1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 51 /** 52 * nfp_net_get_fw_version() - Read and parse the FW version 53 * @fw_ver: Output fw_version structure to read to 54 * @ctrl_bar: Mapped address of the control BAR 55 */ 56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 57 void __iomem *ctrl_bar) 58 { 59 u32 reg; 60 61 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 62 put_unaligned_le32(reg, fw_ver); 63 } 64 65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 66 { 67 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 68 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 69 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 70 } 71 72 static void 73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 74 { 75 dma_sync_single_for_device(dp->dev, dma_addr, 76 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 77 dp->rx_dma_dir); 78 } 79 80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 81 { 82 dma_unmap_single_attrs(dp->dev, dma_addr, 83 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 84 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 85 } 86 87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 88 unsigned int len) 89 { 90 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 91 len, dp->rx_dma_dir); 92 } 93 94 /* Firmware reconfig 95 * 96 * Firmware reconfig may take a while so we have two versions of it - 97 * synchronous and asynchronous (posted). All synchronous callers are holding 98 * RTNL so we don't have to worry about serializing them. 99 */ 100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 101 { 102 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 103 /* ensure update is written before pinging HW */ 104 nn_pci_flush(nn); 105 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 106 nn->reconfig_in_progress_update = update; 107 } 108 109 /* Pass 0 as update to run posted reconfigs. */ 110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 111 { 112 update |= nn->reconfig_posted; 113 nn->reconfig_posted = 0; 114 115 nfp_net_reconfig_start(nn, update); 116 117 nn->reconfig_timer_active = true; 118 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 119 } 120 121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 122 { 123 u32 reg; 124 125 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 126 if (reg == 0) 127 return true; 128 if (reg & NFP_NET_CFG_UPDATE_ERR) { 129 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 130 reg, nn->reconfig_in_progress_update, 131 nn_readl(nn, NFP_NET_CFG_CTRL)); 132 return true; 133 } else if (last_check) { 134 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 135 reg, nn->reconfig_in_progress_update, 136 nn_readl(nn, NFP_NET_CFG_CTRL)); 137 return true; 138 } 139 140 return false; 141 } 142 143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 144 { 145 bool timed_out = false; 146 int i; 147 148 /* Poll update field, waiting for NFP to ack the config. 149 * Do an opportunistic wait-busy loop, afterward sleep. 150 */ 151 for (i = 0; i < 50; i++) { 152 if (nfp_net_reconfig_check_done(nn, false)) 153 return false; 154 udelay(4); 155 } 156 157 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 158 usleep_range(250, 500); 159 timed_out = time_is_before_eq_jiffies(deadline); 160 } 161 162 return timed_out; 163 } 164 165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 166 { 167 if (__nfp_net_reconfig_wait(nn, deadline)) 168 return -EIO; 169 170 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 171 return -EIO; 172 173 return 0; 174 } 175 176 static void nfp_net_reconfig_timer(struct timer_list *t) 177 { 178 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 179 180 spin_lock_bh(&nn->reconfig_lock); 181 182 nn->reconfig_timer_active = false; 183 184 /* If sync caller is present it will take over from us */ 185 if (nn->reconfig_sync_present) 186 goto done; 187 188 /* Read reconfig status and report errors */ 189 nfp_net_reconfig_check_done(nn, true); 190 191 if (nn->reconfig_posted) 192 nfp_net_reconfig_start_async(nn, 0); 193 done: 194 spin_unlock_bh(&nn->reconfig_lock); 195 } 196 197 /** 198 * nfp_net_reconfig_post() - Post async reconfig request 199 * @nn: NFP Net device to reconfigure 200 * @update: The value for the update field in the BAR config 201 * 202 * Record FW reconfiguration request. Reconfiguration will be kicked off 203 * whenever reconfiguration machinery is idle. Multiple requests can be 204 * merged together! 205 */ 206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 207 { 208 spin_lock_bh(&nn->reconfig_lock); 209 210 /* Sync caller will kick off async reconf when it's done, just post */ 211 if (nn->reconfig_sync_present) { 212 nn->reconfig_posted |= update; 213 goto done; 214 } 215 216 /* Opportunistically check if the previous command is done */ 217 if (!nn->reconfig_timer_active || 218 nfp_net_reconfig_check_done(nn, false)) 219 nfp_net_reconfig_start_async(nn, update); 220 else 221 nn->reconfig_posted |= update; 222 done: 223 spin_unlock_bh(&nn->reconfig_lock); 224 } 225 226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 227 { 228 bool cancelled_timer = false; 229 u32 pre_posted_requests; 230 231 spin_lock_bh(&nn->reconfig_lock); 232 233 WARN_ON(nn->reconfig_sync_present); 234 nn->reconfig_sync_present = true; 235 236 if (nn->reconfig_timer_active) { 237 nn->reconfig_timer_active = false; 238 cancelled_timer = true; 239 } 240 pre_posted_requests = nn->reconfig_posted; 241 nn->reconfig_posted = 0; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 if (cancelled_timer) { 246 del_timer_sync(&nn->reconfig_timer); 247 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 248 } 249 250 /* Run the posted reconfigs which were issued before we started */ 251 if (pre_posted_requests) { 252 nfp_net_reconfig_start(nn, pre_posted_requests); 253 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 254 } 255 } 256 257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 258 { 259 nfp_net_reconfig_sync_enter(nn); 260 261 spin_lock_bh(&nn->reconfig_lock); 262 nn->reconfig_sync_present = false; 263 spin_unlock_bh(&nn->reconfig_lock); 264 } 265 266 /** 267 * __nfp_net_reconfig() - Reconfigure the firmware 268 * @nn: NFP Net device to reconfigure 269 * @update: The value for the update field in the BAR config 270 * 271 * Write the update word to the BAR and ping the reconfig queue. The 272 * poll until the firmware has acknowledged the update by zeroing the 273 * update word. 274 * 275 * Return: Negative errno on error, 0 on success 276 */ 277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 278 { 279 int ret; 280 281 nfp_net_reconfig_sync_enter(nn); 282 283 nfp_net_reconfig_start(nn, update); 284 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 285 286 spin_lock_bh(&nn->reconfig_lock); 287 288 if (nn->reconfig_posted) 289 nfp_net_reconfig_start_async(nn, 0); 290 291 nn->reconfig_sync_present = false; 292 293 spin_unlock_bh(&nn->reconfig_lock); 294 295 return ret; 296 } 297 298 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 299 { 300 int ret; 301 302 nn_ctrl_bar_lock(nn); 303 ret = __nfp_net_reconfig(nn, update); 304 nn_ctrl_bar_unlock(nn); 305 306 return ret; 307 } 308 309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 310 { 311 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 312 nn_err(nn, "mailbox too small for %u of data (%u)\n", 313 data_size, nn->tlv_caps.mbox_len); 314 return -EIO; 315 } 316 317 nn_ctrl_bar_lock(nn); 318 return 0; 319 } 320 321 /** 322 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 323 * @nn: NFP Net device to reconfigure 324 * @mbox_cmd: The value for the mailbox command 325 * 326 * Helper function for mailbox updates 327 * 328 * Return: Negative errno on error, 0 on success 329 */ 330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 331 { 332 u32 mbox = nn->tlv_caps.mbox_off; 333 int ret; 334 335 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 336 337 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 338 if (ret) { 339 nn_err(nn, "Mailbox update error\n"); 340 return ret; 341 } 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 u32 mbox = nn->tlv_caps.mbox_off; 349 350 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 351 352 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 353 } 354 355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 356 { 357 u32 mbox = nn->tlv_caps.mbox_off; 358 359 nfp_net_reconfig_wait_posted(nn); 360 361 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 362 } 363 364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 365 { 366 int ret; 367 368 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 369 nn_ctrl_bar_unlock(nn); 370 return ret; 371 } 372 373 /* Interrupt configuration and handling 374 */ 375 376 /** 377 * nfp_net_irq_unmask() - Unmask automasked interrupt 378 * @nn: NFP Network structure 379 * @entry_nr: MSI-X table entry 380 * 381 * Clear the ICR for the IRQ entry. 382 */ 383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 384 { 385 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 386 nn_pci_flush(nn); 387 } 388 389 /** 390 * nfp_net_irqs_alloc() - allocates MSI-X irqs 391 * @pdev: PCI device structure 392 * @irq_entries: Array to be initialized and used to hold the irq entries 393 * @min_irqs: Minimal acceptable number of interrupts 394 * @wanted_irqs: Target number of interrupts to allocate 395 * 396 * Return: Number of irqs obtained or 0 on error. 397 */ 398 unsigned int 399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 400 unsigned int min_irqs, unsigned int wanted_irqs) 401 { 402 unsigned int i; 403 int got_irqs; 404 405 for (i = 0; i < wanted_irqs; i++) 406 irq_entries[i].entry = i; 407 408 got_irqs = pci_enable_msix_range(pdev, irq_entries, 409 min_irqs, wanted_irqs); 410 if (got_irqs < 0) { 411 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 412 min_irqs, wanted_irqs, got_irqs); 413 return 0; 414 } 415 416 if (got_irqs < wanted_irqs) 417 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 418 wanted_irqs, got_irqs); 419 420 return got_irqs; 421 } 422 423 /** 424 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 425 * @nn: NFP Network structure 426 * @irq_entries: Table of allocated interrupts 427 * @n: Size of @irq_entries (number of entries to grab) 428 * 429 * After interrupts are allocated with nfp_net_irqs_alloc() this function 430 * should be called to assign them to a specific netdev (port). 431 */ 432 void 433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 434 unsigned int n) 435 { 436 struct nfp_net_dp *dp = &nn->dp; 437 438 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 439 dp->num_r_vecs = nn->max_r_vecs; 440 441 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 442 443 if (dp->num_rx_rings > dp->num_r_vecs || 444 dp->num_tx_rings > dp->num_r_vecs) 445 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 446 dp->num_rx_rings, dp->num_tx_rings, 447 dp->num_r_vecs); 448 449 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 450 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 451 dp->num_stack_tx_rings = dp->num_tx_rings; 452 } 453 454 /** 455 * nfp_net_irqs_disable() - Disable interrupts 456 * @pdev: PCI device structure 457 * 458 * Undoes what @nfp_net_irqs_alloc() does. 459 */ 460 void nfp_net_irqs_disable(struct pci_dev *pdev) 461 { 462 pci_disable_msix(pdev); 463 } 464 465 /** 466 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 467 * @irq: Interrupt 468 * @data: Opaque data structure 469 * 470 * Return: Indicate if the interrupt has been handled. 471 */ 472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 473 { 474 struct nfp_net_r_vector *r_vec = data; 475 476 napi_schedule_irqoff(&r_vec->napi); 477 478 /* The FW auto-masks any interrupt, either via the MASK bit in 479 * the MSI-X table or via the per entry ICR field. So there 480 * is no need to disable interrupts here. 481 */ 482 return IRQ_HANDLED; 483 } 484 485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 486 { 487 struct nfp_net_r_vector *r_vec = data; 488 489 tasklet_schedule(&r_vec->tasklet); 490 491 return IRQ_HANDLED; 492 } 493 494 /** 495 * nfp_net_read_link_status() - Reread link status from control BAR 496 * @nn: NFP Network structure 497 */ 498 static void nfp_net_read_link_status(struct nfp_net *nn) 499 { 500 unsigned long flags; 501 bool link_up; 502 u32 sts; 503 504 spin_lock_irqsave(&nn->link_status_lock, flags); 505 506 sts = nn_readl(nn, NFP_NET_CFG_STS); 507 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 508 509 if (nn->link_up == link_up) 510 goto out; 511 512 nn->link_up = link_up; 513 if (nn->port) 514 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 515 516 if (nn->link_up) { 517 netif_carrier_on(nn->dp.netdev); 518 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 519 } else { 520 netif_carrier_off(nn->dp.netdev); 521 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 522 } 523 out: 524 spin_unlock_irqrestore(&nn->link_status_lock, flags); 525 } 526 527 /** 528 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 529 * @irq: Interrupt 530 * @data: Opaque data structure 531 * 532 * Return: Indicate if the interrupt has been handled. 533 */ 534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 535 { 536 struct nfp_net *nn = data; 537 struct msix_entry *entry; 538 539 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 540 541 nfp_net_read_link_status(nn); 542 543 nfp_net_irq_unmask(nn, entry->entry); 544 545 return IRQ_HANDLED; 546 } 547 548 /** 549 * nfp_net_irq_exn() - Interrupt service routine for exceptions 550 * @irq: Interrupt 551 * @data: Opaque data structure 552 * 553 * Return: Indicate if the interrupt has been handled. 