xref: /openbmc/linux/drivers/net/ethernet/netronome/nfp/nfd3/dp.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/netdevice.h>
6 
7 #include "../nfp_app.h"
8 #include "../nfp_net.h"
9 #include "../nfp_net_dp.h"
10 #include "../nfp_net_xsk.h"
11 #include "../crypto/crypto.h"
12 #include "../crypto/fw.h"
13 #include "nfd3.h"
14 
15 /* Transmit processing
16  *
17  * One queue controller peripheral queue is used for transmit.  The
18  * driver en-queues packets for transmit by advancing the write
19  * pointer.  The device indicates that packets have transmitted by
20  * advancing the read pointer.  The driver maintains a local copy of
21  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
22  * keeps @wr_p in sync with the queue controller write pointer and can
23  * determine how many packets have been transmitted by comparing its
24  * copy of the read pointer @rd_p with the read pointer maintained by
25  * the queue controller peripheral.
26  */
27 
28 /* Wrappers for deciding when to stop and restart TX queues */
29 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
30 {
31 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
32 }
33 
34 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
35 {
36 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
37 }
38 
39 /**
40  * nfp_nfd3_tx_ring_stop() - stop tx ring
41  * @nd_q:    netdev queue
42  * @tx_ring: driver tx queue structure
43  *
44  * Safely stop TX ring.  Remember that while we are running .start_xmit()
45  * someone else may be cleaning the TX ring completions so we need to be
46  * extra careful here.
47  */
48 static void
49 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
50 		      struct nfp_net_tx_ring *tx_ring)
51 {
52 	netif_tx_stop_queue(nd_q);
53 
54 	/* We can race with the TX completion out of NAPI so recheck */
55 	smp_mb();
56 	if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
57 		netif_tx_start_queue(nd_q);
58 }
59 
60 /**
61  * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
62  * @r_vec: per-ring structure
63  * @txbuf: Pointer to driver soft TX descriptor
64  * @txd: Pointer to HW TX descriptor
65  * @skb: Pointer to SKB
66  * @md_bytes: Prepend length
67  *
68  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
69  * Return error on packet header greater than maximum supported LSO header size.
70  */
71 static void
72 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
73 		struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
74 {
75 	u32 l3_offset, l4_offset, hdrlen;
76 	u16 mss;
77 
78 	if (!skb_is_gso(skb))
79 		return;
80 
81 	if (!skb->encapsulation) {
82 		l3_offset = skb_network_offset(skb);
83 		l4_offset = skb_transport_offset(skb);
84 		hdrlen = skb_tcp_all_headers(skb);
85 	} else {
86 		l3_offset = skb_inner_network_offset(skb);
87 		l4_offset = skb_inner_transport_offset(skb);
88 		hdrlen = skb_inner_tcp_all_headers(skb);
89 	}
90 
91 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
92 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
93 
94 	mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
95 	txd->l3_offset = l3_offset - md_bytes;
96 	txd->l4_offset = l4_offset - md_bytes;
97 	txd->lso_hdrlen = hdrlen - md_bytes;
98 	txd->mss = cpu_to_le16(mss);
99 	txd->flags |= NFD3_DESC_TX_LSO;
100 
101 	u64_stats_update_begin(&r_vec->tx_sync);
102 	r_vec->tx_lso++;
103 	u64_stats_update_end(&r_vec->tx_sync);
104 }
105 
106 /**
107  * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
108  * @dp:  NFP Net data path struct
109  * @r_vec: per-ring structure
110  * @txbuf: Pointer to driver soft TX descriptor
111  * @txd: Pointer to TX descriptor
112  * @skb: Pointer to SKB
113  *
114  * This function sets the TX checksum flags in the TX descriptor based
115  * on the configuration and the protocol of the packet to be transmitted.
