1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 51 /** 52 * nfp_net_get_fw_version() - Read and parse the FW version 53 * @fw_ver: Output fw_version structure to read to 54 * @ctrl_bar: Mapped address of the control BAR 55 */ 56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 57 void __iomem *ctrl_bar) 58 { 59 u32 reg; 60 61 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 62 put_unaligned_le32(reg, fw_ver); 63 } 64 65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 66 { 67 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 68 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 69 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 70 } 71 72 static void 73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 74 { 75 dma_sync_single_for_device(dp->dev, dma_addr, 76 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 77 dp->rx_dma_dir); 78 } 79 80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 81 { 82 dma_unmap_single_attrs(dp->dev, dma_addr, 83 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 84 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 85 } 86 87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 88 unsigned int len) 89 { 90 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 91 len, dp->rx_dma_dir); 92 } 93 94 /* Firmware reconfig 95 * 96 * Firmware reconfig may take a while so we have two versions of it - 97 * synchronous and asynchronous (posted). All synchronous callers are holding 98 * RTNL so we don't have to worry about serializing them. 99 */ 100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 101 { 102 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 103 /* ensure update is written before pinging HW */ 104 nn_pci_flush(nn); 105 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 106 nn->reconfig_in_progress_update = update; 107 } 108 109 /* Pass 0 as update to run posted reconfigs. */ 110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 111 { 112 update |= nn->reconfig_posted; 113 nn->reconfig_posted = 0; 114 115 nfp_net_reconfig_start(nn, update); 116 117 nn->reconfig_timer_active = true; 118 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 119 } 120 121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 122 { 123 u32 reg; 124 125 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 126 if (reg == 0) 127 return true; 128 if (reg & NFP_NET_CFG_UPDATE_ERR) { 129 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 130 reg, nn->reconfig_in_progress_update, 131 nn_readl(nn, NFP_NET_CFG_CTRL)); 132 return true; 133 } else if (last_check) { 134 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 135 reg, nn->reconfig_in_progress_update, 136 nn_readl(nn, NFP_NET_CFG_CTRL)); 137 return true; 138 } 139 140 return false; 141 } 142 143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 144 { 145 bool timed_out = false; 146 int i; 147 148 /* Poll update field, waiting for NFP to ack the config. 149 * Do an opportunistic wait-busy loop, afterward sleep. 150 */ 151 for (i = 0; i < 50; i++) { 152 if (nfp_net_reconfig_check_done(nn, false)) 153 return false; 154 udelay(4); 155 } 156 157 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 158 usleep_range(250, 500); 159 timed_out = time_is_before_eq_jiffies(deadline); 160 } 161 162 return timed_out; 163 } 164 165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 166 { 167 if (__nfp_net_reconfig_wait(nn, deadline)) 168 return -EIO; 169 170 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 171 return -EIO; 172 173 return 0; 174 } 175 176 static void nfp_net_reconfig_timer(struct timer_list *t) 177 { 178 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 179 180 spin_lock_bh(&nn->reconfig_lock); 181 182 nn->reconfig_timer_active = false; 183 184 /* If sync caller is present it will take over from us */ 185 if (nn->reconfig_sync_present) 186 goto done; 187 188 /* Read reconfig status and report errors */ 189 nfp_net_reconfig_check_done(nn, true); 190 191 if (nn->reconfig_posted) 192 nfp_net_reconfig_start_async(nn, 0); 193 done: 194 spin_unlock_bh(&nn->reconfig_lock); 195 } 196 197 /** 198 * nfp_net_reconfig_post() - Post async reconfig request 199 * @nn: NFP Net device to reconfigure 200 * @update: The value for the update field in the BAR config 201 * 202 * Record FW reconfiguration request. Reconfiguration will be kicked off 203 * whenever reconfiguration machinery is idle. Multiple requests can be 204 * merged together! 205 */ 206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 207 { 208 spin_lock_bh(&nn->reconfig_lock); 209 210 /* Sync caller will kick off async reconf when it's done, just post */ 211 if (nn->reconfig_sync_present) { 212 nn->reconfig_posted |= update; 213 goto done; 214 } 215 216 /* Opportunistically check if the previous command is done */ 217 if (!nn->reconfig_timer_active || 218 nfp_net_reconfig_check_done(nn, false)) 219 nfp_net_reconfig_start_async(nn, update); 220 else 221 nn->reconfig_posted |= update; 222 done: 223 spin_unlock_bh(&nn->reconfig_lock); 224 } 225 226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 227 { 228 bool cancelled_timer = false; 229 u32 pre_posted_requests; 230 231 spin_lock_bh(&nn->reconfig_lock); 232 233 WARN_ON(nn->reconfig_sync_present); 234 nn->reconfig_sync_present = true; 235 236 if (nn->reconfig_timer_active) { 237 nn->reconfig_timer_active = false; 238 cancelled_timer = true; 239 } 240 pre_posted_requests = nn->reconfig_posted; 241 nn->reconfig_posted = 0; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 if (cancelled_timer) { 246 del_timer_sync(&nn->reconfig_timer); 247 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 248 } 249 250 /* Run the posted reconfigs which were issued before we started */ 251 if (pre_posted_requests) { 252 nfp_net_reconfig_start(nn, pre_posted_requests); 253 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 254 } 255 } 256 257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 258 { 259 nfp_net_reconfig_sync_enter(nn); 260 261 spin_lock_bh(&nn->reconfig_lock); 262 nn->reconfig_sync_present = false; 263 spin_unlock_bh(&nn->reconfig_lock); 264 } 265 266 /** 267 * __nfp_net_reconfig() - Reconfigure the firmware 268 * @nn: NFP Net device to reconfigure 269 * @update: The value for the update field in the BAR config 270 * 271 * Write the update word to the BAR and ping the reconfig queue. The 272 * poll until the firmware has acknowledged the update by zeroing the 273 * update word. 274 * 275 * Return: Negative errno on error, 0 on success 276 */ 277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 278 { 279 int ret; 280 281 nfp_net_reconfig_sync_enter(nn); 282 283 nfp_net_reconfig_start(nn, update); 284 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 285 286 spin_lock_bh(&nn->reconfig_lock); 287 288 if (nn->reconfig_posted) 289 nfp_net_reconfig_start_async(nn, 0); 290 291 nn->reconfig_sync_present = false; 292 293 spin_unlock_bh(&nn->reconfig_lock); 294 295 return ret; 296 } 297 298 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 299 { 300 int ret; 301 302 nn_ctrl_bar_lock(nn); 303 ret = __nfp_net_reconfig(nn, update); 304 nn_ctrl_bar_unlock(nn); 305 306 return ret; 307 } 308 309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 310 { 311 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 312 nn_err(nn, "mailbox too small for %u of data (%u)\n", 313 data_size, nn->tlv_caps.mbox_len); 314 return -EIO; 315 } 316 317 nn_ctrl_bar_lock(nn); 318 return 0; 319 } 320 321 /** 322 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 323 * @nn: NFP Net device to reconfigure 324 * @mbox_cmd: The value for the mailbox command 325 * 326 * Helper function for mailbox updates 327 * 328 * Return: Negative errno on error, 0 on success 329 */ 330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 331 { 332 u32 mbox = nn->tlv_caps.mbox_off; 333 int ret; 334 335 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 336 337 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 338 if (ret) { 339 nn_err(nn, "Mailbox update error\n"); 340 return ret; 341 } 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 u32 mbox = nn->tlv_caps.mbox_off; 349 350 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 351 352 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 353 } 354 355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 356 { 357 u32 mbox = nn->tlv_caps.mbox_off; 358 359 nfp_net_reconfig_wait_posted(nn); 360 361 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 362 } 363 364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 365 { 366 int ret; 367 368 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 369 nn_ctrl_bar_unlock(nn); 370 return ret; 371 } 372 373 /* Interrupt configuration and handling 374 */ 375 376 /** 377 * nfp_net_irq_unmask() - Unmask automasked interrupt 378 * @nn: NFP Network structure 379 * @entry_nr: MSI-X table entry 380 * 381 * Clear the ICR for the IRQ entry. 382 */ 383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 384 { 385 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 386 nn_pci_flush(nn); 387 } 388 389 /** 390 * nfp_net_irqs_alloc() - allocates MSI-X irqs 391 * @pdev: PCI device structure 392 * @irq_entries: Array to be initialized and used to hold the irq entries 393 * @min_irqs: Minimal acceptable number of interrupts 394 * @wanted_irqs: Target number of interrupts to allocate 395 * 396 * Return: Number of irqs obtained or 0 on error. 397 */ 398 unsigned int 399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 400 unsigned int min_irqs, unsigned int wanted_irqs) 401 { 402 unsigned int i; 403 int got_irqs; 404 405 for (i = 0; i < wanted_irqs; i++) 406 irq_entries[i].entry = i; 407 408 got_irqs = pci_enable_msix_range(pdev, irq_entries, 409 min_irqs, wanted_irqs); 410 if (got_irqs < 0) { 411 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 412 min_irqs, wanted_irqs, got_irqs); 413 return 0; 414 } 415 416 if (got_irqs < wanted_irqs) 417 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 418 wanted_irqs, got_irqs); 419 420 return got_irqs; 421 } 422 423 /** 424 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 425 * @nn: NFP Network structure 426 * @irq_entries: Table of allocated interrupts 427 * @n: Size of @irq_entries (number of entries to grab) 428 * 429 * After interrupts are allocated with nfp_net_irqs_alloc() this function 430 * should be called to assign them to a specific netdev (port). 431 */ 432 void 433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 434 unsigned int n) 435 { 436 struct nfp_net_dp *dp = &nn->dp; 437 438 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 439 dp->num_r_vecs = nn->max_r_vecs; 440 441 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 442 443 if (dp->num_rx_rings > dp->num_r_vecs || 444 dp->num_tx_rings > dp->num_r_vecs) 445 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 446 dp->num_rx_rings, dp->num_tx_rings, 447 dp->num_r_vecs); 448 449 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 450 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 451 dp->num_stack_tx_rings = dp->num_tx_rings; 452 } 453 454 /** 455 * nfp_net_irqs_disable() - Disable interrupts 456 * @pdev: PCI device structure 457 * 458 * Undoes what @nfp_net_irqs_alloc() does. 459 */ 460 void nfp_net_irqs_disable(struct pci_dev *pdev) 461 { 462 pci_disable_msix(pdev); 463 } 464 465 /** 466 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 467 * @irq: Interrupt 468 * @data: Opaque data structure 469 * 470 * Return: Indicate if the interrupt has been handled. 471 */ 472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 473 { 474 struct nfp_net_r_vector *r_vec = data; 475 476 napi_schedule_irqoff(&r_vec->napi); 477 478 /* The FW auto-masks any interrupt, either via the MASK bit in 479 * the MSI-X table or via the per entry ICR field. So there 480 * is no need to disable interrupts here. 481 */ 482 return IRQ_HANDLED; 483 } 484 485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 486 { 487 struct nfp_net_r_vector *r_vec = data; 488 489 tasklet_schedule(&r_vec->tasklet); 490 491 return IRQ_HANDLED; 492 } 493 494 /** 495 * nfp_net_read_link_status() - Reread link status from control BAR 496 * @nn: NFP Network structure 497 */ 498 static void nfp_net_read_link_status(struct nfp_net *nn) 499 { 500 unsigned long flags; 501 bool link_up; 502 u32 sts; 503 504 spin_lock_irqsave(&nn->link_status_lock, flags); 505 506 sts = nn_readl(nn, NFP_NET_CFG_STS); 507 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 508 509 if (nn->link_up == link_up) 510 goto out; 511 512 nn->link_up = link_up; 513 if (nn->port) 514 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 515 516 if (nn->link_up) { 517 netif_carrier_on(nn->dp.netdev); 518 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 519 } else { 520 netif_carrier_off(nn->dp.netdev); 521 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 522 } 523 out: 524 spin_unlock_irqrestore(&nn->link_status_lock, flags); 525 } 526 527 /** 528 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 529 * @irq: Interrupt 530 * @data: Opaque data structure 531 * 532 * Return: Indicate if the interrupt has been handled. 533 */ 534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 535 { 536 struct nfp_net *nn = data; 537 struct msix_entry *entry; 538 539 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 540 541 nfp_net_read_link_status(nn); 542 543 nfp_net_irq_unmask(nn, entry->entry); 544 545 return IRQ_HANDLED; 546 } 547 548 /** 549 * nfp_net_irq_exn() - Interrupt service routine for exceptions 550 * @irq: Interrupt 551 * @data: Opaque data structure 552 * 553 * Return: Indicate if the interrupt has been handled. 