554 */ 555 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 556 { 557 struct nfp_net *nn = data; 558 559 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 560 /* XXX TO BE IMPLEMENTED */ 561 return IRQ_HANDLED; 562 } 563 564 /** 565 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 566 * @tx_ring: TX ring structure 567 * @r_vec: IRQ vector servicing this ring 568 * @idx: Ring index 569 * @is_xdp: Is this an XDP TX ring? 570 */ 571 static void 572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 573 struct nfp_net_r_vector *r_vec, unsigned int idx, 574 bool is_xdp) 575 { 576 struct nfp_net *nn = r_vec->nfp_net; 577 578 tx_ring->idx = idx; 579 tx_ring->r_vec = r_vec; 580 tx_ring->is_xdp = is_xdp; 581 u64_stats_init(&tx_ring->r_vec->tx_sync); 582 583 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 584 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 585 } 586 587 /** 588 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 589 * @rx_ring: RX ring structure 590 * @r_vec: IRQ vector servicing this ring 591 * @idx: Ring index 592 */ 593 static void 594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 595 struct nfp_net_r_vector *r_vec, unsigned int idx) 596 { 597 struct nfp_net *nn = r_vec->nfp_net; 598 599 rx_ring->idx = idx; 600 rx_ring->r_vec = r_vec; 601 u64_stats_init(&rx_ring->r_vec->rx_sync); 602 603 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 604 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 605 } 606 607 /** 608 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 609 * @nn: NFP Network structure 610 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 611 * @format: printf-style format to construct the interrupt name 612 * @name: Pointer to allocated space for interrupt name 613 * @name_sz: Size of space for interrupt name 614 * @vector_idx: Index of MSI-X vector used for this interrupt 615 * @handler: IRQ handler to register for this interrupt 616 */ 617 static int 618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 619 const char *format, char *name, size_t name_sz, 620 unsigned int vector_idx, irq_handler_t handler) 621 { 622 struct msix_entry *entry; 623 int err; 624 625 entry = &nn->irq_entries[vector_idx]; 626 627 snprintf(name, name_sz, format, nfp_net_name(nn)); 628 err = request_irq(entry->vector, handler, 0, name, nn); 629 if (err) { 630 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 631 entry->vector, err); 632 return err; 633 } 634 nn_writeb(nn, ctrl_offset, entry->entry); 635 nfp_net_irq_unmask(nn, entry->entry); 636 637 return 0; 638 } 639 640 /** 641 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 642 * @nn: NFP Network structure 643 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 644 * @vector_idx: Index of MSI-X vector used for this interrupt 645 */ 646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 647 unsigned int vector_idx) 648 { 649 nn_writeb(nn, ctrl_offset, 0xff); 650 nn_pci_flush(nn); 651 free_irq(nn->irq_entries[vector_idx].vector, nn); 652 } 653 654 /* Transmit 655 * 656 * One queue controller peripheral queue is used for transmit. The 657 * driver en-queues packets for transmit by advancing the write 658 * pointer. The device indicates that packets have transmitted by 659 * advancing the read pointer. The driver maintains a local copy of 660 * the read and write pointer in @struct nfp_net_tx_ring. The driver 661 * keeps @wr_p in sync with the queue controller write pointer and can 662 * determine how many packets have been transmitted by comparing its 663 * copy of the read pointer @rd_p with the read pointer maintained by 664 * the queue controller peripheral. 665 */ 666 667 /** 668 * nfp_net_tx_full() - Check if the TX ring is full 669 * @tx_ring: TX ring to check 670 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 671 * 672 * This function checks, based on the *host copy* of read/write 673 * pointer if a given TX ring is full. The real TX queue may have 674 * some newly made available slots. 675 * 676 * Return: True if the ring is full. 677 */ 678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 679 { 680 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 681 } 682 683 /* Wrappers for deciding when to stop and restart TX queues */ 684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 685 { 686 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 687 } 688 689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 690 { 691 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 692 } 693 694 /** 695 * nfp_net_tx_ring_stop() - stop tx ring 696 * @nd_q: netdev queue 697 * @tx_ring: driver tx queue structure 698 * 699 * Safely stop TX ring. Remember that while we are running .start_xmit() 700 * someone else may be cleaning the TX ring completions so we need to be 701 * extra careful here. 702 */ 703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 704 struct nfp_net_tx_ring *tx_ring) 705 { 706 netif_tx_stop_queue(nd_q); 707 708 /* We can race with the TX completion out of NAPI so recheck */ 709 smp_mb(); 710 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 711 netif_tx_start_queue(nd_q); 712 } 713 714 /** 715 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 716 * @r_vec: per-ring structure 717 * @txbuf: Pointer to driver soft TX descriptor 718 * @txd: Pointer to HW TX descriptor 719 * @skb: Pointer to SKB 720 * @md_bytes: Prepend length 721 * 722 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 723 * Return error on packet header greater than maximum supported LSO header size. 724 */ 725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 726 struct nfp_net_tx_buf *txbuf, 727 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 728 u32 md_bytes) 729 { 730 u32 l3_offset, l4_offset, hdrlen; 731 u16 mss; 732 733 if (!skb_is_gso(skb)) 734 return; 735 736 if (!skb->encapsulation) { 737 l3_offset = skb_network_offset(skb); 738 l4_offset = skb_transport_offset(skb); 739 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 740 } else { 741 l3_offset = skb_inner_network_offset(skb); 742 l4_offset = skb_inner_transport_offset(skb); 743 hdrlen = skb_inner_transport_header(skb) - skb->data + 744 inner_tcp_hdrlen(skb); 745 } 746 747 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 748 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 749 750 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 751 txd->l3_offset = l3_offset - md_bytes; 752 txd->l4_offset = l4_offset - md_bytes; 753 txd->lso_hdrlen = hdrlen - md_bytes; 754 txd->mss = cpu_to_le16(mss); 755 txd->flags |= PCIE_DESC_TX_LSO; 756 757 u64_stats_update_begin(&r_vec->tx_sync); 758 r_vec->tx_lso++; 759 u64_stats_update_end(&r_vec->tx_sync); 760 } 761 762 /** 763 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 764 * @dp: NFP Net data path struct 765 * @r_vec: per-ring structure 766 * @txbuf: Pointer to driver soft TX descriptor 767 * @txd: Pointer to TX descriptor 768 * @skb: Pointer to SKB 769 * 770 * This function sets the TX checksum flags in the TX descriptor based 771 * on the configuration and the protocol of the packet to be transmitted. 772 */ 773 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 774 struct nfp_net_r_vector *r_vec, 775 struct nfp_net_tx_buf *txbuf, 776 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 777 { 778 struct ipv6hdr *ipv6h; 779 struct iphdr *iph; 780 u8 l4_hdr; 781 782 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 783 return; 784 785 if (skb->ip_summed != CHECKSUM_PARTIAL) 786 return; 787 788 txd->flags |= PCIE_DESC_TX_CSUM; 789 if (skb->encapsulation) 790 txd->flags |= PCIE_DESC_TX_ENCAP; 791 792 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 793 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 794 795 if (iph->version == 4) { 796 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 797 l4_hdr = iph->protocol; 798 } else if (ipv6h->version == 6) { 799 l4_hdr = ipv6h->nexthdr; 800 } else { 801 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 802 return; 803 } 804 805 switch (l4_hdr) { 806 case IPPROTO_TCP: 807 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 808 break; 809 case IPPROTO_UDP: 810 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 811 break; 812 default: 813 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 814 return; 815 } 816 817 u64_stats_update_begin(&r_vec->tx_sync); 818 if (skb->encapsulation) 819 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 820 else 821 r_vec->hw_csum_tx += txbuf->pkt_cnt; 822 u64_stats_update_end(&r_vec->tx_sync); 823 } 824 825 static struct sk_buff * 826 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 827 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 828 { 829 #ifdef CONFIG_TLS_DEVICE 830 struct nfp_net_tls_offload_ctx *ntls; 831 struct sk_buff *nskb; 832 bool resync_pending; 833 u32 datalen, seq; 834 835 if (likely(!dp->ktls_tx)) 836 return skb; 837 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 838 return skb; 839 840 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 841 seq = ntohl(tcp_hdr(skb)->seq); 842 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 843 resync_pending = tls_offload_tx_resync_pending(skb->sk); 844 if (unlikely(resync_pending || ntls->next_seq != seq)) { 845 /* Pure ACK out of order already */ 846 if (!datalen) 847 return skb; 848 849 u64_stats_update_begin(&r_vec->tx_sync); 850 r_vec->tls_tx_fallback++; 851 u64_stats_update_end(&r_vec->tx_sync); 852 853 nskb = tls_encrypt_skb(skb); 854 if (!nskb) { 855 u64_stats_update_begin(&r_vec->tx_sync); 856 r_vec->tls_tx_no_fallback++; 857 u64_stats_update_end(&r_vec->tx_sync); 858 return NULL; 859 } 860 /* encryption wasn't necessary */ 861 if (nskb == skb) 862 return skb; 863 /* we don't re-check ring space */ 864 if (unlikely(skb_is_nonlinear(nskb))) { 865 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 866 u64_stats_update_begin(&r_vec->tx_sync); 867 r_vec->tx_errors++; 868 u64_stats_update_end(&r_vec->tx_sync); 869 dev_kfree_skb_any(nskb); 870 return NULL; 871 } 872 873 /* jump forward, a TX may have gotten lost, need to sync TX */ 874 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 875 tls_offload_tx_resync_request(nskb->sk, seq, 876 ntls->next_seq); 877 878 *nr_frags = 0; 879 return nskb; 880 } 881 882 if (datalen) { 883 u64_stats_update_begin(&r_vec->tx_sync); 884 if (!skb_is_gso(skb)) 885 r_vec->hw_tls_tx++; 886 else 887 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 888 u64_stats_update_end(&r_vec->tx_sync); 889 } 890 891 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 892 ntls->next_seq += datalen; 893 #endif 894 return skb; 895 } 896 897 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 898 { 899 #ifdef CONFIG_TLS_DEVICE 900 struct nfp_net_tls_offload_ctx *ntls; 901 u32 datalen, seq; 902 903 if (!tls_handle) 904 return; 905 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 906 return; 907 908 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 909 seq = ntohl(tcp_hdr(skb)->seq); 910 911 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 912 if (ntls->next_seq == seq + datalen) 913 ntls->next_seq = seq; 914 else 915 WARN_ON_ONCE(1); 916 #endif 917 } 918 919 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 920 { 921 wmb(); 922 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 923 tx_ring->wr_ptr_add = 0; 924 } 925 926 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 927 { 928 struct metadata_dst *md_dst = skb_metadata_dst(skb); 929 unsigned char *data; 930 u32 meta_id = 0; 931 int md_bytes; 932 933 if (likely(!md_dst && !tls_handle)) 934 return 0; 935 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 936 if (!tls_handle) 937 return 0; 938 md_dst = NULL; 939 } 940 941 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 942 943 if (unlikely(skb_cow_head(skb, md_bytes))) 944 return -ENOMEM; 945 946 meta_id = 0; 947 data = skb_push(skb, md_bytes) + md_bytes; 948 if (md_dst) { 949 data -= 4; 950 put_unaligned_be32(md_dst->u.port_info.port_id, data); 951 meta_id = NFP_NET_META_PORTID; 952 } 953 if (tls_handle) { 954 /* conn handle is opaque, we just use u64 to be able to quickly 955 * compare it to zero 956 */ 957 data -= 8; 958 memcpy(data, &tls_handle, sizeof(tls_handle)); 959 meta_id <<= NFP_NET_META_FIELD_SIZE; 960 meta_id |= NFP_NET_META_CONN_HANDLE; 961 } 962 963 data -= 4; 964 put_unaligned_be32(meta_id, data); 965 966 return md_bytes; 967 } 968 969 /** 970 * nfp_net_tx() - Main transmit entry point 971 * @skb: SKB to transmit 972 * @netdev: netdev structure 973 * 974 * Return: NETDEV_TX_OK on success. 975 */ 976 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 977 { 978 struct nfp_net *nn = netdev_priv(netdev); 979 const skb_frag_t *frag; 980 int f, nr_frags, wr_idx, md_bytes; 981 struct nfp_net_tx_ring *tx_ring; 982 struct nfp_net_r_vector *r_vec; 983 struct nfp_net_tx_buf *txbuf; 984 struct nfp_net_tx_desc *txd; 985 struct netdev_queue *nd_q; 986 struct nfp_net_dp *dp; 987 dma_addr_t dma_addr; 988 unsigned int fsize; 989 u64 tls_handle = 0; 990 u16 qidx; 991 992 dp = &nn->dp; 993 qidx = skb_get_queue_mapping(skb); 994 tx_ring = &dp->tx_rings[qidx]; 995 r_vec = tx_ring->r_vec; 996 997 nr_frags = skb_shinfo(skb)->nr_frags; 998 999 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 1000 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 1001 qidx, tx_ring->wr_p, tx_ring->rd_p); 1002 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 1003 netif_tx_stop_queue(nd_q); 1004 nfp_net_tx_xmit_more_flush(tx_ring); 1005 u64_stats_update_begin(&r_vec->tx_sync); 1006 r_vec->tx_busy++; 1007 u64_stats_update_end(&r_vec->tx_sync); 1008 return NETDEV_TX_BUSY; 1009 } 1010 1011 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 1012 if (unlikely(!skb)) { 1013 nfp_net_tx_xmit_more_flush(tx_ring); 1014 return NETDEV_TX_OK; 1015 } 1016 1017 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 1018 if (unlikely(md_bytes < 0)) 1019 goto err_flush; 1020 1021 /* Start with the head skbuf */ 1022 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1023 DMA_TO_DEVICE); 1024 if (dma_mapping_error(dp->dev, dma_addr)) 1025 goto err_dma_err; 1026 1027 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1028 1029 /* Stash the soft descriptor of the head then initialize it */ 1030 txbuf = &tx_ring->txbufs[wr_idx]; 1031 txbuf->skb = skb; 1032 txbuf->dma_addr = dma_addr; 1033 txbuf->fidx = -1; 1034 txbuf->pkt_cnt = 1; 1035 txbuf->real_len = skb->len; 1036 1037 /* Build TX descriptor */ 1038 txd = &tx_ring->txds[wr_idx]; 1039 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1040 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1041 nfp_desc_set_dma_addr(txd, dma_addr); 1042 txd->data_len = cpu_to_le16(skb->len); 1043 1044 txd->flags = 0; 1045 txd->mss = 0; 1046 txd->lso_hdrlen = 0; 1047 1048 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1049 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1050 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1051 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1052 txd->flags |= PCIE_DESC_TX_VLAN; 1053 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1054 } 1055 1056 /* Gather DMA */ 1057 if (nr_frags > 0) { 1058 __le64 second_half; 1059 1060 /* all descs must match except for in addr, length and eop */ 1061 second_half = txd->vals8[1]; 1062 1063 for (f = 0; f < nr_frags; f++) { 1064 frag = &skb_shinfo(skb)->frags[f]; 1065 fsize = skb_frag_size(frag); 1066 1067 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1068 fsize, DMA_TO_DEVICE); 1069 if (dma_mapping_error(dp->dev, dma_addr)) 1070 goto err_unmap; 1071 1072 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1073 tx_ring->txbufs[wr_idx].skb = skb; 1074 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1075 tx_ring->txbufs[wr_idx].fidx = f; 1076 1077 txd = &tx_ring->txds[wr_idx]; 1078 txd->dma_len = cpu_to_le16(fsize); 1079 nfp_desc_set_dma_addr(txd, dma_addr); 1080 txd->offset_eop = md_bytes | 1081 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1082 txd->vals8[1] = second_half; 1083 } 1084 1085 u64_stats_update_begin(&r_vec->tx_sync); 1086 r_vec->tx_gather++; 1087 u64_stats_update_end(&r_vec->tx_sync); 1088 } 1089 1090 skb_tx_timestamp(skb); 1091 1092 