled_timer = false; 244 u32 pre_posted_requests; 245 int ret; 246 247 spin_lock_bh(&nn->reconfig_lock); 248 249 nn->reconfig_sync_present = true; 250 251 if (nn->reconfig_timer_active) { 252 del_timer(&nn->reconfig_timer); 253 nn->reconfig_timer_active = false; 254 cancelled_timer = true; 255 } 256 pre_posted_requests = nn->reconfig_posted; 257 nn->reconfig_posted = 0; 258 259 spin_unlock_bh(&nn->reconfig_lock); 260 261 if (cancelled_timer) 262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 263 264 /* Run the posted reconfigs which were issued before we started */ 265 if (pre_posted_requests) { 266 nfp_net_reconfig_start(nn, pre_posted_requests); 267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 268 } 269 270 nfp_net_reconfig_start(nn, update); 271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 272 273 spin_lock_bh(&nn->reconfig_lock); 274 275 if (nn->reconfig_posted) 276 nfp_net_reconfig_start_async(nn, 0); 277 278 nn->reconfig_sync_present = false; 279 280 spin_unlock_bh(&nn->reconfig_lock); 281 282 return ret; 283 } 284 285 /** 286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 287 * @nn: NFP Net device to reconfigure 288 * @mbox_cmd: The value for the mailbox command 289 * 290 * Helper function for mailbox updates 291 * 292 * Return: Negative errno on error, 0 on success 293 */ 294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 295 { 296 int ret; 297 298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd); 299 300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 301 if (ret) { 302 nn_err(nn, "Mailbox update error\n"); 303 return ret; 304 } 305 306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET); 307 } 308 309 /* Interrupt configuration and handling 310 */ 311 312 /** 313 * nfp_net_irq_unmask() - Unmask automasked interrupt 314 * @nn: NFP Network structure 315 * @entry_nr: MSI-X table entry 316 * 317 * Clear the ICR for the IRQ entry. 318 */ 319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 320 { 321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 322 nn_pci_flush(nn); 323 } 324 325 /** 326 * nfp_net_irqs_alloc() - allocates MSI-X irqs 327 * @pdev: PCI device structure 328 * @irq_entries: Array to be initialized and used to hold the irq entries 329 * @min_irqs: Minimal acceptable number of interrupts 330 * @wanted_irqs: Target number of interrupts to allocate 331 * 332 * Return: Number of irqs obtained or 0 on error. 333 */ 334 unsigned int 335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 336 unsigned int min_irqs, unsigned int wanted_irqs) 337 { 338 unsigned int i; 339 int got_irqs; 340 341 for (i = 0; i < wanted_irqs; i++) 342 irq_entries[i].entry = i; 343 344 got_irqs = pci_enable_msix_range(pdev, irq_entries, 345 min_irqs, wanted_irqs); 346 if (got_irqs < 0) { 347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 348 min_irqs, wanted_irqs, got_irqs); 349 return 0; 350 } 351 352 if (got_irqs < wanted_irqs) 353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 354 wanted_irqs, got_irqs); 355 356 return got_irqs; 357 } 358 359 /** 360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 361 * @nn: NFP Network structure 362 * @irq_entries: Table of allocated interrupts 363 * @n: Size of @irq_entries (number of entries to grab) 364 * 365 * After interrupts are allocated with nfp_net_irqs_alloc() this function 366 * should be called to assign them to a specific netdev (port). 367 */ 368 void 369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 370 unsigned int n) 371 { 372 struct nfp_net_dp *dp = &nn->dp; 373 374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 375 dp->num_r_vecs = nn->max_r_vecs; 376 377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 378 379 if (dp->num_rx_rings > dp->num_r_vecs || 380 dp->num_tx_rings > dp->num_r_vecs) 381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 382 dp->num_rx_rings, dp->num_tx_rings, 383 dp->num_r_vecs); 384 385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 387 dp->num_stack_tx_rings = dp->num_tx_rings; 388 } 389 390 /** 391 * nfp_net_irqs_disable() - Disable interrupts 392 * @pdev: PCI device structure 393 * 394 * Undoes what @nfp_net_irqs_alloc() does. 395 */ 396 void nfp_net_irqs_disable(struct pci_dev *pdev) 397 { 398 pci_disable_msix(pdev); 399 } 400 401 /** 402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 403 * @irq: Interrupt 404 * @data: Opaque data structure 405 * 406 * Return: Indicate if the interrupt has been handled. 407 */ 408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 409 { 410 struct nfp_net_r_vector *r_vec = data; 411 412 napi_schedule_irqoff(&r_vec->napi); 413 414 /* The FW auto-masks any interrupt, either via the MASK bit in 415 * the MSI-X table or via the per entry ICR field. So there 416 * is no need to disable interrupts here. 417 */ 418 return IRQ_HANDLED; 419 } 420 421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 422 { 423 struct nfp_net_r_vector *r_vec = data; 424 425 tasklet_schedule(&r_vec->tasklet); 426 427 return IRQ_HANDLED; 428 } 429 430 /** 431 * nfp_net_read_link_status() - Reread link status from control BAR 432 * @nn: NFP Network structure 433 */ 434 static void nfp_net_read_link_status(struct nfp_net *nn) 435 { 436 unsigned long flags; 437 bool link_up; 438 u32 sts; 439 440 spin_lock_irqsave(&nn->link_status_lock, flags); 441 442 sts = nn_readl(nn, NFP_NET_CFG_STS); 443 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 444 445 if (nn->link_up == link_up) 446 goto out; 447 448 nn->link_up = link_up; 449 if (nn->port) 450 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 451 452 if (nn->link_up) { 453 netif_carrier_on(nn->dp.netdev); 454 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 455 } else { 456 netif_carrier_off(nn->dp.netdev); 457 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 458 } 459 out: 460 spin_unlock_irqrestore(&nn->link_status_lock, flags); 461 } 462 463 /** 464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 465 * @irq: Interrupt 466 * @data: Opaque data structure 467 * 468 * Return: Indicate if the interrupt has been handled. 469 */ 470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 471 { 472 struct nfp_net *nn = data; 473 struct msix_entry *entry; 474 475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 476 477 nfp_net_read_link_status(nn); 478 479 nfp_net_irq_unmask(nn, entry->entry); 480 481 return IRQ_HANDLED; 482 } 483 484 /** 485 * nfp_net_irq_exn() - Interrupt service routine for exceptions 486 * @irq: Interrupt 487 * @data: Opaque data structure 488 * 489 * Return: Indicate if the interrupt has been handled. 490 */ 491 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 492 { 493 struct nfp_net *nn = data; 494 495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 496 /* XXX TO BE IMPLEMENTED */ 497 return IRQ_HANDLED; 498 } 499 500 /** 501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 502 * @tx_ring: TX ring structure 503 * @r_vec: IRQ vector servicing this ring 504 * @idx: Ring index 505 * @is_xdp: Is this an XDP TX ring? 506 */ 507 static void 508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 509 struct nfp_net_r_vector *r_vec, unsigned int idx, 510 bool is_xdp) 511 { 512 struct nfp_net *nn = r_vec->nfp_net; 513 514 tx_ring->idx = idx; 515 tx_ring->r_vec = r_vec; 516 tx_ring->is_xdp = is_xdp; 517 u64_stats_init(&tx_ring->r_vec->tx_sync); 518 519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 521 } 522 523 /** 524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 525 * @rx_ring: RX ring structure 526 * @r_vec: IRQ vector servicing this ring 527 * @idx: Ring index 528 */ 529 static void 530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 531 struct nfp_net_r_vector *r_vec, unsigned int idx) 532 { 533 struct nfp_net *nn = r_vec->nfp_net; 534 535 rx_ring->idx = idx; 536 rx_ring->r_vec = r_vec; 537 u64_stats_init(&rx_ring->r_vec->rx_sync); 538 539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 541 } 542 543 /** 544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 545 * @nn: NFP Network structure 546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 547 * @format: printf-style format to construct the interrupt name 548 * @name: Pointer to allocated space for interrupt name 549 * @name_sz: Size of space for interrupt name 550 * @vector_idx: Index of MSI-X vector used for this interrupt 551 * @handler: IRQ handler to register for this interrupt 552 */ 553 static int 554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 555 const char *format, char *name, size_t name_sz, 556 unsigned int vector_idx, irq_handler_t handler) 557 { 558 struct msix_entry *entry; 559 int err; 560 561 entry = &nn->irq_entries[vector_idx]; 562 563 snprintf(name, name_sz, format, nfp_net_name(nn)); 564 err = request_irq(entry->vector, handler, 0, name, nn); 565 if (err) { 566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 567 entry->vector, err); 568 return err; 569 } 570 nn_writeb(nn, ctrl_offset, entry->entry); 571 572 return 0; 573 } 574 575 /** 576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 577 * @nn: NFP Network structure 578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 579 * @vector_idx: Index of MSI-X vector used for this interrupt 580 */ 581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 582 unsigned int vector_idx) 583 { 584 nn_writeb(nn, ctrl_offset, 0xff); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 /* Transmit 589 * 590 * One queue controller peripheral queue is used for transmit. The 591 * driver en-queues packets for transmit by advancing the write 592 * pointer. The device indicates that packets have transmitted by 593 * advancing the read pointer. The driver maintains a local copy of 594 * the read and write pointer in @struct nfp_net_tx_ring. The driver 595 * keeps @wr_p in sync with the queue controller write pointer and can 596 * determine how many packets have been transmitted by comparing its 597 * copy of the read pointer @rd_p with the read pointer maintained by 598 * the queue controller peripheral. 599 */ 600 601 /** 602 * nfp_net_tx_full() - Check if the TX ring is full 603 * @tx_ring: TX ring to check 604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 605 * 606 * This function checks, based on the *host copy* of read/write 607 * pointer if a given TX ring is full. The real TX queue may have 608 * some newly made available slots. 609 * 610 * Return: True if the ring is full. 611 */ 612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 613 { 614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 615 } 616 617 /* Wrappers for deciding when to stop and restart TX queues */ 618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 619 { 620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 621 } 622 623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 624 { 625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 626 } 627 628 /** 629 * nfp_net_tx_ring_stop() - stop tx ring 630 * @nd_q: netdev queue 631 * @tx_ring: driver tx queue structure 632 * 633 * Safely stop TX ring. Remember that while we are running .start_xmit() 634 * someone else may be cleaning the TX ring completions so we need to be 635 * extra careful here. 636 */ 637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 638 struct nfp_net_tx_ring *tx_ring) 639 { 640 netif_tx_stop_queue(nd_q); 641 642 /* We can race with the TX completion out of NAPI so recheck */ 643 smp_mb(); 644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 645 netif_tx_start_queue(nd_q); 646 } 647 648 /** 649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 650 * @r_vec: per-ring structure 651 * @txbuf: Pointer to driver soft TX descriptor 652 * @txd: Pointer to HW TX descriptor 653 * @skb: Pointer to SKB 654 * 655 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 656 * Return error on packet header greater than maximum supported LSO header size. 657 */ 658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 659 struct nfp_net_tx_buf *txbuf, 660 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 661 { 662 u32 hdrlen; 663 u16 mss; 664 665 if (!skb_is_gso(skb)) 666 return; 667 668 if (!skb->encapsulation) { 669 txd->l3_offset = skb_network_offset(skb); 670 txd->l4_offset = skb_transport_offset(skb); 671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 672 } else { 673 txd->l3_offset = skb_inner_network_offset(skb); 674 txd->l4_offset = skb_inner_transport_offset(skb); 675 hdrlen = skb_inner_transport_header(skb) - skb->data + 676 inner_tcp_hdrlen(skb); 677 } 678 679 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 680 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 681 682 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 683 txd->lso_hdrlen = hdrlen; 684 txd->mss = cpu_to_le16(mss); 685 txd->flags |= PCIE_DESC_TX_LSO; 686 687 u64_stats_update_begin(&r_vec->tx_sync); 688 r_vec->tx_lso++; 689 u64_stats_update_end(&r_vec->tx_sync); 690 } 691 692 /** 693 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 694 * @dp: NFP Net data path struct 695 * @r_vec: per-ring structure 696 * @txbuf: Pointer to driver soft TX descriptor 697 * @txd: Pointer to TX descriptor 698 * @skb: Pointer to SKB 699 * 700 * This function sets the TX checksum flags in the TX descriptor based 701 * on the configuration and the protocol of the packet to be transmitted. 