1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38 
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50 
51 /**
52  * nfp_net_get_fw_version() - Read and parse the FW version
53  * @fw_ver:	Output fw_version structure to read to
54  * @ctrl_bar:	Mapped address of the control BAR
55  */
56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
57 			    void __iomem *ctrl_bar)
58 {
59 	u32 reg;
60 
61 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
62 	put_unaligned_le32(reg, fw_ver);
63 }
64 
65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
66 {
67 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
68 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
69 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
70 }
71 
72 static void
73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
74 {
75 	dma_sync_single_for_device(dp->dev, dma_addr,
76 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
77 				   dp->rx_dma_dir);
78 }
79 
80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
81 {
82 	dma_unmap_single_attrs(dp->dev, dma_addr,
83 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
84 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
85 }
86 
87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
88 				    unsigned int len)
89 {
90 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
91 				len, dp->rx_dma_dir);
92 }
93 
94 /* Firmware reconfig
95  *
96  * Firmware reconfig may take a while so we have two versions of it -
97  * synchronous and asynchronous (posted).  All synchronous callers are holding
98  * RTNL so we don't have to worry about serializing them.
99  */
100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
101 {
102 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
103 	/* ensure update is written before pinging HW */
104 	nn_pci_flush(nn);
105 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
106 	nn->reconfig_in_progress_update = update;
107 }
108 
109 /* Pass 0 as update to run posted reconfigs. */
110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
111 {
112 	update |= nn->reconfig_posted;
113 	nn->reconfig_posted = 0;
114 
115 	nfp_net_reconfig_start(nn, update);
116 
117 	nn->reconfig_timer_active = true;
118 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
119 }
120 
121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
122 {
123 	u32 reg;
124 
125 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
126 	if (reg == 0)
127 		return true;
128 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
129 		nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
130 		       reg, nn->reconfig_in_progress_update,
131 		       nn_readl(nn, NFP_NET_CFG_CTRL));
132 		return true;
133 	} else if (last_check) {
134 		nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
135 		       reg, nn->reconfig_in_progress_update,
136 		       nn_readl(nn, NFP_NET_CFG_CTRL));
137 		return true;
138 	}
139 
140 	return false;
141 }
142 
143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
144 {
145 	bool timed_out = false;
146 	int i;
147 
148 	/* Poll update field, waiting for NFP to ack the config.
149 	 * Do an opportunistic wait-busy loop, afterward sleep.
150 	 */
151 	for (i = 0; i < 50; i++) {
152 		if (nfp_net_reconfig_check_done(nn, false))
153 			return false;
154 		udelay(4);
155 	}
156 
157 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
158 		usleep_range(250, 500);
159 		timed_out = time_is_before_eq_jiffies(deadline);
160 	}
161 
162 	return timed_out;
163 }
164 
165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
166 {
167 	if (__nfp_net_reconfig_wait(nn, deadline))
168 		return -EIO;
169 
170 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
171 		return -EIO;
172 
173 	return 0;
174 }
175 
176 static void nfp_net_reconfig_timer(struct timer_list *t)
177 {
178 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
179 
180 	spin_lock_bh(&nn->reconfig_lock);
181 
182 	nn->reconfig_timer_active = false;
183 
184 	/* If sync caller is present it will take over from us */
185 	if (nn->reconfig_sync_present)
186 		goto done;
187 
188 	/* Read reconfig status and report errors */
189 	nfp_net_reconfig_check_done(nn, true);
190 
191 	if (nn->reconfig_posted)
192 		nfp_net_reconfig_start_async(nn, 0);
193 done:
194 	spin_unlock_bh(&nn->reconfig_lock);
195 }
196 
197 /**
198  * nfp_net_reconfig_post() - Post async reconfig request
199  * @nn:      NFP Net device to reconfigure
200  * @update:  The value for the update field in the BAR config
201  *
202  * Record FW reconfiguration request.  Reconfiguration will be kicked off
203  * whenever reconfiguration machinery is idle.  Multiple requests can be
204  * merged together!
205  */
206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
207 {
208 	spin_lock_bh(&nn->reconfig_lock);
209 
210 	/* Sync caller will kick off async reconf when it's done, just post */
211 	if (nn->reconfig_sync_present) {
212 		nn->reconfig_posted |= update;
213 		goto done;
214 	}
215 
216 	/* Opportunistically check if the previous command is done */
217 	if (!nn->reconfig_timer_active ||
218 	    nfp_net_reconfig_check_done(nn, false))
219 		nfp_net_reconfig_start_async(nn, update);
220 	else
221 		nn->reconfig_posted |= update;
222 done:
223 	spin_unlock_bh(&nn->reconfig_lock);
224 }
225 
226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
227 {
228 	bool cancelled_timer = false;
229 	u32 pre_posted_requests;
230 
231 	spin_lock_bh(&nn->reconfig_lock);
232 
233 	WARN_ON(nn->reconfig_sync_present);
234 	nn->reconfig_sync_present = true;
235 
236 	if (nn->reconfig_timer_active) {
237 		nn->reconfig_timer_active = false;
238 		cancelled_timer = true;
239 	}
240 	pre_posted_requests = nn->reconfig_posted;
241 	nn->reconfig_posted = 0;
242 
243 	spin_unlock_bh(&nn->reconfig_lock);
244 
245 	if (cancelled_timer) {
246 		del_timer_sync(&nn->reconfig_timer);
247 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
248 	}
249 
250 	/* Run the posted reconfigs which were issued before we started */
251 	if (pre_posted_requests) {
252 		nfp_net_reconfig_start(nn, pre_posted_requests);
253 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
254 	}
255 }
256 
257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
258 {
259 	nfp_net_reconfig_sync_enter(nn);
260 
261 	spin_lock_bh(&nn->reconfig_lock);
262 	nn->reconfig_sync_present = false;
263 	spin_unlock_bh(&nn->reconfig_lock);
264 }
265 
266 /**
267  * __nfp_net_reconfig() - Reconfigure the firmware
268  * @nn:      NFP Net device to reconfigure
269  * @update:  The value for the update field in the BAR config
270  *
271  * Write the update word to the BAR and ping the reconfig queue.  The
272  * poll until the firmware has acknowledged the update by zeroing the
273  * update word.
274  *
275  * Return: Negative errno on error, 0 on success
276  */
277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
278 {
279 	int ret;
280 
281 	nfp_net_reconfig_sync_enter(nn);
282 
283 	nfp_net_reconfig_start(nn, update);
284 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
285 
286 	spin_lock_bh(&nn->reconfig_lock);
287 
288 	if (nn->reconfig_posted)
289 		nfp_net_reconfig_start_async(nn, 0);
290 
291 	nn->reconfig_sync_present = false;
292 
293 	spin_unlock_bh(&nn->reconfig_lock);
294 
295 	return ret;
296 }
297 
298 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
299 {
300 	int ret;
301 
302 	nn_ctrl_bar_lock(nn);
303 	ret = __nfp_net_reconfig(nn, update);
304 	nn_ctrl_bar_unlock(nn);
305 
306 	return ret;
307 }
308 
309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
310 {
311 	if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
312 		nn_err(nn, "mailbox too small for %u of data (%u)\n",
313 		       data_size, nn->tlv_caps.mbox_len);
314 		return -EIO;
315 	}
316 
317 	nn_ctrl_bar_lock(nn);
318 	return 0;
319 }
320 
321 /**
322  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
323  * @nn:        NFP Net device to reconfigure
324  * @mbox_cmd:  The value for the mailbox command
325  *
326  * Helper function for mailbox updates
327  *
328  * Return: Negative errno on error, 0 on success
329  */
330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
331 {
332 	u32 mbox = nn->tlv_caps.mbox_off;
333 	int ret;
334 
335 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
336 
337 	ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
338 	if (ret) {
339 		nn_err(nn, "Mailbox update error\n");
340 		return ret;
341 	}
342 
343 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
344 }
345 
346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
347 {
348 	u32 mbox = nn->tlv_caps.mbox_off;
349 
350 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
351 
352 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
353 }
354 
355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
356 {
357 	u32 mbox = nn->tlv_caps.mbox_off;
358 
359 	nfp_net_reconfig_wait_posted(nn);
360 
361 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
362 }
363 
364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
365 {
366 	int ret;
367 
368 	ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
369 	nn_ctrl_bar_unlock(nn);
370 	return ret;
371 }
372 
373 /* Interrupt configuration and handling
374  */
375 
376 /**
377  * nfp_net_irq_unmask() - Unmask automasked interrupt
378  * @nn:       NFP Network structure
379  * @entry_nr: MSI-X table entry
380  *
381  * Clear the ICR for the IRQ entry.
382  */
383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
384 {
385 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
386 	nn_pci_flush(nn);
387 }
388 
389 /**
390  * nfp_net_irqs_alloc() - allocates MSI-X irqs
391  * @pdev:        PCI device structure
392  * @irq_entries: Array to be initialized and used to hold the irq entries
393  * @min_irqs:    Minimal acceptable number of interrupts
394  * @wanted_irqs: Target number of interrupts to allocate
395  *
396  * Return: Number of irqs obtained or 0 on error.
397  */
398 unsigned int
399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
400 		   unsigned int min_irqs, unsigned int wanted_irqs)
401 {
402 	unsigned int i;
403 	int got_irqs;
404 
405 	for (i = 0; i < wanted_irqs; i++)
406 		irq_entries[i].entry = i;
407 
408 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
409 					 min_irqs, wanted_irqs);
410 	if (got_irqs < 0) {
411 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
412 			min_irqs, wanted_irqs, got_irqs);
413 		return 0;
414 	}
415 
416 	if (got_irqs < wanted_irqs)
417 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
418 			 wanted_irqs, got_irqs);
419 
420 	return got_irqs;
421 }
422 
423 /**
424  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
425  * @nn:		 NFP Network structure
426  * @irq_entries: Table of allocated interrupts
427  * @n:		 Size of @irq_entries (number of entries to grab)
428  *
429  * After interrupts are allocated with nfp_net_irqs_alloc() this function
430  * should be called to assign them to a specific netdev (port).
431  */
432 void
433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
434 		    unsigned int n)
435 {
436 	struct nfp_net_dp *dp = &nn->dp;
437 
438 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
439 	dp->num_r_vecs = nn->max_r_vecs;
440 
441 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
442 
443 	if (dp->num_rx_rings > dp->num_r_vecs ||
444 	    dp->num_tx_rings > dp->num_r_vecs)
445 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
446 			 dp->num_rx_rings, dp->num_tx_rings,
447 			 dp->num_r_vecs);
448 
449 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
450 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
451 	dp->num_stack_tx_rings = dp->num_tx_rings;
452 }
453 
454 /**
455  * nfp_net_irqs_disable() - Disable interrupts
456  * @pdev:        PCI device structure
457  *
458  * Undoes what @nfp_net_irqs_alloc() does.
459  */
460 void nfp_net_irqs_disable(struct pci_dev *pdev)
461 {
462 	pci_disable_msix(pdev);
463 }
464 
465 /**
466  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
467  * @irq:      Interrupt
468  * @data:     Opaque data structure
469  *
470  * Return: Indicate if the interrupt has been handled.
471  */
472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
473 {
474 	struct nfp_net_r_vector *r_vec = data;
475 
476 	napi_schedule_irqoff(&r_vec->napi);
477 
478 	/* The FW auto-masks any interrupt, either via the MASK bit in
479 	 * the MSI-X table or via the per entry ICR field.  So there
480 	 * is no need to disable interrupts here.
481 	 */
482 	return IRQ_HANDLED;
483 }
484 
485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
486 {
487 	struct nfp_net_r_vector *r_vec = data;
488 
489 	tasklet_schedule(&r_vec->tasklet);
490 
491 	return IRQ_HANDLED;
492 }
493 
494 /**
495  * nfp_net_read_link_status() - Reread link status from control BAR
496  * @nn:       NFP Network structure
497  */
498 static void nfp_net_read_link_status(struct nfp_net *nn)
499 {
500 	unsigned long flags;
501 	bool link_up;
502 	u32 sts;
503 
504 	spin_lock_irqsave(&nn->link_status_lock, flags);
505 
506 	sts = nn_readl(nn, NFP_NET_CFG_STS);
507 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
508 
509 	if (nn->link_up == link_up)
510 		goto out;
511 
512 	nn->link_up = link_up;
513 	if (nn->port)
514 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
515 
516 	if (nn->link_up) {
517 		netif_carrier_on(nn->dp.netdev);
518 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
519 	} else {
520 		netif_carrier_off(nn->dp.netdev);
521 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
522 	}
523 out:
524 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
525 }
526 
527 /**
528  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
529  * @irq:      Interrupt
530  * @data:     Opaque data structure
531  *
532  * Return: Indicate if the interrupt has been handled.
533  */
534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
535 {
536 	struct nfp_net *nn = data;
537 	struct msix_entry *entry;
538 
539 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
540 
541 	nfp_net_read_link_status(nn);
542 
543 	nfp_net_irq_unmask(nn, entry->entry);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /**
549  * nfp_net_irq_exn() - Interrupt service routine for exceptions
550  * @irq:      Interrupt
551  * @data:     Opaque data structure
552  *
553  * Return: Indicate if the interrupt has been handled.
554  */
555 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
556 {
557 	struct nfp_net *nn = data;
558 
559 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
560 	/* XXX TO BE IMPLEMENTED */
561 	return IRQ_HANDLED;
562 }
563 
564 /**
565  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
566  * @tx_ring:  TX ring structure
567  * @r_vec:    IRQ vector servicing this ring
568  * @idx:      Ring index
569  * @is_xdp:   Is this an XDP TX ring?
