1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/netdevice.h> 6 #include <linux/bitfield.h> 7 #include <net/xfrm.h> 8 9 #include "../nfp_app.h" 10 #include "../nfp_net.h" 11 #include "../nfp_net_dp.h" 12 #include "../nfp_net_xsk.h" 13 #include "../crypto/crypto.h" 14 #include "../crypto/fw.h" 15 #include "nfd3.h" 16 17 /* Transmit processing 18 * 19 * One queue controller peripheral queue is used for transmit. The 20 * driver en-queues packets for transmit by advancing the write 21 * pointer. The device indicates that packets have transmitted by 22 * advancing the read pointer. The driver maintains a local copy of 23 * the read and write pointer in @struct nfp_net_tx_ring. The driver 24 * keeps @wr_p in sync with the queue controller write pointer and can 25 * determine how many packets have been transmitted by comparing its 26 * copy of the read pointer @rd_p with the read pointer maintained by 27 * the queue controller peripheral. 28 */ 29 30 /* Wrappers for deciding when to stop and restart TX queues */ 31 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 32 { 33 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 34 } 35 36 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 37 { 38 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 39 } 40 41 /** 42 * nfp_nfd3_tx_ring_stop() - stop tx ring 43 * @nd_q: netdev queue 44 * @tx_ring: driver tx queue structure 45 * 46 * Safely stop TX ring. Remember that while we are running .start_xmit() 47 * someone else may be cleaning the TX ring completions so we need to be 48 * extra careful here. 49 */ 50 static void 51 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q, 52 struct nfp_net_tx_ring *tx_ring) 53 { 54 netif_tx_stop_queue(nd_q); 55 56 /* We can race with the TX completion out of NAPI so recheck */ 57 smp_mb(); 58 if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring))) 59 netif_tx_start_queue(nd_q); 60 } 61 62 /** 63 * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO 64 * @r_vec: per-ring structure 65 * @txbuf: Pointer to driver soft TX descriptor 66 * @txd: Pointer to HW TX descriptor 67 * @skb: Pointer to SKB 68 * @md_bytes: Prepend length 69 * 70 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 71 * Return error on packet header greater than maximum supported LSO header size. 72 */ 73 static void 74 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf, 75 struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes) 76 { 77 u32 l3_offset, l4_offset, hdrlen; 78 u16 mss; 79 80 if (!skb_is_gso(skb)) 81 return; 82 83 if (!skb->encapsulation) { 84 l3_offset = skb_network_offset(skb); 85 l4_offset = skb_transport_offset(skb); 86 hdrlen = skb_tcp_all_headers(skb); 87 } else { 88 l3_offset = skb_inner_network_offset(skb); 89 l4_offset = skb_inner_transport_offset(skb); 90 hdrlen = skb_inner_tcp_all_headers(skb); 91 } 92 93 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 94 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 95 96 mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK; 97 txd->l3_offset = l3_offset - md_bytes; 98 txd->l4_offset = l4_offset - md_bytes; 99 txd->lso_hdrlen = hdrlen - md_bytes; 100 txd->mss = cpu_to_le16(mss); 101 txd->flags |= NFD3_DESC_TX_LSO; 102 103 u64_stats_update_begin(&r_vec->tx_sync); 104 r_vec->tx_lso++; 105 u64_stats_update_end(&r_vec->tx_sync); 106 } 107 108 /** 109 * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor 110 * @dp: NFP Net data path struct 111 * @r_vec: per-ring structure 112 * @txbuf: Pointer to driver soft TX descriptor 113 * @txd: Pointer to TX descriptor 114 * @skb: Pointer to SKB 115 * 116 * This function sets the TX checksum flags in the TX descriptor based 117 * on the configuration and the protocol of the packet to be transmitted. 118 */ 119 static void 120 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 121 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd, 122 struct sk_buff *skb) 123 { 124 struct ipv6hdr *ipv6h; 125 struct iphdr *iph; 126 u8 l4_hdr; 127 128 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 129 return; 130 131 if (skb->ip_summed != CHECKSUM_PARTIAL) 132 return; 133 134 txd->flags |= NFD3_DESC_TX_CSUM; 135 if (skb->encapsulation) 136 txd->flags |= NFD3_DESC_TX_ENCAP; 137 138 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 139 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 140 141 if (iph->version == 4) { 142 txd->flags |= NFD3_DESC_TX_IP4_CSUM; 143 l4_hdr = iph->protocol; 144 } else if (ipv6h->version == 6) { 145 l4_hdr = ipv6h->nexthdr; 146 } else { 147 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 148 return; 149 } 150 151 switch (l4_hdr) { 152 case IPPROTO_TCP: 153 txd->flags |= NFD3_DESC_TX_TCP_CSUM; 154 break; 155 case IPPROTO_UDP: 156 txd->flags |= NFD3_DESC_TX_UDP_CSUM; 157 break; 158 default: 159 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 160 return; 161 } 162 163 u64_stats_update_begin(&r_vec->tx_sync); 164 if (skb->encapsulation) 165 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 166 else 167 r_vec->hw_csum_tx += txbuf->pkt_cnt; 168 u64_stats_update_end(&r_vec->tx_sync); 169 } 170 171 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb, 172 u64 tls_handle, bool *ipsec) 173 { 174 struct metadata_dst *md_dst = skb_metadata_dst(skb); 175 struct nfp_ipsec_offload offload_info; 176 unsigned char *data; 177 bool vlan_insert; 178 u32 meta_id = 0; 179 int md_bytes; 180 181 #ifdef CONFIG_NFP_NET_IPSEC 182 if (xfrm_offload(skb)) 183 *ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info); 184 #endif 185 186 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) 187 md_dst = NULL; 188 189 vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2); 190 191 if (!