116  */
117 static void
118 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
119 		 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
120 		 struct sk_buff *skb)
121 {
122 	struct ipv6hdr *ipv6h;
123 	struct iphdr *iph;
124 	u8 l4_hdr;
125 
126 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
127 		return;
128 
129 	if (skb->ip_summed != CHECKSUM_PARTIAL)
130 		return;
131 
132 	txd->flags |= NFD3_DESC_TX_CSUM;
133 	if (skb->encapsulation)
134 		txd->flags |= NFD3_DESC_TX_ENCAP;
135 
136 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
137 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
138 
139 	if (iph->version == 4) {
140 		txd->flags |= NFD3_DESC_TX_IP4_CSUM;
141 		l4_hdr = iph->protocol;
142 	} else if (ipv6h->version == 6) {
143 		l4_hdr = ipv6h->nexthdr;
144 	} else {
145 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
146 		return;
147 	}
148 
149 	switch (l4_hdr) {
150 	case IPPROTO_TCP:
151 		txd->flags |= NFD3_DESC_TX_TCP_CSUM;
152 		break;
153 	case IPPROTO_UDP:
154 		txd->flags |= NFD3_DESC_TX_UDP_CSUM;
155 		break;
156 	default:
157 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
158 		return;
159 	}
160 
161 	u64_stats_update_begin(&r_vec->tx_sync);
162 	if (skb->encapsulation)
163 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
164 	else
165 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
166 	u64_stats_update_end(&r_vec->tx_sync);
167 }
168 
169 static int nfp_nfd3_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
170 {
171 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
172 	unsigned char *data;
173 	u32 meta_id = 0;
174 	int md_bytes;
175 
176 	if (likely(!md_dst && !tls_handle))
177 		return 0;
178 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
179 		if (!tls_handle)
180 			return 0;
181 		md_dst = NULL;
182 	}
183 
184 	md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
185 
186 	if (unlikely(skb_cow_head(skb, md_bytes)))
187 		return -ENOMEM;
188 
189 	meta_id = 0;
190 	data = skb_push(skb, md_bytes) + md_bytes;
191 	if (md_dst) {
192 		data -= 4;
193 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
194 		meta_id = NFP_NET_META_PORTID;
195 	}
196 	if (tls_handle) {
197 		/* conn handle is opaque, we just use u64 to be able to quickly
198 		 * compare it to zero
199 		 */
200 		data -= 8;
201 		memcpy(data, &tls_handle, sizeof(tls_handle));
202 		meta_id <<= NFP_NET_META_FIELD_SIZE;
203 		meta_id |= NFP_NET_META_CONN_HANDLE;
204 	}
205 
206 	data -= 4;
207 	put_unaligned_be32(meta_id, data);
208 
209 	return md_bytes;
210 }
211 
212 /**
213  * nfp_nfd3_tx() - Main transmit entry point
214  * @skb:    SKB to transmit
215  * @netdev: netdev structure
216  *
217  * Return: NETDEV_TX_OK on success.
218  */
219 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
220 {
221 	struct nfp_net *nn = netdev_priv(netdev);
222 	int f, nr_frags, wr_idx, md_bytes;
223 	struct nfp_net_tx_ring *tx_ring;
224 	struct nfp_net_r_vector *r_vec;
225 	struct nfp_nfd3_tx_buf *txbuf;
226 	struct nfp_nfd3_tx_desc *txd;
227 	struct netdev_queue *nd_q;
228 	const skb_frag_t *frag;
229 	struct nfp_net_dp *dp;
230 	dma_addr_t dma_addr;
231 	unsigned int fsize;
232 	u64 tls_handle = 0;
233 	u16 qidx;
234 
235 	dp = &nn->dp;
236 	qidx = skb_get_queue_mapping(skb);
237 	tx_ring = &dp->tx_rings[qidx];
238 	r_vec = tx_ring->r_vec;
239 
240 	nr_frags = skb_shinfo(skb)->nr_frags;
241 
242 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
243 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
244 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
245 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
246 		netif_tx_stop_queue(nd_q);
247 		nfp_net_tx_xmit_more_flush(tx_ring);
248 		u64_stats_update_begin(&r_vec->tx_sync);
249 		r_vec->tx_busy++;
250 		u64_stats_update_end(&r_vec->tx_sync);
251 		return NETDEV_TX_BUSY;
252 	}
253 
254 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
255 	if (unlikely(!skb)) {
256 		nfp_net_tx_xmit_more_flush(tx_ring);
257 		return NETDEV_TX_OK;
258 	}
259 
260 	md_bytes = nfp_nfd3_prep_tx_meta(skb, tls_handle);
261 	if (unlikely(md_bytes < 0))
262 		goto err_flush;
263 
264 	/* Start with the head skbuf */
265 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
266 				  DMA_TO_DEVICE);
267 	if (dma_mapping_error(dp->dev, dma_addr))
268 		goto err_dma_err;
269 
270 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
271 
272 	/* Stash the soft descriptor of the head then initialize it */
273 	txbuf = &tx_ring->txbufs[wr_idx];
274 	txbuf->skb = skb;
275 	txbuf->dma_addr = dma_addr;
276 	txbuf->fidx = -1;
277 	txbuf->pkt_cnt = 1;
278 	txbuf->real_len = skb->len;
279 
280 	/* Build TX descriptor */
281 	txd = &tx_ring->txds[wr_idx];
282 	txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
283 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
284 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
285 	txd->data_len = cpu_to_le16(skb->len);
286 
287 	txd->flags = 0;
288 	txd->mss = 0;
289 	txd->lso_hdrlen = 0;
290 
291 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
292 	nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
293 	nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
294 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
295 		txd->flags |= NFD3_DESC_TX_VLAN;
296 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
297 	}
298 