702 */ 703 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 704 struct nfp_net_r_vector *r_vec, 705 struct nfp_net_tx_buf *txbuf, 706 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 707 { 708 struct ipv6hdr *ipv6h; 709 struct iphdr *iph; 710 u8 l4_hdr; 711 712 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 713 return; 714 715 if (skb->ip_summed != CHECKSUM_PARTIAL) 716 return; 717 718 txd->flags |= PCIE_DESC_TX_CSUM; 719 if (skb->encapsulation) 720 txd->flags |= PCIE_DESC_TX_ENCAP; 721 722 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 723 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 724 725 if (iph->version == 4) { 726 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 727 l4_hdr = iph->protocol; 728 } else if (ipv6h->version == 6) { 729 l4_hdr = ipv6h->nexthdr; 730 } else { 731 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 732 return; 733 } 734 735 switch (l4_hdr) { 736 case IPPROTO_TCP: 737 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 738 break; 739 case IPPROTO_UDP: 740 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 741 break; 742 default: 743 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 744 return; 745 } 746 747 u64_stats_update_begin(&r_vec->tx_sync); 748 if (skb->encapsulation) 749 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 750 else 751 r_vec->hw_csum_tx += txbuf->pkt_cnt; 752 u64_stats_update_end(&r_vec->tx_sync); 753 } 754 755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 756 { 757 wmb(); 758 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 759 tx_ring->wr_ptr_add = 0; 760 } 761 762 static int nfp_net_prep_port_id(struct sk_buff *skb) 763 { 764 struct metadata_dst *md_dst = skb_metadata_dst(skb); 765 unsigned char *data; 766 767 if (likely(!md_dst)) 768 return 0; 769 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 770 return 0; 771 772 if (unlikely(skb_cow_head(skb, 8))) 773 return -ENOMEM; 774 775 data = skb_push(skb, 8); 776 put_unaligned_be32(NFP_NET_META_PORTID, data); 777 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 778 779 return 8; 780 } 781 782 /** 783 * nfp_net_tx() - Main transmit entry point 784 * @skb: SKB to transmit 785 * @netdev: netdev structure 786 * 787 * Return: NETDEV_TX_OK on success. 788 */ 789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 790 { 791 struct nfp_net *nn = netdev_priv(netdev); 792 const struct skb_frag_struct *frag; 793 struct nfp_net_tx_desc *txd, txdg; 794 int f, nr_frags, wr_idx, md_bytes; 795 struct nfp_net_tx_ring *tx_ring; 796 struct nfp_net_r_vector *r_vec; 797 struct nfp_net_tx_buf *txbuf; 798 struct netdev_queue *nd_q; 799 struct nfp_net_dp *dp; 800 dma_addr_t dma_addr; 801 unsigned int fsize; 802 u16 qidx; 803 804 dp = &nn->dp; 805 qidx = skb_get_queue_mapping(skb); 806 tx_ring = &dp->tx_rings[qidx]; 807 r_vec = tx_ring->r_vec; 808 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 809 810 nr_frags = skb_shinfo(skb)->nr_frags; 811 812 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 813 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 814 qidx, tx_ring->wr_p, tx_ring->rd_p); 815 netif_tx_stop_queue(nd_q); 816 nfp_net_tx_xmit_more_flush(tx_ring); 817 u64_stats_update_begin(&r_vec->tx_sync); 818 r_vec->tx_busy++; 819 u64_stats_update_end(&r_vec->tx_sync); 820 return NETDEV_TX_BUSY; 821 } 822 823 md_bytes = nfp_net_prep_port_id(skb); 824 if (unlikely(md_bytes < 0)) { 825 nfp_net_tx_xmit_more_flush(tx_ring); 826 dev_kfree_skb_any(skb); 827 return NETDEV_TX_OK; 828 } 829 830 /* Start with the head skbuf */ 831 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 832 DMA_TO_DEVICE); 833 if (dma_mapping_error(dp->dev, dma_addr)) 834 goto err_free; 835 836 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 837 838 /* Stash the soft descriptor of the head then initialize it */ 839 txbuf = &tx_ring->txbufs[wr_idx]; 840 txbuf->skb = skb; 841 txbuf->dma_addr = dma_addr; 842 txbuf->fidx = -1; 843 txbuf->pkt_cnt = 1; 844 txbuf->real_len = skb->len; 845 846 /* Build TX descriptor */ 847 txd = &tx_ring->txds[wr_idx]; 848 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 849 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 850 nfp_desc_set_dma_addr(txd, dma_addr); 851 txd->data_len = cpu_to_le16(skb->len); 852 853 txd->flags = 0; 854 txd->mss = 0; 855 txd->lso_hdrlen = 0; 856 857 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 858 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 859 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 860 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 861 txd->flags |= PCIE_DESC_TX_VLAN; 862 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 863 } 864 865 /* Gather DMA */ 866 if (nr_frags > 0) { 867 /* all descs must match except for in addr, length and eop */ 868 txdg = *txd; 869 870 for (f = 0; f < nr_frags; f++) { 871 frag = &skb_shinfo(skb)->frags[f]; 872 fsize = skb_frag_size(frag); 873 874 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 875 fsize, DMA_TO_DEVICE); 876 if (dma_mapping_error(dp->dev, dma_addr)) 877 goto err_unmap; 878 879 wr_idx = D_IDX(tx_ring, wr_idx + 1); 880 tx_ring->txbufs[wr_idx].skb = skb; 881 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 882 tx_ring->txbufs[wr_idx].fidx = f; 883 884 txd = &tx_ring->txds[wr_idx]; 885 *txd = txdg; 886 txd->dma_len = cpu_to_le16(fsize); 887 nfp_desc_set_dma_addr(txd, dma_addr); 888 txd->offset_eop |= 889 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 890 } 891 892 u64_stats_update_begin(&r_vec->tx_sync); 893 r_vec->tx_gather++; 894 u64_stats_update_end(&r_vec->tx_sync); 895 } 896 897 netdev_tx_sent_queue(nd_q, txbuf->real_len); 898 899 skb_tx_timestamp(skb); 900 901 tx_ring->wr_p += nr_frags + 1; 902 if (nfp_net_tx_ring_should_stop(tx_ring)) 903 nfp_net_tx_ring_stop(nd_q, tx_ring); 904 905 tx_ring->wr_ptr_add += nr_frags + 1; 906 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 907 nfp_net_tx_xmit_more_flush(tx_ring); 908 909 return NETDEV_TX_OK; 910 911 err_unmap: 912 while (--f >= 0) { 913 frag = &skb_shinfo(skb)->frags[f]; 914 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 915 skb_frag_size(frag), DMA_TO_DEVICE); 916 tx_ring->txbufs[wr_idx].skb = NULL; 917 tx_ring->txbufs[wr_idx].dma_addr = 0; 918 tx_ring->txbufs[wr_idx].fidx = -2; 919 wr_idx = wr_idx - 1; 920 if (wr_idx < 0) 921 wr_idx += tx_ring->cnt; 922 } 923 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 924 skb_headlen(skb), DMA_TO_DEVICE); 925 tx_ring->txbufs[wr_idx].skb = NULL; 926 tx_ring->txbufs[wr_idx].dma_addr = 0; 927 tx_ring->txbufs[wr_idx].fidx = -2; 928 err_free: 929 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 930 nfp_net_tx_xmit_more_flush(tx_ring); 931 u64_stats_update_begin(&r_vec->tx_sync); 932 r_vec->tx_errors++; 933 u64_stats_update_end(&r_vec->tx_sync); 934 dev_kfree_skb_any(skb); 935 return NETDEV_TX_OK; 936 } 937 938 /** 939 * nfp_net_tx_complete() - Handled completed TX packets 940 * @tx_ring: TX ring structure 941 * 942 * Return: Number of completed TX descriptors 943 */ 944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 945 { 946 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 947 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 948 const struct skb_frag_struct *frag; 949 struct netdev_queue *nd_q; 950 u32 done_pkts = 0, done_bytes = 0; 951 struct sk_buff *skb; 952 int todo, nr_frags; 953 u32 qcp_rd_p; 954 int fidx; 955 int idx; 956 957 if (tx_ring->wr_p == tx_ring->rd_p) 958 return; 959 960 /* Work out how many descriptors have been transmitted */ 961 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 962 963 if (qcp_rd_p == tx_ring->qcp_rd_p) 964 return; 965 966 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 967 968 while (todo--) { 969 idx = D_IDX(tx_ring, tx_ring->rd_p++); 970 971 skb = tx_ring->txbufs[idx].skb; 972 if (!skb) 973 continue; 974 975 nr_frags = skb_shinfo(skb)->nr_frags; 976 fidx = tx_ring->txbufs[idx].fidx; 977 978 if (fidx == -1) { 979 /* unmap head */ 980 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 981 skb_headlen(skb), DMA_TO_DEVICE); 982 983 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 984 done_bytes += tx_ring->txbufs[idx].real_len; 985 } else { 986 /* unmap fragment */ 987 frag = &skb_shinfo(skb)->frags[fidx]; 988 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 989 skb_frag_size(frag), DMA_TO_DEVICE); 990 } 991 992 /* check for last gather fragment */ 993 if (fidx == nr_frags - 1) 994 dev_consume_skb_any(skb); 995 996 tx_ring->txbufs[idx].dma_addr = 0; 997 tx_ring->txbufs[idx].skb = NULL; 998 tx_ring->txbufs[idx].fidx = -2; 999 } 1000 1001 tx_ring->qcp_rd_p = qcp_rd_p; 1002 1003 u64_stats_update_begin(&r_vec->tx_sync); 1004 r_vec->tx_bytes += done_bytes; 1005 r_vec->tx_pkts += done_pkts; 1006 u64_stats_update_end(&r_vec->tx_sync); 1007 1008 if (!dp->netdev) 1009 return; 1010 1011 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1012 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1013 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1014 /* Make sure TX thread will see updated tx_ring->rd_p */ 1015 smp_mb(); 1016 1017 if (unlikely(netif_tx_queue_stopped(nd_q))) 1018 netif_tx_wake_queue(nd_q); 1019 } 1020 1021 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1022 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1023 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1024 } 1025 1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1027 { 1028 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1029 u32 done_pkts = 0, done_bytes = 0; 1030 bool done_all; 1031 int idx, todo; 1032 u32 qcp_rd_p; 1033 1034 /* Work out how many descriptors have been transmitted */ 1035 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1036 1037 if (qcp_rd_p == tx_ring->qcp_rd_p) 1038 return true; 1039 1040 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1041 1042 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1043 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1044 1045 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1046 1047 done_pkts = todo; 1048 while (todo--) { 1049 idx = D_IDX(tx_ring, tx_ring->rd_p); 1050 tx_ring->rd_p++; 1051 1052 done_bytes += tx_ring->txbufs[idx].real_len; 1053 } 1054 1055 u64_stats_update_begin(&r_vec->tx_sync); 1056 r_vec->tx_bytes += done_bytes; 1057 r_vec->tx_pkts += done_pkts; 1058 u64_stats_update_end(&r_vec->tx_sync); 1059 1060 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1061 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1062 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1063 1064 return done_all; 1065 } 1066 1067 /** 1068 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1069 * @dp: NFP Net data path struct 1070 * @tx_ring: TX ring structure 1071 * 1072 * Assumes that the device is stopped 1073 */ 1074 static void 1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1076 { 1077 const struct skb_frag_struct *frag; 1078 struct netdev_queue *nd_q; 1079 1080 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1081 struct nfp_net_tx_buf *tx_buf; 1082 struct sk_buff *skb; 1083 int idx, nr_frags; 1084 1085 idx = D_IDX(tx_ring, tx_ring->rd_p); 1086 tx_buf = &tx_ring->txbufs[idx]; 1087 1088 skb = tx_ring->txbufs[idx].skb; 1089 nr_frags = skb_shinfo(skb)->nr_frags; 1090 1091 if (tx_buf->fidx == -1) { 1092 /* unmap head */ 1093 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1094 skb_headlen(skb), DMA_TO_DEVICE); 1095 } else { 1096 /* unmap fragment */ 1097 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1098 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1099 skb_frag_size(frag), DMA_TO_DEVICE); 1100 } 1101 1102 /* check for last gather fragment */ 1103 if (tx_buf->fidx == nr_frags - 1) 1104 dev_kfree_skb_any(skb); 1105 1106 tx_buf->dma_addr = 0; 1107 tx_buf->skb = NULL; 1108 tx_buf->fidx = -2; 1109 1110 tx_ring->qcp_rd_p++; 1111 tx_ring->rd_p++; 1112 } 1113 1114 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1115 tx_ring->wr_p = 0; 1116 tx_ring->rd_p = 0; 1117 tx_ring->qcp_rd_p = 0; 1118 tx_ring->wr_ptr_add = 0; 1119 1120 if (tx_ring->is_xdp || !dp->netdev) 1121 return; 1122 1123 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1124 netdev_tx_reset_queue(nd_q); 1125 } 1126 1127 static void nfp_net_tx_timeout(struct net_device *netdev) 1128 { 1129 struct nfp_net *nn = netdev_priv(netdev); 1130 int i; 1131 1132 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1133 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1134 continue; 1135 nn_warn(nn, "TX timeout on ring: %d\n", i); 1136 } 1137 nn_warn(nn, "TX watchdog timeout\n"); 1138 } 1139 1140 /* Receive processing 1141 */ 1142 static unsigned int 1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1144 { 1145 unsigned int fl_bufsz; 1146 1147 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1148 fl_bufsz += dp->rx_dma_off; 1149 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1150 fl_bufsz += NFP_NET_MAX_PREPEND; 1151 else 1152 fl_bufsz += dp->rx_offset; 1153 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1154 1155 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1156 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1157 1158 return fl_bufsz; 1159 } 1160 1161 static void 1162 nfp_net_free_frag(void *frag, bool xdp) 1163 { 1164 if (!xdp) 1165 skb_free_frag(frag); 1166 else 1167 __free_page(virt_to_page(frag)); 1168 } 1169 1170 /** 1171 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1172 * @dp: NFP Net data path struct 1173 * @dma_addr: Pointer to storage for DMA address (output param) 1174 * 1175 * This function will allcate a new page frag, map it for DMA. 1176 * 1177 * Return: allocated page frag or NULL on failure. 