570  */
571 static void
572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
573 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
574 		     bool is_xdp)
575 {
576 	struct nfp_net *nn = r_vec->nfp_net;
577 
578 	tx_ring->idx = idx;
579 	tx_ring->r_vec = r_vec;
580 	tx_ring->is_xdp = is_xdp;
581 	u64_stats_init(&tx_ring->r_vec->tx_sync);
582 
583 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
584 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
585 }
586 
587 /**
588  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
589  * @rx_ring:  RX ring structure
590  * @r_vec:    IRQ vector servicing this ring
591  * @idx:      Ring index
592  */
593 static void
594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
595 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
596 {
597 	struct nfp_net *nn = r_vec->nfp_net;
598 
599 	rx_ring->idx = idx;
600 	rx_ring->r_vec = r_vec;
601 	u64_stats_init(&rx_ring->r_vec->rx_sync);
602 
603 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
604 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
605 }
606 
607 /**
608  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
609  * @nn:		NFP Network structure
610  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
611  * @format:	printf-style format to construct the interrupt name
612  * @name:	Pointer to allocated space for interrupt name
613  * @name_sz:	Size of space for interrupt name
614  * @vector_idx:	Index of MSI-X vector used for this interrupt
615  * @handler:	IRQ handler to register for this interrupt
616  */
617 static int
618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
619 			const char *format, char *name, size_t name_sz,
620 			unsigned int vector_idx, irq_handler_t handler)
621 {
622 	struct msix_entry *entry;
623 	int err;
624 
625 	entry = &nn->irq_entries[vector_idx];
626 
627 	snprintf(name, name_sz, format, nfp_net_name(nn));
628 	err = request_irq(entry->vector, handler, 0, name, nn);
629 	if (err) {
630 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
631 		       entry->vector, err);
632 		return err;
633 	}
634 	nn_writeb(nn, ctrl_offset, entry->entry);
635 	nfp_net_irq_unmask(nn, entry->entry);
636 
637 	return 0;
638 }
639 
640 /**
641  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
642  * @nn:		NFP Network structure
643  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
644  * @vector_idx:	Index of MSI-X vector used for this interrupt
645  */
646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
647 				 unsigned int vector_idx)
648 {
649 	nn_writeb(nn, ctrl_offset, 0xff);
650 	nn_pci_flush(nn);
651 	free_irq(nn->irq_entries[vector_idx].vector, nn);
652 }
653 
654 /* Transmit
655  *
656  * One queue controller peripheral queue is used for transmit.  The
657  * driver en-queues packets for transmit by advancing the write
658  * pointer.  The device indicates that packets have transmitted by
659  * advancing the read pointer.  The driver maintains a local copy of
660  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
661  * keeps @wr_p in sync with the queue controller write pointer and can
662  * determine how many packets have been transmitted by comparing its
663  * copy of the read pointer @rd_p with the read pointer maintained by
664  * the queue controller peripheral.
665  */
666 
667 /**
668  * nfp_net_tx_full() - Check if the TX ring is full
669  * @tx_ring: TX ring to check
670  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
671  *
672  * This function checks, based on the *host copy* of read/write
673  * pointer if a given TX ring is full.  The real TX queue may have
674  * some newly made available slots.
675  *
676  * Return: True if the ring is full.
677  */
678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
679 {
680 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
681 }
682 
683 /* Wrappers for deciding when to stop and restart TX queues */
684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
685 {
686 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
687 }
688 
689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
690 {
691 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
692 }
693 
694 /**
695  * nfp_net_tx_ring_stop() - stop tx ring
696  * @nd_q:    netdev queue
697  * @tx_ring: driver tx queue structure
698  *
699  * Safely stop TX ring.  Remember that while we are running .start_xmit()
700  * someone else may be cleaning the TX ring completions so we need to be
701  * extra careful here.
702  */
703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
704 				 struct nfp_net_tx_ring *tx_ring)
705 {
706 	netif_tx_stop_queue(nd_q);
707 
708 	/* We can race with the TX completion out of NAPI so recheck */
709 	smp_mb();
710 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
711 		netif_tx_start_queue(nd_q);
712 }
713 
714 /**
715  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
716  * @r_vec: per-ring structure
717  * @txbuf: Pointer to driver soft TX descriptor
718  * @txd: Pointer to HW TX descriptor
719  * @skb: Pointer to SKB
720  * @md_bytes: Prepend length
721  *
722  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
723  * Return error on packet header greater than maximum supported LSO header size.
724  */
725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
726 			   struct nfp_net_tx_buf *txbuf,
727 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
728 			   u32 md_bytes)
729 {
730 	u32 l3_offset, l4_offset, hdrlen;
731 	u16 mss;
732 
733 	if (!skb_is_gso(skb))
734 		return;
735 
736 	if (!skb->encapsulation) {
737 		l3_offset = skb_network_offset(skb);
738 		l4_offset = skb_transport_offset(skb);
739 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
740 	} else {
741 		l3_offset = skb_inner_network_offset(skb);
742 		l4_offset = skb_inner_transport_offset(skb);
743 		hdrlen = skb_inner_transport_header(skb) - skb->data +
744 			inner_tcp_hdrlen(skb);
745 	}
746 
747 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
748 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
749 
750 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
751 	txd->l3_offset = l3_offset - md_bytes;
752 	txd->l4_offset = l4_offset - md_bytes;
753 	txd->lso_hdrlen = hdrlen - md_bytes;
754 	txd->mss = cpu_to_le16(mss);
755 	txd->flags |= PCIE_DESC_TX_LSO;
756 
757 	u64_stats_update_begin(&r_vec->tx_sync);
758 	r_vec->tx_lso++;
759 	u64_stats_update_end(&r_vec->tx_sync);
760 }
761 
762 /**
763  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
764  * @dp:  NFP Net data path struct
765  * @r_vec: per-ring structure
766  * @txbuf: Pointer to driver soft TX descriptor
767  * @txd: Pointer to TX descriptor
768  * @skb: Pointer to SKB
769  *
770  * This function sets the TX checksum flags in the TX descriptor based
771  * on the configuration and the protocol of the packet to be transmitted.
772  */
773 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
774 			    struct nfp_net_r_vector *r_vec,
775 			    struct nfp_net_tx_buf *txbuf,
776 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
777 {
778 	struct ipv6hdr *ipv6h;
779 	struct iphdr *iph;
780 	u8 l4_hdr;
781 
782 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
783 		return;
784 
785 	if (skb->ip_summed != CHECKSUM_PARTIAL)
786 		return;
787 
788 	txd->flags |= PCIE_DESC_TX_CSUM;
789 	if (skb->encapsulation)
790 		txd->flags |= PCIE_DESC_TX_ENCAP;
791 
792 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
793 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
794 
795 	if (iph->version == 4) {
796 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
797 		l4_hdr = iph->protocol;
798 	} else if (ipv6h->version == 6) {
799 		l4_hdr = ipv6h->nexthdr;
800 	} else {
801 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
802 		return;
803 	}
804 
805 	switch (l4_hdr) {
806 	case IPPROTO_TCP:
807 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
808 		break;
809 	case IPPROTO_UDP:
810 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
811 		break;
812 	default:
813 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
814 		return;
815 	}
816 
817 	u64_stats_update_begin(&r_vec->tx_sync);
818 	if (skb->encapsulation)
819 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
820 	else
821 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
822 	u64_stats_update_end(&r_vec->tx_sync);
823 }
824 
825 static struct sk_buff *
826 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
827 	       struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
828 {
829 #ifdef CONFIG_TLS_DEVICE
830 	struct nfp_net_tls_offload_ctx *ntls;
831 	struct sk_buff *nskb;
832 	bool resync_pending;
833 	u32 datalen, seq;
834 
835 	if (likely(!dp->ktls_tx))
836 		return skb;
837 	if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
838 		return skb;
839 
840 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
841 	seq = ntohl(tcp_hdr(skb)->seq);
842 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
843 	resync_pending = tls_offload_tx_resync_pending(skb->sk);
844 	if (unlikely(resync_pending || ntls->next_seq != seq)) {
845 		/* Pure ACK out of order already */
846 		if (!datalen)
847 			return skb;
848 
849 		u64_stats_update_begin(&r_vec->tx_sync);
850 		r_vec->tls_tx_fallback++;
851 		u64_stats_update_end(&r_vec->tx_sync);
852 
853 		nskb = tls_encrypt_skb(skb);
854 		if (!nskb) {
855 			u64_stats_update_begin(&r_vec->tx_sync);
856 			r_vec->tls_tx_no_fallback++;
857 			u64_stats_update_end(&r_vec->tx_sync);
858 			return NULL;
859 		}
860 		/* encryption wasn't necessary */
861 		if (nskb == skb)
862 			return skb;
863 		/* we don't re-check ring space */
864 		if (unlikely(skb_is_nonlinear(nskb))) {
865 			nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
866 			u64_stats_update_begin(&r_vec->tx_sync);
867 			r_vec->tx_errors++;
868 			u64_stats_update_end(&r_vec->tx_sync);
869 			dev_kfree_skb_any(nskb);
870 			return NULL;
871 		}
872 
873 		/* jump forward, a TX may have gotten lost, need to sync TX */
874 		if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
875 			tls_offload_tx_resync_request(nskb->sk, seq,
876 						      ntls->next_seq);
877 
878 		*nr_frags = 0;
879 		return nskb;
880 	}
881 
882 	if (datalen) {
883 		u64_stats_update_begin(&r_vec->tx_sync);
884 		if (!skb_is_gso(skb))
885 			r_vec->hw_tls_tx++;
886 		else
887 			r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
888 		u64_stats_update_end(&r_vec->tx_sync);
889 	}
890 
891 	memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
892 	ntls->next_seq += datalen;
893 #endif
894 	return skb;
895 }
896 
897 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
898 {
899 #ifdef CONFIG_TLS_DEVICE
900 	struct nfp_net_tls_offload_ctx *ntls;
901 	u32 datalen, seq;
902 
903 	if (!tls_handle)
904 		return;
905 	if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
906 		return;
907 
908 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
909 	seq = ntohl(tcp_hdr(skb)->seq);
910 
911 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
912 	if (ntls->next_seq == seq + datalen)
913 		ntls->next_seq = seq;
914 	else
915 		WARN_ON_ONCE(1);
916 #endif
917 }
918 
919 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
920 {
921 	wmb();
922 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
923 	tx_ring->wr_ptr_add = 0;
924 }
925 
926 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
927 {
928 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
929 	unsigned char *data;
930 	u32 meta_id = 0;
931 	int md_bytes;
932 
933 	if (likely(!md_dst && !tls_handle))
934 		return 0;
935 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
936 		if (!tls_handle)
937 			return 0;
938 		md_dst = NULL;
939 	}
940 
941 	md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
942 
943 	if (unlikely(skb_cow_head(skb, md_bytes)))
944 		return -ENOMEM;
945 
946 	meta_id = 0;
947 	data = skb_push(skb, md_bytes) + md_bytes;
948 	if (md_dst) {
949 		data -= 4;
950 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
951 		meta_id = NFP_NET_META_PORTID;
952 	}
953 	if (tls_handle) {
954 		/* conn handle is opaque, we just use u64 to be able to quickly
955 		 * compare it to zero
956 		 */
957 		data -= 8;
958 		memcpy(data, &tls_handle, sizeof(tls_handle));
959 		meta_id <<= NFP_NET_META_FIELD_SIZE;
960 		meta_id |= NFP_NET_META_CONN_HANDLE;
961 	}
962 
963 	data -= 4;
964 	put_unaligned_be32(meta_id, data);
965 
966 	return md_bytes;
967 }
968 
969 /**
970  * nfp_net_tx() - Main transmit entry point
971  * @skb:    SKB to transmit
972  * @netdev: netdev structure
973  *
974  * Return: NETDEV_TX_OK on success.