554 */ 555 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 556 { 557 struct nfp_net *nn = data; 558 559 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 560 /* XXX TO BE IMPLEMENTED */ 561 return IRQ_HANDLED; 562 } 563 564 /** 565 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 566 * @tx_ring: TX ring structure 567 * @r_vec: IRQ vector servicing this ring 568 * @idx: Ring index 569 * @is_xdp: Is this an XDP TX ring? 570 */ 571 static void 572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 573 struct nfp_net_r_vector *r_vec, unsigned int idx, 574 bool is_xdp) 575 { 576 struct nfp_net *nn = r_vec->nfp_net; 577 578 tx_ring->idx = idx; 579 tx_ring->r_vec = r_vec; 580 tx_ring->is_xdp = is_xdp; 581 u64_stats_init(&tx_ring->r_vec->tx_sync); 582 583 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 584 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 585 } 586 587 /** 588 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 589 * @rx_ring: RX ring structure 590 * @r_vec: IRQ vector servicing this ring 591 * @idx: Ring index 592 */ 593 static void 594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 595 struct nfp_net_r_vector *r_vec, unsigned int idx) 596 { 597 struct nfp_net *nn = r_vec->nfp_net; 598 599 rx_ring->idx = idx; 600 rx_ring->r_vec = r_vec; 601 u64_stats_init(&rx_ring->r_vec->rx_sync); 602 603 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 604 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 605 } 606 607 /** 608 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 609 * @nn: NFP Network structure 610 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 611 * @format: printf-style format to construct the interrupt name 612 * @name: Pointer to allocated space for interrupt name 613 * @name_sz: Size of space for interrupt name 614 * @vector_idx: Index of MSI-X vector used for this interrupt 615 * @handler: IRQ handler to register for this interrupt 616 */ 617 static int 618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 619 const char *format, char *name, size_t name_sz, 620 unsigned int vector_idx, irq_handler_t handler) 621 { 622 struct msix_entry *entry; 623 int err; 624 625 entry = &nn->irq_entries[vector_idx]; 626 627 snprintf(name, name_sz, format, nfp_net_name(nn)); 628 err = request_irq(entry->vector, handler, 0, name, nn); 629 if (err) { 630 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 631 entry->vector, err); 632 return err; 633 } 634 nn_writeb(nn, ctrl_offset, entry->entry); 635 nfp_net_irq_unmask(nn, entry->entry); 636 637 return 0; 638 } 639 640 /** 641 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 642 * @nn: NFP Network structure 643 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 644 * @vector_idx: Index of MSI-X vector used for this interrupt 645 */ 646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 647 unsigned int vector_idx) 648 { 649 nn_writeb(nn, ctrl_offset, 0xff); 650 nn_pci_flush(nn); 651 free_irq(nn->irq_entries[vector_idx].vector, nn); 652 } 653 654 /* Transmit 655 * 656 * One queue controller peripheral queue is used for transmit. The 657 * driver en-queues packets for transmit by advancing the write 658 * pointer. The device indicates that packets have transmitted by 659 * advancing the read pointer. The driver maintains a local copy of 660 * the read and write pointer in @struct nfp_net_tx_ring. The driver 661 * keeps @wr_p in sync with the queue controller write pointer and can 662 * determine how many packets have been transmitted by comparing its 663 * copy of the read pointer @rd_p with the read pointer maintained by 664 * the queue controller peripheral. 665 */ 666 667 /** 668 * nfp_net_tx_full() - Check if the TX ring is full 669 * @tx_ring: TX ring to check 670 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 671 * 672 * This function checks, based on the *host copy* of read/write 673 * pointer if a given TX ring is full. The real TX queue may have 674 * some newly made available slots. 675 * 676 * Return: True if the ring is full. 677 */ 678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 679 { 680 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 681 } 682 683 /* Wrappers for deciding when to stop and restart TX queues */ 684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 685 { 686 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 687 } 688 689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 690 { 691 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 692 } 693 694 /** 695 * nfp_net_tx_ring_stop() - stop tx ring 696 * @nd_q: netdev queue 697 * @tx_ring: driver tx queue structure 698 * 699 * Safely stop TX ring. Remember that while we are running .start_xmit() 700 * someone else may be cleaning the TX ring completions so we need to be 701 * extra careful here. 702 */ 703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 704 struct nfp_net_tx_ring *tx_ring) 705 { 706 netif_tx_stop_queue(nd_q); 707 708 /* We can race with the TX completion out of NAPI so recheck */ 709 smp_mb(); 710 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 711 netif_tx_start_queue(nd_q); 712 } 713 714 /** 715 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 716 * @r_vec: per-ring structure 717 * @txbuf: Pointer to driver soft TX descriptor 718 * @txd: Pointer to HW TX descriptor 719 * @skb: Pointer to SKB 720 * @md_bytes: Prepend length 721 * 722 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 723 * Return error on packet header greater than maximum supported LSO header size. 724 */ 725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 726 struct nfp_net_tx_buf *txbuf, 727 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 728 u32 md_bytes) 729 { 730 u32 l3_offset, l4_offset, hdrlen; 731 u16 mss; 732 733 if (!skb_is_gso(skb)) 734 return; 735 736 if (!skb->encapsulation) { 737 l3_offset = skb_network_offset(skb); 738 l4_offset = skb_transport_offset(skb); 739 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 740 } else { 741 l3_offset = skb_inner_network_offset(skb); 742 l4_offset = skb_inner_transport_offset(skb); 743 hdrlen = skb_inner_transport_header(skb) - skb->data + 744 inner_tcp_hdrlen(skb); 745 } 746 747 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 748 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 749 750 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 751 txd->l3_offset = l3_offset - md_bytes; 752 txd->l4_offset = l4_offset - md_bytes; 753 txd->lso_hdrlen = hdrlen - md_bytes; 754 txd->mss = cpu_to_le16(mss); 755 txd->flags |= PCIE_DESC_TX_LSO; 756 757 u64_stats_update_begin(&r_vec->tx_sync); 758 r_vec->tx_lso++; 759 u64_stats_update_end(&r_vec->tx_sync); 760 } 761 762 /** 763 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 764 * @dp: NFP Net data path struct 765 * @r_vec: per-ring structure 766 * @txbuf: Pointer to driver soft TX descriptor 767 * @txd: Pointer to TX descriptor 768 * @skb: Pointer to SKB 769 * 770 * This function sets the TX checksum flags in the TX descriptor based 771 * on the configuration and the protocol of the packet to be transmitted. 772 */ 773 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 774 struct nfp_net_r_vector *r_vec, 775 struct nfp_net_tx_buf *txbuf, 776 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 777 { 778 struct ipv6hdr *ipv6h; 779 struct iphdr *iph; 780 u8 l4_hdr; 781 782 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 783 return; 784 785 if (skb->ip_summed != CHECKSUM_PARTIAL) 786 return; 787 788 txd->flags |= PCIE_DESC_TX_CSUM; 789 if (skb->encapsulation) 790 txd->flags |= PCIE_DESC_TX_ENCAP; 791 792 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 793 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 794 795 if (iph->version == 4) { 796 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 797 l4_hdr = iph->protocol; 798 } else if (ipv6h->version == 6) { 799 l4_hdr = ipv6h->nexthdr; 800 } else { 801 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 802 return; 803 } 804 805 switch (l4_hdr) { 806 case IPPROTO_TCP: 807 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 808 break; 809 case IPPROTO_UDP: 810 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 811 break; 812 default: 813 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 814 return; 815 } 816 817 u64_stats_update_begin(&r_vec->tx_sync); 818 if (skb->encapsulation) 819 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 820 else 821 r_vec->hw_csum_tx += txbuf->pkt_cnt; 822 u64_stats_update_end(&r_vec->tx_sync); 823 } 824 825 static struct sk_buff * 826 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 827 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 828 { 829 #ifdef CONFIG_TLS_DEVICE 830 struct nfp_net_tls_offload_ctx *ntls; 831 struct sk_buff *nskb; 832 bool resync_pending; 833 u32 datalen, seq; 834 835 if (likely(!dp->ktls_tx)) 836 return skb; 837 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 838 return skb; 839 840 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 841 seq = ntohl(tcp_hdr(skb)->seq); 842 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 843 resync_pending = tls_offload_tx_resync_pending(skb->sk); 844 if (unlikely(resync_pending || ntls->next_seq != seq)) { 845 /* Pure ACK out of order already */ 846 if (!datalen) 847 return skb; 848 849 u64_stats_update_begin(&r_vec->tx_sync); 850 r_vec->tls_tx_fallback++; 851 u64_stats_update_end(&r_vec->tx_sync); 852 853 nskb = tls_encrypt_skb(skb); 854 if (!nskb) { 855 u64_stats_update_begin(&r_vec->tx_sync); 856 r_vec->tls_tx_no_fallback++; 857 u64_stats_update_end(&r_vec->tx_sync); 858 return NULL; 859 } 860 /* encryption wasn't necessary */ 861 if (nskb == skb) 862 return skb; 863 /* we don't re-check ring space */ 864 if (unlikely(skb_is_nonlinear(nskb))) { 865 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 866 u64_stats_update_begin(&r_vec->tx_sync); 867 r_vec->tx_errors++; 868 u64_stats_update_end(&r_vec->tx_sync); 869 dev_kfree_skb_any(nskb); 870 return NULL; 871 } 872 873 /* jump forward, a TX may have gotten lost, need to sync TX */ 874 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 875 tls_offload_tx_resync_request(nskb->sk, seq, 876 ntls->next_seq); 877 878 *nr_frags = 0; 879 return nskb; 880 } 881 882 if (datalen) { 883 u64_stats_update_begin(&r_vec->tx_sync); 884 if (!skb_is_gso(skb)) 885 r_vec->hw_tls_tx++; 886 else 887 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 888 u64_stats_update_end(&r_vec->tx_sync); 889 } 890 891 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 892 ntls->next_seq += datalen; 893 #endif 894 return skb; 895 } 896 897 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 898 { 899 #ifdef CONFIG_TLS_DEVICE 900 struct nfp_net_tls_offload_ctx *ntls; 901 u32 datalen, seq; 902 903 if (!tls_handle) 904 return; 905 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))) 906 return; 907 908 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 909 seq = ntohl(tcp_hdr(skb)->seq); 910 911 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 912 if (ntls->next_seq == seq + datalen) 913 ntls->next_seq = seq; 914 else 915 WARN_ON_ONCE(1); 916 #endif 917 } 918 919 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 920 { 921 wmb(); 922 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 923 tx_ring->wr_ptr_add = 0; 924 } 925 926 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 927 { 928 struct metadata_dst *md_dst = skb_metadata_dst(skb); 929 unsigned char *data; 930 u32 meta_id = 0; 931 int md_bytes; 932 933 if (likely(!md_dst && !tls_handle)) 934 return 0; 935 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 936 if (!tls_handle) 937 return 0; 938 md_dst = NULL; 939 } 940 941 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 942 943 if (unlikely(skb_cow_head(skb, md_bytes))) 944 return -ENOMEM; 945 946 meta_id = 0; 947 data = skb_push(skb, md_bytes) + md_bytes; 948 if (md_dst) { 949 data -= 4; 950 put_unaligned_be32(md_dst->u.port_info.port_id, data); 951 meta_id = NFP_NET_META_PORTID; 952 } 953 if (tls_handle) { 954 /* conn handle is opaque, we just use u64 to be able to quickly 955 * compare it to zero 956 */ 957 data -= 8; 958 memcpy(data, &tls_handle, sizeof(tls_handle)); 959 meta_id <<= NFP_NET_META_FIELD_SIZE; 960 meta_id |= NFP_NET_META_CONN_HANDLE; 961 } 962 963 data -= 4; 964 put_unaligned_be32(meta_id, data); 965 966 return md_bytes; 967 } 968 969 /** 970 * nfp_net_tx() - Main transmit entry point 971 * @skb: SKB to transmit 972 * @netdev: netdev structure 973 * 974 * Return: NETDEV_TX_OK on success. 975 */ 976 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 977 { 978 struct nfp_net *nn = netdev_priv(netdev); 979 const skb_frag_t *frag; 980 int f, nr_frags, wr_idx, md_bytes; 981 struct nfp_net_tx_ring *tx_ring; 982 struct nfp_net_r_vector *r_vec; 983 struct nfp_net_tx_buf *txbuf; 984 struct nfp_net_tx_desc *txd; 985 struct netdev_queue *nd_q; 986 struct nfp_net_dp *dp; 987 dma_addr_t dma_addr; 988 unsigned int fsize; 989 u64 tls_handle = 0; 990 u16 qidx; 991 992 dp = &nn->dp; 993 qidx = skb_get_queue_mapping(skb); 994 tx_ring = &dp->tx_rings[qidx]; 995 r_vec = tx_ring->r_vec; 996 997 nr_frags = skb_shinfo(skb)->nr_frags; 998 999 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 1000 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 1001 qidx, tx_ring->wr_p, tx_ring->rd_p); 1002 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 1003 netif_tx_stop_queue(nd_q); 1004 nfp_net_tx_xmit_more_flush(tx_ring); 1005 u64_stats_update_begin(&r_vec->tx_sync); 1006 r_vec->tx_busy++; 1007 u64_stats_update_end(&r_vec->tx_sync); 1008 return NETDEV_TX_BUSY; 1009 } 1010 1011 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 1012 if (unlikely(!skb)) { 1013 nfp_net_tx_xmit_more_flush(tx_ring); 1014 return NETDEV_TX_OK; 1015 } 1016 1017 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 1018 if (unlikely(md_bytes < 0)) 1019 goto err_flush; 1020 1021 /* Start with the head skbuf */ 1022 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1023 DMA_TO_DEVICE); 1024 if (dma_mapping_error(dp->dev, dma_addr)) 1025 goto err_dma_err; 1026 1027 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1028 1029 /* Stash the soft descriptor of the head then initialize it */ 1030 txbuf = &tx_ring->txbufs[wr_idx]; 1031 txbuf->skb = skb; 1032 txbuf->dma_addr = dma_addr; 1033 txbuf->fidx = -1; 1034 txbuf->pkt_cnt = 1; 1035 txbuf->real_len = skb->len; 1036 1037 /* Build TX descriptor */ 1038 txd = &tx_ring->txds[wr_idx]; 1039 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1040 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1041 nfp_desc_set_dma_addr(txd, dma_addr); 1042 txd->data_len = cpu_to_le16(skb->len); 1043 1044 txd->flags = 0; 1045 txd->mss = 0; 1046 txd->lso_hdrlen = 0; 1047 1048 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1049 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1050 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1051 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1052 txd->flags |= PCIE_DESC_TX_VLAN; 1053 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1054 } 1055 1056 /* Gather DMA */ 1057 if (nr_frags > 0) { 1058 __le64 second_half; 1059 1060 /* all descs must match except for in addr, length and eop */ 1061 second_half = txd->vals8[1]; 1062 1063 for (f = 0; f < nr_frags; f++) { 1064 frag = &skb_shinfo(skb)->frags[f]; 1065 fsize = skb_frag_size(frag); 1066 1067 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1068 fsize, DMA_TO_DEVICE); 1069 if (dma_mapping_error(dp->dev, dma_addr)) 1070 goto err_unmap; 1071 1072 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1073 tx_ring->txbufs[wr_idx].skb = skb; 1074 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1075 tx_ring->txbufs[wr_idx].fidx = f; 1076 1077 txd = &tx_ring->txds[wr_idx]; 1078 txd->dma_len = cpu_to_le16(fsize); 1079 nfp_desc_set_dma_addr(txd, dma_addr); 1080 txd->offset_eop = md_bytes | 1081 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1082 txd->vals8[1] = second_half; 1083 } 1084 1085 u64_stats_update_begin(&r_vec->tx_sync); 1086 r_vec->tx_gather++; 1087 u64_stats_update_end(&r_vec->tx_sync); 1088 } 1089 1090 skb_tx_timestamp(skb); 1091 1092 