1178 */ 1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1180 { 1181 void *frag; 1182 1183 if (!dp->xdp_prog) 1184 frag = netdev_alloc_frag(dp->fl_bufsz); 1185 else 1186 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD)); 1187 if (!frag) { 1188 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1189 return NULL; 1190 } 1191 1192 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1193 if (dma_mapping_error(dp->dev, *dma_addr)) { 1194 nfp_net_free_frag(frag, dp->xdp_prog); 1195 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1196 return NULL; 1197 } 1198 1199 return frag; 1200 } 1201 1202 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1203 { 1204 void *frag; 1205 1206 if (!dp->xdp_prog) 1207 frag = napi_alloc_frag(dp->fl_bufsz); 1208 else 1209 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD)); 1210 if (!frag) { 1211 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1212 return NULL; 1213 } 1214 1215 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1216 if (dma_mapping_error(dp->dev, *dma_addr)) { 1217 nfp_net_free_frag(frag, dp->xdp_prog); 1218 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1219 return NULL; 1220 } 1221 1222 return frag; 1223 } 1224 1225 /** 1226 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1227 * @dp: NFP Net data path struct 1228 * @rx_ring: RX ring structure 1229 * @frag: page fragment buffer 1230 * @dma_addr: DMA address of skb mapping 1231 */ 1232 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1233 struct nfp_net_rx_ring *rx_ring, 1234 void *frag, dma_addr_t dma_addr) 1235 { 1236 unsigned int wr_idx; 1237 1238 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1239 1240 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1241 1242 /* Stash SKB and DMA address away */ 1243 rx_ring->rxbufs[wr_idx].frag = frag; 1244 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1245 1246 /* Fill freelist descriptor */ 1247 rx_ring->rxds[wr_idx].fld.reserved = 0; 1248 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1249 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1250 dma_addr + dp->rx_dma_off); 1251 1252 rx_ring->wr_p++; 1253 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1254 /* Update write pointer of the freelist queue. Make 1255 * sure all writes are flushed before telling the hardware. 1256 */ 1257 wmb(); 1258 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1259 } 1260 } 1261 1262 /** 1263 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1264 * @rx_ring: RX ring structure 1265 * 1266 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1267 * (i.e. device was not enabled)! 1268 */ 1269 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1270 { 1271 unsigned int wr_idx, last_idx; 1272 1273 /* Move the empty entry to the end of the list */ 1274 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1275 last_idx = rx_ring->cnt - 1; 1276 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1277 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1278 rx_ring->rxbufs[last_idx].dma_addr = 0; 1279 rx_ring->rxbufs[last_idx].frag = NULL; 1280 1281 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1282 rx_ring->wr_p = 0; 1283 rx_ring->rd_p = 0; 1284 } 1285 1286 /** 1287 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1288 * @dp: NFP Net data path struct 1289 * @rx_ring: RX ring to remove buffers from 1290 * 1291 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1292 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1293 * to restore required ring geometry. 1294 */ 1295 static void 1296 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1297 struct nfp_net_rx_ring *rx_ring) 1298 { 1299 unsigned int i; 1300 1301 for (i = 0; i < rx_ring->cnt - 1; i++) { 1302 /* NULL skb can only happen when initial filling of the ring 1303 * fails to allocate enough buffers and calls here to free 1304 * already allocated ones. 1305 */ 1306 if (!rx_ring->rxbufs[i].frag) 1307 continue; 1308 1309 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1310 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1311 rx_ring->rxbufs[i].dma_addr = 0; 1312 rx_ring->rxbufs[i].frag = NULL; 1313 } 1314 } 1315 1316 /** 1317 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1318 * @dp: NFP Net data path struct 1319 * @rx_ring: RX ring to remove buffers from 1320 */ 1321 static int 1322 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1323 struct nfp_net_rx_ring *rx_ring) 1324 { 1325 struct nfp_net_rx_buf *rxbufs; 1326 unsigned int i; 1327 1328 rxbufs = rx_ring->rxbufs; 1329 1330 for (i = 0; i < rx_ring->cnt - 1; i++) { 1331 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1332 if (!rxbufs[i].frag) { 1333 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1334 return -ENOMEM; 1335 } 1336 } 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1343 * @dp: NFP Net data path struct 1344 * @rx_ring: RX ring to fill 1345 */ 1346 static void 1347 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1348 struct nfp_net_rx_ring *rx_ring) 1349 { 1350 unsigned int i; 1351 1352 for (i = 0; i < rx_ring->cnt - 1; i++) 1353 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1354 rx_ring->rxbufs[i].dma_addr); 1355 } 1356 1357 /** 1358 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1359 * @flags: RX descriptor flags field in CPU byte order 1360 */ 1361 static int nfp_net_rx_csum_has_errors(u16 flags) 1362 { 1363 u16 csum_all_checked, csum_all_ok; 1364 1365 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1366 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1367 1368 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1369 } 1370 1371 /** 1372 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1373 * @dp: NFP Net data path struct 1374 * @r_vec: per-ring structure 1375 * @rxd: Pointer to RX descriptor 1376 * @meta: Parsed metadata prepend 1377 * @skb: Pointer to SKB 1378 */ 1379 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1380 struct nfp_net_r_vector *r_vec, 1381 struct nfp_net_rx_desc *rxd, 1382 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1383 { 1384 skb_checksum_none_assert(skb); 1385 1386 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1387 return; 1388 1389 if (meta->csum_type) { 1390 skb->ip_summed = meta->csum_type; 1391 skb->csum = meta->csum; 1392 u64_stats_update_begin(&r_vec->rx_sync); 1393 r_vec->hw_csum_rx_ok++; 1394 u64_stats_update_end(&r_vec->rx_sync); 1395 return; 1396 } 1397 1398 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1399 u64_stats_update_begin(&r_vec->rx_sync); 1400 r_vec->hw_csum_rx_error++; 1401 u64_stats_update_end(&r_vec->rx_sync); 1402 return; 1403 } 1404 1405 /* Assume that the firmware will never report inner CSUM_OK unless outer 1406 * L4 headers were successfully parsed. FW will always report zero UDP 1407 * checksum as CSUM_OK. 1408 */ 1409 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1410 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1411 __skb_incr_checksum_unnecessary(skb); 1412 u64_stats_update_begin(&r_vec->rx_sync); 1413 r_vec->hw_csum_rx_ok++; 1414 u64_stats_update_end(&r_vec->rx_sync); 1415 } 1416 1417 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1418 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1419 __skb_incr_checksum_unnecessary(skb); 1420 u64_stats_update_begin(&r_vec->rx_sync); 1421 r_vec->hw_csum_rx_inner_ok++; 1422 u64_stats_update_end(&r_vec->rx_sync); 1423 } 1424 } 1425 1426 static void 1427 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1428 unsigned int type, __be32 *hash) 1429 { 1430 if (!(netdev->features & NETIF_F_RXHASH)) 1431 return; 1432 1433 switch (type) { 1434 case NFP_NET_RSS_IPV4: 1435 case NFP_NET_RSS_IPV6: 1436 case NFP_NET_RSS_IPV6_EX: 1437 meta->hash_type = PKT_HASH_TYPE_L3; 1438 break; 1439 default: 1440 meta->hash_type = PKT_HASH_TYPE_L4; 1441 break; 1442 } 1443 1444 meta->hash = get_unaligned_be32(hash); 1445 } 1446 1447 static void 1448 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1449 void *data, struct nfp_net_rx_desc *rxd) 1450 { 1451 struct nfp_net_rx_hash *rx_hash = data; 1452 1453 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1454 return; 1455 1456 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1457 &rx_hash->hash); 1458 } 1459 1460 static void * 1461 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1462 void *data, int meta_len) 1463 { 1464 u32 meta_info; 1465 1466 meta_info = get_unaligned_be32(data); 1467 data += 4; 1468 1469 while (meta_info) { 1470 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1471 case NFP_NET_META_HASH: 1472 meta_info >>= NFP_NET_META_FIELD_SIZE; 1473 nfp_net_set_hash(netdev, meta, 1474 meta_info & NFP_NET_META_FIELD_MASK, 1475 (__be32 *)data); 1476 data += 4; 1477 break; 1478 case NFP_NET_META_MARK: 1479 meta->mark = get_unaligned_be32(data); 1480 data += 4; 1481 break; 1482 case NFP_NET_META_PORTID: 1483 meta->portid = get_unaligned_be32(data); 1484 data += 4; 1485 break; 1486 case NFP_NET_META_CSUM: 1487 meta->csum_type = CHECKSUM_COMPLETE; 1488 meta->csum = 1489 (__force __wsum)__get_unaligned_cpu32(data); 1490 data += 4; 1491 break; 1492 default: 1493 return NULL; 1494 } 1495 1496 meta_info >>= NFP_NET_META_FIELD_SIZE; 1497 } 1498 1499 return data; 1500 } 1501 1502 static void 1503 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1504 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1505 struct sk_buff *skb) 1506 { 1507 u64_stats_update_begin(&r_vec->rx_sync); 1508 r_vec->rx_drops++; 1509 u64_stats_update_end(&r_vec->rx_sync); 1510 1511 /* skb is build based on the frag, free_skb() would free the frag 1512 * so to be able to reuse it we need an extra ref. 1513 */ 1514 if (skb && rxbuf && skb->head == rxbuf->frag) 1515 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1516 if (rxbuf) 1517 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1518 if (skb) 1519 dev_kfree_skb_any(skb); 1520 } 1521 1522 static bool 1523 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1524 struct nfp_net_tx_ring *tx_ring, 1525 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1526 unsigned int pkt_len, bool *completed) 1527 { 1528 struct nfp_net_tx_buf *txbuf; 1529 struct nfp_net_tx_desc *txd; 1530 int wr_idx; 1531 1532 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1533 if (!*completed) { 1534 nfp_net_xdp_complete(tx_ring); 1535 *completed = true; 1536 } 1537 1538 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1539 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1540 NULL); 1541 return false; 1542 } 1543 } 1544 1545 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1546 1547 /* Stash the soft descriptor of the head then initialize it */ 1548 txbuf = &tx_ring->txbufs[wr_idx]; 1549 1550 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1551 1552 txbuf->frag = rxbuf->frag; 1553 txbuf->dma_addr = rxbuf->dma_addr; 1554 txbuf->fidx = -1; 1555 txbuf->pkt_cnt = 1; 1556 txbuf->real_len = pkt_len; 1557 1558 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1559 pkt_len, DMA_BIDIRECTIONAL); 1560 1561 /* Build TX descriptor */ 1562 txd = &tx_ring->txds[wr_idx]; 1563 txd->offset_eop = PCIE_DESC_TX_EOP; 1564 txd->dma_len = cpu_to_le16(pkt_len); 1565 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1566 txd->data_len = cpu_to_le16(pkt_len); 1567 1568 txd->flags = 0; 1569 txd->mss = 0; 1570 txd->lso_hdrlen = 0; 1571 1572 tx_ring->wr_p++; 1573 tx_ring->wr_ptr_add++; 1574 return true; 1575 } 1576 1577 /** 1578 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1579 * @rx_ring: RX ring to receive from 1580 * @budget: NAPI budget 1581 * 1582 * Note, this function is separated out from the napi poll function to 1583 * more cleanly separate packet receive code from other bookkeeping 1584 * functions performed in the napi poll function. 1585 * 1586 * Return: Number of packets received. 