1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/netdevice.h>
6 #include <linux/bitfield.h>
7 
8 #include "../nfp_app.h"
9 #include "../nfp_net.h"
10 #include "../nfp_net_dp.h"
11 #include "../nfp_net_xsk.h"
12 #include "../crypto/crypto.h"
13 #include "../crypto/fw.h"
14 #include "nfd3.h"
15 
16 /* Transmit processing
17  *
18  * One queue controller peripheral queue is used for transmit.  The
19  * driver en-queues packets for transmit by advancing the write
20  * pointer.  The device indicates that packets have transmitted by
21  * advancing the read pointer.  The driver maintains a local copy of
22  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
23  * keeps @wr_p in sync with the queue controller write pointer and can
24  * determine how many packets have been transmitted by comparing its
25  * copy of the read pointer @rd_p with the read pointer maintained by
26  * the queue controller peripheral.
27  */
28 
29 /* Wrappers for deciding when to stop and restart TX queues */
30 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
31 {
32 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
33 }
34 
35 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
36 {
37 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
38 }
39 
40 /**
41  * nfp_nfd3_tx_ring_stop() - stop tx ring
42  * @nd_q:    netdev queue
43  * @tx_ring: driver tx queue structure
44  *
45  * Safely stop TX ring.  Remember that while we are running .start_xmit()
46  * someone else may be cleaning the TX ring completions so we need to be
47  * extra careful here.
48  */
49 static void
50 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
51 		      struct nfp_net_tx_ring *tx_ring)
52 {
53 	netif_tx_stop_queue(nd_q);
54 
55 	/* We can race with the TX completion out of NAPI so recheck */
56 	smp_mb();
57 	if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
58 		netif_tx_start_queue(nd_q);
59 }
60 
61 /**
62  * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
63  * @r_vec: per-ring structure
64  * @txbuf: Pointer to driver soft TX descriptor
65  * @txd: Pointer to HW TX descriptor
66  * @skb: Pointer to SKB
67  * @md_bytes: Prepend length
68  *
69  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
70  * Return error on packet header greater than maximum supported LSO header size.
71  */
72 static void
73 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
74 		struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
75 {
76 	u32 l3_offset, l4_offset, hdrlen;
77 	u16 mss;
78 
79 	if (!skb_is_gso(skb))
80 		return;
81 
82 	if (!skb->encapsulation) {
83 		l3_offset = skb_network_offset(skb);
84 		l4_offset = skb_transport_offset(skb);
85 		hdrlen = skb_tcp_all_headers(skb);
86 	} else {
87 		l3_offset = skb_inner_network_offset(skb);
88 		l4_offset = skb_inner_transport_offset(skb);
89 		hdrlen = skb_inner_tcp_all_headers(skb);
90 	}
91 
92 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
93 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
94 
95 	mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
96 	txd->l3_offset = l3_offset - md_bytes;
97 	txd->l4_offset = l4_offset - md_bytes;
98 	txd->lso_hdrlen = hdrlen - md_bytes;
99 	txd->mss = cpu_to_le16(mss);
100 	txd->flags |= NFD3_DESC_TX_LSO;
101 
102 	u64_stats_update_begin(&r_vec->tx_sync);
103 	r_vec->tx_lso++;
104 	u64_stats_update_end(&r_vec->tx_sync);
105 }
106 
107 /**
108  * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
109  * @dp:  NFP Net data path struct
110  * @r_vec: per-ring structure
111  * @txbuf: Pointer to driver soft TX descriptor
112  * @txd: Pointer to TX descriptor
113  * @skb: Pointer to SKB
114  *
115  * This function sets the TX checksum flags in the TX descriptor based
116  * on the configuration and the protocol of the packet to be transmitted.
117  */
118 static void
119 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
120 		 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
121 		 struct sk_buff *skb)
122 {
123 	struct ipv6hdr *ipv6h;
124 	struct iphdr *iph;
125 	u8 l4_hdr;
126 
127 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
128 		return;
129 
130 	if (skb->ip_summed != CHECKSUM_PARTIAL)
131 		return;
132 
133 	txd->flags |= NFD3_DESC_TX_CSUM;
134 	if (skb->encapsulation)
135 		txd->flags |= NFD3_DESC_TX_ENCAP;
136 
137 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
138 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
139 
140 	if (iph->version == 4) {
141 		txd->flags |= NFD3_DESC_TX_IP4_CSUM;
142 		l4_hdr = iph->protocol;
143 	} else if (ipv6h->version == 6) {
144 		l4_hdr = ipv6h->nexthdr;
145 	} else {
146 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
147 		return;
148 	}
149 
150 	switch (l4_hdr) {
151 	case IPPROTO_TCP:
152 		txd->flags |= NFD3_DESC_TX_TCP_CSUM;
153 		break;
154 	case IPPROTO_UDP:
155 		txd->flags |= NFD3_DESC_TX_UDP_CSUM;
156 		break;
157 	default:
158 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
159 		return;
160 	}
161 
162 	u64_stats_update_begin(&r_vec->tx_sync);
163 	if (skb->encapsulation)
164 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
165 	else
166 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