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1093 1094 tx_ring->wr_p += nr_frags + 1; 1095 if (nfp_net_tx_ring_should_stop(tx_ring)) 1096 nfp_net_tx_ring_stop(nd_q, tx_ring); 1097 1098 tx_ring->wr_ptr_add += nr_frags + 1; 1099 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1100 nfp_net_tx_xmit_more_flush(tx_ring); 1101 1102 return NETDEV_TX_OK; 1103 1104 err_unmap: 1105 while (--f >= 0) { 1106 frag = &skb_shinfo(skb)->frags[f]; 1107 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1108 skb_frag_size(frag), DMA_TO_DEVICE); 1109 tx_ring->txbufs[wr_idx].skb = NULL; 1110 tx_ring->txbufs[wr_idx].dma_addr = 0; 1111 tx_ring->txbufs[wr_idx].fidx = -2; 1112 wr_idx = wr_idx - 1; 1113 if (wr_idx < 0) 1114 wr_idx += tx_ring->cnt; 1115 } 1116 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1117 skb_headlen(skb), DMA_TO_DEVICE); 1118 tx_ring->txbufs[wr_idx].skb = NULL; 1119 tx_ring->txbufs[wr_idx].dma_addr = 0; 1120 tx_ring->txbufs[wr_idx].fidx = -2; 1121 err_dma_err: 1122 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1123 err_flush: 1124 nfp_net_tx_xmit_more_flush(tx_ring); 1125 u64_stats_update_begin(&r_vec->tx_sync); 1126 r_vec->tx_errors++; 1127 u64_stats_update_end(&r_vec->tx_sync); 1128 nfp_net_tls_tx_undo(skb, tls_handle); 1129 dev_kfree_skb_any(skb); 1130 return NETDEV_TX_OK; 1131 } 1132 1133 /** 1134 * nfp_net_tx_complete() - Handled completed TX packets 1135 * @tx_ring: TX ring structure 1136 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1137 */ 1138 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1139 { 1140 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1141 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1142 struct netdev_queue *nd_q; 1143 u32 done_pkts = 0, done_bytes = 0; 1144 u32 qcp_rd_p; 1145 int todo; 1146 1147 if (tx_ring->wr_p == tx_ring->rd_p) 1148 return; 1149 1150 /* Work out how many descriptors have been transmitted */ 1151 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1152 1153 if (qcp_rd_p == tx_ring->qcp_rd_p) 1154 return; 1155 1156 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1157 1158 while (todo--) { 1159 const skb_frag_t *frag; 1160 struct nfp_net_tx_buf *tx_buf; 1161 struct sk_buff *skb; 1162 int fidx, nr_frags; 1163 int idx; 1164 1165 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1166 tx_buf = &tx_ring->txbufs[idx]; 1167 1168 skb = tx_buf->skb; 1169 if (!skb) 1170 continue; 1171 1172 nr_frags = skb_shinfo(skb)->nr_frags; 1173 fidx = tx_buf->fidx; 1174 1175 if (fidx == -1) { 1176 /* unmap head */ 1177 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1178 skb_headlen(skb), DMA_TO_DEVICE); 1179 1180 done_pkts += tx_buf->pkt_cnt; 1181 done_bytes += tx_buf->real_len; 1182 } else { 1183 /* unmap fragment */ 1184 frag = &skb_shinfo(skb)->frags[fidx]; 1185 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1186 skb_frag_size(frag), DMA_TO_DEVICE); 1187 } 1188 1189 /* check for last gather fragment */ 1190 if (fidx == nr_frags - 1) 1191 napi_consume_skb(skb, budget); 1192 1193 tx_buf->dma_addr = 0; 1194 tx_buf->skb = NULL; 1195 tx_buf->fidx = -2; 1196 } 1197 1198 tx_ring->qcp_rd_p = qcp_rd_p; 1199 1200 u64_stats_update_begin(&r_vec->tx_sync); 1201 r_vec->tx_bytes += done_bytes; 1202 r_vec->tx_pkts += done_pkts; 1203 u64_stats_update_end(&r_vec->tx_sync); 1204 1205 if (!dp->netdev) 1206 return; 1207 1208 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1209 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1210 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1211 /* Make sure TX thread will see updated tx_ring->rd_p */ 1212 smp_mb(); 1213 1214 if (unlikely(netif_tx_queue_stopped(nd_q))) 1215 netif_tx_wake_queue(nd_q); 1216 } 1217 1218 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1219 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1220 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1221 } 1222 1223 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1224 { 1225 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1226 u32 done_pkts = 0, done_bytes = 0; 1227 bool done_all; 1228 int idx, todo; 1229 u32 qcp_rd_p; 1230 1231 /* Work out how many descriptors have been transmitted */ 1232 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1233 1234 if (qcp_rd_p == tx_ring->qcp_rd_p) 1235 return true; 1236 1237 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1238 1239 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1240 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1241 1242 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1243 1244 done_pkts = todo; 1245 while (todo--) { 1246 idx = D_IDX(tx_ring, tx_ring->rd_p); 1247 tx_ring->rd_p++; 1248 1249 done_bytes += tx_ring->txbufs[idx].real_len; 1250 } 1251 1252 u64_stats_update_begin(&r_vec->tx_sync); 1253 r_vec->tx_bytes += done_bytes; 1254 r_vec->tx_pkts += done_pkts; 1255 u64_stats_update_end(&r_vec->tx_sync); 1256 1257 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1258 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1259 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1260 1261 return done_all; 1262 } 1263 1264 /** 1265 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1266 * @dp: NFP Net data path struct 1267 * @tx_ring: TX ring structure 1268 * 1269 * Assumes that the device is stopped, must be idempotent. 1270 */ 1271 static void 1272 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1273 { 1274 const skb_frag_t *frag; 1275 struct netdev_queue *nd_q; 1276 1277 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1278 struct nfp_net_tx_buf *tx_buf; 1279 struct sk_buff *skb; 1280 int idx, nr_frags; 1281 1282 idx = D_IDX(tx_ring, tx_ring->rd_p); 1283 tx_buf = &tx_ring->txbufs[idx]; 1284 1285 skb = tx_ring->txbufs[idx].skb; 1286 nr_frags = skb_shinfo(skb)->nr_frags; 1287 1288 if (tx_buf->fidx == -1) { 1289 /* unmap head */ 1290 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1291 skb_headlen(skb), DMA_TO_DEVICE); 1292 } else { 1293 /* unmap fragment */ 1294 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1295 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1296 skb_frag_size(frag), DMA_TO_DEVICE); 1297 } 1298 1299 /* check for last gather fragment */ 1300 if (tx_buf->fidx == nr_frags - 1) 1301 dev_kfree_skb_any(skb); 1302 1303 tx_buf->dma_addr = 0; 1304 tx_buf->skb = NULL; 1305 tx_buf->fidx = -2; 1306 1307 tx_ring->qcp_rd_p++; 1308 tx_ring->rd_p++; 1309 } 1310 1311 memset(tx_ring->txds, 0, tx_ring->size); 1312 tx_ring->wr_p = 0; 1313 tx_ring->rd_p = 0; 1314 tx_ring->qcp_rd_p = 0; 1315 tx_ring->wr_ptr_add = 0; 1316 1317 if (tx_ring->is_xdp || !dp->netdev) 1318 return; 1319 1320 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1321 netdev_tx_reset_queue(nd_q); 1322 } 1323 1324 static void nfp_net_tx_timeout(struct net_device *netdev) 1325 { 1326 struct nfp_net *nn = netdev_priv(netdev); 1327 int i; 1328 1329 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1330 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1331 continue; 1332 nn_warn(nn, "TX timeout on ring: %d\n", i); 1333 } 1334 nn_warn(nn, "TX watchdog timeout\n"); 1335 } 1336 1337 /* Receive processing 1338 */ 1339 static unsigned int 1340 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1341 { 1342 unsigned int fl_bufsz; 1343 1344 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1345 fl_bufsz += dp->rx_dma_off; 1346 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1347 fl_bufsz += NFP_NET_MAX_PREPEND; 1348 else 1349 fl_bufsz += dp->rx_offset; 1350 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1351 1352 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1353 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1354 1355 return fl_bufsz; 1356 } 1357 1358 static void 1359 nfp_net_free_frag(void *frag, bool xdp) 1360 { 1361 if (!xdp) 1362 skb_free_frag(frag); 1363 else 1364 __free_page(virt_to_page(frag)); 1365 } 1366 1367 /** 1368 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1369 * @dp: NFP Net data path struct 1370 * @dma_addr: Pointer to storage for DMA address (output param) 1371 * 1372 * This function will allcate a new page frag, map it for DMA. 1373 * 1374 * Return: allocated page frag or NULL on failure. 1375 */ 1376 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1377 { 1378 void *frag; 1379 1380 if (!dp->xdp_prog) { 1381 frag = netdev_alloc_frag(dp->fl_bufsz); 1382 } else { 1383 struct page *page; 1384 1385 page = alloc_page(GFP_KERNEL); 1386 frag = page ? page_address(page) : NULL; 1387 } 1388 if (!frag) { 1389 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1390 return NULL; 1391 } 1392 1393 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1394 if (dma_mapping_error(dp->dev, *dma_addr)) { 1395 nfp_net_free_frag(frag, dp->xdp_prog); 1396 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1397 return NULL; 1398 } 1399 1400 return frag; 1401 } 1402 1403 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1404 { 1405 void *frag; 1406 1407 if (!dp->xdp_prog) { 1408 frag = napi_alloc_frag(dp->fl_bufsz); 1409 if (unlikely(!frag)) 1410 return NULL; 1411 } else { 1412 struct page *page; 1413 1414 page = dev_alloc_page(); 1415 if (unlikely(!page)) 1416 return NULL; 1417 frag = page_address(page); 1418 } 1419 1420 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1421 if (dma_mapping_error(dp->dev, *dma_addr)) { 1422 nfp_net_free_frag(frag, dp->xdp_prog); 1423 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1424 return NULL; 1425 } 1426 1427 return frag; 1428 } 1429 1430 /** 1431 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1432 * @dp: NFP Net data path struct 1433 * @rx_ring: RX ring structure 1434 * @frag: page fragment buffer 1435 * @dma_addr: DMA address of skb mapping 1436 */ 1437 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1438 struct nfp_net_rx_ring *rx_ring, 1439 void *frag, dma_addr_t dma_addr) 1440 { 1441 unsigned int wr_idx; 1442 1443 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1444 1445 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1446 1447 /* Stash SKB and DMA address away */ 1448 rx_ring->rxbufs[wr_idx].frag = frag; 1449 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1450 1451 /* Fill freelist descriptor */ 1452 rx_ring->rxds[wr_idx].fld.reserved = 0; 1453 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1454 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1455 dma_addr + dp->rx_dma_off); 1456 1457 rx_ring->wr_p++; 1458 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1459 /* Update write pointer of the freelist queue. Make 1460 * sure all writes are flushed before telling the hardware. 1461 */ 1462 wmb(); 1463 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1464 } 1465 } 1466 1467 /** 1468 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1469 * @rx_ring: RX ring structure 1470 * 1471 * Assumes that the device is stopped, must be idempotent. 1472 */ 1473 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1474 { 1475 unsigned int wr_idx, last_idx; 1476 1477 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1478 * kept at cnt - 1 FL bufs. 1479 */ 1480 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1481 return; 1482 1483 /* Move the empty entry to the end of the list */ 1484 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1485 last_idx = rx_ring->cnt - 1; 1486 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1487 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1488 rx_ring->rxbufs[last_idx].dma_addr = 0; 1489 rx_ring->rxbufs[last_idx].frag = NULL; 1490 1491 memset(rx_ring->rxds, 0, rx_ring->size); 1492 rx_ring->wr_p = 0; 1493 rx_ring->rd_p = 0; 1494 } 1495 1496 /** 1497 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1498 * @dp: NFP Net data path struct 1499 * @rx_ring: RX ring to remove buffers from 1500 * 1501 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1502 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1503 * to restore required ring geometry. 1504 */ 1505 static void 1506 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1507 struct nfp_net_rx_ring *rx_ring) 1508 { 1509 unsigned int i; 1510 1511 for (i = 0; i < rx_ring->cnt - 1; i++) { 1512 /* NULL skb can only happen when initial filling of the ring 1513 * fails to allocate enough buffers and calls here to free 1514 * already allocated ones. 1515 */ 1516 if (!rx_ring->rxbufs[i].frag) 1517 continue; 1518 1519 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1520 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1521 rx_ring->rxbufs[i].dma_addr = 0; 1522 rx_ring->rxbufs[i].frag = NULL; 1523 } 1524 } 1525 1526 /** 1527 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1528 * @dp: NFP Net data path struct 1529 * @rx_ring: RX ring to remove buffers from 1530 */ 1531 static int 1532 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1533 struct nfp_net_rx_ring *rx_ring) 1534 { 1535 struct nfp_net_rx_buf *rxbufs; 1536 unsigned int i; 1537 1538 rxbufs = rx_ring->rxbufs; 1539 1540 for (i = 0; i < rx_ring->cnt - 1; i++) { 1541 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1542 if (!rxbufs[i].frag) { 1543 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1544 return -ENOMEM; 1545 } 1546 } 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1553 * @dp: NFP Net data path struct 1554 * @rx_ring: RX ring to fill 1555 */ 1556 static void 1557 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1558 struct nfp_net_rx_ring *rx_ring) 1559 { 1560 unsigned int i; 1561 1562 for (i = 0; i < rx_ring->cnt - 1; i++) 1563 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1564 rx_ring->rxbufs[i].dma_addr); 1565 } 1566 1567 /** 1568 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1569 * @flags: RX descriptor flags field in CPU byte order 1570 */ 1571 static int nfp_net_rx_csum_has_errors(u16 flags) 1572 { 1573 u16 csum_all_checked, csum_all_ok; 1574 1575 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1576 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1577 1578 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1579 } 1580 1581 /** 1582 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1583 * @dp: NFP Net data path struct 1584 * @r_vec: per-ring structure 1585 * @rxd: Pointer to RX descriptor 1586 * @meta: Parsed metadata prepend 1587 * @skb: Pointer to SKB 1588 */ 1589 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1590 struct nfp_net_r_vector *r_vec, 1591 struct nfp_net_rx_desc *rxd, 1592 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1593 { 1594 skb_checksum_none_assert(skb); 1595 1596 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1597 return; 1598 1599 if (meta->csum_type) { 1600 skb->ip_summed = meta->csum_type; 1601 skb->csum = meta->csum; 1602 u64_stats_update_begin(&r_vec->rx_sync); 1603 r_vec->hw_csum_rx_complete++; 1604 u64_stats_update_end(&r_vec->rx_sync); 1605 return; 1606 } 1607 1608 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1609 u64_stats_update_begin(&r_vec->rx_sync); 1610 r_vec->hw_csum_rx_error++; 1611 u64_stats_update_end(&r_vec->rx_sync); 1612 return; 1613 } 1614 1615 /* Assume that the firmware will never report inner CSUM_OK unless outer 1616 * L4 headers were successfully parsed. FW will always report zero UDP 1617 * checksum as CSUM_OK. 1618 */ 1619 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1620 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1621 __skb_incr_checksum_unnecessary(skb); 1622 u64_stats_update_begin(&r_vec->rx_sync); 1623 r_vec->hw_csum_rx_ok++; 1624 u64_stats_update_end(&r_vec->rx_sync); 1625 } 1626 1627 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1628 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1629 __skb_incr_checksum_unnecessary(skb); 1630 u64_stats_update_begin(&r_vec->rx_sync); 1631 r_vec->hw_csum_rx_inner_ok++; 1632 u64_stats_update_end(&r_vec->rx_sync); 1633 } 1634 } 1635 1636 static void 1637 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1638 unsigned int type, __be32 *hash) 1639 { 1640 if (!