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1093 1094 tx_ring->wr_p += nr_frags + 1; 1095 if (nfp_net_tx_ring_should_stop(tx_ring)) 1096 nfp_net_tx_ring_stop(nd_q, tx_ring); 1097 1098 tx_ring->wr_ptr_add += nr_frags + 1; 1099 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1100 nfp_net_tx_xmit_more_flush(tx_ring); 1101 1102 return NETDEV_TX_OK; 1103 1104 err_unmap: 1105 while (--f >= 0) { 1106 frag = &skb_shinfo(skb)->frags[f]; 1107 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1108 skb_frag_size(frag), DMA_TO_DEVICE); 1109 tx_ring->txbufs[wr_idx].skb = NULL; 1110 tx_ring->txbufs[wr_idx].dma_addr = 0; 1111 tx_ring->txbufs[wr_idx].fidx = -2; 1112 wr_idx = wr_idx - 1; 1113 if (wr_idx < 0) 1114 wr_idx += tx_ring->cnt; 1115 } 1116 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1117 skb_headlen(skb), DMA_TO_DEVICE); 1118 tx_ring->txbufs[wr_idx].skb = NULL; 1119 tx_ring->txbufs[wr_idx].dma_addr = 0; 1120 tx_ring->txbufs[wr_idx].fidx = -2; 1121 err_dma_err: 1122 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1123 err_flush: 1124 nfp_net_tx_xmit_more_flush(tx_ring); 1125 u64_stats_update_begin(&r_vec->tx_sync); 1126 r_vec->tx_errors++; 1127 u64_stats_update_end(&r_vec->tx_sync); 1128 nfp_net_tls_tx_undo(skb, tls_handle); 1129 dev_kfree_skb_any(skb); 1130 return NETDEV_TX_OK; 1131 } 1132 1133 /** 1134 * nfp_net_tx_complete() - Handled completed TX packets 1135 * @tx_ring: TX ring structure 1136 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1137 */ 1138 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1139 { 1140 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1141 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1142 struct netdev_queue *nd_q; 1143 u32 done_pkts = 0, done_bytes = 0; 1144 u32 qcp_rd_p; 1145 int todo; 1146 1147 if (tx_ring->wr_p == tx_ring->rd_p) 1148 return; 1149 1150 /* Work out how many descriptors have been transmitted */ 1151 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1152 1153 if (qcp_rd_p == tx_ring->qcp_rd_p) 1154 return; 1155 1156 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1157 1158 while (todo--) { 1159 const skb_frag_t *frag; 1160 struct nfp_net_tx_buf *tx_buf; 1161 struct sk_buff *skb; 1162 int fidx, nr_frags; 1163 int idx; 1164 1165 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1166 tx_buf = &tx_ring->txbufs[idx]; 1167 1168 skb = tx_buf->skb; 1169 if (!skb) 1170 continue; 1171 1172 nr_frags = skb_shinfo(skb)->nr_frags; 1173 fidx = tx_buf->fidx; 1174 1175 if (fidx == -1) { 1176 /* unmap head */ 1177 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1178 skb_headlen(skb), DMA_TO_DEVICE); 1179 1180 done_pkts += tx_buf->pkt_cnt; 1181 done_bytes += tx_buf->real_len; 1182 } else { 1183 /* unmap fragment */ 1184 frag = &skb_shinfo(skb)->frags[fidx]; 1185 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1186 skb_frag_size(frag), DMA_TO_DEVICE); 1187 } 1188 1189 /* check for last gather fragment */ 1190 if (fidx == nr_frags - 1) 1191 napi_consume_skb(skb, budget); 1192 1193 tx_buf->dma_addr = 0; 1194 tx_buf->skb = NULL; 1195 tx_buf->fidx = -2; 1196 } 1197 1198 tx_ring->qcp_rd_p = qcp_rd_p; 1199 1200 u64_stats_update_begin(&r_vec->tx_sync); 1201 r_vec->tx_bytes += done_bytes; 1202 r_vec->tx_pkts += done_pkts; 1203 u64_stats_update_end(&r_vec->tx_sync); 1204 1205 if (!dp->netdev) 1206 return; 1207 1208 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1209 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1210 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1211 /* Make sure TX thread will see updated tx_ring->rd_p */ 1212 smp_mb(); 1213 1214 if (unlikely(netif_tx_queue_stopped(nd_q))) 1215 netif_tx_wake_queue(nd_q); 1216 } 1217 1218 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1219 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1220 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1221 } 1222 1223 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1224 { 1225 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1226 u32 done_pkts = 0, done_bytes = 0; 1227 bool done_all; 1228 int idx, todo; 1229 u32 qcp_rd_p; 1230 1231 /* Work out how many descriptors have been transmitted */ 1232 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1233 1234 if (qcp_rd_p == tx_ring->qcp_rd_p) 1235 return true; 1236 1237 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1238 1239 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1240 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1241 1242 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1243 1244 done_pkts = todo; 1245 while (todo--) { 1246 idx = D_IDX(tx_ring, tx_ring->rd_p); 1247 tx_ring->rd_p++; 1248 1249 done_bytes += tx_ring->txbufs[idx].real_len; 1250 } 1251 1252 u64_stats_update_begin(&r_vec->tx_sync); 1253 r_vec->tx_bytes += done_bytes; 1254 r_vec->tx_pkts += done_pkts; 1255 u64_stats_update_end(&r_vec->tx_sync); 1256 1257 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1258 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1259 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1260 1261 return done_all; 1262 } 1263 1264 /** 1265 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1266 * @dp: NFP Net data path struct 1267 * @tx_ring: TX ring structure 1268 * 1269 * Assumes that the device is stopped, must be idempotent. 1270 */ 1271 static void 1272 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1273 { 1274 const skb_frag_t *frag; 1275 struct netdev_queue *nd_q; 1276 1277 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1278 struct nfp_net_tx_buf *tx_buf; 1279 struct sk_buff *skb; 1280 int idx, nr_frags; 1281 1282 idx = D_IDX(tx_ring, tx_ring->rd_p); 1283 tx_buf = &tx_ring->txbufs[idx]; 1284 1285 skb = tx_ring->txbufs[idx].skb; 1286 nr_frags = skb_shinfo(skb)->nr_frags; 1287 1288 if (tx_buf->fidx == -1) { 1289 /* unmap head */ 1290 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1291 skb_headlen(skb), DMA_TO_DEVICE); 1292 } else { 1293 /* unmap fragment */ 1294 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1295 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1296 skb_frag_size(frag), DMA_TO_DEVICE); 1297 } 1298 1299 /* check for last gather fragment */ 1300 if (tx_buf->fidx == nr_frags - 1) 1301 dev_kfree_skb_any(skb); 1302 1303 tx_buf->dma_addr = 0; 1304 tx_buf->skb = NULL; 1305 tx_buf->fidx = -2; 1306 1307 tx_ring->qcp_rd_p++; 1308 tx_ring->rd_p++; 1309 } 1310 1311 memset(tx_ring->txds, 0, tx_ring->size); 1312 tx_ring->wr_p = 0; 1313 tx_ring->rd_p = 0; 1314 tx_ring->qcp_rd_p = 0; 1315 tx_ring->wr_ptr_add = 0; 1316 1317 if (tx_ring->is_xdp || !dp->netdev) 1318 return; 1319 1320 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1321 netdev_tx_reset_queue(nd_q); 1322 } 1323 1324 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 1325 { 1326 struct nfp_net *nn = netdev_priv(netdev); 1327 1328 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 1329 } 1330 1331 /* Receive processing 1332 */ 1333 static unsigned int 1334 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1335 { 1336 unsigned int fl_bufsz; 1337 1338 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1339 fl_bufsz += dp->rx_dma_off; 1340 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1341 fl_bufsz += NFP_NET_MAX_PREPEND; 1342 else 1343 fl_bufsz += dp->rx_offset; 1344 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1345 1346 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1347 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1348 1349 return fl_bufsz; 1350 } 1351 1352 static void 1353 nfp_net_free_frag(void *frag, bool xdp) 1354 { 1355 if (!xdp) 1356 skb_free_frag(frag); 1357 else 1358 __free_page(virt_to_page(frag)); 1359 } 1360 1361 /** 1362 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1363 * @dp: NFP Net data path struct 1364 * @dma_addr: Pointer to storage for DMA address (output param) 1365 * 1366 * This function will allcate a new page frag, map it for DMA. 1367 * 1368 * Return: allocated page frag or NULL on failure. 1369 */ 1370 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1371 { 1372 void *frag; 1373 1374 if (!dp->xdp_prog) { 1375 frag = netdev_alloc_frag(dp->fl_bufsz); 1376 } else { 1377 struct page *page; 1378 1379 page = alloc_page(GFP_KERNEL); 1380 frag = page ? page_address(page) : NULL; 1381 } 1382 if (!frag) { 1383 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1384 return NULL; 1385 } 1386 1387 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1388 if (dma_mapping_error(dp->dev, *dma_addr)) { 1389 nfp_net_free_frag(frag, dp->xdp_prog); 1390 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1391 return NULL; 1392 } 1393 1394 return frag; 1395 } 1396 1397 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1398 { 1399 void *frag; 1400 1401 if (!dp->xdp_prog) { 1402 frag = napi_alloc_frag(dp->fl_bufsz); 1403 if (unlikely(!frag)) 1404 return NULL; 1405 } else { 1406 struct page *page; 1407 1408 page = dev_alloc_page(); 1409 if (unlikely(!page)) 1410 return NULL; 1411 frag = page_address(page); 1412 } 1413 1414 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1415 if (dma_mapping_error(dp->dev, *dma_addr)) { 1416 nfp_net_free_frag(frag, dp->xdp_prog); 1417 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1418 return NULL; 1419 } 1420 1421 return frag; 1422 } 1423 1424 /** 1425 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1426 * @dp: NFP Net data path struct 1427 * @rx_ring: RX ring structure 1428 * @frag: page fragment buffer 1429 * @dma_addr: DMA address of skb mapping 1430 */ 1431 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1432 struct nfp_net_rx_ring *rx_ring, 1433 void *frag, dma_addr_t dma_addr) 1434 { 1435 unsigned int wr_idx; 1436 1437 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1438 1439 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1440 1441 /* Stash SKB and DMA address away */ 1442 rx_ring->rxbufs[wr_idx].frag = frag; 1443 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1444 1445 /* Fill freelist descriptor */ 1446 rx_ring->rxds[wr_idx].fld.reserved = 0; 1447 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1448 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1449 dma_addr + dp->rx_dma_off); 1450 1451 rx_ring->wr_p++; 1452 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1453 /* Update write pointer of the freelist queue. Make 1454 * sure all writes are flushed before telling the hardware. 1455 */ 1456 wmb(); 1457 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1458 } 1459 } 1460 1461 /** 1462 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1463 * @rx_ring: RX ring structure 1464 * 1465 * Assumes that the device is stopped, must be idempotent. 1466 */ 1467 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1468 { 1469 unsigned int wr_idx, last_idx; 1470 1471 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1472 * kept at cnt - 1 FL bufs. 1473 */ 1474 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1475 return; 1476 1477 /* Move the empty entry to the end of the list */ 1478 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1479 last_idx = rx_ring->cnt - 1; 1480 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1481 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1482 rx_ring->rxbufs[last_idx].dma_addr = 0; 1483 rx_ring->rxbufs[last_idx].frag = NULL; 1484 1485 memset(rx_ring->rxds, 0, rx_ring->size); 1486 rx_ring->wr_p = 0; 1487 rx_ring->rd_p = 0; 1488 } 1489 1490 /** 1491 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1492 * @dp: NFP Net data path struct 1493 * @rx_ring: RX ring to remove buffers from 1494 * 1495 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1496 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1497 * to restore required ring geometry. 1498 */ 1499 static void 1500 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1501 struct nfp_net_rx_ring *rx_ring) 1502 { 1503 unsigned int i; 1504 1505 for (i = 0; i < rx_ring->cnt - 1; i++) { 1506 /* NULL skb can only happen when initial filling of the ring 1507 * fails to allocate enough buffers and calls here to free 1508 * already allocated ones. 1509 */ 1510 if (!rx_ring->rxbufs[i].frag) 1511 continue; 1512 1513 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1514 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1515 rx_ring->rxbufs[i].dma_addr = 0; 1516 rx_ring->rxbufs[i].frag = NULL; 1517 } 1518 } 1519 1520 /** 1521 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1522 * @dp: NFP Net data path struct 1523 * @rx_ring: RX ring to remove buffers from 1524 */ 1525 static int 1526 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1527 struct nfp_net_rx_ring *rx_ring) 1528 { 1529 struct nfp_net_rx_buf *rxbufs; 1530 unsigned int i; 1531 1532 rxbufs = rx_ring->rxbufs; 1533 1534 for (i = 0; i < rx_ring->cnt - 1; i++) { 1535 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1536 if (!rxbufs[i].frag) { 1537 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1538 return -ENOMEM; 1539 } 1540 } 1541 1542 return 0; 1543 } 1544 1545 /** 1546 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1547 * @dp: NFP Net data path struct 1548 * @rx_ring: RX ring to fill 1549 */ 1550 static void 1551 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1552 struct nfp_net_rx_ring *rx_ring) 1553 { 1554 unsigned int i; 1555 1556 for (i = 0; i < rx_ring->cnt - 1; i++) 1557 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1558 rx_ring->rxbufs[i].dma_addr); 1559 } 1560 1561 /** 1562 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1563 * @flags: RX descriptor flags field in CPU byte order 1564 */ 1565 static int nfp_net_rx_csum_has_errors(u16 flags) 1566 { 1567 u16 csum_all_checked, csum_all_ok; 1568 1569 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1570 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1571 1572 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1573 } 1574 1575 /** 1576 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1577 * @dp: NFP Net data path struct 1578 * @r_vec: per-ring structure 1579 * @rxd: Pointer to RX descriptor 1580 * @meta: Parsed metadata prepend 1581 * @skb: Pointer to SKB 1582 */ 1583 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1584 struct nfp_net_r_vector *r_vec, 1585 struct nfp_net_rx_desc *rxd, 1586 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1587 { 1588 skb_checksum_none_assert(skb); 1589 1590 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1591 return; 1592 1593 if (meta->csum_type) { 1594 skb->ip_summed = meta->csum_type; 1595 skb->csum = meta->csum; 1596 u64_stats_update_begin(&r_vec->rx_sync); 1597 r_vec->hw_csum_rx_complete++; 1598 u64_stats_update_end(&r_vec->rx_sync); 1599 return; 1600 } 1601 1602 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1603 u64_stats_update_begin(&r_vec->rx_sync); 1604 r_vec->hw_csum_rx_error++; 1605 u64_stats_update_end(&r_vec->rx_sync); 1606 return; 1607 } 1608 1609 /* Assume that the firmware will never report inner CSUM_OK unless outer 1610 * L4 headers were successfully parsed. FW will always report zero UDP 1611 * checksum as CSUM_OK. 1612 */ 1613 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1614 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1615 __skb_incr_checksum_unnecessary(skb); 1616 u64_stats_update_begin(&r_vec->rx_sync); 1617 r_vec->hw_csum_rx_ok++; 1618 u64_stats_update_end(&r_vec->rx_sync); 1619 } 1620 1621 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1622 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1623 __skb_incr_checksum_unnecessary(skb); 1624 u64_stats_update_begin(&r_vec->rx_sync); 1625 r_vec->hw_csum_rx_inner_ok++; 1626 u64_stats_update_end(&r_vec->rx_sync); 1627 } 1628 } 1629 1630 static void 1631 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1632 unsigned int type, __be32 *hash) 1633 { 1634 if (!