167 	u64_stats_update_end(&r_vec->tx_sync);
168 }
169 
170 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb, u64 tls_handle)
171 {
172 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
173 	unsigned char *data;
174 	bool vlan_insert;
175 	u32 meta_id = 0;
176 	int md_bytes;
177 
178 	if (unlikely(md_dst || tls_handle)) {
179 		if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX))
180 			md_dst = NULL;
181 	}
182 
183 	vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2);
184 
185 	if (!(md_dst || tls_handle || vlan_insert))
186 		return 0;
187 
188 	md_bytes = sizeof(meta_id) +
189 		   !!md_dst * NFP_NET_META_PORTID_SIZE +
190 		   !!tls_handle * NFP_NET_META_CONN_HANDLE_SIZE +
191 		   vlan_insert * NFP_NET_META_VLAN_SIZE;
192 
193 	if (unlikely(skb_cow_head(skb, md_bytes)))
194 		return -ENOMEM;
195 
196 	data = skb_push(skb, md_bytes) + md_bytes;
197 	if (md_dst) {
198 		data -= NFP_NET_META_PORTID_SIZE;
199 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
200 		meta_id = NFP_NET_META_PORTID;
201 	}
202 	if (tls_handle) {
203 		/* conn handle is opaque, we just use u64 to be able to quickly
204 		 * compare it to zero
205 		 */
206 		data -= NFP_NET_META_CONN_HANDLE_SIZE;
207 		memcpy(data, &tls_handle, sizeof(tls_handle));
208 		meta_id <<= NFP_NET_META_FIELD_SIZE;
209 		meta_id |= NFP_NET_META_CONN_HANDLE;
210 	}
211 	if (vlan_insert) {
212 		data -= NFP_NET_META_VLAN_SIZE;
213 		/* data type of skb->vlan_proto is __be16
214 		 * so it fills metadata without calling put_unaligned_be16
215 		 */
216 		memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto));
217 		put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto));
218 		meta_id <<= NFP_NET_META_FIELD_SIZE;
219 		meta_id |= NFP_NET_META_VLAN;
220 	}
221 
222 	data -= sizeof(meta_id);
223 	put_unaligned_be32(meta_id, data);
224 
225 	return md_bytes;
226 }
227 
228 /**
229  * nfp_nfd3_tx() - Main transmit entry point
230  * @skb:    SKB to transmit
231  * @netdev: netdev structure
232  *
233  * Return: NETDEV_TX_OK on success.
234  */
235 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
236 {
237 	struct nfp_net *nn = netdev_priv(netdev);
238 	int f, nr_frags, wr_idx, md_bytes;
239 	struct nfp_net_tx_ring *tx_ring;
240 	struct nfp_net_r_vector *r_vec;
241 	struct nfp_nfd3_tx_buf *txbuf;
242 	struct nfp_nfd3_tx_desc *txd;
243 	struct netdev_queue *nd_q;
244 	const skb_frag_t *frag;
245 	struct nfp_net_dp *dp;
246 	dma_addr_t dma_addr;
247 	unsigned int fsize;
248 	u64 tls_handle = 0;
249 	u16 qidx;
250 
251 	dp = &nn->dp;
252 	qidx = skb_get_queue_mapping(skb);
253 	tx_ring = &dp->tx_rings[qidx];
254 	r_vec = tx_ring->r_vec;
255 
256 	nr_frags = skb_shinfo(skb)->nr_frags;
257 
258 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
259 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
260 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
261 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
262 		netif_tx_stop_queue(nd_q);
263 		nfp_net_tx_xmit_more_flush(tx_ring);
264 		u64_stats_update_begin(&r_vec->tx_sync);
265 		r_vec->tx_busy++;
266 		u64_stats_update_end(&r_vec->tx_sync);
267 		return NETDEV_TX_BUSY;
268 	}
269 
270 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
271 	if (unlikely(!skb)) {
272 		nfp_net_tx_xmit_more_flush(tx_ring);
273 		return NETDEV_TX_OK;
274 	}
275 
276 	md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle);
277 	if (unlikely(md_bytes < 0))
278 		goto err_flush;
279 
280 	/* Start with the head skbuf */
281 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
282 				  DMA_TO_DEVICE);
283 	if (dma_mapping_error(dp->dev, dma_addr))
284 		goto err_dma_err;
285 
286 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
287 
288 	/* Stash the soft descriptor of the head then initialize it */
289 	txbuf = &tx_ring->txbufs[wr_idx];
290 	txbuf->skb = skb;
291 	txbuf->dma_addr = dma_addr;
292 	txbuf->fidx = -1;
293 	txbuf->pkt_cnt = 1;
294 	txbuf->real_len = skb->len;
295 
296 	/* Build TX descriptor */
297 	txd = &tx_ring->txds[wr_idx];
298 	txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
299 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
300 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
301 	txd->data_len = cpu_to_le16(skb->len);
302 
303 	txd->flags = 0;
304 	txd->mss = 0;
305 	txd->lso_hdrlen = 0;
306 
307 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
308 	nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
309 	nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
310 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
311 		txd->flags |= NFD3_DESC_TX_VLAN;
312 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
313 	}
314 
315 	/* Gather DMA */
316 	if (nr_frags > 0) {
317 		__le64 second_half;
318 
319 		/* all descs must match except for in addr, length and eop */
320 		second_half = txd->vals8[1];
321 
322 		for (f = 0; f < nr_frags; f++) {
323 			frag = &skb_shinfo(skb)->frags[f];
324 			fsize = skb_frag_size(frag);
325 
326 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
327 						    fsize, DMA_TO_DEVICE);
328 			if (dma_mapping_error(dp->dev, dma_addr))