(netdev->features & NETIF_F_RXHASH)) 1641 return; 1642 1643 switch (type) { 1644 case NFP_NET_RSS_IPV4: 1645 case NFP_NET_RSS_IPV6: 1646 case NFP_NET_RSS_IPV6_EX: 1647 meta->hash_type = PKT_HASH_TYPE_L3; 1648 break; 1649 default: 1650 meta->hash_type = PKT_HASH_TYPE_L4; 1651 break; 1652 } 1653 1654 meta->hash = get_unaligned_be32(hash); 1655 } 1656 1657 static void 1658 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1659 void *data, struct nfp_net_rx_desc *rxd) 1660 { 1661 struct nfp_net_rx_hash *rx_hash = data; 1662 1663 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1664 return; 1665 1666 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1667 &rx_hash->hash); 1668 } 1669 1670 static void * 1671 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1672 void *data, int meta_len) 1673 { 1674 u32 meta_info; 1675 1676 meta_info = get_unaligned_be32(data); 1677 data += 4; 1678 1679 while (meta_info) { 1680 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1681 case NFP_NET_META_HASH: 1682 meta_info >>= NFP_NET_META_FIELD_SIZE; 1683 nfp_net_set_hash(netdev, meta, 1684 meta_info & NFP_NET_META_FIELD_MASK, 1685 (__be32 *)data); 1686 data += 4; 1687 break; 1688 case NFP_NET_META_MARK: 1689 meta->mark = get_unaligned_be32(data); 1690 data += 4; 1691 break; 1692 case NFP_NET_META_PORTID: 1693 meta->portid = get_unaligned_be32(data); 1694 data += 4; 1695 break; 1696 case NFP_NET_META_CSUM: 1697 meta->csum_type = CHECKSUM_COMPLETE; 1698 meta->csum = 1699 (__force __wsum)__get_unaligned_cpu32(data); 1700 data += 4; 1701 break; 1702 default: 1703 return NULL; 1704 } 1705 1706 meta_info >>= NFP_NET_META_FIELD_SIZE; 1707 } 1708 1709 return data; 1710 } 1711 1712 static void 1713 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1714 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1715 struct sk_buff *skb) 1716 { 1717 u64_stats_update_begin(&r_vec->rx_sync); 1718 r_vec->rx_drops++; 1719 /* If we have both skb and rxbuf the replacement buffer allocation 1720 * must have failed, count this as an alloc failure. 1721 */ 1722 if (skb && rxbuf) 1723 r_vec->rx_replace_buf_alloc_fail++; 1724 u64_stats_update_end(&r_vec->rx_sync); 1725 1726 /* skb is build based on the frag, free_skb() would free the frag 1727 * so to be able to reuse it we need an extra ref. 1728 */ 1729 if (skb && rxbuf && skb->head == rxbuf->frag) 1730 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1731 if (rxbuf) 1732 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1733 if (skb) 1734 dev_kfree_skb_any(skb); 1735 } 1736 1737 static bool 1738 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1739 struct nfp_net_tx_ring *tx_ring, 1740 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1741 unsigned int pkt_len, bool *completed) 1742 { 1743 struct nfp_net_tx_buf *txbuf; 1744 struct nfp_net_tx_desc *txd; 1745 int wr_idx; 1746 1747 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1748 if (!*completed) { 1749 nfp_net_xdp_complete(tx_ring); 1750 *completed = true; 1751 } 1752 1753 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1754 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1755 NULL); 1756 return false; 1757 } 1758 } 1759 1760 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1761 1762 /* Stash the soft descriptor of the head then initialize it */ 1763 txbuf = &tx_ring->txbufs[wr_idx]; 1764 1765 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1766 1767 txbuf->frag = rxbuf->frag; 1768 txbuf->dma_addr = rxbuf->dma_addr; 1769 txbuf->fidx = -1; 1770 txbuf->pkt_cnt = 1; 1771 txbuf->real_len = pkt_len; 1772 1773 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1774 pkt_len, DMA_BIDIRECTIONAL); 1775 1776 /* Build TX descriptor */ 1777 txd = &tx_ring->txds[wr_idx]; 1778 txd->offset_eop = PCIE_DESC_TX_EOP; 1779 txd->dma_len = cpu_to_le16(pkt_len); 1780 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1781 txd->data_len = cpu_to_le16(pkt_len); 1782 1783 txd->flags = 0; 1784 txd->mss = 0; 1785 txd->lso_hdrlen = 0; 1786 1787 tx_ring->wr_p++; 1788 tx_ring->wr_ptr_add++; 1789 return true; 1790 } 1791 1792 /** 1793 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1794 * @rx_ring: RX ring to receive from 1795 * @budget: NAPI budget 1796 * 1797 * Note, this function is separated out from the napi poll function to 1798 * more cleanly separate packet receive code from other bookkeeping 1799 * functions performed in the napi poll function. 1800 * 1801 * Return: Number of packets received. 1802 */ 1803 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1804 { 1805 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1806 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1807 struct nfp_net_tx_ring *tx_ring; 1808 struct bpf_prog *xdp_prog; 1809 bool xdp_tx_cmpl = false; 1810 unsigned int true_bufsz; 1811 struct sk_buff *skb; 1812 int pkts_polled = 0; 1813 struct xdp_buff xdp; 1814 int idx; 1815 1816 rcu_read_lock(); 1817 xdp_prog = READ_ONCE(dp->xdp_prog); 1818 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1819 xdp.rxq = &rx_ring->xdp_rxq; 1820 tx_ring = r_vec->xdp_ring; 1821 1822 while (pkts_polled < budget) { 1823 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1824 struct nfp_net_rx_buf *rxbuf; 1825 struct nfp_net_rx_desc *rxd; 1826 struct nfp_meta_parsed meta; 1827 bool redir_egress = false; 1828 struct net_device *netdev; 1829 dma_addr_t new_dma_addr; 1830 u32 meta_len_xdp = 0; 1831 void *new_frag; 1832 1833 idx = D_IDX(rx_ring, rx_ring->rd_p); 1834 1835 rxd = &rx_ring->rxds[idx]; 1836 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1837 break; 1838 1839 /* Memory barrier to ensure that we won't do other reads 1840 * before the DD bit. 1841 */ 1842 dma_rmb(); 1843 1844 memset(&meta, 0, sizeof(meta)); 1845 1846 rx_ring->rd_p++; 1847 pkts_polled++; 1848 1849 rxbuf = &rx_ring->rxbufs[idx]; 1850 /* < meta_len > 1851 * <-- [rx_offset] --> 1852 * --------------------------------------------------------- 1853 * | [XX] | metadata | packet | XXXX | 1854 * --------------------------------------------------------- 1855 * <---------------- data_len ---------------> 1856 * 1857 * The rx_offset is fixed for all packets, the meta_len can vary 1858 * on a packet by packet basis. If rx_offset is set to zero 1859 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1860 * buffer and is immediately followed by the packet (no [XX]). 1861 */ 1862 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1863 data_len = le16_to_cpu(rxd->rxd.data_len); 1864 pkt_len = data_len - meta_len; 1865 1866 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1867 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1868 pkt_off += meta_len; 1869 else 1870 pkt_off += dp->rx_offset; 1871 meta_off = pkt_off - meta_len; 1872 1873 /* Stats update */ 1874 u64_stats_update_begin(&r_vec->rx_sync); 1875 r_vec->rx_pkts++; 1876 r_vec->rx_bytes += pkt_len; 1877 u64_stats_update_end(&r_vec->rx_sync); 1878 1879 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1880 (dp->rx_offset && meta_len > dp->rx_offset))) { 1881 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1882 meta_len); 1883 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1884 continue; 1885 } 1886 1887 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1888 data_len); 1889 1890 if (!dp->chained_metadata_format) { 1891 nfp_net_set_hash_desc(dp->netdev, &meta, 1892 rxbuf->frag + meta_off, rxd); 1893 } else if (meta_len) { 1894 void *end; 1895 1896 end = nfp_net_parse_meta(dp->netdev, &meta, 1897 rxbuf->frag + meta_off, 1898 meta_len); 1899 if (unlikely(end != rxbuf->frag + pkt_off)) { 1900 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1901 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1902 NULL); 1903 continue; 1904 } 1905 } 1906 1907 if (xdp_prog && !meta.portid) { 1908 void *orig_data = rxbuf->frag + pkt_off; 1909 unsigned int dma_off; 1910 int act; 1911 1912 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1913 xdp.data = orig_data; 1914 xdp.data_meta = orig_data; 1915 xdp.data_end = orig_data + pkt_len; 1916 1917 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1918 1919 pkt_len = xdp.data_end - xdp.data; 1920 pkt_off += xdp.data - orig_data; 1921 1922 switch (act) { 1923 case XDP_PASS: 1924 meta_len_xdp = xdp.data - xdp.data_meta; 1925 break; 1926 case XDP_TX: 1927 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1928 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1929 tx_ring, rxbuf, 1930 dma_off, 1931 pkt_len, 1932 &xdp_tx_cmpl))) 1933 trace_xdp_exception(dp->netdev, 1934 xdp_prog, act); 1935 continue; 1936 default: 1937 bpf_warn_invalid_xdp_action(act); 1938 /* fall through */ 1939 case XDP_ABORTED: 1940 trace_xdp_exception(dp->netdev, xdp_prog, act); 1941 /* fall through */ 1942 case XDP_DROP: 1943 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1944 rxbuf->dma_addr); 1945 continue; 1946 } 1947 } 1948 1949 if (likely(!meta.portid)) { 1950 netdev = dp->netdev; 1951 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1952 struct nfp_net *nn = netdev_priv(dp->netdev); 1953 1954 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1955 pkt_len); 1956 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1957 rxbuf->dma_addr); 1958 continue; 1959 } else { 1960 struct nfp_net *nn; 1961 1962 nn = netdev_priv(dp->netdev); 1963 netdev = nfp_app_dev_get(nn->app, meta.portid, 1964 &redir_egress); 1965 if (unlikely(!netdev)) { 1966 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1967 NULL); 1968 continue; 1969 } 1970 1971 if (nfp_netdev_is_nfp_repr(netdev)) 1972 nfp_repr_inc_rx_stats(netdev, pkt_len); 1973 } 1974 1975 skb = build_skb(rxbuf->frag, true_bufsz); 1976 if (unlikely(!skb)) { 1977 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1978 continue; 1979 } 1980 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1981 if (unlikely(!new_frag)) { 1982 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1983 continue; 1984 } 1985 1986 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1987 1988 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1989 1990 skb_reserve(skb, pkt_off); 1991 skb_put(skb, pkt_len); 1992 1993 skb->mark = meta.mark; 1994 skb_set_hash(skb, meta.hash, meta.hash_type); 1995 1996 skb_record_rx_queue(skb, rx_ring->idx); 1997 skb->protocol = eth_type_trans(skb, netdev); 1998 1999 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 2000 2001 #ifdef CONFIG_TLS_DEVICE 2002 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 2003 skb->decrypted = true; 2004 u64_stats_update_begin(&r_vec->rx_sync); 2005 r_vec->hw_tls_rx++; 2006 u64_stats_update_end(&r_vec->rx_sync); 2007 } 2008 #endif 2009 2010 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 2011 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2012 le16_to_cpu(rxd->rxd.vlan)); 2013 if (meta_len_xdp) 2014 skb_metadata_set(skb, meta_len_xdp); 2015 2016 if (likely(!redir_egress)) { 2017 napi_gro_receive(&rx_ring->r_vec->napi, skb); 2018 } else { 2019 skb->dev = netdev; 2020 skb_reset_network_header(skb); 2021 __skb_push(skb, ETH_HLEN); 2022 dev_queue_xmit(skb); 2023 } 2024 } 2025 2026 if (xdp_prog) { 2027 if (tx_ring->wr_ptr_add) 2028 nfp_net_tx_xmit_more_flush(tx_ring); 2029 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2030 !xdp_tx_cmpl) 2031 if (!nfp_net_xdp_complete(tx_ring)) 2032 pkts_polled = budget; 2033 } 2034 rcu_read_unlock(); 2035 2036 return pkts_polled; 2037 } 2038 2039 /** 2040 * nfp_net_poll() - napi poll function 2041 * @napi: NAPI structure 2042 * @budget: NAPI budget 2043 * 2044 * Return: number of packets polled. 2045 */ 2046 static int nfp_net_poll(struct napi_struct *napi, int budget) 2047 { 2048 struct nfp_net_r_vector *r_vec = 2049 container_of(napi, struct nfp_net_r_vector, napi); 2050 unsigned int pkts_polled = 0; 2051 2052 if (r_vec->tx_ring) 2053 nfp_net_tx_complete(r_vec->tx_ring, budget); 2054 if (r_vec->rx_ring) 2055 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2056 2057 if (pkts_polled < budget) 2058 if (napi_complete_done(napi, pkts_polled)) 2059 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2060 2061 return pkts_polled; 2062 } 2063 2064 /* Control device data path 2065 */ 2066 2067 static bool 2068 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2069 struct sk_buff *skb, bool old) 2070 { 2071 unsigned int real_len = skb->len, meta_len = 0; 2072 struct nfp_net_tx_ring *tx_ring; 2073 struct nfp_net_tx_buf *txbuf; 2074 struct nfp_net_tx_desc *txd; 2075 struct nfp_net_dp *dp; 2076 dma_addr_t dma_addr; 2077 int wr_idx; 2078 2079 dp = &r_vec->nfp_net->dp; 2080 tx_ring = r_vec->tx_ring; 2081 2082 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2083 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2084 goto err_free; 2085 } 2086 2087 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2088 u64_stats_update_begin(&r_vec->tx_sync); 2089 r_vec->tx_busy++; 2090 u64_stats_update_end(&r_vec->tx_sync); 2091 if (!old) 2092 __skb_queue_tail(&r_vec->queue, skb); 2093 else 2094 __skb_queue_head(&r_vec->queue, skb); 2095 return true; 2096 } 2097 2098 if (nfp_app_ctrl_has_meta(nn->app)) { 2099 if (unlikely(skb_headroom(skb) < 8)) { 2100 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2101 goto err_free; 2102 } 2103 meta_len = 8; 2104 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2105 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2106 } 2107 2108 /* Start with the head skbuf */ 2109 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2110 DMA_TO_DEVICE); 2111 if (dma_mapping_error(dp->dev, dma_addr)) 2112 goto err_dma_warn; 2113 2114 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2115 2116 /* Stash the soft descriptor of the head then initialize it */ 2117 txbuf = &tx_ring->txbufs[wr_idx]; 2118 txbuf->skb = skb; 2119 txbuf->dma_addr = dma_addr; 2120 txbuf->fidx = -1; 2121 txbuf->pkt_cnt = 1; 2122 txbuf->real_len = real_len; 2123 2124 /* Build TX descriptor */ 2125 txd = &tx_ring->txds[wr_idx]; 2126 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2127 