(netdev->features & NETIF_F_RXHASH)) 1635 return; 1636 1637 switch (type) { 1638 case NFP_NET_RSS_IPV4: 1639 case NFP_NET_RSS_IPV6: 1640 case NFP_NET_RSS_IPV6_EX: 1641 meta->hash_type = PKT_HASH_TYPE_L3; 1642 break; 1643 default: 1644 meta->hash_type = PKT_HASH_TYPE_L4; 1645 break; 1646 } 1647 1648 meta->hash = get_unaligned_be32(hash); 1649 } 1650 1651 static void 1652 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1653 void *data, struct nfp_net_rx_desc *rxd) 1654 { 1655 struct nfp_net_rx_hash *rx_hash = data; 1656 1657 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1658 return; 1659 1660 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1661 &rx_hash->hash); 1662 } 1663 1664 static void * 1665 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1666 void *data, int meta_len) 1667 { 1668 u32 meta_info; 1669 1670 meta_info = get_unaligned_be32(data); 1671 data += 4; 1672 1673 while (meta_info) { 1674 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1675 case NFP_NET_META_HASH: 1676 meta_info >>= NFP_NET_META_FIELD_SIZE; 1677 nfp_net_set_hash(netdev, meta, 1678 meta_info & NFP_NET_META_FIELD_MASK, 1679 (__be32 *)data); 1680 data += 4; 1681 break; 1682 case NFP_NET_META_MARK: 1683 meta->mark = get_unaligned_be32(data); 1684 data += 4; 1685 break; 1686 case NFP_NET_META_PORTID: 1687 meta->portid = get_unaligned_be32(data); 1688 data += 4; 1689 break; 1690 case NFP_NET_META_CSUM: 1691 meta->csum_type = CHECKSUM_COMPLETE; 1692 meta->csum = 1693 (__force __wsum)__get_unaligned_cpu32(data); 1694 data += 4; 1695 break; 1696 default: 1697 return NULL; 1698 } 1699 1700 meta_info >>= NFP_NET_META_FIELD_SIZE; 1701 } 1702 1703 return data; 1704 } 1705 1706 static void 1707 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1708 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1709 struct sk_buff *skb) 1710 { 1711 u64_stats_update_begin(&r_vec->rx_sync); 1712 r_vec->rx_drops++; 1713 /* If we have both skb and rxbuf the replacement buffer allocation 1714 * must have failed, count this as an alloc failure. 1715 */ 1716 if (skb && rxbuf) 1717 r_vec->rx_replace_buf_alloc_fail++; 1718 u64_stats_update_end(&r_vec->rx_sync); 1719 1720 /* skb is build based on the frag, free_skb() would free the frag 1721 * so to be able to reuse it we need an extra ref. 1722 */ 1723 if (skb && rxbuf && skb->head == rxbuf->frag) 1724 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1725 if (rxbuf) 1726 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1727 if (skb) 1728 dev_kfree_skb_any(skb); 1729 } 1730 1731 static bool 1732 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1733 struct nfp_net_tx_ring *tx_ring, 1734 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1735 unsigned int pkt_len, bool *completed) 1736 { 1737 struct nfp_net_tx_buf *txbuf; 1738 struct nfp_net_tx_desc *txd; 1739 int wr_idx; 1740 1741 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1742 if (!*completed) { 1743 nfp_net_xdp_complete(tx_ring); 1744 *completed = true; 1745 } 1746 1747 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1748 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1749 NULL); 1750 return false; 1751 } 1752 } 1753 1754 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1755 1756 /* Stash the soft descriptor of the head then initialize it */ 1757 txbuf = &tx_ring->txbufs[wr_idx]; 1758 1759 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1760 1761 txbuf->frag = rxbuf->frag; 1762 txbuf->dma_addr = rxbuf->dma_addr; 1763 txbuf->fidx = -1; 1764 txbuf->pkt_cnt = 1; 1765 txbuf->real_len = pkt_len; 1766 1767 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1768 pkt_len, DMA_BIDIRECTIONAL); 1769 1770 /* Build TX descriptor */ 1771 txd = &tx_ring->txds[wr_idx]; 1772 txd->offset_eop = PCIE_DESC_TX_EOP; 1773 txd->dma_len = cpu_to_le16(pkt_len); 1774 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1775 txd->data_len = cpu_to_le16(pkt_len); 1776 1777 txd->flags = 0; 1778 txd->mss = 0; 1779 txd->lso_hdrlen = 0; 1780 1781 tx_ring->wr_p++; 1782 tx_ring->wr_ptr_add++; 1783 return true; 1784 } 1785 1786 /** 1787 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1788 * @rx_ring: RX ring to receive from 1789 * @budget: NAPI budget 1790 * 1791 * Note, this function is separated out from the napi poll function to 1792 * more cleanly separate packet receive code from other bookkeeping 1793 * functions performed in the napi poll function. 1794 * 1795 * Return: Number of packets received. 1796 */ 1797 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1798 { 1799 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1800 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1801 struct nfp_net_tx_ring *tx_ring; 1802 struct bpf_prog *xdp_prog; 1803 bool xdp_tx_cmpl = false; 1804 unsigned int true_bufsz; 1805 struct sk_buff *skb; 1806 int pkts_polled = 0; 1807 struct xdp_buff xdp; 1808 int idx; 1809 1810 rcu_read_lock(); 1811 xdp_prog = READ_ONCE(dp->xdp_prog); 1812 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1813 xdp.rxq = &rx_ring->xdp_rxq; 1814 tx_ring = r_vec->xdp_ring; 1815 1816 while (pkts_polled < budget) { 1817 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1818 struct nfp_net_rx_buf *rxbuf; 1819 struct nfp_net_rx_desc *rxd; 1820 struct nfp_meta_parsed meta; 1821 bool redir_egress = false; 1822 struct net_device *netdev; 1823 dma_addr_t new_dma_addr; 1824 u32 meta_len_xdp = 0; 1825 void *new_frag; 1826 1827 idx = D_IDX(rx_ring, rx_ring->rd_p); 1828 1829 rxd = &rx_ring->rxds[idx]; 1830 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1831 break; 1832 1833 /* Memory barrier to ensure that we won't do other reads 1834 * before the DD bit. 1835 */ 1836 dma_rmb(); 1837 1838 memset(&meta, 0, sizeof(meta)); 1839 1840 rx_ring->rd_p++; 1841 pkts_polled++; 1842 1843 rxbuf = &rx_ring->rxbufs[idx]; 1844 /* < meta_len > 1845 * <-- [rx_offset] --> 1846 * --------------------------------------------------------- 1847 * | [XX] | metadata | packet | XXXX | 1848 * --------------------------------------------------------- 1849 * <---------------- data_len ---------------> 1850 * 1851 * The rx_offset is fixed for all packets, the meta_len can vary 1852 * on a packet by packet basis. If rx_offset is set to zero 1853 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1854 * buffer and is immediately followed by the packet (no [XX]). 1855 */ 1856 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1857 data_len = le16_to_cpu(rxd->rxd.data_len); 1858 pkt_len = data_len - meta_len; 1859 1860 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1861 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1862 pkt_off += meta_len; 1863 else 1864 pkt_off += dp->rx_offset; 1865 meta_off = pkt_off - meta_len; 1866 1867 /* Stats update */ 1868 u64_stats_update_begin(&r_vec->rx_sync); 1869 r_vec->rx_pkts++; 1870 r_vec->rx_bytes += pkt_len; 1871 u64_stats_update_end(&r_vec->rx_sync); 1872 1873 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1874 (dp->rx_offset && meta_len > dp->rx_offset))) { 1875 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1876 meta_len); 1877 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1878 continue; 1879 } 1880 1881 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1882 data_len); 1883 1884 if (!dp->chained_metadata_format) { 1885 nfp_net_set_hash_desc(dp->netdev, &meta, 1886 rxbuf->frag + meta_off, rxd); 1887 } else if (meta_len) { 1888 void *end; 1889 1890 end = nfp_net_parse_meta(dp->netdev, &meta, 1891 rxbuf->frag + meta_off, 1892 meta_len); 1893 if (unlikely(end != rxbuf->frag + pkt_off)) { 1894 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1895 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1896 NULL); 1897 continue; 1898 } 1899 } 1900 1901 if (xdp_prog && !meta.portid) { 1902 void *orig_data = rxbuf->frag + pkt_off; 1903 unsigned int dma_off; 1904 int act; 1905 1906 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1907 xdp.data = orig_data; 1908 xdp.data_meta = orig_data; 1909 xdp.data_end = orig_data + pkt_len; 1910 1911 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1912 1913 pkt_len = xdp.data_end - xdp.data; 1914 pkt_off += xdp.data - orig_data; 1915 1916 switch (act) { 1917 case XDP_PASS: 1918 meta_len_xdp = xdp.data - xdp.data_meta; 1919 break; 1920 case XDP_TX: 1921 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1922 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1923 tx_ring, rxbuf, 1924 dma_off, 1925 pkt_len, 1926 &xdp_tx_cmpl))) 1927 trace_xdp_exception(dp->netdev, 1928 xdp_prog, act); 1929 continue; 1930 default: 1931 bpf_warn_invalid_xdp_action(act); 1932 /* fall through */ 1933 case XDP_ABORTED: 1934 trace_xdp_exception(dp->netdev, xdp_prog, act); 1935 /* fall through */ 1936 case XDP_DROP: 1937 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1938 rxbuf->dma_addr); 1939 continue; 1940 } 1941 } 1942 1943 if (likely(!meta.portid)) { 1944 netdev = dp->netdev; 1945 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1946 struct nfp_net *nn = netdev_priv(dp->netdev); 1947 1948 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1949 pkt_len); 1950 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1951 rxbuf->dma_addr); 1952 continue; 1953 } else { 1954 struct nfp_net *nn; 1955 1956 nn = netdev_priv(dp->netdev); 1957 netdev = nfp_app_dev_get(nn->app, meta.portid, 1958 &redir_egress); 1959 if (unlikely(!netdev)) { 1960 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1961 NULL); 1962 continue; 1963 } 1964 1965 if (nfp_netdev_is_nfp_repr(netdev)) 1966 nfp_repr_inc_rx_stats(netdev, pkt_len); 1967 } 1968 1969 skb = build_skb(rxbuf->frag, true_bufsz); 1970 if (unlikely(!skb)) { 1971 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1972 continue; 1973 } 1974 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1975 if (unlikely(!new_frag)) { 1976 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1977 continue; 1978 } 1979 1980 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1981 1982 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1983 1984 skb_reserve(skb, pkt_off); 1985 skb_put(skb, pkt_len); 1986 1987 skb->mark = meta.mark; 1988 skb_set_hash(skb, meta.hash, meta.hash_type); 1989 1990 skb_record_rx_queue(skb, rx_ring->idx); 1991 skb->protocol = eth_type_trans(skb, netdev); 1992 1993 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1994 1995 #ifdef CONFIG_TLS_DEVICE 1996 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 1997 skb->decrypted = true; 1998 u64_stats_update_begin(&r_vec->rx_sync); 1999 r_vec->hw_tls_rx++; 2000 u64_stats_update_end(&r_vec->rx_sync); 2001 } 2002 #endif 2003 2004 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 2005 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2006 le16_to_cpu(rxd->rxd.vlan)); 2007 if (meta_len_xdp) 2008 skb_metadata_set(skb, meta_len_xdp); 2009 2010 if (likely(!redir_egress)) { 2011 napi_gro_receive(&rx_ring->r_vec->napi, skb); 2012 } else { 2013 skb->dev = netdev; 2014 skb_reset_network_header(skb); 2015 __skb_push(skb, ETH_HLEN); 2016 dev_queue_xmit(skb); 2017 } 2018 } 2019 2020 if (xdp_prog) { 2021 if (tx_ring->wr_ptr_add) 2022 nfp_net_tx_xmit_more_flush(tx_ring); 2023 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2024 !xdp_tx_cmpl) 2025 if (!nfp_net_xdp_complete(tx_ring)) 2026 pkts_polled = budget; 2027 } 2028 rcu_read_unlock(); 2029 2030 return pkts_polled; 2031 } 2032 2033 /** 2034 * nfp_net_poll() - napi poll function 2035 * @napi: NAPI structure 2036 * @budget: NAPI budget 2037 * 2038 * Return: number of packets polled. 2039 */ 2040 static int nfp_net_poll(struct napi_struct *napi, int budget) 2041 { 2042 struct nfp_net_r_vector *r_vec = 2043 container_of(napi, struct nfp_net_r_vector, napi); 2044 unsigned int pkts_polled = 0; 2045 2046 if (r_vec->tx_ring) 2047 nfp_net_tx_complete(r_vec->tx_ring, budget); 2048 if (r_vec->rx_ring) 2049 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2050 2051 if (pkts_polled < budget) 2052 if (napi_complete_done(napi, pkts_polled)) 2053 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2054 2055 return pkts_polled; 2056 } 2057 2058 /* Control device data path 2059 */ 2060 2061 static bool 2062 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2063 struct sk_buff *skb, bool old) 2064 { 2065 unsigned int real_len = skb->len, meta_len = 0; 2066 struct nfp_net_tx_ring *tx_ring; 2067 struct nfp_net_tx_buf *txbuf; 2068 struct nfp_net_tx_desc *txd; 2069 struct nfp_net_dp *dp; 2070 dma_addr_t dma_addr; 2071 int wr_idx; 2072 2073 dp = &r_vec->nfp_net->dp; 2074 tx_ring = r_vec->tx_ring; 2075 2076 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2077 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2078 goto err_free; 2079 } 2080 2081 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2082 u64_stats_update_begin(&r_vec->tx_sync); 2083 r_vec->tx_busy++; 2084 u64_stats_update_end(&r_vec->tx_sync); 2085 if (!old) 2086 __skb_queue_tail(&r_vec->queue, skb); 2087 else 2088 __skb_queue_head(&r_vec->queue, skb); 2089 return true; 2090 } 2091 2092 if (nfp_app_ctrl_has_meta(nn->app)) { 2093 if (unlikely(skb_headroom(skb) < 8)) { 2094 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2095 goto err_free; 2096 } 2097 meta_len = 8; 2098 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2099 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2100 } 2101 2102 /* Start with the head skbuf */ 2103 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2104 DMA_TO_DEVICE); 2105 if (dma_mapping_error(dp->dev, dma_addr)) 2106 goto err_dma_warn; 2107 2108 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2109 2110 /* Stash the soft descriptor of the head then initialize it */ 2111 txbuf = &tx_ring->txbufs[wr_idx]; 2112 txbuf->skb = skb; 2113 txbuf->dma_addr = dma_addr; 2114 txbuf->fidx = -1; 2115 txbuf->pkt_cnt = 1; 2116 txbuf->real_len = real_len; 2117 2118 /* Build TX descriptor */ 2119 txd = &tx_ring->txds[wr_idx]; 2120 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2121 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2122 