299 	/* Gather DMA */
300 	if (nr_frags > 0) {
301 		__le64 second_half;
302 
303 		/* all descs must match except for in addr, length and eop */
304 		second_half = txd->vals8[1];
305 
306 		for (f = 0; f < nr_frags; f++) {
307 			frag = &skb_shinfo(skb)->frags[f];
308 			fsize = skb_frag_size(frag);
309 
310 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
311 						    fsize, DMA_TO_DEVICE);
312 			if (dma_mapping_error(dp->dev, dma_addr))
313 				goto err_unmap;
314 
315 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
316 			tx_ring->txbufs[wr_idx].skb = skb;
317 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
318 			tx_ring->txbufs[wr_idx].fidx = f;
319 
320 			txd = &tx_ring->txds[wr_idx];
321 			txd->dma_len = cpu_to_le16(fsize);
322 			nfp_desc_set_dma_addr_40b(txd, dma_addr);
323 			txd->offset_eop = md_bytes |
324 				((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
325 			txd->vals8[1] = second_half;
326 		}
327 
328 		u64_stats_update_begin(&r_vec->tx_sync);
329 		r_vec->tx_gather++;
330 		u64_stats_update_end(&r_vec->tx_sync);
331 	}
332 
333 	skb_tx_timestamp(skb);
334 
335 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
336 
337 	tx_ring->wr_p += nr_frags + 1;
338 	if (nfp_nfd3_tx_ring_should_stop(tx_ring))
339 		nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
340 
341 	tx_ring->wr_ptr_add += nr_frags + 1;
342 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
343 		nfp_net_tx_xmit_more_flush(tx_ring);
344 
345 	return NETDEV_TX_OK;
346 
347 err_unmap:
348 	while (--f >= 0) {
349 		frag = &skb_shinfo(skb)->frags[f];
350 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
351 			       skb_frag_size(frag), DMA_TO_DEVICE);
352 		tx_ring->txbufs[wr_idx].skb = NULL;
353 		tx_ring->txbufs[wr_idx].dma_addr = 0;
354 		tx_ring->txbufs[wr_idx].fidx = -2;
355 		wr_idx = wr_idx - 1;
356 		if (wr_idx < 0)
357 			wr_idx += tx_ring->cnt;
358 	}
359 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
360 			 skb_headlen(skb), DMA_TO_DEVICE);
361 	tx_ring->txbufs[wr_idx].skb = NULL;
362 	tx_ring->txbufs[wr_idx].dma_addr = 0;
363 	tx_ring->txbufs[wr_idx].fidx = -2;
364 err_dma_err:
365 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
366 err_flush:
367 	nfp_net_tx_xmit_more_flush(tx_ring);
368 	u64_stats_update_begin(&r_vec->tx_sync);
369 	r_vec->tx_errors++;
370 	u64_stats_update_end(&r_vec->tx_sync);
371 	nfp_net_tls_tx_undo(skb, tls_handle);
372 	dev_kfree_skb_any(skb);
373 	return NETDEV_TX_OK;
374 }
375 
376 /**
377  * nfp_nfd3_tx_complete() - Handled completed TX packets
378  * @tx_ring:	TX ring structure
379  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
380  */
381 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
382 {
383 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
384 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
385 	u32 done_pkts = 0, done_bytes = 0;
386 	struct netdev_queue *nd_q;
387 	u32 qcp_rd_p;
388 	int todo;
389 
390 	if (tx_ring->wr_p == tx_ring->rd_p)
391 		return;
392 
393 	/* Work out how many descriptors have been transmitted */
394 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
395 
396 	if (qcp_rd_p == tx_ring->qcp_rd_p)
397 		return;
398 
399 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
400 
401 	while (todo--) {
402 		const skb_frag_t *frag;
403 		struct nfp_nfd3_tx_buf *tx_buf;
404 		struct sk_buff *skb;
405 		int fidx, nr_frags;
406 		int idx;
407 
408 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
409 		tx_buf = &tx_ring->txbufs[idx];
410 
411 		skb = tx_buf->skb;
412 		if (!skb)
413 			continue;
414 
415 		nr_frags = skb_shinfo(skb)->nr_frags;
416 		fidx = tx_buf->fidx;
417 
418 		if (fidx == -1) {
419 			/* unmap head */
420 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
421 					 skb_headlen(skb), DMA_TO_DEVICE);
422 
423 			done_pkts += tx_buf->pkt_cnt;
424 			done_bytes += tx_buf->real_len;
425 		} else {
426 			/* unmap fragment */
427 			frag = &skb_shinfo(skb)->frags[fidx];
428 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
429 				       skb_frag_size(frag), DMA_TO_DEVICE);
430 		}
431 
432 		/* check for last gather fragment */
433 		if (fidx == nr_frags - 1)
434 			napi_consume_skb(skb, budget);
435 
436 		tx_buf->dma_addr = 0;
437 		tx_buf->skb = NULL;
438 		tx_buf->fidx = -2;
439 	}
440 
441 	tx_ring->qcp_rd_p = qcp_rd_p;
442 
443 	u64_stats_update_begin(&r_vec->tx_sync);
444 	r_vec->tx_bytes += done_bytes;
445 	r_vec->tx_pkts += done_pkts;
446 	u64_stats_update_end(&r_vec->tx_sync);
447 
448 	if (!dp->netdev)
449 		return;
450 
451 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
452 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
453 	if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
454 		/* Make sure TX thread will see updated tx_ring->rd_p */
455 		smp_mb();
456 
457 		if (unlikely(netif_tx_queue_stopped(nd_q)))
458 			netif_tx_wake_queue(nd_q);
459 	}
460 
461 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
462 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
463 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
464 }
465 
466 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
467 {
468 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
469 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
470 	u32 done_pkts = 0, done_bytes = 0;
471 	bool done_all;
472 	int idx, todo;