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2128 nfp_desc_set_dma_addr(txd, dma_addr); 2129 txd->data_len = cpu_to_le16(skb->len); 2130 2131 txd->flags = 0; 2132 txd->mss = 0; 2133 txd->lso_hdrlen = 0; 2134 2135 tx_ring->wr_p++; 2136 tx_ring->wr_ptr_add++; 2137 nfp_net_tx_xmit_more_flush(tx_ring); 2138 2139 return false; 2140 2141 err_dma_warn: 2142 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2143 err_free: 2144 u64_stats_update_begin(&r_vec->tx_sync); 2145 r_vec->tx_errors++; 2146 u64_stats_update_end(&r_vec->tx_sync); 2147 dev_kfree_skb_any(skb); 2148 return false; 2149 } 2150 2151 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2152 { 2153 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2154 2155 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2156 } 2157 2158 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2159 { 2160 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2161 bool ret; 2162 2163 spin_lock_bh(&r_vec->lock); 2164 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2165 spin_unlock_bh(&r_vec->lock); 2166 2167 return ret; 2168 } 2169 2170 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2171 { 2172 struct sk_buff *skb; 2173 2174 while ((skb = __skb_dequeue(&r_vec->queue))) 2175 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2176 return; 2177 } 2178 2179 static bool 2180 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2181 { 2182 u32 meta_type, meta_tag; 2183 2184 if (!nfp_app_ctrl_has_meta(nn->app)) 2185 return !meta_len; 2186 2187 if (meta_len != 8) 2188 return false; 2189 2190 meta_type = get_unaligned_be32(data); 2191 meta_tag = get_unaligned_be32(data + 4); 2192 2193 return (meta_type == NFP_NET_META_PORTID && 2194 meta_tag == NFP_META_PORT_ID_CTRL); 2195 } 2196 2197 static bool 2198 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2199 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2200 { 2201 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2202 struct nfp_net_rx_buf *rxbuf; 2203 struct nfp_net_rx_desc *rxd; 2204 dma_addr_t new_dma_addr; 2205 struct sk_buff *skb; 2206 void *new_frag; 2207 int idx; 2208 2209 idx = D_IDX(rx_ring, rx_ring->rd_p); 2210 2211 rxd = &rx_ring->rxds[idx]; 2212 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2213 return false; 2214 2215 /* Memory barrier to ensure that we won't do other reads 2216 * before the DD bit. 2217 */ 2218 dma_rmb(); 2219 2220 rx_ring->rd_p++; 2221 2222 rxbuf = &rx_ring->rxbufs[idx]; 2223 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2224 data_len = le16_to_cpu(rxd->rxd.data_len); 2225 pkt_len = data_len - meta_len; 2226 2227 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2228 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2229 pkt_off += meta_len; 2230 else 2231 pkt_off += dp->rx_offset; 2232 meta_off = pkt_off - meta_len; 2233 2234 /* Stats update */ 2235 u64_stats_update_begin(&r_vec->rx_sync); 2236 r_vec->rx_pkts++; 2237 r_vec->rx_bytes += pkt_len; 2238 u64_stats_update_end(&r_vec->rx_sync); 2239 2240 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2241 2242 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2243 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2244 meta_len); 2245 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2246 return true; 2247 } 2248 2249 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2250 if (unlikely(!skb)) { 2251 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2252 return true; 2253 } 2254 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2255 if (unlikely(!new_frag)) { 2256 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2257 return true; 2258 } 2259 2260 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2261 2262 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2263 2264 skb_reserve(skb, pkt_off); 2265 skb_put(skb, pkt_len); 2266 2267 nfp_app_ctrl_rx(nn->app, skb); 2268 2269 return true; 2270 } 2271 2272 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2273 { 2274 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2275 struct nfp_net *nn = r_vec->nfp_net; 2276 struct nfp_net_dp *dp = &nn->dp; 2277 unsigned int budget = 512; 2278 2279 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2280 continue; 2281 2282 return budget; 2283 } 2284 2285 static void nfp_ctrl_poll(unsigned long arg) 2286 { 2287 struct nfp_net_r_vector *r_vec = (void *)arg; 2288 2289 spin_lock(&r_vec->lock); 2290 nfp_net_tx_complete(r_vec->tx_ring, 0); 2291 __nfp_ctrl_tx_queued(r_vec); 2292 spin_unlock(&r_vec->lock); 2293 2294 if (nfp_ctrl_rx(r_vec)) { 2295 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2296 } else { 2297 tasklet_schedule(&r_vec->tasklet); 2298 nn_dp_warn(&r_vec->nfp_net->dp, 2299 "control message budget exceeded!\n"); 2300 } 2301 } 2302 2303 /* Setup and Configuration 2304 */ 2305 2306 /** 2307 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2308 * @nn: NFP Network structure 2309 */ 2310 static void nfp_net_vecs_init(struct nfp_net *nn) 2311 { 2312 struct nfp_net_r_vector *r_vec; 2313 int r; 2314 2315 nn->lsc_handler = nfp_net_irq_lsc; 2316 nn->exn_handler = nfp_net_irq_exn; 2317 2318 for (r = 0; r < nn->max_r_vecs; r++) { 2319 struct msix_entry *entry; 2320 2321 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2322 2323 r_vec = &nn->r_vecs[r]; 2324 r_vec->nfp_net = nn; 2325 r_vec->irq_entry = entry->entry; 2326 r_vec->irq_vector = entry->vector; 2327 2328 if (nn->dp.netdev) { 2329 r_vec->handler = nfp_net_irq_rxtx; 2330 } else { 2331 r_vec->handler = nfp_ctrl_irq_rxtx; 2332 2333 __skb_queue_head_init(&r_vec->queue); 2334 spin_lock_init(&r_vec->lock); 2335 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2336 (unsigned long)r_vec); 2337 tasklet_disable(&r_vec->tasklet); 2338 } 2339 2340 cpumask_set_cpu(r, &r_vec->affinity_mask); 2341 } 2342 } 2343 2344 /** 2345 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2346 * @tx_ring: TX ring to free 2347 */ 2348 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2349 { 2350 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2351 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2352 2353 kvfree(tx_ring->txbufs); 2354 2355 if (tx_ring->txds) 2356 dma_free_coherent(dp->dev, tx_ring->size, 2357 tx_ring->txds, tx_ring->dma); 2358 2359 tx_ring->cnt = 0; 2360 tx_ring->txbufs = NULL; 2361 tx_ring->txds = NULL; 2362 tx_ring->dma = 0; 2363 tx_ring->size = 0; 2364 } 2365 2366 /** 2367 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2368 * @dp: NFP Net data path struct 2369 * @tx_ring: TX Ring structure to allocate 2370 * 2371 * Return: 0 on success, negative errno otherwise. 2372 */ 2373 static int 2374 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2375 { 2376 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2377 2378 tx_ring->cnt = dp->txd_cnt; 2379 2380 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2381 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2382 &tx_ring->dma, 2383 GFP_KERNEL | __GFP_NOWARN); 2384 if (!tx_ring->txds) { 2385 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2386 tx_ring->cnt); 2387 goto err_alloc; 2388 } 2389 2390 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2391 GFP_KERNEL); 2392 if (!tx_ring->txbufs) 2393 goto err_alloc; 2394 2395 if (!tx_ring->is_xdp && dp->netdev) 2396 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2397 tx_ring->idx); 2398 2399 return 0; 2400 2401 err_alloc: 2402 nfp_net_tx_ring_free(tx_ring); 2403 return -ENOMEM; 2404 } 2405 2406 static void 2407 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2408 struct nfp_net_tx_ring *tx_ring) 2409 { 2410 unsigned int i; 2411 2412 if (!tx_ring->is_xdp) 2413 return; 2414 2415 for (i = 0; i < tx_ring->cnt; i++) { 2416 if (!tx_ring->txbufs[i].frag) 2417 return; 2418 2419 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2420 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2421 } 2422 } 2423 2424 static int 2425 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2426 struct nfp_net_tx_ring *tx_ring) 2427 { 2428 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2429 unsigned int i; 2430 2431 if (!tx_ring->is_xdp) 2432 return 0; 2433 2434 for (i = 0; i < tx_ring->cnt; i++) { 2435 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2436 if (!txbufs[i].frag) { 2437 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2438 return -ENOMEM; 2439 } 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2446 { 2447 unsigned int r; 2448 2449 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2450 GFP_KERNEL); 2451 if (!dp->tx_rings) 2452 return -ENOMEM; 2453 2454 for (r = 0; r < dp->num_tx_rings; r++) { 2455 int bias = 0; 2456 2457 if (r >= dp->num_stack_tx_rings) 2458 bias = dp->num_stack_tx_rings; 2459 2460 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2461 r, bias); 2462 2463 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2464 goto err_free_prev; 2465 2466 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2467 goto err_free_ring; 2468 } 2469 2470 return 0; 2471 2472 err_free_prev: 2473 while (r--) { 2474 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2475 err_free_ring: 2476 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2477 } 2478 kfree(dp->tx_rings); 2479 return -ENOMEM; 2480 } 2481 2482 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2483 { 2484 unsigned int r; 2485 2486 for (r = 0; r < dp->num_tx_rings; r++) { 2487 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2488 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2489 } 2490 2491 kfree(dp->tx_rings); 2492 } 2493 2494 /** 2495 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2496 * @rx_ring: RX ring to free 2497 */ 2498 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2499 { 2500 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2501 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2502 2503 if (dp->netdev) 2504 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2505 kvfree(rx_ring->rxbufs); 2506 2507 if (rx_ring->rxds) 2508 dma_free_coherent(dp->dev, rx_ring->size, 2509 rx_ring->rxds, rx_ring->dma); 2510 2511 rx_ring->cnt = 0; 2512 rx_ring->rxbufs = NULL; 2513 rx_ring->rxds = NULL; 2514 rx_ring->dma = 0; 2515 rx_ring->size = 0; 2516 } 2517 2518 /** 2519 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2520 * @dp: NFP Net data path struct 2521 * @rx_ring: RX ring to allocate 2522 * 2523 * Return: 0 on success, negative errno otherwise. 2524 */ 2525 static int 2526 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2527 { 2528 int err; 2529 2530 if (dp->netdev) { 2531 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2532 rx_ring->idx); 2533 if (err < 0) 2534 return err; 2535 } 2536 2537 rx_ring->cnt = dp->rxd_cnt; 2538 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2539 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2540 &rx_ring->dma, 2541 GFP_KERNEL | __GFP_NOWARN); 2542 if (!rx_ring->rxds) { 2543 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2544 rx_ring->cnt); 2545 goto err_alloc; 2546 } 2547 2548 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2549 GFP_KERNEL); 2550 if (!rx_ring->rxbufs) 2551 goto err_alloc; 2552 2553 return 0; 2554 2555 err_alloc: 2556 nfp_net_rx_ring_free(rx_ring); 2557 return -ENOMEM; 2558 } 2559 2560 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2561 { 2562 unsigned int r; 2563 2564 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2565 GFP_KERNEL); 2566 if (!dp->rx_rings) 2567 return -ENOMEM; 2568 2569 for (r = 0; r < dp->num_rx_rings; r++) { 2570 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2571 2572 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2573 goto err_free_prev; 2574 2575 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2576 goto err_free_ring; 2577 } 2578 2579 return 0; 2580 2581 err_free_prev: 2582 while (r--) { 2583 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2584 err_free_ring: 2585 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2586 } 2587 kfree(dp->rx_rings); 2588 return -ENOMEM; 2589 } 2590 2591 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2592 { 2593 unsigned int r; 2594 2595 for (r = 0; r < dp->num_rx_rings; r++) { 2596 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2597 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2598 } 2599 2600 kfree(dp->rx_rings); 2601 } 2602 2603 static void 2604 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2605 struct nfp_net_r_vector *r_vec, int idx) 2606 { 2607 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2608 r_vec->tx_ring = 2609 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2610 2611 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2612 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2613 } 2614 2615 static int 2616 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2617 int idx) 2618 { 2619 int err; 2620 2621 /* Setup NAPI */ 2622 if (nn->dp.netdev) 2623 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2624 nfp_net_poll, NAPI_POLL_WEIGHT); 2625 else 2626 tasklet_enable(&r_vec->tasklet); 2627 2628 snprintf(r_vec->name, sizeof(r_vec->name), 2629 "%s-rxtx-%d", nfp_net_name(nn), idx); 2630 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2631 r_vec); 2632 if (err) { 2633 if (nn->dp.netdev) 2634 netif_napi_del(&r_vec->napi); 2635 else 2636 tasklet_disable(&r_vec->tasklet); 2637 2638 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2639 return err; 2640 } 2641 disable_irq(r_vec->irq_vector); 2642 2643 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2644 2645 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2646 r_vec->irq_entry); 2647 2648 return 0; 2649 } 2650 2651 static void 2652 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2653 { 2654 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2655 if (nn->dp.netdev) 2656 netif_napi_del(&r_vec->napi); 2657 else 2658 tasklet_disable(&r_vec->tasklet); 2659 2660 free_irq(r_vec->irq_vector, r_vec); 2661 } 2662 2663 /** 2664 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2665 * @nn: NFP Net device to reconfigure 2666 */ 2667 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2668 { 2669 int i; 2670 2671 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2672 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2673 get_unaligned_le32(nn->rss_itbl + i)); 2674 } 2675 2676 /** 2677 * nfp_net_rss_write_key() - Write RSS hash key to device 2678 * @nn: NFP Net device to reconfigure 2679 */ 2680 void nfp_net_rss_write_key(struct nfp_net *nn) 2681 { 2682 int i; 2683 2684 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2685 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2686 get_unaligned_le32(nn->rss_key + i)); 2687 } 2688 2689 /** 2690 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2691 * @nn: NFP Net device to reconfigure 2692 */ 2693 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2694 { 2695 u8 i; 2696 u32 factor; 2697 u32 value; 2698 2699 /* Compute factor used to convert coalesce '_usecs' parameters to 2700 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2701 * count. 