975  */
976 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
977 {
978 	struct nfp_net *nn = netdev_priv(netdev);
979 	const skb_frag_t *frag;
980 	int f, nr_frags, wr_idx, md_bytes;
981 	struct nfp_net_tx_ring *tx_ring;
982 	struct nfp_net_r_vector *r_vec;
983 	struct nfp_net_tx_buf *txbuf;
984 	struct nfp_net_tx_desc *txd;
985 	struct netdev_queue *nd_q;
986 	struct nfp_net_dp *dp;
987 	dma_addr_t dma_addr;
988 	unsigned int fsize;
989 	u64 tls_handle = 0;
990 	u16 qidx;
991 
992 	dp = &nn->dp;
993 	qidx = skb_get_queue_mapping(skb);
994 	tx_ring = &dp->tx_rings[qidx];
995 	r_vec = tx_ring->r_vec;
996 
997 	nr_frags = skb_shinfo(skb)->nr_frags;
998 
999 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
1000 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1001 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
1002 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1003 		netif_tx_stop_queue(nd_q);
1004 		nfp_net_tx_xmit_more_flush(tx_ring);
1005 		u64_stats_update_begin(&r_vec->tx_sync);
1006 		r_vec->tx_busy++;
1007 		u64_stats_update_end(&r_vec->tx_sync);
1008 		return NETDEV_TX_BUSY;
1009 	}
1010 
1011 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1012 	if (unlikely(!skb)) {
1013 		nfp_net_tx_xmit_more_flush(tx_ring);
1014 		return NETDEV_TX_OK;
1015 	}
1016 
1017 	md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1018 	if (unlikely(md_bytes < 0))
1019 		goto err_flush;
1020 
1021 	/* Start with the head skbuf */
1022 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1023 				  DMA_TO_DEVICE);
1024 	if (dma_mapping_error(dp->dev, dma_addr))
1025 		goto err_dma_err;
1026 
1027 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1028 
1029 	/* Stash the soft descriptor of the head then initialize it */
1030 	txbuf = &tx_ring->txbufs[wr_idx];
1031 	txbuf->skb = skb;
1032 	txbuf->dma_addr = dma_addr;
1033 	txbuf->fidx = -1;
1034 	txbuf->pkt_cnt = 1;
1035 	txbuf->real_len = skb->len;
1036 
1037 	/* Build TX descriptor */
1038 	txd = &tx_ring->txds[wr_idx];
1039 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1040 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1041 	nfp_desc_set_dma_addr(txd, dma_addr);
1042 	txd->data_len = cpu_to_le16(skb->len);
1043 
1044 	txd->flags = 0;
1045 	txd->mss = 0;
1046 	txd->lso_hdrlen = 0;
1047 
1048 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1049 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1050 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1051 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1052 		txd->flags |= PCIE_DESC_TX_VLAN;
1053 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1054 	}
1055 
1056 	/* Gather DMA */
1057 	if (nr_frags > 0) {
1058 		__le64 second_half;
1059 
1060 		/* all descs must match except for in addr, length and eop */
1061 		second_half = txd->vals8[1];
1062 
1063 		for (f = 0; f < nr_frags; f++) {
1064 			frag = &skb_shinfo(skb)->frags[f];
1065 			fsize = skb_frag_size(frag);
1066 
1067 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1068 						    fsize, DMA_TO_DEVICE);
1069 			if (dma_mapping_error(dp->dev, dma_addr))
1070 				goto err_unmap;
1071 
1072 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
1073 			tx_ring->txbufs[wr_idx].skb = skb;
1074 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1075 			tx_ring->txbufs[wr_idx].fidx = f;
1076 
1077 			txd = &tx_ring->txds[wr_idx];
1078 			txd->dma_len = cpu_to_le16(fsize);
1079 			nfp_desc_set_dma_addr(txd, dma_addr);
1080 			txd->offset_eop = md_bytes |
1081 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1082 			txd->vals8[1] = second_half;
1083 		}
1084 
1085 		u64_stats_update_begin(&r_vec->tx_sync);
1086 		r_vec->tx_gather++;
1087 		u64_stats_update_end(&r_vec->tx_sync);
1088 	}
1089 
1090 	skb_tx_timestamp(skb);
1091 
1092 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1093 
1094 	tx_ring->wr_p += nr_frags + 1;
1095 	if (nfp_net_tx_ring_should_stop(tx_ring))
1096 		nfp_net_tx_ring_stop(nd_q, tx_ring);
1097 
1098 	tx_ring->wr_ptr_add += nr_frags + 1;
1099 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1100 		nfp_net_tx_xmit_more_flush(tx_ring);
1101 
1102 	return NETDEV_TX_OK;
1103 
1104 err_unmap:
1105 	while (--f >= 0) {
1106 		frag = &skb_shinfo(skb)->frags[f];
1107 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1108 			       skb_frag_size(frag), DMA_TO_DEVICE);
1109 		tx_ring->txbufs[wr_idx].skb = NULL;
1110 		tx_ring->txbufs[wr_idx].dma_addr = 0;
1111 		tx_ring->txbufs[wr_idx].fidx = -2;
1112 		wr_idx = wr_idx - 1;
1113 		if (wr_idx < 0)
1114 			wr_idx += tx_ring->cnt;
1115 	}
1116 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1117 			 skb_headlen(skb), DMA_TO_DEVICE);
1118 	tx_ring->txbufs[wr_idx].skb = NULL;
1119 	tx_ring->txbufs[wr_idx].dma_addr = 0;
1120 	tx_ring->txbufs[wr_idx].fidx = -2;
1121 err_dma_err:
1122 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1123 err_flush:
1124 	nfp_net_tx_xmit_more_flush(tx_ring);
1125 	u64_stats_update_begin(&r_vec->tx_sync);
1126 	r_vec->tx_errors++;
1127 	u64_stats_update_end(&r_vec->tx_sync);
1128 	nfp_net_tls_tx_undo(skb, tls_handle);
1129 	dev_kfree_skb_any(skb);
1130 	return NETDEV_TX_OK;
1131 }
1132 
1133 /**
1134  * nfp_net_tx_complete() - Handled completed TX packets
1135  * @tx_ring:	TX ring structure
1136  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
1137  */
1138 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1139 {
1140 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1141 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1142 	struct netdev_queue *nd_q;
1143 	u32 done_pkts = 0, done_bytes = 0;
1144 	u32 qcp_rd_p;
1145 	int todo;
1146 
1147 	if (tx_ring->wr_p == tx_ring->rd_p)
1148 		return;
1149 
1150 	/* Work out how many descriptors have been transmitted */
1151 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1152 
1153 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1154 		return;
1155 
1156 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1157 
1158 	while (todo--) {
1159 		const skb_frag_t *frag;
1160 		struct nfp_net_tx_buf *tx_buf;
1161 		struct sk_buff *skb;
1162 		int fidx, nr_frags;
1163 		int idx;
1164 
1165 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
1166 		tx_buf = &tx_ring->txbufs[idx];
1167 
1168 		skb = tx_buf->skb;
1169 		if (!skb)
1170 			continue;
1171 
1172 		nr_frags = skb_shinfo(skb)->nr_frags;
1173 		fidx = tx_buf->fidx;
1174 
1175 		if (fidx == -1) {
1176 			/* unmap head */
1177 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1178 					 skb_headlen(skb), DMA_TO_DEVICE);
1179 
1180 			done_pkts += tx_buf->pkt_cnt;
1181 			done_bytes += tx_buf->real_len;
1182 		} else {
1183 			/* unmap fragment */
1184 			frag = &skb_shinfo(skb)->frags[fidx];
1185 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1186 				       skb_frag_size(frag), DMA_TO_DEVICE);
1187 		}
1188 
1189 		/* check for last gather fragment */
1190 		if (fidx == nr_frags - 1)
1191 			napi_consume_skb(skb, budget);
1192 
1193 		tx_buf->dma_addr = 0;
1194 		tx_buf->skb = NULL;
1195 		tx_buf->fidx = -2;
1196 	}
1197 
1198 	tx_ring->qcp_rd_p = qcp_rd_p;
1199 
1200 	u64_stats_update_begin(&r_vec->tx_sync);
1201 	r_vec->tx_bytes += done_bytes;
1202 	r_vec->tx_pkts += done_pkts;
1203 	u64_stats_update_end(&r_vec->tx_sync);
1204 
1205 	if (!dp->netdev)
1206 		return;
1207 
1208 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1209 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1210 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1211 		/* Make sure TX thread will see updated tx_ring->rd_p */
1212 		smp_mb();
1213 
1214 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1215 			netif_tx_wake_queue(nd_q);
1216 	}
1217 
1218 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1219 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1220 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1221 }
1222 
1223 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1224 {
1225 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1226 	u32 done_pkts = 0, done_bytes = 0;
1227 	bool done_all;
1228 	int idx, todo;
1229 	u32 qcp_rd_p;
1230 
1231 	/* Work out how many descriptors have been transmitted */
1232 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1233 
1234 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1235 		return true;
1236 
1237 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1238 
1239 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1240 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1241 
1242 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1243 
1244 	done_pkts = todo;
1245 	while (todo--) {
1246 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1247 		tx_ring->rd_p++;
1248 
1249 		done_bytes += tx_ring->txbufs[idx].real_len;
1250 	}
1251 
1252 	u64_stats_update_begin(&r_vec->tx_sync);
1253 	r_vec->tx_bytes += done_bytes;
1254 	r_vec->tx_pkts += done_pkts;
1255 	u64_stats_update_end(&r_vec->tx_sync);
1256 
1257 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1258 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1259 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1260 
1261 	return done_all;
1262 }
1263 
1264 /**
1265  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1266  * @dp:		NFP Net data path struct
1267  * @tx_ring:	TX ring structure
1268  *
1269  * Assumes that the device is stopped, must be idempotent.
1270  */
1271 static void
1272 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1273 {
1274 	const skb_frag_t *frag;
1275 	struct netdev_queue *nd_q;
1276 
1277 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1278 		struct nfp_net_tx_buf *tx_buf;
1279 		struct sk_buff *skb;
1280 		int idx, nr_frags;
1281 
1282 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1283 		tx_buf = &tx_ring->txbufs[idx];
1284 
1285 		skb = tx_ring->txbufs[idx].skb;
1286 		nr_frags = skb_shinfo(skb)->nr_frags;
1287 
1288 		if (tx_buf->fidx == -1) {
1289 			/* unmap head */
1290 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1291 					 skb_headlen(skb), DMA_TO_DEVICE);
1292 		} else {
1293 			/* unmap fragment */
1294 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1295 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1296 				       skb_frag_size(frag), DMA_TO_DEVICE);
1297 		}
1298 
1299 		/* check for last gather fragment */
1300 		if (tx_buf->fidx == nr_frags - 1)
1301 			dev_kfree_skb_any(skb);
1302 
1303 		tx_buf->dma_addr = 0;
1304 		tx_buf->skb = NULL;
1305 		tx_buf->fidx = -2;
1306 
1307 		tx_ring->qcp_rd_p++;
1308 		tx_ring->rd_p++;
1309 	}
1310 
1311 	memset(tx_ring->txds, 0, tx_ring->size);
1312 	tx_ring->wr_p = 0;
1313 	tx_ring->rd_p = 0;
1314 	tx_ring->qcp_rd_p = 0;
1315 	tx_ring->wr_ptr_add = 0;
1316 
1317 	if (tx_ring->is_xdp || !dp->netdev)
1318 		return;
1319 
1320 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1321 	netdev_tx_reset_queue(nd_q);
1322 }
1323 
1324 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1325 {
1326 	struct nfp_net *nn = netdev_priv(netdev);
1327 
1328 	nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
1329 }
1330 
1331 /* Receive processing
1332  */
1333 static unsigned int
1334 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1335 {
1336 	unsigned int fl_bufsz;
1337 
1338 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1339 	fl_bufsz += dp->rx_dma_off;
1340 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1341 		fl_bufsz += NFP_NET_MAX_PREPEND;
1342 	else
1343 		fl_bufsz += dp->rx_offset;
1344 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1345 
1346 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1347 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1348 
1349 	return fl_bufsz;
1350 }
1351 
1352 static void
1353 nfp_net_free_frag(void *frag, bool xdp)
1354 {
1355 	if (!xdp)
1356 		skb_free_frag(frag);
1357 	else
1358 		__free_page(virt_to_page(frag));
1359 }
1360 
1361 /**
1362  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1363  * @dp:		NFP Net data path struct
1364  * @dma_addr:	Pointer to storage for DMA address (output param)
1365  *
1366  * This function will allcate a new page frag, map it for DMA.
1367  *
1368  * Return: allocated page frag or NULL on failure.
1369  */
1370 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1371 {
1372 	void *frag;
1373 
1374 	if (!dp->xdp_prog) {
1375 		frag = netdev_alloc_frag(dp->fl_bufsz);
1376 	} else {
1377 		struct page *page;
1378 
1379 		page = alloc_page(GFP_KERNEL);
1380 		frag = page ? page_address(page) : NULL;
1381 	}
1382 	if (!frag) {
1383 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1384 		return NULL;
1385 	}
1386 
1387 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1388 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1389 		nfp_net_free_frag(frag, dp->xdp_prog);
1390 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1391 		return NULL;
1392 	}
1393 
1394 	return frag;
1395 }
1396 
1397 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1398 {
1399 	void *frag;
1400 
1401 	if (!dp->xdp_prog) {
1402 		frag = napi_alloc_frag(dp->fl_bufsz);
1403 		if (unlikely(!frag))
1404 			return NULL;
1405 	} else {
1406 		struct page *page;
1407 
1408 		page = dev_alloc_page();
1409 		if (unlikely(!page))
1410 			return NULL;
1411 		frag = page_address(page);
1412 	}
1413 
1414 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1415 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1416 		nfp_net_free_frag(frag, dp->xdp_prog);
1417 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1418 		return NULL;
1419 	}
1420 
1421 	return frag;
1422 }
1423 
1424 /**
1425  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1426  * @dp:		NFP Net data path struct
1427  * @rx_ring:	RX ring structure
1428  * @frag:	page fragment buffer
1429  * @dma_addr:	DMA address of skb mapping
1430  */
1431 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1432 				struct nfp_net_rx_ring *rx_ring,
1433 				void *frag, dma_addr_t dma_addr)
1434 {
1435 	unsigned int wr_idx;
1436 
1437 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1438 
1439 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1440 
1441 	/* Stash SKB and DMA address away */
1442 	rx_ring->rxbufs[wr_idx].frag = frag;
1443 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1444 
1445 	/* Fill freelist descriptor */
1446 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1447 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1448 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1449 			      dma_addr + dp->rx_dma_off);
1450 
1451 	rx_ring->wr_p++;
1452 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1453 		/* Update write pointer of the freelist queue. Make
1454 		 * sure all writes are flushed before telling the hardware.
1455 		 */
1456 		wmb();
1457 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1458 	}
1459 }
1460 
1461 /**
1462  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1463  * @rx_ring:	RX ring structure
1464  *
1465  * Assumes that the device is stopped, must be idempotent.
1466  */
1467 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1468 {
1469 	unsigned int wr_idx, last_idx;
1470 
1471 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1472 	 * kept at cnt - 1 FL bufs.
1473 	 */
1474 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1475 		return;
1476 
1477 	/* Move the empty entry to the end of the list */
1478 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1479 	last_idx = rx_ring->cnt - 1;
1480 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1481 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1482 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1483 	rx_ring->rxbufs[last_idx].frag = NULL;
1484 
1485 	memset(rx_ring->rxds, 0, rx_ring->size);
1486 	rx_ring->wr_p = 0;
1487 	rx_ring->rd_p = 0;
1488 }
1489 
1490 /**
1491  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1492  * @dp:		NFP Net data path struct
1493  * @rx_ring:	RX ring to remove buffers from
1494  *
1495  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1496  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1497  * to restore required ring geometry.
1498  */
1499 static void
1500 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1501 			  struct nfp_net_rx_ring *rx_ring)
1502 {
1503 	unsigned int i;
1504 
1505 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1506 		/* NULL skb can only happen when initial filling of the ring
1507 		 * fails to allocate enough buffers and calls here to free
1508 		 * already allocated ones.