473 	u32 qcp_rd_p;
474 
475 	/* Work out how many descriptors have been transmitted */
476 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
477 
478 	if (qcp_rd_p == tx_ring->qcp_rd_p)
479 		return true;
480 
481 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
482 
483 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
484 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
485 
486 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
487 
488 	done_pkts = todo;
489 	while (todo--) {
490 		idx = D_IDX(tx_ring, tx_ring->rd_p);
491 		tx_ring->rd_p++;
492 
493 		done_bytes += tx_ring->txbufs[idx].real_len;
494 	}
495 
496 	u64_stats_update_begin(&r_vec->tx_sync);
497 	r_vec->tx_bytes += done_bytes;
498 	r_vec->tx_pkts += done_pkts;
499 	u64_stats_update_end(&r_vec->tx_sync);
500 
501 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
502 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
503 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
504 
505 	return done_all;
506 }
507 
508 /* Receive processing
509  */
510 
511 static void *
512 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
513 {
514 	void *frag;
515 
516 	if (!dp->xdp_prog) {
517 		frag = napi_alloc_frag(dp->fl_bufsz);
518 		if (unlikely(!frag))
519 			return NULL;
520 	} else {
521 		struct page *page;
522 
523 		page = dev_alloc_page();
524 		if (unlikely(!page))
525 			return NULL;
526 		frag = page_address(page);
527 	}
528 
529 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
530 	if (dma_mapping_error(dp->dev, *dma_addr)) {
531 		nfp_net_free_frag(frag, dp->xdp_prog);
532 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
533 		return NULL;
534 	}
535 
536 	return frag;
537 }
538 
539 /**
540  * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
541  * @dp:		NFP Net data path struct
542  * @rx_ring:	RX ring structure
543  * @frag:	page fragment buffer
544  * @dma_addr:	DMA address of skb mapping
545  */
546 static void
547 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
548 		     struct nfp_net_rx_ring *rx_ring,
549 		     void *frag, dma_addr_t dma_addr)
550 {
551 	unsigned int wr_idx;
552 
553 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
554 
555 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
556 
557 	/* Stash SKB and DMA address away */
558 	rx_ring->rxbufs[wr_idx].frag = frag;
559 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
560 
561 	/* Fill freelist descriptor */
562 	rx_ring->rxds[wr_idx].fld.reserved = 0;
563 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
564 	/* DMA address is expanded to 48-bit width in freelist for NFP3800,
565 	 * so the *_48b macro is used accordingly, it's also OK to fill
566 	 * a 40-bit address since the top 8 bits are get set to 0.
567 	 */
568 	nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
569 				  dma_addr + dp->rx_dma_off);
570 
571 	rx_ring->wr_p++;
572 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
573 		/* Update write pointer of the freelist queue. Make
574 		 * sure all writes are flushed before telling the hardware.
575 		 */
576 		wmb();
577 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
578 	}
579 }
580 
581 /**
582  * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
583  * @dp:	     NFP Net data path struct
584  * @rx_ring: RX ring to fill
585  */
586 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
587 				    struct nfp_net_rx_ring *rx_ring)
588 {
589 	unsigned int i;
590 
591 	if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
592 		return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
593 
594 	for (i = 0; i < rx_ring->cnt - 1; i++)
595 		nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
596 				     rx_ring->rxbufs[i].dma_addr);
597 }
598 
599 /**
600  * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
601  * @flags: RX descriptor flags field in CPU byte order
602  */
603 static int nfp_nfd3_rx_csum_has_errors(u16 flags)
604 {
605 	u16 csum_all_checked, csum_all_ok;
606 
607 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
608 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
609 
610 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
611 }
612 
613 /**
614  * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
615  * @dp:  NFP Net data path struct
616  * @r_vec: per-ring structure
617  * @rxd: Pointer to RX descriptor
618  * @meta: Parsed metadata prepend
619  * @skb: Pointer to SKB
620  */
621 void
622 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
623 		 const struct nfp_net_rx_desc *rxd,
624 		 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
625 {
626 	skb_checksum_none_assert(skb);
627 
628 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
629 		return;
630 
631 	if (meta->csum_type) {
632 		skb->ip_summed = meta->csum_type;
633 		skb->csum = meta->csum;
634 		u64_stats_update_begin(&r_vec->rx_sync);
635 		r_vec->hw_csum_rx_complete++;
636 		u64_stats_update_end(&r_vec->rx_sync);
637 		return;
638 	}
639 
640 	if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
641 		u64_stats_update_begin(&r_vec->rx_sync);
642 		r_vec->hw_csum_rx_error++;
643 		u64_stats_update_end(&r_vec->rx_sync);
644 		return;
645 	}
646 
647 	/* Assume that the firmware will never report inner CSUM_OK unless outer
648 	 * L4 headers were successfully parsed. FW will always report zero UDP
649 	 * checksum as CSUM_OK.