2702 */ 2703 factor = nn->tlv_caps.me_freq_mhz / 16; 2704 2705 /* copy RX interrupt coalesce parameters */ 2706 value = (nn->rx_coalesce_max_frames << 16) | 2707 (factor * nn->rx_coalesce_usecs); 2708 for (i = 0; i < nn->dp.num_rx_rings; i++) 2709 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2710 2711 /* copy TX interrupt coalesce parameters */ 2712 value = (nn->tx_coalesce_max_frames << 16) | 2713 (factor * nn->tx_coalesce_usecs); 2714 for (i = 0; i < nn->dp.num_tx_rings; i++) 2715 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2716 } 2717 2718 /** 2719 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2720 * @nn: NFP Net device to reconfigure 2721 * @addr: MAC address to write 2722 * 2723 * Writes the MAC address from the netdev to the device control BAR. Does not 2724 * perform the required reconfig. We do a bit of byte swapping dance because 2725 * firmware is LE. 2726 */ 2727 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2728 { 2729 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2730 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2731 } 2732 2733 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2734 { 2735 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2736 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2737 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2738 2739 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2740 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2741 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2742 } 2743 2744 /** 2745 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2746 * @nn: NFP Net device to reconfigure 2747 * 2748 * Warning: must be fully idempotent. 2749 */ 2750 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2751 { 2752 u32 new_ctrl, update; 2753 unsigned int r; 2754 int err; 2755 2756 new_ctrl = nn->dp.ctrl; 2757 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2758 update = NFP_NET_CFG_UPDATE_GEN; 2759 update |= NFP_NET_CFG_UPDATE_MSIX; 2760 update |= NFP_NET_CFG_UPDATE_RING; 2761 2762 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2763 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2764 2765 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2766 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2767 2768 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2769 err = nfp_net_reconfig(nn, update); 2770 if (err) 2771 nn_err(nn, "Could not disable device: %d\n", err); 2772 2773 for (r = 0; r < nn->dp.num_rx_rings; r++) 2774 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2775 for (r = 0; r < nn->dp.num_tx_rings; r++) 2776 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2777 for (r = 0; r < nn->dp.num_r_vecs; r++) 2778 nfp_net_vec_clear_ring_data(nn, r); 2779 2780 nn->dp.ctrl = new_ctrl; 2781 } 2782 2783 static void 2784 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2785 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2786 { 2787 /* Write the DMA address, size and MSI-X info to the device */ 2788 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2789 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2790 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2791 } 2792 2793 static void 2794 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2795 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2796 { 2797 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2798 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2799 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2800 } 2801 2802 /** 2803 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2804 * @nn: NFP Net device to reconfigure 2805 */ 2806 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2807 { 2808 u32 bufsz, new_ctrl, update = 0; 2809 unsigned int r; 2810 int err; 2811 2812 new_ctrl = nn->dp.ctrl; 2813 2814 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2815 nfp_net_rss_write_key(nn); 2816 nfp_net_rss_write_itbl(nn); 2817 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2818 update |= NFP_NET_CFG_UPDATE_RSS; 2819 } 2820 2821 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2822 nfp_net_coalesce_write_cfg(nn); 2823 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2824 } 2825 2826 for (r = 0; r < nn->dp.num_tx_rings; r++) 2827 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2828 for (r = 0; r < nn->dp.num_rx_rings; r++) 2829 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2830 2831 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2832 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2833 2834 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2835 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2836 2837 if (nn->dp.netdev) 2838 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2839 2840 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2841 2842 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2843 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2844 2845 /* Enable device */ 2846 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2847 update |= NFP_NET_CFG_UPDATE_GEN; 2848 update |= NFP_NET_CFG_UPDATE_MSIX; 2849 update |= NFP_NET_CFG_UPDATE_RING; 2850 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2851 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2852 2853 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2854 err = nfp_net_reconfig(nn, update); 2855 if (err) { 2856 nfp_net_clear_config_and_disable(nn); 2857 return err; 2858 } 2859 2860 nn->dp.ctrl = new_ctrl; 2861 2862 for (r = 0; r < nn->dp.num_rx_rings; r++) 2863 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2864 2865 /* Since reconfiguration requests while NFP is down are ignored we 2866 * have to wipe the entire VXLAN configuration and reinitialize it. 2867 */ 2868 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2869 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2870 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2871 udp_tunnel_get_rx_info(nn->dp.netdev); 2872 } 2873 2874 return 0; 2875 } 2876 2877 /** 2878 * nfp_net_close_stack() - Quiesce the stack (part of close) 2879 * @nn: NFP Net device to reconfigure 2880 */ 2881 static void nfp_net_close_stack(struct nfp_net *nn) 2882 { 2883 unsigned int r; 2884 2885 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2886 netif_carrier_off(nn->dp.netdev); 2887 nn->link_up = false; 2888 2889 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2890 disable_irq(nn->r_vecs[r].irq_vector); 2891 napi_disable(&nn->r_vecs[r].napi); 2892 } 2893 2894 netif_tx_disable(nn->dp.netdev); 2895 } 2896 2897 /** 2898 * nfp_net_close_free_all() - Free all runtime resources 2899 * @nn: NFP Net device to reconfigure 2900 */ 2901 static void nfp_net_close_free_all(struct nfp_net *nn) 2902 { 2903 unsigned int r; 2904 2905 nfp_net_tx_rings_free(&nn->dp); 2906 nfp_net_rx_rings_free(&nn->dp); 2907 2908 for (r = 0; r < nn->dp.num_r_vecs; r++) 2909 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2910 2911 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2912 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2913 } 2914 2915 /** 2916 * nfp_net_netdev_close() - Called when the device is downed 2917 * @netdev: netdev structure 2918 */ 2919 static int nfp_net_netdev_close(struct net_device *netdev) 2920 { 2921 struct nfp_net *nn = netdev_priv(netdev); 2922 2923 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2924 */ 2925 nfp_net_close_stack(nn); 2926 2927 /* Step 2: Tell NFP 2928 */ 2929 nfp_net_clear_config_and_disable(nn); 2930 nfp_port_configure(netdev, false); 2931 2932 /* Step 3: Free resources 2933 */ 2934 nfp_net_close_free_all(nn); 2935 2936 nn_dbg(nn, "%s down", netdev->name); 2937 return 0; 2938 } 2939 2940 void nfp_ctrl_close(struct nfp_net *nn) 2941 { 2942 int r; 2943 2944 rtnl_lock(); 2945 2946 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2947 disable_irq(nn->r_vecs[r].irq_vector); 2948 tasklet_disable(&nn->r_vecs[r].tasklet); 2949 } 2950 2951 nfp_net_clear_config_and_disable(nn); 2952 2953 nfp_net_close_free_all(nn); 2954 2955 rtnl_unlock(); 2956 } 2957 2958 /** 2959 * nfp_net_open_stack() - Start the device from stack's perspective 2960 * @nn: NFP Net device to reconfigure 2961 */ 2962 static void nfp_net_open_stack(struct nfp_net *nn) 2963 { 2964 unsigned int r; 2965 2966 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2967 napi_enable(&nn->r_vecs[r].napi); 2968 enable_irq(nn->r_vecs[r].irq_vector); 2969 } 2970 2971 netif_tx_wake_all_queues(nn->dp.netdev); 2972 2973 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2974 nfp_net_read_link_status(nn); 2975 } 2976 2977 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2978 { 2979 int err, r; 2980 2981 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2982 nn->exn_name, sizeof(nn->exn_name), 2983 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2984 if (err) 2985 return err; 2986 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2987 nn->lsc_name, sizeof(nn->lsc_name), 2988 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2989 if (err) 2990 goto err_free_exn; 2991 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2992 2993 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2994 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2995 if (err) 2996 goto err_cleanup_vec_p; 2997 } 2998 2999 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 3000 if (err) 3001 goto err_cleanup_vec; 3002 3003 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 3004 if (err) 3005 goto err_free_rx_rings; 3006 3007 for (r = 0; r < nn->max_r_vecs; r++) 3008 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3009 3010 return 0; 3011 3012 err_free_rx_rings: 3013 nfp_net_rx_rings_free(&nn->dp); 3014 err_cleanup_vec: 3015 r = nn->dp.num_r_vecs; 3016 err_cleanup_vec_p: 3017 while (r--) 3018 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3019 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 3020 err_free_exn: 3021 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 3022 return err; 3023 } 3024 3025 static int nfp_net_netdev_open(struct net_device *netdev) 3026 { 3027 struct nfp_net *nn = netdev_priv(netdev); 3028 int err; 3029 3030 /* Step 1: Allocate resources for rings and the like 3031 * - Request interrupts 3032 * - Allocate RX and TX ring resources 3033 * - Setup initial RSS table 3034 */ 3035 err = nfp_net_open_alloc_all(nn); 3036 if (err) 3037 return err; 3038 3039 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3040 if (err) 3041 goto err_free_all; 3042 3043 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3044 if (err) 3045 goto err_free_all; 3046 3047 /* Step 2: Configure the NFP 3048 * - Ifup the physical interface if it exists 3049 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3050 * - Write MAC address (in case it changed) 3051 * - Set the MTU 3052 * - Set the Freelist buffer size 3053 * - Enable the FW 3054 */ 3055 err = nfp_port_configure(netdev, true); 3056 if (err) 3057 goto err_free_all; 3058 3059 err = nfp_net_set_config_and_enable(nn); 3060 if (err) 3061 goto err_port_disable; 3062 3063 /* Step 3: Enable for kernel 3064 * - put some freelist descriptors on each RX ring 3065 * - enable NAPI on each ring 3066 * - enable all TX queues 3067 * - set link state 3068 */ 3069 nfp_net_open_stack(nn); 3070 3071 return 0; 3072 3073 err_port_disable: 3074 nfp_port_configure(netdev, false); 3075 err_free_all: 3076 nfp_net_close_free_all(nn); 3077 return err; 3078 } 3079 3080 int nfp_ctrl_open(struct nfp_net *nn) 3081 { 3082 int err, r; 3083 3084 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3085 rtnl_lock(); 3086 3087 err = nfp_net_open_alloc_all(nn); 3088 if (err) 3089 goto err_unlock; 3090 3091 err = nfp_net_set_config_and_enable(nn); 3092 if (err) 3093 goto err_free_all; 3094 3095 for (r = 0; r < nn->dp.num_r_vecs; r++) 3096 enable_irq(nn->r_vecs[r].irq_vector); 3097 3098 rtnl_unlock(); 3099 3100 return 0; 3101 3102 err_free_all: 3103 nfp_net_close_free_all(nn); 3104 err_unlock: 3105 rtnl_unlock(); 3106 return err; 3107 } 3108 3109 static void nfp_net_set_rx_mode(struct net_device *netdev) 3110 { 3111 struct nfp_net *nn = netdev_priv(netdev); 3112 u32 new_ctrl; 3113 3114 new_ctrl = nn->dp.ctrl; 3115 3116 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3117 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3118 else 3119 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3120 3121 if (netdev->flags & IFF_PROMISC) { 3122 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3123 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3124 else 3125 nn_warn(nn, "FW does not support promiscuous mode\n"); 3126 } else { 3127 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3128 } 3129 3130 if (new_ctrl == nn->dp.ctrl) 3131 return; 3132 3133 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3134 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3135 3136 nn->dp.ctrl = new_ctrl; 3137 } 3138 3139 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3140 { 3141 int i; 3142 3143 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3144 nn->rss_itbl[i] = 3145 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3146 } 3147 3148 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3149 { 3150 struct nfp_net_dp new_dp = *dp; 3151 3152 *dp = nn->dp; 3153 nn->dp = new_dp; 3154 3155 nn->dp.netdev->mtu = new_dp.mtu; 3156 3157 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3158 nfp_net_rss_init_itbl(nn); 3159 } 3160 3161 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3162 { 3163 unsigned int r; 3164 int err; 3165 3166 nfp_net_dp_swap(nn, dp); 3167 3168 for (r = 0; r < nn->max_r_vecs; r++) 3169 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3170 3171 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 3172 if (err) 3173 return err; 3174 3175 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 3176 err = netif_set_real_num_tx_queues(nn->dp.netdev, 3177 nn->dp.num_stack_tx_rings); 3178 if (err) 3179 return err; 3180 } 3181 3182 return nfp_net_set_config_and_enable(nn); 3183 } 3184 3185 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3186 { 3187 struct nfp_net_dp *new; 3188 3189 new = kmalloc(sizeof(*new), GFP_KERNEL); 3190 if (!new) 3191 return NULL; 3192 3193 *new = nn->dp; 3194 3195 /* Clear things which need to be recomputed */ 3196 new->fl_bufsz = 0; 3197 new->tx_rings = NULL; 3198 new->rx_rings = NULL; 3199 new->num_r_vecs = 0; 3200 new->num_stack_tx_rings = 0; 3201 3202 return new; 3203 } 3204 3205 static int 3206 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3207 struct netlink_ext_ack *extack) 3208 { 3209 /* XDP-enabled tests */ 3210 if (!dp->xdp_prog) 3211 return 0; 3212 if (dp->fl_bufsz > PAGE_SIZE) { 3213 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3214 return -EINVAL; 3215 } 3216 if (dp->num_tx_rings > nn->max_tx_rings) { 3217 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3218 