nfp_desc_set_dma_addr(txd, dma_addr); 2123 txd->data_len = cpu_to_le16(skb->len); 2124 2125 txd->flags = 0; 2126 txd->mss = 0; 2127 txd->lso_hdrlen = 0; 2128 2129 tx_ring->wr_p++; 2130 tx_ring->wr_ptr_add++; 2131 nfp_net_tx_xmit_more_flush(tx_ring); 2132 2133 return false; 2134 2135 err_dma_warn: 2136 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2137 err_free: 2138 u64_stats_update_begin(&r_vec->tx_sync); 2139 r_vec->tx_errors++; 2140 u64_stats_update_end(&r_vec->tx_sync); 2141 dev_kfree_skb_any(skb); 2142 return false; 2143 } 2144 2145 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2146 { 2147 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2148 2149 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2150 } 2151 2152 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2153 { 2154 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2155 bool ret; 2156 2157 spin_lock_bh(&r_vec->lock); 2158 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2159 spin_unlock_bh(&r_vec->lock); 2160 2161 return ret; 2162 } 2163 2164 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2165 { 2166 struct sk_buff *skb; 2167 2168 while ((skb = __skb_dequeue(&r_vec->queue))) 2169 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2170 return; 2171 } 2172 2173 static bool 2174 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2175 { 2176 u32 meta_type, meta_tag; 2177 2178 if (!nfp_app_ctrl_has_meta(nn->app)) 2179 return !meta_len; 2180 2181 if (meta_len != 8) 2182 return false; 2183 2184 meta_type = get_unaligned_be32(data); 2185 meta_tag = get_unaligned_be32(data + 4); 2186 2187 return (meta_type == NFP_NET_META_PORTID && 2188 meta_tag == NFP_META_PORT_ID_CTRL); 2189 } 2190 2191 static bool 2192 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2193 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2194 { 2195 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2196 struct nfp_net_rx_buf *rxbuf; 2197 struct nfp_net_rx_desc *rxd; 2198 dma_addr_t new_dma_addr; 2199 struct sk_buff *skb; 2200 void *new_frag; 2201 int idx; 2202 2203 idx = D_IDX(rx_ring, rx_ring->rd_p); 2204 2205 rxd = &rx_ring->rxds[idx]; 2206 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2207 return false; 2208 2209 /* Memory barrier to ensure that we won't do other reads 2210 * before the DD bit. 2211 */ 2212 dma_rmb(); 2213 2214 rx_ring->rd_p++; 2215 2216 rxbuf = &rx_ring->rxbufs[idx]; 2217 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2218 data_len = le16_to_cpu(rxd->rxd.data_len); 2219 pkt_len = data_len - meta_len; 2220 2221 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2222 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2223 pkt_off += meta_len; 2224 else 2225 pkt_off += dp->rx_offset; 2226 meta_off = pkt_off - meta_len; 2227 2228 /* Stats update */ 2229 u64_stats_update_begin(&r_vec->rx_sync); 2230 r_vec->rx_pkts++; 2231 r_vec->rx_bytes += pkt_len; 2232 u64_stats_update_end(&r_vec->rx_sync); 2233 2234 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2235 2236 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2237 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2238 meta_len); 2239 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2240 return true; 2241 } 2242 2243 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2244 if (unlikely(!skb)) { 2245 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2246 return true; 2247 } 2248 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2249 if (unlikely(!new_frag)) { 2250 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2251 return true; 2252 } 2253 2254 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2255 2256 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2257 2258 skb_reserve(skb, pkt_off); 2259 skb_put(skb, pkt_len); 2260 2261 nfp_app_ctrl_rx(nn->app, skb); 2262 2263 return true; 2264 } 2265 2266 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2267 { 2268 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2269 struct nfp_net *nn = r_vec->nfp_net; 2270 struct nfp_net_dp *dp = &nn->dp; 2271 unsigned int budget = 512; 2272 2273 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2274 continue; 2275 2276 return budget; 2277 } 2278 2279 static void nfp_ctrl_poll(unsigned long arg) 2280 { 2281 struct nfp_net_r_vector *r_vec = (void *)arg; 2282 2283 spin_lock(&r_vec->lock); 2284 nfp_net_tx_complete(r_vec->tx_ring, 0); 2285 __nfp_ctrl_tx_queued(r_vec); 2286 spin_unlock(&r_vec->lock); 2287 2288 if (nfp_ctrl_rx(r_vec)) { 2289 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2290 } else { 2291 tasklet_schedule(&r_vec->tasklet); 2292 nn_dp_warn(&r_vec->nfp_net->dp, 2293 "control message budget exceeded!\n"); 2294 } 2295 } 2296 2297 /* Setup and Configuration 2298 */ 2299 2300 /** 2301 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2302 * @nn: NFP Network structure 2303 */ 2304 static void nfp_net_vecs_init(struct nfp_net *nn) 2305 { 2306 struct nfp_net_r_vector *r_vec; 2307 int r; 2308 2309 nn->lsc_handler = nfp_net_irq_lsc; 2310 nn->exn_handler = nfp_net_irq_exn; 2311 2312 for (r = 0; r < nn->max_r_vecs; r++) { 2313 struct msix_entry *entry; 2314 2315 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2316 2317 r_vec = &nn->r_vecs[r]; 2318 r_vec->nfp_net = nn; 2319 r_vec->irq_entry = entry->entry; 2320 r_vec->irq_vector = entry->vector; 2321 2322 if (nn->dp.netdev) { 2323 r_vec->handler = nfp_net_irq_rxtx; 2324 } else { 2325 r_vec->handler = nfp_ctrl_irq_rxtx; 2326 2327 __skb_queue_head_init(&r_vec->queue); 2328 spin_lock_init(&r_vec->lock); 2329 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2330 (unsigned long)r_vec); 2331 tasklet_disable(&r_vec->tasklet); 2332 } 2333 2334 cpumask_set_cpu(r, &r_vec->affinity_mask); 2335 } 2336 } 2337 2338 /** 2339 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2340 * @tx_ring: TX ring to free 2341 */ 2342 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2343 { 2344 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2345 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2346 2347 kvfree(tx_ring->txbufs); 2348 2349 if (tx_ring->txds) 2350 dma_free_coherent(dp->dev, tx_ring->size, 2351 tx_ring->txds, tx_ring->dma); 2352 2353 tx_ring->cnt = 0; 2354 tx_ring->txbufs = NULL; 2355 tx_ring->txds = NULL; 2356 tx_ring->dma = 0; 2357 tx_ring->size = 0; 2358 } 2359 2360 /** 2361 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2362 * @dp: NFP Net data path struct 2363 * @tx_ring: TX Ring structure to allocate 2364 * 2365 * Return: 0 on success, negative errno otherwise. 2366 */ 2367 static int 2368 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2369 { 2370 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2371 2372 tx_ring->cnt = dp->txd_cnt; 2373 2374 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2375 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2376 &tx_ring->dma, 2377 GFP_KERNEL | __GFP_NOWARN); 2378 if (!tx_ring->txds) { 2379 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2380 tx_ring->cnt); 2381 goto err_alloc; 2382 } 2383 2384 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2385 GFP_KERNEL); 2386 if (!tx_ring->txbufs) 2387 goto err_alloc; 2388 2389 if (!tx_ring->is_xdp && dp->netdev) 2390 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2391 tx_ring->idx); 2392 2393 return 0; 2394 2395 err_alloc: 2396 nfp_net_tx_ring_free(tx_ring); 2397 return -ENOMEM; 2398 } 2399 2400 static void 2401 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2402 struct nfp_net_tx_ring *tx_ring) 2403 { 2404 unsigned int i; 2405 2406 if (!tx_ring->is_xdp) 2407 return; 2408 2409 for (i = 0; i < tx_ring->cnt; i++) { 2410 if (!tx_ring->txbufs[i].frag) 2411 return; 2412 2413 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2414 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2415 } 2416 } 2417 2418 static int 2419 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2420 struct nfp_net_tx_ring *tx_ring) 2421 { 2422 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2423 unsigned int i; 2424 2425 if (!tx_ring->is_xdp) 2426 return 0; 2427 2428 for (i = 0; i < tx_ring->cnt; i++) { 2429 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2430 if (!txbufs[i].frag) { 2431 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2432 return -ENOMEM; 2433 } 2434 } 2435 2436 return 0; 2437 } 2438 2439 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2440 { 2441 unsigned int r; 2442 2443 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2444 GFP_KERNEL); 2445 if (!dp->tx_rings) 2446 return -ENOMEM; 2447 2448 for (r = 0; r < dp->num_tx_rings; r++) { 2449 int bias = 0; 2450 2451 if (r >= dp->num_stack_tx_rings) 2452 bias = dp->num_stack_tx_rings; 2453 2454 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2455 r, bias); 2456 2457 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2458 goto err_free_prev; 2459 2460 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2461 goto err_free_ring; 2462 } 2463 2464 return 0; 2465 2466 err_free_prev: 2467 while (r--) { 2468 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2469 err_free_ring: 2470 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2471 } 2472 kfree(dp->tx_rings); 2473 return -ENOMEM; 2474 } 2475 2476 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2477 { 2478 unsigned int r; 2479 2480 for (r = 0; r < dp->num_tx_rings; r++) { 2481 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2482 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2483 } 2484 2485 kfree(dp->tx_rings); 2486 } 2487 2488 /** 2489 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2490 * @rx_ring: RX ring to free 2491 */ 2492 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2493 { 2494 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2495 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2496 2497 if (dp->netdev) 2498 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2499 kvfree(rx_ring->rxbufs); 2500 2501 if (rx_ring->rxds) 2502 dma_free_coherent(dp->dev, rx_ring->size, 2503 rx_ring->rxds, rx_ring->dma); 2504 2505 rx_ring->cnt = 0; 2506 rx_ring->rxbufs = NULL; 2507 rx_ring->rxds = NULL; 2508 rx_ring->dma = 0; 2509 rx_ring->size = 0; 2510 } 2511 2512 /** 2513 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2514 * @dp: NFP Net data path struct 2515 * @rx_ring: RX ring to allocate 2516 * 2517 * Return: 0 on success, negative errno otherwise. 2518 */ 2519 static int 2520 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2521 { 2522 int err; 2523 2524 if (dp->netdev) { 2525 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2526 rx_ring->idx); 2527 if (err < 0) 2528 return err; 2529 } 2530 2531 rx_ring->cnt = dp->rxd_cnt; 2532 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2533 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2534 &rx_ring->dma, 2535 GFP_KERNEL | __GFP_NOWARN); 2536 if (!rx_ring->rxds) { 2537 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2538 rx_ring->cnt); 2539 goto err_alloc; 2540 } 2541 2542 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2543 GFP_KERNEL); 2544 if (!rx_ring->rxbufs) 2545 goto err_alloc; 2546 2547 return 0; 2548 2549 err_alloc: 2550 nfp_net_rx_ring_free(rx_ring); 2551 return -ENOMEM; 2552 } 2553 2554 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2555 { 2556 unsigned int r; 2557 2558 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2559 GFP_KERNEL); 2560 if (!dp->rx_rings) 2561 return -ENOMEM; 2562 2563 for (r = 0; r < dp->num_rx_rings; r++) { 2564 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2565 2566 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2567 goto err_free_prev; 2568 2569 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2570 goto err_free_ring; 2571 } 2572 2573 return 0; 2574 2575 err_free_prev: 2576 while (r--) { 2577 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2578 err_free_ring: 2579 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2580 } 2581 kfree(dp->rx_rings); 2582 return -ENOMEM; 2583 } 2584 2585 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2586 { 2587 unsigned int r; 2588 2589 for (r = 0; r < dp->num_rx_rings; r++) { 2590 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2591 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2592 } 2593 2594 kfree(dp->rx_rings); 2595 } 2596 2597 static void 2598 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2599 struct nfp_net_r_vector *r_vec, int idx) 2600 { 2601 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2602 r_vec->tx_ring = 2603 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2604 2605 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2606 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2607 } 2608 2609 static int 2610 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2611 int idx) 2612 { 2613 int err; 2614 2615 /* Setup NAPI */ 2616 if (nn->dp.netdev) 2617 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2618 nfp_net_poll, NAPI_POLL_WEIGHT); 2619 else 2620 tasklet_enable(&r_vec->tasklet); 2621 2622 snprintf(r_vec->name, sizeof(r_vec->name), 2623 "%s-rxtx-%d", nfp_net_name(nn), idx); 2624 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2625 r_vec); 2626 if (err) { 2627 if (nn->dp.netdev) 2628 netif_napi_del(&r_vec->napi); 2629 else 2630 tasklet_disable(&r_vec->tasklet); 2631 2632 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2633 return err; 2634 } 2635 disable_irq(r_vec->irq_vector); 2636 2637 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2638 2639 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2640 r_vec->irq_entry); 2641 2642 return 0; 2643 } 2644 2645 static void 2646 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2647 { 2648 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2649 if (nn->dp.netdev) 2650 netif_napi_del(&r_vec->napi); 2651 else 2652 tasklet_disable(&r_vec->tasklet); 2653 2654 free_irq(r_vec->irq_vector, r_vec); 2655 } 2656 2657 /** 2658 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2659 * @nn: NFP Net device to reconfigure 2660 */ 2661 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2662 { 2663 int i; 2664 2665 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2666 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2667 get_unaligned_le32(nn->rss_itbl + i)); 2668 } 2669 2670 /** 2671 * nfp_net_rss_write_key() - Write RSS hash key to device 2672 * @nn: NFP Net device to reconfigure 2673 */ 2674 void nfp_net_rss_write_key(struct nfp_net *nn) 2675 { 2676 int i; 2677 2678 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2679 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2680 get_unaligned_le32(nn->rss_key + i)); 2681 } 2682 2683 /** 2684 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2685 * @nn: NFP Net device to reconfigure 2686 */ 2687 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2688 { 2689 u8 i; 2690 u32 factor; 2691 u32 value; 2692 2693 /* Compute factor used to convert coalesce '_usecs' parameters to 2694 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2695 * count. 