650 	 */
651 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
652 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
653 		__skb_incr_checksum_unnecessary(skb);
654 		u64_stats_update_begin(&r_vec->rx_sync);
655 		r_vec->hw_csum_rx_ok++;
656 		u64_stats_update_end(&r_vec->rx_sync);
657 	}
658 
659 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
660 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
661 		__skb_incr_checksum_unnecessary(skb);
662 		u64_stats_update_begin(&r_vec->rx_sync);
663 		r_vec->hw_csum_rx_inner_ok++;
664 		u64_stats_update_end(&r_vec->rx_sync);
665 	}
666 }
667 
668 static void
669 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
670 		  unsigned int type, __be32 *hash)
671 {
672 	if (!(netdev->features & NETIF_F_RXHASH))
673 		return;
674 
675 	switch (type) {
676 	case NFP_NET_RSS_IPV4:
677 	case NFP_NET_RSS_IPV6:
678 	case NFP_NET_RSS_IPV6_EX:
679 		meta->hash_type = PKT_HASH_TYPE_L3;
680 		break;
681 	default:
682 		meta->hash_type = PKT_HASH_TYPE_L4;
683 		break;
684 	}
685 
686 	meta->hash = get_unaligned_be32(hash);
687 }
688 
689 static void
690 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
691 		       void *data, struct nfp_net_rx_desc *rxd)
692 {
693 	struct nfp_net_rx_hash *rx_hash = data;
694 
695 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
696 		return;
697 
698 	nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
699 			  &rx_hash->hash);
700 }
701 
702 bool
703 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
704 		    void *data, void *pkt, unsigned int pkt_len, int meta_len)
705 {
706 	u32 meta_info;
707 
708 	meta_info = get_unaligned_be32(data);
709 	data += 4;
710 
711 	while (meta_info) {
712 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
713 		case NFP_NET_META_HASH:
714 			meta_info >>= NFP_NET_META_FIELD_SIZE;
715 			nfp_nfd3_set_hash(netdev, meta,
716 					  meta_info & NFP_NET_META_FIELD_MASK,
717 					  (__be32 *)data);
718 			data += 4;
719 			break;
720 		case NFP_NET_META_MARK:
721 			meta->mark = get_unaligned_be32(data);
722 			data += 4;
723 			break;
724 		case NFP_NET_META_PORTID:
725 			meta->portid = get_unaligned_be32(data);
726 			data += 4;
727 			break;
728 		case NFP_NET_META_CSUM:
729 			meta->csum_type = CHECKSUM_COMPLETE;
730 			meta->csum =
731 				(__force __wsum)__get_unaligned_cpu32(data);
732 			data += 4;
733 			break;
734 		case NFP_NET_META_RESYNC_INFO:
735 			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
736 						      pkt_len))
737 				return false;
738 			data += sizeof(struct nfp_net_tls_resync_req);
739 			break;
740 		default:
741 			return true;
742 		}
743 
744 		meta_info >>= NFP_NET_META_FIELD_SIZE;
745 	}
746 
747 	return data != pkt;
748 }
749 
750 static void
751 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
752 		 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
753 		 struct sk_buff *skb)
754 {
755 	u64_stats_update_begin(&r_vec->rx_sync);
756 	r_vec->rx_drops++;
757 	/* If we have both skb and rxbuf the replacement buffer allocation
758 	 * must have failed, count this as an alloc failure.
759 	 */
760 	if (skb && rxbuf)
761 		r_vec->rx_replace_buf_alloc_fail++;
762 	u64_stats_update_end(&r_vec->rx_sync);
763 
764 	/* skb is build based on the frag, free_skb() would free the frag
765 	 * so to be able to reuse it we need an extra ref.
766 	 */
767 	if (skb && rxbuf && skb->head == rxbuf->frag)
768 		page_ref_inc(virt_to_head_page(rxbuf->frag));
769 	if (rxbuf)
770 		nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
771 	if (skb)
772 		dev_kfree_skb_any(skb);
773 }
774 
775 static bool
776 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
777 		    struct nfp_net_tx_ring *tx_ring,
778 		    struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
779 		    unsigned int pkt_len, bool *completed)
780 {
781 	unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
782 	struct nfp_nfd3_tx_buf *txbuf;
783 	struct nfp_nfd3_tx_desc *txd;
784 	int wr_idx;
785 
786 	/* Reject if xdp_adjust_tail grow packet beyond DMA area */
787 	if (pkt_len + dma_off > dma_map_sz)
788 		return false;
789 
790 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
791 		if (!*completed) {
792 			nfp_nfd3_xdp_complete(tx_ring);
793 			*completed = true;
794 		}
795 
796 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
797 			nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
798 					 NULL);
799 			return false;
800 		}
801 	}
802 
803 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
804 
805 	/* Stash the soft descriptor of the head then initialize it */
806 	txbuf = &tx_ring->txbufs[wr_idx];
807 
808 	nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
809 
810 	txbuf->frag = rxbuf->frag;
811 	txbuf->dma_addr = rxbuf->dma_addr;
812 	txbuf->fidx = -1;
813 	txbuf->pkt_cnt = 1;
814 	txbuf->real_len = pkt_len;
815 
816 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
817 				   pkt_len, DMA_BIDIRECTIONAL);
818 
819 	/* Build TX descriptor */
820 	txd = &tx_ring->txds[wr_idx];
821 	txd->offset_eop = NFD3_DESC_TX_EOP;
822 	txd->dma_len = cpu_to_le16(pkt_len);
823 	nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
824 	txd->data_len = cpu_to_le16(pkt_len);
825 
826 	txd->flags = 0;
827 	txd->mss = 0;
828 	txd->lso_hdrlen = 0;
829 
830 	tx_ring->wr_p++;
831 	tx_ring->wr_ptr_add++;
832 	return true;
833 }
834 
835 /**
836  * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
837  * @rx_ring:   RX ring to receive from
838  * @budget:    NAPI budget
839  *
840  * Note, this function is separated out from the napi poll function to
841  * more cleanly separate packet receive code from other bookkeeping
842  * functions performed in the napi poll function.