329 				goto err_unmap;
330 
331 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
332 			tx_ring->txbufs[wr_idx].skb = skb;
333 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
334 			tx_ring->txbufs[wr_idx].fidx = f;
335 
336 			txd = &tx_ring->txds[wr_idx];
337 			txd->dma_len = cpu_to_le16(fsize);
338 			nfp_desc_set_dma_addr_40b(txd, dma_addr);
339 			txd->offset_eop = md_bytes |
340 				((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
341 			txd->vals8[1] = second_half;
342 		}
343 
344 		u64_stats_update_begin(&r_vec->tx_sync);
345 		r_vec->tx_gather++;
346 		u64_stats_update_end(&r_vec->tx_sync);
347 	}
348 
349 	skb_tx_timestamp(skb);
350 
351 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
352 
353 	tx_ring->wr_p += nr_frags + 1;
354 	if (nfp_nfd3_tx_ring_should_stop(tx_ring))
355 		nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
356 
357 	tx_ring->wr_ptr_add += nr_frags + 1;
358 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
359 		nfp_net_tx_xmit_more_flush(tx_ring);
360 
361 	return NETDEV_TX_OK;
362 
363 err_unmap:
364 	while (--f >= 0) {
365 		frag = &skb_shinfo(skb)->frags[f];
366 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
367 			       skb_frag_size(frag), DMA_TO_DEVICE);
368 		tx_ring->txbufs[wr_idx].skb = NULL;
369 		tx_ring->txbufs[wr_idx].dma_addr = 0;
370 		tx_ring->txbufs[wr_idx].fidx = -2;
371 		wr_idx = wr_idx - 1;
372 		if (wr_idx < 0)
373 			wr_idx += tx_ring->cnt;
374 	}
375 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
376 			 skb_headlen(skb), DMA_TO_DEVICE);
377 	tx_ring->txbufs[wr_idx].skb = NULL;
378 	tx_ring->txbufs[wr_idx].dma_addr = 0;
379 	tx_ring->txbufs[wr_idx].fidx = -2;
380 err_dma_err:
381 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
382 err_flush:
383 	nfp_net_tx_xmit_more_flush(tx_ring);
384 	u64_stats_update_begin(&r_vec->tx_sync);
385 	r_vec->tx_errors++;
386 	u64_stats_update_end(&r_vec->tx_sync);
387 	nfp_net_tls_tx_undo(skb, tls_handle);
388 	dev_kfree_skb_any(skb);
389 	return NETDEV_TX_OK;
390 }
391 
392 /**
393  * nfp_nfd3_tx_complete() - Handled completed TX packets
394  * @tx_ring:	TX ring structure
395  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
396  */
397 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
398 {
399 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
400 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
401 	u32 done_pkts = 0, done_bytes = 0;
402 	struct netdev_queue *nd_q;
403 	u32 qcp_rd_p;
404 	int todo;
405 
406 	if (tx_ring->wr_p == tx_ring->rd_p)
407 		return;
408 
409 	/* Work out how many descriptors have been transmitted */
410 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
411 
412 	if (qcp_rd_p == tx_ring->qcp_rd_p)
413 		return;
414 
415 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
416 
417 	while (todo--) {
418 		const skb_frag_t *frag;
419 		struct nfp_nfd3_tx_buf *tx_buf;
420 		struct sk_buff *skb;
421 		int fidx, nr_frags;
422 		int idx;
423 
424 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
425 		tx_buf = &tx_ring->txbufs[idx];
426 
427 		skb = tx_buf->skb;
428 		if (!skb)
429 			continue;
430 
431 		nr_frags = skb_shinfo(skb)->nr_frags;
432 		fidx = tx_buf->fidx;
433 
434 		if (fidx == -1) {
435 			/* unmap head */
436 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
437 					 skb_headlen(skb), DMA_TO_DEVICE);
438 
439 			done_pkts += tx_buf->pkt_cnt;
440 			done_bytes += tx_buf->real_len;
441 		} else {
442 			/* unmap fragment */
443 			frag = &skb_shinfo(skb)->frags[fidx];
444 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
445 				       skb_frag_size(frag), DMA_TO_DEVICE);
446 		}
447 
448 		/* check for last gather fragment */
449 		if (fidx == nr_frags - 1)
450 			napi_consume_skb(skb, budget);
451 
452 		tx_buf->dma_addr = 0;
453 		tx_buf->skb = NULL;
454 		tx_buf->fidx = -2;
455 	}
456 
457 	tx_ring->qcp_rd_p = qcp_rd_p;
458 
459 	u64_stats_update_begin(&r_vec->tx_sync);
460 	r_vec->tx_bytes += done_bytes;
461 	r_vec->tx_pkts += done_pkts;
462 	u64_stats_update_end(&r_vec->tx_sync);
463 
464 	if (!dp->netdev)
465 		return;
466 
467 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
468 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
469 	if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
470 		/* Make sure TX thread will see updated tx_ring->rd_p */
471 		smp_mb();
472 
473 		if (unlikely(netif_tx_queue_stopped(nd_q)))
474 			netif_tx_wake_queue(nd_q);
475 	}
476 
477 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
478 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
479 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
480 }
481 
482 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
483 {
484 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
485 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
486 	u32 done_pkts = 0, done_bytes = 0;
487 	bool done_all;
488 	int idx, todo;
489 	u32 qcp_rd_p;
490 
491 	/* Work out how many descriptors have been transmitted */
492 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
493 
494 	if (qcp_rd_p == tx_ring->qcp_rd_p)
495 		return true;
496 