2696 */ 2697 factor = nn->tlv_caps.me_freq_mhz / 16; 2698 2699 /* copy RX interrupt coalesce parameters */ 2700 value = (nn->rx_coalesce_max_frames << 16) | 2701 (factor * nn->rx_coalesce_usecs); 2702 for (i = 0; i < nn->dp.num_rx_rings; i++) 2703 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2704 2705 /* copy TX interrupt coalesce parameters */ 2706 value = (nn->tx_coalesce_max_frames << 16) | 2707 (factor * nn->tx_coalesce_usecs); 2708 for (i = 0; i < nn->dp.num_tx_rings; i++) 2709 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2710 } 2711 2712 /** 2713 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2714 * @nn: NFP Net device to reconfigure 2715 * @addr: MAC address to write 2716 * 2717 * Writes the MAC address from the netdev to the device control BAR. Does not 2718 * perform the required reconfig. We do a bit of byte swapping dance because 2719 * firmware is LE. 2720 */ 2721 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2722 { 2723 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2724 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2725 } 2726 2727 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2728 { 2729 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2730 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2731 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2732 2733 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2734 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2735 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2736 } 2737 2738 /** 2739 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2740 * @nn: NFP Net device to reconfigure 2741 * 2742 * Warning: must be fully idempotent. 2743 */ 2744 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2745 { 2746 u32 new_ctrl, update; 2747 unsigned int r; 2748 int err; 2749 2750 new_ctrl = nn->dp.ctrl; 2751 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2752 update = NFP_NET_CFG_UPDATE_GEN; 2753 update |= NFP_NET_CFG_UPDATE_MSIX; 2754 update |= NFP_NET_CFG_UPDATE_RING; 2755 2756 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2757 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2758 2759 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2760 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2761 2762 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2763 err = nfp_net_reconfig(nn, update); 2764 if (err) 2765 nn_err(nn, "Could not disable device: %d\n", err); 2766 2767 for (r = 0; r < nn->dp.num_rx_rings; r++) 2768 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2769 for (r = 0; r < nn->dp.num_tx_rings; r++) 2770 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2771 for (r = 0; r < nn->dp.num_r_vecs; r++) 2772 nfp_net_vec_clear_ring_data(nn, r); 2773 2774 nn->dp.ctrl = new_ctrl; 2775 } 2776 2777 static void 2778 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2779 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2780 { 2781 /* Write the DMA address, size and MSI-X info to the device */ 2782 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2783 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2784 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2785 } 2786 2787 static void 2788 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2789 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2790 { 2791 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2792 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2793 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2794 } 2795 2796 /** 2797 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2798 * @nn: NFP Net device to reconfigure 2799 */ 2800 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2801 { 2802 u32 bufsz, new_ctrl, update = 0; 2803 unsigned int r; 2804 int err; 2805 2806 new_ctrl = nn->dp.ctrl; 2807 2808 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2809 nfp_net_rss_write_key(nn); 2810 nfp_net_rss_write_itbl(nn); 2811 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2812 update |= NFP_NET_CFG_UPDATE_RSS; 2813 } 2814 2815 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2816 nfp_net_coalesce_write_cfg(nn); 2817 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2818 } 2819 2820 for (r = 0; r < nn->dp.num_tx_rings; r++) 2821 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2822 for (r = 0; r < nn->dp.num_rx_rings; r++) 2823 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2824 2825 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2826 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2827 2828 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2829 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2830 2831 if (nn->dp.netdev) 2832 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2833 2834 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2835 2836 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2837 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2838 2839 /* Enable device */ 2840 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2841 update |= NFP_NET_CFG_UPDATE_GEN; 2842 update |= NFP_NET_CFG_UPDATE_MSIX; 2843 update |= NFP_NET_CFG_UPDATE_RING; 2844 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2845 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2846 2847 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2848 err = nfp_net_reconfig(nn, update); 2849 if (err) { 2850 nfp_net_clear_config_and_disable(nn); 2851 return err; 2852 } 2853 2854 nn->dp.ctrl = new_ctrl; 2855 2856 for (r = 0; r < nn->dp.num_rx_rings; r++) 2857 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2858 2859 /* Since reconfiguration requests while NFP is down are ignored we 2860 * have to wipe the entire VXLAN configuration and reinitialize it. 2861 */ 2862 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2863 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2864 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2865 udp_tunnel_get_rx_info(nn->dp.netdev); 2866 } 2867 2868 return 0; 2869 } 2870 2871 /** 2872 * nfp_net_close_stack() - Quiesce the stack (part of close) 2873 * @nn: NFP Net device to reconfigure 2874 */ 2875 static void nfp_net_close_stack(struct nfp_net *nn) 2876 { 2877 unsigned int r; 2878 2879 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2880 netif_carrier_off(nn->dp.netdev); 2881 nn->link_up = false; 2882 2883 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2884 disable_irq(nn->r_vecs[r].irq_vector); 2885 napi_disable(&nn->r_vecs[r].napi); 2886 } 2887 2888 netif_tx_disable(nn->dp.netdev); 2889 } 2890 2891 /** 2892 * nfp_net_close_free_all() - Free all runtime resources 2893 * @nn: NFP Net device to reconfigure 2894 */ 2895 static void nfp_net_close_free_all(struct nfp_net *nn) 2896 { 2897 unsigned int r; 2898 2899 nfp_net_tx_rings_free(&nn->dp); 2900 nfp_net_rx_rings_free(&nn->dp); 2901 2902 for (r = 0; r < nn->dp.num_r_vecs; r++) 2903 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2904 2905 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2906 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2907 } 2908 2909 /** 2910 * nfp_net_netdev_close() - Called when the device is downed 2911 * @netdev: netdev structure 2912 */ 2913 static int nfp_net_netdev_close(struct net_device *netdev) 2914 { 2915 struct nfp_net *nn = netdev_priv(netdev); 2916 2917 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2918 */ 2919 nfp_net_close_stack(nn); 2920 2921 /* Step 2: Tell NFP 2922 */ 2923 nfp_net_clear_config_and_disable(nn); 2924 nfp_port_configure(netdev, false); 2925 2926 /* Step 3: Free resources 2927 */ 2928 nfp_net_close_free_all(nn); 2929 2930 nn_dbg(nn, "%s down", netdev->name); 2931 return 0; 2932 } 2933 2934 void nfp_ctrl_close(struct nfp_net *nn) 2935 { 2936 int r; 2937 2938 rtnl_lock(); 2939 2940 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2941 disable_irq(nn->r_vecs[r].irq_vector); 2942 tasklet_disable(&nn->r_vecs[r].tasklet); 2943 } 2944 2945 nfp_net_clear_config_and_disable(nn); 2946 2947 nfp_net_close_free_all(nn); 2948 2949 rtnl_unlock(); 2950 } 2951 2952 /** 2953 * nfp_net_open_stack() - Start the device from stack's perspective 2954 * @nn: NFP Net device to reconfigure 2955 */ 2956 static void nfp_net_open_stack(struct nfp_net *nn) 2957 { 2958 unsigned int r; 2959 2960 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2961 napi_enable(&nn->r_vecs[r].napi); 2962 enable_irq(nn->r_vecs[r].irq_vector); 2963 } 2964 2965 netif_tx_wake_all_queues(nn->dp.netdev); 2966 2967 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2968 nfp_net_read_link_status(nn); 2969 } 2970 2971 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2972 { 2973 int err, r; 2974 2975 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2976 nn->exn_name, sizeof(nn->exn_name), 2977 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2978 if (err) 2979 return err; 2980 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2981 nn->lsc_name, sizeof(nn->lsc_name), 2982 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2983 if (err) 2984 goto err_free_exn; 2985 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2986 2987 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2988 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2989 if (err) 2990 goto err_cleanup_vec_p; 2991 } 2992 2993 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2994 if (err) 2995 goto err_cleanup_vec; 2996 2997 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2998 if (err) 2999 goto err_free_rx_rings; 3000 3001 for (r = 0; r < nn->max_r_vecs; r++) 3002 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3003 3004 return 0; 3005 3006 err_free_rx_rings: 3007 nfp_net_rx_rings_free(&nn->dp); 3008 err_cleanup_vec: 3009 r = nn->dp.num_r_vecs; 3010 err_cleanup_vec_p: 3011 while (r--) 3012 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3013 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 3014 err_free_exn: 3015 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 3016 return err; 3017 } 3018 3019 static int nfp_net_netdev_open(struct net_device *netdev) 3020 { 3021 struct nfp_net *nn = netdev_priv(netdev); 3022 int err; 3023 3024 /* Step 1: Allocate resources for rings and the like 3025 * - Request interrupts 3026 * - Allocate RX and TX ring resources 3027 * - Setup initial RSS table 3028 */ 3029 err = nfp_net_open_alloc_all(nn); 3030 if (err) 3031 return err; 3032 3033 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3034 if (err) 3035 goto err_free_all; 3036 3037 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3038 if (err) 3039 goto err_free_all; 3040 3041 /* Step 2: Configure the NFP 3042 * - Ifup the physical interface if it exists 3043 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3044 * - Write MAC address (in case it changed) 3045 * - Set the MTU 3046 * - Set the Freelist buffer size 3047 * - Enable the FW 3048 */ 3049 err = nfp_port_configure(netdev, true); 3050 if (err) 3051 goto err_free_all; 3052 3053 err = nfp_net_set_config_and_enable(nn); 3054 if (err) 3055 goto err_port_disable; 3056 3057 /* Step 3: Enable for kernel 3058 * - put some freelist descriptors on each RX ring 3059 * - enable NAPI on each ring 3060 * - enable all TX queues 3061 * - set link state 3062 */ 3063 nfp_net_open_stack(nn); 3064 3065 return 0; 3066 3067 err_port_disable: 3068 nfp_port_configure(netdev, false); 3069 err_free_all: 3070 nfp_net_close_free_all(nn); 3071 return err; 3072 } 3073 3074 int nfp_ctrl_open(struct nfp_net *nn) 3075 { 3076 int err, r; 3077 3078 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3079 rtnl_lock(); 3080 3081 err = nfp_net_open_alloc_all(nn); 3082 if (err) 3083 goto err_unlock; 3084 3085 err = nfp_net_set_config_and_enable(nn); 3086 if (err) 3087 goto err_free_all; 3088 3089 for (r = 0; r < nn->dp.num_r_vecs; r++) 3090 enable_irq(nn->r_vecs[r].irq_vector); 3091 3092 rtnl_unlock(); 3093 3094 return 0; 3095 3096 err_free_all: 3097 nfp_net_close_free_all(nn); 3098 err_unlock: 3099 rtnl_unlock(); 3100 return err; 3101 } 3102 3103 static void nfp_net_set_rx_mode(struct net_device *netdev) 3104 { 3105 struct nfp_net *nn = netdev_priv(netdev); 3106 u32 new_ctrl; 3107 3108 new_ctrl = nn->dp.ctrl; 3109 3110 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3111 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3112 else 3113 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3114 3115 if (netdev->flags & IFF_PROMISC) { 3116 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3117 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3118 else 3119 nn_warn(nn, "FW does not support promiscuous mode\n"); 3120 } else { 3121 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3122 } 3123 3124 if (new_ctrl == nn->dp.ctrl) 3125 return; 3126 3127 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3128 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3129 3130 nn->dp.ctrl = new_ctrl; 3131 } 3132 3133 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3134 { 3135 int i; 3136 3137 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3138 nn->rss_itbl[i] = 3139 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3140 } 3141 3142 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3143 { 3144 struct nfp_net_dp new_dp = *dp; 3145 3146 *dp = nn->dp; 3147 nn->dp = new_dp; 3148 3149 nn->dp.netdev->mtu = new_dp.mtu; 3150 3151 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3152 nfp_net_rss_init_itbl(nn); 3153 } 3154 3155 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3156 { 3157 unsigned int r; 3158 int err; 3159 3160 nfp_net_dp_swap(nn, dp); 3161 3162 for (r = 0; r < nn->max_r_vecs; r++) 3163 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3164 3165 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 3166 if (err) 3167 return err; 3168 3169 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 3170 err = netif_set_real_num_tx_queues(nn->dp.netdev, 3171 nn->dp.num_stack_tx_rings); 3172 if (err) 3173 return err; 3174 } 3175 3176 return nfp_net_set_config_and_enable(nn); 3177 } 3178 3179 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3180 { 3181 struct nfp_net_dp *new; 3182 3183 new = kmalloc(sizeof(*new), GFP_KERNEL); 3184 if (!new) 3185 return NULL; 3186 3187 *new = nn->dp; 3188 3189 /* Clear things which need to be recomputed */ 3190 new->fl_bufsz = 0; 3191 new->tx_rings = NULL; 3192 new->rx_rings = NULL; 3193 new->num_r_vecs = 0; 3194 new->num_stack_tx_rings = 0; 3195 3196 return new; 3197 } 3198 3199 static int 3200 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3201 struct netlink_ext_ack *extack) 3202 { 3203 /* XDP-enabled tests */ 3204 if (!dp->xdp_prog) 3205 return 0; 3206 if (dp->fl_bufsz > PAGE_SIZE) { 3207 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3208 return -EINVAL; 3209 } 3210 if (dp->num_tx_rings > nn->max_tx_rings) { 3211 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3212 return -EINVAL; 