(md_dst || tls_handle || vlan_insert || *ipsec)) 192 return 0; 193 194 md_bytes = sizeof(meta_id) + 195 (!!md_dst ? NFP_NET_META_PORTID_SIZE : 0) + 196 (!!tls_handle ? NFP_NET_META_CONN_HANDLE_SIZE : 0) + 197 (vlan_insert ? NFP_NET_META_VLAN_SIZE : 0) + 198 (*ipsec ? NFP_NET_META_IPSEC_FIELD_SIZE : 0); 199 200 if (unlikely(skb_cow_head(skb, md_bytes))) 201 return -ENOMEM; 202 203 data = skb_push(skb, md_bytes) + md_bytes; 204 if (md_dst) { 205 data -= NFP_NET_META_PORTID_SIZE; 206 put_unaligned_be32(md_dst->u.port_info.port_id, data); 207 meta_id = NFP_NET_META_PORTID; 208 } 209 if (tls_handle) { 210 /* conn handle is opaque, we just use u64 to be able to quickly 211 * compare it to zero 212 */ 213 data -= NFP_NET_META_CONN_HANDLE_SIZE; 214 memcpy(data, &tls_handle, sizeof(tls_handle)); 215 meta_id <<= NFP_NET_META_FIELD_SIZE; 216 meta_id |= NFP_NET_META_CONN_HANDLE; 217 } 218 if (vlan_insert) { 219 data -= NFP_NET_META_VLAN_SIZE; 220 /* data type of skb->vlan_proto is __be16 221 * so it fills metadata without calling put_unaligned_be16 222 */ 223 memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto)); 224 put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto)); 225 meta_id <<= NFP_NET_META_FIELD_SIZE; 226 meta_id |= NFP_NET_META_VLAN; 227 } 228 if (*ipsec) { 229 data -= NFP_NET_META_IPSEC_SIZE; 230 put_unaligned_be32(offload_info.seq_hi, data); 231 data -= NFP_NET_META_IPSEC_SIZE; 232 put_unaligned_be32(offload_info.seq_low, data); 233 data -= NFP_NET_META_IPSEC_SIZE; 234 put_unaligned_be32(offload_info.handle - 1, data); 235 meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE; 236 meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC; 237 } 238 239 data -= sizeof(meta_id); 240 put_unaligned_be32(meta_id, data); 241 242 return md_bytes; 243 } 244 245 /** 246 * nfp_nfd3_tx() - Main transmit entry point 247 * @skb: SKB to transmit 248 * @netdev: netdev structure 249 * 250 * Return: NETDEV_TX_OK on success. 251 */ 252 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev) 253 { 254 struct nfp_net *nn = netdev_priv(netdev); 255 int f, nr_frags, wr_idx, md_bytes; 256 struct nfp_net_tx_ring *tx_ring; 257 struct nfp_net_r_vector *r_vec; 258 struct nfp_nfd3_tx_buf *txbuf; 259 struct nfp_nfd3_tx_desc *txd; 260 struct netdev_queue *nd_q; 261 const skb_frag_t *frag; 262 struct nfp_net_dp *dp; 263 dma_addr_t dma_addr; 264 unsigned int fsize; 265 u64 tls_handle = 0; 266 bool ipsec = false; 267 u16 qidx; 268 269 dp = &nn->dp; 270 qidx = skb_get_queue_mapping(skb); 271 tx_ring = &dp->tx_rings[qidx]; 272 r_vec = tx_ring->r_vec; 273 274 nr_frags = skb_shinfo(skb)->nr_frags; 275 276 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 277 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 278 qidx, tx_ring->wr_p, tx_ring->rd_p); 279 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 280 netif_tx_stop_queue(nd_q); 281 nfp_net_tx_xmit_more_flush(tx_ring); 282 u64_stats_update_begin(&r_vec->tx_sync); 283 r_vec->tx_busy++; 284 u64_stats_update_end(&r_vec->tx_sync); 285 return NETDEV_TX_BUSY; 286 } 287 288 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 289 if (unlikely(!skb)) { 290 nfp_net_tx_xmit_more_flush(tx_ring); 291 return NETDEV_TX_OK; 292 } 293 294 md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec); 295 if (unlikely(md_bytes < 0)) 296 goto err_flush; 297 298 /* Start with the head skbuf */ 299 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 300 DMA_TO_DEVICE); 301 if (dma_mapping_error(dp->dev, dma_addr)) 302 goto err_dma_err; 303 304 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 305 306 /* Stash the soft descriptor of the head then initialize it */ 307 txbuf = &tx_ring->txbufs[wr_idx]; 308 txbuf->skb = skb; 309 txbuf->dma_addr = dma_addr; 310 txbuf->fidx = -1; 311 txbuf->pkt_cnt = 1; 312 txbuf->real_len = skb->len; 313 314 /* Build TX descriptor */ 315 txd = &tx_ring->txds[wr_idx]; 316 txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes; 317 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 318 nfp_desc_set_dma_addr_40b(txd, dma_addr); 319 txd->data_len = cpu_to_le16(skb->len); 320 321 txd->flags = 0; 322 txd->mss = 0; 323 txd->lso_hdrlen = 0; 324 325 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 326 nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 327 nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb); 328 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 329 txd->flags |= NFD3_DESC_TX_VLAN; 330 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 331 } 332 333 if (ipsec) 334 nfp_nfd3_ipsec_tx(txd, skb); 335 /* Gather DMA */ 336 if (nr_frags > 0) { 337 __le64 second_half; 338 