1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */ 3 4 #include <linux/skbuff.h> 5 #include <net/devlink.h> 6 #include <net/pkt_cls.h> 7 8 #include "cmsg.h" 9 #include "main.h" 10 #include "../nfpcore/nfp_cpp.h" 11 #include "../nfpcore/nfp_nsp.h" 12 #include "../nfp_app.h" 13 #include "../nfp_main.h" 14 #include "../nfp_net.h" 15 #include "../nfp_port.h" 16 17 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \ 18 (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 19 TCPHDR_PSH | TCPHDR_URG) 20 21 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \ 22 (FLOW_DIS_IS_FRAGMENT | \ 23 FLOW_DIS_FIRST_FRAG) 24 25 #define NFP_FLOWER_WHITELIST_DISSECTOR \ 26 (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \ 27 BIT(FLOW_DISSECTOR_KEY_BASIC) | \ 28 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \ 29 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \ 30 BIT(FLOW_DISSECTOR_KEY_TCP) | \ 31 BIT(FLOW_DISSECTOR_KEY_PORTS) | \ 32 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \ 33 BIT(FLOW_DISSECTOR_KEY_VLAN) | \ 34 BIT(FLOW_DISSECTOR_KEY_CVLAN) | \ 35 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ 36 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ 37 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ 38 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 39 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ 40 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ 41 BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \ 42 BIT(FLOW_DISSECTOR_KEY_MPLS) | \ 43 BIT(FLOW_DISSECTOR_KEY_IP)) 44 45 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \ 46 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 47 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ 48 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ 49 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ 50 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ 51 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ 52 BIT(FLOW_DISSECTOR_KEY_ENC_IP)) 53 54 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \ 55 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 56 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) 57 58 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \ 59 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 60 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) 61 62 #define NFP_FLOWER_MERGE_FIELDS \ 63 (NFP_FLOWER_LAYER_PORT | \ 64 NFP_FLOWER_LAYER_MAC | \ 65 NFP_FLOWER_LAYER_TP | \ 66 NFP_FLOWER_LAYER_IPV4 | \ 67 NFP_FLOWER_LAYER_IPV6) 68 69 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \ 70 (NFP_FLOWER_LAYER_EXT_META | \ 71 NFP_FLOWER_LAYER_PORT | \ 72 NFP_FLOWER_LAYER_MAC | \ 73 NFP_FLOWER_LAYER_IPV4 | \ 74 NFP_FLOWER_LAYER_IPV6) 75 76 struct nfp_flower_merge_check { 77 union { 78 struct { 79 __be16 tci; 80 struct nfp_flower_mac_mpls l2; 81 struct nfp_flower_tp_ports l4; 82 union { 83 struct nfp_flower_ipv4 ipv4; 84 struct nfp_flower_ipv6 ipv6; 85 }; 86 }; 87 unsigned long vals[8]; 88 }; 89 }; 90 91 static int 92 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow, 93 u8 mtype) 94 { 95 u32 meta_len, key_len, mask_len, act_len, tot_len; 96 struct sk_buff *skb; 97 unsigned char *msg; 98 99 meta_len = sizeof(struct nfp_fl_rule_metadata); 100 key_len = nfp_flow->meta.key_len; 101 mask_len = nfp_flow->meta.mask_len; 102 act_len = nfp_flow->meta.act_len; 103 104 tot_len = meta_len + key_len + mask_len + act_len; 105 106 /* Convert to long words as firmware expects 107 * lengths in units of NFP_FL_LW_SIZ. 108 */ 109 nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ; 110 nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ; 111 nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ; 112 113 skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL); 114 if (!skb) 115 return -ENOMEM; 116 117 msg = nfp_flower_cmsg_get_data(skb); 118 memcpy(msg, &nfp_flow->meta, meta_len); 119 memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len); 120 memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len); 121 memcpy(&msg[meta_len + key_len + mask_len], 122 nfp_flow->action_data, act_len); 123 124 /* Convert back to bytes as software expects 125 * lengths in units of bytes. 126 */ 127 nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ; 128 nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ; 129 nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ; 130 131 nfp_ctrl_tx(app->ctrl, skb); 132 133 return 0; 134 } 135 136 static bool nfp_flower_check_higher_than_mac(struct flow_cls_offload *f) 137 { 138 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 139 140 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) || 141 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) || 142 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || 143 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); 144 } 145 146 static bool nfp_flower_check_higher_than_l3(struct flow_cls_offload *f) 147 { 148 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 149 150 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || 151 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); 152 } 153 154 static int 155 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts, 156 u32 *key_layer_two, int *key_size, bool ipv6, 157 struct netlink_ext_ack *extack) 158 { 159 if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY || 160 (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) { 161 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length"); 162 return -EOPNOTSUPP; 163 } 164 165 if (enc_opts->len > 0) { 166 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP; 167 *key_size += sizeof(struct nfp_flower_geneve_options); 168 } 169 170 return 0; 171 } 172 173 static int 174 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports, 175 struct flow_dissector_key_enc_opts *enc_op, 176 u32 *key_layer_two, u8 *key_layer, int *key_size, 177 struct nfp_flower_priv *priv, 178 enum nfp_flower_tun_type *tun_type, bool ipv6, 179 struct netlink_ext_ack *extack) 180 { 181 int err; 182 183 switch (enc_ports->dst) { 184 case htons(IANA_VXLAN_UDP_PORT): 185 *tun_type = NFP_FL_TUNNEL_VXLAN; 186 *key_layer |= NFP_FLOWER_LAYER_VXLAN; 187 188 if (ipv6) { 189 *key_layer |= NFP_FLOWER_LAYER_EXT_META; 190 *key_size += sizeof(struct nfp_flower_ext_meta); 191 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 192 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); 193 } else { 194 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); 195 } 196 197 if (enc_op) { 198 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels"); 199 return -EOPNOTSUPP; 200 } 201 break; 202 case htons(GENEVE_UDP_PORT): 203 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) { 204 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload"); 205 return -EOPNOTSUPP; 206 } 207 *tun_type = NFP_FL_TUNNEL_GENEVE; 208 *key_layer |= NFP_FLOWER_LAYER_EXT_META; 209 *key_size += sizeof(struct nfp_flower_ext_meta); 210 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE; 