return -EINVAL; 3219 } 3220 3221 return 0; 3222 } 3223 3224 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3225 struct netlink_ext_ack *extack) 3226 { 3227 int r, err; 3228 3229 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3230 3231 dp->num_stack_tx_rings = dp->num_tx_rings; 3232 if (dp->xdp_prog) 3233 dp->num_stack_tx_rings -= dp->num_rx_rings; 3234 3235 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3236 3237 err = nfp_net_check_config(nn, dp, extack); 3238 if (err) 3239 goto exit_free_dp; 3240 3241 if (!netif_running(dp->netdev)) { 3242 nfp_net_dp_swap(nn, dp); 3243 err = 0; 3244 goto exit_free_dp; 3245 } 3246 3247 /* Prepare new rings */ 3248 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3249 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3250 if (err) { 3251 dp->num_r_vecs = r; 3252 goto err_cleanup_vecs; 3253 } 3254 } 3255 3256 err = nfp_net_rx_rings_prepare(nn, dp); 3257 if (err) 3258 goto err_cleanup_vecs; 3259 3260 err = nfp_net_tx_rings_prepare(nn, dp); 3261 if (err) 3262 goto err_free_rx; 3263 3264 /* Stop device, swap in new rings, try to start the firmware */ 3265 nfp_net_close_stack(nn); 3266 nfp_net_clear_config_and_disable(nn); 3267 3268 err = nfp_net_dp_swap_enable(nn, dp); 3269 if (err) { 3270 int err2; 3271 3272 nfp_net_clear_config_and_disable(nn); 3273 3274 /* Try with old configuration and old rings */ 3275 err2 = nfp_net_dp_swap_enable(nn, dp); 3276 if (err2) 3277 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3278 err, err2); 3279 } 3280 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3281 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3282 3283 nfp_net_rx_rings_free(dp); 3284 nfp_net_tx_rings_free(dp); 3285 3286 nfp_net_open_stack(nn); 3287 exit_free_dp: 3288 kfree(dp); 3289 3290 return err; 3291 3292 err_free_rx: 3293 nfp_net_rx_rings_free(dp); 3294 err_cleanup_vecs: 3295 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3296 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3297 kfree(dp); 3298 return err; 3299 } 3300 3301 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3302 { 3303 struct nfp_net *nn = netdev_priv(netdev); 3304 struct nfp_net_dp *dp; 3305 int err; 3306 3307 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3308 if (err) 3309 return err; 3310 3311 dp = nfp_net_clone_dp(nn); 3312 if (!dp) 3313 return -ENOMEM; 3314 3315 dp->mtu = new_mtu; 3316 3317 return nfp_net_ring_reconfig(nn, dp, NULL); 3318 } 3319 3320 static int 3321 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3322 { 3323 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3324 struct nfp_net *nn = netdev_priv(netdev); 3325 int err; 3326 3327 /* Priority tagged packets with vlan id 0 are processed by the 3328 * NFP as untagged packets 3329 */ 3330 if (!vid) 3331 return 0; 3332 3333 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3334 if (err) 3335 return err; 3336 3337 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3338 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3339 ETH_P_8021Q); 3340 3341 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3342 } 3343 3344 static int 3345 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3346 { 3347 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3348 struct nfp_net *nn = netdev_priv(netdev); 3349 int err; 3350 3351 /* Priority tagged packets with vlan id 0 are processed by the 3352 * NFP as untagged packets 3353 */ 3354 if (!vid) 3355 return 0; 3356 3357 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3358 if (err) 3359 return err; 3360 3361 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3362 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3363 ETH_P_8021Q); 3364 3365 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3366 } 3367 3368 static void nfp_net_stat64(struct net_device *netdev, 3369 struct rtnl_link_stats64 *stats) 3370 { 3371 struct nfp_net *nn = netdev_priv(netdev); 3372 int r; 3373 3374 /* Collect software stats */ 3375 for (r = 0; r < nn->max_r_vecs; r++) { 3376 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3377 u64 data[3]; 3378 unsigned int start; 3379 3380 do { 3381 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3382 data[0] = r_vec->rx_pkts; 3383 data[1] = r_vec->rx_bytes; 3384 data[2] = r_vec->rx_drops; 3385 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3386 stats->rx_packets += data[0]; 3387 stats->rx_bytes += data[1]; 3388 stats->rx_dropped += data[2]; 3389 3390 do { 3391 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3392 data[0] = r_vec->tx_pkts; 3393 data[1] = r_vec->tx_bytes; 3394 data[2] = r_vec->tx_errors; 3395 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3396 stats->tx_packets += data[0]; 3397 stats->tx_bytes += data[1]; 3398 stats->tx_errors += data[2]; 3399 } 3400 3401 /* Add in device stats */ 3402 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3403 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3404 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3405 3406 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3407 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3408 } 3409 3410 static int nfp_net_set_features(struct net_device *netdev, 3411 netdev_features_t features) 3412 { 3413 netdev_features_t changed = netdev->features ^ features; 3414 struct nfp_net *nn = netdev_priv(netdev); 3415 u32 new_ctrl; 3416 int err; 3417 3418 /* Assume this is not called with features we have not advertised */ 3419 3420 new_ctrl = nn->dp.ctrl; 3421 3422 if (changed & NETIF_F_RXCSUM) { 3423 if (features & NETIF_F_RXCSUM) 3424 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3425 else 3426 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3427 } 3428 3429 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3430 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3431 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3432 else 3433 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3434 } 3435 3436 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3437 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3438 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3439 NFP_NET_CFG_CTRL_LSO; 3440 else 3441 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3442 } 3443 3444 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3445 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3446 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3447 else 3448 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3449 } 3450 3451 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3452 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3453 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3454 else 3455 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3456 } 3457 3458 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3459 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3460 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3461 else 3462 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3463 } 3464 3465 if (changed & NETIF_F_SG) { 3466 if (features & NETIF_F_SG) 3467 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3468 else 3469 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3470 } 3471 3472 err = nfp_port_set_features(netdev, features); 3473 if (err) 3474 return err; 3475 3476 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3477 netdev->features, features, changed); 3478 3479 if (new_ctrl == nn->dp.ctrl) 3480 return 0; 3481 3482 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3483 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3484 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3485 if (err) 3486 return err; 3487 3488 nn->dp.ctrl = new_ctrl; 3489 3490 return 0; 3491 } 3492 3493 static netdev_features_t 3494 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3495 netdev_features_t features) 3496 { 3497 u8 l4_hdr; 3498 3499 /* We can't do TSO over double tagged packets (802.1AD) */ 3500 features &= vlan_features_check(skb, features); 3501 3502 if (!skb->encapsulation) 3503 return features; 3504 3505 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3506 if (skb_is_gso(skb)) { 3507 u32 hdrlen; 3508 3509 hdrlen = skb_inner_transport_header(skb) - skb->data + 3510 inner_tcp_hdrlen(skb); 3511 3512 /* Assume worst case scenario of having longest possible 3513 * metadata prepend - 8B 3514 */ 3515 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3516 features &= ~NETIF_F_GSO_MASK; 3517 } 3518 3519 /* VXLAN/GRE check */ 3520 switch (vlan_get_protocol(skb)) { 3521 case htons(ETH_P_IP): 3522 l4_hdr = ip_hdr(skb)->protocol; 3523 break; 3524 case htons(ETH_P_IPV6): 3525 l4_hdr = ipv6_hdr(skb)->nexthdr; 3526 break; 3527 default: 3528 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3529 } 3530 3531 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3532 skb->inner_protocol != htons(ETH_P_TEB) || 3533 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3534 (l4_hdr == IPPROTO_UDP && 3535 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3536 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3537 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3538 3539 return features; 3540 } 3541 3542 static int 3543 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3544 { 3545 struct nfp_net *nn = netdev_priv(netdev); 3546 int n; 3547 3548 /* If port is defined, devlink_port is registered and devlink core 3549 * is taking care of name formatting. 3550 */ 3551 if (nn->port) 3552 return -EOPNOTSUPP; 3553 3554 if (nn->dp.is_vf || nn->vnic_no_name) 3555 return -EOPNOTSUPP; 3556 3557 n = snprintf(name, len, "n%d", nn->id); 3558 if (n >= len) 3559 return -EINVAL; 3560 3561 return 0; 3562 } 3563 3564 /** 3565 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3566 * @nn: NFP Net device to reconfigure 3567 * @idx: Index into the port table where new port should be written 3568 * @port: UDP port to configure (pass zero to remove VXLAN port) 3569 */ 3570 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3571 { 3572 int i; 3573 3574 nn->vxlan_ports[idx] = port; 3575 3576 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3577 return; 3578 3579 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3580 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3581 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3582 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3583 be16_to_cpu(nn->vxlan_ports[i])); 3584 3585 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3586 } 3587 3588 /** 3589 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3590 * @nn: NFP Network structure 3591 * @port: UDP port to look for 3592 * 3593 * Return: if the port is already in the table -- it's position; 3594 * if the port is not in the table -- free position to use; 3595 * if the table is full -- -ENOSPC. 3596 */ 3597 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3598 { 3599 int i, free_idx = -ENOSPC; 3600 3601 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3602 if (nn->vxlan_ports[i] == port) 3603 return i; 3604 if (!nn->vxlan_usecnt[i]) 3605 free_idx = i; 3606 } 3607 3608 return free_idx; 3609 } 3610 3611 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3612 struct udp_tunnel_info *ti) 3613 { 3614 struct nfp_net *nn = netdev_priv(netdev); 3615 int idx; 3616 3617 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3618 return; 3619 3620 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3621 if (idx == -ENOSPC) 3622 return; 3623 3624 if (!nn->vxlan_usecnt[idx]++) 3625 nfp_net_set_vxlan_port(nn, idx, ti->port); 3626 } 3627 3628 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3629 struct udp_tunnel_info *ti) 3630 { 3631 struct nfp_net *nn = netdev_priv(netdev); 3632 int idx; 3633 3634 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3635 return; 3636 3637 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3638 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3639 return; 3640 3641 if (!--nn->vxlan_usecnt[idx]) 3642 nfp_net_set_vxlan_port(nn, idx, 0); 3643 } 3644 3645 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3646 { 3647 struct bpf_prog *prog = bpf->prog; 3648 struct nfp_net_dp *dp; 3649 int err; 3650 3651 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3652 return -EBUSY; 3653 3654 if (!prog == !nn->dp.xdp_prog) { 3655 WRITE_ONCE(nn->dp.xdp_prog, prog); 3656 xdp_attachment_setup(&nn->xdp, bpf); 3657 return 0; 3658 } 3659 3660 dp = nfp_net_clone_dp(nn); 3661 if (!dp) 3662 return -ENOMEM; 3663 3664 dp->xdp_prog = prog; 3665 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3666 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3667 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3668 3669 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3670 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3671 if (err) 3672 return err; 3673 3674 xdp_attachment_setup(&nn->xdp, bpf); 3675 return 0; 3676 } 3677 3678 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3679 { 3680 int err; 3681 3682 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3683 return -EBUSY; 3684 3685 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3686 if (err) 3687 return err; 3688 3689 xdp_attachment_setup(&nn->xdp_hw, bpf); 3690 return 0; 3691 } 3692 3693 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3694 { 3695 struct nfp_net *nn = netdev_priv(netdev); 3696 3697 switch (xdp->command) { 3698 case XDP_SETUP_PROG: 3699 return nfp_net_xdp_setup_drv(nn, xdp); 3700 case XDP_SETUP_PROG_HW: 3701 return nfp_net_xdp_setup_hw(nn, xdp); 3702 case XDP_QUERY_PROG: 3703 return xdp_attachment_query(&nn->xdp, xdp); 3704 case XDP_QUERY_PROG_HW: 3705 return xdp_attachment_query(&nn->xdp_hw, xdp); 3706 default: 3707 return nfp_app_bpf(nn->app, nn, xdp); 3708 } 3709 } 3710 3711 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3712 { 3713 struct nfp_net *nn = netdev_priv(netdev); 3714 struct sockaddr *saddr = addr; 3715 int err; 3716 3717 err = eth_prepare_mac_addr_change(netdev, addr); 3718 if (err) 3719 return err; 3720 3721 nfp_net_write_mac_addr(nn, saddr->sa_data); 3722 3723 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3724 if (err) 3725 return err; 3726 3727 eth_commit_mac_addr_change(netdev, addr); 3728 3729 return 0; 3730 } 3731 3732 const struct net_device_ops nfp_net_netdev_ops = { 3733 .ndo_init = nfp_app_ndo_init, 3734 .ndo_uninit = nfp_app_ndo_uninit, 3735 .ndo_open = nfp_net_netdev_open, 3736 .ndo_stop = nfp_net_netdev_close, 3737 .ndo_start_xmit = nfp_net_tx, 3738 .ndo_get_stats64 = nfp_net_stat64, 3739 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3740 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3741 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3742 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3743 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3744 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3745 .ndo_get_vf_config = nfp_app_get_vf_config, 3746 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3747 .ndo_setup_tc = nfp_port_setup_tc, 3748 .ndo_tx_timeout = nfp_net_tx_timeout, 3749 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3750 .ndo_change_mtu = nfp_net_change_mtu, 3751 .ndo_set_mac_address = nfp_net_set_mac_address, 3752 .ndo_set_features = nfp_net_set_features, 3753 .ndo_features_check = nfp_net_features_check, 3754 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3755 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3756 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3757 .ndo_bpf = nfp_net_xdp, 3758 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3759 }; 3760 3761 /** 3762 * nfp_net_info() - Print general info about the NIC 3763 * @nn: NFP Net device to reconfigure 3764 */ 3765 void nfp_net_info(struct nfp_net *nn) 3766 { 3767 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3768 nn->dp.is_vf ? "VF " : "", 3769 nn->dp.num_tx_rings, nn->max_tx_rings, 3770 nn->dp.num_rx_rings, nn->max_rx_rings); 3771 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3772 nn->fw_ver.resv, nn->fw_ver.class, 3773 nn->fw_ver.major, nn->fw_ver.minor, 3774 nn->max_mtu); 3775 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3776 nn->cap, 3777 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3778 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3779 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3780 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3781 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3782 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3783 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3784 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3785 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3786 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3787 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3788 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3789 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3790 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3791 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3792 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3793 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3794 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3795 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3796 "RXCSUM_COMPLETE " : "", 3797 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3798 nfp_app_extra_cap(nn->app, nn)); 3799 } 3800 3801 /** 3802 * nfp_net_alloc() - Allocate netdev and related structure 3803 * @pdev: PCI device 3804 * @ctrl_bar: PCI IOMEM with vNIC config memory 3805 * @needs_netdev: Whether to allocate a netdev for this vNIC 3806 * @max_tx_rings: Maximum number of TX rings supported by device 3807 * @max_rx_rings: Maximum number of RX rings supported by device 3808 * 3809 * This function allocates a netdev device and fills in the initial 3810 * part of the @struct nfp_net structure. In case of control device 3811 * nfp_net structure is allocated without the netdev. 3812 * 3813 * Return: NFP Net device structure, or ERR_PTR on error. 3814 */ 3815 struct nfp_net * 3816 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3817 unsigned int max_tx_rings, unsigned int max_rx_rings) 3818 { 3819 struct nfp_net *nn; 3820 int err; 3821 3822 if (needs_netdev) { 3823 struct net_device *netdev; 3824 3825 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3826 max_tx_rings, max_rx_rings); 3827 if (!netdev) 3828 return ERR_PTR(-ENOMEM); 3829 3830 SET_NETDEV_DEV(netdev, &pdev->dev); 3831 nn = netdev_priv(netdev); 3832 nn->dp.netdev = netdev; 3833 } else { 3834 nn = vzalloc(sizeof(*nn)); 3835 if (!nn) 3836 return ERR_PTR(-ENOMEM); 3837 } 3838 3839 nn->dp.dev = &pdev->dev; 3840 nn->dp.ctrl_bar = ctrl_bar; 3841 nn->pdev = pdev; 3842 3843 nn->max_tx_rings = max_tx_rings; 3844 nn->max_rx_rings = max_rx_rings; 3845 3846 nn->dp.num_tx_rings = min_t(unsigned int, 3847 max_tx_rings, num_online_cpus()); 3848 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3849 netif_get_num_default_rss_queues()); 3850 3851 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3852 nn->dp.num_r_vecs = min_t(unsigned int, 3853 nn->dp.num_r_vecs, num_online_cpus()); 3854 3855 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3856 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3857 3858 sema_init(&nn->bar_lock, 1); 3859 3860 spin_lock_init(&nn->reconfig_lock); 3861 spin_lock_init(&nn->link_status_lock); 3862 3863 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3864 3865 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3866 &nn->tlv_caps); 3867 if (err) 3868 goto err_free_nn; 3869 3870 err = nfp_ccm_mbox_alloc(nn); 3871 if (err) 3872 goto err_free_nn; 3873 3874 return nn; 3875 3876 err_free_nn: 3877 if (nn->dp.netdev) 3878 free_netdev(nn->dp.netdev); 3879 else 3880 vfree(nn); 3881 return ERR_PTR(err); 3882 } 3883 3884 /** 3885 * nfp_net_free() - Undo what @nfp_net_alloc() did 3886 * @nn: NFP Net device to reconfigure 3887 */ 3888 void nfp_net_free(struct nfp_net *nn) 3889 { 3890 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3891 nfp_ccm_mbox_free(nn); 3892 3893 if (nn->dp.netdev) 3894 free_netdev(nn->dp.netdev); 3895 else 3896 vfree(nn); 3897 } 3898 3899 /** 3900 * nfp_net_rss_key_sz() - Get current size of the RSS key 3901 * @nn: NFP Net device instance 3902 * 3903 * Return: size of the RSS key for currently selected hash function. 3904 */ 3905 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3906 { 3907 switch (nn->rss_hfunc) { 3908 case ETH_RSS_HASH_TOP: 3909 return NFP_NET_CFG_RSS_KEY_SZ; 3910 case ETH_RSS_HASH_XOR: 3911 return 0; 3912 case ETH_RSS_HASH_CRC32: 3913 return 4; 3914 } 3915 3916 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3917 return 0; 3918 } 3919 3920 /** 3921 * nfp_net_rss_init() - Set the initial RSS parameters 3922 * @nn: NFP Net device to reconfigure 3923 */ 3924 static void nfp_net_rss_init(struct nfp_net *nn) 3925 { 3926 unsigned long func_bit, rss_cap_hfunc; 3927 u32 reg; 3928 3929 /* Read the RSS function capability and select first supported func */ 3930 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3931 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3932 if (!rss_cap_hfunc) 3933 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3934 NFP_NET_CFG_RSS_TOEPLITZ); 3935 3936 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3937 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3938 dev_warn(nn->dp.dev, 3939 "Bad RSS config, defaulting to Toeplitz hash\n"); 3940 func_bit = ETH_RSS_HASH_TOP_BIT; 3941 } 3942 nn->rss_hfunc = 1 << func_bit; 3943 3944 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3945 3946 nfp_net_rss_init_itbl(nn); 3947 3948 /* Enable IPv4/IPv6 TCP by default */ 3949 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3950 NFP_NET_CFG_RSS_IPV6_TCP | 3951 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3952 NFP_NET_CFG_RSS_MASK; 3953 } 3954 3955 /** 3956 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3957 * @nn: NFP Net device to reconfigure 3958 */ 3959 static void nfp_net_irqmod_init(struct nfp_net *nn) 3960 { 3961 nn->rx_coalesce_usecs = 50; 3962 nn->rx_coalesce_max_frames = 64; 3963 nn->tx_coalesce_usecs = 50; 3964 nn->tx_coalesce_max_frames = 64; 3965 } 3966 3967 static void nfp_net_netdev_init(struct nfp_net *nn) 3968 { 3969 struct net_device *netdev = nn->dp.netdev; 3970 3971 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3972 3973 netdev->mtu = nn->dp.mtu; 3974 3975 /* Advertise/enable offloads based on capabilities 3976 * 3977 * Note: netdev->features show the currently enabled features 3978 * and netdev->hw_features advertises which features are 3979 * supported. By default we enable most features. 3980 */ 3981 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3982 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3983 3984 netdev->hw_features = NETIF_F_HIGHDMA; 3985 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3986 netdev->hw_features |= NETIF_F_RXCSUM; 3987 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3988 } 3989 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3990 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3991 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3992 } 3993 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3994 netdev->hw_features |= NETIF_F_SG; 3995 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3996 } 3997 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3998 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3999 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4000 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 4001 NFP_NET_CFG_CTRL_LSO; 4002 } 4003 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 4004 netdev->hw_features |= NETIF_F_RXHASH; 4005 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 4006 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4007 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 4008 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 4009 } 4010 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 4011 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 4012 netdev->hw_features |= NETIF_F_GSO_GRE; 4013 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 4014 } 4015 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 4016 netdev->hw_enc_features = netdev->hw_features; 4017 4018 netdev->vlan_features = netdev->hw_features; 4019 4020 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 4021 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4022 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 4023 } 4024 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 4025 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4026 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 4027 } else { 4028 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4029 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 4030 } 4031 } 4032 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 4033 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4034 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 4035 } 4036 4037 netdev->features = netdev->hw_features; 4038 4039 if (nfp_app_has_tc(nn->app) && nn->port) 4040 netdev->hw_features |= NETIF_F_HW_TC; 4041 4042 /* Advertise but disable TSO by default. */ 4043 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 4044 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 4045 4046 /* Finalise the netdev setup */ 4047 netdev->netdev_ops = &nfp_net_netdev_ops; 4048 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 4049 4050 /* MTU range: 68 - hw-specific max */ 4051 netdev->min_mtu = ETH_MIN_MTU; 4052 netdev->max_mtu = nn->max_mtu; 4053 4054 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 4055 4056 netif_carrier_off(netdev); 4057 4058 nfp_net_set_ethtool_ops(netdev); 4059 } 4060 4061 static int nfp_net_read_caps(struct nfp_net *nn) 4062 { 4063 /* Get some of the read-only fields from the BAR */ 4064 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 4065 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 4066 4067 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4068 * we allow use of non-chained metadata if RSS(v1) is the only 4069 * advertised capability requiring metadata. 4070 */ 4071 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4072 !nn->dp.netdev || 4073 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4074 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4075 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4076 * it has the same meaning as RSSv2. 4077 */ 4078 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4079 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4080 4081 /* Determine RX packet/metadata boundary offset */ 4082 if (nn->fw_ver.major >= 2) { 4083 u32 reg; 4084 4085 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4086 if (reg > NFP_NET_MAX_PREPEND) { 4087 nn_err(nn, "Invalid rx offset: %d\n", reg); 4088 return -EINVAL; 4089 } 4090 nn->dp.rx_offset = reg; 4091 } else { 4092 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4093 } 4094 4095 /* For control vNICs mask out the capabilities app doesn't want. */ 4096 if (!nn->dp.netdev) 4097 nn->cap &= nn->app->type->ctrl_cap_mask; 4098 4099 return 0; 4100 } 4101 4102 /** 4103 * nfp_net_init() - Initialise/finalise the nfp_net structure 4104 * @nn: NFP Net device structure 4105 * 4106 * Return: 0 on success or negative errno on error. 4107 */ 4108 int nfp_net_init(struct nfp_net *nn) 4109 { 4110 int err; 4111 4112 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4113 4114 err = nfp_net_read_caps(nn); 4115 if (err) 4116 return err; 4117 4118 /* Set default MTU and Freelist buffer size */ 4119 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4120 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 4121 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4122 nn->dp.mtu = nn->max_mtu; 4123 } else { 4124 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4125 } 4126 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4127 4128 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4129 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4130 4131 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4132 nfp_net_rss_init(nn); 4133 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4134 NFP_NET_CFG_CTRL_RSS; 4135 } 4136 4137 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4138 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4139 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4140 4141 /* Allow IRQ moderation, if supported */ 4142 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4143 nfp_net_irqmod_init(nn); 4144 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4145 } 4146 4147 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4148 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4149 4150 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4151 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4152 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4153 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4154 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4155 NFP_NET_CFG_UPDATE_GEN); 4156 if (err) 4157 return err; 4158 4159 if (nn->dp.netdev) { 4160 nfp_net_netdev_init(nn); 4161 4162 err = nfp_ccm_mbox_init(nn); 4163 if (err) 4164 return err; 4165 4166 err = nfp_net_tls_init(nn); 4167 if (err) 4168 goto err_clean_mbox; 4169 } 4170 4171 nfp_net_vecs_init(nn); 4172 4173 if (!nn->dp.netdev) 4174 return 0; 4175 return register_netdev(nn->dp.netdev); 4176 4177 err_clean_mbox: 4178 nfp_ccm_mbox_clean(nn); 4179 return err; 4180 } 4181 4182 /** 4183 * nfp_net_clean() - Undo what nfp_net_init() did. 4184 * @nn: NFP Net device structure 4185 */ 4186 void nfp_net_clean(struct nfp_net *nn) 4187 { 4188 if (!nn->dp.netdev) 4189 return; 4190 4191 unregister_netdev(nn->dp.netdev); 4192 nfp_ccm_mbox_clean(nn); 4193 nfp_net_reconfig_wait_posted(nn); 4194 } 4195