1509 		 */
1510 		if (!rx_ring->rxbufs[i].frag)
1511 			continue;
1512 
1513 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1514 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1515 		rx_ring->rxbufs[i].dma_addr = 0;
1516 		rx_ring->rxbufs[i].frag = NULL;
1517 	}
1518 }
1519 
1520 /**
1521  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1522  * @dp:		NFP Net data path struct
1523  * @rx_ring:	RX ring to remove buffers from
1524  */
1525 static int
1526 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1527 			   struct nfp_net_rx_ring *rx_ring)
1528 {
1529 	struct nfp_net_rx_buf *rxbufs;
1530 	unsigned int i;
1531 
1532 	rxbufs = rx_ring->rxbufs;
1533 
1534 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1535 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1536 		if (!rxbufs[i].frag) {
1537 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1538 			return -ENOMEM;
1539 		}
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1547  * @dp:	     NFP Net data path struct
1548  * @rx_ring: RX ring to fill
1549  */
1550 static void
1551 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1552 			      struct nfp_net_rx_ring *rx_ring)
1553 {
1554 	unsigned int i;
1555 
1556 	for (i = 0; i < rx_ring->cnt - 1; i++)
1557 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1558 				    rx_ring->rxbufs[i].dma_addr);
1559 }
1560 
1561 /**
1562  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1563  * @flags: RX descriptor flags field in CPU byte order
1564  */
1565 static int nfp_net_rx_csum_has_errors(u16 flags)
1566 {
1567 	u16 csum_all_checked, csum_all_ok;
1568 
1569 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1570 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1571 
1572 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1573 }
1574 
1575 /**
1576  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1577  * @dp:  NFP Net data path struct
1578  * @r_vec: per-ring structure
1579  * @rxd: Pointer to RX descriptor
1580  * @meta: Parsed metadata prepend
1581  * @skb: Pointer to SKB
1582  */
1583 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1584 			    struct nfp_net_r_vector *r_vec,
1585 			    struct nfp_net_rx_desc *rxd,
1586 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1587 {
1588 	skb_checksum_none_assert(skb);
1589 
1590 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1591 		return;
1592 
1593 	if (meta->csum_type) {
1594 		skb->ip_summed = meta->csum_type;
1595 		skb->csum = meta->csum;
1596 		u64_stats_update_begin(&r_vec->rx_sync);
1597 		r_vec->hw_csum_rx_complete++;
1598 		u64_stats_update_end(&r_vec->rx_sync);
1599 		return;
1600 	}
1601 
1602 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1603 		u64_stats_update_begin(&r_vec->rx_sync);
1604 		r_vec->hw_csum_rx_error++;
1605 		u64_stats_update_end(&r_vec->rx_sync);
1606 		return;
1607 	}
1608 
1609 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1610 	 * L4 headers were successfully parsed. FW will always report zero UDP
1611 	 * checksum as CSUM_OK.
1612 	 */
1613 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1614 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1615 		__skb_incr_checksum_unnecessary(skb);
1616 		u64_stats_update_begin(&r_vec->rx_sync);
1617 		r_vec->hw_csum_rx_ok++;
1618 		u64_stats_update_end(&r_vec->rx_sync);
1619 	}
1620 
1621 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1622 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1623 		__skb_incr_checksum_unnecessary(skb);
1624 		u64_stats_update_begin(&r_vec->rx_sync);
1625 		r_vec->hw_csum_rx_inner_ok++;
1626 		u64_stats_update_end(&r_vec->rx_sync);
1627 	}
1628 }
1629 
1630 static void
1631 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1632 		 unsigned int type, __be32 *hash)
1633 {
1634 	if (!(netdev->features & NETIF_F_RXHASH))
1635 		return;
1636 
1637 	switch (type) {
1638 	case NFP_NET_RSS_IPV4:
1639 	case NFP_NET_RSS_IPV6:
1640 	case NFP_NET_RSS_IPV6_EX:
1641 		meta->hash_type = PKT_HASH_TYPE_L3;
1642 		break;
1643 	default:
1644 		meta->hash_type = PKT_HASH_TYPE_L4;
1645 		break;
1646 	}
1647 
1648 	meta->hash = get_unaligned_be32(hash);
1649 }
1650 
1651 static void
1652 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1653 		      void *data, struct nfp_net_rx_desc *rxd)
1654 {
1655 	struct nfp_net_rx_hash *rx_hash = data;
1656 
1657 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1658 		return;
1659 
1660 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1661 			 &rx_hash->hash);
1662 }
1663 
1664 static void *
1665 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1666 		   void *data, int meta_len)
1667 {
1668 	u32 meta_info;
1669 
1670 	meta_info = get_unaligned_be32(data);
1671 	data += 4;
1672 
1673 	while (meta_info) {
1674 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1675 		case NFP_NET_META_HASH:
1676 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1677 			nfp_net_set_hash(netdev, meta,
1678 					 meta_info & NFP_NET_META_FIELD_MASK,
1679 					 (__be32 *)data);
1680 			data += 4;
1681 			break;
1682 		case NFP_NET_META_MARK:
1683 			meta->mark = get_unaligned_be32(data);
1684 			data += 4;
1685 			break;
1686 		case NFP_NET_META_PORTID:
1687 			meta->portid = get_unaligned_be32(data);
1688 			data += 4;
1689 			break;
1690 		case NFP_NET_META_CSUM:
1691 			meta->csum_type = CHECKSUM_COMPLETE;
1692 			meta->csum =
1693 				(__force __wsum)__get_unaligned_cpu32(data);
1694 			data += 4;
1695 			break;
1696 		default:
1697 			return NULL;
1698 		}
1699 
1700 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1701 	}
1702 
1703 	return data;
1704 }
1705 
1706 static void
1707 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1708 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1709 		struct sk_buff *skb)
1710 {
1711 	u64_stats_update_begin(&r_vec->rx_sync);
1712 	r_vec->rx_drops++;
1713 	/* If we have both skb and rxbuf the replacement buffer allocation
1714 	 * must have failed, count this as an alloc failure.
1715 	 */
1716 	if (skb && rxbuf)
1717 		r_vec->rx_replace_buf_alloc_fail++;
1718 	u64_stats_update_end(&r_vec->rx_sync);
1719 
1720 	/* skb is build based on the frag, free_skb() would free the frag
1721 	 * so to be able to reuse it we need an extra ref.
1722 	 */
1723 	if (skb && rxbuf && skb->head == rxbuf->frag)
1724 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1725 	if (rxbuf)
1726 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1727 	if (skb)
1728 		dev_kfree_skb_any(skb);
1729 }
1730 
1731 static bool
1732 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1733 		   struct nfp_net_tx_ring *tx_ring,
1734 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1735 		   unsigned int pkt_len, bool *completed)
1736 {
1737 	struct nfp_net_tx_buf *txbuf;
1738 	struct nfp_net_tx_desc *txd;
1739 	int wr_idx;
1740 
1741 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1742 		if (!*completed) {
1743 			nfp_net_xdp_complete(tx_ring);
1744 			*completed = true;
1745 		}
1746 
1747 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1748 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1749 					NULL);
1750 			return false;
1751 		}
1752 	}
1753 
1754 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1755 
1756 	/* Stash the soft descriptor of the head then initialize it */
1757 	txbuf = &tx_ring->txbufs[wr_idx];
1758 
1759 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1760 
1761 	txbuf->frag = rxbuf->frag;
1762 	txbuf->dma_addr = rxbuf->dma_addr;
1763 	txbuf->fidx = -1;
1764 	txbuf->pkt_cnt = 1;
1765 	txbuf->real_len = pkt_len;
1766 
1767 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1768 				   pkt_len, DMA_BIDIRECTIONAL);
1769 
1770 	/* Build TX descriptor */
1771 	txd = &tx_ring->txds[wr_idx];
1772 	txd->offset_eop = PCIE_DESC_TX_EOP;
1773 	txd->dma_len = cpu_to_le16(pkt_len);
1774 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1775 	txd->data_len = cpu_to_le16(pkt_len);
1776 
1777 	txd->flags = 0;
1778 	txd->mss = 0;
1779 	txd->lso_hdrlen = 0;
1780 
1781 	tx_ring->wr_p++;
1782 	tx_ring->wr_ptr_add++;
1783 	return true;
1784 }
1785 
1786 /**
1787  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1788  * @rx_ring:   RX ring to receive from
1789  * @budget:    NAPI budget
1790  *
1791  * Note, this function is separated out from the napi poll function to
1792  * more cleanly separate packet receive code from other bookkeeping
1793  * functions performed in the napi poll function.
1794  *
1795  * Return: Number of packets received.
1796  */
1797 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1798 {
1799 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1800 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1801 	struct nfp_net_tx_ring *tx_ring;
1802 	struct bpf_prog *xdp_prog;
1803 	bool xdp_tx_cmpl = false;
1804 	unsigned int true_bufsz;
1805 	struct sk_buff *skb;
1806 	int pkts_polled = 0;
1807 	struct xdp_buff xdp;
1808 	int idx;
1809 
1810 	rcu_read_lock();
1811 	xdp_prog = READ_ONCE(dp->xdp_prog);
1812 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1813 	xdp.rxq = &rx_ring->xdp_rxq;
1814 	tx_ring = r_vec->xdp_ring;
1815 
1816 	while (pkts_polled < budget) {
1817 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1818 		struct nfp_net_rx_buf *rxbuf;
1819 		struct nfp_net_rx_desc *rxd;
1820 		struct nfp_meta_parsed meta;
1821 		bool redir_egress = false;
1822 		struct net_device *netdev;
1823 		dma_addr_t new_dma_addr;
1824 		u32 meta_len_xdp = 0;
1825 		void *new_frag;
1826 
1827 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1828 
1829 		rxd = &rx_ring->rxds[idx];
1830 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1831 			break;
1832 
1833 		/* Memory barrier to ensure that we won't do other reads
1834 		 * before the DD bit.
1835 		 */
1836 		dma_rmb();
1837 
1838 		memset(&meta, 0, sizeof(meta));
1839 
1840 		rx_ring->rd_p++;
1841 		pkts_polled++;
1842 
1843 		rxbuf =	&rx_ring->rxbufs[idx];
1844 		/*         < meta_len >
1845 		 *  <-- [rx_offset] -->
1846 		 *  ---------------------------------------------------------
1847 		 * | [XX] |  metadata  |             packet           | XXXX |
1848 		 *  ---------------------------------------------------------
1849 		 *         <---------------- data_len --------------->
1850 		 *
1851 		 * The rx_offset is fixed for all packets, the meta_len can vary
1852 		 * on a packet by packet basis. If rx_offset is set to zero
1853 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1854 		 * buffer and is immediately followed by the packet (no [XX]).
1855 		 */
1856 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1857 		data_len = le16_to_cpu(rxd->rxd.data_len);
1858 		pkt_len = data_len - meta_len;
1859 
1860 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1861 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1862 			pkt_off += meta_len;
1863 		else
1864 			pkt_off += dp->rx_offset;
1865 		meta_off = pkt_off - meta_len;
1866 
1867 		/* Stats update */
1868 		u64_stats_update_begin(&r_vec->rx_sync);
1869 		r_vec->rx_pkts++;
1870 		r_vec->rx_bytes += pkt_len;
1871 		u64_stats_update_end(&r_vec->rx_sync);
1872 
1873 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1874 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1875 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1876 				   meta_len);
1877 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1878 			continue;
1879 		}
1880 
1881 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1882 					data_len);
1883 
1884 		if (!dp->chained_metadata_format) {
1885 			nfp_net_set_hash_desc(dp->netdev, &meta,
1886 					      rxbuf->frag + meta_off, rxd);
1887 		} else if (meta_len) {
1888 			void *end;
1889 
1890 			end = nfp_net_parse_meta(dp->netdev, &meta,
1891 						 rxbuf->frag + meta_off,
1892 						 meta_len);
1893 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1894 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1895 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1896 						NULL);
1897 				continue;
1898 			}
1899 		}
1900 
1901 		if (xdp_prog && !meta.portid) {
1902 			void *orig_data = rxbuf->frag + pkt_off;
1903 			unsigned int dma_off;
1904 			int act;
1905 
1906 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1907 			xdp.data = orig_data;
1908 			xdp.data_meta = orig_data;
1909 			xdp.data_end = orig_data + pkt_len;
1910 
1911 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1912 
1913 			pkt_len = xdp.data_end - xdp.data;
1914 			pkt_off += xdp.data - orig_data;
1915 
1916 			switch (act) {
1917 			case XDP_PASS:
1918 				meta_len_xdp = xdp.data - xdp.data_meta;
1919 				break;
1920 			case XDP_TX:
1921 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1922 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1923 								 tx_ring, rxbuf,
1924 								 dma_off,
1925 								 pkt_len,
1926 								 &xdp_tx_cmpl)))
1927 					trace_xdp_exception(dp->netdev,
1928 							    xdp_prog, act);
1929 				continue;
1930 			default:
1931 				bpf_warn_invalid_xdp_action(act);
1932 				/* fall through */
1933 			case XDP_ABORTED:
1934 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1935 				/* fall through */
1936 			case XDP_DROP:
1937 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1938 						    rxbuf->dma_addr);
1939 				continue;
1940 			}
1941 		}
1942 
1943 		if (likely(!meta.portid)) {
1944 			netdev = dp->netdev;
1945 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1946 			struct nfp_net *nn = netdev_priv(dp->netdev);
1947 
1948 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1949 					    pkt_len);
1950 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1951 					    rxbuf->dma_addr);
1952 			continue;
1953 		} else {
1954 			struct nfp_net *nn;
1955 
1956 			nn = netdev_priv(dp->netdev);
1957 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1958 						 &redir_egress);
1959 			if (unlikely(!netdev)) {
1960 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1961 						NULL);
1962 				continue;
1963 			}
1964 
1965 			if (nfp_netdev_is_nfp_repr(netdev))
1966 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1967 		}
1968 
1969 		skb = build_skb(rxbuf->frag, true_bufsz);
1970 		if (unlikely(!skb)) {
1971 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1972 			continue;
1973 		}
1974 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1975 		if (unlikely(!new_frag)) {
1976 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1977 			continue;
1978 		}
1979 
1980 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1981 
1982 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1983 
1984 		skb_reserve(skb, pkt_off);
1985 		skb_put(skb, pkt_len);
1986 
1987 		skb->mark = meta.mark;
1988 		skb_set_hash(skb, meta.hash, meta.hash_type);
1989 
1990 		skb_record_rx_queue(skb, rx_ring->idx);
1991 		skb->protocol = eth_type_trans(skb, netdev);
1992 
1993 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1994 
1995 #ifdef CONFIG_TLS_DEVICE
1996 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1997 			skb->decrypted = true;
1998 			u64_stats_update_begin(&r_vec->rx_sync);
1999 			r_vec->hw_tls_rx++;
2000 			u64_stats_update_end(&r_vec->rx_sync);
2001 		}
2002 #endif
2003 
2004 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2005 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2006 					       le16_to_cpu(rxd->rxd.vlan));
2007 		if (meta_len_xdp)
2008 			skb_metadata_set(skb, meta_len_xdp);
2009 
2010 		if (likely(!redir_egress)) {
2011 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
2012 		} else {
2013 			skb->dev = netdev;
2014 			skb_reset_network_header(skb);
2015 			__skb_push(skb, ETH_HLEN);
2016 			dev_queue_xmit(skb);
2017 		}
2018 	}
2019 
2020 	if (xdp_prog) {
2021 		if (tx_ring->wr_ptr_add)
2022 			nfp_net_tx_xmit_more_flush(tx_ring);
2023 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2024 			 !xdp_tx_cmpl)
2025 			if (!nfp_net_xdp_complete(tx_ring))
2026 				pkts_polled = budget;
2027 	}
2028 	rcu_read_unlock();
2029 
2030 	return pkts_polled;
2031 }
2032 
2033 /**
2034  * nfp_net_poll() - napi poll function
2035  * @napi:    NAPI structure
2036  * @budget:  NAPI budget
2037  *
2038  * Return: number of packets polled.