211 212 if (ipv6) { 213 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 214 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); 215 } else { 216 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); 217 } 218 219 if (!enc_op) 220 break; 221 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) { 222 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload"); 223 return -EOPNOTSUPP; 224 } 225 err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size, 226 ipv6, extack); 227 if (err) 228 return err; 229 break; 230 default: 231 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown"); 232 return -EOPNOTSUPP; 233 } 234 235 return 0; 236 } 237 238 static int 239 nfp_flower_calculate_key_layers(struct nfp_app *app, 240 struct net_device *netdev, 241 struct nfp_fl_key_ls *ret_key_ls, 242 struct flow_cls_offload *flow, 243 enum nfp_flower_tun_type *tun_type, 244 struct netlink_ext_ack *extack) 245 { 246 struct flow_rule *rule = flow_cls_offload_flow_rule(flow); 247 struct flow_dissector *dissector = rule->match.dissector; 248 struct flow_match_basic basic = { NULL, NULL}; 249 struct nfp_flower_priv *priv = app->priv; 250 u32 key_layer_two; 251 u8 key_layer; 252 int key_size; 253 int err; 254 255 if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) { 256 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported"); 257 return -EOPNOTSUPP; 258 } 259 260 /* If any tun dissector is used then the required set must be used. */ 261 if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR && 262 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R) 263 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R && 264 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) 265 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) { 266 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported"); 267 return -EOPNOTSUPP; 268 } 269 270 key_layer_two = 0; 271 key_layer = NFP_FLOWER_LAYER_PORT; 272 key_size = sizeof(struct nfp_flower_meta_tci) + 273 sizeof(struct nfp_flower_in_port); 274 275 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) || 276 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) { 277 key_layer |= NFP_FLOWER_LAYER_MAC; 278 key_size += sizeof(struct nfp_flower_mac_mpls); 279 } 280 281 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 282 struct flow_match_vlan vlan; 283 284 flow_rule_match_vlan(rule, &vlan); 285 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) && 286 vlan.key->vlan_priority) { 287 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload"); 288 return -EOPNOTSUPP; 289 } 290 if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ && 291 !(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) { 292 key_layer |= NFP_FLOWER_LAYER_EXT_META; 293 key_size += sizeof(struct nfp_flower_ext_meta); 294 key_size += sizeof(struct nfp_flower_vlan); 295 key_layer_two |= NFP_FLOWER_LAYER2_QINQ; 296 } 297 } 298 299 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) { 300 struct flow_match_vlan cvlan; 301 302 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { 303 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload"); 304 return -EOPNOTSUPP; 305 } 306 307 flow_rule_match_vlan(rule, &cvlan); 308 if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) { 309 key_layer |= NFP_FLOWER_LAYER_EXT_META; 310 key_size += sizeof(struct nfp_flower_ext_meta); 311 key_size += sizeof(struct nfp_flower_vlan); 312 key_layer_two |= NFP_FLOWER_LAYER2_QINQ; 313 } 314 } 315 316 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) { 317 struct flow_match_enc_opts enc_op = { NULL, NULL }; 318 struct flow_match_ipv4_addrs ipv4_addrs; 319 struct flow_match_ipv6_addrs ipv6_addrs; 320 struct flow_match_control enc_ctl; 321 struct flow_match_ports enc_ports; 322 bool ipv6_tun = false; 323 324 flow_rule_match_enc_control(rule, &enc_ctl); 325 326 if (enc_ctl.mask->addr_type != 0xffff) { 327 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported"); 328 return -EOPNOTSUPP; 329 } 330 331 ipv6_tun = enc_ctl.key->addr_type == 332 FLOW_DISSECTOR_KEY_IPV6_ADDRS; 333 if (ipv6_tun && 334 !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) { 335 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels"); 336 return -EOPNOTSUPP; 337 } 338 339 if (!ipv6_tun && 340 enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 341 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6"); 342 return -EOPNOTSUPP; 343 } 344 345 if (ipv6_tun) { 346 flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs); 347 if (memchr_inv(&ipv6_addrs.mask->dst, 0xff, 348 sizeof(ipv6_addrs.mask->dst))) { 349 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported"); 350 return -EOPNOTSUPP; 351 } 352 } else { 353 flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs); 354 if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) { 355 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported"); 356 return -EOPNOTSUPP; 357 } 358 } 359 360 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS)) 361 flow_rule_match_enc_opts(rule, &enc_op); 362 363 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 364 /* check if GRE, which has no enc_ports */ 365 if (!netif_is_gretap(netdev)) { 366 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels"); 367 return -EOPNOTSUPP; 368 } 369 370 *tun_type = NFP_FL_TUNNEL_GRE; 371 key_layer |= NFP_FLOWER_LAYER_EXT_META; 372 key_size += sizeof(struct nfp_flower_ext_meta); 373 key_layer_two |= NFP_FLOWER_LAYER2_GRE; 374 375 if (ipv6_tun) { 376 key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 377 key_size += 378 sizeof(struct nfp_flower_ipv6_udp_tun); 379 } else { 380 key_size += 381 sizeof(struct nfp_flower_ipv4_udp_tun); 382 } 383 384 if (enc_op.key) { 385 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels"); 386 return -EOPNOTSUPP; 387 } 388 } else { 389 flow_rule_match_enc_ports(rule, &enc_ports); 390 if (enc_ports.mask->dst != cpu_to_be16(~0)) { 391 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported"); 392 return -EOPNOTSUPP; 393 } 394 395 err = nfp_flower_calc_udp_tun_layer(enc_ports.key, 396 enc_op.key, 397 &key_layer_two, 398 &key_layer, 399 &key_size, priv, 400 tun_type, ipv6_tun, 401 extack); 402 if (err) 403 return err; 404 405 /* Ensure the ingress netdev matches the expected 406 * tun type. 407 */ 408 if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) { 409 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type"); 410 return -EOPNOTSUPP; 411 } 412 } 413 } 414 415 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) 416 flow_rule_match_basic(rule, &basic); 417 418 if (basic.mask && basic.mask->n_proto) { 419 /* Ethernet type is present in the key. */ 420 switch (basic.key->n_proto) { 421 case cpu_to_be16(ETH_P_IP): 422 key_layer |= NFP_FLOWER_LAYER_IPV4; 423 key_size += sizeof(struct nfp_flower_ipv4); 424 break; 425 426 case cpu_to_be16(ETH_P_IPV6): 427 key_layer |= NFP_FLOWER_LAYER_IPV6; 428 key_size += sizeof(struct nfp_flower_ipv6); 429 break; 430 