843  *
844  * Return: Number of packets received.
845  */
846 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
847 {
848 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
849 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
850 	struct nfp_net_tx_ring *tx_ring;
851 	struct bpf_prog *xdp_prog;
852 	bool xdp_tx_cmpl = false;
853 	unsigned int true_bufsz;
854 	struct sk_buff *skb;
855 	int pkts_polled = 0;
856 	struct xdp_buff xdp;
857 	int idx;
858 
859 	xdp_prog = READ_ONCE(dp->xdp_prog);
860 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
861 	xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
862 		      &rx_ring->xdp_rxq);
863 	tx_ring = r_vec->xdp_ring;
864 
865 	while (pkts_polled < budget) {
866 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
867 		struct nfp_net_rx_buf *rxbuf;
868 		struct nfp_net_rx_desc *rxd;
869 		struct nfp_meta_parsed meta;
870 		bool redir_egress = false;
871 		struct net_device *netdev;
872 		dma_addr_t new_dma_addr;
873 		u32 meta_len_xdp = 0;
874 		void *new_frag;
875 
876 		idx = D_IDX(rx_ring, rx_ring->rd_p);
877 
878 		rxd = &rx_ring->rxds[idx];
879 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
880 			break;
881 
882 		/* Memory barrier to ensure that we won't do other reads
883 		 * before the DD bit.
884 		 */
885 		dma_rmb();
886 
887 		memset(&meta, 0, sizeof(meta));
888 
889 		rx_ring->rd_p++;
890 		pkts_polled++;
891 
892 		rxbuf =	&rx_ring->rxbufs[idx];
893 		/*         < meta_len >
894 		 *  <-- [rx_offset] -->
895 		 *  ---------------------------------------------------------
896 		 * | [XX] |  metadata  |             packet           | XXXX |
897 		 *  ---------------------------------------------------------
898 		 *         <---------------- data_len --------------->
899 		 *
900 		 * The rx_offset is fixed for all packets, the meta_len can vary
901 		 * on a packet by packet basis. If rx_offset is set to zero
902 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
903 		 * buffer and is immediately followed by the packet (no [XX]).
904 		 */
905 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
906 		data_len = le16_to_cpu(rxd->rxd.data_len);
907 		pkt_len = data_len - meta_len;
908 
909 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
910 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
911 			pkt_off += meta_len;
912 		else
913 			pkt_off += dp->rx_offset;
914 		meta_off = pkt_off - meta_len;
915 
916 		/* Stats update */
917 		u64_stats_update_begin(&r_vec->rx_sync);
918 		r_vec->rx_pkts++;
919 		r_vec->rx_bytes += pkt_len;
920 		u64_stats_update_end(&r_vec->rx_sync);
921 
922 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
923 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
924 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
925 				   meta_len);
926 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
927 			continue;
928 		}
929 
930 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
931 					data_len);
932 
933 		if (!dp->chained_metadata_format) {
934 			nfp_nfd3_set_hash_desc(dp->netdev, &meta,
935 					       rxbuf->frag + meta_off, rxd);
936 		} else if (meta_len) {
937 			if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
938 							 rxbuf->frag + meta_off,
939 							 rxbuf->frag + pkt_off,
940 							 pkt_len, meta_len))) {
941 				nn_dp_warn(dp, "invalid RX packet metadata\n");
942 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
943 						 NULL);
944 				continue;
945 			}
946 		}
947 
948 		if (xdp_prog && !meta.portid) {
949 			void *orig_data = rxbuf->frag + pkt_off;
950 			unsigned int dma_off;
951 			int act;
952 
953 			xdp_prepare_buff(&xdp,
954 					 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
955 					 pkt_off - NFP_NET_RX_BUF_HEADROOM,
956 					 pkt_len, true);
957 
958 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
959 
960 			pkt_len = xdp.data_end - xdp.data;
961 			pkt_off += xdp.data - orig_data;
962 
963 			switch (act) {
964 			case XDP_PASS:
965 				meta_len_xdp = xdp.data - xdp.data_meta;
966 				break;
967 			case XDP_TX:
968 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
969 				if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
970 								  tx_ring,
971 								  rxbuf,
972 								  dma_off,
973 								  pkt_len,
974 								  &xdp_tx_cmpl)))
975 					trace_xdp_exception(dp->netdev,
976 							    xdp_prog, act);
977 				continue;
978 			default:
979 				bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
980 				fallthrough;
981 			case XDP_ABORTED:
982 				trace_xdp_exception(dp->netdev, xdp_prog, act);
983 				fallthrough;
984 			case XDP_DROP:
985 				nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
986 						     rxbuf->dma_addr);
987 				continue;
988 			}
989 		}
990 
991 		if (likely(!meta.portid)) {
992 			netdev = dp->netdev;
993 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
994 			struct nfp_net *nn = netdev_priv(dp->netdev);
995 
996 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
997 					    pkt_len);
998 			nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
999 					     rxbuf->dma_addr);
1000 			continue;
1001 		} else {
1002 			struct nfp_net *nn;
1003 