497 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
498 
499 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
500 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
501 
502 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
503 
504 	done_pkts = todo;
505 	while (todo--) {
506 		idx = D_IDX(tx_ring, tx_ring->rd_p);
507 		tx_ring->rd_p++;
508 
509 		done_bytes += tx_ring->txbufs[idx].real_len;
510 	}
511 
512 	u64_stats_update_begin(&r_vec->tx_sync);
513 	r_vec->tx_bytes += done_bytes;
514 	r_vec->tx_pkts += done_pkts;
515 	u64_stats_update_end(&r_vec->tx_sync);
516 
517 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
518 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
519 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
520 
521 	return done_all;
522 }
523 
524 /* Receive processing
525  */
526 
527 static void *
528 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
529 {
530 	void *frag;
531 
532 	if (!dp->xdp_prog) {
533 		frag = napi_alloc_frag(dp->fl_bufsz);
534 		if (unlikely(!frag))
535 			return NULL;
536 	} else {
537 		struct page *page;
538 
539 		page = dev_alloc_page();
540 		if (unlikely(!page))
541 			return NULL;
542 		frag = page_address(page);
543 	}
544 
545 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
546 	if (dma_mapping_error(dp->dev, *dma_addr)) {
547 		nfp_net_free_frag(frag, dp->xdp_prog);
548 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
549 		return NULL;
550 	}
551 
552 	return frag;
553 }
554 
555 /**
556  * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
557  * @dp:		NFP Net data path struct
558  * @rx_ring:	RX ring structure
559  * @frag:	page fragment buffer
560  * @dma_addr:	DMA address of skb mapping
561  */
562 static void
563 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
564 		     struct nfp_net_rx_ring *rx_ring,
565 		     void *frag, dma_addr_t dma_addr)
566 {
567 	unsigned int wr_idx;
568 
569 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
570 
571 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
572 
573 	/* Stash SKB and DMA address away */
574 	rx_ring->rxbufs[wr_idx].frag = frag;
575 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
576 
577 	/* Fill freelist descriptor */
578 	rx_ring->rxds[wr_idx].fld.reserved = 0;
579 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
580 	/* DMA address is expanded to 48-bit width in freelist for NFP3800,
581 	 * so the *_48b macro is used accordingly, it's also OK to fill
582 	 * a 40-bit address since the top 8 bits are get set to 0.
583 	 */
584 	nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
585 				  dma_addr + dp->rx_dma_off);
586 
587 	rx_ring->wr_p++;
588 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
589 		/* Update write pointer of the freelist queue. Make
590 		 * sure all writes are flushed before telling the hardware.
591 		 */
592 		wmb();
593 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
594 	}
595 }
596 
597 /**
598  * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
599  * @dp:	     NFP Net data path struct
600  * @rx_ring: RX ring to fill
601  */
602 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
603 				    struct nfp_net_rx_ring *rx_ring)
604 {
605 	unsigned int i;
606 
607 	if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
608 		return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
609 
610 	for (i = 0; i < rx_ring->cnt - 1; i++)
611 		nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
612 				     rx_ring->rxbufs[i].dma_addr);
613 }
614 
615 /**
616  * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
617  * @flags: RX descriptor flags field in CPU byte order
618  */
619 static int nfp_nfd3_rx_csum_has_errors(u16 flags)
620 {
621 	u16 csum_all_checked, csum_all_ok;
622 
623 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
624 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
625 
626 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
627 }
628 
629 /**
630  * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
631  * @dp:  NFP Net data path struct
632  * @r_vec: per-ring structure
633  * @rxd: Pointer to RX descriptor
634  * @meta: Parsed metadata prepend
635  * @skb: Pointer to SKB
636  */
637 void
638 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
639 		 const struct nfp_net_rx_desc *rxd,
640 		 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
641 {
642 	skb_checksum_none_assert(skb);
643 
644 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
645 		return;
646 
647 	if (meta->csum_type) {
648 		skb->ip_summed = meta->csum_type;
649 		skb->csum = meta->csum;
650 		u64_stats_update_begin(&r_vec->rx_sync);
651 		r_vec->hw_csum_rx_complete++;
652 		u64_stats_update_end(&r_vec->rx_sync);
653 		return;
654 	}
655 
656 	if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
657 		u64_stats_update_begin(&r_vec->rx_sync);
658 		r_vec->hw_csum_rx_error++;
659 		u64_stats_update_end(&r_vec->rx_sync);
660 		return;
661 	}
662 
663 	/* Assume that the firmware will never report inner CSUM_OK unless outer
664 	 * L4 headers were successfully parsed. FW will always report zero UDP
665 	 * checksum as CSUM_OK.