1587 */ 1588 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1589 { 1590 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1591 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1592 struct nfp_net_tx_ring *tx_ring; 1593 struct bpf_prog *xdp_prog; 1594 bool xdp_tx_cmpl = false; 1595 unsigned int true_bufsz; 1596 struct sk_buff *skb; 1597 int pkts_polled = 0; 1598 int idx; 1599 1600 rcu_read_lock(); 1601 xdp_prog = READ_ONCE(dp->xdp_prog); 1602 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1603 tx_ring = r_vec->xdp_ring; 1604 1605 while (pkts_polled < budget) { 1606 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1607 struct nfp_net_rx_buf *rxbuf; 1608 struct nfp_net_rx_desc *rxd; 1609 struct nfp_meta_parsed meta; 1610 struct net_device *netdev; 1611 dma_addr_t new_dma_addr; 1612 u32 meta_len_xdp = 0; 1613 void *new_frag; 1614 1615 idx = D_IDX(rx_ring, rx_ring->rd_p); 1616 1617 rxd = &rx_ring->rxds[idx]; 1618 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1619 break; 1620 1621 /* Memory barrier to ensure that we won't do other reads 1622 * before the DD bit. 1623 */ 1624 dma_rmb(); 1625 1626 memset(&meta, 0, sizeof(meta)); 1627 1628 rx_ring->rd_p++; 1629 pkts_polled++; 1630 1631 rxbuf = &rx_ring->rxbufs[idx]; 1632 /* < meta_len > 1633 * <-- [rx_offset] --> 1634 * --------------------------------------------------------- 1635 * | [XX] | metadata | packet | XXXX | 1636 * --------------------------------------------------------- 1637 * <---------------- data_len ---------------> 1638 * 1639 * The rx_offset is fixed for all packets, the meta_len can vary 1640 * on a packet by packet basis. If rx_offset is set to zero 1641 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1642 * buffer and is immediately followed by the packet (no [XX]). 1643 */ 1644 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1645 data_len = le16_to_cpu(rxd->rxd.data_len); 1646 pkt_len = data_len - meta_len; 1647 1648 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1649 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1650 pkt_off += meta_len; 1651 else 1652 pkt_off += dp->rx_offset; 1653 meta_off = pkt_off - meta_len; 1654 1655 /* Stats update */ 1656 u64_stats_update_begin(&r_vec->rx_sync); 1657 r_vec->rx_pkts++; 1658 r_vec->rx_bytes += pkt_len; 1659 u64_stats_update_end(&r_vec->rx_sync); 1660 1661 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1662 (dp->rx_offset && meta_len > dp->rx_offset))) { 1663 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1664 meta_len); 1665 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1666 continue; 1667 } 1668 1669 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1670 data_len); 1671 1672 if (!dp->chained_metadata_format) { 1673 nfp_net_set_hash_desc(dp->netdev, &meta, 1674 rxbuf->frag + meta_off, rxd); 1675 } else if (meta_len) { 1676 void *end; 1677 1678 end = nfp_net_parse_meta(dp->netdev, &meta, 1679 rxbuf->frag + meta_off, 1680 meta_len); 1681 if (unlikely(end != rxbuf->frag + pkt_off)) { 1682 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1683 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1684 NULL); 1685 continue; 1686 } 1687 } 1688 1689 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1690 dp->bpf_offload_xdp) && !meta.portid) { 1691 void *orig_data = rxbuf->frag + pkt_off; 1692 unsigned int dma_off; 1693 struct xdp_buff xdp; 1694 int act; 1695 1696 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1697 xdp.data = orig_data; 1698 xdp.data_meta = orig_data; 1699 xdp.data_end = orig_data + pkt_len; 1700 1701 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1702 1703 pkt_len -= xdp.data - orig_data; 1704 pkt_off += xdp.data - orig_data; 1705 1706 switch (act) { 1707 case XDP_PASS: 1708 meta_len_xdp = xdp.data - xdp.data_meta; 1709 break; 1710 case XDP_TX: 1711 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1712 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1713 tx_ring, rxbuf, 1714 dma_off, 1715 pkt_len, 1716 &xdp_tx_cmpl))) 1717 trace_xdp_exception(dp->netdev, 1718 xdp_prog, act); 1719 continue; 1720 default: 1721 bpf_warn_invalid_xdp_action(act); 1722 /* fall through */ 1723 case XDP_ABORTED: 1724 trace_xdp_exception(dp->netdev, xdp_prog, act); 1725 /* fall through */ 1726 case XDP_DROP: 1727 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1728 rxbuf->dma_addr); 1729 continue; 1730 } 1731 } 1732 1733 skb = build_skb(rxbuf->frag, true_bufsz); 1734 if (unlikely(!skb)) { 1735 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1736 continue; 1737 } 1738 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1739 if (unlikely(!new_frag)) { 1740 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1741 continue; 1742 } 1743 1744 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1745 1746 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1747 1748 if (likely(!meta.portid)) { 1749 netdev = dp->netdev; 1750 } else { 1751 struct nfp_net *nn; 1752 1753 nn = netdev_priv(dp->netdev); 1754 netdev = nfp_app_repr_get(nn->app, meta.portid); 1755 if (unlikely(!netdev)) { 1756 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1757 continue; 1758 } 1759 nfp_repr_inc_rx_stats(netdev, pkt_len); 1760 } 1761 1762 skb_reserve(skb, pkt_off); 1763 skb_put(skb, pkt_len); 1764 1765 skb->mark = meta.mark; 1766 skb_set_hash(skb, meta.hash, meta.hash_type); 1767 1768 skb_record_rx_queue(skb, rx_ring->idx); 1769 skb->protocol = eth_type_trans(skb, netdev); 1770 1771 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1772 1773 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1774 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1775 le16_to_cpu(rxd->rxd.vlan)); 1776 if (meta_len_xdp) 1777 skb_metadata_set(skb, meta_len_xdp); 1778 1779 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1780 } 1781 1782 if (xdp_prog) { 1783 if (tx_ring->wr_ptr_add) 1784 nfp_net_tx_xmit_more_flush(tx_ring); 1785 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1786 !xdp_tx_cmpl) 1787 if (!nfp_net_xdp_complete(tx_ring)) 1788 pkts_polled = budget; 1789 } 1790 rcu_read_unlock(); 1791 1792 return pkts_polled; 1793 } 1794 1795 /** 1796 * nfp_net_poll() - napi poll function 1797 * @napi: NAPI structure 1798 * @budget: NAPI budget 1799 * 1800 * Return: number of packets polled. 1801 */ 1802 static int nfp_net_poll(struct napi_struct *napi, int budget) 1803 { 1804 struct nfp_net_r_vector *r_vec = 1805 container_of(napi, struct nfp_net_r_vector, napi); 1806 unsigned int pkts_polled = 0; 1807 1808 if (r_vec->tx_ring) 1809 nfp_net_tx_complete(r_vec->tx_ring); 1810 if (r_vec->rx_ring) 1811 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1812 1813 if (pkts_polled < budget) 1814 if (napi_complete_done(napi, pkts_polled)) 1815 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1816 1817 return pkts_polled; 1818 } 1819 1820 /* Control device data path 1821 */ 1822 1823 static bool 1824 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1825 struct sk_buff *skb, bool old) 1826 { 1827 unsigned int real_len = skb->len, meta_len = 0; 1828 struct nfp_net_tx_ring *tx_ring; 1829 struct nfp_net_tx_buf *txbuf; 1830 struct nfp_net_tx_desc *txd; 1831 struct nfp_net_dp *dp; 1832 dma_addr_t dma_addr; 1833 int wr_idx; 1834 1835 dp = &r_vec->nfp_net->dp; 1836 tx_ring = r_vec->tx_ring; 1837 1838 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1839 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1840 goto err_free; 1841 } 1842 1843 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1844 u64_stats_update_begin(&r_vec->tx_sync); 1845 r_vec->tx_busy++; 1846 u64_stats_update_end(&r_vec->tx_sync); 1847 if (!old) 1848 __skb_queue_tail(&r_vec->queue, skb); 1849 else 1850 __skb_queue_head(&r_vec->queue, skb); 1851 return true; 1852 } 1853 1854 if (nfp_app_ctrl_has_meta(nn->app)) { 1855 if (unlikely(skb_headroom(skb) < 8)) { 1856 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1857 goto err_free; 1858 } 1859 meta_len = 8; 1860 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1861 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1862 } 1863 1864 /* Start with the head skbuf */ 1865 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1866 DMA_TO_DEVICE); 1867 if (dma_mapping_error(dp->dev, dma_addr)) 1868 goto err_dma_warn; 1869 1870 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1871 1872 /* Stash the soft descriptor of the head then initialize it */ 1873 txbuf = &tx_ring->txbufs[wr_idx]; 1874 txbuf->skb = skb; 1875 txbuf->dma_addr = dma_addr; 1876 txbuf->fidx = -1; 1877 txbuf->pkt_cnt = 1; 1878 txbuf->real_len = real_len; 1879 1880 /* Build TX descriptor */ 1881 txd = &tx_ring->txds[wr_idx]; 1882 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1883 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1884 nfp_desc_set_dma_addr(txd, dma_addr); 1885 txd->data_len = cpu_to_le16(skb->len); 1886 1887 txd->flags = 0; 1888 txd->mss = 0; 1889 txd->lso_hdrlen = 0; 1890 1891 tx_ring->wr_p++; 1892 tx_ring->wr_ptr_add++; 1893 nfp_net_tx_xmit_more_flush(tx_ring); 1894 1895 return false; 1896 1897 err_dma_warn: 1898 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1899 err_free: 1900 u64_stats_update_begin(&r_vec->tx_sync); 1901 r_vec->tx_errors++; 1902 u64_stats_update_end(&r_vec->tx_sync); 1903 dev_kfree_skb_any(skb); 1904 return false; 1905 } 1906 1907 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1908 { 1909 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1910 bool ret; 1911 1912 spin_lock_bh(&r_vec->lock); 1913 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1914 spin_unlock_bh(&r_vec->lock); 1915 1916 return ret; 1917 } 1918 1919 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1920 { 1921 struct sk_buff *skb; 1922 1923 while ((skb = __skb_dequeue(&r_vec->queue))) 1924 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1925 return; 1926 } 1927 1928 static bool 1929 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1930 { 1931 u32 meta_type, meta_tag; 1932 1933 if (!nfp_app_ctrl_has_meta(nn->app)) 1934 return !meta_len; 1935 1936 if (meta_len != 8) 1937 return false; 1938 1939 meta_type = get_unaligned_be32(data); 1940 meta_tag = get_unaligned_be32(data + 4); 1941 1942 return (meta_type == NFP_NET_META_PORTID && 1943 meta_tag == NFP_META_PORT_ID_CTRL); 1944 } 1945 1946 static bool 1947 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1948 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1949 { 1950 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1951 struct nfp_net_rx_buf *rxbuf; 1952 struct nfp_net_rx_desc *rxd; 1953 dma_addr_t new_dma_addr; 1954 struct sk_buff *skb; 1955 void *new_frag; 1956 int idx; 1957 1958 idx = D_IDX(rx_ring, rx_ring->rd_p); 1959 1960 rxd = &rx_ring->rxds[idx]; 1961 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1962 return false; 1963 1964 /* Memory barrier to ensure that we won't do other reads 1965 * before the DD bit. 1966 */ 1967 dma_rmb(); 1968 1969 rx_ring->rd_p++; 1970 1971 rxbuf = &rx_ring->rxbufs[idx]; 1972 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1973 data_len = le16_to_cpu(rxd->rxd.data_len); 1974 pkt_len = data_len - meta_len; 1975 1976 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1977 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1978 pkt_off += meta_len; 1979 else 1980 pkt_off += dp->rx_offset; 1981 meta_off = pkt_off - meta_len; 1982 1983 /* Stats update */ 1984 u64_stats_update_begin(&r_vec->rx_sync); 1985 r_vec->rx_pkts++; 1986 r_vec->rx_bytes += pkt_len; 1987 u64_stats_update_end(&r_vec->rx_sync); 1988 1989 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 1990 1991 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 1992 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 1993 meta_len); 1994 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1995 return true; 1996 } 1997 1998 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 1999 if (unlikely(!skb)) { 2000 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2001 return true; 2002 } 2003 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2004 if (unlikely(!new_frag)) { 2005 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2006 return true; 2007 } 2008 2009 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2010 2011 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2012 2013 skb_reserve(skb, pkt_off); 2014 skb_put(skb, pkt_len); 2015 2016 nfp_app_ctrl_rx(nn->app, skb); 2017 2018 return true; 2019 } 2020 2021 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2022 { 2023 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2024 struct nfp_net *nn = r_vec->nfp_net; 2025 struct nfp_net_dp *dp = &nn->dp; 2026 2027 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring)) 2028 continue; 2029 } 2030 2031 static void nfp_ctrl_poll(unsigned long arg) 2032 { 2033 struct nfp_net_r_vector *r_vec = (void *)arg; 2034 2035 spin_lock_bh(&r_vec->lock); 2036 nfp_net_tx_complete(r_vec->tx_ring); 2037 __nfp_ctrl_tx_queued(r_vec); 2038 spin_unlock_bh(&r_vec->lock); 2039 2040 nfp_ctrl_rx(r_vec); 2041 2042 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2043 } 2044 2045 /* Setup and Configuration 2046 */ 2047 2048 /** 2049 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2050 * @nn: NFP Network structure 2051 */ 2052 static void nfp_net_vecs_init(struct nfp_net *nn) 2053 { 2054 struct nfp_net_r_vector *r_vec; 2055 int r; 2056 2057 nn->lsc_handler = nfp_net_irq_lsc; 2058 nn->exn_handler = nfp_net_irq_exn; 2059 2060 for (r = 0; r < nn->max_r_vecs; r++) { 2061 struct msix_entry *entry; 2062 2063 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2064 2065 r_vec = &nn->r_vecs[r]; 2066 r_vec->nfp_net = nn; 2067 r_vec->irq_entry = entry->entry; 2068 r_vec->irq_vector = entry->vector; 2069 2070 if (nn->dp.netdev) { 2071 r_vec->handler = nfp_net_irq_rxtx; 2072 } else { 2073 r_vec->handler = nfp_ctrl_irq_rxtx; 2074 2075 __skb_queue_head_init(&r_vec->queue); 2076 spin_lock_init(&r_vec->lock); 2077 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2078 (unsigned long)r_vec); 2079 tasklet_disable(&r_vec->tasklet); 2080 } 2081 2082 cpumask_set_cpu(r, &r_vec->affinity_mask); 2083 } 2084 } 2085 2086 /** 2087 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2088 * @tx_ring: TX ring to free 2089 */ 2090 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2091 { 2092 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2093 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2094 2095 kfree(tx_ring->txbufs); 2096 2097 if (tx_ring->txds) 2098 dma_free_coherent(dp->dev, tx_ring->size, 2099 tx_ring->txds, tx_ring->dma); 2100 2101 tx_ring->cnt = 0; 2102 tx_ring->txbufs = NULL; 2103 tx_ring->txds = NULL; 2104 tx_ring->dma = 0; 2105 tx_ring->size = 0; 2106 } 2107 2108 /** 2109 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2110 * @dp: NFP Net data path struct 2111 * @tx_ring: TX Ring structure to allocate 2112 * 2113 * Return: 0 on success, negative errno otherwise. 