2039  */
2040 static int nfp_net_poll(struct napi_struct *napi, int budget)
2041 {
2042 	struct nfp_net_r_vector *r_vec =
2043 		container_of(napi, struct nfp_net_r_vector, napi);
2044 	unsigned int pkts_polled = 0;
2045 
2046 	if (r_vec->tx_ring)
2047 		nfp_net_tx_complete(r_vec->tx_ring, budget);
2048 	if (r_vec->rx_ring)
2049 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2050 
2051 	if (pkts_polled < budget)
2052 		if (napi_complete_done(napi, pkts_polled))
2053 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2054 
2055 	return pkts_polled;
2056 }
2057 
2058 /* Control device data path
2059  */
2060 
2061 static bool
2062 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2063 		struct sk_buff *skb, bool old)
2064 {
2065 	unsigned int real_len = skb->len, meta_len = 0;
2066 	struct nfp_net_tx_ring *tx_ring;
2067 	struct nfp_net_tx_buf *txbuf;
2068 	struct nfp_net_tx_desc *txd;
2069 	struct nfp_net_dp *dp;
2070 	dma_addr_t dma_addr;
2071 	int wr_idx;
2072 
2073 	dp = &r_vec->nfp_net->dp;
2074 	tx_ring = r_vec->tx_ring;
2075 
2076 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2077 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2078 		goto err_free;
2079 	}
2080 
2081 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2082 		u64_stats_update_begin(&r_vec->tx_sync);
2083 		r_vec->tx_busy++;
2084 		u64_stats_update_end(&r_vec->tx_sync);
2085 		if (!old)
2086 			__skb_queue_tail(&r_vec->queue, skb);
2087 		else
2088 			__skb_queue_head(&r_vec->queue, skb);
2089 		return true;
2090 	}
2091 
2092 	if (nfp_app_ctrl_has_meta(nn->app)) {
2093 		if (unlikely(skb_headroom(skb) < 8)) {
2094 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2095 			goto err_free;
2096 		}
2097 		meta_len = 8;
2098 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2099 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2100 	}
2101 
2102 	/* Start with the head skbuf */
2103 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2104 				  DMA_TO_DEVICE);
2105 	if (dma_mapping_error(dp->dev, dma_addr))
2106 		goto err_dma_warn;
2107 
2108 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2109 
2110 	/* Stash the soft descriptor of the head then initialize it */
2111 	txbuf = &tx_ring->txbufs[wr_idx];
2112 	txbuf->skb = skb;
2113 	txbuf->dma_addr = dma_addr;
2114 	txbuf->fidx = -1;
2115 	txbuf->pkt_cnt = 1;
2116 	txbuf->real_len = real_len;
2117 
2118 	/* Build TX descriptor */
2119 	txd = &tx_ring->txds[wr_idx];
2120 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2121 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
2122 	nfp_desc_set_dma_addr(txd, dma_addr);
2123 	txd->data_len = cpu_to_le16(skb->len);
2124 
2125 	txd->flags = 0;
2126 	txd->mss = 0;
2127 	txd->lso_hdrlen = 0;
2128 
2129 	tx_ring->wr_p++;
2130 	tx_ring->wr_ptr_add++;
2131 	nfp_net_tx_xmit_more_flush(tx_ring);
2132 
2133 	return false;
2134 
2135 err_dma_warn:
2136 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2137 err_free:
2138 	u64_stats_update_begin(&r_vec->tx_sync);
2139 	r_vec->tx_errors++;
2140 	u64_stats_update_end(&r_vec->tx_sync);
2141 	dev_kfree_skb_any(skb);
2142 	return false;
2143 }
2144 
2145 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2146 {
2147 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2148 
2149 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2150 }
2151 
2152 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2153 {
2154 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2155 	bool ret;
2156 
2157 	spin_lock_bh(&r_vec->lock);
2158 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2159 	spin_unlock_bh(&r_vec->lock);
2160 
2161 	return ret;
2162 }
2163 
2164 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2165 {
2166 	struct sk_buff *skb;
2167 
2168 	while ((skb = __skb_dequeue(&r_vec->queue)))
2169 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2170 			return;
2171 }
2172 
2173 static bool
2174 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2175 {
2176 	u32 meta_type, meta_tag;
2177 
2178 	if (!nfp_app_ctrl_has_meta(nn->app))
2179 		return !meta_len;
2180 
2181 	if (meta_len != 8)
2182 		return false;
2183 
2184 	meta_type = get_unaligned_be32(data);
2185 	meta_tag = get_unaligned_be32(data + 4);
2186 
2187 	return (meta_type == NFP_NET_META_PORTID &&
2188 		meta_tag == NFP_META_PORT_ID_CTRL);
2189 }
2190 
2191 static bool
2192 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2193 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2194 {
2195 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2196 	struct nfp_net_rx_buf *rxbuf;
2197 	struct nfp_net_rx_desc *rxd;
2198 	dma_addr_t new_dma_addr;
2199 	struct sk_buff *skb;
2200 	void *new_frag;
2201 	int idx;
2202 
2203 	idx = D_IDX(rx_ring, rx_ring->rd_p);
2204 
2205 	rxd = &rx_ring->rxds[idx];
2206 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2207 		return false;
2208 
2209 	/* Memory barrier to ensure that we won't do other reads
2210 	 * before the DD bit.
2211 	 */
2212 	dma_rmb();
2213 
2214 	rx_ring->rd_p++;
2215 
2216 	rxbuf =	&rx_ring->rxbufs[idx];
2217 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2218 	data_len = le16_to_cpu(rxd->rxd.data_len);
2219 	pkt_len = data_len - meta_len;
2220 
2221 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2222 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2223 		pkt_off += meta_len;
2224 	else
2225 		pkt_off += dp->rx_offset;
2226 	meta_off = pkt_off - meta_len;
2227 
2228 	/* Stats update */
2229 	u64_stats_update_begin(&r_vec->rx_sync);
2230 	r_vec->rx_pkts++;
2231 	r_vec->rx_bytes += pkt_len;
2232 	u64_stats_update_end(&r_vec->rx_sync);
2233 
2234 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2235 
2236 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2237 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2238 			   meta_len);
2239 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2240 		return true;
2241 	}
2242 
2243 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2244 	if (unlikely(!skb)) {
2245 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2246 		return true;
2247 	}
2248 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2249 	if (unlikely(!new_frag)) {
2250 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2251 		return true;
2252 	}
2253 
2254 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2255 
2256 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2257 
2258 	skb_reserve(skb, pkt_off);
2259 	skb_put(skb, pkt_len);
2260 
2261 	nfp_app_ctrl_rx(nn->app, skb);
2262 
2263 	return true;
2264 }
2265 
2266 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2267 {
2268 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2269 	struct nfp_net *nn = r_vec->nfp_net;
2270 	struct nfp_net_dp *dp = &nn->dp;
2271 	unsigned int budget = 512;
2272 
2273 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2274 		continue;
2275 
2276 	return budget;
2277 }
2278 
2279 static void nfp_ctrl_poll(unsigned long arg)
2280 {
2281 	struct nfp_net_r_vector *r_vec = (void *)arg;
2282 
2283 	spin_lock(&r_vec->lock);
2284 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2285 	__nfp_ctrl_tx_queued(r_vec);
2286 	spin_unlock(&r_vec->lock);
2287 
2288 	if (nfp_ctrl_rx(r_vec)) {
2289 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2290 	} else {
2291 		tasklet_schedule(&r_vec->tasklet);
2292 		nn_dp_warn(&r_vec->nfp_net->dp,
2293 			   "control message budget exceeded!\n");
2294 	}
2295 }
2296 
2297 /* Setup and Configuration
2298  */
2299 
2300 /**
2301  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2302  * @nn:		NFP Network structure
2303  */
2304 static void nfp_net_vecs_init(struct nfp_net *nn)
2305 {
2306 	struct nfp_net_r_vector *r_vec;
2307 	int r;
2308 
2309 	nn->lsc_handler = nfp_net_irq_lsc;
2310 	nn->exn_handler = nfp_net_irq_exn;
2311 
2312 	for (r = 0; r < nn->max_r_vecs; r++) {
2313 		struct msix_entry *entry;
2314 
2315 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2316 
2317 		r_vec = &nn->r_vecs[r];
2318 		r_vec->nfp_net = nn;
2319 		r_vec->irq_entry = entry->entry;
2320 		r_vec->irq_vector = entry->vector;
2321 
2322 		if (nn->dp.netdev) {
2323 			r_vec->handler = nfp_net_irq_rxtx;
2324 		} else {
2325 			r_vec->handler = nfp_ctrl_irq_rxtx;
2326 
2327 			__skb_queue_head_init(&r_vec->queue);
2328 			spin_lock_init(&r_vec->lock);
2329 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2330 				     (unsigned long)r_vec);
2331 			tasklet_disable(&r_vec->tasklet);
2332 		}
2333 
2334 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2335 	}
2336 }
2337 
2338 /**
2339  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2340  * @tx_ring:   TX ring to free
2341  */
2342 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2343 {
2344 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2345 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2346 
2347 	kvfree(tx_ring->txbufs);
2348 
2349 	if (tx_ring->txds)
2350 		dma_free_coherent(dp->dev, tx_ring->size,
2351 				  tx_ring->txds, tx_ring->dma);
2352 
2353 	tx_ring->cnt = 0;
2354 	tx_ring->txbufs = NULL;
2355 	tx_ring->txds = NULL;
2356 	tx_ring->dma = 0;
2357 	tx_ring->size = 0;
2358 }
2359 
2360 /**
2361  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2362  * @dp:        NFP Net data path struct
2363  * @tx_ring:   TX Ring structure to allocate
2364  *
2365  * Return: 0 on success, negative errno otherwise.
2366  */
2367 static int
2368 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2369 {
2370 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2371 
2372 	tx_ring->cnt = dp->txd_cnt;
2373 
2374 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2375 	tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2376 					   &tx_ring->dma,
2377 					   GFP_KERNEL | __GFP_NOWARN);
2378 	if (!tx_ring->txds) {
2379 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2380 			    tx_ring->cnt);
2381 		goto err_alloc;
2382 	}
2383 
2384 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2385 				   GFP_KERNEL);
2386 	if (!tx_ring->txbufs)
2387 		goto err_alloc;
2388 
2389 	if (!tx_ring->is_xdp && dp->netdev)
2390 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2391 				    tx_ring->idx);
2392 
2393 	return 0;
2394 
2395 err_alloc:
2396 	nfp_net_tx_ring_free(tx_ring);
2397 	return -ENOMEM;
2398 }
2399 
2400 static void
2401 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2402 			  struct nfp_net_tx_ring *tx_ring)
2403 {
2404 	unsigned int i;
2405 
2406 	if (!tx_ring->is_xdp)
2407 		return;
2408 
2409 	for (i = 0; i < tx_ring->cnt; i++) {
2410 		if (!tx_ring->txbufs[i].frag)
2411 			return;
2412 
2413 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2414 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2415 	}
2416 }
2417 
2418 static int
2419 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2420 			   struct nfp_net_tx_ring *tx_ring)
2421 {
2422 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2423 	unsigned int i;
2424 
2425 	if (!tx_ring->is_xdp)
2426 		return 0;
2427 
2428 	for (i = 0; i < tx_ring->cnt; i++) {
2429 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2430 		if (!txbufs[i].frag) {
2431 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2432 			return -ENOMEM;
2433 		}
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2440 {
2441 	unsigned int r;
2442 
2443 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2444 			       GFP_KERNEL);
2445 	if (!dp->tx_rings)
2446 		return -ENOMEM;
2447 
2448 	for (r = 0; r < dp->num_tx_rings; r++) {
2449 		int bias = 0;
2450 
2451 		if (r >= dp->num_stack_tx_rings)
2452 			bias = dp->num_stack_tx_rings;
2453 
2454 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2455 				     r, bias);
2456 
2457 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2458 			goto err_free_prev;
2459 
2460 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2461 			goto err_free_ring;
2462 	}
2463 
2464 	return 0;
2465 
2466 err_free_prev:
2467 	while (r--) {
2468 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2469 err_free_ring:
2470 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2471 	}
2472 	kfree(dp->tx_rings);
2473 	return -ENOMEM;
2474 }
2475 
2476 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2477 {
2478 	unsigned int r;
2479 
2480 	for (r = 0; r < dp->num_tx_rings; r++) {
2481 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2482 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2483 	}
2484 
2485 	kfree(dp->tx_rings);
2486 }
2487 
2488 /**
2489  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2490  * @rx_ring:  RX ring to free
2491  */
2492 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2493 {
2494 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2495 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2496 
2497 	if (dp->netdev)
2498 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2499 	kvfree(rx_ring->rxbufs);
2500 
2501 	if (rx_ring->rxds)
2502 		dma_free_coherent(dp->dev, rx_ring->size,
2503 				  rx_ring->rxds, rx_ring->dma);
2504 
2505 	rx_ring->cnt = 0;
2506 	rx_ring->rxbufs = NULL;
2507 	rx_ring->rxds = NULL;
2508 	rx_ring->dma = 0;
2509 	rx_ring->size = 0;
2510 }
2511 
2512 /**
2513  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2514  * @dp:	      NFP Net data path struct
2515  * @rx_ring:  RX ring to allocate
2516  *
2517  * Return: 0 on success, negative errno otherwise.