431 /* Currently we do not offload ARP 432 * because we rely on it to get to the host. 433 */ 434 case cpu_to_be16(ETH_P_ARP): 435 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported"); 436 return -EOPNOTSUPP; 437 438 case cpu_to_be16(ETH_P_MPLS_UC): 439 case cpu_to_be16(ETH_P_MPLS_MC): 440 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { 441 key_layer |= NFP_FLOWER_LAYER_MAC; 442 key_size += sizeof(struct nfp_flower_mac_mpls); 443 } 444 break; 445 446 /* Will be included in layer 2. */ 447 case cpu_to_be16(ETH_P_8021Q): 448 break; 449 450 default: 451 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported"); 452 return -EOPNOTSUPP; 453 } 454 } else if (nfp_flower_check_higher_than_mac(flow)) { 455 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType"); 456 return -EOPNOTSUPP; 457 } 458 459 if (basic.mask && basic.mask->ip_proto) { 460 switch (basic.key->ip_proto) { 461 case IPPROTO_TCP: 462 case IPPROTO_UDP: 463 case IPPROTO_SCTP: 464 case IPPROTO_ICMP: 465 case IPPROTO_ICMPV6: 466 key_layer |= NFP_FLOWER_LAYER_TP; 467 key_size += sizeof(struct nfp_flower_tp_ports); 468 break; 469 } 470 } 471 472 if (!(key_layer & NFP_FLOWER_LAYER_TP) && 473 nfp_flower_check_higher_than_l3(flow)) { 474 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type"); 475 return -EOPNOTSUPP; 476 } 477 478 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) { 479 struct flow_match_tcp tcp; 480 u32 tcp_flags; 481 482 flow_rule_match_tcp(rule, &tcp); 483 tcp_flags = be16_to_cpu(tcp.key->flags); 484 485 if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) { 486 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags"); 487 return -EOPNOTSUPP; 488 } 489 490 /* We only support PSH and URG flags when either 491 * FIN, SYN or RST is present as well. 492 */ 493 if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) && 494 !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) { 495 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST"); 496 return -EOPNOTSUPP; 497 } 498 499 /* We need to store TCP flags in the either the IPv4 or IPv6 key 500 * space, thus we need to ensure we include a IPv4/IPv6 key 501 * layer if we have not done so already. 502 */ 503 if (!basic.key) { 504 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol"); 505 return -EOPNOTSUPP; 506 } 507 508 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) && 509 !(key_layer & NFP_FLOWER_LAYER_IPV6)) { 510 switch (basic.key->n_proto) { 511 case cpu_to_be16(ETH_P_IP): 512 key_layer |= NFP_FLOWER_LAYER_IPV4; 513 key_size += sizeof(struct nfp_flower_ipv4); 514 break; 515 516 case cpu_to_be16(ETH_P_IPV6): 517 key_layer |= NFP_FLOWER_LAYER_IPV6; 518 key_size += sizeof(struct nfp_flower_ipv6); 519 break; 520 521 default: 522 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6"); 523 return -EOPNOTSUPP; 524 } 525 } 526 } 527 528 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 529 struct flow_match_control ctl; 530 531 flow_rule_match_control(rule, &ctl); 532 if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) { 533 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag"); 534 return -EOPNOTSUPP; 535 } 536 } 537 538 ret_key_ls->key_layer = key_layer; 539 ret_key_ls->key_layer_two = key_layer_two; 540 ret_key_ls->key_size = key_size; 541 542 return 0; 543 } 544 545 static struct nfp_fl_payload * 546 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer) 547 { 548 struct nfp_fl_payload *flow_pay; 549 550 flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL); 551 if (!flow_pay) 552 return NULL; 553 554 flow_pay->meta.key_len = key_layer->key_size; 555 flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL); 556 if (!flow_pay->unmasked_data) 557 goto err_free_flow; 558 559 flow_pay->meta.mask_len = key_layer->key_size; 560 flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL); 561 if (!flow_pay->mask_data) 562 goto err_free_unmasked; 563 564 flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL); 565 if (!flow_pay->action_data) 566 goto err_free_mask; 567 568 flow_pay->nfp_tun_ipv4_addr = 0; 569 flow_pay->nfp_tun_ipv6 = NULL; 570 flow_pay->meta.flags = 0; 571 INIT_LIST_HEAD(&flow_pay->linked_flows); 572 flow_pay->in_hw = false; 573 flow_pay->pre_tun_rule.dev = NULL; 574 575 return flow_pay; 576 577 err_free_mask: 578 kfree(flow_pay->mask_data); 579 err_free_unmasked: 580 kfree(flow_pay->unmasked_data); 581 err_free_flow: 582 kfree(flow_pay); 583 return NULL; 584 } 585 586 static int 587 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow, 588 struct nfp_flower_merge_check *merge, 589 u8 *last_act_id, int *act_out) 590 { 591 struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl; 592 struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos; 593 struct nfp_fl_set_ip4_addrs *ipv4_add; 594 struct nfp_fl_set_ipv6_addr *ipv6_add; 595 struct nfp_fl_push_vlan *push_vlan; 596 struct nfp_fl_pre_tunnel *pre_tun; 597 struct nfp_fl_set_tport *tport; 598 struct nfp_fl_set_eth *eth; 599 struct nfp_fl_act_head *a; 600 unsigned int act_off = 0; 601 bool ipv6_tun = false; 602 u8 act_id = 0; 603 u8 *ports; 604 int i; 605 606 while (act_off < flow->meta.act_len) { 607 a = (struct nfp_fl_act_head *)&flow->action_data[act_off]; 608 act_id = a->jump_id; 609 610 switch (act_id) { 611 case NFP_FL_ACTION_OPCODE_OUTPUT: 612 if (act_out) 613 (*act_out)++; 614 break; 615 case NFP_FL_ACTION_OPCODE_PUSH_VLAN: 616 push_vlan = (struct nfp_fl_push_vlan *)a; 617 if (push_vlan->vlan_tci) 618 merge->tci = cpu_to_be16(0xffff); 619 break; 620 case NFP_FL_ACTION_OPCODE_POP_VLAN: 621 merge->tci = cpu_to_be16(0); 622 break; 623 case NFP_FL_ACTION_OPCODE_SET_TUNNEL: 624 /* New tunnel header means l2 to l4 can be matched. */ 625 eth_broadcast_addr(&merge->l2.mac_dst[0]); 626 eth_broadcast_addr(&merge->l2.mac_src[0]); 627 memset(&merge->l4, 0xff, 628 sizeof(struct nfp_flower_tp_ports)); 629 if (ipv6_tun) 630 memset(&merge->ipv6, 0xff, 631 sizeof(struct nfp_flower_ipv6)); 632 else 633 memset(&merge->ipv4, 0xff, 634 sizeof(struct nfp_flower_ipv4)); 635 break; 636 case NFP_FL_ACTION_OPCODE_SET_ETHERNET: 637 eth = (struct nfp_fl_set_eth *)a; 638 for (i = 0; i < ETH_ALEN; i++) 639 merge->l2.mac_dst[i] |= eth->eth_addr_mask[i]; 640 for (i = 0; i < ETH_ALEN; i++) 641 merge->l2.mac_src[i] |= 642 eth->eth_addr_mask[ETH_ALEN + i]; 643 break; 644 case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS: 645 ipv4_add = (struct nfp_fl_set_ip4_addrs *)a; 646 merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask; 647 merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask; 648 break; 649 case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS: 650 ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a; 651 merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask; 652 merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask; 653 break; 654 case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC: 655 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; 656 for (i = 0; i < 4; i++) 