339 /* all descs must match except for in addr, length and eop */ 340 second_half = txd->vals8[1]; 341 342 for (f = 0; f < nr_frags; f++) { 343 frag = &skb_shinfo(skb)->frags[f]; 344 fsize = skb_frag_size(frag); 345 346 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 347 fsize, DMA_TO_DEVICE); 348 if (dma_mapping_error(dp->dev, dma_addr)) 349 goto err_unmap; 350 351 wr_idx = D_IDX(tx_ring, wr_idx + 1); 352 tx_ring->txbufs[wr_idx].skb = skb; 353 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 354 tx_ring->txbufs[wr_idx].fidx = f; 355 356 txd = &tx_ring->txds[wr_idx]; 357 txd->dma_len = cpu_to_le16(fsize); 358 nfp_desc_set_dma_addr_40b(txd, dma_addr); 359 txd->offset_eop = md_bytes | 360 ((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0); 361 txd->vals8[1] = second_half; 362 } 363 364 u64_stats_update_begin(&r_vec->tx_sync); 365 r_vec->tx_gather++; 366 u64_stats_update_end(&r_vec->tx_sync); 367 } 368 369 skb_tx_timestamp(skb); 370 371 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 372 373 tx_ring->wr_p += nr_frags + 1; 374 if (nfp_nfd3_tx_ring_should_stop(tx_ring)) 375 nfp_nfd3_tx_ring_stop(nd_q, tx_ring); 376 377 tx_ring->wr_ptr_add += nr_frags + 1; 378 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 379 nfp_net_tx_xmit_more_flush(tx_ring); 380 381 return NETDEV_TX_OK; 382 383 err_unmap: 384 while (--f >= 0) { 385 frag = &skb_shinfo(skb)->frags[f]; 386 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 387 skb_frag_size(frag), DMA_TO_DEVICE); 388 tx_ring->txbufs[wr_idx].skb = NULL; 389 tx_ring->txbufs[wr_idx].dma_addr = 0; 390 tx_ring->txbufs[wr_idx].fidx = -2; 391 wr_idx = wr_idx - 1; 392 if (wr_idx < 0) 393 wr_idx += tx_ring->cnt; 394 } 395 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 396 skb_headlen(skb), DMA_TO_DEVICE); 397 tx_ring->txbufs[wr_idx].skb = NULL; 398 tx_ring->txbufs[wr_idx].dma_addr = 0; 399 tx_ring->txbufs[wr_idx].fidx = -2; 400 err_dma_err: 401 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 402 err_flush: 403 nfp_net_tx_xmit_more_flush(tx_ring); 404 u64_stats_update_begin(&r_vec->tx_sync); 405 r_vec->tx_errors++; 406 u64_stats_update_end(&r_vec->tx_sync); 407 nfp_net_tls_tx_undo(skb, tls_handle); 408 dev_kfree_skb_any(skb); 409 return NETDEV_TX_OK; 410 } 411 412 /** 413 * nfp_nfd3_tx_complete() - Handled completed TX packets 414 * @tx_ring: TX ring structure 415 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 416 */ 417 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 418 { 419 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 420 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 421 u32 done_pkts = 0, done_bytes = 0; 422 struct netdev_queue *nd_q; 423 u32 qcp_rd_p; 424 int todo; 425 426 if (tx_ring->wr_p == tx_ring->rd_p) 427 return; 428 429 /* Work out how many descriptors have been transmitted */ 430 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); 431 432 if (qcp_rd_p == tx_ring->qcp_rd_p) 433 return; 434 435 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 436 437 while (todo--) { 438 const skb_frag_t *frag; 439 struct nfp_nfd3_tx_buf *tx_buf; 440 struct sk_buff *skb; 441 int fidx, nr_frags; 442 int idx; 443 444 idx = D_IDX(tx_ring, tx_ring->rd_p++); 445 tx_buf = &tx_ring->txbufs[idx]; 446 447 skb = tx_buf->skb; 448 if (!skb) 449 continue; 450 451 nr_frags = skb_shinfo(skb)->nr_frags; 452 fidx = tx_buf->fidx; 453 454 if (fidx == -1) { 455 /* unmap head */ 456 dma_unmap_single(dp->dev, tx_buf->dma_addr, 457 skb_headlen(skb), DMA_TO_DEVICE); 458 459 done_pkts += tx_buf->pkt_cnt; 460 done_bytes += tx_buf->real_len; 461 } else { 462 /* unmap fragment */ 463 frag = &skb_shinfo(skb)->frags[fidx]; 464 dma_unmap_page(dp->dev, tx_buf->dma_addr, 465 skb_frag_size(frag), DMA_TO_DEVICE); 466 } 467 468 /* check for last gather fragment */ 469 if (fidx == nr_frags - 1) 470 napi_consume_skb(skb, budget); 471 472 tx_buf->dma_addr = 0; 473 tx_buf->skb = NULL; 474 tx_buf->fidx = -2; 475 } 476 477 tx_ring->qcp_rd_p = qcp_rd_p; 478 479 u64_stats_update_begin(&r_vec->tx_sync); 480 r_vec->tx_bytes += done_bytes; 481 r_vec->tx_pkts += done_pkts; 482 u64_stats_update_end(&r_vec->tx_sync); 483 484 if (!dp->netdev) 485 return; 486 487 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 488 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 489 if (nfp_nfd3_tx_ring_should_wake(tx_ring)) { 490 /* Make sure TX thread will see updated tx_ring->rd_p */ 491 smp_mb(); 492 493 if (unlikely(netif_tx_queue_stopped(nd_q))) 494 netif_tx_wake_queue(nd_q); 495 } 496 497 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 498 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 499 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 500 } 501 502 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring) 503 { 504 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 505 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 506 u32 done_pkts = 0, done_bytes = 0; 507 bool done_all; 508 int idx, todo; 509 u32 qcp_rd_p; 510 511 /* Work out how many descriptors have been transmitted */ 512 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); 513 514 if (qcp_rd_p == tx_ring->qcp_rd_p) 515 return true; 