2518  */
2519 static int
2520 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2521 {
2522 	int err;
2523 
2524 	if (dp->netdev) {
2525 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2526 				       rx_ring->idx);
2527 		if (err < 0)
2528 			return err;
2529 	}
2530 
2531 	rx_ring->cnt = dp->rxd_cnt;
2532 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2533 	rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2534 					   &rx_ring->dma,
2535 					   GFP_KERNEL | __GFP_NOWARN);
2536 	if (!rx_ring->rxds) {
2537 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2538 			    rx_ring->cnt);
2539 		goto err_alloc;
2540 	}
2541 
2542 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2543 				   GFP_KERNEL);
2544 	if (!rx_ring->rxbufs)
2545 		goto err_alloc;
2546 
2547 	return 0;
2548 
2549 err_alloc:
2550 	nfp_net_rx_ring_free(rx_ring);
2551 	return -ENOMEM;
2552 }
2553 
2554 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2555 {
2556 	unsigned int r;
2557 
2558 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2559 			       GFP_KERNEL);
2560 	if (!dp->rx_rings)
2561 		return -ENOMEM;
2562 
2563 	for (r = 0; r < dp->num_rx_rings; r++) {
2564 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2565 
2566 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2567 			goto err_free_prev;
2568 
2569 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2570 			goto err_free_ring;
2571 	}
2572 
2573 	return 0;
2574 
2575 err_free_prev:
2576 	while (r--) {
2577 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2578 err_free_ring:
2579 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2580 	}
2581 	kfree(dp->rx_rings);
2582 	return -ENOMEM;
2583 }
2584 
2585 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2586 {
2587 	unsigned int r;
2588 
2589 	for (r = 0; r < dp->num_rx_rings; r++) {
2590 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2591 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2592 	}
2593 
2594 	kfree(dp->rx_rings);
2595 }
2596 
2597 static void
2598 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2599 			    struct nfp_net_r_vector *r_vec, int idx)
2600 {
2601 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2602 	r_vec->tx_ring =
2603 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2604 
2605 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2606 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2607 }
2608 
2609 static int
2610 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2611 		       int idx)
2612 {
2613 	int err;
2614 
2615 	/* Setup NAPI */
2616 	if (nn->dp.netdev)
2617 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2618 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2619 	else
2620 		tasklet_enable(&r_vec->tasklet);
2621 
2622 	snprintf(r_vec->name, sizeof(r_vec->name),
2623 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2624 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2625 			  r_vec);
2626 	if (err) {
2627 		if (nn->dp.netdev)
2628 			netif_napi_del(&r_vec->napi);
2629 		else
2630 			tasklet_disable(&r_vec->tasklet);
2631 
2632 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2633 		return err;
2634 	}
2635 	disable_irq(r_vec->irq_vector);
2636 
2637 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2638 
2639 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2640 	       r_vec->irq_entry);
2641 
2642 	return 0;
2643 }
2644 
2645 static void
2646 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2647 {
2648 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2649 	if (nn->dp.netdev)
2650 		netif_napi_del(&r_vec->napi);
2651 	else
2652 		tasklet_disable(&r_vec->tasklet);
2653 
2654 	free_irq(r_vec->irq_vector, r_vec);
2655 }
2656 
2657 /**
2658  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2659  * @nn:      NFP Net device to reconfigure
2660  */
2661 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2662 {
2663 	int i;
2664 
2665 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2666 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2667 			  get_unaligned_le32(nn->rss_itbl + i));
2668 }
2669 
2670 /**
2671  * nfp_net_rss_write_key() - Write RSS hash key to device
2672  * @nn:      NFP Net device to reconfigure
2673  */
2674 void nfp_net_rss_write_key(struct nfp_net *nn)
2675 {
2676 	int i;
2677 
2678 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2679 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2680 			  get_unaligned_le32(nn->rss_key + i));
2681 }
2682 
2683 /**
2684  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2685  * @nn:      NFP Net device to reconfigure
2686  */
2687 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2688 {
2689 	u8 i;
2690 	u32 factor;
2691 	u32 value;
2692 
2693 	/* Compute factor used to convert coalesce '_usecs' parameters to
2694 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2695 	 * count.
2696 	 */
2697 	factor = nn->tlv_caps.me_freq_mhz / 16;
2698 
2699 	/* copy RX interrupt coalesce parameters */
2700 	value = (nn->rx_coalesce_max_frames << 16) |
2701 		(factor * nn->rx_coalesce_usecs);
2702 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2703 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2704 
2705 	/* copy TX interrupt coalesce parameters */
2706 	value = (nn->tx_coalesce_max_frames << 16) |
2707 		(factor * nn->tx_coalesce_usecs);
2708 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2709 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2710 }
2711 
2712 /**
2713  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2714  * @nn:      NFP Net device to reconfigure
2715  * @addr:    MAC address to write
2716  *
2717  * Writes the MAC address from the netdev to the device control BAR.  Does not
2718  * perform the required reconfig.  We do a bit of byte swapping dance because
2719  * firmware is LE.
2720  */
2721 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2722 {
2723 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2724 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2725 }
2726 
2727 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2728 {
2729 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2730 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2731 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2732 
2733 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2734 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2735 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2736 }
2737 
2738 /**
2739  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2740  * @nn:      NFP Net device to reconfigure
2741  *
2742  * Warning: must be fully idempotent.
2743  */
2744 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2745 {
2746 	u32 new_ctrl, update;
2747 	unsigned int r;
2748 	int err;
2749 
2750 	new_ctrl = nn->dp.ctrl;
2751 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2752 	update = NFP_NET_CFG_UPDATE_GEN;
2753 	update |= NFP_NET_CFG_UPDATE_MSIX;
2754 	update |= NFP_NET_CFG_UPDATE_RING;
2755 
2756 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2757 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2758 
2759 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2760 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2761 
2762 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2763 	err = nfp_net_reconfig(nn, update);
2764 	if (err)
2765 		nn_err(nn, "Could not disable device: %d\n", err);
2766 
2767 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2768 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2769 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2770 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2771 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2772 		nfp_net_vec_clear_ring_data(nn, r);
2773 
2774 	nn->dp.ctrl = new_ctrl;
2775 }
2776 
2777 static void
2778 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2779 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2780 {
2781 	/* Write the DMA address, size and MSI-X info to the device */
2782 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2783 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2784 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2785 }
2786 
2787 static void
2788 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2789 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2790 {
2791 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2792 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2793 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2794 }
2795 
2796 /**
2797  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2798  * @nn:      NFP Net device to reconfigure
2799  */
2800 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2801 {
2802 	u32 bufsz, new_ctrl, update = 0;
2803 	unsigned int r;
2804 	int err;
2805 
2806 	new_ctrl = nn->dp.ctrl;
2807 
2808 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2809 		nfp_net_rss_write_key(nn);
2810 		nfp_net_rss_write_itbl(nn);
2811 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2812 		update |= NFP_NET_CFG_UPDATE_RSS;
2813 	}
2814 
2815 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2816 		nfp_net_coalesce_write_cfg(nn);
2817 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2818 	}
2819 
2820 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2821 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2822 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2823 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2824 
2825 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2826 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2827 
2828 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2829 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2830 
2831 	if (nn->dp.netdev)
2832 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2833 
2834 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2835 
2836 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2837 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2838 
2839 	/* Enable device */
2840 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2841 	update |= NFP_NET_CFG_UPDATE_GEN;
2842 	update |= NFP_NET_CFG_UPDATE_MSIX;
2843 	update |= NFP_NET_CFG_UPDATE_RING;
2844 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2845 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2846 
2847 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2848 	err = nfp_net_reconfig(nn, update);
2849 	if (err) {
2850 		nfp_net_clear_config_and_disable(nn);
2851 		return err;
2852 	}
2853 
2854 	nn->dp.ctrl = new_ctrl;
2855 
2856 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2857 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2858 
2859 	/* Since reconfiguration requests while NFP is down are ignored we
2860 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2861 	 */
2862 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2863 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2864 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2865 		udp_tunnel_get_rx_info(nn->dp.netdev);
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 /**
2872  * nfp_net_close_stack() - Quiesce the stack (part of close)
2873  * @nn:	     NFP Net device to reconfigure
2874  */
2875 static void nfp_net_close_stack(struct nfp_net *nn)
2876 {
2877 	unsigned int r;
2878 
2879 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2880 	netif_carrier_off(nn->dp.netdev);
2881 	nn->link_up = false;
2882 
2883 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2884 		disable_irq(nn->r_vecs[r].irq_vector);
2885 		napi_disable(&nn->r_vecs[r].napi);
2886 	}
2887 
2888 	netif_tx_disable(nn->dp.netdev);
2889 }
2890 
2891 /**
2892  * nfp_net_close_free_all() - Free all runtime resources
2893  * @nn:      NFP Net device to reconfigure
2894  */
2895 static void nfp_net_close_free_all(struct nfp_net *nn)
2896 {
2897 	unsigned int r;
2898 
2899 	nfp_net_tx_rings_free(&nn->dp);
2900 	nfp_net_rx_rings_free(&nn->dp);
2901 
2902 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2903 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2904 
2905 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2906 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2907 }
2908 
2909 /**
2910  * nfp_net_netdev_close() - Called when the device is downed
2911  * @netdev:      netdev structure
2912  */
2913 static int nfp_net_netdev_close(struct net_device *netdev)
2914 {
2915 	struct nfp_net *nn = netdev_priv(netdev);
2916 
2917 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2918 	 */
2919 	nfp_net_close_stack(nn);
2920 
2921 	/* Step 2: Tell NFP
2922 	 */
2923 	nfp_net_clear_config_and_disable(nn);
2924 	nfp_port_configure(netdev, false);
2925 
2926 	/* Step 3: Free resources
2927 	 */
2928 	nfp_net_close_free_all(nn);
2929 
2930 	nn_dbg(nn, "%s down", netdev->name);
2931 	return 0;
2932 }
2933 
2934 void nfp_ctrl_close(struct nfp_net *nn)
2935 {
2936 	int r;
2937 
2938 	rtnl_lock();
2939 
2940 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2941 		disable_irq(nn->r_vecs[r].irq_vector);
2942 		tasklet_disable(&nn->r_vecs[r].tasklet);
2943 	}
2944 
2945 	nfp_net_clear_config_and_disable(nn);
2946 
2947 	nfp_net_close_free_all(nn);
2948 
2949 	rtnl_unlock();
2950 }
2951 
2952 /**
2953  * nfp_net_open_stack() - Start the device from stack's perspective
2954  * @nn:      NFP Net device to reconfigure
2955  */
2956 static void nfp_net_open_stack(struct nfp_net *nn)
2957 {
2958 	unsigned int r;
2959 
2960 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2961 		napi_enable(&nn->r_vecs[r].napi);
2962 		enable_irq(nn->r_vecs[r].irq_vector);
2963 	}
2964 
2965 	netif_tx_wake_all_queues(nn->dp.netdev);
2966 
2967 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2968 	nfp_net_read_link_status(nn);
2969 }
2970 
2971 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2972 {
2973 	int err, r;
2974 
2975 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2976 				      nn->exn_name, sizeof(nn->exn_name),
2977 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2978 	if (err)
2979 		return err;
2980 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2981 				      nn->lsc_name, sizeof(nn->lsc_name),
2982 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2983 	if (err)
2984 		goto err_free_exn;
2985 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2986 
2987 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2988 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2989 		if (err)
2990 			goto err_cleanup_vec_p;
2991 	}
2992 
2993 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2994 	if (err)
2995 		goto err_cleanup_vec;
2996 
2997 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2998 	if (err)
2999 		goto err_free_rx_rings;
3000 
3001 	for (r = 0; r < nn->max_r_vecs; r++)
3002 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3003 
3004 	return 0;
3005 
3006 err_free_rx_rings:
3007 	nfp_net_rx_rings_free(&nn->dp);
3008 err_cleanup_vec:
3009 	r = nn->dp.num_r_vecs;
3010 err_cleanup_vec_p:
3011 	while (r--)
3012 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3013 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3014 err_free_exn:
3015 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3016 	return err;
3017 }
3018 
3019 static int nfp_net_netdev_open(struct net_device *netdev)
3020 {
3021 	struct nfp_net *nn = netdev_priv(netdev);
3022 	int err;
3023 
3024 	/* Step 1: Allocate resources for rings and the like
3025 	 * - Request interrupts
3026 	 * - Allocate RX and TX ring resources
3027 	 * - Setup initial RSS table
3028 	 */
3029 	err = nfp_net_open_alloc_all(nn);
3030 	if (err)
3031 		return err;
3032 
3033 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3034 	if (err)
3035 		goto err_free_all;
3036 