666 	 */
667 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
668 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
669 		__skb_incr_checksum_unnecessary(skb);
670 		u64_stats_update_begin(&r_vec->rx_sync);
671 		r_vec->hw_csum_rx_ok++;
672 		u64_stats_update_end(&r_vec->rx_sync);
673 	}
674 
675 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
676 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
677 		__skb_incr_checksum_unnecessary(skb);
678 		u64_stats_update_begin(&r_vec->rx_sync);
679 		r_vec->hw_csum_rx_inner_ok++;
680 		u64_stats_update_end(&r_vec->rx_sync);
681 	}
682 }
683 
684 static void
685 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
686 		  unsigned int type, __be32 *hash)
687 {
688 	if (!(netdev->features & NETIF_F_RXHASH))
689 		return;
690 
691 	switch (type) {
692 	case NFP_NET_RSS_IPV4:
693 	case NFP_NET_RSS_IPV6:
694 	case NFP_NET_RSS_IPV6_EX:
695 		meta->hash_type = PKT_HASH_TYPE_L3;
696 		break;
697 	default:
698 		meta->hash_type = PKT_HASH_TYPE_L4;
699 		break;
700 	}
701 
702 	meta->hash = get_unaligned_be32(hash);
703 }
704 
705 static void
706 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
707 		       void *data, struct nfp_net_rx_desc *rxd)
708 {
709 	struct nfp_net_rx_hash *rx_hash = data;
710 
711 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
712 		return;
713 
714 	nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
715 			  &rx_hash->hash);
716 }
717 
718 bool
719 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
720 		    void *data, void *pkt, unsigned int pkt_len, int meta_len)
721 {
722 	u32 meta_info, vlan_info;
723 
724 	meta_info = get_unaligned_be32(data);
725 	data += 4;
726 
727 	while (meta_info) {
728 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
729 		case NFP_NET_META_HASH:
730 			meta_info >>= NFP_NET_META_FIELD_SIZE;
731 			nfp_nfd3_set_hash(netdev, meta,
732 					  meta_info & NFP_NET_META_FIELD_MASK,
733 					  (__be32 *)data);
734 			data += 4;
735 			break;
736 		case NFP_NET_META_MARK:
737 			meta->mark = get_unaligned_be32(data);
738 			data += 4;
739 			break;
740 		case NFP_NET_META_VLAN:
741 			vlan_info = get_unaligned_be32(data);
742 			if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) {
743 				meta->vlan.stripped = true;
744 				meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK,
745 							    vlan_info);
746 				meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK,
747 							   vlan_info);
748 			}
749 			data += 4;
750 			break;
751 		case NFP_NET_META_PORTID:
752 			meta->portid = get_unaligned_be32(data);
753 			data += 4;
754 			break;
755 		case NFP_NET_META_CSUM:
756 			meta->csum_type = CHECKSUM_COMPLETE;
757 			meta->csum =
758 				(__force __wsum)__get_unaligned_cpu32(data);
759 			data += 4;
760 			break;
761 		case NFP_NET_META_RESYNC_INFO:
762 			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
763 						      pkt_len))
764 				return false;
765 			data += sizeof(struct nfp_net_tls_resync_req);
766 			break;
767 		default:
768 			return true;
769 		}
770 
771 		meta_info >>= NFP_NET_META_FIELD_SIZE;
772 	}
773 
774 	return data != pkt;
775 }
776 
777 static void
778 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
779 		 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
780 		 struct sk_buff *skb)
781 {
782 	u64_stats_update_begin(&r_vec->rx_sync);
783 	r_vec->rx_drops++;
784 	/* If we have both skb and rxbuf the replacement buffer allocation
785 	 * must have failed, count this as an alloc failure.
786 	 */
787 	if (skb && rxbuf)
788 		r_vec->rx_replace_buf_alloc_fail++;
789 	u64_stats_update_end(&r_vec->rx_sync);
790 
791 	/* skb is build based on the frag, free_skb() would free the frag
792 	 * so to be able to reuse it we need an extra ref.
793 	 */
794 	if (skb && rxbuf && skb->head == rxbuf->frag)
795 		page_ref_inc(virt_to_head_page(rxbuf->frag));
796 	if (rxbuf)
797 		nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
798 	if (skb)
799 		dev_kfree_skb_any(skb);
800 }
801 
802 static bool
803 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
804 		    struct nfp_net_tx_ring *tx_ring,
805 		    struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
806 		    unsigned int pkt_len, bool *completed)
807 {
808 	unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
809 	struct nfp_nfd3_tx_buf *txbuf;
810 	struct nfp_nfd3_tx_desc *txd;
811 	int wr_idx;
812 
813 	/* Reject if xdp_adjust_tail grow packet beyond DMA area */
814 	if (pkt_len + dma_off > dma_map_sz)
815 		return false;
816 
817 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
818 		if (!*completed) {
819 			nfp_nfd3_xdp_complete(tx_ring);
820 			*completed = true;
821 		}
822 
823 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
824 			nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
825 					 NULL);
826 			return false;
827 		}
828 	}
829 
830 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
831 
832 	/* Stash the soft descriptor of the head then initialize it */
833 	txbuf = &tx_ring->txbufs[wr_idx];
834 
835 	nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
836 
837 	txbuf->frag = rxbuf->frag;
838 	txbuf->dma_addr = rxbuf->dma_addr;
839 	txbuf->fidx = -1;
840 	txbuf->pkt_cnt = 1;
841 	txbuf->real_len = pkt_len;
842 
843 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
844 				   pkt_len, DMA_BIDIRECTIONAL);
845 
846 	/* Build TX descriptor */
847 	txd = &tx_ring->txds[wr_idx];
848 	txd->offset_eop = NFD3_DESC_TX_EOP;
849 	txd->dma_len = cpu_to_le16(pkt_len);
850 	nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
851 	txd->data_len = cpu_to_le16(pkt_len);
852 
853 	txd->flags = 0;
854 	txd->mss = 0;
855 	txd->lso_hdrlen = 0;
856 
857 	tx_ring->wr_p++;
858 	tx_ring->wr_ptr_add++;
859 	return true;
860 }
861 
862 /**
863  * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
864  * @rx_ring:   RX ring to receive from
865  * @budget:    NAPI budget
866  *
867  * Note, this function is separated out from the napi poll function to
868  * more cleanly separate packet receive code from other bookkeeping
869  * functions performed in the napi poll function.