516 517 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 518 519 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 520 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 521 522 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 523 524 done_pkts = todo; 525 while (todo--) { 526 idx = D_IDX(tx_ring, tx_ring->rd_p); 527 tx_ring->rd_p++; 528 529 done_bytes += tx_ring->txbufs[idx].real_len; 530 } 531 532 u64_stats_update_begin(&r_vec->tx_sync); 533 r_vec->tx_bytes += done_bytes; 534 r_vec->tx_pkts += done_pkts; 535 u64_stats_update_end(&r_vec->tx_sync); 536 537 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 538 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 539 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 540 541 return done_all; 542 } 543 544 /* Receive processing 545 */ 546 547 static void * 548 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 549 { 550 void *frag; 551 552 if (!dp->xdp_prog) { 553 frag = napi_alloc_frag(dp->fl_bufsz); 554 if (unlikely(!frag)) 555 return NULL; 556 } else { 557 struct page *page; 558 559 page = dev_alloc_page(); 560 if (unlikely(!page)) 561 return NULL; 562 frag = page_address(page); 563 } 564 565 *dma_addr = nfp_net_dma_map_rx(dp, frag); 566 if (dma_mapping_error(dp->dev, *dma_addr)) { 567 nfp_net_free_frag(frag, dp->xdp_prog); 568 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 569 return NULL; 570 } 571 572 return frag; 573 } 574 575 /** 576 * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings 577 * @dp: NFP Net data path struct 578 * @rx_ring: RX ring structure 579 * @frag: page fragment buffer 580 * @dma_addr: DMA address of skb mapping 581 */ 582 static void 583 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp, 584 struct nfp_net_rx_ring *rx_ring, 585 void *frag, dma_addr_t dma_addr) 586 { 587 unsigned int wr_idx; 588 589 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 590 591 nfp_net_dma_sync_dev_rx(dp, dma_addr); 592 593 /* Stash SKB and DMA address away */ 594 rx_ring->rxbufs[wr_idx].frag = frag; 595 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 596 597 /* Fill freelist descriptor */ 598 rx_ring->rxds[wr_idx].fld.reserved = 0; 599 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 600 /* DMA address is expanded to 48-bit width in freelist for NFP3800, 601 * so the *_48b macro is used accordingly, it's also OK to fill 602 * a 40-bit address since the top 8 bits are get set to 0. 603 */ 604 nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld, 605 dma_addr + dp->rx_dma_off); 606 607 rx_ring->wr_p++; 608 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 609 /* Update write pointer of the freelist queue. Make 610 * sure all writes are flushed before telling the hardware. 611 */ 612 wmb(); 613 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 614 } 615 } 616 617 /** 618 * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW 619 * @dp: NFP Net data path struct 620 * @rx_ring: RX ring to fill 621 */ 622 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp, 623 struct nfp_net_rx_ring *rx_ring) 624 { 625 unsigned int i; 626 627 if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) 628 return nfp_net_xsk_rx_ring_fill_freelist(rx_ring); 629 630 for (i = 0; i < rx_ring->cnt - 1; i++) 631 nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 632 rx_ring->rxbufs[i].dma_addr); 633 } 634 635 /** 636 * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors 637 * @flags: RX descriptor flags field in CPU byte order 638 */ 639 static int nfp_nfd3_rx_csum_has_errors(u16 flags) 640 { 641 u16 csum_all_checked, csum_all_ok; 642 643 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 644 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 645 646 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 647 } 648 649 /** 650 * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags 651 * @dp: NFP Net data path struct 652 * @r_vec: per-ring structure 653 * @rxd: Pointer to RX descriptor 654 * @meta: Parsed metadata prepend 655 * @skb: Pointer to SKB 656 */ 657 void 658 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 659 const struct nfp_net_rx_desc *rxd, 660 const struct nfp_meta_parsed *meta, struct sk_buff *skb) 661 { 662 skb_checksum_none_assert(skb); 663 664 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 665 return; 666 667 if (meta->csum_type) { 668 skb->ip_summed = meta->csum_type; 669 skb->csum = meta->csum; 670 u64_stats_update_begin(&r_vec->rx_sync); 671 r_vec->hw_csum_rx_complete++; 672 u64_stats_update_end(&r_vec->rx_sync); 673 return; 674 } 675 676 if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 677 u64_stats_update_begin(&r_vec->rx_sync); 678 r_vec->hw_csum_rx_error++; 679 u64_stats_update_end(&r_vec->rx_sync); 680 return; 681 } 682 683 /* Assume that the firmware will never report inner CSUM_OK unless outer 684 * L4 headers were successfully parsed. FW will always report zero UDP 685 * checksum as CSUM_OK. 686 */ 687 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 688 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 689 __skb_incr_checksum_unnecessary(skb); 690 u64_stats_update_begin(&r_vec->rx_sync); 691 r_vec->hw_csum_rx_ok++; 692 u64_stats_update_end(&r_vec->rx_sync); 693 } 694 695 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 696 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 697 __skb_incr_checksum_unnecessary(skb); 698 u64_stats_update_begin(&r_vec->rx_sync); 699 r_vec->hw_csum_rx_inner_ok++; 700 u64_stats_update_end(&r_vec->rx_sync); 701 } 702 } 703 704 static void 705 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 706 unsigned int type, __be32 *hash) 707 { 708 if (!