2114 */ 2115 static int 2116 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2117 { 2118 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2119 int sz; 2120 2121 tx_ring->cnt = dp->txd_cnt; 2122 2123 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 2124 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2125 &tx_ring->dma, GFP_KERNEL); 2126 if (!tx_ring->txds) 2127 goto err_alloc; 2128 2129 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 2130 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 2131 if (!tx_ring->txbufs) 2132 goto err_alloc; 2133 2134 if (!tx_ring->is_xdp && dp->netdev) 2135 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2136 tx_ring->idx); 2137 2138 return 0; 2139 2140 err_alloc: 2141 nfp_net_tx_ring_free(tx_ring); 2142 return -ENOMEM; 2143 } 2144 2145 static void 2146 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2147 struct nfp_net_tx_ring *tx_ring) 2148 { 2149 unsigned int i; 2150 2151 if (!tx_ring->is_xdp) 2152 return; 2153 2154 for (i = 0; i < tx_ring->cnt; i++) { 2155 if (!tx_ring->txbufs[i].frag) 2156 return; 2157 2158 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2159 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2160 } 2161 } 2162 2163 static int 2164 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2165 struct nfp_net_tx_ring *tx_ring) 2166 { 2167 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2168 unsigned int i; 2169 2170 if (!tx_ring->is_xdp) 2171 return 0; 2172 2173 for (i = 0; i < tx_ring->cnt; i++) { 2174 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2175 if (!txbufs[i].frag) { 2176 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2177 return -ENOMEM; 2178 } 2179 } 2180 2181 return 0; 2182 } 2183 2184 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2185 { 2186 unsigned int r; 2187 2188 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2189 GFP_KERNEL); 2190 if (!dp->tx_rings) 2191 return -ENOMEM; 2192 2193 for (r = 0; r < dp->num_tx_rings; r++) { 2194 int bias = 0; 2195 2196 if (r >= dp->num_stack_tx_rings) 2197 bias = dp->num_stack_tx_rings; 2198 2199 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2200 r, bias); 2201 2202 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2203 goto err_free_prev; 2204 2205 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2206 goto err_free_ring; 2207 } 2208 2209 return 0; 2210 2211 err_free_prev: 2212 while (r--) { 2213 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2214 err_free_ring: 2215 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2216 } 2217 kfree(dp->tx_rings); 2218 return -ENOMEM; 2219 } 2220 2221 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2222 { 2223 unsigned int r; 2224 2225 for (r = 0; r < dp->num_tx_rings; r++) { 2226 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2227 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2228 } 2229 2230 kfree(dp->tx_rings); 2231 } 2232 2233 /** 2234 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2235 * @rx_ring: RX ring to free 2236 */ 2237 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2238 { 2239 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2240 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2241 2242 kfree(rx_ring->rxbufs); 2243 2244 if (rx_ring->rxds) 2245 dma_free_coherent(dp->dev, rx_ring->size, 2246 rx_ring->rxds, rx_ring->dma); 2247 2248 rx_ring->cnt = 0; 2249 rx_ring->rxbufs = NULL; 2250 rx_ring->rxds = NULL; 2251 rx_ring->dma = 0; 2252 rx_ring->size = 0; 2253 } 2254 2255 /** 2256 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2257 * @dp: NFP Net data path struct 2258 * @rx_ring: RX ring to allocate 2259 * 2260 * Return: 0 on success, negative errno otherwise. 2261 */ 2262 static int 2263 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2264 { 2265 int sz; 2266 2267 rx_ring->cnt = dp->rxd_cnt; 2268 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 2269 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2270 &rx_ring->dma, GFP_KERNEL); 2271 if (!rx_ring->rxds) 2272 goto err_alloc; 2273 2274 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 2275 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 2276 if (!rx_ring->rxbufs) 2277 goto err_alloc; 2278 2279 return 0; 2280 2281 err_alloc: 2282 nfp_net_rx_ring_free(rx_ring); 2283 return -ENOMEM; 2284 } 2285 2286 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2287 { 2288 unsigned int r; 2289 2290 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2291 GFP_KERNEL); 2292 if (!dp->rx_rings) 2293 return -ENOMEM; 2294 2295 for (r = 0; r < dp->num_rx_rings; r++) { 2296 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2297 2298 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2299 goto err_free_prev; 2300 2301 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2302 goto err_free_ring; 2303 } 2304 2305 return 0; 2306 2307 err_free_prev: 2308 while (r--) { 2309 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2310 err_free_ring: 2311 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2312 } 2313 kfree(dp->rx_rings); 2314 return -ENOMEM; 2315 } 2316 2317 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2318 { 2319 unsigned int r; 2320 2321 for (r = 0; r < dp->num_rx_rings; r++) { 2322 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2323 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2324 } 2325 2326 kfree(dp->rx_rings); 2327 } 2328 2329 static void 2330 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2331 struct nfp_net_r_vector *r_vec, int idx) 2332 { 2333 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2334 r_vec->tx_ring = 2335 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2336 2337 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2338 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2339 } 2340 2341 static int 2342 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2343 int idx) 2344 { 2345 int err; 2346 2347 /* Setup NAPI */ 2348 if (nn->dp.netdev) 2349 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2350 nfp_net_poll, NAPI_POLL_WEIGHT); 2351 else 2352 tasklet_enable(&r_vec->tasklet); 2353 2354 snprintf(r_vec->name, sizeof(r_vec->name), 2355 "%s-rxtx-%d", nfp_net_name(nn), idx); 2356 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2357 r_vec); 2358 if (err) { 2359 if (nn->dp.netdev) 2360 netif_napi_del(&r_vec->napi); 2361 else 2362 tasklet_disable(&r_vec->tasklet); 2363 2364 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2365 return err; 2366 } 2367 disable_irq(r_vec->irq_vector); 2368 2369 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2370 2371 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2372 r_vec->irq_entry); 2373 2374 return 0; 2375 } 2376 2377 static void 2378 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2379 { 2380 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2381 if (nn->dp.netdev) 2382 netif_napi_del(&r_vec->napi); 2383 else 2384 tasklet_disable(&r_vec->tasklet); 2385 2386 free_irq(r_vec->irq_vector, r_vec); 2387 } 2388 2389 /** 2390 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2391 * @nn: NFP Net device to reconfigure 2392 */ 2393 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2394 { 2395 int i; 2396 2397 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2398 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2399 get_unaligned_le32(nn->rss_itbl + i)); 2400 } 2401 2402 /** 2403 * nfp_net_rss_write_key() - Write RSS hash key to device 2404 * @nn: NFP Net device to reconfigure 2405 */ 2406 void nfp_net_rss_write_key(struct nfp_net *nn) 2407 { 2408 int i; 2409 2410 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2411 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2412 get_unaligned_le32(nn->rss_key + i)); 2413 } 2414 2415 /** 2416 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2417 * @nn: NFP Net device to reconfigure 2418 */ 2419 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2420 { 2421 u8 i; 2422 u32 factor; 2423 u32 value; 2424 2425 /* Compute factor used to convert coalesce '_usecs' parameters to 2426 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2427 * count. 2428 */ 2429 factor = nn->me_freq_mhz / 16; 2430 2431 /* copy RX interrupt coalesce parameters */ 2432 value = (nn->rx_coalesce_max_frames << 16) | 2433 (factor * nn->rx_coalesce_usecs); 2434 for (i = 0; i < nn->dp.num_rx_rings; i++) 2435 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2436 2437 /* copy TX interrupt coalesce parameters */ 2438 value = (nn->tx_coalesce_max_frames << 16) | 2439 (factor * nn->tx_coalesce_usecs); 2440 for (i = 0; i < nn->dp.num_tx_rings; i++) 2441 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2442 } 2443 2444 /** 2445 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2446 * @nn: NFP Net device to reconfigure 2447 * @addr: MAC address to write 2448 * 2449 * Writes the MAC address from the netdev to the device control BAR. Does not 2450 * perform the required reconfig. We do a bit of byte swapping dance because 2451 * firmware is LE. 2452 */ 2453 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2454 { 2455 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2456 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2457 } 2458 2459 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2460 { 2461 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2462 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2463 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2464 2465 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2466 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2467 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2468 } 2469 2470 /** 2471 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2472 * @nn: NFP Net device to reconfigure 2473 */ 2474 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2475 { 2476 u32 new_ctrl, update; 2477 unsigned int r; 2478 int err; 2479 2480 new_ctrl = nn->dp.ctrl; 2481 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2482 update = NFP_NET_CFG_UPDATE_GEN; 2483 update |= NFP_NET_CFG_UPDATE_MSIX; 2484 update |= NFP_NET_CFG_UPDATE_RING; 2485 2486 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2487 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2488 2489 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2490 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2491 2492 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2493 err = nfp_net_reconfig(nn, update); 2494 if (err) 2495 nn_err(nn, "Could not disable device: %d\n", err); 2496 2497 for (r = 0; r < nn->dp.num_rx_rings; r++) 2498 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2499 for (r = 0; r < nn->dp.num_tx_rings; r++) 2500 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2501 for (r = 0; r < nn->dp.num_r_vecs; r++) 2502 nfp_net_vec_clear_ring_data(nn, r); 2503 2504 nn->dp.ctrl = new_ctrl; 2505 } 2506 2507 static void 2508 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2509 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2510 { 2511 /* Write the DMA address, size and MSI-X info to the device */ 2512 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2513 