657 merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |= 658 ipv6_add->ipv6[i].mask; 659 break; 660 case NFP_FL_ACTION_OPCODE_SET_IPV6_DST: 661 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; 662 for (i = 0; i < 4; i++) 663 merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |= 664 ipv6_add->ipv6[i].mask; 665 break; 666 case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL: 667 ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a; 668 merge->ipv6.ip_ext.ttl |= 669 ipv6_tc_hl_fl->ipv6_hop_limit_mask; 670 merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask; 671 merge->ipv6.ipv6_flow_label_exthdr |= 672 ipv6_tc_hl_fl->ipv6_label_mask; 673 break; 674 case NFP_FL_ACTION_OPCODE_SET_UDP: 675 case NFP_FL_ACTION_OPCODE_SET_TCP: 676 tport = (struct nfp_fl_set_tport *)a; 677 ports = (u8 *)&merge->l4.port_src; 678 for (i = 0; i < 4; i++) 679 ports[i] |= tport->tp_port_mask[i]; 680 break; 681 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: 682 pre_tun = (struct nfp_fl_pre_tunnel *)a; 683 ipv6_tun = be16_to_cpu(pre_tun->flags) & 684 NFP_FL_PRE_TUN_IPV6; 685 break; 686 case NFP_FL_ACTION_OPCODE_PRE_LAG: 687 case NFP_FL_ACTION_OPCODE_PUSH_GENEVE: 688 break; 689 default: 690 return -EOPNOTSUPP; 691 } 692 693 act_off += a->len_lw << NFP_FL_LW_SIZ; 694 } 695 696 if (last_act_id) 697 *last_act_id = act_id; 698 699 return 0; 700 } 701 702 static int 703 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow, 704 struct nfp_flower_merge_check *merge, 705 bool extra_fields) 706 { 707 struct nfp_flower_meta_tci *meta_tci; 708 u8 *mask = flow->mask_data; 709 u8 key_layer, match_size; 710 711 memset(merge, 0, sizeof(struct nfp_flower_merge_check)); 712 713 meta_tci = (struct nfp_flower_meta_tci *)mask; 714 key_layer = meta_tci->nfp_flow_key_layer; 715 716 if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields) 717 return -EOPNOTSUPP; 718 719 merge->tci = meta_tci->tci; 720 mask += sizeof(struct nfp_flower_meta_tci); 721 722 if (key_layer & NFP_FLOWER_LAYER_EXT_META) 723 mask += sizeof(struct nfp_flower_ext_meta); 724 725 mask += sizeof(struct nfp_flower_in_port); 726 727 if (key_layer & NFP_FLOWER_LAYER_MAC) { 728 match_size = sizeof(struct nfp_flower_mac_mpls); 729 memcpy(&merge->l2, mask, match_size); 730 mask += match_size; 731 } 732 733 if (key_layer & NFP_FLOWER_LAYER_TP) { 734 match_size = sizeof(struct nfp_flower_tp_ports); 735 memcpy(&merge->l4, mask, match_size); 736 mask += match_size; 737 } 738 739 if (key_layer & NFP_FLOWER_LAYER_IPV4) { 740 match_size = sizeof(struct nfp_flower_ipv4); 741 memcpy(&merge->ipv4, mask, match_size); 742 } 743 744 if (key_layer & NFP_FLOWER_LAYER_IPV6) { 745 match_size = sizeof(struct nfp_flower_ipv6); 746 memcpy(&merge->ipv6, mask, match_size); 747 } 748 749 return 0; 750 } 751 752 static int 753 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1, 754 struct nfp_fl_payload *sub_flow2) 755 { 756 /* Two flows can be merged if sub_flow2 only matches on bits that are 757 * either matched by sub_flow1 or set by a sub_flow1 action. This 758 * ensures that every packet that hits sub_flow1 and recirculates is 759 * guaranteed to hit sub_flow2. 760 */ 761 struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge; 762 int err, act_out = 0; 763 u8 last_act_id = 0; 764 765 err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge, 766 true); 767 if (err) 768 return err; 769 770 err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge, 771 false); 772 if (err) 773 return err; 774 775 err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge, 776 &last_act_id, &act_out); 777 if (err) 778 return err; 779 780 /* Must only be 1 output action and it must be the last in sequence. */ 781 if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT) 782 return -EOPNOTSUPP; 783 784 /* Reject merge if sub_flow2 matches on something that is not matched 785 * on or set in an action by sub_flow1. 786 */ 787 err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals, 788 sub_flow1_merge.vals, 789 sizeof(struct nfp_flower_merge_check) * 8); 790 if (err) 791 return -EINVAL; 792 793 return 0; 794 } 795 796 static unsigned int 797 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len, 798 bool *tunnel_act) 799 { 800 unsigned int act_off = 0, act_len; 801 struct nfp_fl_act_head *a; 802 u8 act_id = 0; 803 804 while (act_off < len) { 805 a = (struct nfp_fl_act_head *)&act_src[act_off]; 806 act_len = a->len_lw << NFP_FL_LW_SIZ; 807 act_id = a->jump_id; 808 809 switch (act_id) { 810 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: 811 if (tunnel_act) 812 *tunnel_act = true; 813 fallthrough; 814 case NFP_FL_ACTION_OPCODE_PRE_LAG: 815 memcpy(act_dst + act_off, act_src + act_off, act_len); 816 break; 817 default: 818 return act_off; 819 } 820 821 act_off += act_len; 822 } 823 824 return act_off; 825 } 826 827 static int 828 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan) 829 { 830 struct nfp_fl_act_head *a; 831 unsigned int act_off = 0; 832 833 while (act_off < len) { 834 a = (struct nfp_fl_act_head *)&acts[act_off]; 835 836 if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off) 837 *vlan = (struct nfp_fl_push_vlan *)a; 838 else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) 839 return -EOPNOTSUPP; 840 841 act_off += a->len_lw << NFP_FL_LW_SIZ; 842 } 843 844 /* Ensure any VLAN push also has an egress action. */ 845 if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan)) 846 return -EOPNOTSUPP; 847 848 return 0; 849 } 850 851 static int 852 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan) 853 { 854 struct nfp_fl_set_tun *tun; 855 struct nfp_fl_act_head *a; 856 unsigned int act_off = 0; 857 858 while (act_off < len) { 859 a = (struct nfp_fl_act_head *)&acts[act_off]; 860 861 if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) { 862 tun = (struct nfp_fl_set_tun *)a; 863 tun->outer_vlan_tpid = vlan->vlan_tpid; 864 tun->outer_vlan_tci = vlan->vlan_tci; 865 866 return 0; 867 } 868 869 act_off += a->len_lw << NFP_FL_LW_SIZ; 870 } 871 872 /* Return error if no tunnel action is found. */ 873 return -EOPNOTSUPP; 874 } 875 876 static int 877 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1, 878 struct nfp_fl_payload *sub_flow2, 879 struct nfp_fl_payload *merge_flow) 880 { 881 unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2; 882 struct nfp_fl_push_vlan *post_tun_push_vlan = NULL; 883 bool tunnel_act = false; 884 char *merge_act; 885 int err; 886 887 /* The last action of sub_flow1 must be output - do not merge this. */ 888 sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output); 889 sub2_act_len = sub_flow2->meta.act_len; 890 891 if (!sub2_act_len) 892 return -EINVAL; 893 894 if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ) 895 return -EINVAL; 896 897 /* A shortcut can only be applied if there is a single action. */ 898 if (sub1_act_len) 899 merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL); 900 else 901 merge_flow->meta.shortcut = sub_flow2->meta.shortcut; 902 903 merge_flow->meta.act_len = sub1_act_len + sub2_act_len; 904 merge_act = merge_flow->action_data; 905 906 /* Copy any pre-actions to the start of merge flow action list. */ 907 pre_off1 = nfp_flower_copy_pre_actions(merge_act, 908 sub_flow1->action_data, 909 sub1_act_len, &tunnel_act); 910 merge_act += pre_off1; 911 sub1_act_len -= pre_off1; 912 pre_off2 = nfp_flower_copy_pre_actions(merge_act, 913 sub_flow2->action_data, 914 sub2_act_len, NULL); 915 merge_act += pre_off2; 916 sub2_act_len -= pre_off2; 917 918 /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes 919 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a 920 * valid merge. 