(netdev->features & NETIF_F_RXHASH)) 709 return; 710 711 switch (type) { 712 case NFP_NET_RSS_IPV4: 713 case NFP_NET_RSS_IPV6: 714 case NFP_NET_RSS_IPV6_EX: 715 meta->hash_type = PKT_HASH_TYPE_L3; 716 break; 717 default: 718 meta->hash_type = PKT_HASH_TYPE_L4; 719 break; 720 } 721 722 meta->hash = get_unaligned_be32(hash); 723 } 724 725 static void 726 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 727 void *data, struct nfp_net_rx_desc *rxd) 728 { 729 struct nfp_net_rx_hash *rx_hash = data; 730 731 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 732 return; 733 734 nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 735 &rx_hash->hash); 736 } 737 738 bool 739 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 740 void *data, void *pkt, unsigned int pkt_len, int meta_len) 741 { 742 u32 meta_info, vlan_info; 743 744 meta_info = get_unaligned_be32(data); 745 data += 4; 746 747 while (meta_info) { 748 switch (meta_info & NFP_NET_META_FIELD_MASK) { 749 case NFP_NET_META_HASH: 750 meta_info >>= NFP_NET_META_FIELD_SIZE; 751 nfp_nfd3_set_hash(netdev, meta, 752 meta_info & NFP_NET_META_FIELD_MASK, 753 (__be32 *)data); 754 data += 4; 755 break; 756 case NFP_NET_META_MARK: 757 meta->mark = get_unaligned_be32(data); 758 data += 4; 759 break; 760 case NFP_NET_META_VLAN: 761 vlan_info = get_unaligned_be32(data); 762 if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) { 763 meta->vlan.stripped = true; 764 meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK, 765 vlan_info); 766 meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK, 767 vlan_info); 768 } 769 data += 4; 770 break; 771 case NFP_NET_META_PORTID: 772 meta->portid = get_unaligned_be32(data); 773 data += 4; 774 break; 775 case NFP_NET_META_CSUM: 776 meta->csum_type = CHECKSUM_COMPLETE; 777 meta->csum = 778 (__force __wsum)__get_unaligned_cpu32(data); 779 data += 4; 780 break; 781 case NFP_NET_META_RESYNC_INFO: 782 if (nfp_net_tls_rx_resync_req(netdev, data, pkt, 783 pkt_len)) 784 return false; 785 data += sizeof(struct nfp_net_tls_resync_req); 786 break; 787 #ifdef CONFIG_NFP_NET_IPSEC 788 case NFP_NET_META_IPSEC: 789 /* Note: IPsec packet will have zero saidx, so need add 1 790 * to indicate packet is IPsec packet within driver. 791 */ 792 meta->ipsec_saidx = get_unaligned_be32(data) + 1; 793 data += 4; 794 break; 795 #endif 796 default: 797 return true; 798 } 799 800 meta_info >>= NFP_NET_META_FIELD_SIZE; 801 } 802 803 return data != pkt; 804 } 805 806 static void 807 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 808 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 809 struct sk_buff *skb) 810 { 811 u64_stats_update_begin(&r_vec->rx_sync); 812 r_vec->rx_drops++; 813 /* If we have both skb and rxbuf the replacement buffer allocation 814 * must have failed, count this as an alloc failure. 815 */ 816 if (skb && rxbuf) 817 r_vec->rx_replace_buf_alloc_fail++; 818 u64_stats_update_end(&r_vec->rx_sync); 819 820 /* skb is build based on the frag, free_skb() would free the frag 821 * so to be able to reuse it we need an extra ref. 822 */ 823 if (skb && rxbuf && skb->head == rxbuf->frag) 824 page_ref_inc(virt_to_head_page(rxbuf->frag)); 825 if (rxbuf) 826 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 827 if (skb) 828 dev_kfree_skb_any(skb); 829 } 830 831 static bool 832 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 833 struct nfp_net_tx_ring *tx_ring, 834 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 835 unsigned int pkt_len, bool *completed) 836 { 837 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; 838 struct nfp_nfd3_tx_buf *txbuf; 839 struct nfp_nfd3_tx_desc *txd; 840 int wr_idx; 841 842 /* Reject if xdp_adjust_tail grow packet beyond DMA area */ 843 if (pkt_len + dma_off > dma_map_sz) 844 return false; 845 846 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 847 if (!*completed) { 848 nfp_nfd3_xdp_complete(tx_ring); 849 *completed = true; 850 } 851 852 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 853 nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 854 NULL); 855 return false; 856 } 857 } 858 859 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 860 861 /* Stash the soft descriptor of the head then initialize it */ 862 txbuf = &tx_ring->txbufs[wr_idx]; 863 864 nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 865 866 txbuf->frag = rxbuf->frag; 867 txbuf->dma_addr = rxbuf->dma_addr; 868 txbuf->fidx = -1; 869 txbuf->pkt_cnt = 1; 870 txbuf->real_len = pkt_len; 871 872 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 873 pkt_len, DMA_BIDIRECTIONAL); 874 875 /* Build TX descriptor */ 876 txd = &tx_ring->txds[wr_idx]; 877 txd->offset_eop = NFD3_DESC_TX_EOP; 878 txd->dma_len = cpu_to_le16(pkt_len); 879 nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off); 880 txd->data_len = cpu_to_le16(pkt_len); 881 882 txd->flags = 0; 883 txd->mss = 0; 884 txd->lso_hdrlen = 0; 885 886 tx_ring->wr_p++; 887 tx_ring->wr_ptr_add++; 888 return true; 889 } 890 891 /** 892 * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring 893 * @rx_ring: RX ring to receive from 894 * @budget: NAPI budget 895 * 896 * Note, this function is separated out from the napi poll function to 897 * more cleanly separate packet receive code from other bookkeeping 898 * functions performed in the napi poll function. 