3037 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3038 	if (err)
3039 		goto err_free_all;
3040 
3041 	/* Step 2: Configure the NFP
3042 	 * - Ifup the physical interface if it exists
3043 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3044 	 * - Write MAC address (in case it changed)
3045 	 * - Set the MTU
3046 	 * - Set the Freelist buffer size
3047 	 * - Enable the FW
3048 	 */
3049 	err = nfp_port_configure(netdev, true);
3050 	if (err)
3051 		goto err_free_all;
3052 
3053 	err = nfp_net_set_config_and_enable(nn);
3054 	if (err)
3055 		goto err_port_disable;
3056 
3057 	/* Step 3: Enable for kernel
3058 	 * - put some freelist descriptors on each RX ring
3059 	 * - enable NAPI on each ring
3060 	 * - enable all TX queues
3061 	 * - set link state
3062 	 */
3063 	nfp_net_open_stack(nn);
3064 
3065 	return 0;
3066 
3067 err_port_disable:
3068 	nfp_port_configure(netdev, false);
3069 err_free_all:
3070 	nfp_net_close_free_all(nn);
3071 	return err;
3072 }
3073 
3074 int nfp_ctrl_open(struct nfp_net *nn)
3075 {
3076 	int err, r;
3077 
3078 	/* ring dumping depends on vNICs being opened/closed under rtnl */
3079 	rtnl_lock();
3080 
3081 	err = nfp_net_open_alloc_all(nn);
3082 	if (err)
3083 		goto err_unlock;
3084 
3085 	err = nfp_net_set_config_and_enable(nn);
3086 	if (err)
3087 		goto err_free_all;
3088 
3089 	for (r = 0; r < nn->dp.num_r_vecs; r++)
3090 		enable_irq(nn->r_vecs[r].irq_vector);
3091 
3092 	rtnl_unlock();
3093 
3094 	return 0;
3095 
3096 err_free_all:
3097 	nfp_net_close_free_all(nn);
3098 err_unlock:
3099 	rtnl_unlock();
3100 	return err;
3101 }
3102 
3103 static void nfp_net_set_rx_mode(struct net_device *netdev)
3104 {
3105 	struct nfp_net *nn = netdev_priv(netdev);
3106 	u32 new_ctrl;
3107 
3108 	new_ctrl = nn->dp.ctrl;
3109 
3110 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3111 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3112 	else
3113 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3114 
3115 	if (netdev->flags & IFF_PROMISC) {
3116 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3117 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3118 		else
3119 			nn_warn(nn, "FW does not support promiscuous mode\n");
3120 	} else {
3121 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3122 	}
3123 
3124 	if (new_ctrl == nn->dp.ctrl)
3125 		return;
3126 
3127 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3128 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3129 
3130 	nn->dp.ctrl = new_ctrl;
3131 }
3132 
3133 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3134 {
3135 	int i;
3136 
3137 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
3138 		nn->rss_itbl[i] =
3139 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3140 }
3141 
3142 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3143 {
3144 	struct nfp_net_dp new_dp = *dp;
3145 
3146 	*dp = nn->dp;
3147 	nn->dp = new_dp;
3148 
3149 	nn->dp.netdev->mtu = new_dp.mtu;
3150 
3151 	if (!netif_is_rxfh_configured(nn->dp.netdev))
3152 		nfp_net_rss_init_itbl(nn);
3153 }
3154 
3155 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3156 {
3157 	unsigned int r;
3158 	int err;
3159 
3160 	nfp_net_dp_swap(nn, dp);
3161 
3162 	for (r = 0; r <	nn->max_r_vecs; r++)
3163 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3164 
3165 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3166 	if (err)
3167 		return err;
3168 
3169 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3170 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
3171 						   nn->dp.num_stack_tx_rings);
3172 		if (err)
3173 			return err;
3174 	}
3175 
3176 	return nfp_net_set_config_and_enable(nn);
3177 }
3178 
3179 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3180 {
3181 	struct nfp_net_dp *new;
3182 
3183 	new = kmalloc(sizeof(*new), GFP_KERNEL);
3184 	if (!new)
3185 		return NULL;
3186 
3187 	*new = nn->dp;
3188 
3189 	/* Clear things which need to be recomputed */
3190 	new->fl_bufsz = 0;
3191 	new->tx_rings = NULL;
3192 	new->rx_rings = NULL;
3193 	new->num_r_vecs = 0;
3194 	new->num_stack_tx_rings = 0;
3195 
3196 	return new;
3197 }
3198 
3199 static int
3200 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3201 		     struct netlink_ext_ack *extack)
3202 {
3203 	/* XDP-enabled tests */
3204 	if (!dp->xdp_prog)
3205 		return 0;
3206 	if (dp->fl_bufsz > PAGE_SIZE) {
3207 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3208 		return -EINVAL;
3209 	}
3210 	if (dp->num_tx_rings > nn->max_tx_rings) {
3211 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3212 		return -EINVAL;
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3219 			  struct netlink_ext_ack *extack)
3220 {
3221 	int r, err;
3222 
3223 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3224 
3225 	dp->num_stack_tx_rings = dp->num_tx_rings;
3226 	if (dp->xdp_prog)
3227 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3228 
3229 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3230 
3231 	err = nfp_net_check_config(nn, dp, extack);
3232 	if (err)
3233 		goto exit_free_dp;
3234 
3235 	if (!netif_running(dp->netdev)) {
3236 		nfp_net_dp_swap(nn, dp);
3237 		err = 0;
3238 		goto exit_free_dp;
3239 	}
3240 
3241 	/* Prepare new rings */
3242 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3243 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3244 		if (err) {
3245 			dp->num_r_vecs = r;
3246 			goto err_cleanup_vecs;
3247 		}
3248 	}
3249 
3250 	err = nfp_net_rx_rings_prepare(nn, dp);
3251 	if (err)
3252 		goto err_cleanup_vecs;
3253 
3254 	err = nfp_net_tx_rings_prepare(nn, dp);
3255 	if (err)
3256 		goto err_free_rx;
3257 
3258 	/* Stop device, swap in new rings, try to start the firmware */
3259 	nfp_net_close_stack(nn);
3260 	nfp_net_clear_config_and_disable(nn);
3261 
3262 	err = nfp_net_dp_swap_enable(nn, dp);
3263 	if (err) {
3264 		int err2;
3265 
3266 		nfp_net_clear_config_and_disable(nn);
3267 
3268 		/* Try with old configuration and old rings */
3269 		err2 = nfp_net_dp_swap_enable(nn, dp);
3270 		if (err2)
3271 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3272 			       err, err2);
3273 	}
3274 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3275 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3276 
3277 	nfp_net_rx_rings_free(dp);
3278 	nfp_net_tx_rings_free(dp);
3279 
3280 	nfp_net_open_stack(nn);
3281 exit_free_dp:
3282 	kfree(dp);
3283 
3284 	return err;
3285 
3286 err_free_rx:
3287 	nfp_net_rx_rings_free(dp);
3288 err_cleanup_vecs:
3289 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3290 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3291 	kfree(dp);
3292 	return err;
3293 }
3294 
3295 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3296 {
3297 	struct nfp_net *nn = netdev_priv(netdev);
3298 	struct nfp_net_dp *dp;
3299 	int err;
3300 
3301 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3302 	if (err)
3303 		return err;
3304 
3305 	dp = nfp_net_clone_dp(nn);
3306 	if (!dp)
3307 		return -ENOMEM;
3308 
3309 	dp->mtu = new_mtu;
3310 
3311 	return nfp_net_ring_reconfig(nn, dp, NULL);
3312 }
3313 
3314 static int
3315 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3316 {
3317 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3318 	struct nfp_net *nn = netdev_priv(netdev);
3319 	int err;
3320 
3321 	/* Priority tagged packets with vlan id 0 are processed by the
3322 	 * NFP as untagged packets
3323 	 */
3324 	if (!vid)
3325 		return 0;
3326 
3327 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3328 	if (err)
3329 		return err;
3330 
3331 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3332 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3333 		  ETH_P_8021Q);
3334 
3335 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3336 }
3337 
3338 static int
3339 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3340 {
3341 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3342 	struct nfp_net *nn = netdev_priv(netdev);
3343 	int err;
3344 
3345 	/* Priority tagged packets with vlan id 0 are processed by the
3346 	 * NFP as untagged packets
3347 	 */
3348 	if (!vid)
3349 		return 0;
3350 
3351 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3352 	if (err)
3353 		return err;
3354 
3355 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3356 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3357 		  ETH_P_8021Q);
3358 
3359 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3360 }
3361 
3362 static void nfp_net_stat64(struct net_device *netdev,
3363 			   struct rtnl_link_stats64 *stats)
3364 {
3365 	struct nfp_net *nn = netdev_priv(netdev);
3366 	int r;
3367 
3368 	/* Collect software stats */
3369 	for (r = 0; r < nn->max_r_vecs; r++) {
3370 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3371 		u64 data[3];
3372 		unsigned int start;
3373 
3374 		do {
3375 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3376 			data[0] = r_vec->rx_pkts;
3377 			data[1] = r_vec->rx_bytes;
3378 			data[2] = r_vec->rx_drops;
3379 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3380 		stats->rx_packets += data[0];
3381 		stats->rx_bytes += data[1];
3382 		stats->rx_dropped += data[2];
3383 
3384 		do {
3385 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3386 			data[0] = r_vec->tx_pkts;
3387 			data[1] = r_vec->tx_bytes;
3388 			data[2] = r_vec->tx_errors;
3389 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3390 		stats->tx_packets += data[0];
3391 		stats->tx_bytes += data[1];
3392 		stats->tx_errors += data[2];
3393 	}
3394 
3395 	/* Add in device stats */
3396 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3397 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3398 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3399 
3400 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3401 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3402 }
3403 
3404 static int nfp_net_set_features(struct net_device *netdev,
3405 				netdev_features_t features)
3406 {
3407 	netdev_features_t changed = netdev->features ^ features;
3408 	struct nfp_net *nn = netdev_priv(netdev);
3409 	u32 new_ctrl;
3410 	int err;
3411 
3412 	/* Assume this is not called with features we have not advertised */
3413 
3414 	new_ctrl = nn->dp.ctrl;
3415 
3416 	if (changed & NETIF_F_RXCSUM) {
3417 		if (features & NETIF_F_RXCSUM)
3418 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3419 		else
3420 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3421 	}
3422 
3423 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3424 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3425 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3426 		else
3427 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3428 	}
3429 
3430 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3431 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3432 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3433 					      NFP_NET_CFG_CTRL_LSO;
3434 		else
3435 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3436 	}
3437 
3438 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3439 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3440 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3441 		else
3442 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3443 	}
3444 
3445 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3446 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3447 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3448 		else
3449 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3450 	}
3451 
3452 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3453 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3454 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3455 		else
3456 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3457 	}
3458 
3459 	if (changed & NETIF_F_SG) {
3460 		if (features & NETIF_F_SG)
3461 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3462 		else
3463 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3464 	}
3465 
3466 	err = nfp_port_set_features(netdev, features);
3467 	if (err)
3468 		return err;
3469 
3470 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3471 	       netdev->features, features, changed);
3472 
3473 	if (new_ctrl == nn->dp.ctrl)
3474 		return 0;
3475 
3476 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3477 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3478 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3479 	if (err)
3480 		return err;
3481 
3482 	nn->dp.ctrl = new_ctrl;
3483 
3484 	return 0;
3485 }
3486 
3487 static netdev_features_t
3488 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3489 		       netdev_features_t features)
3490 {
3491 	u8 l4_hdr;
3492 
3493 	/* We can't do TSO over double tagged packets (802.1AD) */
3494 	features &= vlan_features_check(skb, features);
3495 
3496 	if (!skb->encapsulation)
3497 		return features;
3498 
3499 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3500 	if (skb_is_gso(skb)) {
3501 		u32 hdrlen;
3502 
3503 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3504 			inner_tcp_hdrlen(skb);
3505 
3506 		/* Assume worst case scenario of having longest possible
3507 		 * metadata prepend - 8B
3508 		 */
3509 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3510 			features &= ~NETIF_F_GSO_MASK;
3511 	}
3512 
3513 	/* VXLAN/GRE check */
3514 	switch (vlan_get_protocol(skb)) {
3515 	case htons(ETH_P_IP):
3516 		l4_hdr = ip_hdr(skb)->protocol;
3517 		break;
3518 	case htons(ETH_P_IPV6):
3519 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3520 		break;
3521 	default:
3522 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3523 	}
3524 
3525 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3526 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3527 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3528 	    (l4_hdr == IPPROTO_UDP &&
3529 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3530 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3531 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3532 
3533 	return features;
3534 }
3535 
3536 static int
3537 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3538 {
3539 	struct nfp_net *nn = netdev_priv(netdev);
3540 	int n;
3541 
3542 	/* If port is defined, devlink_port is registered and devlink core
3543 	 * is taking care of name formatting.
3544 	 */
3545 	if (nn->port)
3546 		return -EOPNOTSUPP;
3547 
3548 	if (nn->dp.is_vf || nn->vnic_no_name)
3549 		return -EOPNOTSUPP;
3550 
3551 	n = snprintf(name, len, "n%d", nn->id);
3552 	if (n >= len)
3553 		return -EINVAL;
3554 
3555 	return 0;
3556 }
3557 
3558 /**
3559  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3560  * @nn:   NFP Net device to reconfigure
3561  * @idx:  Index into the port table where new port should be written
3562  * @port: UDP port to configure (pass zero to remove VXLAN port)
3563  */
3564 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3565 {
3566 	int i;
3567 
3568 	nn->vxlan_ports[idx] = port;
3569 
3570 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3571 		return;
3572 
3573 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3574 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3575 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3576 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3577 			  be16_to_cpu(nn->vxlan_ports[i]));
3578 
3579 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3580 }
3581 
3582 /**
3583  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3584  * @nn:   NFP Network structure
3585  * @port: UDP port to look for
3586  *
3587  * Return: if the port is already in the table -- it's position;
3588  *	   if the port is not in the table -- free position to use;
3589  *	   if the table is full -- -ENOSPC.