921 */ 922 if (tunnel_act) { 923 char *post_tun_acts = &sub_flow2->action_data[pre_off2]; 924 925 err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len, 926 &post_tun_push_vlan); 927 if (err) 928 return err; 929 930 if (post_tun_push_vlan) { 931 pre_off2 += sizeof(*post_tun_push_vlan); 932 sub2_act_len -= sizeof(*post_tun_push_vlan); 933 } 934 } 935 936 /* Copy remaining actions from sub_flows 1 and 2. */ 937 memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len); 938 939 if (post_tun_push_vlan) { 940 /* Update tunnel action in merge to include VLAN push. */ 941 err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len, 942 post_tun_push_vlan); 943 if (err) 944 return err; 945 946 merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan); 947 } 948 949 merge_act += sub1_act_len; 950 memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len); 951 952 return 0; 953 } 954 955 /* Flow link code should only be accessed under RTNL. */ 956 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link) 957 { 958 list_del(&link->merge_flow.list); 959 list_del(&link->sub_flow.list); 960 kfree(link); 961 } 962 963 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow, 964 struct nfp_fl_payload *sub_flow) 965 { 966 struct nfp_fl_payload_link *link; 967 968 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) 969 if (link->sub_flow.flow == sub_flow) { 970 nfp_flower_unlink_flow(link); 971 return; 972 } 973 } 974 975 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow, 976 struct nfp_fl_payload *sub_flow) 977 { 978 struct nfp_fl_payload_link *link; 979 980 link = kmalloc(sizeof(*link), GFP_KERNEL); 981 if (!link) 982 return -ENOMEM; 983 984 link->merge_flow.flow = merge_flow; 985 list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows); 986 link->sub_flow.flow = sub_flow; 987 list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows); 988 989 return 0; 990 } 991 992 /** 993 * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow. 994 * @app: Pointer to the APP handle 995 * @sub_flow1: Initial flow matched to produce merge hint 996 * @sub_flow2: Post recirculation flow matched in merge hint 997 * 998 * Combines 2 flows (if valid) to a single flow, removing the initial from hw 999 * and offloading the new, merged flow. 1000 * 1001 * Return: negative value on error, 0 in success. 1002 */ 1003 int nfp_flower_merge_offloaded_flows(struct nfp_app *app, 1004 struct nfp_fl_payload *sub_flow1, 1005 struct nfp_fl_payload *sub_flow2) 1006 { 1007 struct flow_cls_offload merge_tc_off; 1008 struct nfp_flower_priv *priv = app->priv; 1009 struct netlink_ext_ack *extack = NULL; 1010 struct nfp_fl_payload *merge_flow; 1011 struct nfp_fl_key_ls merge_key_ls; 1012 int err; 1013 1014 ASSERT_RTNL(); 1015 1016 extack = merge_tc_off.common.extack; 1017 if (sub_flow1 == sub_flow2 || 1018 nfp_flower_is_merge_flow(sub_flow1) || 1019 nfp_flower_is_merge_flow(sub_flow2)) 1020 return -EINVAL; 1021 1022 err = nfp_flower_can_merge(sub_flow1, sub_flow2); 1023 if (err) 1024 return err; 1025 1026 merge_key_ls.key_size = sub_flow1->meta.key_len; 1027 1028 merge_flow = nfp_flower_allocate_new(&merge_key_ls); 1029 if (!merge_flow) 1030 return -ENOMEM; 1031 1032 merge_flow->tc_flower_cookie = (unsigned long)merge_flow; 1033 merge_flow->ingress_dev = sub_flow1->ingress_dev; 1034 1035 memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data, 1036 sub_flow1->meta.key_len); 1037 memcpy(merge_flow->mask_data, sub_flow1->mask_data, 1038 sub_flow1->meta.mask_len); 1039 1040 err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow); 1041 if (err) 1042 goto err_destroy_merge_flow; 1043 1044 err = nfp_flower_link_flows(merge_flow, sub_flow1); 1045 if (err) 1046 goto err_destroy_merge_flow; 1047 1048 err = nfp_flower_link_flows(merge_flow, sub_flow2); 1049 if (err) 1050 goto err_unlink_sub_flow1; 1051 1052 merge_tc_off.cookie = merge_flow->tc_flower_cookie; 1053 err = nfp_compile_flow_metadata(app, &merge_tc_off, merge_flow, 1054 merge_flow->ingress_dev, extack); 1055 if (err) 1056 goto err_unlink_sub_flow2; 1057 1058 err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node, 1059 nfp_flower_table_params); 1060 if (err) 1061 goto err_release_metadata; 1062 1063 err = nfp_flower_xmit_flow(app, merge_flow, 1064 NFP_FLOWER_CMSG_TYPE_FLOW_MOD); 1065 if (err) 1066 goto err_remove_rhash; 1067 1068 merge_flow->in_hw = true; 1069 sub_flow1->in_hw = false; 1070 1071 return 0; 1072 1073 err_remove_rhash: 1074 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1075 &merge_flow->fl_node, 1076 nfp_flower_table_params)); 1077 err_release_metadata: 1078 nfp_modify_flow_metadata(app, merge_flow); 1079 err_unlink_sub_flow2: 1080 nfp_flower_unlink_flows(merge_flow, sub_flow2); 1081 err_unlink_sub_flow1: 1082 nfp_flower_unlink_flows(merge_flow, sub_flow1); 1083 err_destroy_merge_flow: 1084 kfree(merge_flow->action_data); 1085 kfree(merge_flow->mask_data); 1086 kfree(merge_flow->unmasked_data); 1087 kfree(merge_flow); 1088 return err; 1089 } 1090 1091 /** 1092 * nfp_flower_validate_pre_tun_rule() 1093 * @app: Pointer to the APP handle 1094 * @flow: Pointer to NFP flow representation of rule 1095 * @key_ls: Pointer to NFP key layers structure 1096 * @extack: Netlink extended ACK report 1097 * 1098 * Verifies the flow as a pre-tunnel rule. 1099 * 1100 * Return: negative value on error, 0 if verified. 1101 */ 1102 static int 1103 nfp_flower_validate_pre_tun_rule(struct nfp_app *app, 1104 struct nfp_fl_payload *flow, 1105 struct nfp_fl_key_ls *key_ls, 1106 struct netlink_ext_ack *extack) 1107 { 1108 struct nfp_flower_priv *priv = app->priv; 1109 struct nfp_flower_meta_tci *meta_tci; 1110 struct nfp_flower_mac_mpls *mac; 1111 u8 *ext = flow->unmasked_data; 1112 struct nfp_fl_act_head *act; 1113 u8 *mask = flow->mask_data; 1114 bool vlan = false; 1115 int act_offset; 1116 u8 key_layer; 1117 1118 meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data; 1119 key_layer = key_ls->key_layer; 1120 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { 1121 if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) { 1122 u16 vlan_tci = be16_to_cpu(meta_tci->tci); 1123 1124 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT; 1125 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci); 1126 vlan = true; 1127 } else { 1128 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff); 1129 } 1130 } 1131 1132 if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) { 1133 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields"); 1134 return -EOPNOTSUPP; 1135 } else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) { 1136 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields"); 1137 return -EOPNOTSUPP; 1138 } 1139 1140 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { 1141 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required"); 1142 return -EOPNOTSUPP; 1143 } 1144 1145 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) && 1146 !