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2514 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2515 } 2516 2517 static void 2518 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2519 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2520 { 2521 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2522 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2523 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2524 } 2525 2526 /** 2527 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2528 * @nn: NFP Net device to reconfigure 2529 */ 2530 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2531 { 2532 u32 bufsz, new_ctrl, update = 0; 2533 unsigned int r; 2534 int err; 2535 2536 new_ctrl = nn->dp.ctrl; 2537 2538 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2539 nfp_net_rss_write_key(nn); 2540 nfp_net_rss_write_itbl(nn); 2541 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2542 update |= NFP_NET_CFG_UPDATE_RSS; 2543 } 2544 2545 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2546 nfp_net_coalesce_write_cfg(nn); 2547 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2548 } 2549 2550 for (r = 0; r < nn->dp.num_tx_rings; r++) 2551 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2552 for (r = 0; r < nn->dp.num_rx_rings; r++) 2553 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2554 2555 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2556 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2557 2558 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2559 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2560 2561 if (nn->dp.netdev) 2562 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2563 2564 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2565 2566 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2567 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2568 2569 /* Enable device */ 2570 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2571 update |= NFP_NET_CFG_UPDATE_GEN; 2572 update |= NFP_NET_CFG_UPDATE_MSIX; 2573 update |= NFP_NET_CFG_UPDATE_RING; 2574 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2575 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2576 2577 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2578 err = nfp_net_reconfig(nn, update); 2579 if (err) { 2580 nfp_net_clear_config_and_disable(nn); 2581 return err; 2582 } 2583 2584 nn->dp.ctrl = new_ctrl; 2585 2586 for (r = 0; r < nn->dp.num_rx_rings; r++) 2587 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2588 2589 /* Since reconfiguration requests while NFP is down are ignored we 2590 * have to wipe the entire VXLAN configuration and reinitialize it. 2591 */ 2592 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2593 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2594 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2595 udp_tunnel_get_rx_info(nn->dp.netdev); 2596 } 2597 2598 return 0; 2599 } 2600 2601 /** 2602 * nfp_net_close_stack() - Quiesce the stack (part of close) 2603 * @nn: NFP Net device to reconfigure 2604 */ 2605 static void nfp_net_close_stack(struct nfp_net *nn) 2606 { 2607 unsigned int r; 2608 2609 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2610 netif_carrier_off(nn->dp.netdev); 2611 nn->link_up = false; 2612 2613 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2614 disable_irq(nn->r_vecs[r].irq_vector); 2615 napi_disable(&nn->r_vecs[r].napi); 2616 } 2617 2618 netif_tx_disable(nn->dp.netdev); 2619 } 2620 2621 /** 2622 * nfp_net_close_free_all() - Free all runtime resources 2623 * @nn: NFP Net device to reconfigure 2624 */ 2625 static void nfp_net_close_free_all(struct nfp_net *nn) 2626 { 2627 unsigned int r; 2628 2629 nfp_net_tx_rings_free(&nn->dp); 2630 nfp_net_rx_rings_free(&nn->dp); 2631 2632 for (r = 0; r < nn->dp.num_r_vecs; r++) 2633 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2634 2635 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2636 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2637 } 2638 2639 /** 2640 * nfp_net_netdev_close() - Called when the device is downed 2641 * @netdev: netdev structure 2642 */ 2643 static int nfp_net_netdev_close(struct net_device *netdev) 2644 { 2645 struct nfp_net *nn = netdev_priv(netdev); 2646 2647 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2648 */ 2649 nfp_net_close_stack(nn); 2650 2651 /* Step 2: Tell NFP 2652 */ 2653 nfp_net_clear_config_and_disable(nn); 2654 nfp_port_configure(netdev, false); 2655 2656 /* Step 3: Free resources 2657 */ 2658 nfp_net_close_free_all(nn); 2659 2660 nn_dbg(nn, "%s down", netdev->name); 2661 return 0; 2662 } 2663 2664 void nfp_ctrl_close(struct nfp_net *nn) 2665 { 2666 int r; 2667 2668 rtnl_lock(); 2669 2670 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2671 disable_irq(nn->r_vecs[r].irq_vector); 2672 tasklet_disable(&nn->r_vecs[r].tasklet); 2673 } 2674 2675 nfp_net_clear_config_and_disable(nn); 2676 2677 nfp_net_close_free_all(nn); 2678 2679 rtnl_unlock(); 2680 } 2681 2682 /** 2683 * nfp_net_open_stack() - Start the device from stack's perspective 2684 * @nn: NFP Net device to reconfigure 2685 */ 2686 static void nfp_net_open_stack(struct nfp_net *nn) 2687 { 2688 unsigned int r; 2689 2690 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2691 napi_enable(&nn->r_vecs[r].napi); 2692 enable_irq(nn->r_vecs[r].irq_vector); 2693 } 2694 2695 netif_tx_wake_all_queues(nn->dp.netdev); 2696 2697 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2698 nfp_net_read_link_status(nn); 2699 } 2700 2701 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2702 { 2703 int err, r; 2704 2705 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2706 nn->exn_name, sizeof(nn->exn_name), 2707 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2708 if (err) 2709 return err; 2710 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2711 nn->lsc_name, sizeof(nn->lsc_name), 2712 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2713 if (err) 2714 goto err_free_exn; 2715 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2716 2717 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2718 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2719 if (err) 2720 goto err_cleanup_vec_p; 2721 } 2722 2723 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2724 if (err) 2725 goto err_cleanup_vec; 2726 2727 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2728 if (err) 2729 goto err_free_rx_rings; 2730 2731 for (r = 0; r < nn->max_r_vecs; r++) 2732 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2733 2734 return 0; 2735 2736 err_free_rx_rings: 2737 nfp_net_rx_rings_free(&nn->dp); 2738 err_cleanup_vec: 2739 r = nn->dp.num_r_vecs; 2740 err_cleanup_vec_p: 2741 while (r--) 2742 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2743 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2744 err_free_exn: 2745 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2746 return err; 2747 } 2748 2749 static int nfp_net_netdev_open(struct net_device *netdev) 2750 { 2751 struct nfp_net *nn = netdev_priv(netdev); 2752 int err; 2753 2754 /* Step 1: Allocate resources for rings and the like 2755 * - Request interrupts 2756 * - Allocate RX and TX ring resources 2757 * - Setup initial RSS table 2758 */ 2759 err = nfp_net_open_alloc_all(nn); 2760 if (err) 2761 return err; 2762 2763 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2764 if (err) 2765 goto err_free_all; 2766 2767 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2768 if (err) 2769 goto err_free_all; 2770 2771 /* Step 2: Configure the NFP 2772 * - Ifup the physical interface if it exists 2773 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2774 * - Write MAC address (in case it changed) 2775 * - Set the MTU 2776 * - Set the Freelist buffer size 2777 * - Enable the FW 2778 */ 2779 err = nfp_port_configure(netdev, true); 2780 if (err) 2781 goto err_free_all; 2782 2783 err = nfp_net_set_config_and_enable(nn); 2784 if (err) 2785 goto err_port_disable; 2786 2787 /* Step 3: Enable for kernel 2788 * - put some freelist descriptors on each RX ring 2789 * - enable NAPI on each ring 2790 * - enable all TX queues 2791 * - set link state 2792 */ 2793 nfp_net_open_stack(nn); 2794 2795 return 0; 2796 2797 err_port_disable: 2798 nfp_port_configure(netdev, false); 2799 err_free_all: 2800 nfp_net_close_free_all(nn); 2801 return err; 2802 } 2803 2804 int nfp_ctrl_open(struct nfp_net *nn) 2805 { 2806 int err, r; 2807 2808 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2809 rtnl_lock(); 2810 2811 err = nfp_net_open_alloc_all(nn); 2812 if (err) 2813 goto err_unlock; 2814 2815 err = nfp_net_set_config_and_enable(nn); 2816 if (err) 2817 goto err_free_all; 2818 2819 for (r = 0; r < nn->dp.num_r_vecs; r++) 2820 enable_irq(nn->r_vecs[r].irq_vector); 2821 2822 rtnl_unlock(); 2823 2824 return 0; 2825 2826 err_free_all: 2827 nfp_net_close_free_all(nn); 2828 err_unlock: 2829 rtnl_unlock(); 2830 return err; 2831 } 2832 2833 static void nfp_net_set_rx_mode(struct net_device *netdev) 2834 { 2835 struct nfp_net *nn = netdev_priv(netdev); 2836 u32 new_ctrl; 2837 2838 new_ctrl = nn->dp.ctrl; 2839 2840 if (netdev->flags & IFF_PROMISC) { 2841 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2842 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2843 else 2844 nn_warn(nn, "FW does not support promiscuous mode\n"); 2845 } else { 2846 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2847 } 2848 2849 if (new_ctrl == nn->dp.ctrl) 2850 return; 2851 2852 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2853 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2854 2855 nn->dp.ctrl = new_ctrl; 2856 } 2857 2858 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2859 { 2860 int i; 2861 2862 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2863 nn->rss_itbl[i] = 2864 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2865 } 2866 2867 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2868 { 2869 struct nfp_net_dp new_dp = *dp; 2870 2871 *dp = nn->dp; 2872 nn->dp = new_dp; 2873 2874 nn->dp.netdev->mtu = new_dp.mtu; 2875 2876 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2877 nfp_net_rss_init_itbl(nn); 2878 } 2879 2880 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2881 { 2882 unsigned int r; 2883 int err; 2884 2885 nfp_net_dp_swap(nn, dp); 2886 2887 for (r = 0; r < nn->max_r_vecs; r++) 2888 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2889 2890 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2891 if (err) 2892 return err; 2893 2894 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2895 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2896 nn->dp.num_stack_tx_rings); 2897 if (err) 2898 return err; 2899 } 2900 2901 return nfp_net_set_config_and_enable(nn); 2902 } 2903 2904 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2905 { 2906 struct nfp_net_dp *new; 2907 2908 new = kmalloc(sizeof(*new), GFP_KERNEL); 2909 if (!new) 2910 return NULL; 2911 2912 *new = nn->dp; 2913 2914 /* Clear things which need to be recomputed */ 2915 new->fl_bufsz = 0; 2916 new->tx_rings = NULL; 2917 new->rx_rings = NULL; 2918 new->num_r_vecs = 0; 2919 new->num_stack_tx_rings = 0; 2920 2921 return new; 2922 } 2923 2924 static int 2925 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2926 struct netlink_ext_ack *extack) 2927 { 2928 /* XDP-enabled tests */ 2929 if (!dp->xdp_prog) 2930 return 0; 2931 if (dp->fl_bufsz > PAGE_SIZE) { 2932 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2933 return -EINVAL; 2934 } 2935 if (dp->num_tx_rings > nn->max_tx_rings) { 2936 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2937 return -EINVAL; 2938 } 2939 2940 return 0; 2941 } 2942 2943 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2944 struct netlink_ext_ack *extack) 2945 { 2946 int r, err; 2947 2948 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2949 2950 dp->num_stack_tx_rings = dp->num_tx_rings; 2951 if (dp->xdp_prog) 2952 dp->num_stack_tx_rings -= dp->num_rx_rings; 2953 2954 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2955 2956 err = nfp_net_check_config(nn, dp, extack); 2957 if (err) 2958 goto exit_free_dp; 2959 2960 if (!netif_running(dp->netdev)) { 2961 nfp_net_dp_swap(nn, dp); 2962 err = 0; 2963 goto exit_free_dp; 2964 } 2965 2966 /* Prepare new rings */ 2967 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2968 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2969 if (err) { 2970 dp->num_r_vecs = r; 2971 goto err_cleanup_vecs; 2972 } 2973 } 2974 2975 err = nfp_net_rx_rings_prepare(nn, dp); 2976 if (err) 2977 goto err_cleanup_vecs; 2978 2979 err = nfp_net_tx_rings_prepare(nn, dp); 2980 if (err) 2981 goto err_free_rx; 2982 2983 /* Stop device, swap in new rings, try to start the firmware */ 2984 nfp_net_close_stack(nn); 2985 nfp_net_clear_config_and_disable(nn); 2986 2987 err = nfp_net_dp_swap_enable(nn, dp); 2988 if (err) { 2989 int err2; 2990 2991 nfp_net_clear_config_and_disable(nn); 2992 2993 /* Try with old configuration and old rings */ 