3590  */
3591 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3592 {
3593 	int i, free_idx = -ENOSPC;
3594 
3595 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3596 		if (nn->vxlan_ports[i] == port)
3597 			return i;
3598 		if (!nn->vxlan_usecnt[i])
3599 			free_idx = i;
3600 	}
3601 
3602 	return free_idx;
3603 }
3604 
3605 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3606 				   struct udp_tunnel_info *ti)
3607 {
3608 	struct nfp_net *nn = netdev_priv(netdev);
3609 	int idx;
3610 
3611 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3612 		return;
3613 
3614 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3615 	if (idx == -ENOSPC)
3616 		return;
3617 
3618 	if (!nn->vxlan_usecnt[idx]++)
3619 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3620 }
3621 
3622 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3623 				   struct udp_tunnel_info *ti)
3624 {
3625 	struct nfp_net *nn = netdev_priv(netdev);
3626 	int idx;
3627 
3628 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3629 		return;
3630 
3631 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3632 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3633 		return;
3634 
3635 	if (!--nn->vxlan_usecnt[idx])
3636 		nfp_net_set_vxlan_port(nn, idx, 0);
3637 }
3638 
3639 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3640 {
3641 	struct bpf_prog *prog = bpf->prog;
3642 	struct nfp_net_dp *dp;
3643 	int err;
3644 
3645 	if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3646 		return -EBUSY;
3647 
3648 	if (!prog == !nn->dp.xdp_prog) {
3649 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3650 		xdp_attachment_setup(&nn->xdp, bpf);
3651 		return 0;
3652 	}
3653 
3654 	dp = nfp_net_clone_dp(nn);
3655 	if (!dp)
3656 		return -ENOMEM;
3657 
3658 	dp->xdp_prog = prog;
3659 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3660 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3661 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3662 
3663 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3664 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3665 	if (err)
3666 		return err;
3667 
3668 	xdp_attachment_setup(&nn->xdp, bpf);
3669 	return 0;
3670 }
3671 
3672 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3673 {
3674 	int err;
3675 
3676 	if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3677 		return -EBUSY;
3678 
3679 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3680 	if (err)
3681 		return err;
3682 
3683 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3684 	return 0;
3685 }
3686 
3687 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3688 {
3689 	struct nfp_net *nn = netdev_priv(netdev);
3690 
3691 	switch (xdp->command) {
3692 	case XDP_SETUP_PROG:
3693 		return nfp_net_xdp_setup_drv(nn, xdp);
3694 	case XDP_SETUP_PROG_HW:
3695 		return nfp_net_xdp_setup_hw(nn, xdp);
3696 	case XDP_QUERY_PROG:
3697 		return xdp_attachment_query(&nn->xdp, xdp);
3698 	case XDP_QUERY_PROG_HW:
3699 		return xdp_attachment_query(&nn->xdp_hw, xdp);
3700 	default:
3701 		return nfp_app_bpf(nn->app, nn, xdp);
3702 	}
3703 }
3704 
3705 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3706 {
3707 	struct nfp_net *nn = netdev_priv(netdev);
3708 	struct sockaddr *saddr = addr;
3709 	int err;
3710 
3711 	err = eth_prepare_mac_addr_change(netdev, addr);
3712 	if (err)
3713 		return err;
3714 
3715 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3716 
3717 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3718 	if (err)
3719 		return err;
3720 
3721 	eth_commit_mac_addr_change(netdev, addr);
3722 
3723 	return 0;
3724 }
3725 
3726 const struct net_device_ops nfp_net_netdev_ops = {
3727 	.ndo_init		= nfp_app_ndo_init,
3728 	.ndo_uninit		= nfp_app_ndo_uninit,
3729 	.ndo_open		= nfp_net_netdev_open,
3730 	.ndo_stop		= nfp_net_netdev_close,
3731 	.ndo_start_xmit		= nfp_net_tx,
3732 	.ndo_get_stats64	= nfp_net_stat64,
3733 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3734 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3735 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3736 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3737 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3738 	.ndo_set_vf_trust	= nfp_app_set_vf_trust,
3739 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3740 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3741 	.ndo_setup_tc		= nfp_port_setup_tc,
3742 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3743 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3744 	.ndo_change_mtu		= nfp_net_change_mtu,
3745 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3746 	.ndo_set_features	= nfp_net_set_features,
3747 	.ndo_features_check	= nfp_net_features_check,
3748 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3749 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3750 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3751 	.ndo_bpf		= nfp_net_xdp,
3752 	.ndo_get_devlink_port	= nfp_devlink_get_devlink_port,
3753 };
3754 
3755 /**
3756  * nfp_net_info() - Print general info about the NIC
3757  * @nn:      NFP Net device to reconfigure
3758  */
3759 void nfp_net_info(struct nfp_net *nn)
3760 {
3761 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3762 		nn->dp.is_vf ? "VF " : "",
3763 		nn->dp.num_tx_rings, nn->max_tx_rings,
3764 		nn->dp.num_rx_rings, nn->max_rx_rings);
3765 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3766 		nn->fw_ver.resv, nn->fw_ver.class,
3767 		nn->fw_ver.major, nn->fw_ver.minor,
3768 		nn->max_mtu);
3769 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3770 		nn->cap,
3771 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3772 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3773 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3774 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3775 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3776 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3777 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3778 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3779 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3780 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3781 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3782 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3783 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3784 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3785 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3786 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3787 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3788 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3789 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3790 						      "RXCSUM_COMPLETE " : "",
3791 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3792 		nfp_app_extra_cap(nn->app, nn));
3793 }
3794 
3795 /**
3796  * nfp_net_alloc() - Allocate netdev and related structure
3797  * @pdev:         PCI device
3798  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3799  * @needs_netdev: Whether to allocate a netdev for this vNIC
3800  * @max_tx_rings: Maximum number of TX rings supported by device
3801  * @max_rx_rings: Maximum number of RX rings supported by device
3802  *
3803  * This function allocates a netdev device and fills in the initial
3804  * part of the @struct nfp_net structure.  In case of control device
3805  * nfp_net structure is allocated without the netdev.
3806  *
3807  * Return: NFP Net device structure, or ERR_PTR on error.
3808  */
3809 struct nfp_net *
3810 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3811 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3812 {
3813 	struct nfp_net *nn;
3814 	int err;
3815 
3816 	if (needs_netdev) {
3817 		struct net_device *netdev;
3818 
3819 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3820 					    max_tx_rings, max_rx_rings);
3821 		if (!netdev)
3822 			return ERR_PTR(-ENOMEM);
3823 
3824 		SET_NETDEV_DEV(netdev, &pdev->dev);
3825 		nn = netdev_priv(netdev);
3826 		nn->dp.netdev = netdev;
3827 	} else {
3828 		nn = vzalloc(sizeof(*nn));
3829 		if (!nn)
3830 			return ERR_PTR(-ENOMEM);
3831 	}
3832 
3833 	nn->dp.dev = &pdev->dev;
3834 	nn->dp.ctrl_bar = ctrl_bar;
3835 	nn->pdev = pdev;
3836 
3837 	nn->max_tx_rings = max_tx_rings;
3838 	nn->max_rx_rings = max_rx_rings;
3839 
3840 	nn->dp.num_tx_rings = min_t(unsigned int,
3841 				    max_tx_rings, num_online_cpus());
3842 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3843 				 netif_get_num_default_rss_queues());
3844 
3845 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3846 	nn->dp.num_r_vecs = min_t(unsigned int,
3847 				  nn->dp.num_r_vecs, num_online_cpus());
3848 
3849 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3850 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3851 
3852 	sema_init(&nn->bar_lock, 1);
3853 
3854 	spin_lock_init(&nn->reconfig_lock);
3855 	spin_lock_init(&nn->link_status_lock);
3856 
3857 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3858 
3859 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3860 				     &nn->tlv_caps);
3861 	if (err)
3862 		goto err_free_nn;
3863 
3864 	err = nfp_ccm_mbox_alloc(nn);
3865 	if (err)
3866 		goto err_free_nn;
3867 
3868 	return nn;
3869 
3870 err_free_nn:
3871 	if (nn->dp.netdev)
3872 		free_netdev(nn->dp.netdev);
3873 	else
3874 		vfree(nn);
3875 	return ERR_PTR(err);
3876 }
3877 
3878 /**
3879  * nfp_net_free() - Undo what @nfp_net_alloc() did
3880  * @nn:      NFP Net device to reconfigure
3881  */
3882 void nfp_net_free(struct nfp_net *nn)
3883 {
3884 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3885 	nfp_ccm_mbox_free(nn);
3886 
3887 	if (nn->dp.netdev)
3888 		free_netdev(nn->dp.netdev);
3889 	else
3890 		vfree(nn);
3891 }
3892 
3893 /**
3894  * nfp_net_rss_key_sz() - Get current size of the RSS key
3895  * @nn:		NFP Net device instance
3896  *
3897  * Return: size of the RSS key for currently selected hash function.
3898  */
3899 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3900 {
3901 	switch (nn->rss_hfunc) {
3902 	case ETH_RSS_HASH_TOP:
3903 		return NFP_NET_CFG_RSS_KEY_SZ;
3904 	case ETH_RSS_HASH_XOR:
3905 		return 0;
3906 	case ETH_RSS_HASH_CRC32:
3907 		return 4;
3908 	}
3909 
3910 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3911 	return 0;
3912 }
3913 
3914 /**
3915  * nfp_net_rss_init() - Set the initial RSS parameters
3916  * @nn:	     NFP Net device to reconfigure
3917  */
3918 static void nfp_net_rss_init(struct nfp_net *nn)
3919 {
3920 	unsigned long func_bit, rss_cap_hfunc;
3921 	u32 reg;
3922 
3923 	/* Read the RSS function capability and select first supported func */
3924 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3925 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3926 	if (!rss_cap_hfunc)
3927 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3928 					  NFP_NET_CFG_RSS_TOEPLITZ);
3929 
3930 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3931 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3932 		dev_warn(nn->dp.dev,
3933 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3934 		func_bit = ETH_RSS_HASH_TOP_BIT;
3935 	}
3936 	nn->rss_hfunc = 1 << func_bit;
3937 
3938 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3939 
3940 	nfp_net_rss_init_itbl(nn);
3941 
3942 	/* Enable IPv4/IPv6 TCP by default */
3943 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3944 		      NFP_NET_CFG_RSS_IPV6_TCP |
3945 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3946 		      NFP_NET_CFG_RSS_MASK;
3947 }
3948 
3949 /**
3950  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3951  * @nn:	     NFP Net device to reconfigure
3952  */
3953 static void nfp_net_irqmod_init(struct nfp_net *nn)
3954 {
3955 	nn->rx_coalesce_usecs      = 50;
3956 	nn->rx_coalesce_max_frames = 64;
3957 	nn->tx_coalesce_usecs      = 50;
3958 	nn->tx_coalesce_max_frames = 64;
3959 }
3960 
3961 static void nfp_net_netdev_init(struct nfp_net *nn)
3962 {
3963 	struct net_device *netdev = nn->dp.netdev;
3964 
3965 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3966 
3967 	netdev->mtu = nn->dp.mtu;
3968 
3969 	/* Advertise/enable offloads based on capabilities
3970 	 *
3971 	 * Note: netdev->features show the currently enabled features
3972 	 * and netdev->hw_features advertises which features are
3973 	 * supported.  By default we enable most features.
3974 	 */
3975 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3976 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3977 
3978 	netdev->hw_features = NETIF_F_HIGHDMA;
3979 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3980 		netdev->hw_features |= NETIF_F_RXCSUM;
3981 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3982 	}
3983 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3984 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3985 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3986 	}
3987 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3988 		netdev->hw_features |= NETIF_F_SG;
3989 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3990 	}
3991 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3992 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3993 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3994 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3995 					 NFP_NET_CFG_CTRL_LSO;
3996 	}
3997 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3998 		netdev->hw_features |= NETIF_F_RXHASH;
3999 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
4000 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4001 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
4002 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
4003 	}
4004 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
4005 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4006 			netdev->hw_features |= NETIF_F_GSO_GRE;
4007 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
4008 	}
4009 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
4010 		netdev->hw_enc_features = netdev->hw_features;
4011 
4012 	netdev->vlan_features = netdev->hw_features;
4013 
4014 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
4015 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4016 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
4017 	}
4018 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4019 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4020 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4021 		} else {
4022 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4023 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4024 		}
4025 	}
4026 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4027 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4028 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4029 	}
4030 
4031 	netdev->features = netdev->hw_features;
4032 
4033 	if (nfp_app_has_tc(nn->app) && nn->port)
4034 		netdev->hw_features |= NETIF_F_HW_TC;
4035 
4036 	/* Advertise but disable TSO by default. */
4037 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4038 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4039 
4040 	/* Finalise the netdev setup */
4041 	netdev->netdev_ops = &nfp_net_netdev_ops;
4042 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4043 
4044 	/* MTU range: 68 - hw-specific max */
4045 	netdev->min_mtu = ETH_MIN_MTU;
4046 	netdev->max_mtu = nn->max_mtu;
4047 
4048 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4049 
4050 	netif_carrier_off(netdev);
4051 
4052 	nfp_net_set_ethtool_ops(netdev);
4053 }
4054 
4055 static int nfp_net_read_caps(struct nfp_net *nn)
4056 {
4057 	/* Get some of the read-only fields from the BAR */
4058 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4059 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4060 
4061 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4062 	 * we allow use of non-chained metadata if RSS(v1) is the only
4063 	 * advertised capability requiring metadata.
4064 	 */
4065 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4066 					 !nn->dp.netdev ||
4067 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4068 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4069 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4070 	 * it has the same meaning as RSSv2.
4071 	 */
4072 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4073 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4074 
4075 	/* Determine RX packet/metadata boundary offset */
4076 	if (nn->fw_ver.major >= 2) {
4077 		u32 reg;
4078 
4079 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4080 		if (reg > NFP_NET_MAX_PREPEND) {
4081 			nn_err(nn, "Invalid rx offset: %d\n", reg);
4082 			return -EINVAL;
4083 		}
4084 		nn->dp.rx_offset = reg;
4085 	} else {
4086 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4087 	}
4088 
4089 	/* For control vNICs mask out the capabilities app doesn't want. */
4090 	if (!nn->dp.netdev)
4091 		nn->cap &= nn->app->type->ctrl_cap_mask;
4092 
4093 	return 0;
4094 }
4095 
4096 /**
4097  * nfp_net_init() - Initialise/finalise the nfp_net structure
4098  * @nn:		NFP Net device structure
4099  *
4100  * Return: 0 on success or negative errno on error.
4101  */
4102 int nfp_net_init(struct nfp_net *nn)
4103 {
4104 	int err;
4105 
4106 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4107 
4108 	err = nfp_net_read_caps(nn);
4109 	if (err)
4110 		return err;
4111 
4112 	/* Set default MTU and Freelist buffer size */
4113 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4114 		nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4115 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4116 		nn->dp.mtu = nn->max_mtu;
4117 	} else {
4118 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4119 	}
4120 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4121 
4122 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
4123 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4124 
4125 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4126 		nfp_net_rss_init(nn);
4127 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4128 					 NFP_NET_CFG_CTRL_RSS;
4129 	}
4130 
4131 	/* Allow L2 Broadcast and Multicast through by default, if supported */
4132 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4133 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4134 
4135 	/* Allow IRQ moderation, if supported */
4136 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4137 		nfp_net_irqmod_init(nn);
4138 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4139 	}
4140 
4141 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
4142 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4143 
4144 	/* Make sure the FW knows the netdev is supposed to be disabled here */
4145 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4146 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4147 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4148 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4149 				   NFP_NET_CFG_UPDATE_GEN);
4150 	if (err)
4151 		return err;
4152 
4153 	if (nn->dp.netdev) {
4154 		nfp_net_netdev_init(nn);
4155 
4156 		err = nfp_ccm_mbox_init(nn);
4157 		if (err)
4158 			return err;
4159 
4160 		err = nfp_net_tls_init(nn);
4161 		if (err)
4162 			goto err_clean_mbox;
4163 	}
4164 
4165 	nfp_net_vecs_init(nn);
4166 
4167 	if (!nn->dp.netdev)
4168 		return 0;
4169 	return register_netdev(nn->dp.netdev);
4170 
4171 err_clean_mbox:
4172 	nfp_ccm_mbox_clean(nn);
4173 	return err;
4174 }
4175 
4176 /**
4177  * nfp_net_clean() - Undo what nfp_net_init() did.
4178  * @nn:		NFP Net device structure
4179  */
4180 void nfp_net_clean(struct nfp_net *nn)
4181 {
4182 	if (!nn->dp.netdev)
4183 		return;
4184 
4185 	unregister_netdev(nn->dp.netdev);
4186 	nfp_ccm_mbox_clean(nn);
4187 	nfp_net_reconfig_wait_posted(nn);
4188 }
4189