(key_layer & NFP_FLOWER_LAYER_IPV6)) { 1147 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present"); 1148 return -EOPNOTSUPP; 1149 } 1150 1151 /* Skip fields known to exist. */ 1152 mask += sizeof(struct nfp_flower_meta_tci); 1153 ext += sizeof(struct nfp_flower_meta_tci); 1154 if (key_ls->key_layer_two) { 1155 mask += sizeof(struct nfp_flower_ext_meta); 1156 ext += sizeof(struct nfp_flower_ext_meta); 1157 } 1158 mask += sizeof(struct nfp_flower_in_port); 1159 ext += sizeof(struct nfp_flower_in_port); 1160 1161 /* Ensure destination MAC address matches pre_tun_dev. */ 1162 mac = (struct nfp_flower_mac_mpls *)ext; 1163 if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) { 1164 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC must match output dev MAC"); 1165 return -EOPNOTSUPP; 1166 } 1167 1168 /* Ensure destination MAC address is fully matched. */ 1169 mac = (struct nfp_flower_mac_mpls *)mask; 1170 if (!is_broadcast_ether_addr(&mac->mac_dst[0])) { 1171 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked"); 1172 return -EOPNOTSUPP; 1173 } 1174 1175 if (mac->mpls_lse) { 1176 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported"); 1177 return -EOPNOTSUPP; 1178 } 1179 1180 mask += sizeof(struct nfp_flower_mac_mpls); 1181 ext += sizeof(struct nfp_flower_mac_mpls); 1182 if (key_layer & NFP_FLOWER_LAYER_IPV4 || 1183 key_layer & NFP_FLOWER_LAYER_IPV6) { 1184 /* Flags and proto fields have same offset in IPv4 and IPv6. */ 1185 int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags); 1186 int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto); 1187 int size; 1188 int i; 1189 1190 size = key_layer & NFP_FLOWER_LAYER_IPV4 ? 1191 sizeof(struct nfp_flower_ipv4) : 1192 sizeof(struct nfp_flower_ipv6); 1193 1194 1195 /* Ensure proto and flags are the only IP layer fields. */ 1196 for (i = 0; i < size; i++) 1197 if (mask[i] && i != ip_flags && i != ip_proto) { 1198 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header"); 1199 return -EOPNOTSUPP; 1200 } 1201 ext += size; 1202 mask += size; 1203 } 1204 1205 if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { 1206 if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) { 1207 struct nfp_flower_vlan *vlan_tags; 1208 u16 vlan_tci; 1209 1210 vlan_tags = (struct nfp_flower_vlan *)ext; 1211 1212 vlan_tci = be16_to_cpu(vlan_tags->outer_tci); 1213 1214 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT; 1215 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci); 1216 vlan = true; 1217 } else { 1218 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff); 1219 } 1220 } 1221 1222 /* Action must be a single egress or pop_vlan and egress. */ 1223 act_offset = 0; 1224 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; 1225 if (vlan) { 1226 if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) { 1227 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action"); 1228 return -EOPNOTSUPP; 1229 } 1230 1231 act_offset += act->len_lw << NFP_FL_LW_SIZ; 1232 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; 1233 } 1234 1235 if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) { 1236 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected"); 1237 return -EOPNOTSUPP; 1238 } 1239 1240 act_offset += act->len_lw << NFP_FL_LW_SIZ; 1241 1242 /* Ensure there are no more actions after egress. */ 1243 if (act_offset != flow->meta.act_len) { 1244 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action"); 1245 return -EOPNOTSUPP; 1246 } 1247 1248 return 0; 1249 } 1250 1251 /** 1252 * nfp_flower_add_offload() - Adds a new flow to hardware. 1253 * @app: Pointer to the APP handle 1254 * @netdev: netdev structure. 1255 * @flow: TC flower classifier offload structure. 1256 * 1257 * Adds a new flow to the repeated hash structure and action payload. 1258 * 1259 * Return: negative value on error, 0 if configured successfully. 1260 */ 1261 static int 1262 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev, 1263 struct flow_cls_offload *flow) 1264 { 1265 enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE; 1266 struct nfp_flower_priv *priv = app->priv; 1267 struct netlink_ext_ack *extack = NULL; 1268 struct nfp_fl_payload *flow_pay; 1269 struct nfp_fl_key_ls *key_layer; 1270 struct nfp_port *port = NULL; 1271 int err; 1272 1273 extack = flow->common.extack; 1274 if (nfp_netdev_is_nfp_repr(netdev)) 1275 port = nfp_port_from_netdev(netdev); 1276 1277 key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL); 1278 if (!key_layer) 1279 return -ENOMEM; 1280 1281 err = nfp_flower_calculate_key_layers(app, netdev, key_layer, flow, 1282 &tun_type, extack); 1283 if (err) 1284 goto err_free_key_ls; 1285 1286 flow_pay = nfp_flower_allocate_new(key_layer); 1287 if (!flow_pay) { 1288 err = -ENOMEM; 1289 goto err_free_key_ls; 1290 } 1291 1292 err = nfp_flower_compile_flow_match(app, flow, key_layer, netdev, 1293 flow_pay, tun_type, extack); 1294 if (err) 1295 goto err_destroy_flow; 1296 1297 err = nfp_flower_compile_action(app, flow, netdev, flow_pay, extack); 1298 if (err) 1299 goto err_destroy_flow; 1300 1301 if (flow_pay->pre_tun_rule.dev) { 1302 err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack); 1303 if (err) 1304 goto err_destroy_flow; 1305 } 1306 1307 err = nfp_compile_flow_metadata(app, flow, flow_pay, netdev, extack); 1308 if (err) 1309 goto err_destroy_flow; 1310 1311 flow_pay->tc_flower_cookie = flow->cookie; 1312 err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node, 1313 nfp_flower_table_params); 1314 if (err) { 1315 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads"); 1316 goto err_release_metadata; 1317 } 1318 1319 if (flow_pay->pre_tun_rule.dev) 1320 err = nfp_flower_xmit_pre_tun_flow(app, flow_pay); 1321 else 1322 err = nfp_flower_xmit_flow(app, flow_pay, 1323 NFP_FLOWER_CMSG_TYPE_FLOW_ADD); 1324 if (err) 1325 goto err_remove_rhash; 1326 1327 if (port) 1328 port->tc_offload_cnt++; 1329 1330 flow_pay->in_hw = true; 1331 1332 /* Deallocate flow payload when flower rule has been destroyed. */ 1333 kfree(key_layer); 1334 1335 return 0; 1336 1337 err_remove_rhash: 1338 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1339 &flow_pay->fl_node, 1340 nfp_flower_table_params)); 1341 err_release_metadata: 1342 nfp_modify_flow_metadata(app, flow_pay); 1343 err_destroy_flow: 1344 if (flow_pay->nfp_tun_ipv6) 1345 nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6); 1346 kfree(flow_pay->action_data); 1347 kfree(flow_pay->mask_data); 1348 kfree(flow_pay->unmasked_data); 1349 kfree(flow_pay); 1350 err_free_key_ls: 1351 kfree(key_layer); 1352 return err; 1353 } 1354 1355 static void 1356 nfp_flower_remove_merge_flow(struct nfp_app *app, 1357 struct nfp_fl_payload *del_sub_flow, 1358 struct nfp_fl_payload *merge_flow) 1359 { 1360 struct nfp_flower_priv *priv = app->priv; 1361 struct nfp_fl_payload_link *link, *temp; 1362 struct nfp_fl_payload *origin; 1363 bool mod = false; 1364 int err; 1365 1366 link = list_first_entry(&merge_flow->linked_flows, 1367 struct nfp_fl_payload_link, merge_flow.list); 1368 origin = link->sub_flow.flow; 1369 1370 /* Re-add rule the merge had overwritten if it has not been deleted. */ 1371 if (origin != del_sub_flow) 1372 mod = true; 1373 1374 err = nfp_modify_flow_metadata(app, merge_flow); 1375 if (err) { 1376 nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n"); 1377 goto err_free_links; 1378 } 1379 1380 if (!mod) { 1381 err = nfp_flower_xmit_flow(app, merge_flow, 1382 NFP_FLOWER_CMSG_TYPE_FLOW_DEL); 1383 if (err) { 1384 nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n"); 1385 goto err_free_links; 1386 } 1387 } else { 1388 __nfp_modify_flow_metadata(priv, origin); 1389 err = nfp_flower_xmit_flow(app, origin, 1390 NFP_FLOWER_CMSG_TYPE_FLOW_MOD); 1391 if (err) 1392 nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n"); 1393 origin->in_hw = true; 1394 } 1395 1396 err_free_links: 1397 /* Clean any links connected with the merged flow. */ 1398 list_for_each_entry_safe(link, temp, &merge_flow->linked_flows, 1399 merge_flow.list) 1400 nfp_flower_unlink_flow(link); 1401 1402 kfree(merge_flow->action_data); 1403 kfree(merge_flow->mask_data); 1404 kfree(merge_flow->unmasked_data); 1405 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1406 &merge_flow->fl_node, 1407 nfp_flower_table_params)); 1408 kfree_rcu(merge_flow, rcu); 1409 } 1410 1411 static void 1412 nfp_flower_del_linked_merge_flows(struct nfp_app *app, 1413 struct nfp_fl_payload *sub_flow) 1414 { 1415 struct nfp_fl_payload_link *link, *temp; 1416 1417 /* Remove any merge flow formed from the deleted sub_flow. */ 1418 list_for_each_entry_safe(link, temp, &sub_flow->linked_flows, 1419 sub_flow.list) 1420 nfp_flower_remove_merge_flow(app, sub_flow, 1421 link->merge_flow.flow); 1422 } 1423 1424 /** 1425 * nfp_flower_del_offload() - Removes a flow from hardware. 1426 * @app: Pointer to the APP handle 1427 * @netdev: netdev structure. 1428 * @flow: TC flower classifier offload structure 1429 * 1430 * Removes a flow from the repeated hash structure and clears the 1431 * action payload. Any flows merged from this are also deleted. 1432 * 1433 * Return: negative value on error, 0 if removed successfully. 1434 */ 1435 static int 1436 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev, 1437 struct flow_cls_offload *flow) 1438 { 1439 struct nfp_flower_priv *priv = app->priv; 1440 struct netlink_ext_ack *extack = NULL; 1441 struct nfp_fl_payload *nfp_flow; 1442 struct nfp_port *port = NULL; 1443 int err; 1444 1445 extack = flow->common.extack; 1446 if (nfp_netdev_is_nfp_repr(netdev)) 1447 port = nfp_port_from_netdev(netdev); 1448 1449 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); 1450 if (!nfp_flow) { 1451 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist"); 1452 return -ENOENT; 1453 } 1454 1455 err = nfp_modify_flow_metadata(app, nfp_flow); 1456 if (err) 1457 goto err_free_merge_flow; 1458 1459 if (nfp_flow->nfp_tun_ipv4_addr) 1460 nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr); 1461 1462 if (nfp_flow->nfp_tun_ipv6) 1463 nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6); 1464 1465 if (!nfp_flow->in_hw) { 1466 err = 0; 1467 goto err_free_merge_flow; 1468 } 1469 1470 if (nfp_flow->pre_tun_rule.dev) 1471 err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow); 1472 else 1473 err = nfp_flower_xmit_flow(app, nfp_flow, 1474 NFP_FLOWER_CMSG_TYPE_FLOW_DEL); 1475 /* Fall through on error. */ 1476 1477 err_free_merge_flow: 1478 nfp_flower_del_linked_merge_flows(app, nfp_flow); 1479 if (port) 1480 port->tc_offload_cnt--; 1481 kfree(nfp_flow->action_data); 1482 kfree(nfp_flow->mask_data); 1483 kfree(nfp_flow->unmasked_data); 1484 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1485 &nfp_flow->fl_node, 1486 nfp_flower_table_params)); 1487 kfree_rcu(nfp_flow, rcu); 1488 return err; 1489 } 1490 1491 static void 1492 __nfp_flower_update_merge_stats(struct nfp_app *app, 1493 struct nfp_fl_payload *merge_flow) 1494 { 1495 struct nfp_flower_priv *priv = app->priv; 1496 struct nfp_fl_payload_link *link; 1497 struct nfp_fl_payload *sub_flow; 1498 u64 pkts, bytes, used; 1499 u32 ctx_id; 1500 1501 ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id); 1502 pkts = priv->stats[ctx_id].pkts; 1503 /* Do not cycle subflows if no stats to distribute. */ 1504 if (!pkts) 1505 return; 1506 bytes = priv->stats[ctx_id].bytes; 1507 used = priv->stats[ctx_id].used; 1508 1509 /* Reset stats for the merge flow. */ 1510 priv->stats[ctx_id].pkts = 0; 1511 priv->stats[ctx_id].bytes = 0; 1512 1513 /* The merge flow has received stats updates from firmware. 1514 * Distribute these stats to all subflows that form the merge. 1515 * The stats will collected from TC via the subflows. 1516 */ 1517 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) { 1518 sub_flow = link->sub_flow.flow; 1519 ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id); 1520 priv->stats[ctx_id].pkts += pkts; 1521 priv->stats[ctx_id].bytes += bytes; 1522 priv->stats[ctx_id].used = max_t(u64, used, 1523 priv->stats[ctx_id].used); 1524 } 1525 } 1526 1527 static void 1528 nfp_flower_update_merge_stats(struct nfp_app *app, 1529 struct nfp_fl_payload *sub_flow) 1530 { 1531 struct nfp_fl_payload_link *link; 1532 1533 /* Get merge flows that the subflow forms to distribute their stats. */ 1534 list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list) 1535 __nfp_flower_update_merge_stats(app, link->merge_flow.flow); 1536 } 1537 1538 /** 1539 * nfp_flower_get_stats() - Populates flow stats obtained from hardware. 1540 * @app: Pointer to the APP handle 1541 * @netdev: Netdev structure. 1542 * @flow: TC flower classifier offload structure 1543 * 1544 * Populates a flow statistics structure which which corresponds to a 1545 * specific flow. 1546 * 1547 * Return: negative value on error, 0 if stats populated successfully. 