899 * 900 * Return: Number of packets received. 901 */ 902 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget) 903 { 904 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 905 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 906 struct nfp_net_tx_ring *tx_ring; 907 struct bpf_prog *xdp_prog; 908 int idx, pkts_polled = 0; 909 bool xdp_tx_cmpl = false; 910 unsigned int true_bufsz; 911 struct sk_buff *skb; 912 struct xdp_buff xdp; 913 914 xdp_prog = READ_ONCE(dp->xdp_prog); 915 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 916 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, 917 &rx_ring->xdp_rxq); 918 tx_ring = r_vec->xdp_ring; 919 920 while (pkts_polled < budget) { 921 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 922 struct nfp_net_rx_buf *rxbuf; 923 struct nfp_net_rx_desc *rxd; 924 struct nfp_meta_parsed meta; 925 bool redir_egress = false; 926 struct net_device *netdev; 927 dma_addr_t new_dma_addr; 928 u32 meta_len_xdp = 0; 929 void *new_frag; 930 931 idx = D_IDX(rx_ring, rx_ring->rd_p); 932 933 rxd = &rx_ring->rxds[idx]; 934 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 935 break; 936 937 /* Memory barrier to ensure that we won't do other reads 938 * before the DD bit. 939 */ 940 dma_rmb(); 941 942 memset(&meta, 0, sizeof(meta)); 943 944 rx_ring->rd_p++; 945 pkts_polled++; 946 947 rxbuf = &rx_ring->rxbufs[idx]; 948 /* < meta_len > 949 * <-- [rx_offset] --> 950 * --------------------------------------------------------- 951 * | [XX] | metadata | packet | XXXX | 952 * --------------------------------------------------------- 953 * <---------------- data_len ---------------> 954 * 955 * The rx_offset is fixed for all packets, the meta_len can vary 956 * on a packet by packet basis. If rx_offset is set to zero 957 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 958 * buffer and is immediately followed by the packet (no [XX]). 959 */ 960 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 961 data_len = le16_to_cpu(rxd->rxd.data_len); 962 pkt_len = data_len - meta_len; 963 964 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 965 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 966 pkt_off += meta_len; 967 else 968 pkt_off += dp->rx_offset; 969 meta_off = pkt_off - meta_len; 970 971 /* Stats update */ 972 u64_stats_update_begin(&r_vec->rx_sync); 973 r_vec->rx_pkts++; 974 r_vec->rx_bytes += pkt_len; 975 u64_stats_update_end(&r_vec->rx_sync); 976 977 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 978 (dp->rx_offset && meta_len > dp->rx_offset))) { 979 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 980 meta_len); 981 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 982 continue; 983 } 984 985 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 986 data_len); 987 988 if (!dp->chained_metadata_format) { 989 nfp_nfd3_set_hash_desc(dp->netdev, &meta, 990 rxbuf->frag + meta_off, rxd); 991 } else if (meta_len) { 992 if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta, 993 rxbuf->frag + meta_off, 994 rxbuf->frag + pkt_off, 995 pkt_len, meta_len))) { 996 nn_dp_warn(dp, "invalid RX packet metadata\n"); 997 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, 998 NULL); 999 continue; 1000 } 1001 } 1002 1003 if (xdp_prog && !meta.portid) { 1004 void *orig_data = rxbuf->frag + pkt_off; 1005 unsigned int dma_off; 1006 int act; 1007 1008 xdp_prepare_buff(&xdp, 1009 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, 1010 pkt_off - NFP_NET_RX_BUF_HEADROOM, 1011 pkt_len, true); 1012 1013 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1014 1015 pkt_len = xdp.data_end - xdp.data; 1016 pkt_off += xdp.data - orig_data; 1017 1018 switch (act) { 1019 case XDP_PASS: 1020 meta_len_xdp = xdp.data - xdp.data_meta; 1021 break; 1022 case XDP_TX: 1023 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1024 if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring, 1025 tx_ring, 1026 rxbuf, 1027 dma_off, 1028 pkt_len, 1029 &xdp_tx_cmpl))) 1030 trace_xdp_exception(dp->netdev, 1031 xdp_prog, act); 1032 continue; 1033 default: 1034 bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act); 1035 fallthrough; 1036 case XDP_ABORTED: 1037 trace_xdp_exception(dp->netdev, xdp_prog, act); 1038 fallthrough; 1039 case XDP_DROP: 1040 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, 1041 rxbuf->dma_addr); 1042 continue; 1043 } 1044 } 1045 1046 if (likely(!meta.portid)) { 1047 netdev = dp->netdev; 1048 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1049 struct nfp_net *nn = netdev_priv(dp->netdev); 1050 1051 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1052 pkt_len); 1053 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, 1054 rxbuf->dma_addr); 1055 continue; 1056 } else { 1057 struct nfp_net *nn; 1058 1059 nn = netdev_priv(dp->netdev); 1060 netdev = nfp_app_dev_get(nn->app, meta.portid, 1061 &redir_egress); 1062 if (unlikely(!netdev)) { 1063 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, 1064 NULL); 1065 continue; 1066 } 1067 1068 if (nfp_netdev_is_nfp_repr(netdev)) 1069 nfp_repr_inc_rx_stats(netdev, pkt_len); 1070 } 1071 1072 skb = build_skb(rxbuf->frag, true_bufsz); 1073 if (unlikely(!skb)) { 1074 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1075 continue; 1076 } 1077 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); 1078 if (unlikely(!new_frag)) { 1079 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1080 continue; 1081 } 1082 1083 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1084 1085 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1086 1087 skb_reserve(skb, pkt_off); 1088 skb_put(skb, pkt_len); 1089 1090 skb->mark = meta.mark; 1091 skb_set_hash(skb, meta.hash, meta.hash_type); 1092 1093 skb_record_rx_queue(skb, rx_ring->idx); 1094 skb->protocol = eth_type_trans(skb, netdev); 1095 1096 nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb); 1097 1098 #ifdef CONFIG_TLS_DEVICE 1099 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 1100 skb->decrypted = true; 1101 u64_stats_update_begin(&r_vec->rx_sync); 1102 r_vec->hw_tls_rx++; 1103 u64_stats_update_end(&r_vec->rx_sync); 1104 } 1105 #endif 1106 1107 if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) { 1108 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1109 continue; 1110 } 1111 1112 #ifdef CONFIG_NFP_NET_IPSEC 1113 if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) { 1114 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1115 continue; 1116 } 1117 #endif 1118 1119 if (meta_len_xdp) 1120 skb_metadata_set(skb, meta_len_xdp); 1121 1122 if (likely(!redir_egress)) { 1123 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1124 } else { 1125 skb->dev = netdev; 1126 skb_reset_network_header(skb); 1127 __skb_push(skb, ETH_HLEN); 1128 dev_queue_xmit(skb); 1129 } 1130 } 1131 1132 if (xdp_prog) { 1133 if (tx_ring->wr_ptr_add) 1134 nfp_net_tx_xmit_more_flush(tx_ring); 1135 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1136 !xdp_tx_cmpl) 1137 if (!nfp_nfd3_xdp_complete(tx_ring)) 1138 pkts_polled = budget; 1139 } 1140 1141 return pkts_polled; 1142 } 1143 1144 /** 1145 * nfp_nfd3_poll() - napi poll function 1146 * @napi: NAPI structure 1147 * @budget: NAPI budget 1148 * 1149 * Return: number of packets polled. 1150 */ 1151 int nfp_nfd3_poll(struct napi_struct *napi, int budget) 1152 { 1153 struct nfp_net_r_vector *r_vec = 1154 container_of(napi, struct nfp_net_r_vector, napi); 1155 unsigned int pkts_polled = 0; 1156 1157 if (r_vec->tx_ring) 1158 nfp_nfd3_tx_complete(r_vec->tx_ring, budget); 1159 if (r_vec->rx_ring) 1160 pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget); 1161 1162 if (pkts_polled < budget) 1163 if (napi_complete_done(napi, pkts_polled)) 1164 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1165 1166 if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) { 1167 struct dim_sample dim_sample = {}; 1168 unsigned int start; 1169 u64 pkts, bytes; 1170 1171 do { 1172 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1173 pkts = r_vec->rx_pkts; 1174 bytes = r_vec->rx_bytes; 1175 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1176 1177 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 1178 net_dim(&r_vec->rx_dim, dim_sample); 1179 } 1180 1181 if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) { 1182 struct dim_sample dim_sample = {}; 1183 unsigned int start; 1184 u64 pkts, bytes; 1185 1186 do { 1187 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1188 pkts = r_vec->tx_pkts; 1189 bytes = r_vec->tx_bytes; 1190 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1191 1192 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 1193 net_dim(&r_vec->tx_dim, dim_sample); 1194 } 1195 1196 return pkts_polled; 1197 } 1198 1199 /* Control device data path 1200 */ 1201 1202 bool 1203 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1204 struct sk_buff *skb, bool old) 1205 { 1206 unsigned int real_len = skb->len, meta_len = 0; 1207 struct nfp_net_tx_ring *tx_ring; 1208 struct nfp_nfd3_tx_buf *txbuf; 1209 struct nfp_nfd3_tx_desc *txd; 1210 struct nfp_net_dp *dp; 1211 dma_addr_t dma_addr; 1212 int wr_idx; 1213 1214 dp = &r_vec->nfp_net->dp; 1215 tx_ring = r_vec->tx_ring; 1216 1217 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1218 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1219 goto err_free; 1220 } 1221 1222 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1223 u64_stats_update_begin(&r_vec->tx_sync); 1224 r_vec->tx_busy++; 1225 u64_stats_update_end(&r_vec->tx_sync); 1226 if (!old) 1227 __skb_queue_tail(&r_vec->queue, skb); 1228 else 1229 __skb_queue_head(&r_vec->queue, skb); 1230 return true; 1231 } 1232 1233 if (nfp_app_ctrl_has_meta(nn->app)) { 1234 if (unlikely(skb_headroom(skb) < 