1004 			nn = netdev_priv(dp->netdev);
1005 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1006 						 &redir_egress);
1007 			if (unlikely(!netdev)) {
1008 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1009 						 NULL);
1010 				continue;
1011 			}
1012 
1013 			if (nfp_netdev_is_nfp_repr(netdev))
1014 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1015 		}
1016 
1017 		skb = build_skb(rxbuf->frag, true_bufsz);
1018 		if (unlikely(!skb)) {
1019 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1020 			continue;
1021 		}
1022 		new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1023 		if (unlikely(!new_frag)) {
1024 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1025 			continue;
1026 		}
1027 
1028 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1029 
1030 		nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1031 
1032 		skb_reserve(skb, pkt_off);
1033 		skb_put(skb, pkt_len);
1034 
1035 		skb->mark = meta.mark;
1036 		skb_set_hash(skb, meta.hash, meta.hash_type);
1037 
1038 		skb_record_rx_queue(skb, rx_ring->idx);
1039 		skb->protocol = eth_type_trans(skb, netdev);
1040 
1041 		nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1042 
1043 #ifdef CONFIG_TLS_DEVICE
1044 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1045 			skb->decrypted = true;
1046 			u64_stats_update_begin(&r_vec->rx_sync);
1047 			r_vec->hw_tls_rx++;
1048 			u64_stats_update_end(&r_vec->rx_sync);
1049 		}
1050 #endif
1051 
1052 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1053 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1054 					       le16_to_cpu(rxd->rxd.vlan));
1055 		if (meta_len_xdp)
1056 			skb_metadata_set(skb, meta_len_xdp);
1057 
1058 		if (likely(!redir_egress)) {
1059 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1060 		} else {
1061 			skb->dev = netdev;
1062 			skb_reset_network_header(skb);
1063 			__skb_push(skb, ETH_HLEN);
1064 			dev_queue_xmit(skb);
1065 		}
1066 	}
1067 
1068 	if (xdp_prog) {
1069 		if (tx_ring->wr_ptr_add)
1070 			nfp_net_tx_xmit_more_flush(tx_ring);
1071 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1072 			 !xdp_tx_cmpl)
1073 			if (!nfp_nfd3_xdp_complete(tx_ring))
1074 				pkts_polled = budget;
1075 	}
1076 
1077 	return pkts_polled;
1078 }
1079 
1080 /**
1081  * nfp_nfd3_poll() - napi poll function
1082  * @napi:    NAPI structure
1083  * @budget:  NAPI budget
1084  *
1085  * Return: number of packets polled.
1086  */
1087 int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1088 {
1089 	struct nfp_net_r_vector *r_vec =
1090 		container_of(napi, struct nfp_net_r_vector, napi);
1091 	unsigned int pkts_polled = 0;
1092 
1093 	if (r_vec->tx_ring)
1094 		nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1095 	if (r_vec->rx_ring)
1096 		pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1097 
1098 	if (pkts_polled < budget)
1099 		if (napi_complete_done(napi, pkts_polled))
1100 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1101 
1102 	if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1103 		struct dim_sample dim_sample = {};
1104 		unsigned int start;
1105 		u64 pkts, bytes;
1106 
1107 		do {
1108 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
1109 			pkts = r_vec->rx_pkts;
1110 			bytes = r_vec->rx_bytes;
1111 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1112 
1113 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1114 		net_dim(&r_vec->rx_dim, dim_sample);
1115 	}
1116 
1117 	if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1118 		struct dim_sample dim_sample = {};
1119 		unsigned int start;
1120 		u64 pkts, bytes;
1121 
1122 		do {
1123 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
1124 			pkts = r_vec->tx_pkts;
1125 			bytes = r_vec->tx_bytes;
1126 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1127 
1128 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1129 		net_dim(&r_vec->tx_dim, dim_sample);
1130 	}
1131 
1132 	return pkts_polled;
1133 }
1134 
1135 /* Control device data path
1136  */
1137 
1138 bool
1139 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1140 		     struct sk_buff *skb, bool old)
1141 {
1142 	unsigned int real_len = skb->len, meta_len = 0;
1143 	struct nfp_net_tx_ring *tx_ring;
1144 	struct nfp_nfd3_tx_buf *txbuf;
1145 	struct nfp_nfd3_tx_desc *txd;
1146 	struct nfp_net_dp *dp;
1147 	dma_addr_t dma_addr;
1148 	int wr_idx;
1149 
1150 	dp = &r_vec->nfp_net->dp;
1151 	tx_ring = r_vec->tx_ring;
1152 
1153 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1154 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1155 		goto err_free;
1156 	}
1157 
1158 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1159 		u64_stats_update_begin(&r_vec->tx_sync);
1160 		r_vec->tx_busy++;
1161 		u64_stats_update_end(&r_vec->tx_sync);
1162 		if (!old)
1163 			__skb_queue_tail(&r_vec->queue, skb);
1164 		else
1165 			__skb_queue_head(&r_vec->queue, skb);
1166 		return true;
1167 	}
1168 
1169 	if (nfp_app_ctrl_has_meta(nn->app)) {
1170 		if (unlikely(skb_headroom(skb) < 8)) {
1171 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1172 			goto err_free;
1173 		}
1174 		meta_len = 8;