870  *
871  * Return: Number of packets received.
872  */
873 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
874 {
875 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
876 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
877 	struct nfp_net_tx_ring *tx_ring;
878 	struct bpf_prog *xdp_prog;
879 	bool xdp_tx_cmpl = false;
880 	unsigned int true_bufsz;
881 	struct sk_buff *skb;
882 	int pkts_polled = 0;
883 	struct xdp_buff xdp;
884 	int idx;
885 
886 	xdp_prog = READ_ONCE(dp->xdp_prog);
887 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
888 	xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
889 		      &rx_ring->xdp_rxq);
890 	tx_ring = r_vec->xdp_ring;
891 
892 	while (pkts_polled < budget) {
893 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
894 		struct nfp_net_rx_buf *rxbuf;
895 		struct nfp_net_rx_desc *rxd;
896 		struct nfp_meta_parsed meta;
897 		bool redir_egress = false;
898 		struct net_device *netdev;
899 		dma_addr_t new_dma_addr;
900 		u32 meta_len_xdp = 0;
901 		void *new_frag;
902 
903 		idx = D_IDX(rx_ring, rx_ring->rd_p);
904 
905 		rxd = &rx_ring->rxds[idx];
906 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
907 			break;
908 
909 		/* Memory barrier to ensure that we won't do other reads
910 		 * before the DD bit.
911 		 */
912 		dma_rmb();
913 
914 		memset(&meta, 0, sizeof(meta));
915 
916 		rx_ring->rd_p++;
917 		pkts_polled++;
918 
919 		rxbuf =	&rx_ring->rxbufs[idx];
920 		/*         < meta_len >
921 		 *  <-- [rx_offset] -->
922 		 *  ---------------------------------------------------------
923 		 * | [XX] |  metadata  |             packet           | XXXX |
924 		 *  ---------------------------------------------------------
925 		 *         <---------------- data_len --------------->
926 		 *
927 		 * The rx_offset is fixed for all packets, the meta_len can vary
928 		 * on a packet by packet basis. If rx_offset is set to zero
929 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
930 		 * buffer and is immediately followed by the packet (no [XX]).
931 		 */
932 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
933 		data_len = le16_to_cpu(rxd->rxd.data_len);
934 		pkt_len = data_len - meta_len;
935 
936 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
937 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
938 			pkt_off += meta_len;
939 		else
940 			pkt_off += dp->rx_offset;
941 		meta_off = pkt_off - meta_len;
942 
943 		/* Stats update */
944 		u64_stats_update_begin(&r_vec->rx_sync);
945 		r_vec->rx_pkts++;
946 		r_vec->rx_bytes += pkt_len;
947 		u64_stats_update_end(&r_vec->rx_sync);
948 
949 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
950 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
951 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
952 				   meta_len);
953 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
954 			continue;
955 		}
956 
957 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
958 					data_len);
959 
960 		if (!dp->chained_metadata_format) {
961 			nfp_nfd3_set_hash_desc(dp->netdev, &meta,
962 					       rxbuf->frag + meta_off, rxd);
963 		} else if (meta_len) {
964 			if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
965 							 rxbuf->frag + meta_off,
966 							 rxbuf->frag + pkt_off,
967 							 pkt_len, meta_len))) {
968 				nn_dp_warn(dp, "invalid RX packet metadata\n");
969 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
970 						 NULL);
971 				continue;
972 			}
973 		}
974 
975 		if (xdp_prog && !meta.portid) {
976 			void *orig_data = rxbuf->frag + pkt_off;
977 			unsigned int dma_off;
978 			int act;
979 
980 			xdp_prepare_buff(&xdp,
981 					 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
982 					 pkt_off - NFP_NET_RX_BUF_HEADROOM,
983 					 pkt_len, true);
984 
985 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
986 
987 			pkt_len = xdp.data_end - xdp.data;
988 			pkt_off += xdp.data - orig_data;
989 
990 			switch (act) {
991 			case XDP_PASS:
992 				meta_len_xdp = xdp.data - xdp.data_meta;
993 				break;
994 			case XDP_TX:
995 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
996 				if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
997 								  tx_ring,
998 								  rxbuf,
999 								  dma_off,
1000 								  pkt_len,
1001 								  &xdp_tx_cmpl)))
1002 					trace_xdp_exception(dp->netdev,
1003 							    xdp_prog, act);
1004 				continue;
1005 			default:
1006 				bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
1007 				fallthrough;
1008 			case XDP_ABORTED:
1009 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1010 				fallthrough;
1011 			case XDP_DROP:
1012 				nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1013 						     rxbuf->dma_addr);
1014 				continue;
1015 			}
1016 		}
1017 
1018 		if (likely(!meta.portid)) {
1019 			netdev = dp->netdev;
1020 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1021 			struct nfp_net *nn = netdev_priv(dp->netdev);
1022 
1023 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1024 					    pkt_len);
1025 			nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1026 					     rxbuf->dma_addr);
1027 			continue;
1028 		} else {
1029 			struct nfp_net *nn;