2994 err2 = nfp_net_dp_swap_enable(nn, dp); 2995 if (err2) 2996 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2997 err, err2); 2998 } 2999 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3000 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3001 3002 nfp_net_rx_rings_free(dp); 3003 nfp_net_tx_rings_free(dp); 3004 3005 nfp_net_open_stack(nn); 3006 exit_free_dp: 3007 kfree(dp); 3008 3009 return err; 3010 3011 err_free_rx: 3012 nfp_net_rx_rings_free(dp); 3013 err_cleanup_vecs: 3014 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3015 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3016 kfree(dp); 3017 return err; 3018 } 3019 3020 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3021 { 3022 struct nfp_net *nn = netdev_priv(netdev); 3023 struct nfp_net_dp *dp; 3024 3025 dp = nfp_net_clone_dp(nn); 3026 if (!dp) 3027 return -ENOMEM; 3028 3029 dp->mtu = new_mtu; 3030 3031 return nfp_net_ring_reconfig(nn, dp, NULL); 3032 } 3033 3034 static int 3035 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3036 { 3037 struct nfp_net *nn = netdev_priv(netdev); 3038 3039 /* Priority tagged packets with vlan id 0 are processed by the 3040 * NFP as untagged packets 3041 */ 3042 if (!vid) 3043 return 0; 3044 3045 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3046 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3047 3048 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3049 } 3050 3051 static int 3052 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3053 { 3054 struct nfp_net *nn = netdev_priv(netdev); 3055 3056 /* Priority tagged packets with vlan id 0 are processed by the 3057 * NFP as untagged packets 3058 */ 3059 if (!vid) 3060 return 0; 3061 3062 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3063 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3064 3065 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3066 } 3067 3068 static void nfp_net_stat64(struct net_device *netdev, 3069 struct rtnl_link_stats64 *stats) 3070 { 3071 struct nfp_net *nn = netdev_priv(netdev); 3072 int r; 3073 3074 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3075 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3076 u64 data[3]; 3077 unsigned int start; 3078 3079 do { 3080 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3081 data[0] = r_vec->rx_pkts; 3082 data[1] = r_vec->rx_bytes; 3083 data[2] = r_vec->rx_drops; 3084 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3085 stats->rx_packets += data[0]; 3086 stats->rx_bytes += data[1]; 3087 stats->rx_dropped += data[2]; 3088 3089 do { 3090 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3091 data[0] = r_vec->tx_pkts; 3092 data[1] = r_vec->tx_bytes; 3093 data[2] = r_vec->tx_errors; 3094 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3095 stats->tx_packets += data[0]; 3096 stats->tx_bytes += data[1]; 3097 stats->tx_errors += data[2]; 3098 } 3099 } 3100 3101 static int nfp_net_set_features(struct net_device *netdev, 3102 netdev_features_t features) 3103 { 3104 netdev_features_t changed = netdev->features ^ features; 3105 struct nfp_net *nn = netdev_priv(netdev); 3106 u32 new_ctrl; 3107 int err; 3108 3109 /* Assume this is not called with features we have not advertised */ 3110 3111 new_ctrl = nn->dp.ctrl; 3112 3113 if (changed & NETIF_F_RXCSUM) { 3114 if (features & NETIF_F_RXCSUM) 3115 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3116 else 3117 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3118 } 3119 3120 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3121 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3122 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3123 else 3124 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3125 } 3126 3127 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3128 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3129 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3130 NFP_NET_CFG_CTRL_LSO; 3131 else 3132 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3133 } 3134 3135 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3136 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3137 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3138 else 3139 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3140 } 3141 3142 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3143 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3144 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3145 else 3146 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3147 } 3148 3149 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3150 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3151 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3152 else 3153 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3154 } 3155 3156 if (changed & NETIF_F_SG) { 3157 if (features & NETIF_F_SG) 3158 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3159 else 3160 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3161 } 3162 3163 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) { 3164 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 3165 return -EBUSY; 3166 } 3167 3168 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3169 netdev->features, features, changed); 3170 3171 if (new_ctrl == nn->dp.ctrl) 3172 return 0; 3173 3174 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3175 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3176 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3177 if (err) 3178 return err; 3179 3180 nn->dp.ctrl = new_ctrl; 3181 3182 return 0; 3183 } 3184 3185 static netdev_features_t 3186 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3187 netdev_features_t features) 3188 { 3189 u8 l4_hdr; 3190 3191 /* We can't do TSO over double tagged packets (802.1AD) */ 3192 features &= vlan_features_check(skb, features); 3193 3194 if (!skb->encapsulation) 3195 return features; 3196 3197 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3198 if (skb_is_gso(skb)) { 3199 u32 hdrlen; 3200 3201 hdrlen = skb_inner_transport_header(skb) - skb->data + 3202 inner_tcp_hdrlen(skb); 3203 3204 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3205 features &= ~NETIF_F_GSO_MASK; 3206 } 3207 3208 /* VXLAN/GRE check */ 3209 switch (vlan_get_protocol(skb)) { 3210 case htons(ETH_P_IP): 3211 l4_hdr = ip_hdr(skb)->protocol; 3212 break; 3213 case htons(ETH_P_IPV6): 3214 l4_hdr = ipv6_hdr(skb)->nexthdr; 3215 break; 3216 default: 3217 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3218 } 3219 3220 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3221 skb->inner_protocol != htons(ETH_P_TEB) || 3222 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3223 (l4_hdr == IPPROTO_UDP && 3224 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3225 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3226 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3227 3228 return features; 3229 } 3230 3231 /** 3232 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3233 * @nn: NFP Net device to reconfigure 3234 * @idx: Index into the port table where new port should be written 3235 * @port: UDP port to configure (pass zero to remove VXLAN port) 3236 */ 3237 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3238 { 3239 int i; 3240 3241 nn->vxlan_ports[idx] = port; 3242 3243 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3244 return; 3245 3246 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3247 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3248 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3249 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3250 be16_to_cpu(nn->vxlan_ports[i])); 3251 3252 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3253 } 3254 3255 /** 3256 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3257 * @nn: NFP Network structure 3258 * @port: UDP port to look for 3259 * 3260 * Return: if the port is already in the table -- it's position; 3261 * if the port is not in the table -- free position to use; 3262 * if the table is full -- -ENOSPC. 3263 */ 3264 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3265 { 3266 int i, free_idx = -ENOSPC; 3267 3268 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3269 if (nn->vxlan_ports[i] == port) 3270 return i; 3271 if (!nn->vxlan_usecnt[i]) 3272 free_idx = i; 3273 } 3274 3275 return free_idx; 3276 } 3277 3278 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3279 struct udp_tunnel_info *ti) 3280 { 3281 struct nfp_net *nn = netdev_priv(netdev); 3282 int idx; 3283 3284 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3285 return; 3286 3287 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3288 if (idx == -ENOSPC) 3289 return; 3290 3291 if (!nn->vxlan_usecnt[idx]++) 3292 nfp_net_set_vxlan_port(nn, idx, ti->port); 3293 } 3294 3295 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3296 struct udp_tunnel_info *ti) 3297 { 3298 struct nfp_net *nn = netdev_priv(netdev); 3299 int idx; 3300 3301 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3302 return; 3303 3304 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3305 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3306 return; 3307 3308 if (!--nn->vxlan_usecnt[idx]) 3309 nfp_net_set_vxlan_port(nn, idx, 0); 3310 } 3311 3312 static int 3313 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog, 3314 struct netlink_ext_ack *extack) 3315 { 3316 struct nfp_net_dp *dp; 3317 3318 if (!prog == !nn->dp.xdp_prog) { 3319 WRITE_ONCE(nn->dp.xdp_prog, prog); 3320 return 0; 3321 } 3322 3323 dp = nfp_net_clone_dp(nn); 3324 if (!dp) 3325 return -ENOMEM; 3326 3327 dp->xdp_prog = prog; 3328 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3329 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3330 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3331 3332 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3333 return nfp_net_ring_reconfig(nn, dp, extack); 3334 } 3335 3336 static int 3337 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags, 3338 struct netlink_ext_ack *extack) 3339 { 3340 struct bpf_prog *drv_prog, *offload_prog; 3341 int err; 3342 3343 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES) 3344 return -EBUSY; 3345 3346 /* Load both when no flags set to allow easy activation of driver path 3347 * when program is replaced by one which can't be offloaded. 3348 */ 3349 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog; 3350 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog; 3351 3352 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack); 3353 if (err) 3354 return err; 3355 3356 err = nfp_app_xdp_offload(nn->app, nn, offload_prog); 3357 if (err && flags & XDP_FLAGS_HW_MODE) 3358 return err; 3359 3360 if (nn->xdp_prog) 3361 bpf_prog_put(nn->xdp_prog); 3362 nn->xdp_prog = prog; 3363 nn->xdp_flags = flags; 3364 3365 return 0; 3366 } 3367 3368 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 3369 { 3370 struct nfp_net *nn = netdev_priv(netdev); 3371 3372 switch (xdp->command) { 3373 case XDP_SETUP_PROG: 3374 case XDP_SETUP_PROG_HW: 3375 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags, 3376 xdp->extack); 3377 case XDP_QUERY_PROG: 3378 xdp->prog_attached = !!nn->xdp_prog; 3379 if (nn->dp.bpf_offload_xdp) 3380 xdp->prog_attached = XDP_ATTACHED_HW; 3381 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0; 3382 return 0; 3383 default: 3384 return -EINVAL; 3385 } 3386 } 3387 3388 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3389 { 3390 struct nfp_net *nn = netdev_priv(netdev); 3391 struct sockaddr *saddr = addr; 3392 int err; 3393 3394 err = eth_prepare_mac_addr_change(netdev, addr); 3395 if (err) 3396 return err; 3397 3398 nfp_net_write_mac_addr(nn, saddr->sa_data); 3399 3400 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3401 if (err) 3402 return err; 3403 3404 eth_commit_mac_addr_change(netdev, addr); 3405 3406 return 0; 3407 } 3408 3409 const struct net_device_ops nfp_net_netdev_ops = { 3410 .ndo_open = nfp_net_netdev_open, 3411 .ndo_stop = nfp_net_netdev_close, 3412 .ndo_start_xmit = nfp_net_tx, 3413 .ndo_get_stats64 = nfp_net_stat64, 3414 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3415 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3416 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3417 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3418 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3419 .ndo_get_vf_config = nfp_app_get_vf_config, 3420 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3421 .ndo_setup_tc = nfp_port_setup_tc, 3422 .ndo_tx_timeout = nfp_net_tx_timeout, 3423 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3424 .ndo_change_mtu = nfp_net_change_mtu, 3425 .ndo_set_mac_address = nfp_net_set_mac_address, 3426 .ndo_set_features = nfp_net_set_features, 3427 .ndo_features_check = nfp_net_features_check, 3428 .ndo_get_phys_port_name = nfp_port_get_phys_port_name, 3429 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3430 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3431 .ndo_xdp = nfp_net_xdp, 3432 }; 3433 3434 /** 3435 * nfp_net_info() - Print general info about the NIC 3436 * @nn: NFP Net device to reconfigure 3437 */ 3438 void nfp_net_info(struct nfp_net *nn) 3439 { 3440 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3441 nn->dp.is_vf ? "VF " : "", 3442 nn->dp.num_tx_rings, nn->max_tx_rings, 3443 nn->dp.num_rx_rings, nn->max_rx_rings); 3444 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3445 nn->fw_ver.resv, nn->fw_ver.class, 3446 nn->fw_ver.major, nn->fw_ver.minor, 3447 nn->max_mtu); 3448 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3449 nn->cap, 3450 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3451 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3452 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3453 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3454 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3455 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3456 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3457 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3458 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3459 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3460 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3461 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3462 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3463 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3464 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3465 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3466 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3467 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3468 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3469 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3470 "RXCSUM_COMPLETE " : "", 3471 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3472 nfp_app_extra_cap(nn->app, nn)); 3473 } 3474 3475 /** 3476 * nfp_net_alloc() - Allocate netdev and related structure 3477 * @pdev: PCI device 3478 * @needs_netdev: Whether to allocate a netdev for this vNIC 3479 * @max_tx_rings: Maximum number of TX rings supported by device 3480 * @max_rx_rings: Maximum number of RX rings supported by device 3481 * 3482 * This function allocates a netdev device and fills in the initial 3483 * part of the @struct nfp_net structure. In case of control device 3484 * nfp_net structure is allocated without the netdev. 3485 * 3486 * Return: NFP Net device structure, or ERR_PTR on error. 3487 */ 3488 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3489 unsigned int max_tx_rings, 3490 unsigned int max_rx_rings) 3491 { 3492 struct nfp_net *nn; 3493 3494 if (needs_netdev) { 3495 struct net_device *netdev; 3496 3497 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3498 max_tx_rings, max_rx_rings); 3499 if (!netdev) 3500 return ERR_PTR(-ENOMEM); 3501 3502 SET_NETDEV_DEV(netdev, &pdev->dev); 3503 nn = netdev_priv(netdev); 3504 nn->dp.netdev = netdev; 3505 } else { 3506 nn = vzalloc(sizeof(*nn)); 3507 if (!nn) 3508 return ERR_PTR(-ENOMEM); 3509 } 3510 3511 nn->dp.dev = &pdev->dev; 3512 nn->pdev = pdev; 3513 3514 nn->max_tx_rings = max_tx_rings; 3515 nn->max_rx_rings = max_rx_rings; 3516 3517 nn->dp.num_tx_rings = min_t(unsigned int, 3518 max_tx_rings, num_online_cpus()); 3519 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3520 netif_get_num_default_rss_queues()); 3521 3522 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3523 nn->dp.num_r_vecs = min_t(unsigned int, 3524 nn->dp.num_r_vecs, num_online_cpus()); 3525 3526 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3527 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3528 3529 spin_lock_init(&nn->reconfig_lock); 3530 spin_lock_init(&nn->link_status_lock); 3531 3532 setup_timer(&nn->reconfig_timer, 3533 nfp_net_reconfig_timer, (unsigned long)nn); 3534 3535 return nn; 3536 } 3537 3538 /** 3539 * nfp_net_free() - Undo what @nfp_net_alloc() did 3540 * @nn: NFP Net device to reconfigure 3541 */ 3542 void nfp_net_free(struct nfp_net *nn) 3543 { 3544 if (nn->xdp_prog) 3545 bpf_prog_put(nn->xdp_prog); 3546 3547 if (nn->dp.netdev) 3548 free_netdev(nn->dp.netdev); 3549 else 3550 vfree(nn); 3551 } 3552 3553 /** 3554 * nfp_net_rss_key_sz() - Get current size of the RSS key 3555 * @nn: NFP Net device instance 3556 * 3557 * Return: size of the RSS key for currently selected hash function. 3558 */ 3559 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3560 { 3561 switch (nn->rss_hfunc) { 3562 case ETH_RSS_HASH_TOP: 3563 return NFP_NET_CFG_RSS_KEY_SZ; 3564 case ETH_RSS_HASH_XOR: 3565 return 0; 3566 case ETH_RSS_HASH_CRC32: 3567 return 4; 3568 } 3569 3570 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3571 return 0; 3572 } 3573 3574 /** 3575 * nfp_net_rss_init() - Set the initial RSS parameters 3576 * @nn: NFP Net device to reconfigure 3577 */ 3578 static void nfp_net_rss_init(struct nfp_net *nn) 3579 { 3580 unsigned long func_bit, rss_cap_hfunc; 3581 u32 reg; 3582 3583 /* Read the RSS function capability and select first supported func */ 3584 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3585 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3586 if (!rss_cap_hfunc) 3587 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3588 NFP_NET_CFG_RSS_TOEPLITZ); 3589 3590 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3591 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3592 dev_warn(nn->dp.dev, 3593 "Bad RSS config, defaulting to Toeplitz hash\n"); 3594 func_bit = ETH_RSS_HASH_TOP_BIT; 3595 } 3596 nn->rss_hfunc = 1 << func_bit; 3597 3598 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3599 3600 nfp_net_rss_init_itbl(nn); 3601 3602 /* Enable IPv4/IPv6 TCP by default */ 3603 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3604 NFP_NET_CFG_RSS_IPV6_TCP | 3605 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3606 NFP_NET_CFG_RSS_MASK; 3607 } 3608 3609 /** 3610 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3611 * @nn: NFP Net device to reconfigure 3612 */ 3613 static void nfp_net_irqmod_init(struct nfp_net *nn) 3614 { 3615 nn->rx_coalesce_usecs = 50; 3616 nn->rx_coalesce_max_frames = 64; 3617 nn->tx_coalesce_usecs = 50; 3618 nn->tx_coalesce_max_frames = 64; 3619 } 3620 3621 static void nfp_net_netdev_init(struct nfp_net *nn) 3622 { 3623 struct net_device *netdev = nn->dp.netdev; 3624 3625 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3626 3627 netdev->mtu = nn->dp.mtu; 3628 3629 /* Advertise/enable offloads based on capabilities 3630 * 3631 * Note: netdev->features show the currently enabled features 3632 * and netdev->hw_features advertises which features are 3633 * supported. By default we enable most features. 3634 */ 3635 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3636 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3637 3638 netdev->hw_features = NETIF_F_HIGHDMA; 3639 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3640 netdev->hw_features |= NETIF_F_RXCSUM; 3641 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3642 } 3643 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3644 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3645 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3646 } 3647 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3648 netdev->hw_features |= NETIF_F_SG; 3649 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3650 } 3651 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3652 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3653 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3654 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3655 NFP_NET_CFG_CTRL_LSO; 3656 } 3657 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3658 netdev->hw_features |= NETIF_F_RXHASH; 3659 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3660 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3661 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3662 netdev->hw_features |= NETIF_F_GSO_GRE | 3663 NETIF_F_GSO_UDP_TUNNEL; 3664 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3665 3666 netdev->hw_enc_features = netdev->hw_features; 3667 } 3668 3669 netdev->vlan_features = netdev->hw_features; 3670 3671 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3672 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3673 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3674 } 3675 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3676 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3677 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3678 } else { 3679 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3680 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3681 } 3682 } 3683 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3684 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3685 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3686 } 3687 3688 netdev->features = netdev->hw_features; 3689 3690 if (nfp_app_has_tc(nn->app)) 3691 netdev->hw_features |= NETIF_F_HW_TC; 3692 3693 /* Advertise but disable TSO by default. */ 3694 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3695 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3696 3697 /* Finalise the netdev setup */ 3698 netdev->netdev_ops = &nfp_net_netdev_ops; 3699 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3700 3701 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3702 3703 /* MTU range: 68 - hw-specific max */ 3704 netdev->min_mtu = ETH_MIN_MTU; 3705 netdev->max_mtu = nn->max_mtu; 3706 3707 netif_carrier_off(netdev); 3708 3709 nfp_net_set_ethtool_ops(netdev); 3710 } 3711 3712 /** 3713 * nfp_net_init() - Initialise/finalise the nfp_net structure 3714 * @nn: NFP Net device structure 3715 * 3716 * Return: 0 on success or negative errno on error. 3717 */ 3718 int nfp_net_init(struct nfp_net *nn) 3719 { 3720 int err; 3721 3722 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3723 3724 /* Get some of the read-only fields from the BAR */ 3725 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3726 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3727 3728 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3729 * we allow use of non-chained metadata if RSS(v1) is the only 3730 * advertised capability requiring metadata. 3731 */ 3732 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3733 !nn->dp.netdev || 3734 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3735 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3736 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3737 * it has the same meaning as RSSv2. 3738 */ 3739 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3740 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3741 3742 /* Determine RX packet/metadata boundary offset */ 3743 if (nn->fw_ver.major >= 2) { 3744 u32 reg; 3745 3746 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3747 if (reg > NFP_NET_MAX_PREPEND) { 3748 nn_err(nn, "Invalid rx offset: %d\n", reg); 3749 return -EINVAL; 3750 } 3751 nn->dp.rx_offset = reg; 3752 } else { 3753 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3754 } 3755 3756 /* Set default MTU and Freelist buffer size */ 3757 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3758 nn->dp.mtu = nn->max_mtu; 3759 else 3760 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3761 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3762 3763 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3764 nfp_net_rss_init(nn); 3765 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3766 NFP_NET_CFG_CTRL_RSS; 3767 } 3768 3769 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3770 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3771 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3772 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3773 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3774 3775 /* Allow IRQ moderation, if supported */ 3776 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3777 nfp_net_irqmod_init(nn); 3778 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3779 } 3780 3781 if (nn->dp.netdev) 3782 nfp_net_netdev_init(nn); 3783 3784 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3785 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3786 3787 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3788 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3789 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3790 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3791 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3792 NFP_NET_CFG_UPDATE_GEN); 3793 if (err) 3794 return err; 3795 3796 nfp_net_vecs_init(nn); 3797 3798 if (!nn->dp.netdev) 3799 return 0; 3800 return register_netdev(nn->dp.netdev); 3801 } 3802 3803 /** 3804 * nfp_net_clean() - Undo what nfp_net_init() did. 3805 * @nn: NFP Net device structure 3806 */ 3807 void nfp_net_clean(struct nfp_net *nn) 3808 { 3809 if (!nn->dp.netdev) 3810 return; 3811 3812 unregister_netdev(nn->dp.netdev); 3813 } 3814