3213 } 3214 3215 return 0; 3216 } 3217 3218 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3219 struct netlink_ext_ack *extack) 3220 { 3221 int r, err; 3222 3223 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3224 3225 dp->num_stack_tx_rings = dp->num_tx_rings; 3226 if (dp->xdp_prog) 3227 dp->num_stack_tx_rings -= dp->num_rx_rings; 3228 3229 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3230 3231 err = nfp_net_check_config(nn, dp, extack); 3232 if (err) 3233 goto exit_free_dp; 3234 3235 if (!netif_running(dp->netdev)) { 3236 nfp_net_dp_swap(nn, dp); 3237 err = 0; 3238 goto exit_free_dp; 3239 } 3240 3241 /* Prepare new rings */ 3242 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3243 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3244 if (err) { 3245 dp->num_r_vecs = r; 3246 goto err_cleanup_vecs; 3247 } 3248 } 3249 3250 err = nfp_net_rx_rings_prepare(nn, dp); 3251 if (err) 3252 goto err_cleanup_vecs; 3253 3254 err = nfp_net_tx_rings_prepare(nn, dp); 3255 if (err) 3256 goto err_free_rx; 3257 3258 /* Stop device, swap in new rings, try to start the firmware */ 3259 nfp_net_close_stack(nn); 3260 nfp_net_clear_config_and_disable(nn); 3261 3262 err = nfp_net_dp_swap_enable(nn, dp); 3263 if (err) { 3264 int err2; 3265 3266 nfp_net_clear_config_and_disable(nn); 3267 3268 /* Try with old configuration and old rings */ 3269 err2 = nfp_net_dp_swap_enable(nn, dp); 3270 if (err2) 3271 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3272 err, err2); 3273 } 3274 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3275 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3276 3277 nfp_net_rx_rings_free(dp); 3278 nfp_net_tx_rings_free(dp); 3279 3280 nfp_net_open_stack(nn); 3281 exit_free_dp: 3282 kfree(dp); 3283 3284 return err; 3285 3286 err_free_rx: 3287 nfp_net_rx_rings_free(dp); 3288 err_cleanup_vecs: 3289 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3290 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3291 kfree(dp); 3292 return err; 3293 } 3294 3295 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3296 { 3297 struct nfp_net *nn = netdev_priv(netdev); 3298 struct nfp_net_dp *dp; 3299 int err; 3300 3301 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3302 if (err) 3303 return err; 3304 3305 dp = nfp_net_clone_dp(nn); 3306 if (!dp) 3307 return -ENOMEM; 3308 3309 dp->mtu = new_mtu; 3310 3311 return nfp_net_ring_reconfig(nn, dp, NULL); 3312 } 3313 3314 static int 3315 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3316 { 3317 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3318 struct nfp_net *nn = netdev_priv(netdev); 3319 int err; 3320 3321 /* Priority tagged packets with vlan id 0 are processed by the 3322 * NFP as untagged packets 3323 */ 3324 if (!vid) 3325 return 0; 3326 3327 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3328 if (err) 3329 return err; 3330 3331 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3332 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3333 ETH_P_8021Q); 3334 3335 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3336 } 3337 3338 static int 3339 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3340 { 3341 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3342 struct nfp_net *nn = netdev_priv(netdev); 3343 int err; 3344 3345 /* Priority tagged packets with vlan id 0 are processed by the 3346 * NFP as untagged packets 3347 */ 3348 if (!vid) 3349 return 0; 3350 3351 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3352 if (err) 3353 return err; 3354 3355 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3356 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3357 ETH_P_8021Q); 3358 3359 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3360 } 3361 3362 static void nfp_net_stat64(struct net_device *netdev, 3363 struct rtnl_link_stats64 *stats) 3364 { 3365 struct nfp_net *nn = netdev_priv(netdev); 3366 int r; 3367 3368 /* Collect software stats */ 3369 for (r = 0; r < nn->max_r_vecs; r++) { 3370 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3371 u64 data[3]; 3372 unsigned int start; 3373 3374 do { 3375 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3376 data[0] = r_vec->rx_pkts; 3377 data[1] = r_vec->rx_bytes; 3378 data[2] = r_vec->rx_drops; 3379 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3380 stats->rx_packets += data[0]; 3381 stats->rx_bytes += data[1]; 3382 stats->rx_dropped += data[2]; 3383 3384 do { 3385 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3386 data[0] = r_vec->tx_pkts; 3387 data[1] = r_vec->tx_bytes; 3388 data[2] = r_vec->tx_errors; 3389 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3390 stats->tx_packets += data[0]; 3391 stats->tx_bytes += data[1]; 3392 stats->tx_errors += data[2]; 3393 } 3394 3395 /* Add in device stats */ 3396 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3397 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3398 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3399 3400 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3401 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3402 } 3403 3404 static int nfp_net_set_features(struct net_device *netdev, 3405 netdev_features_t features) 3406 { 3407 netdev_features_t changed = netdev->features ^ features; 3408 struct nfp_net *nn = netdev_priv(netdev); 3409 u32 new_ctrl; 3410 int err; 3411 3412 /* Assume this is not called with features we have not advertised */ 3413 3414 new_ctrl = nn->dp.ctrl; 3415 3416 if (changed & NETIF_F_RXCSUM) { 3417 if (features & NETIF_F_RXCSUM) 3418 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3419 else 3420 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3421 } 3422 3423 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3424 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3425 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3426 else 3427 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3428 } 3429 3430 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3431 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3432 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3433 NFP_NET_CFG_CTRL_LSO; 3434 else 3435 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3436 } 3437 3438 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3439 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3440 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3441 else 3442 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3443 } 3444 3445 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3446 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3447 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3448 else 3449 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3450 } 3451 3452 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3453 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3454 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3455 else 3456 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3457 } 3458 3459 if (changed & NETIF_F_SG) { 3460 if (features & NETIF_F_SG) 3461 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3462 else 3463 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3464 } 3465 3466 err = nfp_port_set_features(netdev, features); 3467 if (err) 3468 return err; 3469 3470 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3471 netdev->features, features, changed); 3472 3473 if (new_ctrl == nn->dp.ctrl) 3474 return 0; 3475 3476 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3477 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3478 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3479 if (err) 3480 return err; 3481 3482 nn->dp.ctrl = new_ctrl; 3483 3484 return 0; 3485 } 3486 3487 static netdev_features_t 3488 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3489 netdev_features_t features) 3490 { 3491 u8 l4_hdr; 3492 3493 /* We can't do TSO over double tagged packets (802.1AD) */ 3494 features &= vlan_features_check(skb, features); 3495 3496 if (!skb->encapsulation) 3497 return features; 3498 3499 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3500 if (skb_is_gso(skb)) { 3501 u32 hdrlen; 3502 3503 hdrlen = skb_inner_transport_header(skb) - skb->data + 3504 inner_tcp_hdrlen(skb); 3505 3506 /* Assume worst case scenario of having longest possible 3507 * metadata prepend - 8B 3508 */ 3509 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3510 features &= ~NETIF_F_GSO_MASK; 3511 } 3512 3513 /* VXLAN/GRE check */ 3514 switch (vlan_get_protocol(skb)) { 3515 case htons(ETH_P_IP): 3516 l4_hdr = ip_hdr(skb)->protocol; 3517 break; 3518 case htons(ETH_P_IPV6): 3519 l4_hdr = ipv6_hdr(skb)->nexthdr; 3520 break; 3521 default: 3522 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3523 } 3524 3525 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3526 skb->inner_protocol != htons(ETH_P_TEB) || 3527 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3528 (l4_hdr == IPPROTO_UDP && 3529 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3530 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3531 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3532 3533 return features; 3534 } 3535 3536 static int 3537 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3538 { 3539 struct nfp_net *nn = netdev_priv(netdev); 3540 int n; 3541 3542 /* If port is defined, devlink_port is registered and devlink core 3543 * is taking care of name formatting. 3544 */ 3545 if (nn->port) 3546 return -EOPNOTSUPP; 3547 3548 if (nn->dp.is_vf || nn->vnic_no_name) 3549 return -EOPNOTSUPP; 3550 3551 n = snprintf(name, len, "n%d", nn->id); 3552 if (n >= len) 3553 return -EINVAL; 3554 3555 return 0; 3556 } 3557 3558 /** 3559 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3560 * @nn: NFP Net device to reconfigure 3561 * @idx: Index into the port table where new port should be written 3562 * @port: UDP port to configure (pass zero to remove VXLAN port) 3563 */ 3564 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3565 { 3566 int i; 3567 3568 nn->vxlan_ports[idx] = port; 3569 3570 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3571 return; 3572 3573 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3574 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3575 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3576 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3577 be16_to_cpu(nn->vxlan_ports[i])); 3578 3579 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3580 } 3581 3582 /** 3583 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3584 * @nn: NFP Network structure 3585 * @port: UDP port to look for 3586 * 3587 * Return: if the port is already in the table -- it's position; 3588 * if the port is not in the table -- free position to use; 3589 * if the table is full -- -ENOSPC. 3590 */ 3591 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3592 { 3593 int i, free_idx = -ENOSPC; 3594 3595 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3596 if (nn->vxlan_ports[i] == port) 3597 return i; 3598 if (!nn->vxlan_usecnt[i]) 3599 free_idx = i; 3600 } 3601 3602 return free_idx; 3603 } 3604 3605 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3606 struct udp_tunnel_info *ti) 3607 { 3608 struct nfp_net *nn = netdev_priv(netdev); 3609 int idx; 3610 3611 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3612 return; 3613 3614 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3615 if (idx == -ENOSPC) 3616 return; 3617 3618 if (!nn->vxlan_usecnt[idx]++) 3619 nfp_net_set_vxlan_port(nn, idx, ti->port); 3620 } 3621 3622 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3623 struct udp_tunnel_info *ti) 3624 { 3625 struct nfp_net *nn = netdev_priv(netdev); 3626 int idx; 3627 3628 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3629 return; 3630 3631 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3632 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3633 return; 3634 3635 if (!--nn->vxlan_usecnt[idx]) 3636 nfp_net_set_vxlan_port(nn, idx, 0); 3637 } 3638 3639 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3640 { 3641 struct bpf_prog *prog = bpf->prog; 3642 struct nfp_net_dp *dp; 3643 int err; 3644 3645 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3646 return -EBUSY; 3647 3648 if (!prog == !nn->dp.xdp_prog) { 3649 WRITE_ONCE(nn->dp.xdp_prog, prog); 3650 xdp_attachment_setup(&nn->xdp, bpf); 3651 return 0; 3652 } 3653 3654 dp = nfp_net_clone_dp(nn); 3655 if (!dp) 3656 return -ENOMEM; 3657 3658 dp->xdp_prog = prog; 3659 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3660 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3661 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3662 3663 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3664 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3665 if (err) 3666 return err; 3667 3668 xdp_attachment_setup(&nn->xdp, bpf); 3669 return 0; 3670 } 3671 3672 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3673 { 3674 int err; 3675 3676 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3677 return -EBUSY; 3678 3679 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3680 if (err) 3681 return err; 3682 3683 xdp_attachment_setup(&nn->xdp_hw, bpf); 3684 return 0; 3685 } 3686 3687 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3688 { 3689 struct nfp_net *nn = netdev_priv(netdev); 3690 3691 switch (xdp->command) { 3692 case XDP_SETUP_PROG: 3693 return nfp_net_xdp_setup_drv(nn, xdp); 3694 case XDP_SETUP_PROG_HW: 3695 return nfp_net_xdp_setup_hw(nn, xdp); 3696 case XDP_QUERY_PROG: 3697 return xdp_attachment_query(&nn->xdp, xdp); 3698 case XDP_QUERY_PROG_HW: 3699 return xdp_attachment_query(&nn->xdp_hw, xdp); 3700 default: 3701 return nfp_app_bpf(nn->app, nn, xdp); 3702 } 3703 } 3704 3705 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3706 { 3707 struct nfp_net *nn = netdev_priv(netdev); 3708 struct sockaddr *saddr = addr; 3709 int err; 3710 3711 err = eth_prepare_mac_addr_change(netdev, addr); 3712 if (err) 3713 return err; 3714 3715 nfp_net_write_mac_addr(nn, saddr->sa_data); 3716 3717 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3718 if (err) 3719 return err; 3720 3721 eth_commit_mac_addr_change(netdev, addr); 3722 3723 return 0; 3724 } 3725 3726 const struct net_device_ops nfp_net_netdev_ops = { 3727 .ndo_init = nfp_app_ndo_init, 3728 .ndo_uninit = nfp_app_ndo_uninit, 3729 .ndo_open = nfp_net_netdev_open, 3730 .ndo_stop = nfp_net_netdev_close, 3731 .ndo_start_xmit = nfp_net_tx, 3732 .ndo_get_stats64 = nfp_net_stat64, 3733 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3734 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3735 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3736 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3737 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3738 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3739 .ndo_get_vf_config = nfp_app_get_vf_config, 3740 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3741 .ndo_setup_tc = nfp_port_setup_tc, 3742 .ndo_tx_timeout = nfp_net_tx_timeout, 3743 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3744 .ndo_change_mtu = nfp_net_change_mtu, 3745 .ndo_set_mac_address = nfp_net_set_mac_address, 3746 .ndo_set_features = nfp_net_set_features, 3747 .ndo_features_check = nfp_net_features_check, 3748 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3749 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3750 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3751 .ndo_bpf = nfp_net_xdp, 3752 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3753 }; 3754 3755 /** 3756 * nfp_net_info() - Print general info about the NIC 3757 * @nn: NFP Net device to reconfigure 3758 */ 3759 void nfp_net_info(struct nfp_net *nn) 3760 { 3761 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3762 nn->dp.is_vf ? "VF " : "", 3763 nn->dp.num_tx_rings, nn->max_tx_rings, 3764 nn->dp.num_rx_rings, nn->max_rx_rings); 3765 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3766 nn->fw_ver.resv, nn->fw_ver.class, 3767 nn->fw_ver.major, nn->fw_ver.minor, 3768 nn->max_mtu); 3769 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3770 nn->cap, 3771 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3772 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3773 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3774 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3775 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3776 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3777 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3778 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3779 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3780 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3781 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3782 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3783 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3784 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3785 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3786 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3787 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3788 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3789 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3790 "RXCSUM_COMPLETE " : "", 3791 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3792 nfp_app_extra_cap(nn->app, nn)); 3793 } 3794 3795 /** 3796 * nfp_net_alloc() - Allocate netdev and related structure 3797 * @pdev: PCI device 3798 * @ctrl_bar: PCI IOMEM with vNIC config memory 3799 * @needs_netdev: Whether to allocate a netdev for this vNIC 3800 * @max_tx_rings: Maximum number of TX rings supported by device 3801 * @max_rx_rings: Maximum number of RX rings supported by device 3802 * 3803 * This function allocates a netdev device and fills in the initial 3804 * part of the @struct nfp_net structure. In case of control device 3805 * nfp_net structure is allocated without the netdev. 3806 * 3807 * Return: NFP Net device structure, or ERR_PTR on error. 3808 */ 3809 struct nfp_net * 3810 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3811 unsigned int max_tx_rings, unsigned int max_rx_rings) 3812 { 3813 struct nfp_net *nn; 3814 int err; 3815 3816 if (needs_netdev) { 3817 struct net_device *netdev; 3818 3819 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3820 max_tx_rings, max_rx_rings); 3821 if (!netdev) 3822 return ERR_PTR(-ENOMEM); 3823 3824 SET_NETDEV_DEV(netdev, &pdev->dev); 3825 nn = netdev_priv(netdev); 3826 nn->dp.netdev = netdev; 3827 } else { 3828 nn = vzalloc(sizeof(*nn)); 3829 if (!nn) 3830 return ERR_PTR(-ENOMEM); 3831 } 3832 3833 nn->dp.dev = &pdev->dev; 3834 nn->dp.ctrl_bar = ctrl_bar; 3835 nn->pdev = pdev; 3836 3837 nn->max_tx_rings = max_tx_rings; 3838 nn->max_rx_rings = max_rx_rings; 3839 3840 nn->dp.num_tx_rings = min_t(unsigned int, 3841 max_tx_rings, num_online_cpus()); 3842 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3843 netif_get_num_default_rss_queues()); 3844 3845 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3846 nn->dp.num_r_vecs = min_t(unsigned int, 3847 nn->dp.num_r_vecs, num_online_cpus()); 3848 3849 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3850 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3851 3852 sema_init(&nn->bar_lock, 1); 3853 3854 spin_lock_init(&nn->reconfig_lock); 3855 spin_lock_init(&nn->link_status_lock); 3856 3857 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3858 3859 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3860 &nn->tlv_caps); 3861 if (err) 3862 goto err_free_nn; 3863 3864 err = nfp_ccm_mbox_alloc(nn); 3865 if (err) 3866 goto err_free_nn; 3867 3868 return nn; 3869 3870 err_free_nn: 3871 if (nn->dp.netdev) 3872 free_netdev(nn->dp.netdev); 3873 else 3874 vfree(nn); 3875 return ERR_PTR(err); 3876 } 3877 3878 /** 3879 * nfp_net_free() - Undo what @nfp_net_alloc() did 3880 * @nn: NFP Net device to reconfigure 3881 */ 3882 void nfp_net_free(struct nfp_net *nn) 3883 { 3884 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3885 nfp_ccm_mbox_free(nn); 3886 3887 if (nn->dp.netdev) 3888 free_netdev(nn->dp.netdev); 3889 else 3890 vfree(nn); 3891 } 3892 3893 /** 3894 * nfp_net_rss_key_sz() - Get current size of the RSS key 3895 * @nn: NFP Net device instance 3896 * 3897 * Return: size of the RSS key for currently selected hash function. 3898 */ 3899 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3900 { 3901 switch (nn->rss_hfunc) { 3902 case ETH_RSS_HASH_TOP: 3903 return NFP_NET_CFG_RSS_KEY_SZ; 3904 case ETH_RSS_HASH_XOR: 3905 return 0; 3906 case ETH_RSS_HASH_CRC32: 3907 return 4; 3908 } 3909 3910 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3911 return 0; 3912 } 3913 3914 /** 3915 * nfp_net_rss_init() - Set the initial RSS parameters 3916 * @nn: NFP Net device to reconfigure 3917 */ 3918 static void nfp_net_rss_init(struct nfp_net *nn) 3919 { 3920 unsigned long func_bit, rss_cap_hfunc; 3921 u32 reg; 3922 3923 /* Read the RSS function capability and select first supported func */ 3924 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3925 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3926 if (!rss_cap_hfunc) 3927 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3928 NFP_NET_CFG_RSS_TOEPLITZ); 3929 3930 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3931 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3932 dev_warn(nn->dp.dev, 3933 "Bad RSS config, defaulting to Toeplitz hash\n"); 3934 func_bit = ETH_RSS_HASH_TOP_BIT; 3935 } 3936 nn->rss_hfunc = 1 << func_bit; 3937 3938 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3939 3940 nfp_net_rss_init_itbl(nn); 3941 3942 /* Enable IPv4/IPv6 TCP by default */ 3943 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3944 NFP_NET_CFG_RSS_IPV6_TCP | 3945 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3946 NFP_NET_CFG_RSS_MASK; 3947 } 3948 3949 /** 3950 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3951 * @nn: NFP Net device to reconfigure 3952 */ 3953 static void nfp_net_irqmod_init(struct nfp_net *nn) 3954 { 3955 nn->rx_coalesce_usecs = 50; 3956 nn->rx_coalesce_max_frames = 64; 3957 nn->tx_coalesce_usecs = 50; 3958 nn->tx_coalesce_max_frames = 64; 3959 } 3960 3961 static void nfp_net_netdev_init(struct nfp_net *nn) 3962 { 3963 struct net_device *netdev = nn->dp.netdev; 3964 3965 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3966 3967 netdev->mtu = nn->dp.mtu; 3968 3969 /* Advertise/enable offloads based on capabilities 3970 * 3971 * Note: netdev->features show the currently enabled features 3972 * and netdev->hw_features advertises which features are 3973 * supported. By default we enable most features. 3974 */ 3975 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3976 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3977 3978 netdev->hw_features = NETIF_F_HIGHDMA; 3979 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3980 netdev->hw_features |= NETIF_F_RXCSUM; 3981 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3982 } 3983 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3984 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3985 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3986 } 3987 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3988 netdev->hw_features |= NETIF_F_SG; 3989 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3990 } 3991 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3992 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3993 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3994 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3995 NFP_NET_CFG_CTRL_LSO; 3996 } 3997 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3998 netdev->hw_features |= NETIF_F_RXHASH; 3999 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 4000 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4001 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 4002 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 4003 } 4004 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 4005 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4006 netdev->hw_features |= NETIF_F_GSO_GRE; 4007 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 4008 } 4009 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 4010 netdev->hw_enc_features = netdev->hw_features; 4011 4012 netdev->vlan_features = netdev->hw_features; 4013 4014 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 4015 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4016 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 4017 } 4018 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 4019 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4020 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 4021 } else { 4022 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4023 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 4024 } 4025 } 4026 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 4027 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4028 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 4029 } 4030 4031 netdev->features = netdev->hw_features; 4032 4033 if (nfp_app_has_tc(nn->app) && nn->port) 4034 netdev->hw_features |= NETIF_F_HW_TC; 4035 4036 /* Advertise but disable TSO by default. */ 4037 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 4038 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 4039 4040 /* Finalise the netdev setup */ 4041 netdev->netdev_ops = &nfp_net_netdev_ops; 4042 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 4043 4044 /* MTU range: 68 - hw-specific max */ 4045 netdev->min_mtu = ETH_MIN_MTU; 4046 netdev->max_mtu = nn->max_mtu; 4047 4048 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 4049 4050 netif_carrier_off(netdev); 4051 4052 nfp_net_set_ethtool_ops(netdev); 4053 } 4054 4055 static int nfp_net_read_caps(struct nfp_net *nn) 4056 { 4057 /* Get some of the read-only fields from the BAR */ 4058 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 4059 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 4060 4061 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4062 * we allow use of non-chained metadata if RSS(v1) is the only 4063 * advertised capability requiring metadata. 4064 */ 4065 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4066 !nn->dp.netdev || 4067 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4068 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4069 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4070 * it has the same meaning as RSSv2. 4071 */ 4072 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4073 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4074 4075 /* Determine RX packet/metadata boundary offset */ 4076 if (nn->fw_ver.major >= 2) { 4077 u32 reg; 4078 4079 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4080 if (reg > NFP_NET_MAX_PREPEND) { 4081 nn_err(nn, "Invalid rx offset: %d\n", reg); 4082 return -EINVAL; 4083 } 4084 nn->dp.rx_offset = reg; 4085 } else { 4086 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4087 } 4088 4089 /* For control vNICs mask out the capabilities app doesn't want. */ 4090 if (!nn->dp.netdev) 4091 nn->cap &= nn->app->type->ctrl_cap_mask; 4092 4093 return 0; 4094 } 4095 4096 /** 4097 * nfp_net_init() - Initialise/finalise the nfp_net structure 4098 * @nn: NFP Net device structure 4099 * 4100 * Return: 0 on success or negative errno on error. 4101 */ 4102 int nfp_net_init(struct nfp_net *nn) 4103 { 4104 int err; 4105 4106 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4107 4108 err = nfp_net_read_caps(nn); 4109 if (err) 4110 return err; 4111 4112 /* Set default MTU and Freelist buffer size */ 4113 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4114 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 4115 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4116 nn->dp.mtu = nn->max_mtu; 4117 } else { 4118 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4119 } 4120 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4121 4122 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4123 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4124 4125 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4126 nfp_net_rss_init(nn); 4127 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4128 NFP_NET_CFG_CTRL_RSS; 4129 } 4130 4131 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4132 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4133 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4134 4135 /* Allow IRQ moderation, if supported */ 4136 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4137 nfp_net_irqmod_init(nn); 4138 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4139 } 4140 4141 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4142 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4143 4144 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4145 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4146 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4147 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4148 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4149 NFP_NET_CFG_UPDATE_GEN); 4150 if (err) 4151 return err; 4152 4153 if (nn->dp.netdev) { 4154 nfp_net_netdev_init(nn); 4155 4156 err = nfp_ccm_mbox_init(nn); 4157 if (err) 4158 return err; 4159 4160 err = nfp_net_tls_init(nn); 4161 if (err) 4162 goto err_clean_mbox; 4163 } 4164 4165 nfp_net_vecs_init(nn); 4166 4167 if (!nn->dp.netdev) 4168 return 0; 4169 return register_netdev(nn->dp.netdev); 4170 4171 err_clean_mbox: 4172 nfp_ccm_mbox_clean(nn); 4173 return err; 4174 } 4175 4176 /** 4177 * nfp_net_clean() - Undo what nfp_net_init() did. 4178 * @nn: NFP Net device structure 4179 */ 4180 void nfp_net_clean(struct nfp_net *nn) 4181 { 4182 if (!nn->dp.netdev) 4183 return; 4184 4185 unregister_netdev(nn->dp.netdev); 4186 nfp_ccm_mbox_clean(nn); 4187 nfp_net_reconfig_wait_posted(nn); 4188 } 4189