1030 
1031 			nn = netdev_priv(dp->netdev);
1032 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1033 						 &redir_egress);
1034 			if (unlikely(!netdev)) {
1035 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1036 						 NULL);
1037 				continue;
1038 			}
1039 
1040 			if (nfp_netdev_is_nfp_repr(netdev))
1041 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1042 		}
1043 
1044 		skb = build_skb(rxbuf->frag, true_bufsz);
1045 		if (unlikely(!skb)) {
1046 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1047 			continue;
1048 		}
1049 		new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1050 		if (unlikely(!new_frag)) {
1051 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1052 			continue;
1053 		}
1054 
1055 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1056 
1057 		nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1058 
1059 		skb_reserve(skb, pkt_off);
1060 		skb_put(skb, pkt_len);
1061 
1062 		skb->mark = meta.mark;
1063 		skb_set_hash(skb, meta.hash, meta.hash_type);
1064 
1065 		skb_record_rx_queue(skb, rx_ring->idx);
1066 		skb->protocol = eth_type_trans(skb, netdev);
1067 
1068 		nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1069 
1070 #ifdef CONFIG_TLS_DEVICE
1071 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1072 			skb->decrypted = true;
1073 			u64_stats_update_begin(&r_vec->rx_sync);
1074 			r_vec->hw_tls_rx++;
1075 			u64_stats_update_end(&r_vec->rx_sync);
1076 		}
1077 #endif
1078 
1079 		if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) {
1080 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1081 			continue;
1082 		}
1083 
1084 		if (meta_len_xdp)
1085 			skb_metadata_set(skb, meta_len_xdp);
1086 
1087 		if (likely(!redir_egress)) {
1088 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1089 		} else {
1090 			skb->dev = netdev;
1091 			skb_reset_network_header(skb);
1092 			__skb_push(skb, ETH_HLEN);
1093 			dev_queue_xmit(skb);
1094 		}
1095 	}
1096 
1097 	if (xdp_prog) {
1098 		if (tx_ring->wr_ptr_add)
1099 			nfp_net_tx_xmit_more_flush(tx_ring);
1100 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1101 			 !xdp_tx_cmpl)
1102 			if (!nfp_nfd3_xdp_complete(tx_ring))
1103 				pkts_polled = budget;
1104 	}
1105 
1106 	return pkts_polled;
1107 }
1108 
1109 /**
1110  * nfp_nfd3_poll() - napi poll function
1111  * @napi:    NAPI structure
1112  * @budget:  NAPI budget
1113  *
1114  * Return: number of packets polled.
1115  */
1116 int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1117 {
1118 	struct nfp_net_r_vector *r_vec =
1119 		container_of(napi, struct nfp_net_r_vector, napi);
1120 	unsigned int pkts_polled = 0;
1121 
1122 	if (r_vec->tx_ring)
1123 		nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1124 	if (r_vec->rx_ring)
1125 		pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1126 
1127 	if (pkts_polled < budget)
1128 		if (napi_complete_done(napi, pkts_polled))
1129 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1130 
1131 	if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1132 		struct dim_sample dim_sample = {};
1133 		unsigned int start;
1134 		u64 pkts, bytes;
1135 
1136 		do {
1137 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
1138 			pkts = r_vec->rx_pkts;
1139 			bytes = r_vec->rx_bytes;
1140 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1141 
1142 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1143 		net_dim(&r_vec->rx_dim, dim_sample);
1144 	}
1145 
1146 	if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1147 		struct dim_sample dim_sample = {};
1148 		unsigned int start;
1149 		u64 pkts, bytes;
1150 
1151 		do {
1152 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
1153 			pkts = r_vec->tx_pkts;
1154 			bytes = r_vec->tx_bytes;
1155 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1156 
1157 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1158 		net_dim(&r_vec->tx_dim, dim_sample);
1159 	}
1160 
1161 	return pkts_polled;
1162 }
1163 
1164 /* Control device data path
1165  */
1166 
1167 bool
1168 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1169 		     struct sk_buff *skb, bool old)
1170 {
1171 	unsigned int real_len = skb->len, meta_len = 0;
1172 	struct nfp_net_tx_ring *tx_ring;
1173 	struct nfp_nfd3_tx_buf *txbuf;
1174 	struct nfp_nfd3_tx_desc *txd;
1175 	struct nfp_net_dp *dp;
1176 	dma_addr_t dma_addr;
1177 	int wr_idx;
1178 
1179 	dp = &r_vec->nfp_net->dp;
1180 	tx_ring = r_vec->tx_ring;
1181 
1182 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1183 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1184 		goto err_free;
1185 	}
1186 
1187 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1188 		u64_stats_update_begin(&r_vec->tx_sync);
1189 		r_vec->tx_busy++;
1190 		u64_stats_update_end(&r_vec->tx_sync);
1191 		if (!old)
1192 			__skb_queue_tail(&r_vec->queue, skb);
1193 		else
1194 			__skb_queue_head(&r_vec->queue, skb);
1195 		return true;
1196 	}
1197 
1198 	if (nfp_app_ctrl_has_meta(nn->app)) {
1199 		if (unlikely(skb_headroom(skb) < 8)) {
1200 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1201 			goto err_free;
1202 		}
1203 		meta_len = 8;