8)) { 1235 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1236 goto err_free; 1237 } 1238 meta_len = 8; 1239 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1240 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1241 } 1242 1243 /* Start with the head skbuf */ 1244 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1245 DMA_TO_DEVICE); 1246 if (dma_mapping_error(dp->dev, dma_addr)) 1247 goto err_dma_warn; 1248 1249 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1250 1251 /* Stash the soft descriptor of the head then initialize it */ 1252 txbuf = &tx_ring->txbufs[wr_idx]; 1253 txbuf->skb = skb; 1254 txbuf->dma_addr = dma_addr; 1255 txbuf->fidx = -1; 1256 txbuf->pkt_cnt = 1; 1257 txbuf->real_len = real_len; 1258 1259 /* Build TX descriptor */ 1260 txd = &tx_ring->txds[wr_idx]; 1261 txd->offset_eop = meta_len | NFD3_DESC_TX_EOP; 1262 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1263 nfp_desc_set_dma_addr_40b(txd, dma_addr); 1264 txd->data_len = cpu_to_le16(skb->len); 1265 1266 txd->flags = 0; 1267 txd->mss = 0; 1268 txd->lso_hdrlen = 0; 1269 1270 tx_ring->wr_p++; 1271 tx_ring->wr_ptr_add++; 1272 nfp_net_tx_xmit_more_flush(tx_ring); 1273 1274 return false; 1275 1276 err_dma_warn: 1277 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1278 err_free: 1279 u64_stats_update_begin(&r_vec->tx_sync); 1280 r_vec->tx_errors++; 1281 u64_stats_update_end(&r_vec->tx_sync); 1282 dev_kfree_skb_any(skb); 1283 return false; 1284 } 1285 1286 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1287 { 1288 struct sk_buff *skb; 1289 1290 while ((skb = __skb_dequeue(&r_vec->queue))) 1291 if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1292 return; 1293 } 1294 1295 static bool 1296 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1297 { 1298 u32 meta_type, meta_tag; 1299 1300 if (!nfp_app_ctrl_has_meta(nn->app)) 1301 return !meta_len; 1302 1303 if (meta_len != 8) 1304 return false; 1305 1306 meta_type = get_unaligned_be32(data); 1307 meta_tag = get_unaligned_be32(data + 4); 1308 1309 return (meta_type == NFP_NET_META_PORTID && 1310 meta_tag == NFP_META_PORT_ID_CTRL); 1311 } 1312 1313 static bool 1314 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1315 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1316 { 1317 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1318 struct nfp_net_rx_buf *rxbuf; 1319 struct nfp_net_rx_desc *rxd; 1320 dma_addr_t new_dma_addr; 1321 struct sk_buff *skb; 1322 void *new_frag; 1323 int idx; 1324 1325 idx = D_IDX(rx_ring, rx_ring->rd_p); 1326 1327 rxd = &rx_ring->rxds[idx]; 1328 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1329 return false; 1330 1331 /* Memory barrier to ensure that we won't do other reads 1332 * before the DD bit. 1333 */ 1334 dma_rmb(); 1335 1336 rx_ring->rd_p++; 1337 1338 rxbuf = &rx_ring->rxbufs[idx]; 1339 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1340 data_len = le16_to_cpu(rxd->rxd.data_len); 1341 pkt_len = data_len - meta_len; 1342 1343 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1344 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1345 pkt_off += meta_len; 1346 else 1347 pkt_off += dp->rx_offset; 1348 meta_off = pkt_off - meta_len; 1349 1350 /* Stats update */ 1351 u64_stats_update_begin(&r_vec->rx_sync); 1352 r_vec->rx_pkts++; 1353 r_vec->rx_bytes += pkt_len; 1354 u64_stats_update_end(&r_vec->rx_sync); 1355 1356 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 1357 1358 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 1359 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 1360 meta_len); 1361 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1362 return true; 1363 } 1364 1365 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 1366 if (unlikely(!skb)) { 1367 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1368 return true; 1369 } 1370 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); 1371 if (unlikely(!new_frag)) { 1372 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1373 return true; 1374 } 1375 1376 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1377 1378 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1379 1380 skb_reserve(skb, pkt_off); 1381 skb_put(skb, pkt_len); 1382 1383 nfp_app_ctrl_rx(nn->app, skb); 1384 1385 return true; 1386 } 1387 1388 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 1389 { 1390 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 1391 struct nfp_net *nn = r_vec->nfp_net; 1392 struct nfp_net_dp *dp = &nn->dp; 1393 unsigned int budget = 512; 1394 1395 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 1396 continue; 1397 1398 return budget; 1399 } 1400 1401 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t) 1402 { 1403 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); 1404 1405 spin_lock(&r_vec->lock); 1406 nfp_nfd3_tx_complete(r_vec->tx_ring, 0); 1407 __nfp_ctrl_tx_queued(r_vec); 1408 spin_unlock(&r_vec->lock); 1409 1410 if (nfp_ctrl_rx(r_vec)) { 1411 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1412 } else { 1413 tasklet_schedule(&r_vec->tasklet); 1414 nn_dp_warn(&r_vec->nfp_net->dp, 1415 "control message budget exceeded!\n"); 1416 } 1417 } 1418