1548 */ 1549 static int 1550 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev, 1551 struct flow_cls_offload *flow) 1552 { 1553 struct nfp_flower_priv *priv = app->priv; 1554 struct netlink_ext_ack *extack = NULL; 1555 struct nfp_fl_payload *nfp_flow; 1556 u32 ctx_id; 1557 1558 extack = flow->common.extack; 1559 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); 1560 if (!nfp_flow) { 1561 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist"); 1562 return -EINVAL; 1563 } 1564 1565 ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id); 1566 1567 spin_lock_bh(&priv->stats_lock); 1568 /* If request is for a sub_flow, update stats from merged flows. */ 1569 if (!list_empty(&nfp_flow->linked_flows)) 1570 nfp_flower_update_merge_stats(app, nfp_flow); 1571 1572 flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes, 1573 priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, 1574 FLOW_ACTION_HW_STATS_DELAYED); 1575 1576 priv->stats[ctx_id].pkts = 0; 1577 priv->stats[ctx_id].bytes = 0; 1578 spin_unlock_bh(&priv->stats_lock); 1579 1580 return 0; 1581 } 1582 1583 static int 1584 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev, 1585 struct flow_cls_offload *flower) 1586 { 1587 if (!eth_proto_is_802_3(flower->common.protocol)) 1588 return -EOPNOTSUPP; 1589 1590 switch (flower->command) { 1591 case FLOW_CLS_REPLACE: 1592 return nfp_flower_add_offload(app, netdev, flower); 1593 case FLOW_CLS_DESTROY: 1594 return nfp_flower_del_offload(app, netdev, flower); 1595 case FLOW_CLS_STATS: 1596 return nfp_flower_get_stats(app, netdev, flower); 1597 default: 1598 return -EOPNOTSUPP; 1599 } 1600 } 1601 1602 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type, 1603 void *type_data, void *cb_priv) 1604 { 1605 struct nfp_repr *repr = cb_priv; 1606 1607 if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data)) 1608 return -EOPNOTSUPP; 1609 1610 switch (type) { 1611 case TC_SETUP_CLSFLOWER: 1612 return nfp_flower_repr_offload(repr->app, repr->netdev, 1613 type_data); 1614 case TC_SETUP_CLSMATCHALL: 1615 return nfp_flower_setup_qos_offload(repr->app, repr->netdev, 1616 type_data); 1617 default: 1618 return -EOPNOTSUPP; 1619 } 1620 } 1621 1622 static LIST_HEAD(nfp_block_cb_list); 1623 1624 static int nfp_flower_setup_tc_block(struct net_device *netdev, 1625 struct flow_block_offload *f) 1626 { 1627 struct nfp_repr *repr = netdev_priv(netdev); 1628 struct nfp_flower_repr_priv *repr_priv; 1629 struct flow_block_cb *block_cb; 1630 1631 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 1632 return -EOPNOTSUPP; 1633 1634 repr_priv = repr->app_priv; 1635 repr_priv->block_shared = f->block_shared; 1636 f->driver_block_list = &nfp_block_cb_list; 1637 1638 switch (f->command) { 1639 case FLOW_BLOCK_BIND: 1640 if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr, 1641 &nfp_block_cb_list)) 1642 return -EBUSY; 1643 1644 block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb, 1645 repr, repr, NULL); 1646 if (IS_ERR(block_cb)) 1647 return PTR_ERR(block_cb); 1648 1649 flow_block_cb_add(block_cb, f); 1650 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); 1651 return 0; 1652 case FLOW_BLOCK_UNBIND: 1653 block_cb = flow_block_cb_lookup(f->block, 1654 nfp_flower_setup_tc_block_cb, 1655 repr); 1656 if (!block_cb) 1657 return -ENOENT; 1658 1659 flow_block_cb_remove(block_cb, f); 1660 list_del(&block_cb->driver_list); 1661 return 0; 1662 default: 1663 return -EOPNOTSUPP; 1664 } 1665 } 1666 1667 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev, 1668 enum tc_setup_type type, void *type_data) 1669 { 1670 switch (type) { 1671 case TC_SETUP_BLOCK: 1672 return nfp_flower_setup_tc_block(netdev, type_data); 1673 default: 1674 return -EOPNOTSUPP; 1675 } 1676 } 1677 1678 struct nfp_flower_indr_block_cb_priv { 1679 struct net_device *netdev; 1680 struct nfp_app *app; 1681 struct list_head list; 1682 }; 1683 1684 static struct nfp_flower_indr_block_cb_priv * 1685 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app, 1686 struct net_device *netdev) 1687 { 1688 struct nfp_flower_indr_block_cb_priv *cb_priv; 1689 struct nfp_flower_priv *priv = app->priv; 1690 1691 /* All callback list access should be protected by RTNL. */ 1692 ASSERT_RTNL(); 1693 1694 list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list) 1695 if (cb_priv->netdev == netdev) 1696 return cb_priv; 1697 1698 return NULL; 1699 } 1700 1701 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type, 1702 void *type_data, void *cb_priv) 1703 { 1704 struct nfp_flower_indr_block_cb_priv *priv = cb_priv; 1705 struct flow_cls_offload *flower = type_data; 1706 1707 if (flower->common.chain_index) 1708 return -EOPNOTSUPP; 1709 1710 switch (type) { 1711 case TC_SETUP_CLSFLOWER: 1712 return nfp_flower_repr_offload(priv->app, priv->netdev, 1713 type_data); 1714 default: 1715 return -EOPNOTSUPP; 1716 } 1717 } 1718 1719 void nfp_flower_setup_indr_tc_release(void *cb_priv) 1720 { 1721 struct nfp_flower_indr_block_cb_priv *priv = cb_priv; 1722 1723 list_del(&priv->list); 1724 kfree(priv); 1725 } 1726 1727 static int 1728 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app, 1729 struct flow_block_offload *f, void *data, 1730 void (*cleanup)(struct flow_block_cb *block_cb)) 1731 { 1732 struct nfp_flower_indr_block_cb_priv *cb_priv; 1733 struct nfp_flower_priv *priv = app->priv; 1734 struct flow_block_cb *block_cb; 1735 1736 if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS && 1737 !nfp_flower_internal_port_can_offload(app, netdev)) || 1738 (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS && 1739 nfp_flower_internal_port_can_offload(app, netdev))) 1740 return -EOPNOTSUPP; 1741 1742 switch (f->command) { 1743 case FLOW_BLOCK_BIND: 1744 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); 1745 if (cb_priv && 1746 flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb, 1747 cb_priv, 1748 &nfp_block_cb_list)) 1749 return -EBUSY; 1750 1751 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); 1752 if (!cb_priv) 1753 return -ENOMEM; 1754 1755 cb_priv->netdev = netdev; 1756 cb_priv->app = app; 1757 list_add(&cb_priv->list, &priv->indr_block_cb_priv); 1758 1759 block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb, 1760 cb_priv, cb_priv, 1761 nfp_flower_setup_indr_tc_release, 1762 f, netdev, sch, data, app, cleanup); 1763 if (IS_ERR(block_cb)) { 1764 list_del(&cb_priv->list); 1765 kfree(cb_priv); 1766 return PTR_ERR(block_cb); 1767 } 1768 1769 flow_block_cb_add(block_cb, f); 1770 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); 1771 return 0; 1772 case FLOW_BLOCK_UNBIND: 1773 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); 1774 if (!cb_priv) 1775 return -ENOENT; 1776 1777 block_cb = flow_block_cb_lookup(f->block, 1778 nfp_flower_setup_indr_block_cb, 1779 cb_priv); 1780 if (!block_cb) 1781 return -ENOENT; 1782 1783 flow_indr_block_cb_remove(block_cb, f); 1784 list_del(&block_cb->driver_list); 1785 return 0; 1786 default: 1787 return -EOPNOTSUPP; 1788 } 1789 return 0; 1790 } 1791 1792 int 1793 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, 1794 enum tc_setup_type type, void *type_data, 1795 void *data, 1796 void (*cleanup)(struct flow_block_cb *block_cb)) 1797 { 1798 if (!nfp_fl_is_netdev_to_offload(netdev)) 1799 return -EOPNOTSUPP; 1800 1801 switch (type) { 1802 case TC_SETUP_BLOCK: 1803 return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv, 1804 type_data, data, cleanup); 1805 default: 1806 return -EOPNOTSUPP; 1807 } 1808 } 1809