1175 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1176 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1177 	}
1178 
1179 	/* Start with the head skbuf */
1180 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1181 				  DMA_TO_DEVICE);
1182 	if (dma_mapping_error(dp->dev, dma_addr))
1183 		goto err_dma_warn;
1184 
1185 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1186 
1187 	/* Stash the soft descriptor of the head then initialize it */
1188 	txbuf = &tx_ring->txbufs[wr_idx];
1189 	txbuf->skb = skb;
1190 	txbuf->dma_addr = dma_addr;
1191 	txbuf->fidx = -1;
1192 	txbuf->pkt_cnt = 1;
1193 	txbuf->real_len = real_len;
1194 
1195 	/* Build TX descriptor */
1196 	txd = &tx_ring->txds[wr_idx];
1197 	txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1198 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1199 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
1200 	txd->data_len = cpu_to_le16(skb->len);
1201 
1202 	txd->flags = 0;
1203 	txd->mss = 0;
1204 	txd->lso_hdrlen = 0;
1205 
1206 	tx_ring->wr_p++;
1207 	tx_ring->wr_ptr_add++;
1208 	nfp_net_tx_xmit_more_flush(tx_ring);
1209 
1210 	return false;
1211 
1212 err_dma_warn:
1213 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1214 err_free:
1215 	u64_stats_update_begin(&r_vec->tx_sync);
1216 	r_vec->tx_errors++;
1217 	u64_stats_update_end(&r_vec->tx_sync);
1218 	dev_kfree_skb_any(skb);
1219 	return false;
1220 }
1221 
1222 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1223 {
1224 	struct sk_buff *skb;
1225 
1226 	while ((skb = __skb_dequeue(&r_vec->queue)))
1227 		if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1228 			return;
1229 }
1230 
1231 static bool
1232 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1233 {
1234 	u32 meta_type, meta_tag;
1235 
1236 	if (!nfp_app_ctrl_has_meta(nn->app))
1237 		return !meta_len;
1238 
1239 	if (meta_len != 8)
1240 		return false;
1241 
1242 	meta_type = get_unaligned_be32(data);
1243 	meta_tag = get_unaligned_be32(data + 4);
1244 
1245 	return (meta_type == NFP_NET_META_PORTID &&
1246 		meta_tag == NFP_META_PORT_ID_CTRL);
1247 }
1248 
1249 static bool
1250 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1251 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1252 {
1253 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1254 	struct nfp_net_rx_buf *rxbuf;
1255 	struct nfp_net_rx_desc *rxd;
1256 	dma_addr_t new_dma_addr;
1257 	struct sk_buff *skb;
1258 	void *new_frag;
1259 	int idx;
1260 
1261 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1262 
1263 	rxd = &rx_ring->rxds[idx];
1264 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1265 		return false;
1266 
1267 	/* Memory barrier to ensure that we won't do other reads
1268 	 * before the DD bit.
1269 	 */
1270 	dma_rmb();
1271 
1272 	rx_ring->rd_p++;
1273 
1274 	rxbuf =	&rx_ring->rxbufs[idx];
1275 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1276 	data_len = le16_to_cpu(rxd->rxd.data_len);
1277 	pkt_len = data_len - meta_len;
1278 
1279 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1280 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1281 		pkt_off += meta_len;
1282 	else
1283 		pkt_off += dp->rx_offset;
1284 	meta_off = pkt_off - meta_len;
1285 
1286 	/* Stats update */
1287 	u64_stats_update_begin(&r_vec->rx_sync);
1288 	r_vec->rx_pkts++;
1289 	r_vec->rx_bytes += pkt_len;
1290 	u64_stats_update_end(&r_vec->rx_sync);
1291 
1292 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1293 
1294 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1295 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1296 			   meta_len);
1297 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1298 		return true;
1299 	}
1300 
1301 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1302 	if (unlikely(!skb)) {
1303 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1304 		return true;
1305 	}
1306 	new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1307 	if (unlikely(!new_frag)) {
1308 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1309 		return true;
1310 	}
1311 
1312 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1313 
1314 	nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1315 
1316 	skb_reserve(skb, pkt_off);
1317 	skb_put(skb, pkt_len);
1318 
1319 	nfp_app_ctrl_rx(nn->app, skb);
1320 
1321 	return true;
1322 }
1323 
1324 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1325 {
1326 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1327 	struct nfp_net *nn = r_vec->nfp_net;
1328 	struct nfp_net_dp *dp = &nn->dp;
1329 	unsigned int budget = 512;
1330 
1331 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1332 		continue;
1333 
1334 	return budget;
1335 }
1336 
1337 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1338 {
1339 	struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1340 
1341 	spin_lock(&r_vec->lock);
1342 	nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1343 	__nfp_ctrl_tx_queued(r_vec);
1344 	spin_unlock(&r_vec->lock);
1345 
1346 	if (nfp_ctrl_rx(r_vec)) {
1347 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1348 	} else {
1349 		tasklet_schedule(&r_vec->tasklet);
1350 		nn_dp_warn(&r_vec->nfp_net->dp,
1351 			   "control message budget exceeded!\n");
1352 	}
1353 }
1354