1204 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1205 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1206 	}
1207 
1208 	/* Start with the head skbuf */
1209 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1210 				  DMA_TO_DEVICE);
1211 	if (dma_mapping_error(dp->dev, dma_addr))
1212 		goto err_dma_warn;
1213 
1214 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1215 
1216 	/* Stash the soft descriptor of the head then initialize it */
1217 	txbuf = &tx_ring->txbufs[wr_idx];
1218 	txbuf->skb = skb;
1219 	txbuf->dma_addr = dma_addr;
1220 	txbuf->fidx = -1;
1221 	txbuf->pkt_cnt = 1;
1222 	txbuf->real_len = real_len;
1223 
1224 	/* Build TX descriptor */
1225 	txd = &tx_ring->txds[wr_idx];
1226 	txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1227 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1228 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
1229 	txd->data_len = cpu_to_le16(skb->len);
1230 
1231 	txd->flags = 0;
1232 	txd->mss = 0;
1233 	txd->lso_hdrlen = 0;
1234 
1235 	tx_ring->wr_p++;
1236 	tx_ring->wr_ptr_add++;
1237 	nfp_net_tx_xmit_more_flush(tx_ring);
1238 
1239 	return false;
1240 
1241 err_dma_warn:
1242 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1243 err_free:
1244 	u64_stats_update_begin(&r_vec->tx_sync);
1245 	r_vec->tx_errors++;
1246 	u64_stats_update_end(&r_vec->tx_sync);
1247 	dev_kfree_skb_any(skb);
1248 	return false;
1249 }
1250 
1251 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1252 {
1253 	struct sk_buff *skb;
1254 
1255 	while ((skb = __skb_dequeue(&r_vec->queue)))
1256 		if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1257 			return;
1258 }
1259 
1260 static bool
1261 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1262 {
1263 	u32 meta_type, meta_tag;
1264 
1265 	if (!nfp_app_ctrl_has_meta(nn->app))
1266 		return !meta_len;
1267 
1268 	if (meta_len != 8)
1269 		return false;
1270 
1271 	meta_type = get_unaligned_be32(data);
1272 	meta_tag = get_unaligned_be32(data + 4);
1273 
1274 	return (meta_type == NFP_NET_META_PORTID &&
1275 		meta_tag == NFP_META_PORT_ID_CTRL);
1276 }
1277 
1278 static bool
1279 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1280 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1281 {
1282 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1283 	struct nfp_net_rx_buf *rxbuf;
1284 	struct nfp_net_rx_desc *rxd;
1285 	dma_addr_t new_dma_addr;
1286 	struct sk_buff *skb;
1287 	void *new_frag;
1288 	int idx;
1289 
1290 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1291 
1292 	rxd = &rx_ring->rxds[idx];
1293 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1294 		return false;
1295 
1296 	/* Memory barrier to ensure that we won't do other reads
1297 	 * before the DD bit.
1298 	 */
1299 	dma_rmb();
1300 
1301 	rx_ring->rd_p++;
1302 
1303 	rxbuf =	&rx_ring->rxbufs[idx];
1304 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1305 	data_len = le16_to_cpu(rxd->rxd.data_len);
1306 	pkt_len = data_len - meta_len;
1307 
1308 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1309 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1310 		pkt_off += meta_len;
1311 	else
1312 		pkt_off += dp->rx_offset;
1313 	meta_off = pkt_off - meta_len;
1314 
1315 	/* Stats update */
1316 	u64_stats_update_begin(&r_vec->rx_sync);
1317 	r_vec->rx_pkts++;
1318 	r_vec->rx_bytes += pkt_len;
1319 	u64_stats_update_end(&r_vec->rx_sync);
1320 
1321 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1322 
1323 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1324 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1325 			   meta_len);
1326 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1327 		return true;
1328 	}
1329 
1330 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1331 	if (unlikely(!skb)) {
1332 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1333 		return true;
1334 	}
1335 	new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1336 	if (unlikely(!new_frag)) {
1337 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1338 		return true;
1339 	}
1340 
1341 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1342 
1343 	nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1344 
1345 	skb_reserve(skb, pkt_off);
1346 	skb_put(skb, pkt_len);
1347 
1348 	nfp_app_ctrl_rx(nn->app, skb);
1349 
1350 	return true;
1351 }
1352 
1353 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1354 {
1355 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1356 	struct nfp_net *nn = r_vec->nfp_net;
1357 	struct nfp_net_dp *dp = &nn->dp;
1358 	unsigned int budget = 512;
1359 
1360 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1361 		continue;
1362 
1363 	return budget;
1364 }
1365 
1366 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1367 {
1368 	struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1369 
1370 	spin_lock(&r_vec->lock);
1371 	nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1372 	__nfp_ctrl_tx_queued(r_vec);
1373 	spin_unlock(&r_vec->lock);
1374 
1375 	if (nfp_ctrl_rx(r_vec)) {
1376 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1377 	} else {
1378 		tasklet_schedule(&r_vec->tasklet);
1379 		nn_dp_warn(&r_vec->nfp_net->dp,
1380 			   "control message budget exceeded!\n");
1381 	}
1382 }
1383